
ROBOT CALIBRATION BASED ON
NONLINEAR FORMULATION FOR

MODULAR RECONFIGURABLE
ROBOTS (MRRS)

by

YuLin
Bachelor of Mechanical Engineering

Fuzhou University

Fuzhou, P. R. China, 2005

A thesis

presented to Ryerson University

in partial fulfillment of the

requirement for the degree of

Master of Applied Science

in the Program of

Mechanical Engineering.

Toronto, Ontario, Canada, 2008

© Yu Lin, 2008

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

\J
).!i .u IL .
. Lc>6
J'D~?c

ABSTRACT

Robot Calibration Based on Nonlinear Formulation

for Modular Reconfigurable Robots (MRRs)

YuLin

A thesis for the degree of

Master of Applied Science, 2008

Department of Mechanical Engineering, Ryerson University

Developed in this thesis is a full pose kinematic calibration method for modular

reconfigurable robots (MRRs). This method is based on a nonlinear formulation as

opposed to the conventional linear method that has a number of critical limitations. By

avoiding linearization of the nonlinear robot forward kinematic equations, these nonlinear

equations are directly used to identify the robot calibration parameters. A hybrid search

method is developed to solve the nonlinear error equations by combining genetic

algorithms with Monte Carlo simulations to ensure a global search over the robot

workspace with good accuracy. A number of comparisons are made between the proposed

method and the conventional linear method, indicating the advantages of the former over

the latter by eliminating two critical limitations. The first one is the orthogonality

sacrifice that leads to ill-conditioning of the Jacobian used in the linear method. The

second one is quadrant sensitivity during the determination of the (Tait) Bryan angles

from inverting the rotation matrix.

iv

ACKNOWLEDGMENTS

I am deeply indebted to my supervisor Dr. Jeff Xi, to whom I owe a debt of gratitude for

the invaluable support, guidance and kindly encouragement throughout the past two-year

study. With his strong academic background and innovative ideas, he has been really

helpful to me for solving many difficulties whenever I needed help. It has been my

pleasure to work under his supervision, and I look forward to working with him for the

Ph.D. study in the future.

I would also like to thank NSERC and Engineering Services Inc. (ESI) for providing

adequate research funding for me.

I also wish to thank my lab mates Mr. Richard P. Mohamed and Mr. Daniel Finistauri,

who were also working on reconfigurable robots, for their advice when I was in need of

an opinion. Furthermore, I would like to thank Mr. Haibin Jia, and Mr. Liang Liao, for

their moral support over the past two years.

Finally, I would like to sincerely thank my family and close friends for their

encouragement, support and understanding over the school years.

v

TABLE OF CONTENTS

AUTHOR'S DECLARATION .. ii

INSTRUCTIONS ON BORROWERS ... iii

ABSTRACT ... iv

ACKNOWLEDGMENTS ..••.....•................... v

TABLE OF CONTENTS•... vi

LIST OF TABLES•.. x

LIST OF FIGURES ... xi

NOMENCLATURE .. xii

CHAPTER 1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Modular Reconfigurable Robots (MRRs) .. .4

