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Abstract 
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ABNORMAL FUNCTIONING REGION IN HUMAN EXTERNAL ORGANS 

USING THERMOGRAM ANALYSIS  
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Doctor of Philosophy 
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Ryerson University 

 

This study has established thermography as a potential diagnostic tool for detecting and 

parameterizing tumors even at the earlier stage from abnormal local surface thermal features 

captured by high sensitive infrared cameras without known risk of morbidity. Discrepant thermal 

features originate not only for tumor’s distinguishing physio-bio-thermal features but also for the 

state of health, resulting in thermography as a useful tool for retrieving information about the 

tissue’s health, thus an efficient screening tool. Accurate linking between hyper functional tissues 

and thermal pattern could turn the screening tool into a promising parameterizing tool. Human 

external organs, for example chest, forearm and breast have been modeled, mimicking their shapes, 

inhomogeneity and deformations to obtain steady-state thermal feature in the tissue interior at 

healthy state and the computation is extended for tumors buried into healthy tissues for 

determining abnormal local surface thermal image. Tumor diagnosis parameters have been 

forecasted from thermogram using an indirect process involving the optimization process. The 

study has applied gradient (gradient projection method), non-gradient (pattern search method) and 
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learning based (genetic algorithm) optimization approaches. Feasibility of the proposed technique 

is investigated for tumors in human organs.  

 The local abnormal thermal feature screens earlier stage tumors out and reveal how tumors 

affect the thermal behaviour and what particular parameters have significant influence on the 

thermal image. Influential parameters are applied as optimization variables and their influences 

are also figured out to determine the gradient matrix for the gradient optimization technique.  The 

study has employed bio-heat equations, heat-source model and Artificial Neural Network as 

governing equation to develop simulated datasets. The simulated dataset is compared with test 

thermogram to minimize a cost function. In lieu of clinical thermograms, the study has developed 

pretend thermogram with enveloping the simulated datasets with ±10% random noise.   

This research has tailored optimization algorithms for estimating tumor depth, size, blood 

perfusion rate, thermal conductivity, and metabolism and the obtained results show good accuracy. 

The estimated parameters are given to a trained network to reconstruct the thermal feature, thus, 

validates the performance of the proposed methodology.           

Keywords: Infrared thermography, bio-heat transfer, tumor, analytical solution, numerical 

approach, optimization, evolutionary process  



v 

 

Acknowledgements 

 

I would like to express my deepest gratitude to my supervisor, Dr. Farah Mohammadi, for 

her excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing 

research. I would never been able to finish my dissertation without the guidance of my supervisor, 

committee members, help from friends, and support from my family and wife. 

I would like to thank my committee members, Dr. Soosan Beheshti, and Dr. Xavier 

Fernando, from Department of Electrical and Computer Engineering, Ryerson University, for their 

encouragement, insightful comments, constructive suggestions, but also for the hard questions 

which incented me to widen my research from various perspectives.  

In addition, I am thankful to Dr. Habiba Bougherara, from Department of Mechanical and 

Industrial Engineering, Ryeron University and Dr. Saeed Mohammadi, from Department of 

Electrical and Computer Engineering, Purdue University for time spent in the evaluation of my 

research work and also for their suggestions. I would like to express the deepest appreciation to 

my committee chair, Dr. Martin Antony, from Department of Psychology, Ryerson University 

who has the attitude and the substance of a genius. 

I thank my fellow graduates, especially Akram Hadeed, for the stimulating discussions and 

for helping me throughout the work.   

I would also like to thank the Department of Electrical and Computer Engineering and the 

School of Graduate Studies at Ryerson University for their financial support during the course of 

this work. 

I am also grateful to my family and fellow graduate students for their continuous assistance 

and inspiration throughout the work. 

 

 

  



vi 

 

Table of Contents 

Author’s Declaration……………………………………………………………….........ii 

Abstract …………………………………………………………………………….. iii 

Acknowledgment……………………………………………………………………..  iv 

 Introduction .................................................................................................................................. 1 

1.1 Background ................................................................................................................................. 27 

1.2 Medical Imaging Technology ..................................................................................................... 27 

1.2.1 Mammogram ....................................................................................................................... 27 

1.2.2 Magnetic Resonance Imaging (MRI) .................................................................................. 27 

1.2.3 Ultrasound ........................................................................................................................... 27 

1.2.4 Infrared Thermogram .......................................................................................................... 27 

1.3 Challenges of the Available Systems .......................................................................................... 27 

1.4 Computational Tools and Estimation Methodologies in Health Care ......................................... 27 

1.4.1 Anatomic –accurate Physical Model ................................................................................... 27 

1.4.2 Deformed Organ Model ...................................................................................................... 27 

1.4.3 Indirect Problem Solvers ..................................................................................................... 27 

1.5 Motivation and Overview ........................................................................................................... 27 

1.6 Thesis Contribution ..................................................................................................................... 27 

1.7 Outline of the Thesis ................................................................................................................... 27 

1.8 Summary ..................................................................................................................................... 27 

 Literature Review ....................................................................................................................... 27 

2.1 Introduction ................................................................................................................................. 27 

2.2 Background ................................................................................................................................. 27 

2.3 Summary ..................................................................................................................................... 36 

 Thermal Analysis in Healthy Homogeneous Tissues ................................................................. 38 

3.1 Introduction ................................................................................................................................. 38 

3.2 Bio-heat Transfer Model ............................................................................................................. 40 

3.3 Thermal Analysis of Tissues ....................................................................................................... 41 

3.3.1 Cuboid (Rectangular box) tissues ....................................................................................... 42 

3.3.2 Cylindrical (Tubular) tissues ............................................................................................... 45 

3.3.3 (Hemi)Spherical tissues ...................................................................................................... 49 



vii 

 

3.4 Analytical Results ....................................................................................................................... 52 

3.5 Comparisons between analytical solutions obtained in different coordinate system .................. 54 

3.6 Numerical Approach ................................................................................................................... 56 

3.6.1 Finite Difference Method .................................................................................................... 57 

3.6.2 Finite Element Method ........................................................................................................ 59 

3.6.3 Comparison between Analytical and Numerical Results .................................................... 61 

3.7 Homogeneous Finite Element Models ........................................................................................ 63 

3.8 Parametric Study ......................................................................................................................... 66 

3.9 Necessity of Anatomical Accurate Models ................................................................................. 75 

3.10 Summary ..................................................................................................................................... 77 

 Physical Models of Non-homogeneous Tissues ......................................................................... 79 

4.1 Introduction ................................................................................................................................. 79 

4.2 Organ’s Anatomy ........................................................................................................................ 79 

4.3 Anatomical-accurate Model ........................................................................................................ 82 

4.3.1 The Chest (Flat Organ) Model ............................................................................................ 84 

4.3.2 The Forearm (Tubular Organ) Model ................................................................................. 85 

4.3.3 The Breast (Hemispherical Organ) Model .......................................................................... 87 

4.4 Summary ..................................................................................................................................... 91 

 Thermal Analysis of External Organs with Embedded Tumor .................................................. 92 

5.1 Introduction ................................................................................................................................. 92 

5.2 Tumor Thermal Behavior............................................................................................................ 94 

5.3 Tumor Shapes ............................................................................................................................. 95 

5.4 Thermal Parameters .................................................................................................................... 97 

5.4.1 Blood Thermal Parameters: Density (ρb), Specific Heat (cb) and Perfusion Rate (ωb) .... 98 

5.4.2 Thermal Parameters of tissues: Thermal Conductivity, Density and Specific Heat ........... 99 

5.4.3 Metabolic Heat Generation ................................................................................................. 99 

5.4.4 Heat Losses Rates at Boundary ......................................................................................... 100 

5.4.5 Thermal Parameter of Tumor ............................................................................................ 101 

5.4.6 Recommended thermal parameters ................................................................................... 102 

5.5 Thermal Analyzer: COMSOL Multiphysics ............................................................................. 103 

5.5.1 Numeric Models (Gridding and Meshing) ........................................................................ 104 

5.5.2 Coding and Simulation...................................................................................................... 106 



viii 

 

5.6 Simplified vs. Realistic Models ................................................................................................ 111 

5.7 Necessity of Anatomic-accurate (Realistic) Models ................................................................. 115 

5.8 Thermal Analysis ...................................................................................................................... 118 

5.9 Effect of Physio-thermo-biological Parameters and the Surrounding ...................................... 124 

5.10 Deformed Breast Analysis ........................................................................................................ 129 

5.11 Summary ................................................................................................................................... 136 

 Parameter Estimation—Indirect Approach .............................................................................. 137 

6.1 Introduction ............................................................................................................................... 137 

6.2 Introduction to Optimization ..................................................................................................... 140 

6.2.1 Diagnosis Parameters and Modeling ................................................................................. 140 

6.2.2 Governing Equation .......................................................................................................... 142 

6.2.3 Cost/Objective Function ................................................................................................... 147 

6.2.4 Problem Type .................................................................................................................... 149 

6.2.5 Optimization Problem Solver ............................................................................................ 150 

6.3 Optimization Approaches ......................................................................................................... 150 

6.3.3 Gradient Projection Method (GPM) ................................................................................. 151 

6.3.4 Pattern Search Method (PSM) .......................................................................................... 161 

6.3.5 Genetic Algorithm............................................................................................................. 168 

6.3.6 Artificial Neural Network ................................................................................................. 177 

6.4 Summary ................................................................................................................................... 183 

 General Conclusions and Future Work .................................................................................... 185 

7.1 Conclusions ............................................................................................................................... 185 

7.2 Recommendation for Future Work ........................................................................................... 188 

Bibliography ............................................................................................................................................. 189 

 Glossary………………………………………………………………………….   196 

 

  



ix 

 

List of Tables 

Table 2- 1   Study of Performance and Suitability Evaluation of Breast Thermogram ............................ 29 

Table 3-1   Synopsis of forearm .............................................................................................................. 86 

Table 5- 1     Thermal parameter of blood (assumed in previous studies) .................................................. 98 

Table 5- 2      Conductive thermal coefficient............................................................................................. 99 

Table 5- 3      Metabolic heat generation rates .......................................................................................... 100 

Table 5- 4      Heat exchange rates ............................................................................................................ 101 

Table 5- 5     Ambient temperature ........................................................................................................... 101 

Table 5- 6     Tumor thermal parameter .................................................................................................... 102 

Table 5- 7     Thermal and biological parameters ..................................................................................... 103 

Table 6- 1     Estimated heat source parameters ........................................................................................ 161 

Table 6- 2     Initial value matrix............................................................................................................... 164 

Table 6- 3     PSM estimate for ideal thermogram .................................................................................... 168 

Table 6- 4     PSM estimate for realistic thermogram ............................................................................... 168 

Table 6- 5    GA estimate for ideal thermogram of tumor buried in natural breast .................................. 176 

Table 6- 6    GA estimate for realistic thermogram of tumor buried in deformed breast ......................... 176 

  



x 

 

List of Figures 

Figure 1- 1 Cancer diagnosis methods ................................................................................................... 27 

Figure 1- 2 Typical mammogram imaging procedure ........................................................................... 27 

Figure 1- 3 A patient lying on the scanning table outside the magnet ................................................... 27 

Figure 1- 4 Thermogram detection of breast cancer .............................................................................. 27 

Figure 1- 5 Human body anatomy ......................................................................................................... 27 

Figure 1- 6 A patient with deformed breast ........................................................................................... 27 

Figure 1- 7 Ptosis scale .......................................................................................................................... 27 

Figure 3-1 Male chest anatomy ............................................................................................................ 80 

Figure 3-2 Forearm anatomy ................................................................................................................ 81 

Figure 3-3 Breast anatomy .................................................................................................................... 82 

Figure 3-4 2D model of a female breast ............................................................................................... 83 

Figure 3-5 Male chest—(a) Cross-sectional diagram, and (b) Development of chest model base ....... 84 

Figure 3-6 Three-dimensional model of male chest ............................................................................. 85 

Figure 3-7 Human forearm diagram—(a) Cross-sectional diagram, and (b) Development of forearm 

model base ……………………………………………………………………………………………………………………………………….86 

Figure 3-8 Three-dimensional model of forearm.................................................................................. 87 

Figure 3-9 Breast diagram—(a) and (b) Physical dimensions, (c) cross-sectional diagram, and (d) 

developed model for breast cross-section ................................................................................................... 88 

Figure 3-10 Three-dimensional model of breast ..................................................................................... 89 

Figure 3-11 Deformed breast—(a) Mildly deformation due to standing posture and (b) Developed 

model for mildly deformed breast ............................................................................................................... 89 

Figure 3-12 Ptosis breast and model ....................................................................................................... 91 

Figure 4-1 Homogeneous cuboid tissue model ..................................................................................... 92 

Figure 4-2 Homogeneous cylindrical tissue model .............................................................................. 92 

Figure 4-3 Homogeneous spherical tissue model ................................................................................. 92 

Figure 4-4 Radial temperature flow in homogeneous cuboid tissue from body core toward surface for 

the boundary conditions in Table 4-1 ......................................................................................................... 92 

Figure 4-5 Radial temperature flow in homogeneous tubular tissue from body core toward surface for 

the BC-IV in Table 4-1 ............................................................................................................................... 92 

Figure 4-6 Radial temperature flow in homogeneous curved tissue from body core toward surface for 

the BC-IV in Table 4-1 ............................................................................................................................... 92 

Figure 4-7 Comparison of radial temperature flow in homogeneous cuboid, tubular and curved tissues 

for BC-IV on Table 4-1 ............................................................................................................................... 92 

Figure 4-8 Cuboid tissues 3-D domain ................................................................................................. 92 

Figure 4- 9 Finite difference grids ......................................................................................................... 92 

Figure 4- 10  Dimensions of cuboid model .......................................................................................... 92 

Figure 4- 11  Developed finite element model ........................................................................................ 92 

Figure 4- 12  Simulated radial temperature flow in homogeneous cuboid tissues using analytical, FDM 

and FEM: a comparison .............................................................................................................................. 92 

Figure 4-13 FEM mesh diagrams for (a) cuboid, (b) cylindrical and (c) spherical tissues ..................... 92 

file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930371
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930372
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930373
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930374
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930375
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930376
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930377
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930452
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930453
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930454
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930456
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930462
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930462
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930463
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930547
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930548
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930549
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930550
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930550
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930551
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930551
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930552
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930552
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930556
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930558
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930558
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930559


xi 

 

Figure 4-14 Temperature flow in radial direction estimated analytically and using FEM for three 

different shapes of organs ........................................................................................................................... 92 

Figure 4-15 Analytical and FEM estimation of biological parameter’s effect on radial temperature flow 

in cuboid tissues; influence of –(a) Qm, (b) k and (c)  ωb ......................................................................... 92 

Figure 4-16 Analytical and FEM estimation of ambient and physical parameter’s effect on radial 

temperature flow in cuboid tissues; influence of –(a) ha, (b) Te, and (c) Tissue thickness ....................... 92 

Figure 4-17 Effect of biological parameter on temperature profile in cylindrical tissue –influence of (a) 

Qm, (b) k and (c) ωb .................................................................................................................................. 92 

Figure 4-18 Effect of ambient conditions and model thickness on temperature distribution in cylindrical 

tissues; influence of(a) ha, (b) Te and (c) Tissue thickness ........................................................................ 92 

Figure 4-19 Effect of biological parameter on temperature profile in spherical tissue –influence of (a) 

Qm, (b) k and (c) ωb .................................................................................................................................. 92 

Figure 4-20  Effect of ambient and model thickness on temperature distribution in spherical tissues– (a) 

ha, (b) Te ,  and (c) Tissue thickness........................................................................................................... 92 

Figure 4-21 Estimation of radial temperature flow over anatomic-accurate (realistic) and simplistic 

(homogeneous) models for—(a) chest tissues, (b) forearm tissues, and (c) breast tissues ......................... 92 

Figure 5- 1 Tumor shapes and margins ................................................................................................. 96 

Figure 5- 2  Cuboid tissue model 3D (not to scale) ............................................................................. 104 

Figure 5- 3  Finite difference grids ...................................................................................................... 105 

Figure 5- 4  FEM mesh diagram .......................................................................................................... 106 

Figure 5- 5  Tumor zone ....................................................................................................................... 107 

Figure 5- 6 Comparison of numerical analysis results; plot of–(a) radial temperature flow between core 

and skin through tumor center, and (b) surface temperature between side to side opposite points right 

above the tumor centre .............................................................................................................................. 107 

Figure 5- 7 Comparison of numerical analysis results; for interior temperature distribution—(a) using 

FDM and (b) using FEM, on the horizontal plane through tumor center; and isothermal regions—(c) 

using FDM and (d) using FEM on the same plane ................................................................................... 108 

Figure 5- 8 Spatial temperature distribution over chest skin surface ................................................... 109 

Figure 5- 9  Physical models—a) homogeneous, and b) anatomic-accurate for tumor in—(i) cuboid 

(chest), (ii) tubular (forearm), and (iii) hemispherical (breast) organ ....................................................... 112 

Figure 5- 10  FE structure of—a) homogeneous, and b) anatomic-accurate models for tumor in—(i) 

cuboid (chest), (ii) tubular (forearm), and (iii) hemispherical (breast) organ ........................................... 113 

Figure 5- 11 Comparison of temperature profiles obtained for a tumor in anatomic-accurate (realistic) 

and simplistic (homogeneous) chest model along the line—(a) between the body core and skin through 

tumor center, and (b) over the surface between two side to side opposite points right above the tumor 

center…………. ........................................................................................................................................ 115 

Figure 5- 12   Comparison of temperature profiles obtained for a tumor in anatomic-accurate (realistic) 

and simplistic (homogeneous) forearm model along the line —(a) between the body core and skin through 

tumor center, and (b) over the surface between two side to side opposite points right above the tumor 

center…………. ........................................................................................................................................ 116 

Figure 5- 13  Comparison of temperature profiles obtained for an on-axis tumor in anatomic-accurate 

(realistic) and simplistic (homogeneous) breast model along the line —(a) between the body core and 

nipple, and (b) over the surface between two side to side opposite points through the nipple ................. 117 

file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930560
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930560
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930561
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930561
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930562
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930562
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930564
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930564
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930565
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930565
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930566
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930566
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930567
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930567
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930624
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930624
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930624
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930625
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930625
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930625
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930626
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930627
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930627
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930628
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930628
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930629
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930629
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930629
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930629
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930630
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930630
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930630
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930630
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930631
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930631
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930631


xii 

 

Figure 5- 14  Chest tumors; (a) to (d) surface temperature for tumor 1 to 4, respectively, (e) center-line 

temperature….. ......................................................................................................................................... 119 

Figure 5- 15  Area of temperature grow, (a) to (d) for chest tumor 1 to 4, respectively ....................... 120 

Figure 5- 16 Forearm tumors, (a) to (d) surface temperature for tumor 1 to 4, respectively, (e) center-line 

(L-R) temperature ..................................................................................................................................... 121 

Figure 5- 17  Area of temperature grow, (a) to (d) for forearm tumor 1 to 4, respectively ................... 122 

Figure 5- 18  Breast tumor analysis; (a) to (f) surface temperature for tumor 1 to 6, respectively ....... 123 

Figure 5- 19  Center-line temperature for tumor in undeformed breast ................................................. 124 

Figure 5- 20  Effect of bio-thermal parameters of tumor, e.g. influence of—(a) metabolism, (b) 

perfusion and (c) heat conduction rate of tumor on breast surface temperature ....................................... 126 

Figure 5- 21  Effect of physical parameters of tumor, e.g. influence of—(a) location, and (b) diameter of 

tumor on breast surface temperature ......................................................................................................... 128 

Figure 5- 22  Effect of environmental parameters, e.g. influence of—(a) heat exchange rate, and (b) 

ambient temperature of laboratory on breast surface temperature in case of a tumor .............................. 129 

Figure 5- 23  Drooped breast models ..................................................................................................... 129 

Figure 5- 24  FEM models for drooped breasts ..................................................................................... 130 

Figure 5- 25  Mild deformed breast tumor thermal analyses—(a) to (f) for tumor 1 to 6, respectively 132 

Figure 5- 26  Center-line temperature for mild deformed breast tumor along—(a) L-R (left to right side) 

line, and (b) B-T (bottom to top) line ........................................................................................................ 133 

Figure 5- 27 Tumor in deformed breast, (a) to (d) surface temperature for tumor 1 to 4, respectively, (f) 

center-line temperature ............................................................................................................................. 135 

Figure 6- 1 Bio-heat and diagnosis domain ......................................................................................... 142 

Figure 6- 2 Heat source model ............................................................................................................. 142 

Figure 6- 3  Comparison of heat source model response with analytic result for various—(a) heat 

exchange rate, (b) ambient temperature, (c) metabolic heat and (d) thickness ......................................... 144 

Figure 6- 4 A sample thermogram ............................................................................................................ 148 

Figure 6- 5  Distribution of random data points .................................................................................. 149 

Figure 6- 6  Equal spaced isothermal points ........................................................................................ 149 

Figure 6- 7 Heat source model responses to R and respective slopes of dT(a)dR .............................. 154 

Figure 6- 8 Heat source model responses to h  and slopes of dT(a)dh .................................................... 155 

Figure 6- 9 Heat source model responses to  Tc  and slopes of dT(a)dTc .......................................... 155 

Figure 6- 10  Representation of a chromosome ..................................................................................... 171 

Figure 6- 11 GA based estimation procedure ........................................................................................... 173 

Figure 6- 12  Neuron weight adjustment ............................................................................................... 178 

Figure 6- 13 Temperature distribution ...................................................................................................... 181 

Figure 6- 14  Neural network performance............................................................................................ 182 

Figure 6- 15  Best Simulated patterns .................................................................................................... 183 

Figure 6- 16  Simulated pattern (not the best one)................................................................................. 183 

 

  

file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930632
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930632
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930633
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930634
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930634
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930635
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930636
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930637
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930638
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930638
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930639
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930639
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930640
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930640
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930641
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930642
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930643
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930644
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930644
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930645
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930645
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930646
file:///C:/Users/MDShazzat/Downloads/Report_July%2029_version1.docx%23_Toc425930647


1 

 

 Introduction 

1.1 Background 

Breast cancer has the second highest incidence (26%) of all female cancer cases in Canada. 

More than 11% of Canadian women are expected to develop breast cancer during their lifetime 

(by the age of 90). An estimated 25,000 new incidences of breast cancer will be diagnosed and one 

in 5 (an estimated 5,000) Canadian women will die from breast cancer in 2015. These statistics 

remain unchanged over the past years [1]. However, breast cancer mortality rates have decreased 

by 42 percent since the peak in 1986. The significant decline in the breast cancer mortality rate 

suggests that there has been important progress made in cancer control which includes earlier 

detection through regular mammography screening, advances in screening technology, and 

improved treatments.   In relation to breast cancer, advancements in earlier detection are an aspect 

of cancer control efforts that have been found particularly successful.  When women are diagnosed 

at earlier stages of the disease, more treatment options are available, consequently providing a 

better chance at surviving the disease. Most recent data indicates a five-year survival rate for breast 

cancer of 88 percent, while in 1986, when breast cancer mortality was at its peak, the survival rate 

was 79 percent. Even small improvements in the early diagnosis and treatment of breast cancer 

would likely save thousands of lives annually.  

At present, many imaging techniques such as X-rays, MRI (Magnetic Resonance Imaging) 

[2], Ultrasound [3], Mammogram [4], SPECT (Single Photon Emission Tomography), Positron 

Emission Tomography (PET) [5], Thermography (microwave and infrared) [6] and others clinical 

examinations are used for medical diagnosis of breast cancer. X-ray mammography and clinical 

breast examination (CBE) are the current gold standards of breast cancer screening. Ultrasound 

and MRI are also used as secondary screening tools to elucidate suspicious findings from the X-

ray mammogram. Non-optical imaging techniques including PET, electrical impedance 

tomography (EIT), and thermal imaging either rely on specific intrinsic characteristics of breast 

tissue or employ exogenous tracers/contrast agents [2] to image the breast or to identify lesions 

within it, therefore, amongst them some are useful in screening while others are useful only in 

diagnosis. As a whole, the above methods together have established success in cancer screening 

and diagnosis. However, each method has its own advantages and limitations. For example, X-
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Ray mammography represents the current standard of care and has contributed to a significant 

reduction in breast cancer mortality [1, 2]. The sensitivity of X-ray mammography appears to be 

greater than 80% in women over 50 and less for younger women, there is still a need to detect 

cancers earlier for treatment. Furthermore, mammographic specificity is known to be limited [4] 

because it is inherently incapable of direct observation of physiological information relevant to the 

“functioning of cancer,” which ultimately limits the specificity and prognostic value of X-ray 

mammography. 

Moreover, methods that measure changes in functional processes, as opposed to those that 

measure structural changes, show the greatest promise for future improvements [7, 8, 9]. 

Functional MRI and PET do assess function, but their high cost and invasiveness have prevented 

their widespread deployment in breast screening and diagnosis. Likewise, Ultrasound, 

Mammography and MRI look at the structure or anatomy of the human body but modality of 

Infrared (IR) Thermography is assessing of body function as a heat or lack of heat signature due 

to physiological or metabolic change [10, 11]. Therefore, achieving an accurate functional 

representation of the tissues in any living organism without disturbing and damaging, which is a 

goal of medical professionals, scientists and engineers for centuries, could be achieved from IR 

technique. Consequently, thermography, a rather physiological tool, can indicate developing 

disease states earlier than anatomical examination (computed tomography (CT) imaging or X-rays, 

etc.). Other advantages of thermography include high portability and real time imaging, which 

make it possible for the data to be recorded in computers for further processing. The imager 

converts the thermal energy to electrical signals in order to display the temperature profile of the 

subject, which contains a number of colors indicating different temperatures. However, the thermal 

imager should be used in an indoor environment where external factors, such as ambient 

temperature, humidity, and electrical sources, can be controlled.   

Furthermore, the important distinguishing feature among the imaging techniques is, some 

are “invasive” and “ionizing” and some are “non-invasive” and “nonionizing”. Unlike X-ray, MRI 

and Mammography; the Infrared (IR) Thermogram technique is non-contact, comfortable, and safe 

and has no radiation dose and can be applied repeatedly on the human body without known risk of 

morbidity.  

IR is a diagnostic tool that relies on the human body’s inherent quality as an Electromagnetic 

(EM) radiator, since it emits energy in the infrared range as a function of skin temperature 
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distribution. Abnormalities in local body skin surface temperature have been recognized as a sign 

of disease for centuries, much before humans knew about the cause of ailments or of pain. Using 

hands to assess body temperature was primitive practice but information underlying abnormalities 

of skin temperature was not revealed properly. Today’s sensitive temperature measuring devices 

invite physicians to identify subtle local thermal abnormalities and find an association between 

thermal image and a certain disorder.  

Body surface temperature abnormalities have been recognized as a sign of disease for 

centuries, much before humans knew about the cause of ailments or of pain. An abnormality in 

local body temperature indicates a general sign of some disease under the region where the local 

surface temperature is higher or lower.  But only some primitive practices (i.e. using hand or 

thermometer) were observed to assess body temperature. For that reason, information underlying 

abnormalities of skin temperature was not revealed properly until the modern sensitive temperature 

measuring devices became available. The modern IR camera or sensor can accurately measure the 

spontaneous Electromagnetic (EM) energy in IR frequency that is radiated from the human body 

as a function of skin temperature. The skin temperature, an important live character, is emanating 

from the heat discharge by cells activities and blood perfusion. Variation in skin temperature may 

be up to 0.5oC for a practically healthy body whereas for a defective body it may increase up to 

5oC [12, 13]. Researchers discovered that local body surface temperature is controlled by 

metabolism, blood circulation underneath the skin, and heat exchange between the skin and its 

environment [14, 15]. Change in any of these parameters could influence temperature distribution 

and heat flux at skin surface, and thus reflect the physiological state of the human body. The small 

change in surface temperature information in medical diagnosis and clinical therapy is a measure 

of such conditions as neuromuscular injury, breast cancer, rheumatism, arthritis-caused bone joint 

inflammation, lunge oncogenes, and thyroid gland disorders. The inflammation, metabolic heat 

rate, interstitial hypertension, abnormal vessel morphology and lack of response to homeostatic 

signals are some of the certain features that make tumors, in particular, behave differently than 

normal tissues in terms of heat production and dissipation [16, 17]. Therefore, abnormal skin 

temperature profile can be used to predict the location, size and thermal parameters of the 

hyperactive region as well as follow up the treatment procedure [14, 18].  
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 The local skin temperature over a tumor is significantly higher than the normal breast 

because of convection properties related with increased blood perfusion, heat conduction, and 

metabolism around the tumor. Lawson [12] was the first to recommend the application of 

thermography for breast cancer detection, when he observed that the local skin surface 

temperatures above a tumor were significantly higher (approximately 2°C - 3°C) than the normal 

skin temperatures. Lawson and Chughtai [13] established that the regional temperature 

abnormality over an embedded tumor was because of the convection effects linked with the 

increased metabolism around the tumor, and the increased blood perfusion.  Advance aspect of IR 

imaging techniques and detection methods of breast cancer from such images are discussed in 

detail by Diakides and Bronzino, [6]. In [19] Santa Cruz et al., after making a comparative 

investigation between thermography and boron neutron capture therapy (BNCT), concluded that 

the thermography, a potential imager of tissue functionalities, can help to locate abnormally high 

temperature regions as well as melanoma nodules that are virtually invisible in CT images.    

As discussed, IR imaging has already paved its way as a promising adjunct screening tool 

and recent advances in the IR technology further promoting its medical application as a non-

invasive tool for imaging tissue functionalities and the influence of vascular, neurogenic and 

Figure 1-1 Cancer diagnosis methods [22] 
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metabolic processes that affect them. A high accuracy data acquisition system is currently 

available, but a big challenge is in deriving a solid correlation between superficial surface 

temperature and physiological bio-thermal parameters of a tumor that is yet to be resolved [20]. 

Numerous efforts have utilized the modern IR technology to predict the location, size and thermal 

parameters of tumors from the abnormal temperature profiles during the last few decades which 

included anatomical modeling or analogous modeling and inverse solution approach. 

1.2 Medical Imaging Technology 

Breast cancer grows in the epithelial cells, which are found along the terminal duct lobule 

unit. Abnormal growth of epithelial cells can lead to the formation of a tumor. If the growth is 

restricted, the cancer is classified as benign. If the growth is rapid or has the ability to progress to 

other regions of the body, it is classified as malignant or carcinoma. More often than not, a 

malignant breast is firm and irregular in shape. Various imaging modalities are extensively applied 

in breast cancer now-a-days. However, confirmation can only be made after mammography and 

clinical examination (biopsy).  

Currently, available methods for cancer (emphasis is given on the screening of breast cancer) 

detection is summaries in Figure 1- 8. It can be seen that these methods are based on the underlying 

principles of wave theory, heat energy, audio/magnetic field and electric properties. A comparative 

study among Mammography, MRI, Ultrasound (US) and Thermogram is discussed in the 

following sections while applied to breast cancer screening.  

1.2.1 Mammogram 

In mammography, a 2D image of the breast is formed by passing X-rays through the breast. 

Absorption of X-ray photons varies between tissues, so the gray-level of a pixel in a mammogram 

gives an indication of the proportion of different tissues in the column of the breast that the X-rays 

corresponding to that pixel passed through. Therefore a mammogram is a projected 2D image of 

the breast, rather than a true 2D image of a slice of the breast (compared with an MRI, which will 

be discussed shortly). 

Where no absorption of X-ray photons has occurred (such as outside the breast) the 

mammogram appears black, and where total absorption has occurred it will appear white. 

Fibroglandular tissue is highly X-ray absorbent, whereas fat is not, so the fibroglandular region of 
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the breast will appear brighter in mammograms. Because of this, mammography as a method of 

screening is only performed on older women, younger women tend to have dense breasts with a 

lot of fibroglandular tissue, and X-ray images of their breasts can sometimes turn out to be 

completely white. Typically, the lower age limit chosen for screening programs is about 50 years, 

an estimate for the onset of menopause. After menopause fibroglandular tissue is replaced by fatty 

tissue, resulting in better contrast mammograms. 

For women for whom good quality mammograms can be taken, useful information can be 

gathered using mammography. Mammograms have the highest resolution of the three imaging 

modalities, and the small-scale structure of the breast can be visualized. In particular, this means 

that micro-calcification can sometimes be spotted. These are small deposits of calcium salts that 

are often the earliest indicators of the presence of a tumor. If un-obscured, they appear in X-ray 

images as small regions of very high contrast. 

 

Figure 1-2 Cranio-caudal (typical) mammogram imaging procedure [29]. Compression 

causes deformation of breast tissues substantially.  
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There are various angles from which the X-ray image can be taken, the most common being 

cranio-caudal (CC), where the direction of the X-ray photon travel is head-to-toe, and medio-

lateral oblique (MLO), which is shoulder-to-opposite-hip. Less common views are mediolateral 

(ML) (center of the chest outwards to the side), and latero-medial (LM) (the opposite direction to 

ML). Screening mammography typically involves two views of the breast, usually CC and MLO. 

The use of a combination of views allows the radiologist to study the breast anatomy from different 

angles and come to a more informed judgment. 

When mammograms are taken the breast is compressed heavily by two plates with normal 

in the direction on the X-ray photon travel. For example, in CC mammography, the breast is 

compressed in the vertical direction. Compression is carried out for two reasons: firstly, it spreads 

out the tissue, allowing the radiologist to see breast structures more clearly, and secondly, it 

reduces the distance between X-ray source and receptor, so that a smaller dose can be used.  

Typical imaging procedure for CC mammography is shown in Figure 1- 9. Note how the 

amount of compression is quite substantial, and how the compressed breast shape is very different 

to the non-deformed shape. 

1.2.2 Magnetic Resonance Imaging (MRI) 

The magnetic resonance phenomenon was discovered independently by Edward Purcell and 

Felix Bloch in 1946, and resulted in the pair sharing a Nobel Prize in 1952. Atoms with nuclei 

with odd numbers of protons and neutrons were known to, in the presence of a static magnetic 

field, to tilt at a certain angle and precess at a certain speed; they discovered that the precession 

will intensify under an electromagnetic field at a precise frequency, known as the resonance 

frequency. The response to the field varies between atoms and is affected by other atoms in the 

same molecule, which can be exploited to obtain structural information on a molecule. These 

discoveries were originally put to use in analytic chemistry and biochemistry, in studies 

determining the composition of chemical compounds, and was known as nuclear magnetic 

resonance (NMR) spectroscopy. In the 1970s it was discovered that with the inclusion of a weak 

gradient magnetic field, together with the strong magnetic and electromagnetic fields, the MR 

phenomenon could provide spatial information, which eventually led to its use as a means for non-

invasive tissue imaging. Clinical use began in the 1980s, for which the procedure was renamed 

magnetic resonance imaging, the word ‘nuclear’ being dropped because of its obvious negative 

connotations. 
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The MR machine is a large machine with a cylindrical hole to contain the patient. For breast 

MR imaging, the patient lies prone (face down) on the scanning table, with the breasts hanging 

pendulously in depressions that contain the breast coils (the equipment used to detect the resonance 

signal). The table is moved into the MR machine, which houses the magnet, and imaging can then 

takes place, a procedure which can last 10 to 30 minutes. 2D images can be taken of different 

‘slices’ of the breast, and a 3D picture obtained. The images can be taken in any desired plane. 

Figure 1- 10 displays the MR machine and the position of the patient.  

There are two methods which can be used to search for tumors. One is to simply search for 

suspicious masses in the images, by eye or using image analysis algorithms. The second is a 

technique that can be used to search for vascular tumors. If a contrast-enhancing agent (a chemical 

with significantly different MR properties to normal tissue, which appears very bright in the 

images) is injected into the blood and MR images taken at different times, blood vessels will appear 

to get lighter and darker as blood density (and thus contrast-enhancing agent density) varies. 

Similarly, masses with their own blood supply, such as vascular tumors, will also change intensity. 

Vascular tumors often show up extremely clearly in contrast-enhanced MRI.  

The main obvious advantage of MR scans is that they provide three-dimensional data on the 

breast. Each image is a true 2D image of that slice, not a projected 3D onto 2D image as with 

mammograms. It can be used equally effectively for younger (pre-menopausal) women as with 

older women. However, the resolution is a lot lower than mammograms and structures such as 

micro-calcification cannot be resolved. There are also practical disadvantages: MR imaging is 

expensive, and there are relatively few MRI machines in the world. Also, the process can be mildly 

unpleasant, and due to the huge magnetic fields involved, not possible on patients with, for 

example, pacemakers or metallic implants. Since the imaging procedure takes some time, MR 

images are highly affected by blurring and other motion-related artefacts, motion due to both chest 

movement for breathing and shifts in position by the patient.  
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1.2.3 Ultrasound 

Ultrasound imaging is performed with the breast in another new position to that of MRI or 

mammography. Here, the patient sits up, with the breast falling to their side. The ultrasound probe 

is pushed gently against the breast and dragged along the skin.  

Ultrasound is the least useful of the three imaging techniques as ultrasound images are very 

poor quality, and is not suitable as a screening tool. It can be used as an alternative method for pre-

menopausal women if MR imaging is not possible. However, there is one advantage unique to 

ultrasound: since the probe is pressed against the skin, the effect of different levels of compression 

on the breast can be seen. Tumors are generally much harder than surrounding tissue, and a method 

of identifying tumors is to look for masses that retain their shape under compression. Benign 

masses tend to be softer, so ultrasound is a useful diagnostic tool.  

1.2.4 Infrared Thermogram 

Thermogram was originally developed for military purposes. In the past fifty years the 

commercial and industrial applications of thermogram are incredible. Recent applications have 

extended to engineering applications and medical imaging. At present, thermogram is used in 

condition monitoring, medical imaging, infrared mammography, veterinary medicine, night 

vision, chemical imaging, volcanology, non-destructive testing, fault finding (in buildings), 

surveillance (in security, law enforcement and defence), and so on. Airport officials are using 

 

Figure 1-3 A patient lying on the scanning table outside the magnet before taking MRI [47] 
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thermography for detecting suspected swine flu cases during the 2009 pandemic. Firefighters use 

this technology to see through smoke, to locate persons, and to determine the base of a fire. 

Maintenance technicians also utilize the tools to locate overheating junctions and segments of 

power lines, which are a tell-tale sign of forthcoming failure. For indicating the heat leaks in faulty 

thermal insulation, the building construction technicians usually see thermal signatures and use the 

IR images to improve the efficiency of heating and air-conditioning units. Some physiological 

changes in warm-blooded animals including the human being can also be monitored with thermal 

imaging during clinical diagnostics. IR thermography makes use of a thermal imager to detect the 

IR radiation and measure the heat pattern of the object surface or human skin [21, 22, 23]. Being 

noncontract, non-invasive, hygienic, and highly informative the promising diagnostic tool is 

currently used with X-rays, MRI, Ultrasound, CT, SPECT, PET and others. 

Human skin emits infrared radiation as a function of body temperature according to the 

Stefan-Boltzmann law. Thermal energy is continuously generated within a human body due to the 

metabolic process and the status of the blood circulation system; hence the vascular system will 

be reflected on thermogram as the area of specific temperature pattern. According to the blackbody 

radiation law, invisible radiation in the infrared range of the electromagnetic spectrum is emitted 

by all objects near room temperature. Thermal imaging cameras can detect the radiation and 

produce visible images, called thermogram. The spectrum and amount of emitted thermal radiation 

is a function of temperature; therefore, thermography is capable to show temperature variations in 

objects having above absolute zero background temperature and hence can passively see all objects 

regardless of ambient light. The pattern is presented on a black and white or color image of 

temperature distribution. From this image decision can be made in medical application  by (i) 

absolute temperature, (ii) temperature fixture i.e. shape of abnormal temperature zone and (iii) 

temperature asymmetry between the left and right side of a patient’s body. The temperature 

asymmetry between the left and right side of the human body gives an indication of abnormality.  

When a natural temperature difference is present between the object and ambient 

(background), the passive themography can be used. On the other hand, in active thermography, 

an external energy source is required to produce a thermal contrast between the feature of interest 

and the background. The basic energy expression in IR thermogram includes the incident energy 

(the energy profile viewed through a thermal imaging camera) which is the sum of the emitted 

energy (the actual informative energy of what is intended to be measured), the transmitted energy 
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(that passes through the subject from a remote thermal source), and the reflected energy (that 

reflects off the surface of the object from a remote thermal source). A thermal imaging camera is 

capable of performing algorithms to interpret all these three forms of energy data and then employs 

a series of mathematical algorithms to build a picture in the viewer and record a visible picture, 

usually in JPG format. 

Thermography makes a significant contribution to the evaluation of patients suspected of 

having breast cancer. The obviously abnormal thermogram carries with it a high risk of cancer. A 

report summarizes the results of patients with questionable or stage Th-III (thermogram risk level 

3) thermograms where approximately 58,000 patients, most of whom had breast complaints, 

examined between August 1965 and June 1977, a group of 1,245 women were diagnosed at initial 

examination as either normal or benign disease by conventional means, including physical 

examination, mammography, ultrasonography, and fine needle aspiration or biopsy, when 

indicated, but nevertheless categorized as stage Th-III indicating a questionable thermal anomaly. 

Within five years, more than a third of the group had histologically confirmed cancers. The more 

rapidly growing lesions with shorter doubling times usually show progressive thermographic 

abnormalities consistent with the increased metabolic heat production associated with such 

cancers. Thermography is useful not only as a predictor of risk factor for cancer but also to assess 

the more rapidly growing neoplasms. 
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An abnormal breast thermogram of a 44-year-old patient is shown in Figure 1- 11. This patient 

had been diagnosed with a benign lump in her left breast using Doppler Ultrasound. From her 

breast thermography, it can be observed that she has a relative warm area in her upper-outer 

quadrant (arrow A) and a relatively cool area in her lower—inner quadrant (arrow B). These 

indicate that the tumor is embedded in upper-outer quadrant of breast.  

1.3 Challenges of the Available Systems 

At present, Mammography is the most reliable technique for early detection of breast cancer. 

The patient discomfort associated with compression of the breast tissues (Figure 1- 9 Typical 

mammogram imaging procedure), exposure to ionizing radiation, and frequent false positive 

readings are the major limitations. MRI has major limitations associated with cost and availability.  

Ultrasound, although non-invasive, has a relatively low detection rate and has a low sensitivity for 

ductal microcalcifications in the breast. According to [3], breast ultrasound is low cost and 

radiation free and can be useful if combined with family history, but it is not recommended as a 

standalone technique for evaluating the presence of breast cancer.    

Having drawbacks of the techniques above mentioned, thermography has been investigated 

as an alternative method to detect abnormalities, which could be attributed to breast cancer. 

Thermography acquires superficial temperature data and then analyzes it to reveal the concealed 

tissue functionalities.  Being incapable to expose anatomical structures, its application is limited 

 

Figure 1-4 Thermal distribution for a benign lump in left breast detected by 

thermography [42] 
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to as a screening tool adjunctive to other techniques. Thus, in physiological test, it alone is not 

sufficient for medical practitioners to make a diagnosis. However, when used adjunctively with 

other laboratory and outcome assessment tools, such as anatomical techniques including 

mammography, ultrasound and CT scanning, thermography may contribute to the best possible 

evaluation of breast health. The International Academy of Clinical Thermology issues the 

following position announcement: “The proper role of thermography is not as a replacement for 

mammography”. Therefore the current accepted role of thermography is for applying only in 

breast cancer screening and detection. 

Followings are the reasons behind:  

 There is no one test that can have above 99% accuracy for detecting cancers. 

Therefore, no single test available that can be used alone as an adequate screening or 

detection tools for breast cancer. 

 A physiological imaging procedure (thermography) cannot replace the 

existing anatomical imaging procedure (e.g. the mammography). Because the two 

approaches look for completely different pathological processes. 

 Thermography is far more sensitive than mammography especially for slow 

growing non-aggressive cancers that may not be detected by mammography.  

Breast thermography is a complementary screening and detection procedure, which when 

added to a woman’s breast health examination substantially increases the sensitivity in detecting 

pathologies associated with the breast. As a unique physiological examination procedure, breast 

thermography is the only known test that can also serve as an early warning system by identifying 

women who have high-risk pre-cancerous infrared imaging markers. The procedure can also play 

a role in prognosis and as a method of assisting in monitoring the effects of treatment. 

Evolutionary methods are being applied to pin point embedded tumor’s physical and thermal 

parameters with surface temperature. The process is still ongoing and the insubstantial studies 

present some theoretical prediction of spherical tumor in soft tissues of an un-deformed breast. In 

reality tumor shape and thermal behaviour is completely unknown and breasts might undergo 

elastic deformation due to sagging or drooping. In addition, the analysis also requires an accurate 

anatomical model of some other organs except breast which differ exclusively in person to person. 
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Deference may be in tissue heterogeneity, layer dimension, patient age, heredity, etc. and all of 

them have important influences on the thermal behaviour.  

1.4 Computational Tools and Estimation Methodologies in Health Care 

In clinical application, the health related problems have to be treated for healing in a fast and 

objective fashion. However, clinical observations taken by technologists might be influenced by 

internal (coming from the technologist) as well as external (independent from the technologist) 

impacts. The objectivity of classification is subject to the receptivity of human senses which are 

adversely influenced by the experiences or level of training, psychological conditions (tiredness, 

hurry, stress, etc.), as well as ambient conditions (lighting, destructive noise, humidity, etc.). The 

failure in awareness questions the entire recognition procedure. The recognition processes itself, 

which is subject to the above mentioned conditions, may cause a slowdown and/or lead to an 

erroneous diagnosis.  

Computerized approaches for detecting clinical problems have become critically important 

in healthcare [24]. Mathematical analysis, modeling, and computer simulation become standard 

tools underpinning the current progress in developing the computational tools. A radical change 

in technologies have been integrated to develop a system for addressing the core of medicine, 

including patient care in ambulatory and in-patient setting, disease prevention, health promotion, 

rehabilitation, home care and so on. Computational tools are becoming a widespread use for the 

support of patient medical diagnosis and treatment, the assessment of the quality of care, and the 

improvement of decision making, modeling, simulation, and medical research. A computerized 

support in the analysis of patient information and implementation of a computer-aided diagnosis 

and treatment systems increase the objectivity of the analysis as well as speed up the response to 

pathological changes. 

1.4.1 Anatomic –accurate Physical Model 

The thermal texture computations in tissue interior as well as on the skin surface of a 

particular organ involve formulating the bio-heat transfer problem exactly, which can be achieved 

by addressing the problem on an anatomically accurate model. Such realistic models should 

include the tissue heterogeneity, organ's anatomy etc. Anatomical structures of outer organs, 

wholly or partially, can roughly be given some standard shapes. Inspecting Figure 1- 12, the 
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superficial view of human anatomy, it is understood that human organs or segments has merely a 

flat, tubular or hemispherical outlook. In particular, the flat surfaces such as the dorsum (back) and 

the chest (male) segments can be assumed as rectangular boxes. Likewise the tubular organs such 

as arm, forearm and legs can be assumed as solid cylinders. Similarly, the curved organs like breast 

and buttock can be modeled as hemispheres.  

The heat transfer problems in biological tissues address a typical second order differential 

equation and, therefore, the analytic computations require considering an appropriate coordinate 

system consistent with the organ's geometry. For a complete understanding of the thermal features 

of the human body the study deals with three different organs—the chest, the forearm and the 

breast. 

1.4.2 Deformed Organ Model 

Apart to the organ's geometry, the proportion to the constituent tissue layers might vary due 

to age, body mass index (BMI), gender etc. and the variation should be properly introduced while 

modeling. In particular, breasts deform widely due to body posture changes and/or ptosis disorders. 

Therefore, they evoke the necessity of considering the phenomenon of gravitational or structural 

deformations of breasts for accurate modeling. Following is the brief reasoning:  

 

Figure 1-5 Human body anatomy (external view)  [81] 
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1.4.2.1 Deformation in Supine-to-Standing-to-Crawling Posture 

The simplest example of appropriateness of the model is considering breast deformation due 

to the supine-to-standing-to-crawling posture. The indirect approach is often an ill-posed problem 

and the solutions are highly sensitive to the changes in body posture. When IR images are taken 

of a patient, they are generally carried out with the patient standing, with the breast nipple hanging 

down under gravity. The thermo-physical solutions estimated in such posture would be different 

from the supine and/or crawling positions. An acceptable accuracy can be achieved only if the 

deformations are modeled properly.    

In addition, during surgery (in particularly during a lumpectomy procedure, where a tumor 

is removed by the surgeon), or during open biopsy (where a sample of a lump is removed by the 

surgeon for examination by a pathologist) the patient will be in the supine position. A surgeon 

using IR images as a guide will have to use some degree of guesswork when locating the tumor, 

which hinders minimally-invasive surgery. A deformable model of the breast could be used as 

guide for the surgeon: the model would be built from the original IR images, and the direction of 

gravity reversed to simulate the breast during surgery.  

Similarly, the model can be used as a guide during fine-needle or core biopsy (where a small 

sample of the tumor is removed for examination using a needle, a thin needle in the case of fine 

needle biopsy and a larger needle in core biopsy). Needle biopsy is a very accurate test provided 

enough correct material is removed, but since the biopsy has to be guided by the images, it is not 

always easy to get a good sample. A model of the breast could be used as a guide during biopsy, 

and in fact if the model is highly accurate it could be used to automate the biopsy procedure. 

 

Figure 1- 6 A female patient with deformed breast  [86] 
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1.4.2.2 Deformation in Ptosis Patients 

 Ptosis of the breast is a natural consequence of aging where the term ‘ptosis’ is used in 

medical for referring to the drooping or sagging of breasts. The rates and the degree of ptosis 

depend on many factors, such as smoking, number of pregnancies, breast size before pregnancy, 

body mass index (BMI) and so on. The deformation process is also influenced by patient’s 

heredity, which includes the elasticity of skin tissues, breast size, weight gain and the influence of 

weight gain in increasing the breast size, and the ratio to the adipose and glandular tissues. Unlike 

the simple hemispherical model for a natural breast, the deformed ptosis breast, shown in Figure 

1- 15, requires taking into account the multilateral deformations of tissues.  

Furthermore, the severity of ptosis, shown in Figure 1- 16, is evaluated by the position of the 

nipple relative to the infra-mammary fold (the point at which the underside of the breasts attached 

to the chest wall), which could tremendously affect the accuracy of the model, and consequently 

the inverse thermal solutions.   

1.4.3 Indirect Problem Solvers 

The estimation methodology involving an indirect approach to determine unknown thermo-

physical or geometrical parameters of a tumor region using the temperature profiles (may be 

obtained by infrared thermography) on the skin surface necessitates minimizing a cost function. 

The generalized cost function can be given as: 

 min||𝑇𝑜 − 𝑇𝑚(𝑥)|| (1.1) 

Subject to 𝑥 ⊂ {List of characteristic parametets} ∈ Ω, where Ω is the region over which 

the solution is bounded,𝑇𝑜is the actual temperature pattern over the skin surface that may be 

obtained from thermogram (using infrared camera, numerical simulation etc) and 𝑇𝑚(𝑥) is the 

estimated temperature pattern that is obtained from the model expression (or directly from the 

 

Figure 1-7 Scaling of breast ptosis disorder, starting from mild (left) to sever (right)  [89] 
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numerical models). Several evolutionary methods—such as the static slope method, pattern search 

method, genetic algorithms and artificial neural network method are commonly used in 

optimization problems.  

The static slope estimation approach is developed on the basis of a straight-forward 

temperature expression of local skin experiencing an abnormal thermal behaviour due to an 

embedded tumor. The abnormal increase in spatial local skin temperature is expressed as a function 

of tumor parameters by analyzing the contribution of some important thermo-physical parameters 

to the skin temperature and developing a model for employing to the optimization technique.  The 

solution matrix comes up with a number of local and/or the global minima from which the best 

solution is sorted using some physical constraints and clinical knowledge. The pattern search 

estimation methodology uses a diagonal matrix along which the optimization process follows. The 

convergence rates and step sizes can be pre-determined or computed using the adaptive algorithm.  

 Unlike the previous two approaches the Genetic Algorithm (GA) uses a solution pool to 

estimate tumor parameters. This non-gradient optimization tool can be applied for the 

characterization of wide range tumors ranging deep-seated to shallow deep and malignant to 

benign. The GA would run several times with different random initial population, even though the 

final estimates would be identical regardless the initial population.  

Finally, an evolutionary optimization method, the neural network consists of a set of highly 

interconnected processing elements (neurons). The neurons are connected through a set of 

connection weights, or synaptic weights. Every neuron 𝑖 has 𝑀𝑖 inputs, and one output 𝑦𝑖. The 

inputs are real valued quantities labeled 𝑠𝑖1,𝑠𝑖2,…… , 𝑠𝑖𝑀𝑖, representing signals coming either from 

other neurons in the network, or from the external world. Every neuron 𝑖 has 𝑀𝑖synaptic weights, 

each one associated with each of the neuron inputs. The synaptic weights are labelled 

as 𝑤𝑖1,𝑤𝑖2,…… ,𝑤𝑖𝑀𝑖, and represent real valued quantities that multiply the corresponding input 

signal. Every neuron 𝑖 has also an extra input, which is set to a fixed value 𝐼𝑖, and is referred to as 

the threshold of the neuron. Every neuron computes its own internal state, or total activation, 

according to the following expression: 

 𝑥𝑖 = ∑ 𝑤𝑖𝑗𝑠𝑖𝑗 + 𝐼𝑖 =
𝑀𝑖
𝑗=1

∑ 𝑤𝑖𝑗𝑠𝑖𝑗
𝑀𝑖
𝑗=0  (1.2) 
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Every neuron 𝑖 computes its output according to a function 𝑦𝑖 = 𝑓(𝑥𝑖), where 𝑓 is the neuron 

function or transfer function. A three layer feedforward neural network with backpropagation 

learning/training algorithm will be applied for addressing the inverse problem.   

1.5 Motivation and Overview 

Having looked at the different imaging techniques in section Chapter 1 and Chapter 1, it can 

be seen that infrared thermogram provides superficial information as an indication of tissue 

functionalities in terms of heat radiation and dissipation.  It is obvious that due to the lateral 

symmetry of the human body the thermal distribution over skin surface of a healthy organ differs 

from the other symmetrical organ. The subtle thermal information can be associated with the 

thermal and physical parameters of an underlying tumor.  In order to relate the behavioural feature 

of temperature changes with hyperactive tissue functionalities, a realistic model of the human 

organ is required [25]. These models are regarded as a second reader, it is notable that the final 

decision is left to the medical professional. For several regions, the development of numerical 

models are regarded as an extremely challenging task. First, more importantly, the imaging system 

may have serious imperfections. Tissue compression, ionizing radiation, cost, availability, and rate 

of false positive (or false-negative) detection are the common deficiencies of the available 

clinically approved imaging modalities. Second, the image analysis task is compounded by the 

large variability in the appearance of abnormal regions. Sharp boundary discontinuity between 

cancer and healthy tissues in terms of heat generation and dissipation is debatable. Third, 

asymmetric thermal contrast for an organ’s physical deformations that may vary with patient’s 

age, body mass index (BMI), non-uniform thickness of fat layer etc, in particular, thermal 

asymmetry due to gravity induced deformation associated with body posture and ptosis disorders 

in breast tissues incur complications improving the sensitivity and the specificity. Finally, 

abnormal regions are often hidden in dense tissue. Relative lower specificity is a challenge for 

early detection of deep-seated benign. 

The inverse thermal problems are not well-posed because the solutions may not be unique. 

Deducing characteristics parameters from the superficial thermal data is highly sensitive to the 

parameters and in many cases lead to a NP (Non-deterministic Polynomial-time)-hard problem. 

Essential measures namely the accurate correlation between the thermal-physical parameters and 
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the temperature features, the realistic physical and thermal models, minimizing unknowns etc. 

attribute reasonable accuracy to the forecasted results.  

According to the brief discussion, it’s very crucial for determining the physical and thermal 

parameters from the external temperature data viz. thermograms. The analysis requires the 

establishment of a forward thermal model and anatomically accurate physical model for shallowly 

and deeply buried tumors either in malignant and benign stages, besides, creating a powerful 

algorithm for the inverse problem setting for the detection and characterization of the hyperactive 

region.  

1.6 Thesis Contribution 

This research has developed a novel methodology for correlating surface temperatures with 

thermal, biological and physical parameters of tumors. The methodology has been devised based 

on both thermal and evolutionary algorithm based analyses for parameterizing hyperactive tissue. 

The study has developed anatomically accurate physical models of human body organs; performed 

a theoretical analysis of thermal behaviour of the organs; estimated size, depth, perfusion rate and 

metabolic rate of spherical tumors buried in the physical models; and validated the results with 

simulated and experimental data.  

The theoretical study begins with finding the internal temperature distribution in the tissue 

interior by solving steady sate Pennes' bio-heat equation analytically with different boundary 

conditions. The bio-heat equation is solved in three coordinate systems (because the external 

organs of the human body have flat, tubular and curved outlook, in general) and the influences of 

thermal conductivity, metabolism, blood perfusion and heat exchange rate are studied for 

homogeneous and isotropic tissues models. The purpose of this analysis is to promote the 

validation for numerical simulation results.  

Physical models have been developed for chest, forearm and breast, with considering the 

geometrical and behavioural variation of tissues found in different layers of the above organs as 

well as considering the bio-thermo-physical variations in embedded tumors or cancer tissues, if 

any. Such models are called anatomic-accurate or realistic physical models. Bio-heat transfer 

problems on the realistic models are then solved numerically to estimate thermal behaviour for 

healthy as well as for cancerous tissues. Assuming a uniform bio-thermal property within an entire 
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organ, an approximate model has also been developed, such model is called homogeneous or 

simplistic model, and the bio-heat transfer problem has been addressed both analytically and 

numerically. The purpose of the homogeneous model is to validate the accuracy of the developed 

model and to establish the numerical method as a stand-alone estimator. In addition, physical 

deformation in the female breast has been considered while developing the realistic models. In 

general, the female breast deforms due to body posture change (because of gravitational force) and 

for ptosis. Both phenomena have also been considered in preparing the deformed breast models 

and their thermal behavior have been analyzed accordingly. Discrepancies in estimated thermal 

patterns observed on realistic models with and without tumors have been utilized for screening, 

for making the decision whether there is a tumor or not. Further, a correlation between surface 

temperature distribution over the model and the underlying tumor has been established. Successful 

investigation in utilizing the correlation between the skin temperature and physiological 

parameters has turned the screening tool into a useful diagnostic tool.  

Optimization methods, such as, the gradient projection method (GPM), Genetic Algorithm, 

Artificial Neural Network (ANN), and pattern search method have been used for inverse solving 

of thermal problems. Optimization algorithms have been tailored for each method to estimate 

tumor physio-bio-thermal parameters like the thermal conductivity, metabolic rate, blood 

perfusion rate, size and depth. In GPM, the search moves along the projection of the temperature 

function, requires a continuous heat flow equation derived analytically. However, the analytic 

solution can provide radial temperature flow inside tissues only but the main goal of the thesis is 

estimating tumor parameters from surface thermal data. Therefore, the analytic result has been 

reproduced by an equivalent heat source model (performance of the model discussed in section 

6.3.1.1) and then the heat-source model governing equation is employed to estimate the surface 

pattern. Another purpose of the heat-source model is transforming the bio-thermal parameters into 

diagnosis parameter (discussed in section 6.3). The GPM algorithm computes the governing 

function and the gradient of the function to be minimized, an initial guess and a structure option 

containing some non-default options required by the process. The process also needs to pass in 

some constraints that confine the solution domain in a valid region.  This function implements a 

two-metric projection method for optimization with upper and lower bounds on the values of the 

variables. The process has used a quasi-Newton strategy, where limited-memory Broyden–

Fletcher–Goldfarb–Shannoalgorithm (L-BFGS) updates are used in computing the step direction, 
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and a backtracking line search is used to find a step satisfying an Armijo condition along the 

projection arc. The algorithm has also tailored to change the number of L-BFGS corrections to 

store for the quasi-Newton update, and whether or not to use skipping or damping of the L-BFGS 

updates. Using this function also requires specifying the vectors LB and UB giving the lower/upper 

bounds on the variables. The elements of LB/UB have been set between 1 and 2 after normalizing 

the variables. 

The GPM requires partial derivatives of the temperature function to the optimization 

variables which necessitates a continuous differentiable governing equation that has been met with 

the proposed heat source model. However, the heat-source model has been derived from the 

analytic results obtained on simplistic (homogenous) models. The optimization problems on 

realistic models require solving the bio-thermal problem numerically which is a desecrate process 

and unable to compute the gradients.  Furthermore, determination of the projection arc (the 

direction at which the optimization search takes place) is not easy. The PSM can be applied to 

optimize a non-differentiable function while the optimum point search takes place in every 

direction. The method includes computing the basis matrix, direction matrix, exploratory moves 

and updating parameters and step sizes. The main challenges of this process are the computation 

time as the search takes place in every possible direction and the process does not guarantee the 

global minima rather it can easily converge toward a local minimum depending on the assumption 

of the initial search point.  The study has suggested an initial search vector that might lead to the 

global minima, however, the proposed search vector depends extremely on comprehending the 

thermogram sensibly. Moreover, applying evolutionary optimization techniques can be a useful 

tool for finding the optima. Therefore, the PSM estimated values can be taken as an initial 

parameter vector for further accuracy. Application of the biological model onto optimization task 

in form of evolutionary strategies appears as very effective in situations where standard analytical 

approaches fail to succeed (either because the solution could not be analytically grasped and 

described or simply the exhaustive calculations became infeasible). Therefore, the study has also 

addressed the optimization problem with GA and ANN. 

In GA optimization, the process includes defining an objective function that has to be 

minimized with the above mentioned five optimization variables, defining the stopping criteria, 

setting up GA parameters, generation of initial population (encoding) and ranking them, iteration 

through generation while finding pair and mate, performing mating using single point cross-over 
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and mutation, re-evaluating the newly generated population and rank them, repeating the process 

and finally displaying the outcome (decoding). The objective function is designed to determine the 

absolute difference between the spatial temperature dataset acquired by thermography to the 

numerical simulation of heat flow problem over an anatomic-accurate (realistic) model (model that 

is developed while taking into account every significant tissue layer in a particular organ and outer 

structure of the organ). The numerically simulated temperature dataset is repeatedly computed for 

different values of optimization variables. The optimizing process will continue for maximum 

optimization error 1−5(average absolute difference between target and simulated patterns) or for 

100 generations. After a few trail, the process is run for 16 initial populations, mutation rate 0.15 

and 50% selection rate. The optimization parameters are encoded to binary values where each 

parameter is a byte length and chromosome size is 50 bits. Random number generator function is 

used to create initial population and these populations are applied to evaluate the cost function and 

ranked, and then divide into two groups of parents. Parents are selected randomly from each group 

who will come forth to give production of new generation. The new generation (offspring) is 

created by a single point crossing where the crossing point is randomly chosen. Some offspring 

will undergo mutation process by toggling bit(s) i.e. replacing ‘0’s by ‘1’s and vice versa, the 

toggling bit(s) are also randomly selected. This entire newly generated offspring is decoded and 

applied to evaluate the function and determine the cost and sorted according to the minimum cost. 

This process is repeated until any stopping criteria are met. Finally the optimized parameters are 

denormalized and displayed with their respective fitness error. Though the GA process can 

compute any NP-hard, non-gradient problem with a good accuracy but the process does not always 

guarantee global minima and requires a huge computation time and memory.  In addition, the test 

temperature pattern obtained from solving bio-heat flow problems on anatomic models numerical 

can be a significant source of error if the model is not developed accurately and the development 

of anatomic-accurate models is a challenge. However, the optimization process can also be 

performed without having a realistic physical model with the help of a trained artificial neural 

network (ANN).       

The study has developed a 3-layer feed-forward ANN with back propagation learning to 

estimate thermo-physical parameters of tumors from surface thermal images. The network is 

developed with the MATLAB Neural Network Toolbox using the “newff” function. The “transig” 

transfer function was chosen for the hidden layers, “purelin” for the output layer and “trainlm” for 
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back propagation training. The ANN is trained with idealized surface temperature profiles obtained 

for 5 different cases. Set of 500 data from the half of the symmetric pattern is normalized and then 

taken as training/validating input, 𝑇 (1×500 matrix). The target matrix 𝑃 is also normalized and 

each parameter is encoded with random numbers to produce 500 different values and scaled down 

to produce a 4×500 matrix. The learned network is then simulated for the above sample 

temperature pattern.  The simulated output is, finally, decoded and justified with some constraints 

to filter out the noisy data and the algebraic mean of the remaining data is computed and treated 

as the output of that run. The forecasted parameter’s values are applied to solve the bio-heat 

transfer problem on the developed anatomic-accurate model to produce the ideal temperature 

pattern (simulated). If such obtained temperature pattern is close (minimum average absolute error 

between the simulated and target pattern is 0.1%) to the target pattern then the run is considered 

as a good run.  In the end, the average of 20 good runs is computed to forecast the tumor 

parameters. 

1.7 Outline of the Thesis 

Chapter 2 is the literature review of thermogram assessment on living tissues, with a brief 

description of thermogram applied in breast tumor screening in particular. Studies, performed 

before 2000, had investigated the efficacy of this technology for early cancer detection in terms of 

Sensitivity (False-negative rate) and Specificity (False-positive rate). Continuing assessments of 

the capabilities in breast tumor diagnosis are ongoing. Recent studies have been using thermal 

information for correlating the temperature image with underlying physiological changes. 

However, clinical acceptance of such studies is still being argued. The chapter summarises major 

studies and their shortcomings relating to thermogram.  

The direct solution of bio-heat problems in homogeneous tissues is obtained analytically in 

Chapters 3 and such tissues are also modeled to re-compute their thermal features numerically, 

where both approaches determine the interior thermal behaviour at a steady state with solving 

Pennes' bio-heat equation for nonlinear boundary conditions. Both approaches exhibit consistency 

in obtaining tissue interior thermal features.  

Chapter 4 begins by providing an introduction to the human body anatomy with categorized 

organs into solid rectangular box, cylinder, and hemisphere and the imaging modalities applied 
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especially to the breast, as well as motivating the need for models considering the organ's geometry 

as well as a deformable breast model.  

In Chapter 5, the numerical approach for solving thermal features on organs with implanted 

tumors is discussed. The step-by-step procedure includes the development of structural models of 

organs mimicking their outlooks and heterogeneity, attributing the model layers with accurate 

physical, thermal, and biological parameters, meshing and solving the thermal problems for 

various conditions.  The deformation of breasts is substantial due to aging, body posture change 

and ptosis. Therefore, this chapter also covers the problem which may arise immediately when the 

deformation of the breast is tackled, which includes modeling of the drooped breast, and 

investigating their thermal pattern and association with an underlying tumor. 

Chapter 6 presents the optimization approaches to estimate the location, size and metabolic 

heat production rate of an embedded heat source. Different estimation methods are considered for 

example the Genetic Algorithm (GA), the Artificial Neural Network (ANN) and the pattern search 

algorithm. Full custom optimization algorithms are tailored according to the special feature of the 

thermal problem for each optimization process. The comparison of estimated parameters is 

presented. Finally a combination of GA and pattern search method is recommended.  

General conclusions and future work is presented in Chapter 7. 

1.8 Summary 

With embedded tumor, an organ undergoes anatomical and physiological changes and 

between these two processes, one pathologic and the other physiologic, the latter one can be traced 

much sooner before the former. The medical imaging techniques such as mammogram, ultrasound, 

MRI, etc. inspect the pathologic (anatomic) changes whereas the thermography looks at the 

physiologic (functional) changes. This chapter presents a historical background of the imaging 

techniques with their own limitations and advantages. Though the anatomic changes provide a 

clear indication of a hyperactive (abnormal or defective) region but such changes might be detected 

at advance stages and consequently reduce the survival rate. For reducing the mortality rate by 

facilitating with more treatment options, it requires earlier detection by inspecting the functional 

changes in tumor tissues.  An estimation methodology (based on data analysis and modeling) has 

been recommended in this research to locate a tumor and estimate its size and thermal behaviour 
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using abnormal surface temperature profiles, an obvious indication of functional discrepancies, 

may be obtained by IR thermography. The methodology could pave a way in developing an epoch-

making medical imaging technology. To summarize, the improvement of IR thermogram involve 

in the advancement in the medical technologies, infrared technologies and computer multimedia 

technologies. 
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 Literature Review 

2.1 Introduction 

Thermography measures body heat that is constantly radiating away from the surface of the 

skin. The skin is an organ that breathes, exchanges gases with the environment, cools us as well 

as keeps us warm.  This process is called thermoregulation and is done by a part of the nervous 

system called the sympathetic system that regulates blood flow in the skin. The energy radiates in 

the infrared frequency range and the relation between radiated energy and temperature can be 

defined by Stefan-Boltzmann law stating that the total radiation emitted by an object is directly 

proportional to the object’s area and emissivity and the fourth power of its absolute temperature. 

Since the emissivity of human skin is extremely high, measurement of infrared radiation emitted 

by the skin can be converted directly into accurate temperature values.   

Empirical evidence shows that underlying cancer alters regional skin surface temperatures 

due to increased vascular flow and metabolism. Infrared imaging of organs with implanted tumors 

may have critical prognostic significance since it may correlate with a variety of pathological 

prognostic features such as tumor size, tumor grade, lymph node status and markers of tumor 

growth. Thus, because of its inherent ability to detect subtle, vascular and physiological changes, 

thermography has been promoted as an early cancer detection test where thermal analysis has been 

presented to the patient as a method of determining the actual risk of malignancy. This information 

can then be used to direct laser therapy, massage, and chiropractic care and can be processed 

further to diagnosis a hyperactive region. In this chapter the contemporary state of art of the IR 

thermogram technology is addressed.     

2.2 Background 

Since 480 B.C. continued research and clinical observations proved that certain human body 

surface certain temperatures are, indeed, indicative of normal and abnormal physiologic processes 

[26]. Infrared monitoring systems for night vision ushered in a new era in thermal diagnostics in 

the mid-2000s. In 1957, a discovery by R. Lawson promoted thermography diagnostic when he 

observed the skin temperature over a cancer in the breast was higher than that of normal tissue 

[12]. The empirical evidence that underlying breast cancer alters regional skin surface 

temperatures was investigated, consequently, in 1963 Lawson and Chughtai, two McGill 
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University surgeons, published an elegant intra-operative study demonstrating that the increase in 

regional skin surface temperature associated with breast cancer was related to venous convection 

[13]. Numerous medical centers and independent clinics have started using thermogram for a 

variety of diagnostic purposes since the late 1970's, primarily, the “Department of Health 

Education and Welfare” and the “Food and Drug Administration” approved and classified the 

thermography as an adjunctive diagnostic screening procedure for the detection of breast cancer 

in 1972 and 1982, respectively. Based on the early quantitative experiment in [27], JF Head et al. 

[8] remarked that IR imaging of the breast may have critical predictive significance since it may 

correlate with a variety of pathologic prognostic features such as tumor size, tumor grade, lymph 

node status and the superficial surface temperature. The pathologic basis for these infrared 

findings, however, is uncertain. Guidi and Schnitt observed that angiogenesis is an early event in 

the development of breast cancer and may occur before tumor cells acquire the ability to invade 

the surrounding tissues and even before there is morphologic evidence of an in-situ carcinoma 

[28]. Gamagami studied angiogenesis by infrared imaging and reported that hypervascularity and 

hyperthermia could be shown in 86% of hidden breast cancers. He also noted that in 15% of these 

cases infrared imaging helped to detect cancers that were not visible on mammography [29]. The 

biomedical engineering evidence of thermography's value, both in model in-vitro and clinically in-

vivo studies of various tissue growths, normal and neoplastic, has been established [10, 30]. 

Thermography evaluation has two obvious viewpoints: the sensitivity of thermograms taken 

preoperatively in patients with known breast carcinoma, and the incidence of normal and abnormal 

thermograms in asymptomatic populations (specificity) and the presence or absence of carcinoma 

in each of these groups. 

Performance and suitability of thermogram for breast cancer detection had been studied in 

the last century which has been presented in the following  

 

 

 

Table 2-1. The performance evaluation includes the sensitivity (false negative rate) and the 

specificity (false positive rate) of detecting cancers. Researches also revealed that the thermogram 

can be applied to early detection of cancers and consequently increase the survival rates.    
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Table 2-1 Study of Performance and Suitability Evaluation of Breast Thermogram 

Subject size Methodology Findings and Remarks Ref 

4,000 women  Thermography Sensitivity of 94%   

False-positive rate  6% 

[31] 

4,621 women 

(35% under 35 

years) 

Thermogram on 

asymptomatic 

women 

24 cancers (7.6 cancers per 1,000) 

Sensitivity of 98.3%  

Specificity 93.5%  

[32] 

61,000 women Thermography on 

abnormal breast 

persistently for 10 

years 

False-negative and positive rate 11% (89% 

sensitivity and specificity) 

Detect 91% of non-palpable cancers  

Remark: Predicts the risk factor for future 

development of breast cancer more accurately 

than clinical or radiographic suspicion of 

malignancy. 

[33] 

37,506 women   Mobile 

thermogram on 

rural women 

5.7 cancers per 1,000 women  

12% false-negative  

14% false-positive  

Remark: Early indication for 10% would have 

a breast cancer. 

[34] 

4,393 women Concomitant 

thermogram and 

mammogram on 

asymptomatic 

patients 

Mammography found 7 cancers per 1000.  

IR found 1,028 patients with abnormal images  

Combined methods 24.1 cancers per 1000  

Combined methods increase sensitivity by 10% 

Remark: Mammography, infrared imaging and 

other breast imaging techniques merely indicate 

the presence of an abnormality. 

[35, 15] 

39,802 women  

(3 year period) 

Thermography, 

physical 

examination and 

mammography 

85% sensitivity  

70% specificity for thermography.  

Remark: Thermography to shorten the list and 

to detect earlier stage tumors. 

[36] 

85,000 patients 

10,834 patients 

(cold-stress) 

Therogram and 

dynamic 

thermogram  

 

90% sensitivity  

88% specificity.  

Remark: Cold stress decrease the false-

positive rate to 3.5% (96.5% sensitivity)  

[37] 

4,716 patients 

(confirmed 

carcinoma) 

3,305 patients 

(benign breast) 

Comparative 

study among 

clinical 

examination, 

mammography, 

and thermography 

Clinical examination: Sensitivity 75% overall 

and 50% in cancers less than 2 cm in size.  

Mammography: Sensitivity 80% and specificity 

73%.  

[38] 
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8,757 general 

women 

in the diagnosis of 

breast cancer 

Thermography: Sensitivity 88% (85% in 

tumors less than 1 cm in size) and specificity 

85%.  

Remarks: None of the techniques available is 

stand alone.  

Multimodal approach can give the best result. 

4,000 patients Mammography 

and thermography 

used separately 

and together. 

130 sub-clinical carcinomas ranging in 

diameter of 3-5 mm.  

10% were detected by mammography only,  

50% by thermography alone,  

40% by both techniques.  

[39] 

106 patients 

(negative)  

372 patients 

(positive) 

physical and/or 

mammogram  

Survival benefit 

study 

(subjected to 

identical 

treatment and 

followed for 5 

years) 

Survival rate increased by 61% if the patients 

medicated with initial thermographic 

abnormalities.  

Remark: Early identification of women at high 

risk of breast cancer based on the objective 

thermal assessment of breast health results in a 

dramatic survival benefit. 

[40] 

58,000 women thermography 

Cancer risk 

assessment 

40% of 1,527 patients with initially healthy 

breasts but abnormal thermograms developed 

malignancies within 5 years.  

Remark: Abnormal thermogram is the single 

most important marker of high risk for the 

future development of breast cancer.  

[41] 

1,416 patients 

165 patients 

(non-palpable 

cancers) 

Isolated abnormal 

breast 

thermograms 

Isolated abnormal thermogram is associated 

with an actuarial breast cancer risk of 26% at 5 

years.  

In non-palpable the risk is 53% at initial 

evaluation.  

Remarks: 

1) A persistently abnormal thermogram, 

even in the absence of any other sign of 

malignancy, is associated with a high risk of 

developing cancer,  

2) This isolated abnormal carries a high 

risk of developing interval cancer,  

3) Abnormal thermograms is the first 

warning sign for breast cancer  

[42] 

 

Studies showed that thermogram’s first-line breast cancer detection strategy depends 

essentially on clinical examination and mammography. Though, mammography is accepted as the 

most reliable and cost-effective imaging modality, its contribution continues to be challenged with 

persistent false-negative rates ranging up to 30% [43]; with decreasing sensitivity in patients on 
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estrogen replacement therapy [44]. In addition, there is recent data suggesting that denser and less 

informative mammography images are precisely those associated with an increased cancer risk 

[45]. Echoing some of the shortcomings of the BCDDP concerning their study design and infrared 

imaging, Moskowitz indicated that mammography is also not a procedure to be performed by the 

untutored [46]. 

With the current emphasis on earlier detection, there is now renewed interest in the parallel 

development of complimentary imaging techniques that can also exploit the precocious metabolic, 

immunological and vascular changes associated with early tumor growth. While promising, 

techniques such as scintimammography [45], Doppler ultrasound [44], and MRI [47], are 

associated with a number of disadvantages that include exam duration, limited accessibility, need 

of intravenous access, patient discomfort, restricted imaging area, difficult interpretation and 

limited availability of the technology. Like ultrasound, they are more suited to use as second-line 

options to pursue the already abnormal clinical or mammographic evaluation. While practical, this 

step-wise approach currently results in the non-recognition, and thus delayed utilization of second-

line technology in approximately 10% of established breast cancers. This is consistent with study 

published by Keyserlingk et al [48]. 

The above discussion proved that thermography had already paved its way as a promising 

adjunct screening tool. However, the sensitivity of this equipment varies with tumor size and the 

incidence of false positive result is very high. Moreover, medical application of infrared 

thermography was limited in the past years mainly due to the complexity, high cost and poor 

sensitivity provided by the output data generated from infrared cameras that were available at that 

time. Nowadays, advances in the infrared technology have again promoted its medical application 

as a promising non-invasive tool for imaging the functionality of superficial layers of tissues and 

the influence of vascular, neurogenic and metabolic processes that affect them. A high accuracy 

data acquisition system is available, but a big challenge is in deriving a solid correlation between 

superficial surface temperature and physiological bio-thermal parameters of a tumor, which has 

yet to be resolved. Numerous efforts have utilized the modern IR technology to predict the 

location, size and thermal parameters of tumors from the abnormal temperature profiles during the 

last few decades which included anatomical modeling or analogous modeling and inverse solution 

approach.  
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Because of thermography's unique ability to image the thermovascular aspects of the breast, 

extremely early warning signals (from 8-10 years before any other detection method) have been 

observed in long-term studies. Consequently, thermography is the earliest known indicator for the 

future development of breast cancer. It is for this reason that an abnormal infrared image is the 

single most important marker of high risk for developing breast cancer. Thus, thermography has a 

significant place as one of the major front-line methods of breast cancer detection. 

Studies performed before the 2000s have proved that thermogram is a promising screening 

tool to determine early stage benign tumor accurately much sooner before mammograms. Recent 

research is explaining the reason behind the abnormal thermal pattern over the skin under which 

hyperactive cells have grown.  In general the body surface temperature is controlled by the local 

metabolism, blood circulation underneath the skin, and the heat exchange between the skin and its 

environment [14, 49]. Change in any of these parameters could influence temperature distribution 

and heat flux at skin surface and thus reflect the physiological state of the human body. In particular 

the inflammation, metabolic rate, interstitial hypertension, abnormal vessel morphology and lack 

of response to homeostatic signals are some of the particular features that make tumors behave 

differently than normal tissues in terms of heat production and dissipation [14]. Therefore, an 

abnormal skin temperature profile can be used to predict the location, size and thermal parameters 

of the hyperactive region as well as follow up the treatment procedure. A number of previous 

papers show that the tissues in a hyperactive nodule exhibit remarkably higher metabolic and blood 

perfusion rate and slightly higher thermal conductivity. Gautherie et al. [37]found the following 

hyperbolic relationship between the metabolic heat generation and the tumor doubling time after 

experimenting on 84 patients with relatively small cancer (tumor size between 9 and 38 mm). In 

another paper Gautherie [31] showed that the increased blood perfusion caused an enhancement 

in thermal conductivity. His in situ mode experimental findings were also supported by Molls et 

al. [50] who observed that an increase in blood flow of 150 ml/100g/min causes an increase in 

thermal conductivity of 0.05 [W/(m. K)].  

In order to establish the correlation the internal temperature distribution in tissues was 

obtained by solving steady sate Pennes’ bio-heat equation analytically with different boundary 

conditions [51, 52] and the influence of thermal conductivity, metabolism, blood perfusion and 

heat exchange rate was studied for homogeneous and isotropic tissues [52]. Considering the 

geometrical and behavioral variation of biological tissues, which are common phenomenon for the 
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case of tumor or cancer, numerical methods such as the finite difference method (FDM) [53], the 

finite element method (FEM) [14], and the boundary element method (BEM) [54] have been 

developed. All of the above mentioned research showed the correlation between bio-thermal 

parameter and temperature profile.  

However, medical application of infrared thermography, that invokes indirect solution, was 

limited in the past years mainly due to the complexity, high cost and poor sensitivity provided by 

the output data generated from infrared cameras that were available at that time. Nowadays, 

advances in the infrared technology have again promoted its medical application as a promising 

non-invasive tool for imaging the functionality of superficial layers of tissues and the influence of 

vascular, neurogenic and metabolic processes that affect them. Lawson [12] was the first to 

propose the use of thermography detection of breast cancer, when he observed that the local 

temperatures of the skin over a tumor were significantly higher (approximately 2°C - 3°C) than 

the normal skin temperatures. Lawson and Chughtai [13] established that the region temperature 

difference over an embedded tumor was due to convection effects associated with increased blood 

perfusion, and the increased metabolism around the tumor.  Further aspects of IR imaging 

techniques and detection methods of breast cancer from infrared images are described in detail by 

Diakides and Bronzino [6]. In [19] Santa Cruz et al. after making a comparative investigation 

between thermography and boron neutron capture therapy (BNCT), concluded that the 

thermography, a potential imager of tissue functionalities, can help to locate abnormally high 

temperature regions as well as melanoma nodules that are virtually invisible in CT images.   

Therefore, the analyses proved that the IR imaging can be applied as an important tool in the tumor 

screening process.  

Research, mostly carried out in the last decade, observed the theoretical studies of the 

thermal behavior of the human organ by Direct Solving the Pennes bio-heat transfer equation 

analytically. Tissue interior thermal features had been anticipated for the overly simplistic 

rectangular and tubular homogeneous tissues models in [52, 51] and [55, 56], respectively.  

However, actual human organ tissues exhibit complex nonlinear, anisotropic, non-homogeneous, 

time, and rate-dependent behavior. In addition, the approach cannot provide the 2D temperature 

distribution over the skin surface. Consequently, bio-thermal parameters derived analytically are 

trivial and meaningless in clinical application.  Several contemporary researchers incorporated 

thermal-electric analogy to find the parameters of a hot nodule [21, 57] by mapping the temperature 
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texture over skin of a homogeneous tissue equivalent adiposity phantom. But, due to the 

interdependency of parameters, unknown shape and thermal behavior of tumor, the solution is 

murky and cannot be applied for clinical purposes readily. Numerous numerical approaches [58, 

59] had been addressed on realistic (anatomical accurate) models to reveal the thermal feature of 

the female breast. The bio-heat problem was solved in the 3D rectangular tissue model [14] and 

breast model [60] to forecast the superficial temperature texture over a flat body organ and a female 

breast, respectively. These numerical methods, performed in the latter part of last decade, showed 

the correlation between bio-thermal parameters and the skin surface temperature profiles.  

Moreover, several recent investigations utilized the correlation between the skin temperature 

and physiological parameters. As a result the screening tool turned into a useful diagnostic tool. 

Mital et al. [60] developed an in-vitro mode experimental and evolutionary method, to determined 

parameters of an embedded heat source representing a tumor using IR. An approximate heat source 

model of an embedded tumor was developed to determine the correlation among depth, radius and 

heat generation with skin temperature profile [21, 57]. Angelli et al. [14] used Finite difference 

method (FDM) and pattern search algorithm for estimating the depth, size and heat generation of 

an embedded tumor.   

Literature survey indicates that, only a few works [14, 60] have been conducted to estimate 

tumor parameters from a thermogram image. All the studies have numerous limitations. For 

example, the anatomically accurate physical model of an organ considering its geometry and the 

tissue heterogeneity is an important feature to achieve accurate results. In addition, structural 

deformations merely due to body posture or some other disorder should be taken into account for 

developing the physical model. The adipose mode developed in [16] and the rectangular model in 

[14] is overly simplistic and premature. Though the proposed breast model in [25] is anatomically 

accurate, the assumptions that were made to design tissue layers for all the models were 

inappropriate and inaccurate. In conclusion, results obtained from those studies were not validated 

and were not suitable for clinical application. In addition, the Inverse Approach based on the 

Artificial Neural Network (ANN) [60, 57], the Genetic Algorithm (GA) [16], the pattern search 

algorithms [14] etc. to estimate the physical and thermal parameters of a tumor were not validated 

with real/clinical data.  
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The objective of this study is the development of a novel methodology for correlating surface 

temperatures with hyperactive cell's thermal and physical behavior. The interior temperature 

distribution in tissues is obtained by solving the Pennes' bioheat equation analytically at a steady 

state with different boundary conditions and the influence of thermal conductivity, metabolism, 

blood perfusion and heat exchange rate studied for homogeneous and isotropic tissues. Though, 

the solutions are not useful for clinical application as long as they couldn't be applied to non-

homogeneous and anisotropic tissues, and also they couldn't be applied to anticipate the skin 

temperature distribution but they are applied to validate the numerical results obtained in the 

second stage. Anatomical accurate models of human superficial organs are developed in 

consideration of the geometrical and behavioral variation of biological tissues which is obvious 

for tumor or cancer, and the problem has been addressed in numerical methods.  

Most of the previous works restricted the diagnosis process for breast cancer patients only. 

However, the idea of this work is to use thermography- temperature profiles to predict the location, 

size and metabolism of tumors embedded in any outer body organs of humans. In general, the 

superficial organs of the human body have flat, tubular and curved outlook. Therefore, the organs 

are modeled either as a solid rectangle, cylinder or hemisphere respecting to their physical structure 

and the tumor is modeled as a spherical heat source. Tumor's bio-thermal and physical features 

and the host organ's structure viz. the presence of local blood vessels, constituent tissues, heat loss 

surface area etc. may affect the temperature distribution. To investigate the anatomical effect, the 

bio-heat transfer model with non-linear boundary conditions was developed for the above 

mentioned body geometries, using finite element analysis software.  

Continuing with the ongoing research for breast tumors, this study has also taken into 

account breast deformation caused by gravity. It has been noted, however, that the breast geometry 

may deform substantially merely because of body posture changes [61], and that the nonlinear 

elasticity effects associated with large deformations may not be negligible [62]. The study 

develops physical models for ptosis breast. Ptosis is a phenomenon of breast sagging due to aging, 

malnutrition, skin elasticity, etc. The forecasting of ptosis breast tumor parameters is an innovative 

thought of this study. 

Then an inverse approach is proposed, applying an optimization method to estimate thermal 

and physical parameters of a tumor, from which surface temperature data may be obtained from 
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clinic or infrared thermogram or finite element model. The study has applied both the Genetic 

Algorithm (GA) and Artificial Neural Network (ANN) optimization approaches to forecast the 

thermal and physiological parameters of tumors developed in the forearm, breast and chest. The 

forecasted data also underwent another optimization process, the Pattern Search Algorithm, to 

ensure the highest precision. The “Handbook of Genetic Algorithm” [63] covers a wide range of 

application of GA's in the real world and it can be seen that GA can be used as robust non-gradient 

based optimization procedures. ANNs are one of the burgeoning areas of current research and 

attract people from a wide variety of disciplines of science and technology. The important features 

and applications of ANN are discussed in [64]. The pattern search algorithm is a powerful approach 

for bound constraint minimization and discussed detail in [65, 66]. 