1.3 Robot Kinematics .. 7

1.4 Problem Formulation .. 8

1.5 Outline ofThesis .. 11

CHAPTER 2 LITERATURE REVIEW .. 13

2.1 Kinematic Modeling for Calibration ... 13

2.2 Computation for Calibration .. 17

2.3 Measurement for Calibration ... 20

2.3.1 Noncontact Measurement Technology ... 20

vi

2.3.2 Contact Measurement Technology ... 23

2.4 Self-calibration ... 26

CHAPTER 3 KINEMATIC MODELING .. 28

3.1 Position and Orientation ... 28

3.1.1 Position Vector. ... 29

3.1.2 Rotation Matrix ... 30

3 .1.3 Angle-set Representation of a Rotation .. 32

3.2 Translation and Rotation .. 36

3.2.1 General Motion of a Single Rigid Module ... 36

3 .2.2 General Motion of Multiple Modules ... 3 7

3.3 Three-point Target Measurements .. 40

CHAPTER 4 LINEAR FORMULATION .. 43

4.1 Error Model ... 43

4.1.1 Error Model with Full Pose Measurement.. .. 45

4.1.2 Error Model with Position Measurement.. .. 4 7

4.2 Pose Error Calculations .. 47

4.2.1 Differential Transformation .. 4 7

4.2.2 Inverse of a Rotation Matrix ... 50

4.3 Computational Methods , .. 52

4.3.1 Least Squares Method ... 52

4.3.1.1 Underdetermined , ... 52

VII

4.3.1.2 Over-determined .. 53

4.3.2 Kinematic Model Error Compensation ... 53

4.3.3 Calibration Algorithm ... 55

CHAPTER 5 NONLINEAR FORMULATION ... 59

5.1 Nonlinear Formulation ... 59

5.2 Genetic Algorithm ... 60

5.2.1 Fitness Function .. 61

5.2.2 Initial Population ... 62

5.2.3 Individual Selection and Population Generations 63

5.3 Calibration Algorithm ... 64

5.4 Monte Carlo Simulation .. 66

CHAPTER 6 SIMULATIONS AND COMPARISONS ... 68

6.1 Linear Formulation ... 72

6.2 Nonlinear Formulation ... 75

6.3 Monte Carlo Simulation .. 81

CHAPTER 7 CALIBRATION CONSIDERING RECONFIGURATION 84

7.1 Snap Point .. 84

7.2 Path Matrix .. 85

7.3 Simulations ... 88

7.4 Self-calibration Formulation for MRRs .. 89

CHAPTER 8 CONCLUSIONS AND FUTURE WORK ... 92

Vlll

8.1 Conclusions .. 92

8.2 Contributions ... 92

8.3 Future Work .. 93

APPENDIX A (TAIT) BRYAN ANGLE (PITCH, ROLL, YAW, PRY) [18] 95

REFERENCE ... 96

ix

LIST OF TABLES

Table 3.1: PRY angles inversed from a rotation matrix ... 36

Table 3.3: Rm and bm of different kinematic pairs [18] .. 40

Table 4.1: Four categories of calibration simulations .. 57

Table 6.1: Nominal link kinematic parameters for MRR-1.. .. 69

Table 6.2: Typical tolerance limits for various manufacturing processes [65] 71

Table 6.3: Assumed geometric parameter errors (m or rad) ... 71

Table 6.4: MRR-1 kinematic parameters before and after calibration 74

Table 6.5: Identified geometric parameter errors (m or rad) .. 74

Table 6.6: End-effector poses before and after calibration ... 74

Table 6.7: MRR-1 kinematic parameters before and after calibration 78

Table 6.8: End-effector poses before and after calibration ... 78

Table 6.9: Geometric parameter errors from the final best fit individual.. 78

Table 6.10: The stable mean value of all best fit individual from GA runs 82

X

LIST OF FIGURES
Figure 1.1: Modular and reconfigurable robot (MRR-1) ... 5

Figure 1.2: Actual (measured) and nominal (calculated) poses ... 9

Figure 1.3: Nominal pose after calibration .. 10

Figure 2.1: Link frames attached and four DH parameters [30]. 14

Figure 2.2: (a) Moving camera setup [38]; (b) Stationary camera setup [54] 22

Figure 2.3: Tooling-ball apparatus attached to a robot and CMM [37]. 24

Figure 2.4: The telescopic ball-bar (LVDT) measuring system [3]. 25

Figure 2.6: A laser pointer tool carried by Staubli RX-130 robot [36] 27

Figure 3.1: Multiple modules system for a MRR .. 29

Figure 3.2: Position vector p [18]. ... 30

Figure 3.4: General motion of a single module [18]. ... 37

Figure 3.5: Vector method for a multi-module system [18] ... 38

Figure 3.6: Three-point moving target. .. 41

Figure 3.7: Transformation determinations using the three-point position data [55] 42