2.3 Summary 

The large patient populations and long survey periods in many of the above clinical studies 

yield a high significance to the various statistical data obtained. This is especially true for the 

contributions of thermography to early cancer diagnosis, as an invaluable marker of high-risk 

populations, and therapeutic decision making (a contribution that has been established and justified 

by the unequivocal relationship between heat production and tumor doubling time). 

Currently available high-resolution digital infrared imaging (Thermography) technology 

benefits greatly from enhanced image production, standardized image interpretation protocols, 

computerized comparison and storage, and sophisticated image enhancement and analysis. Over 

30 years of research and 800 peer-reviewed studies encompassing well over 300,000 women 

participants has demonstrated thermography's abilities in the early detection of breast cancer. 

Ongoing research into the thermal characteristics of breast pathologies will continue to investigate 

the relationships between neoangiogenesis, chemical mediators, and the neoplastic process. 

Moreover, an indirect solution using evolutionary method is still in the way to apply in thermogram 

diagnostics.  

It is unfortunate, but many physicians still hesitate to consider thermography as a useful tool 

in clinical practice in spite of the considerable research database, continued improvements in both 

thermographic technology and image analysis, and continued efforts on the part of the 

thermographic societies. This attitude may be due to the fact that the physical and biological bases 

of thermography are not familiar to most physicians. The other methods of cancer investigations 
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refer directly to topics of medical teaching. For instance, radiography and ultrasonography refer to 

anatomy. Thermography, however, is based on thermodynamics and thermos-kinetics, which are 

unfamiliar to most physicians, though man is experiencing heat production and exchange in every 

situation he undergoes or creates. 

Considering the contribution that thermography has demonstrated thus far in the field of 

early cancer detection, all possibilities should be considered for promoting further technical, 

biological, and clinical research in this procedure. 
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 Thermal Analysis in Healthy Homogeneous 

Tissues 

3.1 Introduction 

Solutions of bio-heat transfer problems on the developed models have been discussed in this 

chapter and the obtained solutions have been applied for finding interior and exterior temperature 

distribution of the above-mentioned organs.  Heat and temperature flow in a living biological body 

was first modelled by Pennes in 1948 [67]. The general theory about temperature distribution in 

tissue interior was obtained by analytic solving the Pennes’ bio-heat transfer model, basically a 

second order differential equation, with known boundary conditions. Tissues interior dynamic 

thermal feature substantially recommended for hyperthermia (also called thermal therapy or 

thermotherapy) treatment (cancer killing by exposing tissue with high temperature). However, 

thermal imaging (thermogram), recently proved as a gold standard for breast cancer screening, 

requires the Penne’s steady-state thermal model. The time-invariant bio-thermal model with 

known boundaries is applied to compute the temperature flow inside tissues which will be the main 

focus in this chapter. Tissues have distinctive thermal features because of their unique exterior 

(over which heat exchange occurs) and heat flow direction (heat gushing prominent in particular 

direction). Mathematical formulations involved in solving the thermal problems analytically with 

a coordinate system which can express the tissue geometry (in which the temperature distribution 

will be measured) conveniently. For example, the Cartesian system is the best choice for cuboid 

tissue, the Cylindrical system is for tubular tissues and the Spherical system is for curvy tissues. 

Therefore, an organ’s interior thermal character will be estimated by solving the heat equation 

fitting the organ on resembling coordinate systems.  

The objective of this chapter is developing a homogenous tissue model of external organs in 

the human body mimicking the physical exterior and solving the second order heat transfer 

equation with non-linear boundary conditions and finally estimating the radial temperature flow. 

Analytical approach for spatial temperature distribution is detailed thoroughly in this chapter. The 

major drawback of the analytical approach is that they can’t apply to inhomogeneous models 

handily. Rather, they require numerical approaches for solving multi-tissue organ’s thermal 

problems. However, the analytical approaches still stand as a powerful validating tool for numeric 
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results. The comparison between analytical and numerical results is presented at a later part of this 

chapter. 

During the last 60 years, several efforts had been carried out in solving the bio-heat model 

(a landmark model) proposed by Pennes. Wissler solved the Pennes model at steady-state and 

dynamic conditions with cylindrical systems in 1998 and remarked that the proposed (by Pennes) 

model is pertinent for estimating thermal behavior of biological tissues [68].  The model was, at 

first, applied for estimating the radial heat flow in cylindrical tissues which had been set up for 

application in limb and whole body heat transfer studies using Bessel’s equation and the 

corresponding analytical solution was derived in [55, 56].  The author revealed the effect of 

thermal conductivity, blood perfusion, metabolic heat generation and heat losses on the 

temperature distribution. Zhou et al. [51] applied the Cartesian system to expose the interior heat 

transfer in a single direction with asserting several boundary conditions and discussed how the 

temperature changes with tissue thickness. Cartesian geometry was also applied in solving the 

temperature distribution in skin tissues with four different heat exchange conditions i.e. the 

Dirichlet, Neumann, Convective and Radiation conditions.  

Research has also been conducted to obtain an analytical solution on Pennes’ dynamic bio-

heat model with different boundary conditions. Tzu-Ching Shih et al. [69] studied the effect of the 

temperature response of a semi-infinite biological tissue due to a sinusoidal heat flux at skin. A 

similar analysis had also been conducted in [70] with generalized spatial and transient heating on 

skin and inside the biological bodies using Green’s function. The dynamic analysis results may be 

useful for therapeutic treatment, thermal comfort analysis, tissue parameter estimation, thermal 

injury estimation and hyperthermia tumor ablution.   

This chapter covers a step-by-step process in solving the steady-state bio-heat equation 

analytically with perfect heat exchange boundary (section 4.2), the estimated temperature profiles 

in tissue inside (section 4.3) and will also show the merit of applying matched coordinate (section 

4.4). Across-check between the analytical estimate and numerical result (section 4.3) will be 

articulated. With revealing the attributive physio-thermo-biological parameters, the empirical 

effect of each parameter on the temperature profile will be examined and cross-checked. 
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3.2 Bio-heat Transfer Model 

Pennes’ developed a bio-heat model considering blood perfusion and artier blood 

temperature effect on in-tissue temperature distribution which is presented as: 

𝜌𝑐
𝑑𝑇

𝑑𝑡
= 𝑘∇2𝑇 + 𝜔𝑏𝑐𝑏(𝑇𝑎 − 𝑇) + 𝑄𝑚                                  (3.1) 

where 𝜌 and 𝑐 refer to the density and specific heat of tissue, respectively, 𝜔𝑏 is the product 

of blood density and perfusion rate per unit volume of tissue, 𝑐𝑏 is the specific heat of blood, 𝑇𝑎 is 

the artier blood temperature and 𝑄𝑚 is the rate of metabolic heat generation per unit volume of 

tissue.    

In particular tissue, the temperature flow is controlled by the blood circulation rate, 

metabolism and thermal conductivity. Changes in any of these parameters, most likely because of 

tumor, can induce variation in flow rate and spatial distribution of temperature and heat flux at 

skin surface. However, the dynamic temperature flow rate becomes negligible for the thermal 

quantities, such as the metabolic rate, perfusion rate, and the heat exchange rate remains unchanged 

over time as well and for the slow growing tumors. Therefore, the steady-state bio-heat equation 

is useful for thermal analysis of living organs, which can be written as 

   𝑘∇2𝑇 + 𝜔𝑏𝑐𝑏(𝑇𝑎 − 𝑇) + 𝑄𝑚 = 0                                                       (3.2) 

Eqn. (4.2) can be applied to solve the physical models proposed in Chapter 34. Reviewing 

the proposed realistic models for the human organs, shown in Figure 4-6, 4-8 and 4-10, indicated 

several layers (domain) where each domain has different thermo-physical character. Eqn. (3.2) can 

be modified for multi-domain model as: 

𝑘𝑖∇
2𝑇 + 𝜔𝑏𝑖𝑐𝑏𝑖(𝑇𝑎 − 𝑇) + 𝑄𝑚𝑖 = 0       

where the suffix 𝑖 = 1, 2, 3, 4, each number stands for a domain. 

In addition the Laplacian operator (∇2) in Eqn. (4.2) can be written as: 

∇2= (
𝜕

𝜕𝑥
)
2

+ (
𝜕

𝜕𝑦
)
2

+ (
𝜕
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)
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With selecting the coordinate system and the boundaries, heat flow in any direction can be 

estimated. However, the exterior of the organ’s model dictates the suitable coordinate system and 

the symmetry of the model indicates the prominent heat flow direction(s), and consequently, the 

boundary conditions. The fundamental three different models (except the droopy breast models) 

are the cuboid (rectangle box) or the cylinder or the hemisphere shapes. In case of a cuboid model 

(𝑥 ≪ 𝑦(= 𝑧)) if placed the center of 𝑥 = 0 plane at origin, the prominent heat flow will happen in 

𝑥 direction. Similarly for the origin-geometric center cylindrical model (𝜌 ≪ 𝑧) the thermal flux 

will be directed in 𝜌 axis. Likewise, if the base plane is thermally insulated the heat will be guided 

toward radial (𝑟) direction for hemispherical model. Therefore, Eqn. (4.2) can be rewritten for 

different geometry as: 

𝑘𝑖 (
𝜕

𝜕𝑥
)
2

𝑇 + 𝜔𝑏𝑖𝑐𝑏𝑖(𝑇𝑎 − 𝑇) + 𝑄𝑚𝑖 = 0        (Cartesian) 

 𝑘𝑖
1

𝜌

𝜕

𝜕𝜌
(𝜌

𝜕𝑇

𝜕𝜌
) + 𝜔𝑏𝑖𝑐𝑏𝑖(𝑇𝑎 − 𝑇) + 𝑄𝑚𝑖 = 0   (Cylindrical) 

 𝑘𝑖
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑇

𝜕𝑟
) + 𝜔𝑏𝑖𝑐𝑏𝑖(𝑇𝑎 − 𝑇) + 𝑄𝑚𝑖 = 0  (Spherical)   

where 𝑖 indicates the layers of tissues in an organ where the layers have completely different 

bio-thermal features from one another and come up with 𝑖 −number of heat transfer 

equations.Solving the multiple thermal equations for such a multi-layer (heterogeneous) structure 

analytically is impossible. However, to comprehend how an organ’s shape influences the tissue 

interior thermal profiles a simplified homogeneous model will suffice. Another useful application 

of receiving the basic thermal features on the approximate models, as mentioned earlier, is to 

confirm the numerical accuracy. 

3.3 Thermal Analysis of Tissues 

The thermal analyses on the cuboid, cylindrical and (hemi) spherical homogeneous models 

are discussed in the following section.  
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3.3.1 Cuboid (Rectangular box) tissues 

The cuboid model is shown in Figure 4-22, the dimension ‘L’ is the model (tissue) thickness 

i.e. depth between skin and body core, ‘W’ is the model width and ‘H’ is the model height [W (or 

H)>>L]; ‘A’ is the model center. Obviously, the model has symmetry in y and z-axes, therefore, 

the lateral boundaries are assumed to be thermally insulated i.e. no heat flow in these directions. 

Assuming the core plane hold at the constant artier temper and the model surface is perfect 

heat exchanger i.e. emanated heat fluxes entirely exchange with environment. Therefore, the one-

dimensional steady-state Pennes’ bio-heat equation for homogenous cuboid model can be written 

as: 

 

Figure 4-1 Homogeneous cuboid tissue model 
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𝑘
𝑑2𝑇

𝑑𝑥2
+ 𝜔𝑏𝑐𝑏(𝑇𝑎 − 𝑇) + 𝑄𝑚 = 0                                                                          (3.3) 

Eqn. (3.3) can be rewritten as: 

𝑑2𝑇

𝑑𝑥2
− 𝛼𝑇 = −𝛽                                                                                       (3.4) 

where𝛼 =
𝜔𝑏𝑐𝑏

𝑘
 and 𝛽 =

𝜔𝑏𝑐𝑏𝑇𝑎+𝑄𝑚

𝑘
. The general solution of Eqn.(3.4) is obtained as: 

𝑇(𝑥) = 𝐶1𝑒
−𝛼𝑥 + 𝐶2𝑒

𝛼𝑥 +
𝛽

𝛼
                                                                 (3.5) 

The evaluation of arbitrary constants 𝐶1 and 𝐶2 is determined using boundary conditions. 

Some possible sets of boundary conditions are presented in Table 3.1. The BC-I (Boundary 

Condition-I) indicates both the tissue core and skin maintain constant temperatures—artier blood 

temperature (𝑇𝑐) and skin temperature (𝑇𝑠), respectively, known as Dirichlet condition; whereas in 

BC-II, the core flows the Fourier heat flow law; while a complete heat exchange at skin surface is 

assumed in BC-III. Unlike above conditions which have at least one side fixed, the BC-IV is more 

flexible and invariable to ambient or system.       

Applying BC-I in Eqn. (3.5), 

𝐶1 + 𝐶2 = 𝑇𝑐 −
𝛽

𝛼
                                                                                             (3.6 − 𝑎) 

Table 3-1 Boundary Conditions 

Boundary Set Conditions Remarks 

BC-I 
𝑥 = 0,   𝑇 = 𝑇𝑐 
𝑥 = 𝑑,   𝑇 = 𝑇𝑠 

Core temperature (𝑇𝑐) and surface 

temperature (𝑇𝑠) known 

BC-II 
𝑥 = 0,

𝑑𝑇

𝑑𝑥
= 0 

𝑥 = 𝑑, 𝑇 = 𝑇𝑠 

Thermal insulated core, 

Surface temperature (𝑇𝑠) known 

BC-III 

𝑥 = 0,   𝑇 = 𝑇𝑐 

𝑥 = 𝑑,−𝑘
𝑑𝑇

𝑑𝑥
= ℎ𝑎(𝑇 − 𝑇𝑒) 

Core temperature (𝑇𝑐) known,  

Surface purely emissive 

BC-IV 
𝑥 = 0,

𝑑𝑇

𝑑𝑥
= 0 

𝑥 = 𝑑,−𝑘
𝑑𝑇

𝑑𝑥
= ℎ𝑎(𝑇 − 𝑇𝑒) 

Thermal insulated core, 

Surface purely emissive 
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𝐶1𝑒
−√𝛼𝑑 + 𝐶2𝑒

√𝛼𝑑 = 𝑇𝑠 −
𝛽

𝛼
                                                                        (3.6 − 𝑏) 

Solving for 𝐶1 and 𝐶2in Eqns. (3.6), 

𝐶1 =
𝑇𝑠 −

𝛽

𝛼
− 𝑒√𝛼𝑑 (𝑇𝑐 −

𝛽

𝛼
)

𝑒√𝛼𝑑 − 𝑒
−√𝛼
𝑑

and𝐶2 =
𝑒−√𝛼𝑑 (𝑇𝑐 −

𝛽

𝛼
) − 𝑇𝑠 +

𝛽

𝛼

𝑒√𝛼𝑑 − 𝑒−√𝛼𝑑
 

Substituting the values in Eqn. (3.5), 

𝑇(𝑥) =
𝑇𝑠 −

𝛽

𝛼
− 𝑒√𝛼𝑑 (𝑇𝑐 −

𝛽

𝛼
)

𝑒√𝛼𝑑 − 𝑒−√𝛼𝑑
𝑒−𝛼𝑥 +

𝑒−√𝛼𝑑 (𝑇𝑐 −
𝛽

𝛼
) − 𝑇𝑠 +

𝛽

𝛼

𝑒√𝛼𝑑 − 𝑒−√𝛼𝑑
𝑒𝛼𝑥 +

𝛽

𝛼
                      (3.7) 

𝑇(𝑥) =
(𝑇𝑠 −

𝛽

𝛼
) (𝑒−√𝛼𝑥 − 𝑒√𝛼𝑥) + (𝑇𝑐 −

𝛽

𝛼
) (𝑒−√𝛼(𝑑−𝑥) − 𝑒√𝛼(𝑑−𝑥))

𝑒√𝛼𝑑 − 𝑒−√𝛼𝑑
+
𝛽

𝛼
                     (3.8) 

𝑇(𝑥) =
(𝑇𝑠 −

𝛽

𝛼
) sinh(√𝛼𝑥) + (𝑇𝑐 −

𝛽

𝛼
) sinh (√𝛼(𝑑 − 𝑥))

sinh (√𝛼𝑑)
+
𝛽

𝛼
                          (3.9) 

Similarly BC-II, III and IV give, respectively, 

𝑇(𝑥) =
(𝑇𝑠−

𝛽

𝛼
)cosh(√𝛼𝑥)

cosh(√𝛼𝑑)
+
𝛽

𝛼
                                         (3.10) 

𝑇(𝑥) =

ℎ𝑎

𝑘
(𝑇𝑒 −

𝛽

𝛼
) sinh(√𝛼𝑥) + (𝑇𝑐 −

𝛽

𝛼
) [√𝑎 cosh (√𝛼(𝑑 − 𝑥)) +

ℎ𝑎

𝑘
sinh (√𝛼(𝑑 − 𝑥))]

√𝛼𝑐𝑜𝑠ℎ(√𝛼𝑑) +
ℎ𝑎

𝑘
sinh (√𝛼𝑑)

+
𝛽

𝛼
 (3.11) 

𝑇(𝑥) =

ℎ𝑎

𝑘
(𝑇𝑒 −

𝛽

𝛼
) cosh (√𝛼𝑥)

√𝛼sinh(√𝛼𝑑) +
ℎ𝑎

𝑘
cosh (√𝛼𝑑)

+
𝛽

𝛼
                                                        (3.12) 

Eqns. (3.9) through (3.12) present the temperature expressions in tissue interior of 

rectangular box homogeneous tissues under four different boundary conditions, respectively (see 

Table 4-3). Because of the rigidness of the Dirichlet conditions (BC-I), the expression in Eqn. (3.9) 

will be convenient for in vitro thermal estimation, for example, determining the thermal features 

of adipose in a fully controlled laboratory condition. The semi-rigid expressions in Eqns. (3.10) 

and (3.11) can also be applied to the in-vitro experiments. Unlike other solutions, the thermal 

expression in Eqn. (3.11) is flexible and reluctant to ambient, therefore, might be suitable for in-

vivo (in situ) or clinical applications.  
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3.3.2 Cylindrical (Tubular) tissues 

Relating to the tubular model (see Figure 4.8), the approximate thermal plot inside the 

simplistic model as shown in Figure 4-23 centering on z-axis (point A) with axial and glide plane 

symmetry, will be estimated. Assuming the radius of the model 𝜌 is much smaller than the height, 

resulting prominent heat flowing toward the surface on x-y plane. Therefore, the spatial 

temperature plot is a function of 𝜌 only, hence, the heat flow expression in Eqn. 3.2 has been 

rewritten for homogenous tubular organs as: 

1

𝜌

𝑑

𝑑𝜌
(𝜌
𝑑𝑇

𝑑𝜌
) +

𝜔𝑏𝑐𝑏
𝑘
(𝑇𝑎 − 𝑇) +

𝑄𝑚
𝑘
= 0                                                    (3.13) 

Assuming, Eqn. (3.13) governs the thermal features of the simplistic model of a cylindrical 

organ (or segment), in particular, the portion of forearm which is closer to the elbow and 

considering the imaginary center axis (𝑧 −axis) as the body core and attributing thermal insulation 

on it, while perfect heat loss on the outer surface, the boundary conditions become the following:   

𝜌 = 0,   
𝑑𝑇

𝑑𝜌
= 0                                                                                              (3.14 − 𝑎) 

𝜌 = 𝑑,−𝑘
𝑑𝑇

𝑑𝜌
= ℎ𝑎(𝑇 − 𝑇𝑒)                                                                         (3.14 − 𝑏) 

Eqn. (3.13) and boundary conditions (3.14) are to be applied on the model shown in Fig. 3.2. 

Rationalizing Eqn. (3.13) and the boundary conditions (Eqns. 3.14) with the following 

characteristic quantities:  
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𝜌∗ =
𝜌

𝑑
,        𝑇∗ =

𝑇−𝑇𝑒

𝑇𝑎−𝑇𝑒
                                                                                  (3.15) 

and substituting Eqn.(3.15) back into Eqn.(3.13): 

1

𝜌∗
𝑑

𝑑𝜌∗
(𝜌∗

𝑑𝑇∗

𝑑𝜌∗
) +

𝜔𝑏𝑐𝑏𝜌
2

𝑘
(1 − 𝑇∗) +

𝑄𝑚𝜌
2

𝑘(𝑇𝑎 − 𝑇𝑒)
= 0                                       (3.16) 

the dimensionless parameters and variables are defined as follows: 

𝜔𝑏
∗ =

𝜔𝑏𝑐𝑏𝑑
2

𝑘
, 𝑄𝑚
∗ =

𝑄𝑚𝑑
2

𝑘(𝑇𝑎 − 𝑇𝑒)
, ℎ𝑎
∗ =

ℎ𝑎𝑑

𝑘
                                                           (3.17) 

Hence, the original dimensional equation and the boundary conditions can be rewritten as: 

1

𝜌∗
𝑑

𝑑𝜌∗
(𝜌∗

𝑑𝑇∗

𝑑𝜌∗
) − 𝜔𝑏

∗𝑇∗ + 𝜔𝑏
∗ + 𝑄𝑚

∗ = 0                                                              (3.18) 

and 

{
 

 𝜌∗ = 0,   
𝑑𝑇∗

𝑑𝜌∗
= 0

𝜌∗ = 1,   
𝑑𝑇∗

𝑑𝜌∗
= −ℎ𝑎

∗𝑇∗
                                                                                     (3.19) 

Further, in order to standardize the equation, assume: 

𝐴 = 𝜔𝑏
∗ + 𝑄𝑚

∗ ,    𝐵 = 𝜔𝑏
∗  ,   ∅ = 𝐴 − 𝐵𝑇∗                                                        (3.20) 

Thus substituting Eqn. (3.20) into Eqn. (3.18), we obtain 

 
Figure 3-2 Homogeneous cylindrical tissue model 
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𝑑2∅

𝑑𝜌∗2
+
1

𝜌∗
𝑑∅

𝑑𝜌∗
− 𝐵∅ = 0                                                                                          (3.21) 

Eqn. (3.21) is a zero order modified Bessel differential equation, whose general solution can 

be expressed as: 

𝑅(𝑧) = 𝐶1𝐼𝑣(𝑧) + 𝐶2𝐾𝑣(𝑧)                                                                                       (3.22) 

where𝐼𝑣 and 𝐾𝑣 are the modified Bessel functions of the second kind. In order to determine 

if the analytic solution can be expressed by Bessel functions, Eqn. (3.22) has been compared with 

the Generalized Bessel’s equation as follows: 

𝑑2𝑅

𝑑𝑥2
+ [
1 − 2𝑚

𝑥
− 2𝛼]

𝑑𝑅

𝑑𝑥
+ [𝑝2𝑎2𝑥2𝑝−2 + 𝛼2 +

𝛼(2𝑚 − 1)

𝑥
+
𝑚2 − 𝑝2𝑣2

𝑥2
] 𝑅 = 0     (3.23) 

The corresponding solution of Eqn. 3.23 is: 

𝑅 = 𝑥𝑚𝑒𝛼𝑥[𝐶1𝐽𝑣(𝑎𝑥
𝑝) + 𝐶2𝑌𝑣(𝑎𝑥

𝑝)]                                                                     (3.24) 

where 𝐽𝑣 and 𝑌𝑣 are the modified Bessel function of the first kinds respectively, 𝐶1 and 𝐶2are 

arbitrary constants which can be obtained according to the given boundary conditions. The result 

of comparison between Eqn. (3.22) and (3.24) is shown below: 

𝛼 = 0,𝑚 = 0, 𝑣 = 0, 𝑝 = 1, 𝑎2 = −𝐵 

Hereby, the solution of Eqn. 3.20 can be expressed as: 

∅ = 𝐶1𝐼0(√𝐵𝜌
∗) + 𝐶2𝐾0(√𝐵𝜌

∗)                                                                              (3.25) 

Substituting 3.25 into 3.19, the solution for 𝑇∗ can be written as: 

𝑇∗ =
𝜔𝑏
∗ + 𝑄𝑚

∗

𝜔𝑏
∗ − [

𝐶1
𝜔𝑏
∗ 𝐼0(√𝜔𝑏

∗𝜌∗) +
𝐶2
𝜔𝑏
∗ 𝐾0(√𝜔𝑏

∗𝜌∗)]                                         (3.26) 

The next step is to determine the values of two arbitrary constants 𝐶1and 𝐶2. According to 

the characteristics of Bessel’s equation, when 𝑧 = 0, we have 𝐼1(0) ≡ 0 and 𝐾1(0) → ∞. 

Considering the boundary conditions in Eqn. (3.18), some simple derivations lead to: 

𝐶2 ≡ 0,
𝑑𝑇∗

𝑑𝜌∗
= −

√𝜔𝑏
∗𝐶1

𝜔𝑏
∗ 𝐼1(√𝜔𝑏

∗𝜌∗) 
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Putting 𝜌∗ = 1,
𝑑𝑇∗

𝑑𝜌∗
= −ℎ𝑎

∗𝑇∗, we obtain: 

−ℎ𝑎
∗ (
𝜔𝑏
∗ + 𝑄𝑚

∗

𝜔𝑏
∗ −

𝐶1
𝜔𝑏
∗ 𝐼0(√𝜔𝑏

∗)) = −
√𝜔𝑏

∗𝐶1

𝜔𝑏
∗ 𝐼1(√𝜔𝑏

∗) 

𝐶1 =
ℎ𝑎
∗ (𝜔𝑏

∗ + 𝑄𝑚
∗ )

ℎ𝑎∗ 𝐼0(√𝜔𝑏
∗) + √𝜔𝑏

∗ 𝐼1(√𝜔𝑏
∗)

 

So we have: 

𝑇∗(𝜌∗) =
𝜔𝑏
∗ + 𝑄𝑚

∗

𝜔𝑏
∗ −

ℎ𝑎
∗ (𝜔𝑏

∗ + 𝑄𝑚
∗ )

𝜔𝑏
∗ [ℎ𝑎∗ 𝐼0(√𝜔𝑏

∗) + √𝜔𝑏
∗ 𝐼1(√𝜔𝑏

∗)]
𝐼0(√𝜔𝑏

∗𝜌∗) 

𝑇∗(𝜌∗) =
𝜔𝑏
∗ + 𝑄𝑚

∗

𝜔𝑏
∗ [1 −

ℎ𝑎
∗

[ℎ𝑎∗ 𝐼0(√𝜔𝑏
∗) + √𝜔𝑏

∗ 𝐼1(√𝜔𝑏
∗)]
𝐼0(√𝜔𝑏

∗𝜌∗)] 

𝑇∗(𝜌∗) =
𝜔𝑏
∗ + 𝑄𝑚

∗

𝜔𝑏
∗

[
 
 
 
 
 
 

1 −
𝐼0(√𝜔𝑏

∗𝜌∗)

[𝐼0(√𝜔𝑏
∗) +

√𝜔𝑏
∗

ℎ𝑎
∗ 𝐼1(√𝜔𝑏

∗)]

]
 
 
 
 
 
 

 

Finally analytical solution for 𝑇 is given by: 

𝑇 = 𝑇𝑒 + (𝑇𝑎 − 𝑇𝑒)
𝜔𝑏
∗ + 𝑄𝑚

∗

𝜔𝑏
∗

[
 
 
 
 
 
 

1 −
𝐼0(√𝜔𝑏

∗𝜌∗)

[𝐼0(√𝜔𝑏
∗) +

√𝜔𝑏
∗

ℎ𝑎
∗ 𝐼1(√𝜔𝑏

∗)]

]
 
 
 
 
 
 

 

𝑇 = 𝑇𝑒 + (𝑇𝑎 − 𝑇𝑒) [1 +
𝑄𝑚

𝜔𝑏𝑐𝑏(𝑇𝑎 − 𝑇𝑒)
]

[
 
 
 
 
 
 

1 −

𝐼0 (√
𝜔𝑏𝑐𝑏

𝑘
𝜌)

[𝐼0 (√
𝜔𝑏𝑐𝑏𝑑

2

𝑘
) +

𝑘√𝜔𝑏
∗

ℎ𝑎𝑑
𝐼1 (√

𝜔𝑏𝑐𝑏𝑑
2

𝑘
)]

]
 
 
 
 
 
 

    (3.27) 

In cylindrical organs temperature emanate towards the periphery and the radial flow is a 

function of the organ’s radius (𝜌) only.   
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3.3.3 (Hemi)Spherical tissues 

The physical model of curved organ (see Figure 4.10) is approximated as a full-sphere filled 

with uniform tissue shown in Figure 4-24. At steady-state the temperature flow expression in Eqn. 

(3.2) is presented as in Eqn. (3.28) and the boundary conditions as in Eqn. (3.29): 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑇

𝑑𝑟
) +

𝜔𝑏𝑐𝑏
𝑘
(𝑇𝑎 − 𝑇) +

𝑄𝑚
𝑘
= 0                                                                       (3.28) 

𝑟 = 0,              
𝑑𝑇

𝑑𝑟
= 0;       𝑟 = 𝑑,−𝑘

𝑑𝑇

𝑑𝑟
= ℎ𝑎(𝑇 − 𝑇𝑒)                                               (3.29)  

Characteristics quantities to obtain the dimensionless heat equation and boundary conditions 

are as follows: 

𝑟∗ =
𝑟

𝑅
, 𝑇∗ =

𝑇 − 𝑇𝑒
𝑇𝑎 − 𝑇𝑒

                                                                                                   (3.30) 

Using Eqn. (4.30), Eqn. (4.28) can be written as: 

1

𝑟∗2
𝑑

𝑑𝑟∗
(𝑟∗2

𝑑𝑇∗

𝑑𝑟∗
) +

𝜔𝑏𝑐𝑏𝑅
2

𝑘
(1 − 𝑇∗) +

𝑞𝑚𝑅
2

𝑘(𝑇𝑎 − 𝑇𝑒)
= 0                                              (3.31) 

and the dimensionless boundary conditions are: 

𝑟∗ = 0,
𝑑𝑇∗

𝑑𝑟∗
= 0                                                                                           (3.32 − 𝑎) 

and 

𝑟∗ = 1,
𝑑𝑇∗

𝑑𝑟∗
= −

ℎ𝑎𝑅

𝑘
𝑇∗                                                                            (3.32 − 𝑏) 

 

Figure 3-3 Homogeneous spherical tissue model 
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The dimensionless parameters and variables are defined as: 

𝜔𝑏𝑐𝑏𝑅
2

𝑘
= 𝜔∗,

𝑞𝑚𝑅
2

𝑘(𝑇𝑎−𝑇𝑒)
= 𝑞𝑚

∗  and 
ℎ𝑎𝑅

𝑘
= ℎ𝑎

∗  

Therefore, the dimensionless governing equation is: 

1

𝑟∗2
𝑑

𝑑𝑟∗
(𝑟∗2

𝑑𝑇∗

𝑑𝑟∗
) − 𝜔𝑏

∗𝑇∗ + 𝜔𝑏
∗ + 𝑞𝑚

∗ = 0                                                                     (3.33) 

and the boundary conditions are: 

𝑟∗ = 0,
𝑑𝑇∗

𝑑𝑟∗
= 0                                                                                         (3.34 − 𝑎) 

and 

𝑟∗ = 1,
𝑑𝑇∗

𝑑𝑟∗
= −ℎ𝑎

∗𝑇∗                                                                                (3.34 − 𝑏) 

By dropping the superscripts * and letting 𝜔𝑏
∗ = 𝛼 and 𝜔𝑏

∗ + 𝑞𝑚
∗ = 𝛽, Eqn. (3.33) becomes: 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑇

𝑑𝑟
) − 𝛼𝑇 + 𝛽 = 0                                                                                         (3.35) 

To solve Eqn. (3.35), let’s assume 𝑇 =
𝐻(𝑟)

√𝑟
 and by differentiating gives, 

𝑑𝑇

𝑑𝑟
=
1

√𝑟
𝐻′ −

1

𝑟√𝑟
𝐻                                                                                                        (3.36) 

Substituting (4.36) in (4.35) we obtain, 

1

𝑟2
𝑑

𝑑𝑟
(𝑟√𝑟𝐻′ −

1

2√𝑟
𝐻) −

𝛼

√𝑟
𝐻 = −𝛽                                                                        (3.37) 

The homogeneous equation is: 

1

𝑟2
𝑑

𝑑𝑟
(𝑟√𝑟𝐻′ −

1

2√𝑟
𝐻) −

𝛼

√𝑟
𝐻 = 0                                                                            (3.38) 

After simplifying and multiplying by √𝑟 , we obtain 

𝑟2𝐻′′ + 𝑟𝐻′ − (𝛼𝑟2 + (
1

2
)
2

)𝐻 = 0                                                                              (3.39) 

Eqn. (3.39) is modified Bessel equation of half kind and therefore the solution is: 
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𝐻 = 𝐶1𝐼1/2(√𝛼𝑟) + 𝐶2𝐾1/2(√𝛼𝑟)                                                                                  (3.40) 

According to the characteristics of Bessel’s equation, we have𝐶2 = 0. Therefore, the 

solution to Eqn. (3.40) is: 

𝐻 = 𝐶1𝐼1/2(√𝛼𝑟)                                                                                                                (3.41) 

The exact solution in terms of 𝑇(𝑟)is: 

𝑇 = 𝐶1
𝐼1/2(√𝛼𝑟)

√𝑟
+ 𝑇𝑝                                                                                                       (3.42) 

where, 𝑇𝑝is the particular solution and 𝑇𝑝 =
𝛽

𝛼
. 

Therefore, the temperature expression considering the superscript * again: 

𝑇∗(𝑟∗) = 𝐶1
𝐼1/2(√𝛼𝑟

∗)

√𝑟∗
+
𝛽

𝛼
                                                                                            (3.43) 

Considering the boundary condition of Eqn. (3.32-b), and after derivations of Eqn.(3.41) 

lead to:  

𝑑𝑇∗

𝑑𝑟∗
= 𝐶1 (−

𝐼1/2(√𝛼𝑟
∗)

2𝑟∗√𝑟∗
+
√𝛼𝐼3/2(√𝛼𝑟

∗) +
1

2𝑟∗
𝐼1/2(√𝛼𝑟

∗)

√𝑟∗
)                                (3.44) 

𝐶1 (−0.5𝐼1/2(√𝛼) + √𝛼𝐼3/2(√𝛼) + 0.5𝐼1/2(√𝛼)) = −ℎ𝑎
∗ (𝐶1𝐼1/2(√𝛼) +

𝛽

𝛼
)        (3.45) 

𝐶1 =
−ℎ𝑎

∗ 𝛽

𝛼

√𝛼𝐼3/2(√𝛼) + ℎ𝑎∗ 𝐼1/2(√𝛼)
 

𝑇∗ =
−ℎ𝑎

∗ 𝛽

𝛼

√𝛼𝐼3/2(√𝛼) + ℎ𝑎∗ 𝐼1/2(√𝛼)

𝐼1/2(√𝛼𝑟
∗)

√𝑟∗
+
𝛽

𝛼
 

𝑇∗ =
𝛽

𝛼
[1 −

ℎ𝑎
∗

√𝛼𝐼3/2(√𝛼) + ℎ𝑎∗ 𝐼1/2(√𝛼)

𝐼1/2(√𝛼𝑟
∗)

√𝑟∗
] 

𝑇 = 𝑇𝑒 +
𝛽

𝛼
[1 −

ℎ𝑎
∗

√𝛼𝐼3
2

(√𝛼) + ℎ𝑎∗ 𝐼1
2

(√𝛼)

𝐼1
2

(√𝛼𝑟∗)

√𝑟∗
] ∗ (𝑇𝑎 − 𝑇𝑒)                       (3.46) 
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Eqn. (3.46) provides the analytical solution for the temperature plot in tissue interior of 

spherical tissues. The expression shows that the heat fluxes conducted in radial direction toward 

the surface.  

It is worth mentioning that Eqn. (3.27) and Eqn. (3.46) have been developed with assuming 

thermal insulated core and perfect emitting (emissivity ≈1.0) surface, thus the outcome will be 

versatile and adapt to any condition.  

3.4 Analytical Results 

Applying the analytical solutions discussed in section Chapter 1, the interior temperature 

field at steady-state can be obtained. The temperature distributions inside homogeneous tissue 

models are calculated using MATLAB with the thermal and biological parameters of tissues listed 

in Table 4-4. There is no unarguable reference to evident assumed values to the tissue parameters, 

moreover, former studies are found with discrepant suggestions while assigning values to the 

featuring parameters. It may be because the biological tissues vary extensively among humans, 

between organs. Moreover, most of them are in-vitro computed; however, the reasonability of the 

recommended values is supported by many researchers and will be discussed in Chapter 5.    

 

Table 3-2 Thermal and Physical Parameters of Tissues 

Parameter Symbol Value Unit 

Thermal Conductivity 𝑘 0.52 W/(m.K) 

Heat Exchange Coefficient ℎ𝑎 10 W/(m2.K) 

Specific Heat (Blood) 𝑐𝑏 4186 J/(kg.K) 

Density (Blood) 𝜌𝑏 1000 kg/m3 

Metabolism 𝑄𝑚 700 W/m3 

Perfusion Rate 𝜔𝑏 5.2×10-4 1/s 

Artier Blood Temperature 𝑇𝑎 310.15 K 

Environmental Temperature 𝑇𝑒 300.15 K 
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In general body heat is generated due to cell’s metabolic activities and partially dissipated 

by blood perfusion and the remaining transferred to the skin surface. The heat transfer graph in 

interior of homogeneous cuboid tissue is shown in Figure 4-25, where thermal plots of all the 

boundary conditions, listed in Table 4-3, are presented. The temperature is plotted as a function of 

tissue thickness. The plots show that the boundary conditions influence the temperature 

distribution in tissue inside. Because of the same condition at the skin surface boundary (skin-air 

interface) in BC-I and BC-II, the curves are well coincident near the skin surface. The similar cases 

can be seen in BC-I and BC-III near the body core (because the core maintains the constant artery 

temperature), also in BC-II and BC-IV (because of perfect isolative core), whereas in BC-III and 

BC-IV at the skin surface (because of perfect emissive surface). A constant temperature 306.75 K 

is maintained at skin surface in BC-I and BC-II and 𝑇𝑐 = 𝑇𝑎 = 310.15 𝐾 is assumed in BC-I and 

III. Interestingly, BC-III and IV provide similar temperature graphs because the core should 

maintain the temperature equal to or lower than the blood vessel temperature (𝑇𝑐 ≤ 𝑇𝑎).  For 

unbounded surface temperature, the graphs indicate a temperature difference ≤ 1.5 K between the 

core and the surface. On the other hand, for the custom bounded (BC-I) case the heat flow gradient 

will change with the skin temperature.  

 

Figure 3-4 Radial temperature flow in homogeneous cuboid tissue from body core 

toward surface for the boundary conditions in Table 3-1 
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The interior temperature distribution in cylindrical homogeneous living tissues in the resting 

state is presented in Figure 4-26. This distribution is obtained from the analytical expression 

derived in Eqn. (3.27). Recall that the thermal expression was deduced for thermal isolated core 

and purely emissive skin (which is analogues to the BC-IV, in Table 3.1, of Cartesian geometry). 

The result shows that a tubular organ of radius 4 cm has a temperature drop of 2.05K between 

center (core) and skin.  

Similarly temperature plot on spherical homogeneous tissues obtained from Eqn. (3.46) is 

shown in Figure 4-27. The curve shows that at steady state the spherical tissues produce a nonlinear 

thermal diffusion at tissue inside with a center (core) temperature 308.98 K and peripheral 

temperature 306.99 K if the organ has the radius of curvature 4 cm.   

3.5 Comparisons between analytical solutions obtained in different 

coordinate system 

Even in normothermia or euthermia condition, a wide range of temperatures have been found 

in healthy people. At specific circumstances, different parts of an individual person’s body would 

have different temperatures. This section will examine the reason why there are different skin 

temperatures and will discuss how the temperature magnitude can relate to that particular organs 

exterior and finally, will demonstrate the reasoning of imitating organ’s physical geometry 

(exterior outlook) in developing the physical model. 

 

Figure 3-5 Radial temperature flow in homogeneous tubular tissue from body core 

toward surface for the BC-IV in Table 3-1 
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The analytical solution of Pennes bioheat equation to compute the temperature fields in 

cuboid, tubular and curved organs with similar boundary conditions are presented in Eqn. (3.12), 

(3.27) and (3.46), respectively. The steady-state temperature flows in above three-type organs have 

been compared to estimate the influences of tissue geometry on the temperature distribution in 

healthy condition. With the very similar thermal and biological parameters, the interior 

temperature distributions of homogeneous models of above organs are studied. The spatial 

temperature distributions over tissue thicknesses have been estimated for 4 cm thick organs. The 

result is presented in ; the top curve is the temperature profile in cuboid organ (flat outlook), the 

middle curve is for tubular, and the bottom one is for spherical organs. It can be seen that the flat 

organ’s surface is warmer than the curved organs, to be exact≈0.5K warmer than cylindrical tissues 

and 1.07K warmer than spherical organs. This is because of its smaller surface area over which 

heat losses is taking place. The difference between body core and skin surface temperature is 

almost 2K for each case and dynamic slopes of the graphs are also identical.  However, the organ 

geometry has significant influence on the skin temperature magnitude and establishes the necessity 

of developing organ models with considering their geometries. 

 

Figure 3-6 Radial temperature flow in homogeneous curved tissue from body core 

toward surface for the BC-IV in Table 3-1 
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Figure 3-7 Comparison of radial temperature flow in homogeneous cuboid, tubular and 

curved tissues for BC-IV on Table 3-1  

3.6 Numerical Approach 

Above found analytical solutions can determine the temperature distributions inside the 

living tissues. The temperature plots reveal important information about core temperatures, heat 

flow gradients and skin temperature magnitudes. However, the analytical process has the following 

shortcomings: 

(i) Temperature probed over simplistic models (homogeneous models)  

(ii) Estimating spatial distribution over skin temperature which requires surface 

temperature expression cannot be achieved from the analytical solution.  

(iii) The solutions are not fitted for heterogeneous tissue. Heterogeneity may 

come not only for multiple tissues layers but also if some tissues become hyperactive 

and their thermal properties keep altering throughout the live. (This consequence would 

happen more likely in tumor organs.) 

The limitations in the analytical approach may be overcome by the numerical approach. In 

addition, the ultimate goal of this research is detecting and locating tumors from surface 

temperature distribution through an inverse approach, which is completely unattainable from the 

analytical process. Thus the thermal problem will be addressed numerically. Although different 

numerical approaches (such as Finite Element Method, Finite Difference Method (FDM), and 



57 

 

Monte-Carlo Method) for analysis of bio-heat problems are available, finite element analyses, 

which are based on accurate constitutive models, provide the most detailed information on the 

spatial and temporal distribution of temperature distribution in biological tissues. The objective of 

the present section was to simulate the bio-heat problems resulting from a healthy organ, using the 

finite element analysis software COMSOL [71]. This software is a Multiphysics simulation 

package which has a built-in heat transfer module for live biological tissues. In order to verify the 

performance of the COMSOL’s library model, the very same problem is solved by writing codes 

in FDM using MATLAB program.  

3.6.1 Finite Difference Method 

The bio-heat model in Eqn. 3.2 with boundaries in Eqn. 3.43 and 3.44 can be solved 

numerically with FDM for cuboid geometry as shown in , where the bottom, top and lateral (left 

and right) boundaries are denoted as BB, TB, and LB and RB, respectively. Computing interior 

thermal behaviour requires solving the thermal flow in two directions so the other two lateral sides 

(front and back) are omitted. 

 

Figure 3-8 Cuboid tissues 3-D domain 

Assume the boundaries BB, LB and RB are thermally isolated i.e. 

𝜕𝑇

𝜕𝑛
= 0                                                                                                                 (3.47) 

and at skin surface (TB) is entirely emissive i.e. 

−𝑘
𝜕𝑇

𝜕𝑛
= ℎ𝑓(𝑇𝑠,𝑎 − 𝑇𝑒) + 𝜎휀(𝑇𝑠,𝑎

4 − 𝑇𝑒
4)                                                          (3.48) 

 

BB 

LB RB 

TB 

K, Q 

Fig 4.8 Three-dimensional Domain of Flat Organ 
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where ℎ𝑓 is the convective heat coefficient, 𝜎 is the Stefan-Boltzmann constant,  휀 is the 

emissivity of the skin surface, 𝑇𝑒 is the environment temperature, and 𝑇𝑠,𝑎 is the skin temperature 

at a particular point. This boundary condition can be approximated as: 

−𝑘
𝜕𝑇

𝜕𝑛
= ℎ𝑎(𝑇𝑠,𝑎 − 𝑇𝑒)                                                                                             (3.49) 

whereℎ𝑎is the total heat exchange coefficient. 

In FDM, the Laplacian in 2D problems can be written as: 

(
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
)
𝑖,𝑗

=
𝑇𝑖+1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗

∆2
+
𝑇𝑖,𝑗+1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗−1

∆2
               (3.50) 

where ∆𝑥 = ∆𝑦 = ∆ and in x-direction  𝑖 = 1, 2, …… , 𝑛𝑥 and in y-direction𝑗 =

1, 2, …… , 𝑛𝑦. Here 𝑖 and 𝑗 are the grids in 𝑥 and 𝑦 direction, respectively, and ∆ is the grid spacing 

factor. The number of grids in 𝑥 and 𝑦 direction are, respectively, 𝑛𝑥 =
𝑥

∆
 and 𝑛𝑦 =

𝑦

∆
.  A sample 

grid system is shown in .  

 

Figure 3-9 Finite difference grids 

For computing thermal expression for each grid Eqn. (4.2) can be rewritten as: 

𝑘 (
𝑇𝑖+1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗

∆2
+
𝑇𝑖,𝑗+1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗−1

∆2
) + 𝜔𝑏𝑐𝑏(𝑇𝑎 − 𝑇𝑖,𝑗) + 𝑞𝑚 = 0   (3.51) 

After some algebraic operation Eqn. (3.51) becomes: 

𝑇𝑖,𝑗 =
𝑘

4𝑘 + ∆2𝜔𝑏𝑐𝑏
(𝑇𝑖+1,𝑗 + 𝑇𝑖−1,𝑗 + 𝑇𝑖,𝑗−1 + 𝑇𝑖,𝑗+1) +

∆2

4𝑘 + ∆2𝜔𝑏𝑐𝑏
(𝜔𝑏𝑐𝑏𝑇𝑎 + 𝑞𝑚)   (3.52) 
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Except boundaries, temperature at other grid is computed using Eqn. (3.52). Following is the 

thermal expressions for the boundaries: 

At the left lateral boundary LB: 

(
𝜕𝑇

𝜕𝑥
)
1,𝑗
=
𝑇2,𝑗 − 𝑇0,𝑗

2∆
= 0     𝑗 = 2,3, ……… , 𝑛𝑦 − 1    

Therefore 𝑇0,𝑗 = 𝑇2,𝑗 and letting 𝛽 = 4𝑘 + ∆2𝜔𝑏𝑐𝑏 and ∀= 𝜔𝑏𝑐𝑏𝑇𝑎 + 𝑞𝑚 and replacing 

Eqn. (3.52) gives: 

𝑇1,𝑗 =
𝑘

𝛽
(𝑇1,𝑗+1 + 2𝑇2,𝑗 + 𝑇1,𝑗−1) +

∆2

𝛽
∀𝑗 = 2,3, ……… , 𝑛𝑦 − 1                     (3.53) 

At the right lateral boundaries RB: 

𝑇𝑛𝑥,𝑗 =
𝑘

𝛽
(𝑇𝑛𝑥,𝑗+1 + 2𝑇𝑛𝑥−1,𝑗 + 𝑇𝑛𝑥,𝑗−1) +

∆2

𝛽
∀𝑗 = 2,3…… , 𝑛𝑦 − 1              (3.54) 

Top convective boundary TB: 

𝑇𝑖,𝑛𝑦 =
𝑘

𝛽 + 2∆ℎ𝑎
(2𝑇𝑖,𝑛𝑦−1 + 𝑇𝑖+1,𝑛𝑦 + 𝑇𝑖−1,𝑛𝑦 +

2∆ℎ𝑎𝑇𝑒
𝑘

) +
∆2

𝛽 + 2∆ℎ𝑎
∀ 

𝑖 = 2,……… , 𝑛𝑥 − 1                                        (3.55) 

Finally the bottom boundary (BB) condition is: 

(
𝜕𝑇

𝜕𝑦
)
𝑖,1

=
𝑇𝑖,2 − 𝑇𝑖,0
2∆

= 0       𝑖 = 2, 3, …… , 𝑛𝑥 − 1  

Therefore 𝑇𝑖,0 = 𝑇𝑖,2 and replacing into Eqn. (3.51) gives, 

𝑇𝑖,1 =
𝑘

𝛽
(𝑇𝑖+1,𝑗 + 2𝑇𝑖,2 + 𝑇𝑖−1,1) +

∆2

𝛽
∀𝑗 = 2,3, ……… , 𝑛𝑦 − 1                (3.56) 

Eqns. through 3.52 to 3.56 are written in MATLAB language to obtain the internal 

temperature distribution of the cuboid living tissue. 

3.6.2 Finite Element Method 

The COMSOL solver is a powerful and popular numerical analysis software, which works 

based on the finite element method. The solver is featured with an environment to analyze the heat 
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transfer in biological tissues which has been applied to estimate the temperature profiles of 

different types of living tissues. The COMSOL solver requires developing a physical geometry, 

identifying domains, defining models and boundaries, selecting analysis type, and growing mesh. 

A step by step procedure for thermal analysis of rectangular prism homogeneous healthy tissues 

required for the solver is exemplified by the following: 

Geometry Design 

The COMSOL’s geometry tool is used to create a cuboid shape shown in Figure 4- 28. The 

homogeneous tissue geometry is split into three domains. The domains interface line is marked 

with AB. The purpose of creating the boundary edge AB is to estimate the temperature flow on 

that line handily. The dimensions of each domain are labelled on the figure.  

Materials Definition: 

The value for thermal conductivity, density and specific heat of tissue is defined for the 

domains. In this particular problem all domains will be given the same thermal values as specified 

on Table 4-4. 

Physical Model and Boundaries Setting: 

The values for blood density, specific heat, perfusion rate and metabolic heat generation 

were specified in the developed finite element model. In addition, the values for 𝑇𝑐 , ℎ𝑎  and 𝑇𝑠 were 

also defined.   

Figure 3-10  Dimensions of cuboid model 
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Analysis Type and Global Definition: 

The steady state analysis was performed using the developed finite element model. For 

custom designed geometry, parameters can be defined by assigning their physical values. This 

parameter list may include the dimensions of the geometry, thermal and biological parameters of 

tissues and blood and thermal values in boundaries.     

Mesh Generation: 

3-D thermal model developed for this study is disintegrated into differential elements as 

shown in . The elements are two shapes—the triangular meshes are mainly seen at the boundaries 

and everywhere else is tetrahedral. The entire model is divided into approximately 5000tetrahedral 

elements and 380 triangular elements, on the maximum and minimum element size, element 

growth rate and resolution are set to 0.05, 0.005 and 0.2 to obtain optimum result. 

 

Figure 3-11  Developed finite element model 

3.6.3 Comparison between Analytical and Numerical Results 

Thermal behaviors of homogeneous healthy tissues can be studied both analytically and 

numerically [using FDM approach and finite element method (FEM) via COMSOL Solver]. 

Though, all these methods may have some advantages and limitations. Results obtained using these 

approaches are to be verified to demonstrate their performance and accuracy. 
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The thermal results on a cuboid homogeneous tissue model are presented in this section. The 

analysis has considered the values for the tissue parameters listed in Table 4-4. Though tissue 

thickness (distance between base of the core layer and the top of the skin surface) is different for 

different organs, only for comparison’s purpose the tissue thickness has been assumed 4 cm in 

every case. The FDM approach assumes the domain dimensions of 0.04×0.2×0.2 m and the grid 

spacing factor of 1 mm. The number of grids on the 𝑥𝑦 plane was assumed to be 40×200 with the 

convergent factor ≤ 0.0001using FEM. Likewise, the maximum and minimum element sizes are 

1 mm and 0.5 mm, respectively, hence, the entire geometry is divided into approximately 500 

tetrahedral and 100 triangular boundary elements.  

The fundamental thermal behaviour in homogeneous tissues at healthy condition is 

forecasted separately using the analytical approach and numerical methods (FDM and finite 

 

Figure 3-12  Simulated radial temperature flow in homogeneous cuboid tissues using 

analytical, FDM and FEM: a comparison 
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element method). The estimated through the thickness temperature evolution using these three 

methods is presented in  

Figure 4- 29. For a 4 cm tissue thickness, the graphs show that at skin surface the estimate 

temperatures have a negligible deviation of 0.0257K between FDM and analytical result and 

0.0003K between finite element and analytical result. However, respective deviations at core end 

are 0.05K and 0.0001K. The analysis shows that analytical and the finite element forecast is 

consistent while the FDM estimates discrepant. It may result from non-adaptive definition of finite 

grid size, accuracy, and/or model dimension.  

Therefore, finite element analyses (which are based on accurate constitutive models) of the 

heat transfer problems of live biological tissues, provide the most detailed information on the 

spatial and temporal distribution of temperature.  Consequently, the finite element analysis using 

COMSOL Multiphysics is used to predict thermal behavior of biological tissues in our numerical 

simulation.  

3.7 Homogeneous Finite Element Models  

As discussed in section Chapter 1, FEM is an accurate, effective and stand-alone tool for 

solving bio-heat problems. The cuboid, cylindrical and spherical homogeneous tissue models of 

live biological organs were developed using COMSOL Multiphysics software. The finite element 

results were compared with the analytical ones to validate the developed models.  
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The geometries were developed according to the Figure 4-22(cuboid tissue model), Figure 

4-23(Cylindrical tissue model) and Figure 4-24(Spherical tissue model). A dimension of  4 𝑐𝑚 ×

20 𝑐𝑚 × 20 𝑐𝑚 for the cuboid tissues; radius 4 cm and height 20 cm for the cylindrical tissues; 

and radius 4 cm for the spherical tissues was assumed. For each case temperature evolution is 

estimated for tissue thickness of 4 cm (indicates line AB, see Figure 4-22 to Figure 4-24). The 

most convenient way to acquire radial temperature flow is splitting the entire domain into several 

segments as shown in the figures in order to form an inter-domain boundary AB.  

After defining thermal and biological properties, the geometries were discretized using solid 

elements to create their respective mesh as shown in Figure 4-30. The mesh layout of rectangular 

box model is shown in Figure 4-30(a) where the skin surface was assumed as a heat exchange 

surface and the remaining five faces are thermally insulated. The finite element cylindrical model 

has the heat exchange surface at its periphery and both the top and bottom circular surfaces are 

thermally isolated as shown in Figure 4-30(b). However, the sphere periphery is assumed to 

exchange heat with environment (see Figure 4-30(c)). 

The entire domain of the rectangular pyramidal model was meshed using approximately 

27000 tetrahedral and 3500 triangular elements. In the cylindrical tissues, the domain was meshed 

with more than 200,000 tetrahedral elements and 28,000 triangular elements. Similarly for 

spherical organs, the tissues were meshed using approximately 5060 tetrahedral and 800 triangular 

elements. Mesh sensitivity analysis were performed to determine the maximum and minimum 

element sizes in order to obtain a good resolution in the simulated patterns, and to minimize the 

computational memory and simulation time.  In addition, nodes along the surface area constrained 

in the normal-translational direction for all three geometries. All other nodes were unconstrained 

in all directions. A constant temperature of 293.15K was applied at the entire section as an initial 

condition. The maximum and minimum element sizes are chosen as 0.6 and 0.2 mm, respectively. 

The maximum element aspect ratio is 1.5.   

The steady-state analysis has been performed to estimate the thermal flow throughout the 

domain. Temperature profile along the AB section inside the tissue is shown in Figure 4-31. The 

‘black solid’ line indicates the analytical curves whereas the ‘red dotted’ line indicates the finite 

element results. The plots are shifted in vertical (in temperature) axis where the temperature plot 

for spherical organs lies under that for the tubular organs and the tubular organ’s plot is below of 
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the cuboid organ’s temperature profile. It can be seen that both approaches (analytical and 

numerical) produce similar results for the respective tissues.      

  

 

(a)             (b) 

 

(c) 

Figure 3-13 FEM mesh diagrams for (a) cuboid, (b) cylindrical and (c) spherical tissues 



66 

 

 

3.8 Parametric Study 

The comparative study was performed for a wide range of parameter value. Both the 

analytical and numerical approaches were validated by parametric analysis to verify how the 

thermal features of homogeneous chest, forearm and breast models respond to variation of a 

particular parameter while keeping others unchanged. 

The influence of the bio-thermal and physical parameters on the tissue temperature is 

presented through Figure 4-32 to Figure 4-320. Results are accumulated in two groups; Group 1: 

influence of thermal and biological parameters, and Group 2: influences of environment and model 

parameters. The former group includes the parameters which are likely to change in hyperactive 

tissues. Indeed the latter group, the varying parameters are extracted from ambient conditions and 

the physics of a patient’s specific organ that undergo for diagnosis. The bio-thermal (Group1) 

parameters includes the metabolic heat rate, conductive thermal coefficient and the blood perfusion 

rate, while the Group 2 includes the heat exchange rate, ambient temperature and the tissue depth 

(organ thickness or curvature radius).  

 

Figure 3-14 Temperature flow in radial direction estimated analytically and using FEM for 

three different shapes of organs 
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The Figure 4-32 shows the effect of metabolism, conductive heat rate and blood perfusion 

rate on the temperature distribution of rectangular pyramidal tissues. The Figure 4-32(a) showed 

 

Figure 3-15 Analytical and FEM estimation of biological parameter’s effect on radial 

temperature flow in cuboid tissues; influence of –(a) 𝑸𝒎, (b) 𝒌 and (c)  𝝎𝒃  

(a) 

(b) 

(c) 
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how the tissue temperature has been affected by the change in metabolic heat generation. If the 

metabolic rate changed from 700 W/m3 to 1500 W/m3 the skin temperature increased by almost 

0.1K. Figure 4-32(b) indicates that the thermal conductivity has insignificant effect on the 

temperature distribution as it varied between 0.48 and 0.55 W m-10K-1.  In comparison with the 

case of blood perfusion of (𝜔 = 5.4 × 10−41/s), it is obvious that the increase of blood perfusion 

has a remarkable influence on the surface temperature in living tissues as shown in Figure 4-32(c). 

The curves in Figure 4-32(c) indicate that the gradient of the temperature variation in radial 

direction decreases with increasing blood perfusion, which is a result of higher rate of heat 

distribution caused by the blood perfusion. In addition, the differences between the effects of the 

higher blood perfusion rates on temperature distributions become smaller. The core temperature 

approaches to a constant value of 310.15K. 



69 

 

The 

effect of the ambient condition, for example, the heat loss rate and environment temperature on 

the temperature distribution in rectangular tissue have been presented in Figure 4-33(a) and (b), 

respectively. Both figures indicate that the ambient conditions have significant effects on the 

 

Figure 3-16 Analytical and FEM estimation of ambient and physical parameter’s 

effect on radial temperature flow in cuboid tissues; influence of –(a) 𝒉𝒂, (b) 𝑻𝒆, and 

(c) Tissue thickness 

(a) 

(b) 

(c) 
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surface temperature. Therefore, a controlled environment might play an important role in the 

hyperthermia diagnosis process.  The effect of tissue thickness on the temperature profile is also 

presented in Figure 4-33(c) where it can be seen that tissue thickness has no significant effect on 

the surface temperature.  

Similar analyses were conducted on the cylindrical and spherical tissues, which are presented 

in  through .  and Figure 4-34 show the temperature profile curves for cylindrical model for Group1 

and Group 2 parameters, respectively. Temperature profiles for different metabolic rates are 

presented in (a) for a range between 700 W/m3 and 1500 W/m3. If conductive heat transfer rate 

increases, the body core temperature decreases while the skin temperature increases negligibly, 

this is evident from (b). Unlike these above two parameters, the higher inflated rate makes the 

curve saturated at the body core at temperature 310.15K with a superficial non-linearity.  For 

increasing perfusion rate, the skin surface becomes hotter which is presented in (c). 
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Figure 3-17 Effect of biological parameter on temperature profile in cylindrical tissue –

influence of (a) 𝑄𝑚, (b) 𝑘 and (c) 𝜔𝑏 

 

 

 

 

 

(a) 

(b) 

(c) 
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The 

effect of heat loss rate at the skin surface on the temperature profile is shown in Figure 4-34(a). 

The more vigorously heat transferred to the environment, the less temperature intensity is observed 

on the surface as well as inside the tissue.  The analysis also presents that the ambient temperature 

 

 

Figure 3-18 Effect of ambient conditions and model thickness on temperature 

distribution in cylindrical tissues; influence of (a) ℎ𝑎, (b) 𝑇𝑒 and (c) Tissue thickness 

 

(a) 

(c) 
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affects the temperature profile curves [see Figure 4-34(b)]. It can be seen that warm laboratory 

decreases the interior temperature gradient. Skin temperature could be felt 3K higher temperature 

if the ambient temperature increases from 296.15K to 305.15K. For the same ambient temperature 

hike the body core reaches about 0.9K higher temperatures. Figure 4-34(c) shows that thick tubular 

organ will produce higher temperature value at body core, which is more than a degree Kelvin for 

the organ which has 5 cm radius than that has 3 cm. However, the effect of organ’s thickness may 

be quite untraceable at the skin surface. 

Increasing metabolic rate moves the temperature value up as shown in Figure 4-35(a). The 

spatial rate of change in temperature with metabolic rate is uniform, at core the rate is 
𝑑𝑇

𝑑𝑄
=

 

(a)                                                        (b) 

 

(c) 

Figure 3-19 Effect of biological parameter on temperature profile in spherical tissue –

influence of (a) 𝑄𝑚, (b) 𝑘 and (c) 𝜔𝑏 
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0.025 (𝐾 − 𝑚3)/𝑊 while at skin is 
𝑑𝑇

𝑑𝑄
= 0.0015 (𝐾 − 𝑚3)/𝑊. Higher conduction coefficient 

though increases the core temperature but decreases the skin temperature. The role of conduction 

heat rate on the temperature flow is presented in Figure 4-35(b). The perfusion rate is a very 

important function of the in-tissue temperature distribution. The non-linear thermal curve for 

healthy organ (𝜔𝑏 = 5.4 × 10
−4𝑠−1) becomes saturated if the perfusion rates increases. The 

‘saturated part’, maintains the constant artery temperature, increases for higher inflammation as 

shown in Figure 4-35(c). 

Thermal image is not only affected by the bio-thermal characters of tissues but also by the 

thermal condition of the laboratory where the image is acquired. The thermal condition, basically, 

the heat exchange rate and ambient temperature are two important issues that require investigating. 

 
(a)                                   (b) 

 
(c) 

 
Figure 3-20  Effect of ambient and model thickness on temperature distribution in spherical 

tissues– (a) ℎ𝑎, (b) 𝑇𝑒 ,  and (c) Tissue thickness 
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The influence of heat exchange rate on the thermal flow is presented in Figure 4-36(a) where the 

curves show that the exchange coefficient has an inverse effect on the magnitude of temperature 

and the effect is more sensible at the skin surface than core. Environment temperature also alters 

the temperature profile in the tissue interior; however, the effect is more pronounced near the skin 

surface as shown in Figure 4-36(b). The temperature curve varies with radius of curvature of 

spherical organ which as shown in Figure 4-36(c). It can be seen that the 3 cm radius organ 

produces almost 308.15K at core and 296.15K at skin while the 5 cm radius organ has 1.5K and 

0.5K higher temperatures at the respective locations. 

The above analyses settle the following issues down: 

(a) Group 1 and Group 2 parameters have similar effect on the temperature 

distributions of all models, 

(b) The thermal and biological parameters (except the perfusion rate) have 

relatively stronger effect on the magnitude of core temperature than skin temperature. 

However, at a certain blood flow rate the temperature curves saturate at the deep region, 

(c) Ambient situation affect the thermal images. The skin surface thermal flux 

controls the magnitude of tissue temperature. The environment temperature also 

changes the tissue temperature magnitude. 

The analytical solutions comply with their respective numerical solutions. 

3.9 Necessity of Anatomical Accurate Models 

Interior thermal profiles on the simplified (homogeneous) models have been discussed in 

section Chapter 1. It is evident from the estimated radial temperature flows in different organs, 

shown in Figure 3-7, that organ’s shape has important effect on the temperature magnitude and 

should be mimicked properly while developing the physical model. Referring to the cross-sectional 

diagrams of several organs (section 0), it is found that they are made on multiple tissue layers 

where bio-thermal features of each layer are different from others, in particular, the 𝑘, 𝑄𝑚 and 𝜔𝑏 

(Group1 parameters). Individual effects of these parameters have been discussed in Figure 3.15, 

3.17 and 3.19 to demonstrate their notable influences on tissue’s heat transfer features. For 

simplistic model, the variations in bio-thermal features of different tissue types that build the organ 

is omitted and assumed that the organ is homogeneous (made up with single type of tissues). 
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Consequently, thermal estimations over simplified models could give pessimistic results and may 

not be applicable for clinical purpose. To resolve this inaccuracy, the realistic or anatomic-accurate 

models have been developed in Chapter 4, mimicking organ’s true anatomy accordingly (see 

Figure 4.6, 4.8 and 4.10). Temperature computations over both simplistic and realistic models are 

presented in Figure 4-37, where the temperature flow in the chest, forearm and breast models are 

presented, respectively, in top, middle and bottom window and   the temperature flow in simplified 

and realistic models of each organ are shown together. Figure 4-37(a) shows that accurate chest 

model estimates at least 1K lower temperature on the surface than simple mode. It can also be seen 

that the continuity of heat flow graph for realistic model falls sharply at 0.33 m from where the fat 

layer start, it is because of the lower thermal conductivity of fat layer than the muscle layer (see 

Table 5.7).  For the true forearm model the similar discontinuity shows up at 0.35 m [Figure 4-

37(b)]. In the case of the realistic breast model, bends happen [Figure 4-37(c)] at the interface of 

two different tissue layers for example the fat-muscle, fat-lobule and fat-skin interface. However, 

for simplified models the graphs remain continuous because of uniform bio-thermal values 



77 

 

throughout the entire domain. As the purpose of the research is developing a novel methodology 

for parameterizing tumor parameters for clinic application from thermogram, therefore from now 

on the subsequent study will emphasize the computation of thermal features on anatomical 

accurate models.  

3.10 Summary 

Inner tissue thermal features of a healthy organ have been studied analytically and 

numerically. The expression of radial temperature profiles has been derived for cuboid, cylindrical 

and spherical organs by solving the one dimensional Pennes’ bio-heat equation at steady-state. The 

 
(b) 

 
(c) 

Figure 3-21 Estimation of radial temperature flow over anatomic-accurate (realistic) and 

simplistic (homogeneous) models for—(a) chest tissues, (b) forearm tissues, and (c) breast 

tissues  
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analytical solution expressed with trigonometric function for cuboid model and with the Bessel’s 

function for cylindrical and spherical models. As a consequence, the accurate initial temperature 

field can be easily achieved with respect to the various transient analysis and calculation of heat 

transfer in living tissues.  

The results obtained by the analytical analysis were compared to the numerical solution to 

demonstrate the suitability of numerical approach. The analysis also shows how an organ’s 

geometry controls the temperature texture. The analysis facilitates finding the effect of thermal 

conductivity, heat generation rate, blood perfusion and heat exchange coefficient on the 

temperature distribution which can provide a good knowledge of thermal behaviour of living 

tissues. This information can be applied to measure the thermal parameters, to reconstruct the 

temperature field with the help of optimization method and also can be extended for the thermal 

diagnosis and hyperthermia treatment.   

  



79 

 

 Physical Models of Non-homogeneous Tissues 

4.1 Introduction 

For valid thermal data, a bio-heat transfer problem of living tissues has to be solved on a 

physical model closely resembled to the anatomic structure. Not only the biological and thermal 

parameters e.g. the thermal conductivity, perfusion, heat convection and radiation of the biological 

tissues but also the shape of exterior and anatomic structure of interior of an organ influence the 

temperature distributions. Therefore comprehensive thermal models of the human body’s external 

organs should come up with the study of thermal mechanism being addressed on models where 

both the anatomical structures and physiological characteristics of the organ should be compiled 

in developing the models. 

According to Figure 1- 12, the external organs of the human body generally have three 

different outlooks, namely—the arm, forearm, finger, and leg have tubular (cylindrical) exteriors, 

the chest (male) and back have rectangular prism outlook and the breast (female) and buttock have 

hemispherical shapes. The shape of an organ assists the reliable computation for convection and 

radiation heat losses. On the other hand the knowledge of tissue interior contributes to figure out 

the conductive heat flow, the metabolic heat production and the perfusion heat loss; these vary 

significantly among tissue types. Therefore the thermal models of external organs in the human 

body will be featured with—a standard (cuboid, cylindrical and hemispherical) structure, and 

heterogeneity (inhomogeneity).  Developments of the anatomically accurate 2D and 3D thermal 

models of the above three-type organs have been discussed in this chapter. A brief review of the 

existing thermal models has also been deliberated.     

4.2 Organ’s Anatomy 

Organ’s shape has an influential consequence on the thermal behavior.  Let alone the internal 

tissue compositions and their respective thermal behavior, the prominent heat flow direction(s) 

and the convection and radiation heat losses surface overall area contribute to the regional thermal 

distribution, consequently attributes an uneven thermal graph on the body outward. In this study, 

the superficial organs (or a segment on an organ) in human body has categorized into three groups, 

with each group typically composed into four tissue layers (bone, muscle, fat and skin). The only 

exception is the female breast, which has an extra lobule (mammary) tissue layer underneath the 
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fat. The basic idea of this study is to model organs mimicking the true anatomy i.e. the organ’s 

shape and the inhomogeneity. To summarize, the proposed model will be built on a bone-filled 

muscle (body core) topped, one after another, with muscle, fat and skin tissues and will have the 

structure like a box, a cylinder or a hemisphere. 

Firstly, development of the thermal model for a flat organ (e.g. the male chest) has been 

discussed. The outer-appearance and cross-sectional diagram of male chest is shown in Figure 4-

1. The highlighted (rectangular or square) area on the chest, as shown in (a), has been modeled. 

The chest constituent tissue layers underneath the selected part are revealed in (b). It is seen that 

the chest is founded on a rib-filled intercostal muscle tissues which is encrusted with the 

subsequent muscle, fat and superficial skin layers. The intercostal muscle layer is termed as the 

body core which is assumed to have a constant temperature 310.15 K. On top of the body core a 

thick, fan-shaped muscle is situated which is called the pectoral major tissue. Underneath the 

pectoral major tissues there is a thin, triangular muscle layer called the pectoral minor. The 

subcutaneous tissue (hypodermis) layer is right above the pectoral major tissue. The hypodermis 

mainly consists of loose connective tissues, lobules of fat, blood vessels and nerves. The fat layer 

is covered by a skin layer, which consists of dermis and epidermis layers. Together the fat, dermis 

and epidermis layer is called the skin which is the principal organ for dissipating heat. The human 

body dissipates approximately 85% of its heat loss through the skin under normal environmental 

conditions. The interface between the epidermis and dermis is extremely irregular and consists of 

a succession of papillae, or finger-like projections. The skins emissivity is around 0.97 which 

makes it almost perfect as a radiator and absorber. 

                      

(a) Male chest outlook    (b) Male chest cross-section 

Cuboid shape 

(top view) 

Figure 4-1 Male chest anatomy 
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Secondly, the thermal behavior of a tubular organ (e.g. the forearm) has been examined. The 

Figure 4.2 presents the shape and cross-section of an adult male forearm. It is evident that the 

selected part of forearm, as shown in (a), can be modeled by concentric cylinders of three realistic 

tissue layers (muscle, fat and skin). Indeed the larger cylindrical surface of forearm contributes the 

higher amount of the convection and radiation heat losses than the flat organs. The heterogeneity 

of the forearm tissues is depicted in (b). The cross-section includes bones (e. g. radius and ulna), 

arteries (e.g. radius artery, ulna artery, posterior interosseus artery, anterior interosseus artery, and 

median artery), muscles (e.g. flexor digotorum profunds, flexor digontorum superficial and soft 

tissues) and cephalic vein. Like the chest, the skin over the forearm has three layers—the 

epidermis, the dermis, and the fat lobule.   The average diameter of an adult forearm is roughly 70 

mm. 

Finally, the female breast has been considered to compute the thermal feature of 

hemispherical—like organs. The study launches considering the natural, non-deformed breast 

because of the nearly hemispherical structure, which is shown in Figure 4.3(a). The circular dotted 

lines around the breast base and above the nipple explain the reasoning of assuming a half-

spherical model. The perception of the model domains could be understood from the internal 

edifice, which is illustrated in Figure 4.3(b). The interior of the breast is made up of three major 

tissue types, parenchymal (functional) or glandular tissue, fibrous tissue and fat. The parenchymal 

tissue of the breast is compartmentalized into 15-20 lobes, which is where milk production occurs. 

The lobes are separated by fibrous walls and can be further divided into smaller compartments 

called lobules. The lobules are connected to the nipple by a network of ducts. The ducts begin as 

tiny ductules at the lobules, which merge together as they near the nipple into larger and larger 

   

(a) Forearm outlook                   (b) Forearm cross-section 

 

Cylindrical 

Shape 

Figure 4.2 Forearm anatomy 
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ducts. The ducts and lobules are contained and supported by fibrous or connective tissue. All this 

glandular (lobes and ducts) and fibrous tissue can be grouped together as fibroglandular tissue. 

Outside the fibroglandular tissue is a layer of adipose or fatty tissue. The proportion of 

fibroglandular to adipose tissue varies between individuals and with age. There is always a 

significant proportion of fatty tissue, with even small breasts rarely being composed of less than a 

third of fat. After menopause, the fibroglandular tissue atrophies, resulting in a much higher 

proportion of fat to fibroglandular tissue. 

Beneath the breast is a large muscle, the pectoral major (pectoral muscle), which separates 

the breast from the rest of the body. The pectoral muscle is the muscle that is contracted when the 

hands are placed on the hips and the elbows thrown back. The pectoral minor is found between the 

pectoral major and the ribs. The whole of the breast is supported by fibrous strands called Coopers 

ligaments, which are attached to the muscle wall. Coopers Ligaments strengthen the breast 

significantly, and weakening of these ligaments can cause the breast to sag. The whole of the breast 

is also supplied with blood vessels. In this thesis we assume that the breast has not been augmented 

with silicone implants. There are two other major tissue types which we will need to consider. The 

skin is a layer of highly elastic tissue and is generally 1-2 millimeters thick.   

4.3 Anatomical-accurate Model 

An anatomically accurate model of an organ is a precondition for estimating the exact 

thermal behavior. At the past, most studies were limited to the thermal analysis of the breast 

because of its likelihood of developing cancer or tumor. A comprehensive breast model had been 

presented by Osman and Afify [72] with taking into consideration metabolic heat production, 

tissue perfusion with capillary blood, arterial and venous blood thermal interactions. However, the 

     

(a) Breast outlook    (b) Breast cross-section 

 

Hemispherical 

shape 

Figure 4.3 Breast anatomy 
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cross-sectional view of the female breast shown in Figure 4.3(b) presents that the breast is 

heterogeneous and the thickness of layers are uneven. In addition, the hemispherical geometry 

could be found only for an ideal and non-deformed breast in supine condition only. The breast 

cross-section [Figure 4.3 (b)] shows that the breast comprises of two fat layers—a subcutaneous 

fat layer just under the skin and another fat layer sandwiched between the gland (lobule) layer and 

the deep muscle layer. The glandular layer is beneath the subcutaneous fat layer whereas the 

muscle layer (pectoral major and minor) lies close to the thoracic wall just below the 

retromammary bursa (not shown in the figure). The breast is developed on a deep muscle (pectoral 

muscle) layer and on the chest wall (muscle layer). The overall breast is covered with a superficial 

skin layer except the nipple at the vertex which is surrounded by areola tissues.  

 

Figure 4.4 2D model of a female breast 

NM Sudharsan et al. [58] proposed a hemispherical breast model considering thickness 

irregularity pretending to closer to the breast anatomy.  The two-dimensional model of the authors 

is depicted in Figure 4.4. The authors had assumed the breast to be of hemispherical shape with a 

5 mm of subcutaneous layer, followed by a gland and muscle layer of varying thickness. 

Polynomial functions were defined to compute the thicknesses of layers though the fat layer 

between the gland and muscle layers was overlooked. It is also worth mentioning that the nipple 

tissue was not considered in the model. In spite of having the above—mentioned limitations, 

modern studies have applied the breast model in Figure 4.4 for thermal analysis on breast.  
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Though the thermal feature of forearm was first addressed analytically in the early twenties 

but so far no model was proposed to estimate the surface temperature on the forearm or such 

tubular organs. Fortunately, a latest study conducted by JP Agnelli et al. [14] has developed a 

rectangular box model to forecast the thermal behavior for an embedded tumor. The authors 

developed a simple, ideal and two-domain model regardless any real human organ anatomy.    

Having looked at the thermal imaging modalities (as discussed in section Chapter 1), it is 

seen that infrared thermogram provides superficial information as an indication of tissue 

functionalities in terms of heat radiation and dissipation. Relating the thermal images with tissue 

functionalities demands a realistic physical model of the human body organ which could be 

attained by developing a segmental model according to the physical structure and tissue 

heterogeneity. 

4.3.1 The Chest (Flat Organ) Model 

Generally a portion on a human’s back or male chest has almost a flat building. The study 

considers a rectangular specimen from the male chest, which is marked with the dotted area in 

Figure 4-1(a). Though the thickness of the chest wall varies among individuals due to their food 

habits and physical activities,  the average chest wall overall thickness of 40—45 year, 1.7—1.75m 

and 65—70 kg adult male is between 3.6 and 3.8 cm [73] which includes three layers such as 

muscle, fat and skin. Lagoundoye et al. [74] showed that the subcutaneous fat layer could be 0—

6 mm thick. Taking the sample chest flesh as shown in Figure 4-1(b), resize the thickness of the 

chest wall to 3.8 cm which provides a proportion to the muscle layer 3.3 cm and the fat layer of 

3.5 mm which is covered with the relatively thin skin layer of 1.5 mm. Off the muscle layer, it 

                                   

(a) Chest tissue domains                      (b)  Tissue thicknesses in different domains   

 

Figure 4.5 Male chest—(a) Cross-sectional diagram, and (b) Development of chest model base 
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seems obvious that the ribs are located within the bottom 10 mm region. The chest physical model 

thus developed consists of four layers—the body core, the muscle tissue, the fat soft tissue and the 

skin as shown in Figure 4.5. The thickness is assumed to be uniform and the thickness of each 

layer is labelled on the figure.  

A three-dimension physical model of the male chest segment is shown in Figure 4.6. The 

dimensions of the model are 10 cm (L) × 10 cm (W) × 3.8 cm (D) which has a surface area 100 

cm2. The body core is mainly built with the pectoral minor tissue and bone (rib) tissues. However, 

the influence of bone (ribs) tissues on the thermal feature is neglected because the body core is 

assumed to maintain a constant temperature 310.15 K. The muscle layer, built with pectoral major 

tissues, is the main component of the model.      

4.3.2 The Forearm (Tubular Organ) Model 

Apart from the flat organs, maximum external organs in the human body have a cylindrical 

surface and more interestingly some of them don’t hold any complex functioning inner organs, 

thus appealed a great interest to the previous bio-thermal researchers. The study has analyzed the 

thermal behavior of male’s forearm tissues. 

 

Figure 4.6 Three-dimensional model of male chest 

The forearm diameter can be 0.033 to 0.04 m for an adult. The forearm model, shown in 

Figure 4.7, has been developed from Figure 4.2 by fitting into a circle of 70 mm diameter. This 

model includes two concentric circles to mark the skin and outer periphery of muscle tissues. The 

muscle layer includes the flexor digotorum profunds, flexor digontorum superficial and 

interosseous membrane. Uniform thermal and physical characteristics will have been chosen for 

the muscle layer; though constructing multi-type tissues have dissimilar functionalities but almost 
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similar thermal behavior. Two bigger circles in the muscle layer indicate the ulna and radius bone 

tissues and their respective arteries are modeled by other two smaller circles. The bone and artery 

circles are fitted with their sizes as well as the locations. However narrow arteries and vein were 

neglected because of their insignificant effects on the skin thermal features. The synopsis of the 

model is presented in the Table 4.1. Assuming the center of forearm model at (0, 0) the location 

of bones and arteries are determined. For example, the center of the radius bone is located at 5 mm 

right and 13 mm down from the forearm model center. Likewise the location and size of other 

domains are tabulated in Table 4.1. The irregular shapes of bones are omitted and assumed to have 

a round shape.     

Table 4.1 Synopsis of forearm 

Tissue Type Diameter (mm) Location (mm) 

Forearm 70 (0, 0) 

Radius 16.74 (5, -13) 

Ulna 16.74 (15, 18) 

Radial Artery 2.57 (-12, -18) 

Ulna Artery 2.57 (-10, 13) 

 

Thermal analysis of forearm tissues is limited only on 1 cm surface, shown in Figure 4.2(a), 

because the outer radius and the inner structure are not uniform everywhere on the forearm. 

Therefore 1 cm portion of forearm near the elbow has been chosen for developing the model. The 

three dimensional physical model of the forearm is shown in Figure 4.8. The “green” solid rods 

are the ulna and the radius and the “orange” solid rods are the respective capillaries.      

 

Figure 4.7 Human forearm diagram—(a) Cross-sectional diagram, and (b) Development of 

forearm model base 

                   

 
(a) (b) 
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Figure 4.8 Three-dimensional model of forearm  

4.3.3 The Breast (Hemispherical Organ) Model 

The female breast, an organ that prone to cancer, has been drawing an increasing interest to 

researchers for decades. Several simple models have already been developed [72, 58] based on the 

cross-sectional view which is shown in Figure 4.3. The existing breast models have two major 

limitations—the sandwiched fat layer between muscle and lobule was not shown up and the 

deformations of breasts due to body posture and ptosis were not accounted.  Therefore the model 

does work for thermal analysis only for natural breasts at supine on back position.  The research 

has proposed the physical model of natural breasts with considering the fat layer as well as 

accounting for body posture. In addition the deformity of ptosis breast has also been modeled.  

 

The natural breast has a circular base of diameter 14.4 cm and the vertex of 72 mm which 

can be considered as a hemisphere of radius 72 mm as shown in Figure 4.9. Breast is founded on 

10 mm thick thoracic wall; the other tissue layers are following—the 7 mm width muscle layer, 

the soft tissue layer (lobule) is a hemisphere of radius 59 mm which is surrounded by a fat layer 

of thickness 5 mm and the 3 mm thin skin layer covering the outer-fat layer. At the apex, the 

projected part of the breast is called the nipple which is surrounded by areola tissues. Because of 

the inconsistent structure of the nipple and the milk duct, these tissues are not considered in 

developing the breast model. Considering the likeness of the thermal and physical features of the 

thoracic wall and muscle tissues these two layers can be considered a single domain. Three of the 

above mentioned four domains (excluding the thoracic wall-muscle layer) are marked with dotted 

lines which are shown on the cross-sectional diagram. The straight line joining the nipple center 
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and breast base passes through the muscle-fat interface which is considered as the model center. 

Two outer circles have been drawn from the model center with radius 72 mm and 69 mm, 

respectively. The inner circle enclosing the lobule tissues has center on the fat-lobule interface 

(bottom) plane and radius 59 mm. In addition, the chest wall tissues and muscles are considered 

as solid rectangles of overall 17 mm width. Assuming the lobule tissues are encompassed by a fat 

layer, which it is clearly learned from the Figure 4.3, the sandwiched fat layer between muscle and 

lobule was not shown in the previous models [58, 72]. For an adult female, a non-deformed typical 

breast has average 72 cm radius overall where the thoracic wall and muscle are 7 and 10 mm thick, 

respectively. The lobule radius is 59 mm and the fat layer is approximately 5 mm thick, which was 

obtained from [72]. Considering the areola region is a curvature of radius 7.2 cm, subtend angle 

20.33o and thickness of 3 mm. The ribs and blood veins are also shown in the model. 

 

Figure 4.9 Breast diagram—(a) and (b) Physical dimensions, (c) cross-sectional diagram, 

and (d) developed model for breast cross-section 

 

The three-dimensional anatomically accurate thermal model of a natural, non-deformed 

female breast is shown in Figure 4.10. The domains are indicated by different colors—the “red” 

(c) (d) 

(a) 
(b) 
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domain is muscle and thoracic wall, the “white” zone is skin, the “blue” layer is the fat and the 

“light green” indicates the mammary gland tissue layer.  

 

Figure 4.10 Three-dimensional model of breast 

Breast tissue is a kind of viscoelastic tissue that shows large deformation. Therefore, 

conventional model is not useful for computing accurate thermal features of deformed breasts. 

Although previous thermal-modeling studies did not take into account breast deformations caused 

by gravity. In this study, a new method has been proposed for modelling the deformed breasts. 

The deformation of breast tissue due to gravity (the change of imaging body position) is analyzed 

to reconstruct the model which is a kind of inspection method and is able to analyze mild to severe 

deformations. 

It has been noted, however, that the breast geometry may deform substantially merely 

because of body posture changes [61], and that the nonlinear elasticity effects associated with large 

                 
                                    (a)                                  (b)  

 
Figure 4-11 Deformed breast—(a) Mildly deformation due to standing posture and (b) 

Developed model for mildly deformed breast 
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deformations may not be negligible [62]. A recent simulation study using combined thermal and 

elastic modeling [62] indicated that the gravity-induced deformation alone can affect the 

temperature distribution throughout the breast.  However, to the best of our knowledge, up to now 

there has still been a shortage of simulations studying the relation between skin thermal expression 

of deformed breast and interior pathophysiological information, such as tumor, inflammation and 

infection.  

In the standing position the female breast, even the apparently looking natural breast, 

deforms significantly which can be understood from Figure 4-11. The outlook of deformed breast 

as shown in Figure 4-11(a) has divided into two parts—the bottom part (below the nipple) still has 

a hemispherical structure and the upper part (above the nipple) has almost a conical structure. The 

three-dimension comprehensive thermal model of breast in standing position is developed 

mimicking the anatomical structure and physiological characteristics, which are shown in Figure 

4-11(b). Assuming the deformation is caused by gravitational force only and the force acts 

vertically downward, therefore, the height of breast will remain unaffected which is 72 mm (as it 

was for the natural breast). Taking the mass and tissue density into account the length (top-down) 

of the breast is calculated to be 15 cm and the height of the conical part is 11.2 cm.  

Permanent deformity of the breast is called ptosis. Ptosis patients are categorized into six 

different scales, which are discussed in section 1.4 of Chapter 1. For a mild drooping, the nipple 

is slipped downward from the apex and in many cases it could be noticed only if the patient 

standing or sitting. The deformation measure of such (Grade—1) ptosis is similar to deformation 

likely found in natural breast at the standing body posture, as discussed above, and needless to 

explain again. However, the only exception is the gentle nipple shift of mild ptosis patient causes 

to build a relatively thicker fat layer at the top part of breast keeping the lobule layer un-deformed. 

It is due to the lesser elasticity of the adipose layer than the fibroglandular tissues.     

The drooping might continue because of aging, pregnancies, malnutrition, excessive 

physical exercise or any other physiological deformations and downward sliding of the nipple 

could reach far below the infra-mammary fold and at the lower level of maximum breast projection 

and could points toward the floor in case of severe ptosis (Figure 4.12a). Unlike mild ptosis, in the 

case of a severe deformation (for example:  Grade—IV) breast nipple slips below the breast base 

and both the outer and inner structures of breast are altered as shown in Figure 4.12b. The physical 
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geometry of the deformed breast has three segments—the hemispherical part (lower part around 

the nipple), the cylindrical part (middle part) and the cylindrical wedge part (upper part). The 

cylindrical wedge part produce a subtend angle 45o with the breast base.  Ptosis breast develops a 

non-uniform fat layer while most of the fat is stored at the top. Unlike mild ptosis, the mammary 

gland also deforms and which has divided into two parts where the bottom part has hemispherical 

structure and the upper part has cylindrical structure. The dimensions of each segment have been 

labeled on the model. The breast base (i.e. the thoracic wall and muscle layer) diameter is 144 mm 

and the distance between the lower part of the breast base to the 

nipple is 72 mm, which are obtained from the natural breast geometry, will be remain unchanged. 

However, the length between upper-part of breast base to the nipple will be increased due to the 

elastic deformation which is measured 168 mm—the length wedge segment is 101.2 mm, the 

cylindrical segment is 50.8 mm and the radius of the hemispherical segment is 50.9 mm.             

4.4 Summary 

Developments of anatomically accurate thermal models are a prerequisite to forecast thermal 

behavior of an organ. The anatomy of an organ could provide the necessary information about the 

number of tissue layers, layer thicknesses, heat loss surface area etc. which play a vital role to 

develop the realistic model. To understand the temperature variation on different regions in the 

human body the male chest, forearm and female breast have been modeled.   

                      

(a) Severe ptosis breast    (b) Ptosis breast Model 

Figure 4.12 Ptosis breast and model 
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 Thermal Analysis of External Organs with 

Embedded Tumor 

5.1 Introduction 

In the previous chapter, thermal features on benchmark tissue models at healthy condition 

have been addressed analytically (Equations. 3.10-3.12, 3.27 and 3.46, respective temperature flow 

in Figure 3.4, 3.5 and 3.6) and numerically (Figure 3.12) with deliberating general influences of 

thermal and biological parameters on tissue’s interior temperature distributions (Figure 3.15-3.22). 

The analytical and numerical results were in good agreements (Figure 3.12) for the cases studied 

in Chapter 13.  However, the analytic solutions are obtained on simplistic (homogeneous) models 

and cannot be applied for clinical application. Since human tissues exhibit behavioural diversities 

in terms of heat generation and temperature evolution, anatomical accurate models are a must 

requirement predicting for accurate thermal behaviour. In addition analytic solution cannot be 

applied to compute abnormal local surface temperature distribution which is an obvious 

phenomenon in case of an embedded hyperactive nodule. The realistic models have also paved 

their ground in inverse computing the physical and thermal behaviours of implanted hyperactive 

regions from the peripheral abnormal thermogram. Development of the pragmatic models of chest, 

forearm and breast (natural and deformed), by mimicking their anatomical structures, was 

discussed in Chapter 34. Estimating thermal features of cancerous organs, while implanting a hot 

nodule inside the proposed models, is the main objective of this chapter. A brief description of the 

contemporary models of organs with buried tumors is presented in the opening section of the 

chapter, followed by the author’s perception relating to the importance of imitating the anatomical 

structure accurately in developing physical models. In addition, the distinguishing behaviours of 

malignant and benign tumors in terms of heat generation and dissipation have also been addressed. 

Moreover, numerical simulations for computing thermal behaviours of faulty organs using finite 

element method have been detailed. Finally, the chapter demonstrates that important diagnostic 

parameters of a tumor are implied in the abnormal thermal behaviour they exhibit, thus invoking 

an inverse process that may be effectively fit in revealing significant diagnostic (clinical) 

parameter 
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Numerical approach in solving bio-thermal problem involves preparing a structural 

(physical) model, developing numerical (such FDM, FEM etc.) models and solving bio-thermal 

equations. Physical models should be developed mimicking an organ’s structure and homogeneity. 

Bio-thermal physics are to be linked appropriately, the governing equation to the domain of study 

as well as to the associated boundaries in developing the thermal model. The domain of study is, 

then, to be discretized into small elements which is called the meshing process. Finally thermal 

equations are solved repeatedly until estimates converge to a desired accuracy. All the processes 

can be done by well-known numerical methods, namely the FEM, FDM, MOM and others. State 

of the art approaches in addressing bio-thermal problems are discussed below: 

A second order finite difference scheme was implemented for solving the bio-heat Pennes’ 

equation with mixed boundary conditions in 2010 A.D. by Agnelli et al. [14]. The authors proposed 

a cuboid thermal model consisting of two domains—the healthy tissue and the spherical tumor 

tissue where the tumor was encompassed by the healthy tissues. The authors estimated the 

temperature distribution in the tissue interior, as well as on the surface, despite the fact that the 

modelled organ was unknown, resulting the clinical applications debating. However, as best to the 

author’s knowledge, this was the only work credited for proposing a three-dimensional rectangular 

thermal model while the other studies were limited to the modeling of the breast only.  

The hemispherical structure and the heterogeneity of the breast were modelled 

comprehensively by Sudershan et al. [58]. The weakness of the model is discussed in Chapter 3. 

However, in the recent past, almost all previous studies had been using the very same model to 

estimate the thermal features of a breast tumor. While estimating the surface temperature and  

taking into account the variations in the metabolic heat generation, blood perfusion and vascular 

thermal interactions of each tissue layers as well as in the tumor, the authors [60] remarked that 

there was a direct relation between the breast surface temperature and the embedded tumor beneath 

the breast. The result contradicted the earlier findings of Osman and Affify [72]. The reason behind 

the failure of Osman et al. was the poor grid selection (meshing) of domain discretization. Mesh 

size effect, subject to change with domains sizes, could be optimized by parametric study in 

conventional approaches, plays a vital role to the accuracy of the output results. However, the 

commercial numerical solvers have some built-in features to define the optimum element size.   

Mital et al. [60, 16] used a finite element meshing, using ANSYS commercially available package 

to solve the Pennes’ bio-heat equation in order to find the surface temperature.  The Monte Carlo 
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method was implemented to solve the transient three-dimensional bio-heat transfer problem with 

non-linear boundary conditions (simultaneously with convection, radiation and evaporation) and 

space-dependent thermal physiological parameters [75] and reported that thermal states of 

biological bodies, reflecting physiological conditions, could be correlated to the temperature or 

heat flux mapping recorded at the skin surface. In addition to the thermal analysis on natural (un-

deformed) breasts, it is the only paper [76] where Jiang et al. considered the gravity-induced elastic 

deformation to develop a 3D finite element method based on thermal and elastic model of breast 

in various body postures, to characterize comprehensively both the thermal and elastic properties 

of normal and tumor breast tissues during static and dynamic thermography. 

Inspecting the results of the research in [14, 20, 60] the major lacking in the accurateness of 

models, the inconsistency in defining the bio-thermal parameters, the contradiction in finding the 

dependency of temperature texture on bio-thermal parameter. This study has resolved the former 

drawback by replacing the existing models with realistic models proposed in Section 0; while the 

latter drawbacks will be solved in the subsequent sections with assigning accurate tissue’s thermal 

behaviours, precise meshing (finite element) and adopting all possible situations in developing the 

mutual dependency of parameters.   

5.2 Tumor Thermal Behavior 

Understanding thermal behaviour of tumors was a key concern for researchers for centuries.  

In 1963, it was first investigated by Lawson and Chugtai [13]  that every mammary carcinoma is 

hotter than its artier blood supply and so was the venous drainage from tumor. A later study by 

Gautherie [15] also confirmed the similar result during the surgical operations on breast cancer 

patients and remarked that it (getting hotter locally) is a general sign of tissues or organs with high 

metabolic rates. In connection with the physiopathological viewpoint, it is said that the greater the 

blood perfusion to a tissue, the greater the local metabolism and the greater the quantity of local 

heat generation. Therefore the cancerous tissues have much higher blood flow rate than healthy 

tissues.  Consequently, tissue thermal conductivity of cancer tissue is likely to increase than that 

of healthy tissue. An in-vivo analysis using finite-needle probe discovered that the average thermal 

conductivity of cancer tissues is 0.511 𝑊/(𝑚.𝑜 𝐶) due to the excessive blood supply in the 

defective cells which can be enhanced by 0.031 𝑊/(𝑚.𝑜 𝐶)  compared with that of surrounding 

healthy gland tissues [68]. In a quantitative study [77], L. Priebe et al. estimated a correlation 
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between the change in volumetric blood flow rate and the thermal conductivity. The authors proved 

experimentally (in-vitro mode) that an increase in blood flow of 150 ml/100g/min (150 millilitres 

of blood per 100 grams of tissues per minute) causes an enhancement in thermal conductivity of 

0.05 𝑊/(𝑚.𝑜 𝐶). Therefore, a solid correlation between the change in thermal conductivity (∇𝑘) 

and the blood perfusion rate (𝜔𝑏) can be achieved as: 

𝜔𝑏[𝐿/(𝑔𝑚−
𝑜𝐶] = 30∇𝑘 [𝑊/(𝑚−𝑜𝐶)]                                                        (5.1) 

From above investigations, it is evident that cancer may be considered as a tissue on account 

of higher metabolic and blood perfusion rate and also a higher conductivity compared with 

surrounding tissues. However, determination of the metabolic heat generation of cancer tissue in 

terms of quantifying it is certainly complex because of the extreme intricacy of the biochemical 

reaction involved as well as their variability from one type of cancer to the other. Gautherie [15] 

performed an experiment on 84 patients with relatively small cancer (tumor size between 9 and 38 

mm) and found that the tumor metabolic heat generation is related to the doubling time by nearly 

hyperbolic law, whereby the faster the tumor grows the more heat it produces. In brief, the relation 

between them can be expressed as follows: 

𝑄𝑚. 𝜏 = 3.27 × 10
6    (W.day.m-3)                                                             (5.2) 

where 𝜏 is the time needed for the tumor to double its volume,  𝑄𝑚 is the volumetric heat 

generation rate.  Finally, the relation between the tumor size (d) and 𝜏 was found as: 

𝑑 = 10𝑒2.134×10
−3(𝜏−50)                                                                            (5.3) 

Therefore, the tumor thermo-physical parameters such as the thermal conductivity, perfusion 

rate, heat generation rate, and diameter are interdependent as the empirical way presented in Eqns. 

(5.1) through (5.3), which display influential effect on thermal features.     

5.3 Tumor Shapes 

An abnormal growth of tissues creates lumps or tumors which perform no useful body 

function and grow at the expense of healthy tissues. A cancerous tumor is a mass of tissue that is 

growing in an abnormal, uncontrolled way. It may invade surrounding tissue, or shed cells into the 

bloodstream or lymph system. The relatively denser mass appears whiter than any tissue around it 

while doing biopsy. Biopsy also discovers tumor shapes. Tumors have a wide range of shapes, 
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sizes and contrast, in particular, a breast tumor is very hard, like a bit of raw carrot. They will also 

have an irregular shape, and feel bumpy (not smooth). Foretelling about tumor shape without 

surgery is still trivial. However, this study will detail a novel methodology to project tumor shape 

from thermogram.  

Depending on the physio-thermo-biological natures, tumors can be divided broadly into two 

categories— benign and malignant. Generally benign masses are well circumscribed and compact, 

such tumors possess well-defined shape and sharp boundaries that delineate them from 

surrounding tissues. Inspections explore that most of this type usually are round or oval in shape, 

but some cases may be partially round, with a spiked or irregular outline as part of their 

circumference. Masses having irregular shapes and spiculated or indistinct margins suggest a 

higher possibility of malignancy. A multi-pointed star-shaped outline mass is described as 

spiculated. Figure 5- 1 presents different shapes and margins of breast tumors likely observed in 

biopsy or anticipated by computer techniques. 

 

Figure 5- 1 Tumor shapes and margins 

Computer techniques proposed to date for tumor analysis have concentrated mainly on shape 

and texture measures. Shape measure based on isothermal contours provides some useful 

indication about the shape complexities that might be observed between circumscribed and 

spiculated tumors; however, they are not designed to characterize the density variations across the 

boundary of a tumor.  

The uncertainty in shapes and margins may have remarkable impact on thermal features and 

needs to be investigated properly.  However, the analysis in this chapter is limited to the spherical 

tumors only in order to avoid the complexity of relating unique shapes with thermal features. 
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5.4 Thermal Parameters 

Tissues are groups of similar cells that perform a common function. There are four categories 

of tissues in the human body: epithelial, connective, nervous, and muscle. Epithelial tissue 

(covering and lining epithelium, and Glandular epithelium) protects the human body from moisture 

loss, bacteria, and internal injury. Connective tissue (loose connective and fibrous connective 

tissues) generally provides structure and support to the body. Nervous tissue forms the nervous 

system, which is responsible for coordinating the activities and movements of the body through its 

network of nerves. Muscle tissue differs from other tissue types in that it contracts. Muscle tissue 

comes in three types: cardiac, smooth, and skeletal. Those muscle tissues are made up of muscle 

fibers. The muscle fibers contain many myofibrils, which are the parts of the fiber that actually 

contract. Not only are the purposes and functions different as discussed, but the tissues differ from 

one another in terms of their biological and thermal behavior.  Characteristic parameters 

controlling the thermal features in each tissue layer were first introduced in the landmark paper by 

Pennes, which appeared in 1948. In that study, the author discovered the governing equation for 

the bio-thermal model of a living organ (see Eqn. 4.1). Applying on the Pennes’ bio-heat transfer 

model, numerous studies, since then, have disclosed that thermal and biological properties of 

tissues play a critical role in the study of tumour detection and localization. Parameters such as 

heat conductivity, density, specificity, and metabolism incur some significant attributes to 

temperature images. Arguably, previous research shows inconsistency in evaluating these 

parameters and consequently leads to unconvincing findings. Certainly, the accuracy of the 

thermal analysis requires, first and foremost, the appropriate choice of the biological and thermal 

parameters of the healthy tissue layers as well as the tumour. Before sorting the exact values out, 

the suggestive bio-thermal values of pioneer researcher are briefed in the following: 
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Table 5- 1 Thermal parameter of blood (assumed in previous studies) 

R
eferen

ce 

Blood 

perfusion rate, 

𝜔𝑏 

Blood 

Density, 𝜌𝑏 

Blood specific 

heat, 𝑐𝑏 
𝜌𝑏𝜔𝑏 𝑐𝑏𝜌𝑏𝜔𝑏 

Tissue 

type 

(
1

𝑠
) 

𝑔𝑚

𝑚𝑙
 

𝑘𝑔

𝑚3
 

𝐶𝑎𝑙

𝑔𝑚°𝐶
 

𝐽

𝑘𝑔 𝐾
 
𝑔𝑚

𝑚𝑙

1

𝑠
 

𝑘𝑔

𝑚3
1

𝑠
 

𝑊

𝑚3𝐾
 

[78]    1000   
0.00025-

0.0005 
0.25-0.5  

Muscle, 

gland 

[67]  

0.0002 

0.00025 

0.0003 
1 1000 1 4186 

0.00020 

0.00025 

0.00030 

0.2 

0.25 

0.3 

837.2 

1046.5 

1255.8 

[68] 0.0003 1 1000 1 4186 0.00030 0.30 1255.8 

[52]    0.919 3850  0.3 1155 

[51] 0.00052 1 1000 1 4186  0.52 2176.72 

[79] 0.0005  1000 0.86 3600  0.5 1800 

[58, 59, 

53] 
0.00054  1060 1.003 4200  0.57 2400 

[14] 0.000477  1000  4186  0.477 1998.1 

[58, 59, 

53]  
0.00018  1060 1.003 4200  0.19 800 

Areola 

Fat, 

skin 

5.4.1 Blood Thermal Parameters: Density (𝛒𝐛), Specific Heat (𝐜𝐛) and Perfusion Rate (𝛚𝐛) 

Heat generated due to metabolic activity is partly lost through perfusion, which depends on 

the perfusion rate, blood density, and blood specific heat (see Eqn. 4.1).   Authors in [51, 14] had 

recommended blood density 1000[
𝑘𝑔

𝑚3
] whereas 1060[

𝑘𝑔

𝑚3
]  was considered in [23, 25, 19]. The 

specific heat, the amount of heat required to increase per kg blood by one degree Kelvin, was 

chosen 4186 [
𝐽

𝑘𝑔.𝐾
] in [14, 51] but 3850 [

𝐽

𝑘𝑔.𝐾
]in [31], 3600[

𝐽

𝑘𝑔.𝐾
]in [55] and 4200[

𝐽

𝑘𝑔.𝐾
]in [58]. The 

volumetric blood flow per second in muscle or gland tissues was considered between 2×10-4 and 

5×10-4 [
𝑔𝑚

𝑚𝑙.𝑆
] in [67, 72] while Minhua et al [51] applied 0.52[

𝑘𝑔

𝑚3.𝑆
]. Ng, a pioneer researcher in 

this field used heat loss amount due to blood perfusion 2400 [
𝑊

𝑚3.𝐾
]in [22, 23] and the same value 

was also recommended in [55]. As the blood perfusion rates differ in different tissue layers, the 

previous papers had introduced the differences and assigned one-third of muscle-gland (lobule) 

layer perfusion loss to areola-fat-skin layers. In the most recent work [14] assumed this value 

1998.1[
𝑊

𝑚3.𝐾
]. The thermal parameters of blood used in previous research are presented in Table 

5- 1, where the boldface values with respective units are found directly on their papers. Other 
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values are computed from that (the boldface values) by converting the units in order to make an 

easily understandable comparison. It is seen that blood perfusion 𝜌𝑏𝜔𝑏 for muscle/gland tissues 

was widely chosen between 0.2 and 0.52 (
𝑘𝑔

𝑚3
) (

1

𝑠
), however, the relatively  reliable studies limit 

their assumption to between 0.477 and 0.52 (
𝑘𝑔

𝑚3
) (

1

𝑠
). 

Table 5- 2 Conductive thermal coefficient 

Reference  Thermal Conductivity, k Tissue Type 

[
𝑐𝑎𝑙

𝑠. 𝑐𝑚.𝑜 𝐶
] [

𝑊

𝑚.𝐾
] 

[2] 0.0005 0.21 Muscle 

[3] 0.00015 0.627 

[4][8, 9][11]  0.48 

[10]  0.51 

[5-7]  0.5 

[9, 10]  0.21 Areola  

[9]  0.21 Fat 

[10]  0.22 

[9, 10]  0.48 Gland 

[10]  0.27 Skin  

5.4.2 Thermal Parameters of tissues: Thermal Conductivity, Density and Specific Heat  

Tissues’ thermal feature is controlled by conduction heat transfer rates, densities and specific 

heats. Deducting the perfusion heat loss, the remaining metabolic heat is transferred toward the 

surface by the means of conduction. Pennes’ [67] preferred the tissue thermal conductivity 𝑘 =

0.0005 [cal/(s.cm.K)], however, later his assumption was proven roughly one-third of the realistic 

value [68]. Recently, the average heat transfer rate of muscle tissues are accepted between 0.48 

and 0.51[W/(m.K)] [14, 57, 72] and between 0.21 and 0.22 [W/(m.K)] for areola and fat tissues 

[25, 60]. The density and specific heat of tissues play a significant role in the dynamic thermal 

analysis, however, have no effect to the thermal analysis in the steady state, and therefore are 

skipped in this study.  Thermal conductivity values recommended in previous studies are listed in 

Table 5- 2. It is observed that muscle layer conducts heat more profusely than any other tissues.  

5.4.3 Metabolic Heat Generation 

Metabolism is the live phenomena that produces heat and keeps the body warm. Study [56, 

67, 51] assumed the metabolic heat generation rate 𝑄𝑚 = 418.6 [W/m3]. For breast soft tissues 

the value is 700[W/m3] and for fat, skin, lobule and areola tissues is 400 [W/m3] according [59, 
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16]. The works reported solving the bio-heat problems analytically, where [69, 51]assumed the 

rectangular geometry while works [68, 52]  dedicated for the cylindrical living tissues used heat 

generation rate 1085[W/m3]. But surprisingly study reported in [14] applied 4200[W/m3] which 

was not supported by any other sources (it took roughly 6-10 times higher than other woks). Table 

5- 3 lists the suggested values of metabolic heat rate for different tissues at healthy condition. It is 

seen, though, that several studies applied 418.6 W/m3, but the most recent works have taken around 

700 W/m3. 

Table 5- 3 Metabolic heat generation rates 

Reference Metabolic heat, 𝑄𝑚 Tissue Type 

𝐶𝑎𝑙

𝑠 𝑚3
 

𝑊

 𝑚3
 

[68, 67] 0.0001 418.6 Muscle 

[52]  1085 

[60, 72, 58]  700 

[14]  4200 

[60, 72, 58]  400 Areola, Fat, Skin, Gland 

5.4.4 Heat Losses Rates at Boundary 

Thermal analysis requires solving the heat transfer problem in different medium; the 

conditions that the field must satisfy at the interface separating the media are called boundary 

conditions. The boundary interfaces are: body core-muscle interface, muscle-blood vessel 

interface, skin-ambient interface etc.; the boundary conditions are presented in Eqn. 4.2. The 

conditions state that the artier blood or body core temperature, the ambient temperature and the 

heat exchange coefficients have inclusive influences on heat flow graphs. Referring to Eqn. 4.1, 

the artier blood (body core) temperature was assumed 310.15 K (37oC) by most of the previous 

works, which was remaining unaffected during the analyses. Recalling the boundaries, the body 

core is thermally insulated and the heat is entirely exchanged at the skin surface (Eqn. 4.2), the 

environment temperature was assumed between 25oC and 28oC and the heat exchanges between 

skin and environment occur mainly due to convection and radiation process. In the earliest work 

by Pennes, assumed the total heat loss rate over forearm skin 10-4 [
𝑐𝑎𝑙

𝑆.𝑐𝑚2𝐶
] but recent studies reveal 

that Pennes’ [67] assumption was too low otherwise building that kind laboratory environment 

would not be realistic. Wissler [68], therefore, recommended double of the Penne’s assumption. 
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Authors in [10, 60] solved the problem with taking heat losses factor around 10[
𝑊

𝑚2𝐾
] and in [52] 

addressed the value 13.5 [
𝑊

𝑚2𝐾
].  

Table 5- 4 Heat exchange rates 

Reference 

Heat Transfer coefficient, ℎ𝑎 

𝑐𝑎𝑙

𝑠. 𝑐𝑚2 𝑜𝐶
. 

𝑊

𝑚2𝐾
 

[67] 0.0001 4.18 

[68, 51] 0.0002 8.37 

[52]  10.023 

[14]  10 

[59, 56]  13.5 

The diverse choices recommended for the heat exchange rates are summarized in Table 5- 4 

while the assumed artery (or body core) and environment temperatures are presented in Table 5- 

5. 

Table 5- 5 Ambient temperature 

Reference Temperature  

°C K 

[67] 36.15 309.3 

Artier blood (Ta) 
[68] 36.8 309.95 

[52] 36.85 310 

[14] 37 310.15 

[56, 60] 26.6 299.75 

Ambient  (Te) 
[59, 60] 24.85 298 

[51] 25 298.15 

[79] 28 301.15 

5.4.5 Thermal Parameter of Tumor 

In general, tumours behave differently from healthy tissues in terms of heat generation and 

dissipation. Several previous papers suggested that the tissues in hyperactive nodule exhibit 

remarkably higher metabolic and blood perfusion rate and slightly higher thermal conductivity. 

More specifically, Agnelli JP et al. [14] assumed 𝑘 = 0.75 [W/(m.K)], 𝛼𝑏 = 𝑐𝑏𝜌𝑏𝜔𝑏
= 7992.4 

[W/(m3.K)] and 𝑄𝑚 = 42000 [W/m3] though the authors did not explain the reasonability or the 

sources of their assumptions. According to their assumptions, the tumour tissues have roughly four 

times higher perfusion rate, and ten times higher metabolism than the sound tissues. Similarly, 

studies [70, 58] suggested 20 times higher perfusion and 8 times higher heat rate while conduction 
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heat flow rate kept unchanged. Moreover, [23, 72, 20, 16] applied  

𝜌𝑏𝜔𝑏 = 17.2
𝑘𝑔

𝑚3
1

𝑠
 and 𝑄𝑚 between 5 kW/m2 and 65.4 kW/m2. The list of the recommended tumor 

thermal parameters on the earlier works can be found in Table 5- 6. 

Table 5- 6 Tumor thermal parameter 

R
eferen

ce 

𝜔𝑏 𝑐𝑏 𝜌𝑏𝜔𝑏 𝑐𝑏𝜌𝑏𝜔𝑏 𝑘 𝑄𝑚 

(
1

𝑠
) 

𝑘𝑔

𝑚3
 

𝐽

𝑘𝑔 𝐾
 
𝑘𝑔

𝑚3
1

𝑠
 

𝑊

𝑚3𝐾
 [

𝑊

𝑚.𝐾
] 

𝑊

 𝑚3
 

[8, 9] 0.01077 1060 4200 11.42 48000 0.48 5500 (Tumour 32mm) 

[10, 

11] 

0.01622

6 
1060 4200 17.2 72240 0.511 

65400 (dbl in 50 

days) 

5000 (dbl in 650 

days) 

[7] 0.00189 1000 4186 1.89 7992.4 0.75 42000 

5.4.6 Recommended thermal parameters 

Reviewing the above mentioned researches, the thermal and biological parameters proposed 

in this study are presented in Table 5-7. For healthy tissues, muscle and lobule assumed to have 

same conductive heat transfer and blood perfusion rate, respectively. Fat, areola and skin tissues 

also have identical thermal conductive coefficient and identical perfusion loss rate. The metabolic 

heat generation rate is assumed following—the chest muscle produces 420 W/m3 which is same also 

for the fat, skin and areola tissues, the breast and forearm muscle tissues produce 700 W/m3. 

Past studies, though, suggested higher thermal values for tumors than healthy tissues but did 

not explain the reasons, however, the study [77] discovered the hyperbolic relation (Eqn. (5.2)) 

between the metabolic heat generation and tumor doubling time. After performing in-situ mode 

experiment the study also proved that increased blood perfusion had caused an enhancement in 

heat conduction rate  which was also supported in [15] and also added that an increase in blood 

flow of 150 ml/100g/min caused an increase in thermal conductivity by 0.05 [W/(m. K)].  

Following up the above studies, the mutual dependency of thermal and biological parameters of 

tumour tissues and their relation with tumour age and doubling time a ranges of values for 

𝑘,𝜔𝑏and 𝑄𝑚 (as presented in Table 5-7) are assumed.   
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Table 5-7 Thermal and biological parameters 

Parameter Value and Unit Tissue type 

𝑘 

0.52 W/(m. K) Muscle, Lobule 

0.27 W/(m. K) Fat, Areola, Skin 

0.52 to 0.82 W/(m. K) Tumour 

𝜔𝑏 

5.2×10-4 1/s Muscle, Lobule 

1.6×10-4  to 2.2×10-4 1/s Fat, Areola, Skin 

1.6×10-2  to 4.7×10-3 1/s Tumour 

𝑄𝑚 

420 W/m3 Muscle (chest, fat, skin, areola) 

700 W/m3 Muscle (breast, forearm) 

25000 to 90000W/m3 Tumour 

𝑐𝑏 4186 J/m3. K Everywhere 

𝜌𝑏 1060 kg/m3 Everywhere 

5.5 Thermal Analyzer: COMSOL Multiphysics 

The main goal of the study is estimating the thermal feature of the proposed models whilst 

assigning values to the bio-thermal parameters listed. Recall the analytical formulations for 

thermal estimation on homogenous tissues (presented in Section 3.3) can’t be extended further for 

the models proposed in Section 4.3. Because the proposed anatomic-accurate physical models 

Figure 4.6 to Figure 4.10are non-homogenous, impel the analytical approaches out, the numerical 

methods are proven quite reasonable. Unlike the mathematical formulations in analytical 

approaches, the numerical methods require discretization (meshing), and repetitive convergence 

testing. In the previous chapter the consistency of numerical method has been validated by 

comparing it to the analytical results and demonstrated that numerical methods could be a 

standalone approach in addressing thermal problems in biological organs. Therefore, the rest of 

the thermal analyses will be performed numerically in this thesis.  Designing domain geometry, 

linking the domain with bio-thermal governing equations, meshing and convergence testing can 

be handled efficiently by ‘COMSOL Multiphysics’ [71] commercial finite element software. This 

software is used in solving diverse engineering and scientific problems numerically. This software 

comes with a built-in bio-thermal heat transfer module. Therefore, the superficial and interior 

thermal behaviour of an organ with hyperactive living tissues can be analyzed numerically more 

efficiently than ‘conventional finite element software’.  

However, prior to applying the finite element approach on realistic models, a simplified 

cuboid tissue model was developed using both finite element approach and Finite Difference 
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Method (FDM, traditional numerical scripts codes developed in MATLAB). The results obtained 

from the developed model using both approaches allowed a validation the FEM analysis.  

 

Figure 5-2  Cuboid tissue model 3D (not to scale) 

Solving the thermal problem of a cuboid homogeneous tissue domain embedding a ‘round’ 

shape, ‘circumscribed’ margin tumour with conventional FDM approach and the FEM analyzer 

have been applied on the physical domain which has modelled as a 3D rectangle implanted with a 

spherical tumour as shown in Figure 5-2 with delimited dimension 4×10×10 cm i.e. surface area 

100 cm2 and model depth (tissue thickness) 4 cm. The core is assumed to have a constant 

temperature 310.15 K (artier temperature) and heat losses due to convection and radiation occurs 

at model surface and all other lateral boundaries are assumed thermally insulated. The physical 

model has two sub-domain—the tumour (spherical) and the healthy tissues (cuboid with a 

spherical hole inside). After some inspection, it was observed that the largest possible tumour 

(radius 2 cm) can affect subtle change in local temperature within 5×5 cm surface only. 

Furthermore a larger model domain requires more memory and computation time. Therefore, the 

10×10 cm square surface has been assumed. 

5.5.1 Numeric Models (Gridding and Meshing) 

The domain in Figure 5-2 first discretize into grids for solving the problem using FDM. This 

is usually done by dividing the domain into a uniform grid (see Figure 5-3). Note that the finite-

difference methods produce sets of discrete numerical approximations to the derivative, often in a 

"time-stepping" manner. Assuming grid spacing factor ℎ = 1 𝑚𝑚, the number of grids (nodes) in 

𝑥 (direction of heat flow) axis is 𝑚 = 40 and in 𝑦, and 𝑧 axes is 𝑛 = 100. The tumour region is 
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also divided into nodes. For a 13 mm diameter spherical tumor, there is 13 nodes at the center and 

successively decreased by two on the way to the tumour surface. The approximated finite 

difference model of the tumor is shown in Figure 5-5. The shaded boxes indicate the nodes on the 

center plane of the tumour. Obviously the number of nodes, and consequently, the accuracy of 

FDM method depend on the spacing factor ℎ. If ℎ decreases the accuracy increase resulting 

increase in computational memory and time. The dilemma is resolved by the ‘trial and error’ 

method and finally come up with ℎ = 1 𝑚𝑚.  

 

Figure 5-3  Finite difference grids 

Alternatively the physical model in Figure 5-2 is divided into small elements while solving 

with the FEM tools which is called meshing (see Figure 5-4). The meshes are usually tetrahedral 

inside the domain but triangular around the boundaries as well as around the tumor-healthy domain 

interface. Applying a custom setting for element size of 1 mm, the analyzer generates 1000 

tetrahedral and 500 triangular elements for the overall domain and 10 tetrahedral and 20 triangular 

elements for the tumor.  Moreover the elements are translational in all directions. 
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Figure 5-4  FEM mesh diagram 

5.5.2 Coding and Simulation  

Mathematical formulation for thermal analysis in FDM on homogeneous (single) model of 

healthy tissues was discussed in Section Chapter 1. However, tumor thermal behaviours are 

significantly different from sound tissue that inquires considering heterogeneity in solving the bio-

thermal problems. Consequently, the terms 𝑄𝑚,𝜔𝑏, and 𝑘 require to replace by  𝑄𝑚 𝑥,𝑦,𝑧,𝜔𝑏 𝑥,𝑦,𝑧, 

and 𝑘𝑥,𝑦,𝑧 , respectively, thus that they would change in between domains. Accordingly, the 

variable 𝛽 and ∀ have to replace by 𝛽𝑥,𝑦,𝑧  and ∀𝑥,𝑦,𝑧.  Modifying Eqns. 3.51 to 3.55 with the above 

variables and initializing their respective values, the study tailors a MATLAB script for solving 

the above problem using FDM approach with assuming the tumour centered at the midway of the 

model i.e. at (0.02, 0.05, 0.05). In 2D analysis, the shaded region (lies on center-cut plane passing 

at z = 0.05) as shown in Figure 5-5 is assigned with tumor’s bio-thermal values while the remaining 

region holds healthy tissues bio-thermal features. In addition, the all lateral boundaries are set 

accordingly up, more specifically, the bottom boundary maintains artier temperature, the top 

boundary radiates and exchange heat with environment and the side boundaries are thermally 

insulated. Finally, the script is repeatedly computed until any of the stopping criteria meets: a 

convergence accuracy (휀 ≤ 10−5) or maximum iteration (𝑁 = 1000). 
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Figure 5-5  Tumor zone  

Assuming the bio-thermal values for 𝑘 = 0.52 W/(m. K) , 𝜔𝑏 = 5.2 × 10 − 4 1/s, 𝑄𝑚 =

700 W/m3 for healthy tissue and 𝑘 = 0.72 W/(m. K) , 𝜔𝑏 = 2.2 × 10 − 4 1/s, 𝑄𝑚 = 40000 W/m
3 for 

tumour and the blood specific heat, and density as given in Table 5-7, the numerical simulation 

was performed using FDM and finite element approach for the spherical tumour of diameter 13 

mm and located at (0.02, 0.05, 0.05) on the proposed heterogeneous (two layer) model. The 

validation process includes a relative study of the 1D and 2D outward thermal flow in tissue inside 

and the spatial thermal distribution over skin surface.  

 

   

(a)     (b)   

 

Figure 5-6 Comparison of numerical analysis results; plot of–(a) radial temperature flow between 

core and skin through tumor center, and (b) surface temperature between side to side opposite points 

right above the tumor centre   
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(a)            (b) 

  

(c)            (d) 
 

Figure 5-7 Comparison of numerical analysis results; for interior temperature distribution—(a) 

using FDM and (b) using FEM, on the horizontal plane through tumor center; and isothermal 

regions—(c) using FDM and (d) using FEM on the same plane     
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The temperature flow diagram in tissue inside (along the line y = z =0.05) is presented in 

Figure 5-6(a) where the ‘solid line’ indicates the result given by the FEM and the ‘dotted line’ 

indicates the result of the FDM. Both curves have overlapped trimmings though an insignificant 

error (∆𝑇<0.5%) observed inside the tumour region. Evolution of temperature along x= 0.04, y= 

0.05, 0<z<0.1 at skin surface is shown in Figure 5-6(b). It can be seen that both curve has 

symmetry. This figure also indicates that the warmest zone (surrounding the vertex), the main 

informative and significant point on the thermal image, has almost identical shape. The graphs 

show that the drop in heat flow occur in both sides from the warmest point, the hottest zone on 

surface, indeed, lies directly above the tumor center. Note that the discrepancy between the 

approaches can be minimized by choosing smaller ℎ and 휀 in FDM. In hyperthermia (i.e. tumor 

ablution with heating up/cooling down the tissues), the estimation of the thermal distribution inside 

tissues is essential. The spatial temperature distributions inside tissues (along plane y = 0.05) are 

obtained for both methods as shown in Figure 5-7. The graphs exhibit temperature grows, termed 

as ‘temperature hill’, on skin surface where the region subtended by the hill is caused for hyper 

metabolism of tumor cells and the subtend area is simply the temperature gradient filed 

distribution. The ‘temperature hills’ (red circles), shown in Figure 5-7(c) and (d), respectively for 

FDM and FEM analysis, are identical and the subtended area under the hills are alike.  In 

hyperthermia, the estimation of the thermal distribution inside tissues is essential.  

Unlike regular thermal distribution on a healthy organ, the tumor produces abnormal 

distribution with a relatively higher temperature over the skin surface above the area under which 

   

(a) FDM Result                   (b) FEM Result Figure 5-8 Spatial temperature distribution over chest skin surface 
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hyperactivity exists and the temperature increase estimated with the above tumor is shown in 

Figure 5-8, using FDM and FEM methods. The identical figures reveal the local warmest zones 

above the surface under which cancer cells are growing. Obviously, the features (vertex and warm 

zone) on skin temperature distribution will play a significant role in determining physio-thermal 

properties of tumor (indirect approach). 

From above analyses, it is clear that the estimated profiles using FDM and FEM method are 

consistent. It can be concluded that either analysis can be used for the simulation efforts.  However, 

negligible discrepancies are observed between two approaches which are originated due to the 

limitations in defining the node locations, the convergent criteria etc. which affect the FDM result, 

while the results obtained from the FEM method remain reliable unless the mesh size is 

compromised. In conclusion, it is demonstrated that the use of a commercially available heat 

transfer module provides a powerful tool to solve bio-heat problems for live biological tissues. 

Therefore, the onward study will apply the FEM method to address thermal problems. 
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5.6 Simplified vs. Realistic Models 

Bio-heat transfer problems on human external body organs, more specifically on the chest, 

forearm and breast have been solved using FDM and FEM where a Matlab script is written for 

FDM whereas a commercial solver is utilized for FEM. A comparative study has been made in 

section 5.6 to validate the built-in ‘Bio-heat Transfer Model’ of the FEM Analyzer. Another 

important issue to be investigated in this section is why developing realistic (anatomically 

accurate) physical models are necessary for accurate thermal analysis. For this, the study has 

developed simplistic models for the chest, forearm and breast along with the realistic (anatomic-

accurate) models proposed in Chapter 3 (see Figure 3.6, 3.8, and 3.10). The simplistic model is 

also known as homogeneous model as the organs are assumed made with muscle tissues only.   
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How to generate anatomic accurate physical models, mimicking the organ’s structure 

(outlook and heterogeneity), was discussed in Chapter 3. Further study in Chapter 1, discussed the 

importance of imitating the organ’s shapes (outlook) in developing the models. Recall, the analysis 

showed that the curved organ’s (hemispherical model) surface senses colder than the tubular organ 

(cylindrical model) and the tubular organ feels less warm than the flat organ (cuboid model) even 

if all the thermo-physical parameters are assumed the same. In addition to the previous analysis, 

this section will present the obligation of imitating organ’s non-homogeneity in developing 

realistic model which will come up with separate analyses on overly simplistic (single tissue) and 

realistic (multi-tissue) models. Thermal estimation over the overly simplified 3D rectangular 

 

 

 
 

Figure 5-9  Physical models—a) homogeneous, and b) anatomic-accurate for tumor 

in—(i) cuboid (chest), (ii) tubular (forearm), and (iii) hemispherical (breast) organ 

(a)-i 

(a)-ii 

(a)-iii 

(b)-ii 

(b)-iii 

(b)-i 
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model developed above and over anatomical accurate physical model will be explained separately 

with applying the ‘FEM Analyzer’.   

The simplistic physical models of the chest, forearm and breast are presented in Figure 5-

9(a) and the realistic models of the similar organs are shown in Figure 5-9(b) where the (i) chest, 

(ii) forearm, and (iii) breast have been created with consideration of the entire domain made with 

single layers of tissues and the sensible models of these organs, respectively, notable that according 

to model proposed in Figure 4.6, Figure 4.8 and Figure 4.10, respectively. The dimensions and 

layer names are labelled on the figures.   

Thermal analyses will be performed on both models in case of implanted hyperactive nodule 

where the implanted nodule buried in healthy soft tissues and behaves differently from the 

surrounding tissues in terms of heat conductivity, blood inflammation and metabolism as signs of 

hyperactivity. 

                   

         

                        
 
Figure 5-10  FE structure of—a) homogeneous, and b) anatomic-accurate models for 

tumor in—(i) cuboid (chest), (ii) tubular (forearm), and (iii) hemispherical (breast) organ 

 

(a)-i (b)-i 

(a)-ii 

(a)-iii 

(b)-ii 

(b)-iii 
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Though tumors may have different shapes (Figure 5- 1), only ‘round’ shapes with 

‘circumscribe’ margins are assumed to avoid complexity that may arise due to the structural 

assortments in tumours. Assume an implanted chest tumor centered at (0.02, 0.05, 0.05), the 

forearm tumor centered at (0.023, 900, 0.05) and the breast tumor centered on z-axis and located 

at 𝑧 = 0.065. 

The overall dimensions and thicknesses of each layer in physical model are defined 

accordingly described in Section 0. Notice that in the proposed model the geometry is separated 

into layers, however, while developed with FEM the domains (layers) are also segmented through 

horizontal and vertical planes at the center of tumour, the purpose such fragmentation is to explore 

the thermal flow along the inter-domain edges handily.  It is noting that such virtual separate 

segments within a particular layer will be assigned with unique thermal and biological character 

so that they observe as a single domain. 

Next step is generating meshes by disintegrating the physical model into finite number of 

polyhedral or polygonal elements. The FEM divides the model into small elements of 

geometrically simple shapes, generally tetrahedrons except triangular meshes at boundaries and 

edges. In each tetrahedron, a set of polynomial functions is used to approximate the structural 

displacement field—how much the object deforms in each of the three coordinate directions. In 

this study, because the tumour is relatively small in size, finer meshes are suggested. This would 

better resolve the thermal variations and give a more accurate result. A finer mesh, however, comes 

at a cost: the computation time as well as memory usage will go up. Choosing a mesh size is always 

a trade-off between accuracy on the one hand and speed and memory usage on the other hand. 

Mesh diagram of the models are shown in Figure 5-10 where the mesh for simple models is shown 

in (a) and of realistic models are in (b). The homogenous chest is disintegrated into approximately 

27000 tetrahedral and 3500 triangular elements (Figure 5-10(a)-i); similarly, the simplified 

forearm model is divided into more than 200,000 tetrahedral elements and 28,000 triangular 

elements (Figure 5-10(a)-ii) and simple breast model with tumour is divided into approximately 

5060 tetrahedral and 800 triangular elements (Figure 5-10(a)-iii). The same element size and 

aspect ratio have been applied to the realistic models which ended up with the tetrahedral and 

triangular elements approximately 10000 and 4500; 55000 and 16000; and   21000 and 7000; for 

the chest, forearm and breast model, respectively. The mesh diagram of chest model is shown in 

Figure 5-10(b)-i, forearm model in Figure 5-10(b)-ii, and breast model in Figure 5-10(b)-iii. In 
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addition, nodes along the surface area constrained in the normal-translational direction for all 

geometries. All other nodes were unconstrained in all directions. The maximum and minimum 

element sizes were chosen as 0.6 and 0.2 mm, respectively. The maximum element aspect ratio 

was 1.5. 

Second order heat transfer problem in living biological tissues is solved at steady-state. After 

assigning respective bio-thermal parameter values to the domains and attributing appropriate 

boundary conditions, a constant temperature of 293.15K is applied at the entire section as an initial 

condition.  

5.7 Necessity of Anatomic-accurate (Realistic) Models 

For demonstrating the importance of developing the anatomic accurate physical model over 

the simplistic model, the study has derived thermal features of realistic and simplistic models. The 

thermal study compares the following features: 

(i) Radial heat flows between body core and outer surface along the tumour 

center (i.e. tissue interior thermal graph) 

(ii) 1D temperature distribution on the surface along the line that is passing 

directly above the tumour center (surface temperature graph) 

The estimated results are presented Figure 5-11through Figure 5-13.  Figure 5-11(a), the 

thermal analysis on the chest model, temperature flow along the line crossing the tumor center is 

 
(a)            (b) 

 Figure 5-11 Comparison of temperature profiles obtained for a tumor in anatomic-accurate 

(realistic) and simplistic (homogeneous) chest model along the line—(a) between the body 

core and skin through tumor center, and (b) over the surface between two side to side opposite 

points right above the tumor center 
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shown where the ‘solid line’ and ‘dotted line’ present the temperature flow in simple and real 

model, respectively. The graphs are overlapped at the middle but anatomic-accurate model 

estimates lower temperature at both ends, especially at skin surface the temperature fall is quite 

clear.  It can be said that both models can estimate temperature flow accurately in the defective 

region (around location of tumour), and, therefore, either model can be applied to the hyperthermia 

tumour ablution. On the other hand, the lower thermal coefficient of skin and fat tissues reduces 

the temperature by 0.8K at skin surface in the anatomical accurate model than the simplistic model. 

The temperature gap (≈0.8K) is maintained everywhere on the surface which is shown clearly in 

Figure 5-11(b).  It is also observed that the shapes of the graphs are identical only shifted by 0.8K. 

The analyses have been assumed for a spherical tumor diameter 𝐷 = 2𝑅 = 18 𝑚𝑚, depth, ℎ =

1.7 𝑐𝑚. The hyperactivity of cancerous cells have 𝜔𝑏 = 1.6 × 10
−2 1/𝑠, 𝛻𝑘 = 0.1 𝑊/(𝑚.𝐾)  

and 𝑄𝑚 = 25𝑘𝑊 𝑚3⁄ . Healthy tissue bio-thermal parameters, the ambient conditions and heat 

exchange rate are taken from Table 5-7. 

Assume a spherical tumor of diameter, 𝐷 = 2𝑅 = 24 𝑚𝑚, depth, ℎ = 2 𝑐𝑚 grown at the 

middle (z-axis) of the forearm model and considering the 𝜔𝑏 = 2.2 × 10 − 2 1/𝑠, 𝑘 =

0.62 W/(m. K)  and 𝑄𝑚 = 25𝑘𝑊 𝑚3⁄ . Estimations indicate that the average gap between the 

plots is  |∆𝑇| < 0.001𝑜 in model inside (see Figure 5-12(a)). Certainly, the absence of ‘low 𝑘’ fat 

layer in the forearm anatomy, however, estimates identical temperature elevation at skin surface 

  

(a)                    (b) 

 Figure 5-12   Comparison of temperature profiles obtained for a tumor in anatomic-accurate 

(realistic) and simplistic (homogeneous) forearm model along the line —(a) between the body 

core and skin through tumor center, and (b) over the surface between two side to side opposite 

points right above the tumor center 
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for both models while the presence of bone tissues (radius and ulna) and the blood capillaries 

(radius and ulna arteries) distorts the temperature texture and the real model’s surface temperature 

losses its symmetry, which may be a significant feature for correlating tumour with surface 

temperature.   

The breast fat layer also influences the magnitude of maximum temperature elevation (see 

Figure 5-13(a)) as well as pushes down the profile of the skin temperature distribution (see Figure 

5-13 (b)). Figure 5-13(a) reveals that simple model estimates a maximum 308.58 K temperature 

on skin surface above the tumor center while the anatomical accurate model estimates the highest 

temperature 307.22 K for an on-axis spherical tumor having the same bio-thermal values of the 

chest tumor with 𝑅 = 12 𝑚𝑚, ℎ = 17 𝑚𝑚. It is seen from Figure 5-13(b) that for the simplistic 

models the ‘temperature hill’ is grown around the vertex and drops nonlinearly away from the 

vertex, however, for real model similar plot shows a sharp rise in temperature at the model base 

and then drops and again goes high to develop the ‘hill’ due to the tumor.           

The major goal of the study is to correlate the thermo-physical parameters of a tumor with 

the featuring abnormal temperature grow on the surface. Exact thermal analysis is the sole 

requirement to correlated physical and thermal parameters, which can only be achieved on the 

anatomically accurate models. The above discussion has also made it clear that the simplistic 

models (homogeneous models) provide pessimistic results in terms of the shape and magnitude of 

  
(a)             (b) 

 
Figure 5-13  Comparison of temperature profiles obtained for an on-axis tumor in anatomic-

accurate (realistic) and simplistic (homogeneous) breast model along the line —(a) between 

the body core and nipple, and (b) over the surface between two side to side opposite points 

through the nipple 
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temperature grow and thus might give poor estimate of the location, size and hyperactivity of 

tumor. 

In conclusion, taking the realistic physical models, setting the proper boundary conditions, 

defining the accurate bio-thermal values are some preconditions to achieve good result. Thermal 

response of the realistic models for tumours with different thermo-physical values is going to be 

discussed next. 

5.8 Thermal Analysis 

This section will discuss the temperature distribution over local skin surface of the three 

organs in presence of implanted tumors. The temperature profiles on the surface of the proposed 

realistic models of the organ with faulty region, (tumor) where the faulty region having different 

physio-thermo-biological features, are being investigated. The analyses mostly cover studies of 

malignant and benign; deep-seated and shallow; fast and slow growing; on-axis and off-axis 

tumors etc. Depending on the parameter’s value range, tumors are termed as benign (radius 

between 6 and 15 mm, heat rate between 5kW/m3 and 25kW/m3), malignant (radius between 21 

and 38 mm, heat rate between 50kW/m3 and 80kW/m3), shallow body tumor (depth between 5 mm 

and 12 mm) and deep seated tumor (depth more than 20 mm). It is worth mentioning that the above 

categorization is still a debated issue among scientists and researchers. The analysis discovers the 

2D surface temperature and 1D center-line temperature profiles where the center-line is the 

horizontal (Left-to-Right, L-R) and vertical (Bottom-to-Top, B-T) lines over the outer surface of 

the model center.  

Numerical results of the thermal problem to the above models are presented through Figure 

5-14 to Figure 5-19. Assuming the cancerous cells have 𝑘 = 0.62 W/(m.K), 𝜔𝑏 = 0.0022/s , four 

chest tumors are analyzed—Tumor 1, benign, diameter 𝐷 = 12 mm, submerged at ℎ = 1.6 cm 

and 𝑄𝑚 = 20 kW/m3; Tumor 2, small malignant, 𝐷 = 12 mm,  ℎ = 1.2 cm and 𝑄𝑚 = 50 kW/m3; 

Tumor 3, deep-seated large malignant, diameter 𝐷 = 20 mm, ℎ = 1.7 cm and 𝑄𝑚 = 70 kW/m3; 

Tumor 4, large malignant, 𝐷 = 12 mm,  ℎ = 1.6 cm and 𝑄𝑚 = 80 kW/m3. Figure 5-14(a) to (d) 

show their respective 2D temperature distributions, where each graph is divided into several 

isothermal contours and Figure 5-14(e) shows 1D centerline (L-R or B-T) temperature profiles. It 

is discovered tumor-3 produces maximum 307.28K above the center and if depth decreased by 

6.25% and size by 78%, elevates the apex by 1K for only 14.28% increase of metabolism (Tumor 
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4). In the first two cases, temperature raise is only 0.2K may be screen by high sensitive IR images 

and would be impossible to accurate parameterize due to smaller dataset size they provide.  

Most of the thermal sensing device can isolate a temperature contrast at least 0.2 K, for this the 

study has investigated the skin area which feels at least 0.2K hotter than the super cold region and 

    
(a)  (b)    

    
(c)  (d)  

 
(e) 

 
Figure 5-14  Chest tumors; (a) to (d) surface temperature for tumor 1 to 4, respectively, (e) 

center-line temperature 
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showed how the area is related with the physio-bio-thermal parameters of  the tumor. The above 

four cases provide warmer zones as shown in Figure 5-15 where the ‘red’ colored ΔT≥0.2K region 

for each tumor shown in (a),  ΔT≥0.6K in (b) and ΔT≥0.8K in (c) respectively, generally indicates 

the warm zone area is a function of 𝑑, ℎ and 𝑄𝑚.    

Assuming forearm model centered at (0, 0, 0.05), the similar analysis is conducted on— 

Tumor 1, benign,  𝐷 = 12 mm, located at (-0.019, 0, 0.05) and 𝑄𝑚 = 20 kW/m3; Tumor 2, 

malignant, diameter 𝐷 = 20 mm, located at (-0.019, 0, 0.05) and 𝑄𝑚 = 80 kW/m3; Tumor 3, deep-

seated large malignant, 𝐷 = 24 mm,  located at (-0.013, 0, 0.05) and 𝑄𝑚 = 80 kW/m3; Tumor 4, 

shallow-body large malignant, 𝐷 = 24 mm,  located at (-0.021, 0, 0.05) and 𝑄𝑚 = 50 kW/m3. 2D 

surface temperature distributions of each tumor are presented in Figure 5-16(a) to (d), respectively, 

and 1D center-line (L-R) temperature is presented in Figure 5-16(e).  Tumor 1 cannot make 

sensible alterations on the natural temperature distribution and could provide ‘false negative’ 

screenings. However, if the diameter increased by 66% and heat rates by three folds, the tumor at 

the same location produces almost 1.2K elevation from the super cooled temperature. A tumor 

nearer to the skin surface has tremendous effect on surface temperature, a tumor right under the 

fat layer (tumor 4) feels 1.75K more warmer than a same size (tumor 3) 17.5 deep tumor with 1.6 

times high rate in volumetric heat production. The shapes and warmest location are clearly 

observed from Figure 5-16(e), the curves reveal that if the temperature patters hold L-R symmetry, 

improve accuracy diagnosis. 

 

Figure 5-15  Area of temperature grow, (a) to (d) for chest tumor 1 to 4, respectively 
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Warmer zones detected over the forearm due to these tumors are explored in Figure 5-17 

      

(a)    (b) 

      

 (c)  (d) 

 

(e) 

 
Figure 5-16 Forearm tumors, (a) to (d) surface temperature for tumor 1 to 4, respectively, 

(e) center-line (L-R) temperature 
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where (a) shows the region over which ΔT≥0.2K felt, (b) shows ΔT≥0.4K region and (c) shows 

ΔT≥0.6K region. It is clearly evident that the tumor 1 couldn’t show any sign of its presence and 

remain untraced in thermogram, resulting in a false negative outcome. Though the defective zone 

is assumed spherical, the surface warm zone is not symmetrical over forearm.  

Breast tumor thermal analysis is performed for—Tumor 1, benign 𝑑 = 24 mm located at (0, 

0, 0.052), 𝑄𝑚 = 40 KW/m3; Tumor 2, deep-seated large benign 𝐷 = 54 mm located at (0, 0, 

0.034), 𝑄𝑚 = 40 KW/m3; Tumor 3, small malignant 𝐷 = 24 mm located at (0, 0, 0.052), 𝑄𝑚 =

80 KW/m3; Tumor-5, deep-seated large malignant 𝐷 = 54 mm located at (0, 0, 0.034), 𝑄𝑚 = 80 

KW/m3;Tumor-5 malignant  𝐷 = 24 mm located at (0, ±0.017, 0.052), 𝑄𝑚 = 80 KW/m3; Tumor 

6 big benign 𝐷 = 24 mm located at (0, ±0.017, 0.052), 𝑄𝑚 = 40 KW/m3e. Assumed breast model 

is centered at origin and perfusion rate of tumors is  𝜔𝑏 = 4.6 × 10
−3 1/s. Figure 5-18 presents 

the 2D spatial temperature over surface for each case respectively in Figure 5-18(a) to (e) where 

on-axis tumors develops symmetric distribution (a-d) but loss symmetry in case of tilted tumors 

(e, f). The 1D center-line temperature plots for above cases are presented in Figure 5-19. It is seen 

that Tumor-1 and 4 produce very same profile, might lead non-unique inverse estimation. A breast 

tumor could produce more than 2K higher temperature on surface.   

 

 
Figure 5-17  Area of temperature grow, (a) to (d) for forearm tumor 1 to 4, respectively 
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In the above analyses, thermal features of tumor in the chest, forearm and breast have been 

investigated while the physical parameters (such as size and location) and the bio-thermal 

parameters (such as conductivity, metabolism and perfusion rate) of the tumor are reported to have 

influences on the thermal features, to be exact, the temperature elevation and shape (or area) of 

warm zone. Therefore the analyses investigate the surface thermal feature as a function of size, 

          

(a)   (b) 

                  

                         (c)                                                                    (d) 

            

          (e)                                              (f) 

 
Figure 5-18  Breast tumor analysis; (a) to (f) surface temperature for tumor 1 to 6, 

respectively 
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location, conductivity, metabolism and perfusion. Of these variables, the size and location are 

independent but the conductivity, heat generation rate and perfusion rate are mutually dependent 

(see Eqn. 5.1 to 5.3). In the subsequent section the influence of physio-thermo-biological 

parameters will be computed. Moreover thermal feature also depends on the rate at which heat is 

exchanged with environment (see Eqn. 1.1) therefore the correlation between temperature graph 

and ambient conditions will also be explored.    

5.9 Effect of Physio-thermo-biological Parameters and the Surrounding 

The above analysis demonstrated that the abnormal surface temperature patterns over the 

faulty organ were controlled by biological thermal and physical parameters. The purpose of this 

section is to determine the impact of each controlling parameter on the temperature pattern. 

Equations 4.10-4.12, 4.27 and 4.46 show that steady-state temperature flow in tissue interior is a 

function of metabolism (𝑄𝑚), blood perfusion rate (𝜔𝑏),, blood specific heat (𝐶𝑏),, heat 

conduction rate (𝑘), environment temperature (𝑇𝑒), heat exchange rate (ℎ𝑎) and model radial 

dimension (Figures 4.15 through 4.20 show how each of the above parameter influences the 

internal temperature flow of tissues). Further analysis in the previous section shows that surface 

temperature above the faulty organ is a function of the tumor’s physical, biological and thermal 

values provided that the ambient remains unchanged. The analyses has categorized these 

parameters into three groups—bio-thermal (metabolism, blood perfusion rate, blood specific heat, 

 

Figure 5-19  Center-line temperature for tumor in undeformed breast 
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heat conduction rate) group, environmental (ambient temperature, heat exchange rate) group, and 

physical (model radial dimension, tumor size, and location) group. Inspecting Equation 5.1 

through 5.3, it is seen that thermal conductivity is affected by perfusion rate and metabolism and 

size are influenced by the doubling time. Considering tumor’s doubling time and incremental 

thermal conductivity are known, the other parameters are computed accordingly. Assume a tumor 

grown in 20 mm deep, doubles in 38 days and thermal conductivity increases by 0.2 𝑊/(𝑚 −

𝐾)form healthy tissues (𝑘 = 0.52 𝑊/(𝑚 − 𝐾)). Therefore, the other parameters are computed to 

be—metabolic rate 85000 W/m3 (see Eqn. 5.2) blood perfusion rate 0.16 l/m-s (see Eqn. 5.1) and 

the diameter ≈10 mm (see Eqn. 5.3).  It is worthless of sweeping model radial dimension and blood 

specific heat because tumor has no known effect on them. Influence of other variables will be 

inspected separately.  
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For computing the parametric effect on spatial temperature distributions on realistic models, 

 
(a) 

 
(b) 

 
(c) 

 Figure 5-20  Effect of bio-thermal parameters of tumor, e.g. influence of—(a) metabolism, 

(b) perfusion and (c) heat conduction rate of tumor on breast surface temperature 
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the study has performed parametric sweep. However, the report presents thermal computations of 

spherical on-axis tumour submersed in lobule layer in the natural un-deformed breast model only 

to exemplify the aspect.  

Thermal values of healthy breast tissues are acquired from Table 5-7. Except the swept 

variable the other parameters of tumor have assumed 𝑄𝑚 = 25000 𝑊/𝑚
3,ℎ =2 cm, 𝜔𝑏 = 3.4 ×

10−4
1

𝑠
,𝑅 = 1.5 cm as well as the heat losses rate is ℎ𝑎 = 13.7 𝑊/𝑚

2 and ambient temperature is 

𝑇𝑒 = 300.15 𝐾 . The analysis follows—(i) estimation of the bio-thermal influences (Group-1), (ii) 

estimation of the pinpointing parameters’ influences (Group-2) and (iii) estimation of the ambient 

influences (Group-3). Obtained thermal results are plotted along L-R line (a line joining two 

opposite left and right base points through model vertex) or T-B line (a line joining two opposite 

top and bottom base points through model vertex)for each case are the following:     

The influences of bio-thermal group variables on surface temperature distribution are 

presented in Figure 5-20 through (a) to (c), respectively. The family of graphs in Figure 5-20 (a) 

while sweeping 𝑄𝑚 between 5k and 85k in step of 20k per unit volume, presents the 1D 

temperature plot along L-R (or T-B) line. It is observed that the heat rate has a linear relationship 

with the maximum temperature elevation and the area over which the temperature grows. The 

opposite effect could be found for the perfusion heat loss rate, which is presented in Figure 5-20 

(b) with the blood flow rate shown. Unlike the wide varying metabolic and perfusion rates, the 

swing in the conduction heat flow rate is insignificant, thus plays a worthless effect (see Figure 5-

20 (c)) on the temperature figure.  

The effect of the tumor’s physical parameters (Group-2) on temperature pattern is shown in 

Figure 5-21. Thermal plots of tumor developed in different locations show that depth has a 

nonlinear relation with the heat flow and with the maximum temperature rise at skin, which is 

observed from Figure 5-21(a).  It is evident that a deep seated tumor could give a false negative 

result at the earlier stage. In contrast, the size of a tumor is a linear function of temperature, i.e. the 

bigger tumor will elevate the temperature peak and increase the hot zone area (see Figure 5-21(b)).  

How the environmental condition (Group-3) affects the temperature pattern is given in 

Figure 5-22—window (a) and (b) for ambient temperatures and heat loss rates, respectively. 

Inspecting the left figure it is clear that the heat exchange rate doesn’t affect the shape of the graphs 

but rather pushes them downwards when increased (Figure 5-22(a)). On the other hand, the higher 
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environment temperature reduces the temperature elevation and area of warm zone (Figure 5-22 

(b)). Therefore, a clod therapy (cold stress) or low temperature lab could provide a 

clear/informative thermogram.     

Above analyses demonstrate that the bio-thermal parameters are a linear function of 

temperature and affect both the height of the temperature hill and the region on which the local 

warm zone (temperature hill) grows. The size of the tumour also has similar effect while the depth 

affects the graph non-linearly. Moreover, the influences of ambient conditions are notable and a 

well-designed laboratory is a vital concern for better thermogram.  

Above analysis provides some general thermal feature of different parameters of breast 

tumour, consequently, thermal images could give some important ideas, such as confirmation of 

presence of a tumour, roughly the location (either deep-seated or shallow), growing rate (fast or 

slow growing—considering the changes in images taken in a given interval) etc. However, the 

interdependency between parameters needs to consider finding the exact correlation between 

thermal image and the tumour parameter. The parameters are interdependent in the following way: 

(a) Tumor size increases with its age (growing rate) and growing rate is also 

related to the 𝑄𝑚.      

(b) Cancerous cells have higher thermal conductivity and changes in 

conductivity also affect the blood flow rate.    

 
(a)                                                                                                 (b) 

 Figure 5-21  Effect of physical parameters of tumor, e.g. influence of—(a) location, and (b) 

diameter of tumor on breast surface temperature 



129 

 

5.10 Deformed Breast Analysis 

Unlike any other organs in adult human, breast deformation is a common phenomenon 

amongst women. Drooped breast models have developed in Figure 4-11and Figure 4.12. The 

structural deformation might alter the thermal feature in comparing that has estimated over un-

deformed model. Most of the previous studies have not taken into account the deformation. This 

section will discuss how to calculate thermal features of deformed breast numerically with FEM—

which includes creating physical geometry, developing mesh, assigning parameter values, setting 

boundaries and finally computing surface temperature distribution. 

      
(a)           (b) 

 Figure 5-22  Effect of environmental parameters, e.g. influence of—(a) heat exchange rate, 

and (b) ambient temperature of laboratory on breast surface temperature in case of a tumor 

     
(a) Deformed breast due to body posture          (b) Deformed (sever) breast due to ptosis 

 

Figure 5-23  Drooped breast models 
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3D FEM geometry of breast considering the drooping effect due to body posture change 

(standing or sitting) is shown in Figure 5-23(a). Downward nipple slip stretches the upper part, 

contracts the bottom part, resulting in a longer T-B line while unchanged L-R line. Such 

deformation leads by relative thick fat layer on top. In addition to the posture effect, the study also 

develop 3D FEM model, Figure 5-23 (b) for ptosis breast, in particular at ‘Stage—4’from the 

geometry shown in Fig 3-12. After defining the boundaries and setting up parameters for each 

domain, the physical models are divided into meshes which is shown in Figure 5-24 , where (a) is 

composed on 80000 tetrahedral and 4000 triangular elements with tumour built on 2000 tetrahedral 

and 200 triangular elements; and Figure 5-24(b) made on 25000 tetrahedral and 1000 triangular 

elements including tumour broken down upto1000 tetrahedral and 500 triangular elements. 

Tumors in mild deformed breasts have been analyzed for estimating thermal distribution 

over the surface and along the orthogonal L-R and B-T lines over the nipple. The analyses have 

been performed for—Tumor 1, malignant 𝐷 = 36 mm located at (0, 0, 0.045), 𝑄𝑚 = 80 KW/m3; 

Tumor 2, deep-seated large benign 𝐷 = 20 mm located at (0, 0, 0.04), 𝑄𝑚 = 25 KW/m3; Tumor 

3, off-axis malignant 𝐷 = 50 mm located at (-0.015, 0, 0.033), 𝑄𝑚 = 60 KW/m3; Tumor-4, off-

axis malignant 𝐷 = 36 mm located at (0.015, 0, 0.033), 𝑄𝑚 = 40 KW/m3. Assumed breast model 

is centered at origin and perfusion rate of tumors is  𝜔𝑏 = 5.2 × 10
−3 1/s. Figure 5-25 presents 

the 2D spatial temperature over surface for each case respectively in Figure 5-25(a) and (b) where 

on-axis tumors develops a pattern that is not symmetrical that has found in case of un-deformed 

breast. The elastic deformation causes an alteration to the thermal image which is crucial for benign 

      
(a) FEM for Figure 5-23(a)             (b) FEM for Figure 5-23 (b) 

Figure 5-24  FEM models for drooped breasts 
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such as Tumor-2. However, breast malignancy could restore the symmetry. In case of off-axis 

tumors, it is obvious that the warmest zone shifts toward the tumor center as well as losses its 

symmetry. Again, the malignant (Tumor 4) produces almost symmetric image around the center 

of the warmer region. Interestingly, both Tumor-2 and 4 move the warm zone upward, even though 

the former one is grown right under the nipple which could lead to a misread location.    

For the above mentioned tumors the 1D temperature plot along the L-R and B-T lines are 

presented in Figure 5-26, where (a) presents the plot along the left-to-right horizontal line that 

remains unaffected due to the gravitational force and (b) presented the graph along bottom-to-top 

vertical line that encounters stress due to breast mass. As a result the B-T line is larger than the L-

R line by an amount around 2 cm.  The window (a) justifies that the temperature plots for above 

cases do not affect the horizontal symmetry. But deformation hampers the vertical symmetry even 

for an on axis tumor which is clearly understood from the bottom window (b).       
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(a)                                                                       (b) 

                                
                                      (c)                                                                   (d) 

Figure 5-25  Mild deformed breast tumor thermal analyses—(a) to (f) for tumor 1 to 6, 

respectively 
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Tumors in ptosis stage -4 breast have been analyzed for— Tumor 1, large benign 𝐷 = 50 

mm located at (0.051, 0.078, 0), 𝑄𝑚 = 45 KW/m3; Tumor 2, large malignant 𝐷 = 50 mm located 

at (0.051, 0.078, 0), 𝑄𝑚 = 90 KW/m3; Tumor 3, large malignant 𝐷 = 24 mm located at (0.051, 

0.078, 0.02), 𝑄𝑚 = 90 KW/m3; Tumor-4, similar to Tumor 3 located at (0.051, 0.078, -0.02). 

Assuming, at standing body posture, nipple is aligned with lower base and placed at coordinate 

origin. Figure 5-27(a)–(d) show the 2D temperature distribution for above four cases, respectively 

and (d) presents 1D temperature plots along L-R and B-T lines. Tumor 1 produce maximum almost 

   
(a) 

 
(b) 

Figure 5-26  Center-line temperature for mild deformed breast tumor along—(a) L-R 

(left to right side) line, and (b) B-T (bottom to top) line 
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1K and Tumor 2 produces 0.38K at the nipple location. It is seen that due to deformation the patter 

losses symmetry.  

The above analysis discovers that local surface temperature distribution is disturbed by the 

underlying tumor’s bio-physical parameters and those directly affect the temperature raise, warm 

zone area and coldest region temperature. Model physics affects the symmetry of the pattern. 

Symmetry in temperature pattern is a very important feature for developing optimization dataset.   
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(a)                                 (b) 

    

                   (c)                             (d) 

 
(f) 

Figure 5-27 Tumor in deformed breast, (a) to (d) surface temperature for tumor 1 to 4, respectively, 

(f) center-line temperature 
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5.11 Summary  

In this chapter numerical methods have been used to calculate the temperature distribution 

over the skin surface of organ that holds a tumour. The analysis showed that the FEM approach 

can be standalone approach for estimating thermal features in live biological tissues. The credited 

built-in model while applied on the simplistic and realistic models discovered that tissue layers 

and types have influences on thermal figures, for example, the estimates show that the simple 

models have assessment error 0.8K and 1K, respectively, over the real chest and breast models 

and likewise, the blood vessels in forearm causes asymmetric temperature grow where the simple 

model exhibits symmetry. Therefore, the anatomic structure should be interpreted properly in 

developing physical models. Irregular thermal estimates on the realistic models in presence of 

tumor has also explored that the irregularity is directly related with the physio-thermo-biological 

parameters of tumour.  Tumour’s physical parameters (i.e. size and location) have significant 

influences on the surface temperature profiles. The non-linear dependency between size and 

temperature pattern shows that the wider tumour has bigger ‘temperature hill’ with elevated vertex 

while the location vs temperature shows that deeper nodule has narrower hot zone. Similarly, the 

thermal parameters such as the metabolic and perfusion rate affect the thermal graphs remarkably; 

however, the conductive heat transfer rate shows negligible effect. Moreover, laboratory 

environment has influence on thermogram images too; seemingly the temperature graphs remain 

unaffected except move on the vertical (temperature) axis if surrounding temperature goes up. To 

sum up, the study presented a quantitive relation between bio-physio-thermal parameter and 

expected temperature texture.  

Circular symmetric thermal graphs can be achieved for chest tumours merely keeping the 

warmest zone at the middle of the model which is straightforward as long the segmental model is 

legitimate. Similarly circular symmetry is always observed for on-axis breast tumours. Unlike, the 

forearm tumours produce only vertical symmetric thermogram because of the asymmetry to the 

interior make-up. However, tilted (off-axis) breast tumour develops asymmetric thermal 

distributions as observed. The study has showed that physical deformation of breast affect the 

thermal image and obvious to address it while modeling.       
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 Parameter Estimation—Indirect Approach 

6.1 Introduction 

Computations of thermal distribution over the skin surface and inside of the human chest, 

forearm, and breast have been discussed in the previous chapters. Models of the above mentioned 

organs are proposed in Chapter 3 and the bio-heat transfer problems on those models are addressed 

in Chapter 4 and 5, respectively, if the organs are at healthy condition and if there is tumor 

underlying them.  The thermal computations are obtained for a given set of bio-thermal and 

physical parameters of organ’s tissues and tumor tissues. The approach of estimating a thermal 

profile for a given parameter set is called direct approach, however parameterizing tumor from the 

surface thermal image (thermogram) involves an indirect approach. This chapter presents an 

estimation methodology determining thermo-biological and/or geometrical parameters of a tumor 

from an abnormal temperature profile over skin surface that may be acquired by infrared (IR) 

thermography. The indirect estimation approach requires: 

a) a test (target) vector (dataset)—which can be obtained from thermogram (in-vitro) or 

clinic (in-vivo) or simulation (ideal),  

b) a governing equation—which can be the heat transfer equation in living body or the 

analogous (equivalent) heat-source model equation,  and  

c) a cost function—which is capable to optimize the problem involving the target dataset 

and the simulated (computing the governing equation) dataset. 

This study will use numerical simulated datasets as the test vectors where the datasets is to 

be added with random noises to mimic true datasets.  The governing equation must entail an 

accurate correlation between the thermal image and interior human physiology. The relationships 

have been achieved from the general solutions of the bio-heat equation, discussed in the earlier 

chapters. Particularly, thermal analysis of homogeneous tissues in chapter 4 has discovered that 

the static gradient of the abnormal local skin temperature to the altered physio-thermo-biological 

parameters have straight-forward association. The thermal gradient (contribution of thermo-

physical parameters to the skin temperature), alternatively, the irregular spatial temperature 

distributions on local surface will be expressed as a function of diagnosis parameters and thus will 

replace the ‘bio-heat’ model with an equivalent ‘heat-source’ model. The characteristic expression 
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(governing equation) of the analogous model will be solved and converged to predict tumor 

parameters, more specifically, the size, location, perfusion rate and heat rate of hyperactive region 

while convergence will be done by minimizing a fitness (cost) function. Derivation of the 

governing equation and the fitness function will be detailed in this chapter.  

Thermal behaviours of anatomic-accurate models, shown in chapter 5, are quite different 

from that observed in simplified models. Consequently, parameterization of heat flow graphs in 

realistic models is complicated, following on a labours job to find analogous heat-source model. 

In such case the bio-heat equation will be employed as the governing equation. This chapter will 

utilize the gradient projection method (GPM) for estimating heat-source parameter while the 

homogenous tissue will be modelled as a heat source. In addition, the pattern search method 

(PSM), genetic algorithms (GA) and artificial neural network (ANN) methods will be used in an 

invasive diagnosis of tumor in heterogeneous tissues.  

Essentially, all optimization approaches require an initial parametric matrix which can be 

chosen from the heat-source model using approximation technique or from clinical inspection or 

from a random function generator. After selecting the initial matrix, the GPM will move to the 

next solution with predefined incremental matrix where the increment factors are determined 

sensing the static temperature gradient. Perturb (with random initial solution) and solve the GPM 

repeatedly unless the solution matrix comes up with a set of possible solutions (local and/or the 

global minima) from which the best solution (global minima) is sorted out using physical 

constraints and clinical knowledge. Unlike GPM, the PSM moves on a particular path (search 

direction) defined by ‘directional matrix’ and converges with adaptive step sizes.  Exposing the 

thermal directional derivatives, while calculating the step sizes and searching for in every 

directions, increase the probability of converging to the global minima (best result). However, the 

process increases the computation time as well as the memory usage. Unlike GPM and PSM, the 

GA converts the solution matrix into binary digit to form chromosomes while the bit(s) are 

swapped inter-chromosomes or intra-chromosome to move on the next possible solution. An NP -

hard, non-gradient type optimization approach needs GA to solve several times to come up with 

unique result. This study will run the GA thrice with different random initial populations, however, 

the final estimates will be found identical regardless the initial population.  
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The objective of this chapter is to develop a methodology to estimate the size, depth and heat 

generation rate of an embedded tumor in the human body organ, based on the temperature profile 

on the surface that may be obtained by thermogram (in-vitro) or clinic (in-vivo) or simulation 

(ideal). This study will use numerical simulated data enveloped with up to ±10% random noise as 

the test vector (target dataset) in lieu of thermogram. The heat-source model equation will be 

applied to produce the simulated dataset for the cost function in the GPM optimization while the 

other methods will use the bio-heat transfer equations. The bio-heat equation will be solved 

numerically with the FEM solver. The approximate values to the parameters will have been 

justified and fairly accurate values will be, then, applied to form the initial solution matrix for 

optimizing the bio-heat equations. Formulation for the cost function will be discussed, in detail, in 

this chapter.    

Indirect solving with the PSM was articulated by Agnelli et al [14] where the authors had 

implemented a FDM scheme to solve bio-heat problems on a cuboid domain (rectangular box 

tissues) with mixed mode boundary conditions and then, the optimization algorithm (PSM) was 

used estimating the hyperactive region (spherical tumor) parameters by minimizing a fitness 

function involving the temperature profiles obtained from the FDM and test dataset. The laboratory 

dataset was added with noise to produce the test matrix. In-vitro experiment on a cylindrical 

adipose model, heated up with a resistive heater was applied to predict the heat source parameters 

(location and heat rate) with a GA based inverse approach in [60].  Estimation of breast tumor 

thermo-physical parameters using ANN and GA was discussed in [16] where the ANN was used 

to map the relationship of tumor parameters (depth, size and heat generation) to the temperature 

profile over the idealized breast model, the relationship obtained from ANN is compared with 

numerical result and finally GA was used to estimate the parameters by minimizing a fitness 

function involving comparing the temperature profile from simulated (or clinical) data to those 

obtained by ANN.  

Certainly, the accurateness of the estimated parameters depends on the performance of the 

cost function which involves a target dataset and a simulated dataset. As discussed, the target 

dataset was determined from the FDM scheme enveloped with noise (≤ ±10%) and simulated 

dataset was obtained by solving bio-heat problem (using the FDM) on a two-domain (healthy and 

tumor domain) cuboid tissue model in [14]. Therefore, the weaknesses of the study are: (i) the 

geometric model of organ is simplistic, therefore, the thermal datasets such as the test and 
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simulated datasets are blurred, (ii) the approach needs to modify extensively before applying to 

any human organ, and (iii) the values of some bio-thermal parameters, especially the perfusion 

coefficient, are not supported by any source. The restrictions of [60] are—(i) target dataset was 

obtained from the cylindrical adipose surface which was heated up with a resistive heating system, 

but the relation between the heater and tumor was completely unknown, (ii) the perfusion heat loss 

was neglected, and (iii) the numeric scheme had used to compute the simulated dataset was 

unclear. However, the necessity of the anatomic accurate model and numeric datasets are excluded 

in [16] with the help of the ANN and GA but the sources of thermal datasets were not disclosed.                 

6.2 Introduction to Optimization 

Optimization is an important tool that analyzes a physical system and makes decisions for 

finding the best solution from the set of all feasible solutions. The process, basically, involves 

minimizing a cost function which includes target and simulated datasets. Not to mention the 

technique of generating the target datasets, the basic optimization process includes constructing a 

model, determining the problem type and selecting the solution approach. Modeling is the process 

of identifying and expressing the objective (quantitative measure of system performance, for 

example, deviation minimization between observed and predicted data), the variables (parameters 

of the model), and the constraints (relationships among the variables and their allowable limits) 

mathematically. Tailoring an appropriate optimization algorithm to a particular type problem is 

the second preference. The model performance depends on the accurateness of the optimization 

algorithm that depends on the nature of the variables (model parameters) and comprehending the 

problem type. For instance, the variable can be continuous or desecrate, unconstraint or constraint; 

and the problem can have none, one or many objectives and can be deterministic or stochastic. 

Finally, the algorithm will be coded to solve the thermal problem with computers. The details 

about modeling, cost function, variables, constraints, optimization algorithms have been discussed 

in following sections.      

6.2.1 Diagnosis Parameters and Modeling 

Analysis discovered that abnormal temperature profile over a faulty organ is a function of 

heat conductivity(𝑘), metabolism(𝑄𝑚), perfusion loss(𝜔𝑏), tumor location (𝑑)and size(𝑅), 

ambient temperature (𝑇𝑒) and heat exchange rate(ℎ𝑎). This chapter is dedicated to estimating some 

characteristic parameters that might help in detecting and localizing tumors. Ambient effect 
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(𝑇𝑒 and ℎ𝑎) can be excluded from the above list with designing a perfect matched laboratory–

simulation environment.  Therefore the parametrization process includes first five parameters 

mentioned above. A customized optimization algorithm is designed for minimizing the 

temperature function where the function may be achieved from numerical solution of bio-heat 

transfer problem or derived from a governing equation with replacing the bio-heat phenomena to 

a mathematical model.   Generally, modeling is the process of representing a real-world object or 

phenomenon as a set of mathematical equations. Derivation of the model for living bio-heat 

transfer phenomenon is going to be discussed following. It is worth mentioning that the patient 

and thermogram technologist are not accustomed with some bio-thermal parameters such as 𝑘, 𝑄𝑚 

and 𝜔𝑏, therefore, in the proposed model will replace them into a generally sensible parameter.       

Diagnostic variable set includes the depth, size and body temperature of the hot nodule will 

be estimated. Extracting these parameters from in-vivo bio-thermal feature requires transformation 

of bio-thermo-physical variables (𝑘,   𝑄𝑚,   𝜔𝑏 , 𝑑, 𝑅, 𝑇𝑒 , ℎ𝑎) into diagnostic variables(𝑑, 𝑅, 𝑇𝑐).  

Such conversion evokes a process called “domain transformation” which is presented in Figure 6-

1 where the left circle indicates the bio-thermo-physical domain, the right circle is the diagnostic 

parameter domain and the surrounding rectangle is the coupling media, the ambient. The figure 

signifies that the Pennes bio-heat parameters can be turned into underlying fault indicator 

parameters if the process is done in a specific well controlled ambient. Both domains share two 

common parameters the conduction 𝑘 and artier temperature𝑇𝑎. The domain transformation 

follows Eqn. 6.1. 

 𝑇 ≡ 𝑓(𝑄𝑚, 𝜔𝑏 , 𝑐𝑏 , 𝑑)
𝑘,𝑇𝑎,ℎ𝑎,𝑇𝑒
⇔     𝑇 ≡ 𝑓(𝑑, 𝑇𝑐, 𝑅) (6.1) 
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The auspicious transformation has come up with a heat source model, the formation of such 

model is discussed in the next section. 

 

6.2.2 Governing Equation 

The equation or set of equations are to be solved with a suggested solution given by an 

optimization algorithm are called the governing equation(s). The bio-heat equation arameters 

shown Figure 6-2 that mimics very similar results to those observed in Pennes’ model. Bio-thermo-

physical characteristics of a homogeneous, isotropic and temperature invariant healthy organ are 

converted to the model parameters where the healthy tissues are replaced with a pinhead heater of 

negligible radius (R), located at  𝑑 (same to the tissue thickness) and maintain a constant 

temperature,  𝑇𝑐= artier temperature, 310.15K. However, in case of tumor, the hyperactive nodule 

 
Figure 6-2 Heat source model 

 
Figure 6. b 

 

Figure 6-2 Heat source model 

 

Figure 6.2 Spherical heat source model 

 

 
Figure 6-1 Bio-heat and diagnosis domain 

 
Figure 6. a 

 

Figure 6-a Bio-heat and diagnosis domain 

 

Figure 6.1 Bio-thermal and thermo-physical domain 
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will be replaced by a spherical heat source of uniform body temperature 𝑇𝑐 > 310.15𝐾  and 

radius 𝑅. In comparing to the dimensions of surrounding tissues and using the boundary conditions 

in Eqn. 3.4-b and with the help of [57], the temperature distribution of the model is calculated as: 

 

 𝑇(𝜌) = 𝑇𝑒 +
𝑇𝑐−𝑇𝑒

𝛾ℎ𝑎
𝑘𝑅
𝜌(𝜌−𝑅)+1

  (6.2) 

where 𝑇  estimates interior temperature if 𝜌 < 𝑑 and surface temperature if 𝜌 ≥ 𝑑 and 𝛾  a 

non-linear parameter, termed as model constant, to be determined by inspection. On model surface  

𝜌 = √𝑑2 + 𝑎2, (𝜌 ≥ 𝑑) and 𝑎 is the distance of a point on surface from the  𝑇(𝑑) location. The 

temperature at 𝜌 = 𝑑 where 𝑑 is the depth of the tumor is the highest temperature on the model 

surface; 𝑇(𝜌 = 𝑑) = 𝑇𝑚𝑎𝑥. Temperature at any arbitrary point on model surface is given in Eqn. 

6.3. 

 

 𝑇(𝑎) = 𝑇𝑒 +
𝑇𝑐−𝑇𝑒

𝛾ℎ𝑎
𝑘𝑅
(√𝑑2+𝑎2)(√𝑑2+𝑎2−𝑅)+1

 (6.3) 

Eqn. 6.3 requires proper evaluation of the model constant 𝛾 which is done matching the 

response with thermal computation observed in bio-thermo-physical domain. The following non-

linear expression of 𝛾  is determined that provides the best performance of the model with almost 

98% accuracy (% accuracy=
1

𝑁
∑ |

𝑇𝑠𝑖𝑚−𝑇𝑚𝑜𝑑𝑒𝑙

𝑇𝑠𝑖𝑚
|
𝑖

𝑁
𝑖 ): 

 𝛾 = 2000((𝑑 − 2.2)2 + 2.6)(𝑅𝑛)−0.92 (6.4) 

The constant 𝛾 has empirical relationship with hot nodule location, size and heat-rate 

intensify factor 𝑛, which is defined as a ratio of heat rates of hot nodule to healthy tissue’s natural 

metabolism, which can be written as 𝑛 =
𝑄𝑚_𝑡𝑢𝑚𝑜𝑟

𝑄𝑚_ℎ𝑒𝑎𝑙𝑡ℎ𝑦
. The factor 𝑛 is also a function of 𝑅, 𝑇𝑐 and 𝑑 

which is determined as, 

 𝑛 =
1

6
× [104 (𝑙𝑜𝑔

𝑇𝑐−273.15

−0.111𝑑2+0.64𝑑+34
) − 33.4𝑅] (6.5) 

Eqn. 6.5 can be rewritten as, 

 𝑇𝑐 = (−0.111𝑑
2 + 0.64𝑑 + 34)𝑒10

−4(6𝑛+33.4𝑅) − 273.15 (6.6) 
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Figure 6-3  Comparison of heat source model response with analytic result for 

various—(a) heat exchange rate, (b) ambient temperature, (c) metabolic heat and (d) thickness 
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To summarize, Eqn. 6.4 calculates the model coefficient which is a function of heat source 

parameters, Eqn. 6.5 gives the ratio between metabolic rates of tumor and healthy tissues which 

can also be computed from model parameters, and Eqn. 6.6 shows how the model parameters 

contribute to the tumor bulk temperature. For respective cases, through Eqn. 6.4 to Eqn. 6.6, the 𝑑’s 

are in cm and 𝑅’s are in mm.  

The proposed model requires validation to investigate how the model performs. For this, 1D 

radial temperature flows in model inside and in tissue interior are investigated solving Eqn. 6.2 

(diagnosis domain) and Eqn. 4.26 (bio-thermo-physical domain), respectively, separately and their 

responses with variable heat exchange rates, ambient temperatures, heat generation rates and tissue 

depths. Temperature distributions estimated on both domains are presented in Figure 6-3, where 

the responses of the bio-heat model are depicted in ‘dotted’ and those of the heat-source model are 

in ‘solid’ lines. The effect of heat loss rates at skin surface is presented in Figure 6-3(a), which 

shows that the model performance improves at higher exchange rate as observed on the overlapped 

profiles. However, the heat source model estimates fairly accurate temperature at boundaries 

which plays a very vital role in determining surface temperature. A similar effect is discovered in 

(b) where the responses of the models with different environment temperatures are examined. The 

influence of the metabolic heat rate on the responses of the models, as shown in Figure 6-3(c), is 

quite opposite where the discrepancy increases if the metabolism increases. The models’ responses 

for different tissue thicknesses (i.e. heat source depth) are showed in Figure 6-3(d); it is evident 

that the model responses may lose consistency for deep-seated tumors. However, the temperature 

graphs show that the proposed heat source model can provide an approximate result to the bio-

heat model. Consequently, the heat source model could provide solutions closer to the accurate 

values while optimized. In clinic application, though, the exact parameters are always desirable 

which can be found from the bio-heat model, however solving detailed bio-heat models using finite 

element method is very time consuming during optimization process with a random initial solution 

vector. Therefore, a compatible tool, the heat-source model, has been recommended. The major 

advantage of the model is that thermal computation does not require FEM, leading to reduced 

computational time and memory usage.       

Another advantage is that, it can provide the temperature plots both in tissue inside and over 

surface, therefore, the model may be used for tumor ablution as well.  
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The model is developed for homogeneous, isotropic and cuboid tissues, indeed a major 

lacking which, consequently, might lead to a pessimistic estimate. In addition, consistent estimated 

temperature profile does always not grantee consistency for a wide range of variations.    

Despite this observation, this study will apply the proposed model to estimate the 

approximate solution matrix and the solutions are given as a potential solution to the finite element 

analysis to predict the best solution and thus reduce the computation time as well as ensure rapid 

convergence. Computing the value of temperature 𝑇𝑒𝑠𝑡 = 𝑓(𝑅, 𝑑, 𝑇𝑐) by systematically choosing 

input values and minimizing the expression  min‖𝑇𝑡ℎ − 𝑇𝑒𝑠𝑡(𝑅, 𝑑, 𝑇𝑐)‖ ≤ 𝛿 (cost function or objective 

function), there exists some 𝛿 > 0, where 𝑇𝑡ℎ is acquired from thermogram image.           

6.2.2.1 Variable’s Characterization and Initialization 

Abnormal bio-thermal behaviour of tumor can be investigated by physical exam (biopsy), 

imaging, endoscopy, and lab tests whether only the biopsy can usually tell the type, stage, size and 

shape. It is proven from the biopsy sighting that a tumor or a lesion or a mass can grow on any 

tissue layers such as on bone tissues, on soft tissues, on adipose tissues, on skin tissues which 

confirms that the diagnosis parameters or, alternatively, the heat-source model variables can likely 

be constrained.  

Starting with an initial vector 𝑋0(𝑑, 𝑅, 𝑇𝑐) ∈ Ω the optimization process will search for valid 

solutions. The initial solution vector (𝑋0) plays an important role in fast converging and/or finding 

local/global minima. Taking the lowest possible values for 𝑅0 and 𝑇𝑐0, the calculation for 𝑑0 

follows as:  

Rewrite Eqn. 6.2 for 𝜌 > 𝑑 and 𝜌 = 𝑑, respectively. 

 

 𝑇(𝜌) − 𝑇𝑒 =
𝑇𝑐−𝑇𝑒

𝛾ℎ𝑎
𝑘𝑅
𝜌(𝜌−𝑅)+1

  (6.7) 

and 

 𝑇𝑚𝑎𝑥 − 𝑇𝑒 =
𝑇𝑐−𝑇𝑒

𝛾ℎ𝑎
𝑘𝑅
𝑑(𝑑−𝑅)+1

  (6.8) 

Since 𝑅 ≪ 𝑑, hence neglecting the effect of R and dividing Eqn. 6.7 by Eqn. 6.8: 
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𝑇(𝜌)−𝑇𝑒

𝑇𝑚𝑎𝑥−𝑇𝑒
=

𝛾ℎ𝑎
𝑘𝑅
𝑑2+1

𝛾ℎ𝑎
𝑘𝑅
𝜌2+1

 (6.9) 

Replacing the equation with surface temperature and rewriting,  

 

 
𝑇(𝑎)−𝑇𝑒

𝑇𝑚𝑎𝑥−𝑇𝑒
=

𝛾ℎ𝑎
𝑘𝑅
𝑑2+1

𝛾ℎ𝑎
𝑘𝑅
(𝑑2+𝑎2)+1

 (6.10) 

 
𝑇(𝑎)−𝑇𝑒

𝑇𝑚𝑎𝑥−𝑇(𝑎)
=

𝛾ℎ𝑎
𝑘𝑅
𝑑2+1

𝛾ℎ𝑎
𝑘𝑅
𝑎2+1

 (6.11) 

 𝑑 = √
𝑇(𝑎)−𝑇𝑒

𝑇𝑚𝑎𝑥−𝑇(𝑎)
𝑎2 −

𝑘𝑅

𝛾ℎ𝑎
    (6.12) 

 𝑑0 ≅ √
𝑇(𝑎)−𝑇𝑒

𝑇𝑚𝑎𝑥−𝑇(𝑎)
   𝑎  (6.13) 

Therefore the initial solution vector 𝑋0(𝑑0, 𝑅0, 𝑇𝑐0) is modified repeatedly within the 

solution space and the optimization process advances. 

6.2.3 Cost/Objective Function 

An optimization problem consists of maximizing or minimizing a real function by 

systematically choosing input values from within an allowed set and computing the value of the 

function. More generally, optimization includes finding the "best available" values of some 

objective function given a defined domain (or a set of constraints), including a variety of different 

types of objective functions and different types of domains. In this study two objective functions 

have been proposed, as follows: 

 𝑂𝐹1 = ∑‖𝑇𝐼𝑅(Ω, 𝑎) − 𝑇𝑠𝑖𝑚(Ω,   𝑎)‖𝑚𝑖𝑛 (6.14) 

 𝑂𝐹2 = ∑ ‖𝑟𝐼𝑅(Ω) − 𝑟𝑠𝑖𝑚(Ω)‖𝑚𝑖𝑛𝑇𝑐𝑜𝑛𝑠𝑡  (6.15) 

where Ω is the diagnosis vector, Ωϵ{𝑑, 𝑅, 𝑇𝑐}; 𝑎 is the space vector aϵ{𝑥, 𝑦, 𝑧}and the suffixes 

𝐼𝑅 and 𝑠𝑖𝑚 are test data and simulated data, respectively.  In 𝑂𝐹1 the cost function minimizes the 

average of absolute difference between spatial temperature data that is estimated over the heat 

source model to that is captured by infrared thermography. On the other hand, the function 𝑂𝐹2 

http://en.wikipedia.org/wiki/Function_of_a_real_variable
http://en.wikipedia.org/wiki/Argument_of_a_function
http://en.wikipedia.org/wiki/Value_(mathematics)
http://en.wikipedia.org/wiki/Domain_of_a_function
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minimizes the average of absolute difference between distances of isothermal contour from the 

warmest point of the estimated and the IR captured image. Target temperature dataset for 𝑂𝐹1 is 

prepared from thermogram image by choosing random points and reading the temperature at those 

points where the random points may be chosen systematically (equally spaced) or arbitrarily. The 

study has chosen arbitrary temperature samples with random function generator algorithm. The 

thermogram is divided into some isothermal contour using modified snake algorithm and then 

again divide using equal-spacing spider web algorithm; the location of the intersection points of 

isothermal contours and radial lines formed using the above mentioned algorithms, respectively 

are to form a matrix called spatial-location dataset. This dataset is used in the second objective 

function.      

 

Figure 6-4 A sample thermogram 

Generation of datasets for the above objective functions from a typical temperature 

distribution shown in Figure 6-4 is the following.  Identify the highest and lowest temperatures to 

calculate the temperature elevation Δ𝑇 and determine the number of isothermal contours 𝑛 =
Δ𝑇

0.02
, 

therefore the isothermal temperatures are 𝑇𝑖 = 𝑇𝑚𝑖𝑛 +𝑚
Δ𝑇

0.02
,  where 𝑚 = 0, 1, 2, …… , 𝑛 , 

respectively from the coldest contour. Using modified snake algorithm, divide the image and 

produce 𝑛 lines of constant 𝑇𝑖 as shown in Figure 6-5. The figure also shows the random locations 

of at least 200 points and temperature of each point and their respective locations are stored in a 

matrix to produce dataset for 𝑂𝐹1. Further, the thermal image is divided by 28 equally spaced lines 

using spider web algorithm, the locations of the intersection points between the isothermal and 
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these radial lines, as shown in Figure 6-6, are captured and stored on a matrix that produce the 

dataset for  𝑂𝐹2.   

 

Figure 6-5  Distribution of random data points 

 

 

Figure 6-6  Equal spaced isothermal points  

6.2.4 Problem Type 

Before tailoring an optimization algorithm for a problem, the problem should be investigated 

properly so that the algorithm fits well with the features of the particular system. The data 

(temperature) fitting problem of the research has the following character: 
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 Continuous: model has continuous variables, therefore, at a point 𝑋 ∈ Ω can 

deduce information at the neighborhood of 𝑋 which would help determining adaptive 

step sizes (∇).      

 Constrained: there are explicit constraints on the variables which limit the 

solution domain. Moreover, interdependency of the variable makes the optimization 

process complex.   

 Multiple Objectives: the problem has two objective functions.  

 Stochastic: the parameters are known with certain bounds, the goal is to find 

some policy that is feasible for all (or almost all) the possible data instances and 

optimizes the expected performance of the model.    

6.2.5 Optimization Problem Solver    

Many optimization solvers are available commercially solving typical inverse problems. 

However developing customize optimization algorithm is a general practice. The study will tailor 

customize source code under MATLAB for indirect solution of bio-thermal problem in the 

presence of underlying tumors. The following sections discuss the pros and cons of several 

approaches.   

6.3 Optimization Approaches 

Optimization algorithms have been designed to minimize the above objective functions with 

the criteria discussed in above. Typically, in the presence of the set of bound and more general 

constraints, the decision variables are optimized. This stochastic problem is solved in Gradient 

Projection Method (GPM), Pattern Search Method (PSM), Genetic Algorithm (GA) Method and 

Artificial Neural Network (ANN) method.   The optimization method works in the following way: 

min𝑓(𝑥)
subject to 𝑥 ∈ Ω

 

where, 𝑥 is a vector 𝑥𝑇 = [𝑥1, 𝑥2, …… . , 𝑥𝑛] and Ω ≔ {x ∈ ℝn: l ≤ x ≤ u}, where 𝑙, 𝑢 ∈

ℝ𝑛and 𝑙: < 𝑢. 
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6.3.3 Gradient Projection Method (GPM) 

GPM is a powerful tool for bound constrained optimization. The method is based on 

projecting the search direction into the subspace tangent to the active constraints. For the given 

constraints the projection can be expressed component-wise as: 

[𝑃Ω(𝑥)]𝑖: = {

𝑙𝑖 if  𝑥𝑖 ≤ 𝑙𝑖
𝑥𝑖 if 𝑙𝑖 < 𝑥𝑖 < 𝑢𝑖
𝑢𝑖 if 𝑥𝑖 ≥ 𝑢𝑖

 

The projection matrix P is related with the direction of search as 

𝑠 = −𝑷∇𝑓 = −[𝐼 − 𝑵(𝑵𝑇𝑵)−1𝑵𝑇]∇𝑓, where column of the matrix 𝑵 are the gradients of 

these constraints, which is defined by 𝑛𝑖𝑗 =
𝜕𝑔𝑗

𝜕𝑥𝑖
, 𝑖, 𝑗 = 1, 2, …… , 𝑛. (Assume all constrains are 

active all the time). The ∇𝑓 vector of this function is given by the partial derivatives with respect 

to the each of the independent variables, 

∇𝑓(𝑥) =

[
 
 
 
 
 
 
 
𝜕𝑓

𝜕𝑥1
𝜕𝑓

𝜕𝑥2
⋮
𝜕𝑓

𝜕𝑥𝑛]
 
 
 
 
 
 
 

 

The basic assumption of gradient projection method is that 𝑥 lies in the subspace tangent to 

the active constraints. If 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑠, and both 𝑥𝑖+1 and 𝑥𝑖 satisfy the given constraints, 𝛼 is a 

positive sclar. The algorithm for constrained gradient-projection optimization can be described as 

follows.  

Let start with 𝑘 = 0 and an estimate of  𝑥∗, 𝑥𝑘. 

1. Test for convergence: If the conditions for convergence are satisfied, then stop and  𝑥𝑘 is 

the solution. Else, go to Step 2. 

2. Compute a search direction: Compute the vector 𝑝𝑘 that defines the direction in 𝑛—

space along search. 

3. Compute the step length: Find a positive scalar, 𝛼𝑘 such that 𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘) < 𝑓(𝑥𝑘). 

4. Update the design variables: Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘, 𝑘 = 𝑘 + 1 and go back to 1. (Please 

note that 𝛼𝑘𝑝𝑘 = ∆𝑥𝑘) 
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6.3.3.1 Parameter Assortment 

The study limits diagnosis of soft tissue tumors, only assuming chest and forearm tumors are 

developed entirely in the muscle layer and breast tumors in the lobule layer.  Thus, the radius and 

depth variables (parameters) abide by certain constraints. Likewise temperature at tumor center 

rate can also be bounded with some restrictions. The solution space (Ω) is given by:  

 Ω = {

ℎ 𝑡 − 𝑅 ≤ ℎ ≤ 𝑡𝑠𝑘𝑖𝑛 + 𝑅

𝑅 𝑅 ≤ (𝑡 − 𝑡𝑠𝑘𝑖𝑛)/2

𝑇𝑐 𝑇𝑐 ≤ 313.15
0

  (6.16) 

where Ω𝜖{𝑋}, 𝑋 > 0, 𝑡 is the tissue overall thickness, 𝑡𝑠𝑘𝑖𝑛 is the skin layer thickness. 

Accuracy in the estimated parameters depends on the following measures. Firstly, the 

thermal problem of a particular organ to be addressed will be selected because it is obvious that, 

for a particular organ, a tumor could grow in a certain area. For example, in the chest assuming 

the muscle tissue layer is prone to grow a tumor, therefore, some constraints can be imposed to put 

the solution confined into that region and hence the generalized solution domain can be expressed 

as,  

Γ ⊂ {ℎ, 𝑅, 𝑇𝑐} 

and the constraints for the chest tumor parameters are, 

 Γ = {
ℎ
𝑅
 𝑇𝑐

1 ≤ ℎ ≤ 4
3 ≤ 𝑅 ≤ 15

309.15𝑜 ≤ 𝑇𝑐 ≤ 313.15

𝑐𝑚
𝑚𝑚
𝐾
  (6.17) 

Secondly, a dimensionless solution vector is created because parameters such as tumor 

depth, radius and tumor center temperature depend on the body geometry and they hold diverse 

ranges, for example, in particular case of the chest tumor, the depth may lie between 1 and 4 

centimetres, the center temperature between 0.2 and 4 degrees higher than the healthy tissues and 

the radius between three and fifteen millimetres. Therefore, a simple and efficient way to fit the 

assorted elements for GPM is to define a dimensionless solution vector as: 

Γ𝑛 = {

ℎ𝑛
𝑅𝑛
𝑇𝑐𝑛
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where Γ𝑛 ∈ ℝ, 1 ≤ ℝ ≤ 2, is the dimensionless domain and ℎ𝑛 , 𝑅𝑛 and  𝑇𝑐𝑛are the dimensionless 

tumor depth,  radius and  center temperature , respectively.   

Thirdly, after optimizing the thermal problem the dimensionless solution vector will be 

converted to the real parameter value. The reproduction of actual heat source parameter from the 

dimensionless parameter the following formula will be used: 

 𝒳 = (𝒳𝑚𝑎𝑥 −𝒳𝑚𝑖𝑛)(𝒳𝑛 − 1) + 𝒳𝑚𝑖𝑛  (6.18) 

where   {𝒳,𝒳𝑚𝑎𝑥 , 𝒳𝑚𝑖𝑛}𝜖Γ , Γ ⊂ {ℎ, 𝑇𝑐, 𝑅} and  {𝒳𝑛}𝜖Γ𝑛. 

Finally, the overall process has been established with MATLAB where the 

dimentionalization, dynamic gradient computations, search direction defeminisation, actual 

parameter computation and best solution selection are performed by the script with the reparative 

solution of heat-source models and converging to the test pattern.     

The optimization approaches to determine the thermal and geometrical parameters of tumors 

from their local surface temperature profiles are discussed as follows:  

6.3.3.2 Gradient Computations 

To find the search direction in GPM, the computation of gradient of the function (rate of 

change in temperature with model variable) is very important. The gradient vector  

∇𝑇(ℎ, 𝑇𝑐, 𝑅) =

[
 
 
 
 
𝜕𝑇

𝜕ℎ
𝜕𝑇

𝜕𝑇𝑐
𝜕𝑇

𝜕𝑅 ]
 
 
 
 

 can be computed mathematically or graphically. Before applying the 

optimization process, the change in temperature profiles with model parameter has been 

investigated graphically. The temperature distribution along a line passing the point which is 

directly over the heat source centre is computed while with different values of depth, radius, and 

heat-rate ratio.  

The temperature plots for heat sources of various radius are shown in Figure 6-7 where the 

top window shows the temperature graphs for several radius between 0.9 mm and 20 mm and the 

bottom window indicates the rate of change in temperature with radius at three significant points 

at the coldest point (name it 𝑑𝑅/𝑑𝑇𝑚𝑖𝑛), at the hottest point (name it 𝑑𝑅/𝑑𝑇𝑚𝑖𝑑), and in-between 
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(name it 𝑑𝑅/𝑑𝑇𝑚𝑎𝑥), them. The figure demonstrates that the slope of the curve is not identical 

everywhere but rather increases if the surface temperature goes higher.  

Temperature plots if the heat source depth changes are shown in Figure 6-8 where it is seen 

from the up window that the deep-seated source decreases the maximum elevation but increases 

the base area over which the temperature hill grows which is clearly depicted in the bottom window 

where the gradient is positive at apex, and negative at the colder area.  

 

Figure 6-7 Heat source model responses to 𝑅 and respective slopes of 
𝑑𝑇(𝑎)

𝑑𝑅
 

The temperature graphs for different tumor-core temperature are presented in Figure 6-9 

where the top window presents the temperature profiles for different body temperature between 

309.15K and 313.15 K and the bottom window shows the slope of the temperature change rates at 

the maximum temperature points. The figure shows that the slope is uniform for all values of heat-

rate ratios.  

In Figure 6-7, it can be seen that increased heat source radius elevates the maximum 

temperature magnitude and the region over which local temperature grows. The analysis shows 

that a reduction of 55% of a 4 mm diameter heat source, lowers almost 1K in maximum 

temperature and decreases 26% of subtended area over which local temperature (assuming the 

region having at least 303 K as a local hot zone) elevation exists on skin for a source in 3.5 cm 

depth and of 310.15K of body core temperature. The bottom window reveals the slopes at different 
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points on 𝑅 𝑣𝑠. 𝑇 curves that are required for radius estimation from surface temperature pattern 

as proposed in Eq. 6.3. 

 

Figure 6-8 Heat source model responses to ℎ  and slopes of 
𝑑𝑇(𝑎)

𝑑ℎ
 

 

From Figure 6-9, it can be observed that 1K change in the heat source temperature notices 

for approximately 0.8 K change in maximum skin temperature for a source of 5 mm radius in 3.5 

cm depth. It is evident that benign to malignant is easily separable. The slope of the 𝑇𝑐 𝑣𝑠. 𝑇𝑚𝑎𝑥 

curve is also presented to use for parameter estimator algorithm. 

 

Figure 6-9 Heat source model responses to  𝑇𝑐  and slopes of 
𝑑𝑇(𝑎)

𝑑𝑇𝑐
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From the above analysis, it is seen that 𝑑playes a substantial role on 𝑇(±0.1) while 𝑇𝑐 plays 

on 𝑇(0) but 𝑅 has weak effect on 𝑇 in comparing with 𝑑 and 𝑇𝑐. The proposed linear mapping 

convergent algorithm basically based on the slopes of parameter’s effect on surface temperature 

curves are used to estimate the tumor parameters.  Typical sample data set could be obtained from 

thermogram, numerical result or heat source model. Three sample points on the surface 

temperature plot have been chosen to estimate the average slope to develop the pattern estimator 

algorithm.  

The above analysis shows that temperature gradient due to the heat source parameter is not 

static and changes with space. Therefore, the proposed GPM approach computes slopes in different 

points and changes the search parameter as follows: 

The search parameter updating algorithm is developed based on equations and constraints 

presented in Eqn. 6.18-6.20 (for parameter renewal) and in Eqn. 6.17 (for limiting). A convergent 

algorithm has been developed employing error minimization technique for parameter estimation.  

 ℎ𝑖 = ℎ𝑖−1 + ℎ𝑖−1 (
∆ℎ

∇𝑇𝑚𝑎𝑥
)
𝑖𝑑𝑒𝑎𝑙

(𝑇𝑚𝑖𝑛_𝑠,𝑖−1 − 𝑇𝑚𝑖𝑛_𝑎) (6.19) 

 𝑇𝑐,𝑖 = 𝑇𝑐,𝑖−1 + (
∆𝑇𝑐

∇𝑇𝑚𝑖𝑛
)
𝑖𝑑𝑒𝑎𝑙

(𝑇𝑚𝑎𝑥_𝑠,𝑖−1 − 𝑇𝑚𝑎𝑥_𝑎) (6.20) 

 𝑅𝑖 = 𝑅𝑖−1 + 𝑅𝑖−1 [(
∆𝑅

∇𝑇𝑚𝑎𝑥
)
𝑖𝑑𝑒𝑎𝑙

(𝑇𝑚𝑎𝑥_𝑠,𝑖−1 − 𝑇𝑚𝑎𝑥_𝑎)  +

  (
∆𝑅

∇𝑇𝑚𝑖𝑛
)
𝑖𝑑𝑒𝑎𝑙

(𝑇𝑚𝑖𝑛_𝑠,𝑖−1 − 𝑇𝑚𝑖𝑛_𝑎)   + (
∆𝑅

∇𝑇𝑚𝑖𝑑
)
𝑖𝑑𝑒𝑎𝑙

(𝑇𝑚𝑖𝑑_𝑠,𝑖−1 − 𝑇𝑚𝑖𝑑_𝑎)]  (6.21) 

where, 𝑖 = 1, 2…… ,𝑁.,  and 𝑇𝑚𝑎𝑥_𝑠,𝑖 , 𝑇𝑚𝑖𝑛_𝑠,𝑖,and 𝑇𝑚𝑖𝑑_𝑠,𝑖 are the maximum, minimum and 

midpoint temperature of simulated pattern at ith iteration and 𝑇𝑚𝑎𝑥_𝑎 , 𝑇𝑚𝑖𝑛_𝑎, and 𝑇𝑚𝑖𝑑_𝑎 are the 

maximum, minimum and mid-point temperature on actual pattern, respectively; (
∇𝑋

∇𝑇𝑠
)
𝑖𝑑𝑒𝑎𝑙

is the 

slope of the  𝑥 𝑣𝑠. 𝑇𝑠 where 𝑥 𝑖𝑠 𝑑 𝑜𝑟 𝑅 𝑜𝑟 𝑇𝑐 and 𝑇𝑠 is the maximum or minimum or midpoint 

temperature. The slopes are determined incorporating Fig. 6.5, 6.6 and 6.7. In this proposed 

method the ℎ and 𝑇𝑐is determined by minimizing the minimum and maximum point error, 

respectively (serve the very similar purpose of the ‘COARSE’ knob of an instrument) whereas the 

𝑅  assumed as ‘FINE’ knob to adjust (tune). 

To limit the solution domain, assume 
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 𝑑𝑠𝑘𝑖𝑛 ≤ ℎ ≤ 𝑑𝑑𝑣𝑟 (6.22) 

𝑇𝑎 ≤ 𝑇𝑐 ≤ 𝑇𝑐𝑚𝑎𝑥 alternatively 𝑄𝑚,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 ≤ 𝑄𝑚 ≤ 𝑛𝑄𝑚,ℎ𝑒𝑎𝑙𝑡ℎ𝑦   (6.23) 

 𝑅𝑐𝑒𝑙𝑙 ≤ 𝑅 ≤ 𝑑𝑑𝑣𝑟 − 𝑡𝑠𝑘𝑖𝑛 (6.24) 

where  𝑑𝑠𝑘𝑖𝑛 = 0.91 ± 0.14 mm, is the usual thickness of forearm skin and 𝑑𝑑𝑣𝑟 = 4 𝑐𝑚, is the 

depth of the deep volar at ‘radius’ side, within this range the tumor could grow, 𝑄𝑚 defines the 

range of metabolic heat generation in healthy to cancerous tissues (𝑛 = 40), 𝑇𝑎 is the artier blood 

temperature (= 310.15K),  𝑇𝑐𝑚𝑎𝑥  could be deduced from upper limit of 𝑄𝑚and 𝑅 is the radius 

bounded by unit cell (200𝜇𝑚) to the depth constraints.  

6.3.3.3 Optimization Process with GPM 

This section exemplifies the process of optimizing the thermal problem due to a chest tumor. 

Using the concept discussed in Section 0, a heat source model of a chest tumor is produced where 

the tissue depth is assumed 3.8 cm. The governing equation of the model is a function of tumor 

depth (ℎ), radius (𝑅) and metabolic rate ratio (𝑛) which can be seen in Eqn. 6.23 after rewriting 

Eqn. 6.3 with help of Eqn. 6.4 to 6.6,    

 𝑇(ℎ, 𝑅, 𝑛, 𝑎) = 𝑇𝑒 +
(−0.111ℎ2+0.64ℎ+34)𝑒10

−4(6𝑛+33.4𝑅)−𝑡𝑒
2000ℎ𝑎
𝑘𝑅

(𝑅𝑛)−0.92{(ℎ−2.2)2+2.6}(ℎ2+𝑎2−𝑅√ℎ2+𝑎2)+1
  (6.25)  

The expressions for gradients of Eqn. 6.23 in terms of depth, radius and heat-rate ratio are 

presented below.   

𝜕𝑇

𝜕ℎ
=

𝑉𝑒10
−4(6𝑛+33.4𝑅)(−0.222ℎ + 0.64) − 𝑈 [

20ℎ𝑎

𝑘𝑅
(𝑅𝑛)−0.92 ((2ℎ − 4.4) (2ℎ −

𝑅ℎ

√ℎ2+𝑎2
))]

𝑉2
 

𝜕𝑇

𝜕𝑅
=
𝑉(33.4 × 10−4)𝑒10

−4(6𝑛+33.4𝑅)(−0.111ℎ2 + 0.64ℎ + 34) − 𝑈 [
2000ℎ𝑎
𝑘𝑅2

(𝑅𝑛)−0.92{(ℎ − 2.2)2 + 2.6} (
0.92√ℎ2+𝑎2

𝑅
− 1.92)]

𝑉2
 

𝜕𝑇

𝜕𝑛
=
𝑉(6 × 10−4)𝑒

10−4(6𝑛+33.4𝑅)(−0.111ℎ2 + 0.64ℎ + 34) − 𝑈 [
1840ℎ𝑎

𝑘𝑅𝑛
(𝑅𝑛)−0.92{(ℎ − 2.2)2 + 2.6}(1 − 𝑅√ℎ2 + 𝑎2)]

𝑉2
 

where 𝑉 =
2000ℎ𝑎

𝑘𝑅
(𝑅𝑛)−0.92{(ℎ − 2.2)2 + 2.6}(1 − 𝑅√ℎ2 + 𝑎2) + 1 and 

 𝑈 = (−0.111ℎ2 + 0.64ℎ + 34)𝑒10
−4(6𝑛+33.4𝑅) − 𝑡𝑒 
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Starting with a maximum cost function, the heat source is assumed placed at the deepest 

tissue, the size and heat-rate ratio of heat source has the minimum value. For this case, the 

boundary conditions are, 

{

𝑔1 = ℎ − 𝑅 ≥ 0
𝑔2 = 𝑅 ≥ 6

𝑔3 = 𝑛 − 120 ≤ 0
 

Therefore, 

𝜕𝑔1
𝜕ℎ

= 1,
𝜕𝑔1
𝜕𝑅

= −1,
𝜕𝑔1
𝜕𝑛

= 0 

𝜕𝑔2
𝜕ℎ

= 0,
𝜕𝑔2
𝜕𝑅

= 1,
𝜕𝑔1
𝜕𝑛

= 0 

𝜕𝑔3
𝜕ℎ

= 0,
𝜕𝑔3
𝜕𝑅

= 0,
𝜕𝑔3
𝜕𝑛

= 1 

Then 

𝑁 = [
1 −1 0
0 1 0
0 0 1

], 𝑁𝑇𝑁 = [
1 −1 0
−1 2 0
0 0 1

], (𝑁𝑇𝑁)−1 = [
2 1 0
1 1 0
0 0 1

],  

𝜆 = 𝑁(𝑁𝑇𝑁)−1𝑁𝑇 = [
1 0 0
0 1 0
0 0 1

] 

𝑃 = 𝐼 − 𝑁(𝑁𝑇𝑁)−1𝑁𝑇 = [
0 0 0
0 0 0
0 0 0

] 

Where 𝑃∇𝑇 = 0 satisfies the Kuhn-Tucker conditions, therefore, there is an exact solution for the 

problem. 

Assuming the start point at 𝑋0
𝑇 = (3.2, 6, 5),  the  

∇𝑇 = {
0.0113
0.0401
1.195

}

𝑚𝑖𝑛

, {
0.0203
0.0219
1.195

}

𝑚𝑖𝑑

, {
0.0203
0.0197
1.195

}

𝑚𝑎𝑥

 

The projection move direction is 𝑠 = −𝜆∇𝑇 = {

[0.0113 0.0401 1.195]𝑇𝑚𝑖𝑛
[0.0203 0.0219 1.195]𝑇𝑚𝑖𝑛
[0.0203 0.0197 1.195]𝑇𝑚𝑖𝑛

},  
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For 10% improvement in the objective function 𝛾 = 0.1 and the exploratory move is 

𝛼 = −
0.1𝑇

𝑠𝑇∇𝑇
= −

0.1 × 5

−8
= 0.0625 

Without considering the correction move, the projection and restoration moves as, 

𝑋1 = {
3.2
6
5
} + 0.0625 {

−0.0133
0.02
1.195

} = {
−0.0133
0.02
1.195

} 

The initial value of the heat source depth 𝑑0 can be calculated from Eq. (6.13) though it 

varies significantly with the location of arbitrary point 𝑎. A distant point closer to the demarcation 

line between the hot zone and sound body has been chosen to get optimum 𝑑0. The initial value of 

𝑇𝑐0 is computed using Eq. (6.9) with assuming 𝑅0 = 0.0002 m. A convergent algorithm has been 

developed employing error minimization technique for parameter estimation.  

To determine the exact values to the parameters the study proposes the following algorithm: 

1. Initialize the parameters (use Eq (6.7) and (6.13) with lower limit of radius, say 𝑅 =

0.0002 𝑚) 

2. Calculate 𝑇𝑚𝑎𝑥,𝑚𝑜𝑑𝑒𝑙using model governing equation 

3. Upgrade 𝑑 using Eq. 6.14  

a. with holding within the range (i.e. if ℎ < ℎ𝑚𝑖𝑛 then ℎ = ℎ𝑚𝑖𝑛or if 𝑑 >

ℎ𝑚𝑎𝑥  then ℎ = ℎ𝑚𝑎𝑥), or 

b. with keeping the previous smaller value (i.e. if ℎ𝑖 > ℎ𝑖−1 then ℎ𝑖 = ℎ𝑖−1) 

c. otherwise continue the up gradation for 휀 > error or iteration # < 𝑁  

4. Recalculate 𝑇𝑐 using Eq. 6.15 with current value of 𝑑  

a. with keeping within the range (i.e. if 𝑇𝑐 > 𝑇𝑐,𝑚𝑎𝑥 then 𝑇𝑐 = 𝑇𝑐,𝑚𝑎𝑥or if 𝑇𝑐 <

𝑇𝑠𝑎𝑚𝑝𝑙𝑒,𝑚𝑎𝑥 then 𝑇𝑐 = 𝑇𝑠𝑎𝑚𝑝𝑙𝑒,𝑚𝑎𝑥) 

b. otherwise continue this Step-4 for 휀 > error or iteration # < 𝑁 

5. Renew 𝑅 using Eq. 6.16 with current value of 𝑑and 𝑇𝑐 

a. with abiding by the range (i.e.  if 𝑅 > ℎ − ℎ𝑚𝑖𝑛 then 𝑅 = ℎ − ℎ𝑚𝑖𝑛or  if 𝑅 <

𝑅𝑐𝑒𝑙𝑙 then 𝑅 = 𝑅𝑐𝑒𝑙𝑙) 

b. otherwise continue the Step-5 for 휀 > error or iteration # < 𝑁 

6. If two parameters become constant then go for next solution (decrease 𝑑 by 5%) 
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7. Repeat Steps 3 to 5 until ℎ, 𝑇𝑐 and 𝑅 become constant 

8. Stop  

These procedures are programed in MATLAB to predict the heat source parameters 

(𝑇𝑐, ℎ and 𝑅) from surface temperature image. 

6.3.3.4 Result 

The estimation process is applied for computing significant parameters of hot nodule. As 

discussed above, the approach requires a governing equation, bound constraints set, and a target 

temperature pattern. Of them, the first two are discussed in the previous sections, which are 

programed with MATLAB according to the GPM algorithm. The target temperature matrix should 

be captured on a patient’s chest, which is complex and time consuming and needs to be developed 

in a controlled laboratory more likely than in a hospital, where thermogram will take place. In lieu 

of real thermogram, the study has used numerical simulated temperature data over the anatomic 

accurate chest model where the numerical data has also been imposed with some random noise to 

produce a kind of realistic target matrix.  

The obtained result is presented in Table 6-1. The process has been repeated for thee 

‘Samples’—the ‘Sample-I’ small-size, moderate heat-rate, mid-way tumor has radius 6mm, 

volumetric metabolic rate 10 kW and grown in 3 cm deep. The optimization approach estimates 

depth and radius exactly but only 0.07% overestimates in metabolic heat generation. Diagnosis of 

a deep-seated benign tumor (Sample-II) shows the error-free depth estimation while 2.03% error 

in heat generation rate and 1.11% in size measurement. Similar to the first case, the shallow-body 

tumor of moderate heat generation rate and 1 cm radius (Sample-III) provides true results for depth 

and radius measurement while 1.44% error in predicting the heat generation rate.  
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Table 6-1 Estimated heat source parameters 

 

 

 

 

 

 

The GPM requires partial derivatives of the surface temperature plot to the model parameters 

which requires a continuous differentiable governing equation that has been met with the proposed 

heat source model. However, the heat-source model has derived from the numerical results 

obtained on simplistic (homogenous) tissue models. The optimization problems on realistic models 

require solving the bio-thermal problem numerically which is a desecrate process and unable to 

compute the gradients.  

6.3.4 Pattern Search Method (PSM) 

Unlike the gradient projection method (GPM), the pattern search method (PSM) works 

without accomplishing the gradient vector and the directional derivatives and can be applied on 

discontinuous or non-differentiable functions. Such optimization methods are also known as 

direct-search, derivative-free, or black-box methods. The technical components of the general 

PSM for the linearly constraints problem are detailed in [66, 65]. Description of the useful 

components and their nature for solving the mentioned optimization problem are following.   

 Parameter Target Value Estimated Value Avg. Error 

Sample -I ℎ 0.03 m 0.030 m 0 

𝑄𝑚 10208 W/m3 10215 W/m3 0.07 

𝑅 0.006 m 0.006 m 0 

Sample-II ℎ 0.038 m 0.038 m 0 

𝑄𝑚 3783 W/m3 3860 W/m3 2.03 

𝑅 0.009 m 0.0089 m 1.11 

Sample-III ℎ 0.025 m 0.025 m 0 

𝑄𝑚 9816 W/m3 9675 W/m3 1.44 

𝑅 0.01 m 0.01 m 0 
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The pattern (𝑃𝑘) is consisting of a basis matrix (𝐵 ∈ 𝑅𝑛×𝑛) and a generating 

matrix (𝐶𝑘 = [Γ𝑘 𝐿𝑘]).  In the two column generating matrix, the column Γ𝑘 contains a finite set 

of nonsingular matrices with both positive and negative signs and the column matrix 𝐿𝑘 contains 

a column of zeros. 

Trial step 𝑠𝑘
𝑖  vector is defined as 𝑠𝑘

𝑖 = Δ𝑘𝑝𝑘
𝑖  which is the trial vector at 𝑘 −th iteration for 

some 𝑖𝜖{1, 2, … . . 𝑛}, with Δ𝑘𝜖ℝ , Δ𝑘 > 0 and the 𝑝𝑘
𝑖  denotes the 𝑖 −th column of 𝑃𝑘 = 𝐵𝑐𝑘

𝑖  where 

𝑐𝑘
𝑖  denotes a column of 𝐶𝑘 = [𝑐𝑘

1…… 𝑐𝑘
𝑝]. A feasible trial step is determined by (𝑥𝑘 + 𝑠𝑘

𝑖  ) ∈ Ω, 

where 𝑥𝑘𝜖𝑋 ⊂  𝑅
𝑛 is the current iterate. Any point of the form 𝑥𝑘

𝑖 = 𝑥𝑘 + 𝑠𝑘
𝑖  is called a trial point. 

PSM proceed by conducting a series of exploratory moves about the current iterate 𝑥𝑘 to 

choose a new iterate  𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘, for some feasible step 𝑠𝑘 determined during the course of 

exploratory moves. The ‘moves’ required for converging to a local or to the global minima is 

obtained with fulfilling the following conditions:  

1. 𝑠𝑘 ∈ Δ𝑘𝑃𝑘 

2. (𝑥𝑘 + 𝑠𝑘 ) ∈ Ω 

3. If min{𝑓(𝑥𝑘 + 𝑦)| 𝑦 ∈△𝑘 𝑃𝑘, 𝑥𝑘 + 𝑦 ∈ Ω} < 𝑓(𝑥𝑘), then  𝑓(𝑥𝑘 + 𝑠𝑘) < 𝑓(𝑥𝑘) 

By abuse of notation, if 𝐴 is a matrix, 𝑦 ∈ 𝐴 means that the vector 𝑦 is a column of 𝐴.  

The PSM requires defining a column matrix of initial value and positive step-size parameter 

as:   

Let 𝑋0 = |

𝑥1
𝑥2
⋮
𝑥𝑛

| ∈  Ω and  Δ0 > 0 and a direction matrix 𝑃𝑘. 

Then the process goes in the following way: 

For 𝑘 = 0, 1, 2, ……. 

1. Compute  𝑓(𝑥𝑘). 

2. Determine 𝑠𝑘 abiding by 𝑠𝑘 ∈ Δ𝑘𝑃𝑘, (𝑥𝑘 + 𝑠𝑘 ) ∈ Ω and if  min{𝑓(𝑥𝑘 + 𝑦)| 𝑦 ∈

△𝑘 𝑃𝑘, 𝑥𝑘 + 𝑦 ∈ Ω} < 𝑓(𝑥𝑘), then  𝑓(𝑥𝑘 + 𝑠𝑘) < 𝑓(𝑥𝑘). 

3. If 𝑓(𝑥𝑘 + 𝑠𝑘) < 𝑓(𝑥𝑘), then 𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘. Otherwise 𝑥𝑘+1 = 𝑥𝑘.  
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4. If 𝑓(𝑥𝑘 + 𝑠𝑘) ≥ 𝑓(𝑥𝑘) [i.e. an unsuccessful search], then Δ𝑘+1 = θk∆k, where θk ∈

(0, 1). Otherwise (for a successful search)  Δ𝑘+1 = λk∆k where λk ∈ (1,+∞]. 

Therefore in PSM, the basis matrix 𝐵, the generating matrix 𝐶𝑘, the exploratory moves to 

produce a feasible step 𝑠𝑘 and the updating of 𝐶𝑘 and ∆𝑘 must be specified.  

6.3.4.1 PSM Process 

The PSM will compute the basis matrix, direction matrix, exploratory moves and updating 

parameters and step sizes. It is discovered that tumors could affect at least four behaviors of the 

tissues, those that are associated with heat generation and dissipation. Therefore, the spatial 

distribution of temperature on the skin surface is an obvious function of blood perfusion, 

metabolism, tumor location and tumor size, which can be written as:  

𝑇(𝑋) = 𝑓(𝜔𝑏 , ℎ, 𝑄𝑚, 𝑅) 

With the pattern search algorithm for bound constraint optimization minimize the fitness 

functions defined before which can be rewritten for each function as:  

min||𝑇𝑜 − 𝑇𝑚(𝜔𝑏, ℎ, 𝑄𝑚, 𝑅)|| 

Subject to  𝑥 ⊂  {ℎ, 𝑄𝑚, 𝑅} ∈ Ω, where Ω is the region over which the solution is bounded. 

𝑇𝑜 is the actual temperature pattern over the skin surface that may be obtained from thermogram 

(using infrared camera, numerical simulation etc) and 𝑇𝑚(𝑋) is the estimated temperature pattern 

that is obtained from the model expression (or directly from the numerical models).  

The solution matrix may not be unique because several solutions could provide similar 

results. However, application of PSM for thermal problem optimization in tumor requires some 

special techniques in handling parameters which include understanding the solution domain, 

normalizing and demoralizing the parameters, properly choosing the initial value matrix.  
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Table 6-2 Initial value matrix 

 Set-1 Set-2 Set-3 Set-4 

𝜔𝑏0 1.2 1.2 1.5 1.2 

ℎ0 1.2 1.2 1.8 1.8 

𝑄𝑚0 1.2 1.5 1.5 1.2 

𝑅0 1.2 1.3 1.5 1.2 

 Midway-

mid stage 

Shallow-

malignant 

Deep seated- 

benign 

Shallow- 

benign 

 

The solution domain,Ω = {

𝜔𝑏 0.5 ≤ 𝜔𝑏 ≤ 160

ℎ 0.35 − 𝑅 ≤ ℎ ≤ 6 − 𝑅
𝑄𝑚 5 ≤ 𝑄𝑚 ≤ 100𝑘
𝑅 0.6 ≤ 𝑅 ≤ ℎ/2

 where the parameters in Ω have 

diverse ranges, for example, the depth of shallow tumors could be a fraction centimetre whereas 

of deep-seated tumors the depth could be few centimetres, likewise the tumor center temperature 

could vary between five and hundred kilowatt per unit m3, the radius between millimetre and 

centimetre and the perfusion rate varies as low as 0.5 to maximum 160. A simple and efficient way 

to fit the assorted elements for optimization is to define a dimensionless vector as: 

Ω = {

𝜔𝑏𝑛
ℎ𝑛
𝑄𝑚𝑛
𝑅𝑛

         where Ω𝑛 ∈ ℝ, 1 ≤ ℝ ≤ 2, is the dimensionless domain and 𝑋𝑛 ⊂

{𝜔𝑏𝑛, ℎ𝑛, 𝑄𝑚𝑛, 𝑅𝑛} are the dimensionless parameters. In further analysis the range of the variables 

are kept between 1 and 2 and the generalized domain expression could be rewritten as, Ω = 1 ≤

𝑋 ⊂ {ℎ𝑛, 𝑇𝑐𝑛, 𝑅𝑛} ≤ 2. The actual parameter values in a specific organ could be reproduced from 

the dimensionless (normalized) parameter using the following formula: 

 𝒳 = (𝒳𝑚𝑎𝑥 −𝒳𝑚𝑖𝑛)(𝒳𝑛 − 1) + 𝒳 𝑚𝑖𝑛 (6.26) 

where   {𝒳,𝒳𝑚𝑎𝑥 , 𝒳𝑚𝑖𝑛} ∈ Ω , Ω ∈ X ⊂ {𝜔𝑏, 𝑑, 𝑄𝑚, 𝑅} and  {𝒳𝑛} ∈ Ω𝑛. 

Selection of initialization matrix (i.e. 𝑋0 and Δ0) can lead to local or global minima after 

reasonable iterations. After a series of successful computation, several choices 𝑥0 of and their 

respective Δ0was recommended to ensure the global minima for specific types of tumors.  The 

deep-seated to shallow body and benign to malignant tumors have some distinguishable features 
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which might be reflected in their temperature pattern. The research considers those features while 

choosing set of initial values. Examples of initial value sets are listed in Table 6-2. 

The optimization approach calculates the followings:   

The pattern( 𝑃𝑘 = 𝐵[Γ𝑘 𝐿𝑘]), where  

The generating matrix,  

±Γ𝑘 = ±|

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

| 

The column matrix, 𝐿𝑘 = |

0
0
0
0

| 

The Basis vector,  𝐵 = |1 1 1 1| 

The pattern matrix leads the search into 15 different directions, where each column in the 

matrix indicates the particular direction. The search algorithm featured is to determine the 

appropriate search directions by reordering the columns. In case of no forward or backward move, 

the algorithm will update the trail steps for further moves.  

Assuming a breast tumor, the initial parameter matrix 𝑋𝑇 = |0.52 0.06 5000 0.006| ∈

Ω and the trail step size Δ0 > 0.05. 

Trial step vector (𝑠𝑘
𝑖 = Δ𝑘𝑃𝑘

𝑖 ) at 𝑘 −th iteration for some 𝑖 ∈ {1, 2, … . .15}, Δ𝑘 ∈ ℝ with 

Δ𝑘 > 0 and 𝑃𝑘
𝑖  denotes the 𝑖 −th column of 𝑃𝑘. For example for the first iteration (𝑘 = 1) to the 

5th direction (𝑖 = 5), the step vector 𝑠1
5 = |0.05 0.05 0.05 0|𝑇 and the trial step is determined 

by |0.57 0.065 5000.05 0.0065| ∈ Ω, where 𝑋𝑘 ∈ 𝑥 ⊂  {𝜔𝑏, 𝑑, 𝑄𝑚, 𝑅} is the current iterate.   

The exploratory move required converging to a local or to the global minima is obtained 

with fulfilling the following conditions:  

||𝑇𝑜 − 𝑇𝑚
𝑘(𝑥𝑘)|| > ||𝑇𝑜 − 𝑇𝑚

𝑘+1(𝑥𝑘+1)|| with 𝑠𝑘 ∈ Δ𝑘𝑃𝑘   and (𝑥𝑘 + 𝑠𝑘 ) ∈ Ω where 𝑥𝑘+1 =

𝑥𝑘 + 𝑠𝑘. 

The search method for the particular problem goes in the following way: 
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For 𝑘 = 0, 1, 2, ……. 

For 𝑖 = 1, 2, ……15, 

a) Compute||𝑇𝑜 − 𝑇𝑚
𝑘(𝑥𝑘

𝑖 )||. 

b) Determine 𝑠𝑘
𝑖  abiding by 𝑠𝑘

𝑖 ∈ Δ𝑘𝑃𝑘
𝑖 , (𝑥𝑘 + 𝑠𝑘

𝑖  ) ∈ Ω and||𝑇𝑜 − 𝑇𝑠
𝑘(𝑥𝑘)|| >

||𝑇𝑎 − 𝑇𝑠
𝑘+1(𝑥𝑘+1)|| and perform step (a). 

c) For all values of 𝑖 compute min ||𝑇𝑎 − 𝑇𝑠
𝑘(𝑥𝑘+1)|| and find 𝑥𝑘 = 𝑥𝑘+1 and 

Δ𝑘+1 =Δ𝑘/2 (keep not less than 0.005). Otherwise 𝑥 remain unchanged and 

Δ𝑘+1 = 2Δ𝑘. 

6.3.4.2 Result 

The perfusion rate, depth, metabolic rate and radius of unknown tumors have been estimated 

with the PSM. Tumors with different physio-thermo-biological parameters grown in the human 

chest, forearm and breast have been investigated. The entire estimation approach has combined 

two processes—the numerical process to solve the bio-heat equation on the anatomic accurate 

model and the optimization process to evolve solution vectors and to find the best solution(s).  For 

chest tumors the numerical simulation is performed with FEM, where the programs are written in 

MATLAB. However, for forearm and breast tumors the bio-heat problems are solved numerically 

with finite element (FE) software, which has required a link between the numerical simulation data 

and the PSM script. Consequently, this has increased the run time and the computation memory. 

The target matrix is generated from FE data which has been obtained by solving the Penne’s heat 

equation on the realistic model. Such generated ideal target matrix is called the ‘Noiseless System’ 

while the ‘Noisy System’ is that which has added random noises.  

The estimated perfusion rates, depths, heat-rates, and radii for the noiseless system for chest, 

forearm and breast tumors are presented in Table 6-3.  The surface thermal behaviour of the chest 

tumor of 18 mm diameter and volumetric heat generation rate of 40 kW (is grown in 2.5 cm under 

the skin surface has been estimated numerically to develop the target matrix. Then the PSM is 

executed for the all four (see Table 6-2) initial test vector sets. For ‘set-I’ the estimate is found 

2.4977 cm, 40.221 kW/m3 and 9.0072 mm for depth, metabolic rate and radius, respectively. The 

estimated values for other sets of initial values are also presented in the table. The chest tumor 
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diagnosis system gets the highest error while computing the radius for initial value ‘Set-3’.  

Another target matrix of surface temperature is considered for a 24 mm-diameter, 50 kW/m3 heat 

rate and 1.6 cm deep forearm tumor. The parameters of such tumor are calculated for the initial 

value sets and the estimated results are presented in the table. This time the maximum error is 

received while calculating the depth with set 1. The optimization process is also applied to a 

diagnosis a tiny (radius 8 mm), shallow body (depth 12 mm) breast malignant (volumetric heat 

rate 65kW). Detection of such malignancy with the above mentioned initial value sets contains 

0.61% error while predicting the metabolic heat rate with set-3.  

In case of real thermogram, the captured thermal image is not as ideal as the numerical data 

computed in the noiseless system. Therefore, the target matrix can be incredibly different from 

that assumed above. Mimicking the realistic thermal surface data in developing the target matrix 

is achieved by adding random noise. The imposed noise is kept between 0 and 10%.  The 

parameters are estimated for the very same tumors in chest, forearm and breast and the results are 

presented in Table 6-4. It is seen that the estimation error is slightly higher in noisy system than 

the noise-less system. The source of un-symmetric temperature pattern in real thermogram can be 

generated from the irregular shape and margin of tumor.              

 The computational complexity of this algorithm is on the order of 𝑂(𝑛2), this is simply 

because of the algorithm has two “for” loops that are repeated for “n” times each.  
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Table 6-3 PSM estimate for ideal thermogram 

Tissue Type 

Target parameter 

Run 

Estimated parameter 
Avg. 

Error ℎ (cm) 
𝑄𝑚 

(W/m3)  
𝑅 

(mm) 
ℎ (cm) 

𝑄𝑚 
(W/m3)  

𝑅  
(mm) 

Chest 2.5 40000 9 

Set-1 2.4977 40221 9.0072 

0.55% Set-2 2.5007 40110 8.9896 

Set-3 2.5036 39963 9.0424 

Forearm 1.6 50000 12 

Set-1 1.5833 50360 12.0232 

1.04% Set-2 1.5950 50272 12.0584 

Set-3 1.6037 49832 11.9792 

Breast 1.2 65000 8 

Set-1 1.1964 65307 8.0312 

0.61% Set-2 1.2081 64868 8.04 

Set-3 1.2110 64604 7.9784 

Table 6-4 PSM estimate for realistic thermogram 

Tissue 

Type 

Target parameter 

Run 

Estimated parameter 
Avg. 

Error ℎ (cm) 𝑅 (mm) 
𝑄𝑚 

(W/m3) 
ℎ (cm) 𝑅 (mm) 

𝑄𝑚 
(W/m3) 

Chest 2.5 40000 9 

1 2.4889 39984 8.9632 

0.96% 2 2.5095 40335 8.9281 

3 2.5211 40247 9.0863 

Forearm 1.6 50000 12 

1 1.6184 50359 11.9353 

1.15% 2 1.5891 49832 12.0672 

3 1.6038 50184 12.1111 

Breast 1.2 65000 8 

1 1.1905 64780 7.9257 

1.65% 2 1.2198 65307 8.0663 

3 1.2139 65220 8.0487 

6.3.5 Genetic Algorithm 

Genetic algorithm (GA), a search heuristic that is developed by mimicking the concept of 

natural selection, was formally introduced in the United States in the 1970s by John Holland at the 

University of Michigan and still is routinely used for generating useful solutions to optimization 

and search problems and the continuing price/performance improvement of computational systems 

have compelled ample attraction for non-gradient optimization [63]. The process uses natural 

evolution, such as inheritance, mutation, selection and crossover for generating solutions to 

optimization problems. The GA, however computationally expensive, is less susceptible to getting 

'stuck' at local optima than gradient search methods and works very well on mixed (continuous 

and discrete), combinatorial problems, in particular. 

Features of the Genetic Algorithm: The most important features of GAs are,  
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 definition of the objective/cost/fitness function; 

 definition and implementation of the genetic representation (chromosome); 

and  

 definition and implementation of the genetic operators.  

Fitness function: The fitness function is used to achieve the optimized solution by 

minimizing min 𝑓(𝑥)where 𝑓: ℝ𝑛 → ℝ, 𝑥 ∈ ℝ𝑛 and 𝑥 is called the chromosome.  Thecost 

function is evaluated foreach chromosome and depending on the cost value, the processassigns a 

figure of merit to indicate how close it for meeting the overall specification, and then the worst 

solutions (chromosomes) are deleted and the good ones breed to form new chromosomes until the 

best design solutions emerge. The essential features of a fitness function would be workable, 

closely relatable and quickly computable. The cost function is developed involving the simulated 

pattern (obtained from the numerical solution of bio-thermal problem over the anatomic accurate 

mode) and IR thermogram (test or target pattern, obtained from clinic taking thermogram over the 

surface of breast with tumor). 

Genetic Representation: The process operates on twenty populations, encoded in 40 bit 

binary, called the chromosome or genome. The five genes (parameters) on each chromosome are 

the depth ℎ, size 𝑅(radius), blood perfusion rate𝜔𝑏, and metabolism 𝑄𝑚(each parameter is 10 bit 

long). The genetic algorithm creates a population of genomes (initial populations or candidate 

solutions) and then it applies genetic operations (selection, crossover and mutation), iteratively, to 

the individuals in the population to generate new individuals. To pick up the best individuals for 

mating, the process evaluates the cost function and assigns an objective score. The objective scores 

help the genetic algorithm to maintain diversity. The transformation from the raw objective scores 

to the scaled fitness scores is obtained by the linear scaling (fitness score = objective score/overall 

variation in scores. The process will use the ‘steady state’ implementation i.e. at each 'generation’ 

a few individuals are replaced with the good ancestors. The worst and the most-similar 

chromosomes are to be replaced. 

Genetic Operations: A probability percentage of mutation of 0.10 and a probability of 

crossover 0.40 are used to determine how members of a population will reproduce to bring forth 

the next generation. In the crossover, two individuals (the parents) combine to produce two more 

individuals (the children), thus the genetic material from the previous generation is carried to the 

subsequent generation (offspring). Chromosomes of higher fitness are more likely to be selected 
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to reproduce and contribute their genetic material to the next generation. In the mutation process, 

the elementflip, element swap and destructive mutation are to be used, to add additional features 

to the candidate solution. 

The GA based evolution process goes: 

 Start with random population 

 Evaluate fitness of each population 

 Create new population 

o Select parents based on fitness 

o Create new generation through crossover and mutation of “DNA” 

 Replace old population 

 Repeat  

Picking the best individual in producing new population makes the process quick converge. 

However, picking some genomes that aren't quite as good (but hopefully have some good genetic 

material in them) is a good practice.  Some of the useful section methods are the roulette wheel 

selection (the likelihood of picking an individual is proportional to the individual's score), the 

tournament selection (a number of individuals are picked using roulette wheel selection, then the 

best of these is (are) chosen for mating), and the rank selection (pick the best individual every 

time). The threshold selection can also be effective.  

The crossover and the selection methods, mentioned above, are too effective that they 

eventually will be driving the GA toward a population of individuals that are almost exactly the 

same. When the generations are ended up with a population that consists of similar individuals, 

the likelihood of finding new solutions typically decreases and the process stops.  

6.3.5.1 GA Process 

Like GPM and PSM optimization, the GA also needs to identify 

 Ideal temperature distribution—thermal model of faulty (tumor) organ is analyzed 

numerically to estimate spatial distribution of temperature over surface. Assuming a 

heterogeneous organ model with known bio-thermal characters for healthy tissues 

while unknown physio-bio-thermal features for tumor, the surface temperature profile 



171 

 

is estimated in a controlled laboratory condition. Therefore the spatial distribution of 

temperature 𝑇𝑠𝑖𝑚(𝜔𝑏 , ℎ, 𝑄𝑚, 𝑅).       

 Parameter vector—the optimization parameters are the perfusion rate, depth, 

metabolism and radius of tumor. So the parameter vector is 𝑏 = [𝜔𝑏 , ℎ, 𝑄𝑚, 𝑅]. 

 Optimize function—the process will minimize 𝐸 = ∑ |𝑇𝐼𝑅 −
𝑛
𝑖=1

𝑇𝑠𝑖𝑚(𝜔𝑏𝑖, ℎ𝑖 , 𝑄𝑚𝑖, 𝑅𝑖)| .  

Spatial distribution of surface temperature for an organ with a tumor will be acquired by 

thermogram and the center of the abnormal region and isothermal contours will be determined by 

modified snake algorithm [23] which will give test data set (𝑇𝐼𝑅).   

1001110011 1101110111 1000110101 1011111010 

Perfusion rate Depth Metabolic rate Radius 

Figure 6-10  Representation of a chromosome 

The vector 𝑏 is represented by a chromosome, commonly converted to a binary array. This 

study the binary array (chromosome) encodes four values in the order shown, after some execution 

the order has determined. In the implementation of the GA, the potential solution (chromosome) 

contains four genes named, respectively, as perfusion rate, depth, heat rate and radius and 10 bits 

are used to represent the value of each gene in binary format. Therefore, each chromosome has 

forty bits. This presentation is shown graphically in Figure 6-10. The fitness function is 𝑓(𝑏) =

1

𝐸2(𝑏)
.  

The population size is chosen to be fifty and initial population pool has been generated using 

a linearly spaced [1 − 2] random number generator. The fittest parents are chosen stochastically 

to keep the gene pool from getting trapped easily in a local max of the fitness function. The 

stochastic process must weigh the chromosomes by their fitness, calculate the sum of the fitness 

of all chromosomes, and select the parents represented by the value 𝑟 which is a random number 

between 1 and 50 (population size).  

Accuracy of the GA system depends on the size of chromosome. The study has used 40 bit 

chromosome where each parameter is presented in 10 bits. Before applying to the objective 

function evaluation, the binary parameters are to be converted to decimal numbers. The parameters 

are changed from their binary representation to floating point representation using: 



172 

 

 Γn = 1 +
1

2x−1
D (6.27) 

where, x is the number of bits used to represent the parameter (e. g. 10 in this case), and D 

is the decimal value of the parameter in binary form. The step size (resolution) of normalized 

parameters is ΔΓn = (2
x − 1)−1. For example a 6-bit parameter, as shown in the Table, the 

normalized parameters have a step size of 0.0159 which provides an actual stepping of 4.77 ×

10−4 m,  4.69 × 10−2 K in and 1.406 × 10−4 m in the estimation of depth, tumor center 

temperature and radius, respectively.   

The initial populations are basically based on normalized parameters which are generated 

using ‘rand’ function of MATLAB and holding them between 1.1 and 1.9. Assume 20 initial 

populations and repeat the following steps for each of them. Decode the randomly chosen 

population to produce an actual thermo-physical parameter which is then fed to the numerical 

model to compute surface temperature profile. Identify the abnormal features of the temperature 

profile and mark some isothermal lines using the modified snake algorithm. Compare the contour 

with the test pattern and evaluate the fitness of that particular chromosome using (6.22) and then 

ranked. Chromosomes of higher fitness are more likely to be selected to reproduce and contribute 

their genetic material to the next generation. A probability of mutation of 0.10 and a probability 

of crossover 0.40 are used to determine how members of a population will reproduce to bring forth 

the next generation. The crossover process takes place according the following approaches: 

Intra segment crossing: In this approach one or more bits of a segment will be interchanged 

with the respective bit(s) of the similar segment between two parents having the closest fitness 

error. 

Inter-segments crossing: In this approach one or more bits of a segment will be interchanged 

with the respective bit(s) of the different segment between two parents having the closest fitness 

error.     

The fitness of each chromosome is evaluated using Eqn. (6.22) and then ranked. 

Chromosomes of higher fitness are more likely to be selected to reproduce and contribute their 

genetic material to the next generation. A probability of mutation of 0.10 and a probability of 

crossover 0.40 are used to determine how members of population will reproduce to bring forth the 

next generation. In detail, the process has carried out according the flow chart presented in Figure 
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6-11. The process requires initialization of the set of bio-thermal parameters listed in Table 3.2, 

and Table 5.1 through 5.7. Among the listed parameters, healthy tissue’s bio-thermal features (such 

as 𝑘, 𝑐𝑏,𝜌𝑏 , 𝜔𝑏 , 𝑄𝑚, 𝑇𝑎) and ambient features (such as ℎ𝑎, 𝑇𝑒) are kept unaffected while the tumor 

parameters, named as solution vector ( includes 𝑘, 𝜔𝑏 , 𝑄𝑚, ℎ, 𝑅  ), keep changing during the 

process.  Initial solution vector, the starting point of the search, can be chosen randomly using 

random function generator or using Eqn. 6.13.  The solution vector is repeatedly computed by a 

search algorithm tailored using PSM, GA or GPM. In a particular iteration the estimated solution 

vector and other bio-thermal parameter values are applied to simulate the surface thermal 

distribution over any the anatomic accurate model developed in Chapter 4 (see Figure 4.6, 4.8, 

4.10-4.12). The bio-heat flow problem can be solved analytically or numerically (using FDM or 

FEM) or utilizing the heat-source mode (see section 6.3.1.1). However, the estimated surface 

thermal image can also be obtained by using a trained neural network.        

 
Figure 6-11 GA based estimation procedure 

The simulated surface thermal pattern is compared with a test (target) thermogram. The 

thermogram may be obtained from a clinic or generated in a laboratory. In this study, pretend 

thermal dataset has been generated by FEM simulation of bio-heat flow problem on an anatomic-

accurate physical model in a noisy environment (a random noise up to ±10%  to be added with 

ideal data to develop pretend in-vivo dataset). Section 6.3.2 discusses the procedure of developing 
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the test (𝑇𝐼𝑅(𝑘, 𝑄𝑚, 𝜔𝑏 , ℎ, 𝑅, �̅�)) and simulated (𝑇𝑠𝑖𝑚(𝑘, 𝑄𝑚, 𝜔𝑏 , ℎ, 𝑅, �̅�)) datasets from the 

respective thermograms, where  �̅� is the space variable. The optimization process advances while 

minimizing the mean absolute difference between temperatures at some predefined points (Eqn. 

6.14) and minimizing the mean absolute difference between the distances from the warmest point 

to the isothermal contours (Eqn. 6.15). If both cost functions achieve minimum values than the 

previous iteration, the solution vector set for that particular iteration is said to be converge to an 

optimum point and the search becomes a successful search. The searching method is repeated until 

any stopping criteria meets to terminate the process which are—(i) the optimization error should 

be ≥ 10−10 and (ii) the maximum iteration (N=1000 for GPM and ANN and N=30 Generations 

for GA).   If none of this stopping condition meets, the process is repeated for new solution vector.  

The algorithm 

1) Generate initial population 𝑋0 = {𝑥1
0, 𝑥2

0, ………… , 𝑥𝑁
0 }, 𝑥𝑖

0 ∈ Ω and N is even 

2) Evaluate cost function ℇ0
∗ = ∑ |𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑗 − 𝑇𝑗(𝑥𝑖

𝑁)|𝑛
𝑗=1 , 𝑗 ∈ ℝ 

3) Record 𝑆 ⊂ {(ℇ0
1, 𝑥1

0), (ℇ0
2, 𝑥2

0), ………… , (ℇ0
𝑁 , 𝑥𝑁

0 )} and sort in ascending 

4) Repeat 𝑡 = 0,1, ………… 

a) Repeat Row=1, 3,5  ……., N/2 

i) Parent selection [𝑋,̅ �̅�] = 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑆𝑅𝑜𝑤:𝑅𝑜𝑤+1; 𝑆𝐶𝑜𝑙2:4) 

ii) Repeat Bit=2, 3,…..,Length-Bit+1 

1. �̂� = 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟[�̅�(𝐵𝑖𝑡), �̅�(𝐵𝑖𝑡)] 

2. Evaluate cost function and add to S. 

iii) Repeat NBits=1,……,Length-2  

1. Parent selection [𝑋,̅ �̅�] = 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑆𝑅𝑜𝑤:𝑅𝑜𝑤+1; 𝑆𝐶𝑜𝑙2:4) 

2. �̂� = 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟[�̅�(𝐵𝑖𝑡), �̅�(𝐵𝑖𝑡)] 

3. Evaluate cost function and add to S. 

iv) Repeat Bit=2, 3,…..,Length-Bit+1 

1. �̂� = 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟[�̅�(𝐵𝑖𝑡), �̅�(𝐵𝑖𝑡 + 𝐿𝑒𝑛𝑔𝑡ℎ)] 



175 

 

2. Evaluate cost function and add to S. 

v) Repeat step 4(a-iii) with replacing (iii-2) by (iv-1). 

b) Repeat Row=1, 2,3  ……., N 

i) Parent selection [�̅�] = 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑆𝑅𝑜𝑤; 𝑆𝐶𝑜𝑙2:4) 

ii) For each segment repeat for Bit=2, and 3 

1. �̂� = [�̅�(2: 2 + 𝐵𝑖𝑡), �̅�(𝐵𝑖𝑡 + 4: 2 ∗ 𝐵𝑖𝑡 + 4)] 

2. Evaluate cost function and add to S. 

iii) Parent selection [�̅�] = 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑆𝑅𝑜𝑤; 𝑆𝐶𝑜𝑙2:4) 

1. Repeat Bit=2,3,… Length 

2. �̂� = [�̅�(2: 2 + 𝐵𝑖𝑡), �̅�(2 + 𝐿𝑒𝑛𝑔𝑡ℎ: 𝐵𝑖𝑡 + 2 + 𝐿𝑒𝑛𝑔𝑡ℎ)] 

3. Evaluate cost function and add to S. 

5) Until some stopping criterion is satisfied 

The subroutine developed in MATLAB, is currently performs a set number of iterations. 

6.3.5.2 Results 

The results obtained using these methodologies for solving the inverse problem related with 

tumors located in different parts of human body are listed in  

Table 6-5 and Table 6-6 . The parameters estimated from ideal surface temperature data of 

different tissue types are presented in the former table. For each cases the GA was run thrice with 

different random initial population, but the final estimates were identical regardless the initial 

population. These results show a good agreement between the actual and forecasted parameters, 

with maximum absolute error in heat generation rate of only 1.04% for the tumor embedded in 

rectangular pyramidal tissues.   Moreover, when a random noise with maximum ±10% was added 

to the input data the results obtained are in good agreement between the actual and forecasted 

parameters as presented in Table 6-6. In all cases the values of the known parameters and 

dimensions of the domain were same as presented in Chapter 1.  

It can be seen that using the proposed methodology it is possible to determine the depth, 

radius, perfusion rate and heat generation rate of tumor with a good accuracy. 
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Table 6-5 GA estimate for ideal thermogram of tumor buried in natural breast 

Tumor 

Type 
Position 

Target Parameter 

Run 

Simulated Parameter % 

Error 

(Avg.) 
ℎ 

(cm) 
𝑅 

(mm) 
𝑄𝑚 

(W/m3) 
ℎ (cm)  𝑅 (mm) 

𝑄𝑚 
(W/m3) 

Benign 
Shallow 

(on-axis) 
1.5 9 40000 

1 1.4545 9.1738 38862.3 

4.04 2 1.5375 8.6367 41181.64 

3 1.5228 9.2224 40439.45 

Maligna

nt 

Shallow 

(on-axis) 
1.8 15 80000 

1 1.7767 14.7402 78754.9 

2.17 2 1.8353 15.2283 81074.0 

3 1.8207 15.3262 80517.6 

Maligna

nt 

Deep-

seated 

(on-axis) 

2.5 21 90000 

1 2.4408 21.2832 87846.68 

3.21 2 2.5189 20.6484 90815.43 

3 2.5580 21.6738 92670.9 

Maligna

nt 

Shallow 

(15o Off-

axis) 

2.0 15 75000 

1 2.0551 15.2772 76806.64 

3.03 2 2.0404 14.7400 75322.27 

3 1.9574 14.5452 72724.6 

Table 6-6 GA estimate for realistic thermogram of tumor buried in deformed breast 

Genetic Algorithms are not chaotic, they are stochastic. The complexity depends on the 

genetic operators, their implementation (which may have a very significant effect on overall 

complexity), the representation of the individuals and the population, and obviously on the fitness 

function. Given the usual choices (point mutation, one point crossover, and roulette wheel 

selection) a Genetic Algorithms complexity is 𝑂{𝑔(𝑛𝑚 + 𝑛𝑚 + 𝑛)} with 𝑔 the number of 

generations, 𝑛 the population size and 𝑚 the size of the individuals. Therefore the complexity is 

on the order of 𝑂(𝑔𝑛𝑚). In this particular algorithm, 𝑔 = 20, 𝑛 = 20 and 𝑚 = 30.  This is of 

Tumor 

Type 
Position 

Target Parameter 

Run 

Simulated Parameter % 

Error 

(Avg.) 
ℎ 

(cm) 
𝑅 

(mm) 
𝑄𝑚 

(W/m3) 
ℎ (cm) 

 𝑅 
(mm) 

𝑄𝑚 
(W/m3) 

Malignant Shallow 1.5 12 75000 

1 1.5424 12.250 73188.48 

2.83 2 1.4789 11.859 74580.08 

3 1.4593 11.712 76435.55 

Malignant 
Deep-

seated 
2.5 21 90000 

1 2.5824 19.330 91093.13 

4.07 2 2.4570 20.599 8793.45 

3 2.6019 20.453 93041.99 

Malignant 
Off-

axis(100) 
2.0 18 60000 

1 1.9672 18.744 57973.63 

4.13 2 2.0746 18.451 61220.70 

3 2.0404 17.621 62333.98 



177 

 

cause ignoring the fitness function, which depends on the application, in this case, the complexity 

is on the order of 𝑂(𝑛). 

6.3.6 Artificial Neural Network     

The capability of machine learning and pattern recognition by animals’ central nervous 

systems are mimicked in developing computational models named Artificial Neural Network 

(ANN). ANNs are usually presented as systems of interconnected “neurons” that can compute 

values from inputs by feeding information through the network. The set of highly interconnected 

processing elements (neurons) are labelled with integers 1, 2, …… ,𝑁. They are connected through 

a set of connection weights, or synaptic weights. Every neuron 𝑖 has 𝑀𝑖 inputs, and one output 𝑦𝑖. 

The inputs are real valued quantities labeled 𝑠𝑖1,𝑠𝑖2,…… , 𝑠𝑖𝑀𝑖, representing signals coming either 

from other neurons in the network, or from the external world. Every neuron 𝑖 has 𝑀𝑖 synaptic 

weights, each one associated with each of the neuron inputs. The synaptic weights are labelled 

as 𝑤𝑖1,𝑤𝑖2,…… ,𝑤𝑖𝑀𝑖, and represent real valued quantities that multiply the corresponding input 

signal. Every neuron 𝑖 has also an extra input, which is set to a fixed value 𝐼𝑖, and is referred to as 

the threshold of the neuron. Every neuron computes its own internal state, or total activation, 

according to the following expression: 

𝑥𝑖 =∑𝑤𝑖𝑗𝑠𝑖𝑗 + 𝐼𝑖 =

𝑀𝑖

𝑗=1

∑𝑤𝑖𝑗𝑠𝑖𝑗

𝑀𝑖

𝑗=0

 

Every neuron 𝑖 computes its output according to a function 𝑦𝑖 = 𝑓(𝑥𝑖), where 𝑓 is the neuron 

function or transfer function. 

There are many types of neural network available now, for example, the Feed-forward neural 

network,  the Radial basis function (RBF) network, the Kohonen self-organizing network Learning 

Vector Quantization, Fully recurrent network (Hopfield network, Boltzmann machine), Simple 

recurrent networks, Echo state network, Long short term memory network, Bi-directional RNN, 

Hierarchical RNN, Stochastic neural networks, Modular neural networks etc.  

Learning in a neural network is called training. Like training in athletics, training in a neural 

network requires a coach, someone that describes to the neural network what it should have 

produced as a response. From the difference between the desired response and the actual response, 

the error is determined and a portion of it is propagated backward through the network. At each 

http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Radial_basis_function_.28RBF.29_network
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Kohonen_self-organizing_network
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Learning_Vector_Quantization
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Learning_Vector_Quantization
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Fully_recurrent_network
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Hopfield_network
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Boltzmann_machine
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Simple_recurrent_networks
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Simple_recurrent_networks
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Echo_state_network
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Long_short_term_memory_network
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Bi-directional_RNN
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Hierarchical_RNN
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Hierarchical_RNN
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Stochastic_neural_networks
http://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Modular_neural_networks


178 

 

neuron in the network the error is used to adjust the weights and threshold values of the neuron, 

so that the next time, the error in the network response will be less for the same inputs.  

This corrective procedure is called backpropagation (hence the name of the neural network) 

and it is applied continuously and repetitively for each set of inputs and corresponding set of 

outputs produced in response to the inputs. This procedure continues so long as the individual or 

total errors in the responses exceed a specified level or until there are no measurable errors. After 

the neural network has learned the training material, the training process should be stopped and 

the trained network can be used network to produce responses to new input data (Figure 6-12).  

Backpropagation starts at the output layer with the following equations:  

 𝑤𝑖𝑗 = 𝑊𝑖𝑗
′ + 𝐿𝑅. 𝑒𝑗 . 𝑋𝑖 (6.28) 

and 

 𝑒𝑗 = 𝑌𝑗 . (1 − 𝑌𝑗). (𝑑𝑗 − 𝑌𝑗) (6.29) 

For the ith input of the jth neuron in the output layer, the weight 𝑤𝑖𝑗 is adjusted by adding to 

the previous weight value, 𝑊𝑖𝑗
′ , a term determined by the product of a learning rate, LR, an error 

term, 𝑒𝑗, and the value of the ith input, 𝑋𝑖. The error term, 𝑒𝑗, for the jth neuron is determined by the 

product of the actual output, 𝑌𝑗, its complement, (1 − 𝑌𝑗), and the difference between the desired 

output, 𝑑𝑗, and the actual output.  

 

Figure 6-12  Neuron weight adjustment 
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Once the error terms are computed and weights are adjusted for the output layer, the values 

are recorded and the next layer back is adjusted. The same weight adjustment process, determined 

by Eqn. 6.1, is followed, but the error term is generated by a slightly modified version of Eqn. 6.2. 

This modification is:  

 𝑒𝑗 = 𝑌𝑗 . (1 − 𝑌𝑗). ∑(𝑒𝑘. 𝑤𝑗𝑘
′ ) (6.30) 

The difference between the desired output and the actual output is replaced by the sum of 

the error terms for each neuron, 𝑘, in the layer immediately succeeding the layer being processed 

(remember, we are going backwards through the layers so these terms have already been 

computed) times the respective pre-adjustment weights.  

The learning rate, LR, applies a greater or lesser portion of the respective adjustment to the 

old weight. If the factor is set to a large value, then the neural network may learn more quickly, 

but if there is a large variability in the input set then the network may not learn very well or at all. 

In real terms, setting the learning rate to a large value is analogous to giving a child a spanking, 

but that is inappropriate and counter-productive to learning if the offense is as simple as forgetting 

to tie their shoelaces. Usually, it is better to set the factor to a small value and edge it upward if 

the learning rate seems slow. In many cases, it is useful to use a revised weight adjustment process. 

This is described by the equation:  

 𝑤𝑖𝑗 = 𝑤𝑖𝑗
′ + (1 −𝑀). 𝐿𝑅. 𝑒𝑗 . 𝑋𝑗+. (𝑤𝑖𝑗

′ − 𝑤𝑖𝑗
" ) (6.31) 

This is similar to Eqn. 6.1, with a momentum factor, M, the previous weight, 𝑤𝑖𝑗
′ , and the 

next to previous weight, 𝑤𝑖𝑗
"  , included in the last term. This extra term allows for momentum in 

weight adjustment. Momentum basically allows a change to the weights to persist for a number of 

adjustment cycles. The magnitude of the persistence is controlled by the momentum factor. If the 

momentum factor is set to 0, then the equation reduces to that of Eqn. 6.1. If the momentum factor 

is increased from 0, then increasingly greater persistence of previous adjustments is allowed in 

modifying the current adjustment. This can improve the learning rate in some situations, by helping 

to smooth out unusual conditions in the training set.  

For the trained network the total error, that is the sum of the errors over all the training sets, 

will become smaller and smaller. Once the network reduces the total error to the limit set, training 

may stop. Then apply the network, using the weights and thresholds as trained.  
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It is a good idea to set aside some subset of all the inputs available and reserve them for 

testing the trained network. By comparing the output of a trained network on these test sets to the 

outputs you know to be correct, you can gain greater confidence in the validity of the training. If 

you are satisfied at this point, then the neural network is ready for running.  

Usually, no backpropagation takes place in this running mode as was done in the training 

mode. This is because there is often no way to be immediately certain of the desired response. If 

there were, there would be no need for the processing capabilities of the neural network! Instead, 

as the validity of the neural network outputs or predictions are verified or contradicted over time, 

you will either be satisfied with the existing performance or determine a need for new training. In 

this case, the additional input sets collected since the last training session may be used to extend 

and improve the training data.  

6.3.6.1 ANN Process 

The study has developed a 3-layer feed-forward ANN with back propagation learning to 

estimate thermo-physical parameters of tumors from surface thermal images. The network is 

developed with the MATLAB Neural Network Toolbox using the “newff” function. The “transig” 

transfer function was chosen for the hidden layers, “purelin” for the output layer and “trainlm” for 

back propagation training. 

The ANN is trained with idealized surface temperature profiles obtained for 5 different cases. 

Set of 500 data from the half of the symmetric pattern is normalized and then taken as 

training/validating input, 𝑇 (1×500 matrix). The target matrix 𝑃 is also normalized and each 

parameter is encoded with random numbers to produce 500 different values and scaled down to 

produce a 4×500 matrix. The learned network is then simulated for the above sample temperature 

pattern.  The simulated output is, finally, decoded and justified with the constraints in Eqn. 6.15 to 

filter out the noisy data and the algebraic mean of the remaining data is computed and treated as 

the output of that run. The forecasted parameter’s values are applied to the developed heat source 

model to produce the temperature pattern. If such obtained temperature patter is identical to the 

actual pattern then the run is considered as good run.  In the end, the average of 20 good runs is 

computed to forecast the tumor parameters. 

The heat source model was simulated with different parameter values and the simulated 

result was used for training of the ANN. In the proposed model, the surface (skin) is considered as 
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a set of concentric isothermal circles where the surface temperature decreases from the centre to 

the perimeter. Assume the centre of the concentric circles in origin (0, 0) and evaluate the 

temperature of the isothermal circles at regular interval.     

6.3.6.2 Results 

Infrared scanning camera acquires the spatial distribution of surface temperature which is 

sampled and quantized to develop a two dimensional array (Ai, Ti) and fed to the developed ANN. 

The network is trained with the theoretical data, assuming Ai is the input vector (location) and Ti 

is the target vector (temperature at that location). After learning, the trained network is then 

simulated for a random test vector (A, T). The plot of the simulated data will be compared with 

the actual temperature image obtained by IR camera. A pattern classification model will be 

developed in the next phase of the research for comparison.   

 

Figure 6-13 Temperature distribution 

 

The output of the created neural network is shown in Figure 6-13 which shows four curves; 

the model data curve is the plot of theoretical model, the train data curve is the plot of the trained 

network with theoretical data, the validation curve is the performance indication of the trained 

network with the same test vector used for the training of the network, and finally the simulation 

curve with random data where the input data vector is obtained from data acquisition system. 
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Figure 6-14  Neural network performance 

The Levenberg-Marguardt algorithm has been used for network training and the mean square 

error for performance analysis. From Figure 6-14 it is seen that the trained network can reproduce 

8 values out of 11 samples.  

The ANN simulated temperature plot with random input vector will be compared with the 

actual temperature image captured by IR camera and the mismatch error is feedback to the system 

to recalculate the weight as long as the tumor parameters especially the thermal conductivity, 

metabolic rate, location and size of the hyperactive nodule is determined.  The IR camera is capable 

to acquire the temperature at different points of a target surface and store in a data file that could 

be considered as a two dimensional array (X, T), where X(x,y) is the location on surface and T is 

the temperature at that point. The distance ‘a’ is measured from the highest temperature point to 

X(x,y).    

For this purpose three different neural networks have been created and trained with the 

theoretical data obtained for point, disc and spherical heat source respectively. The trained network 

is simulated with the distance vector to get temperature as output vector.  

Let us assume the unknown heat source is point shape. The test vector set is fed to the ‘point 

source trained network’. The trained and simulated plots of point heat source are shown in Figure 

6-15.  The plots show that the simulated plot (* line) is quite different from sample plot (-- line). 

Again, assume the heat source is spherical in shape. The simulated, trained and sample plots, 

Figure 6-16, show that the graphs are identical in shape. It concludes that the unknown heat source 

is spherical in shape. 
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Figure 6-15  Best Simulated patterns 

 

 

Figure 6-16  Simulated pattern (not the best one) 

6.4 Summary 

A methodology was developed for the estimation of thermo-physical or geometrical 

parameters of tumor region using the temperature profile on the skin surface that may be obtained 

by infrared thermography. The problem was solved using finite element method for physical model 

of tissues which have different geometry. Then the inverse problem was solved using genetic 

algorithm to estimate thermal and physical parameters of tumor which could grow in any organ of 

human body. The presented results demonstrate the feasibility of the proposed methodology. Even 

in case of ±10% (maximum) noisy system the methodology estimates different parameters with a 

very good accuracy.  
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According to the obtained results, the methodology can help to locate tumor region on any 

external body part, which could be useful and important to study tumor evolution after a treatment 

procedure.   
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 General Conclusions and Future Work 

7.1 Conclusions 

The objective of the work presented in this thesis was to develop a methodology for 

diagnosis and parametrization of tumors embedded in a human organ from the abnormal surface 

temperature distribution that was acquired by thermography. Due to the extreme roughness and 

high incidence of false positive outcome of thermogram interpretation, its clinical application was 

limited only to cancer detection. Improved performance in earlier detection of cancer was observed 

when thermal images were applied in combination with numerical simulation.  

The developed methodology has tailored “an inverse problem solver” for the estimation of 

thermo-physical or geometrical parameters of a tumor region. The solver has coupled numerical 

solution of a second order differential equation, the Penne’s bio-heat model, with a custom-made 

optimization algorithm. Comprehensive three dimensional thermal models of living organs, 

termed as “anatomic accurate models”, have been developed to accurately understand and 

determine the influences of tumor parameters on the surface temperature distributions. The study 

has developed physical models for the chest, forearm, breast and drooped breast because the 

underlying idea was to demonstrate how shape and tissue inhomogeneity influence the spatial 

temperature distribution.  The cuboid model of chest is built on four layers—the body core, muscle, 

fat and skin where heat flows in the radial direction from the core toward the skin surface. The 

tubular model of forearm is comprised on radius, ulna, arteries, muscle, fat and skin layer and 

prominent heat flow takes place in the radial direction. The breast model is given a hemispherical 

shape overall with muscle, gland, fat, skin and areola tissues where axial heat flow takes place. 

Similar breast model was developed in previous studies, but that model did not consider the fat 

layer sandwiched between the muscle and the lobule layers. In this study, this fat layer has also 

mimicked in order to come up with accurate breast model. In addition, the chest and forearm 

models are new innovations.  

The one-dimensional heat flow problem at steady state has been addressed analytically for 

cuboid, cylindrical and spherical living tissues. With the obtained analytical solutions, the effects 

of the thermal conductivity, the blood perfusion rate, the metabolic heat generation rate and the 

coefficient of heat transfer on the temperature distribution in living tissues are analyzed. The 
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analytical solution has given a useful means to accurately study the temperature behavior of the 

biological system, and extended to validate the numerical result and temperature field 

reconstruction and hyperthermia tumor ablution. The main limitation of the analytical solution is 

that it has obtained on homogeneous tissues and is unfit to apply to comprehensive models. In 

addition, it is unable to compute surface temperature distribution. 

The study has applied the finite element method to compute the thermal feature over the 

above mentioned physical models. Performance of the default analyzer has been compared with 

analytical solution and finite difference scheme developed in Matlab scripts and has found 

consistent with high accuracy. Eventually the library module has been accepted as a stand-alone 

tool for estimation of thermal features of living organs. The estimated thermal dataset are used to 

examine temperature distribution in tissue inside, over the skin surface, as well as to associate the 

temperature distribute with thermal-physical-biological parameters of a tumor embedded in the 

organs under study. Though tumor shapes and margins are widely varied, in this research work, 

only the spherical tumors with round margins have been modeled. To achieve high true positive 

earlier detection rate, the thermogram may be applied with numerical simulations. 

Various inverse approaches have been developed in conjunction with thermography to 

determine how it may be applied to diagnose tumor in human body. Inputs into the indirect solvers, 

the “test datasets”, are taken from the simulated thermal dataset enveloped with random noise up 

to ±10%.  The “simulated datasets” have been acquired from the finite element analysis solver 

with the estimated parameter set where the parameter set has been determined by optimization 

algorithm.  Search direction was defined by the directional derivative matrix in the gradient 

projection optimization where the matrix is formed and updated by a numerical solver. In pattern 

search optimization scheme the search space was defined by a pattern matrix where the matrix is 

a four dimensional array that holds single and simultaneous multi-parameter update. Except this 

predefined search algorithms, the research has applied evolutionary algorithm to search for new 

solution. Genetic algorithm has been tailored to estimate tumor parameters where each parameter 

is presented by 10 bit binary number and each chromosome is of 40 bits. Next solution was 

determined by single point cross-over and mutation with mutation probability set to 10%. The 

fitness of each population was calculated by evaluating a cost function and ranked; the best fitted 

populations were undergone to mate. The cost function for all optimization algorithms was 

determined from the average absolute error of test and simulated datasets. The initial parameters 
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were randomly selected with a random function generator. The optimized parameters were 

normalized between 1 and 2 and the scaling factor was determined by applied constraints, however, 

the constraints were not supported clinically. The estimated parameters computed by the genetic 

algorithm and pattern search algorithm were consistent; however, the parameters estimated from 

gradient projection method were erroneous because the gradient matrix was computed from the 

approximate heat source model. As the estimated parameters were not confirmed by clinical or 

surgical or other recognized method, the study has used artificial neural network (ANN) in 

supporting the accuracy of the research outcome. The networked was trained with realistic 

thermogram dataset and applied to estimate tumor parameters. The ANN was replaced the 

anatomic-accurate models developed in this study. Therefore, the ANN not only confirmed the 

estimate accuracy but also the appropriateness of the physical models.  

The main observations of the research are: 

 Development of anatomic-accurate models of living organs such as chest, forearm, 

breast and deformed breast by mimicking the organ’s anatomy and shape.  

 Solving bio-heat transfer problem analytically on the simplistic (homogeneous) 

models of the above mentioned organs to demonstrate how the shape (outlook) affects 

the tissue temperature and to explain why anatomic-accurate models are required. 

 Solving bio-heat transfer problem numerically on the anatomic accurate models of the 

above mentioned organs in presence of tumors to show how tumor’s physical, thermal 

and biological parameters influence the surface temperature. The rate of change in 

surface temperature with respect to a particular parameter (element of the directional 

derivatives) provides a useful means for inverse source computation from a 

temperature distribution. 

 Numerically simulated thermogram with added noise, which was considered as a 

pretend clinical thermogram had been sampled to for creating target or test dataset. 

 Gradient projection and pattern search methods are used to estimate tumor parameters. 

Evolutionary method such as genetic algorithm is also used to generate the new 

parameters. For each optimization methods, the initial parameters are randomly 

chosen.  
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 The estimated results obtained from pattern search method and genetic algorithms 

were consistent. For higher accuracy, the genetic algorithm estimates are applied to 

the pattern search method. 

 The final estimate was applied to a trained ANN to reproduce the thermal image. The 

absolute error between the reconstructed image and the test image was negligible, in 

the order of 0.005%.  

7.2 Recommendation for Future Work 

The proposed methodology can estimate the parameters of a wide range of tumors 

accurately, however, for deep-seated benign tumors the estimate accuracy was observed to be less 

than 80% which can be resolved by active thermography. 

The human body’s individual behavior, age group, genetic effect, body mass index, personal 

habits are not taken into account in constructing the model, though they may have influences on 

the risk of having tumor or in doubling rate. 

The outcome was not validated with clinical data or biopsy result; therefore, the 

methodology cannot be applied as a standalone diagnostic tool in detecting and diagnosis tumors. 

In order to validate the proposed methodology, the ongoing research in Electro-thermal laboratory 

at Ryerson University is trying to build collaboration with Canadian Breast Cancer Society to 

collect the surgical data and true thermogram.      
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Glossary 
 

Parameter Symbol Unit 

Thermal conductivity 𝑘 𝑊/(𝑚.𝐾) 

Metabolism 𝑄𝑚 𝑊 𝑚3⁄  

Blood perfusion rate 𝜔𝑏 1 𝑠⁄  

Heat exchange rate ℎ𝑎 𝑊 (𝑚2. 𝐾)⁄  

Specific heat (blood)  𝑐𝑏 𝐽 (𝑘𝑔. 𝐾)⁄  

Specific heat (tissue) 𝑐 𝐽 (𝑘𝑔. 𝐾)⁄  

Density (blood) 𝜌𝑏 𝑘𝑔 𝑚3⁄  

Density (tissue) 𝜌 𝑘𝑔 𝑚3⁄  

Artier blood temperature 𝑇𝑎 𝐾 

Body core temperature 𝑇𝑐 𝐾 

Skin temperature 𝑇𝑠 𝐾 

Environment temperature 𝑇𝑒 𝐾 

Tumor doubling time 𝜏 day 

Tumor diameter 𝐷 m 

Tumor radius 𝑅 m 

Tissue thickness or radius 𝑑 m 

Tumor location ℎ m 

Heat source model constant  𝛾   

Heat rate ratio 𝑛   

    

 

 