Figure 4.1: Conventional calibration algorithm (linear formulation) 56

Figure 5.1: Nonlinear calibration using a genetic algorithm ... 65

Figure 5.2: Three loops of simulation .. 67

Figure 6.1: Graphical user interface (GUI) for robot kinematic calibration 68

Figure 6.2: MRR-1 [8] and SolidWorks model... ... 69

Figure 6.3: Kinematic parameter input panels in the GUI. .. 70

Figure 6.4: Robot configurations before (red lines) and after (blue) movements 70

Figure 6.5: Calibration using Linear Formulation panel.. .. 72

Figure 6.6: Partial pose (position) calibration outputs ... 73

Figure 6.7: Non-convergent results for the full-pose calibration 75

Figure 6.8: Nonlinear Formulation using Genetic Algorithm panel in the GUI. 76

Figure 6.9: (a) Best and Mean fitness; (b) Best fitness .. 77

Figure 6.10: Better performance with large populations and generations 80

Figure 6.11: Standard deviations of mean values of ~g from GA. 82

Figure 6.12: 16 calibrated parameters in 8 random configurations 83

Figure 6.13: Revolute joint 1 and 2 random movements for 8 configurations 83

Figure 6.14: Translational displacements of the prismatic joint 3 for 8 configurations .. 83

Figure 7.1: Snap point between two adjacent modules .. 84

Figure 7.2: (a) Original connection; (b) Reconfigured connection 86

Figure 7.3: Simulation when reconfiguration .. 88

Figure 7.4: Robot configuration before and after reconfiguration 88

Figure 7.5: GA results for MRR-1 after reconfiguration ... 89

XI

Symbol

X, Y, Z

p, r, s
p
R
b
b'
q
s
0
I
J
g
X
L1g
L1X

f
d

Subscript
i
n
ICSU
s
m
j
tip
min
max

NOMENCLATURE

Definition

x, y or z coordinate position
pitch, roll, and yaw angles
position vectors
rotation matrix
body vectors
local body vectors
motion parameters (s and 8)
linear translational displacement
rotation angles
identity matrix
Jacobian matrix
geometry of a robot (bs and Rs)
end-effector pose of a robot
robot kinematic parameters error
end-effector pose errors
function of forward kinematics
distance

Definition
ith module
total number of modules
Initial configuration setup
Static
Motion
Joint
Variables at the tip of module
Minimum
Maximum

Units

m
rad (or degree if specified)
m

m
m

m
rad (or degree if specified)

m and rad

m and rad

m

Throughout the thesis, bold lower case indicates vector; bold upper case indicates matrix;

and regular indicates scalar.

xii

CHAPTER! INTRODUCTION

1.1 Background

In general, accuracy is defined by repeatability and bias [I]. Lack of repeatability is due

to random error and quantified by the variance of a number of measurements. Bias is a

systematic error and determined by the mean value [2]. Sometimes, they are

distinguished as repeatability and absolute accuracy. Repeatability of a robot is the

precision with which its end-effector achieves a particular pose (position and orientation)

under repeated commands by the same set of joint variables, while "absolute accuracy" is

the closeness to which the robot's actual pose matches the pose predicted by its controller

[3].

A high repeatability is of prime importance for a variety of robot applications such as

pick and place, spray painting, and welding. On the other hand, tasks involving off-line

planning (OLP) depend on the absolute accuracy of the robot [3], especially for high

precision applications, such as robotic surgery. In reality, while the repeatability can reach

an order ofO.l mm for the majority oftoday's robots, the absolute positioning accuracy is

on the order of I mm or even worse, leading to the accuracy/repeatability ratio in the

range from 3 to 20 [4]. Low accuracy of a robot is currently regarded as one of major

obstacles for a wider range of applications.

1

While it is difficult to compensate for the random error, compensation for the systematic

error can be done effectively by means of calibration [2]. Robot calibration has been

explored and investigated since the 1980s. It evolved into a mainstream of robotics

research area in the 1990's. At that time, the robot accuracy issue became crucial with

many robots and off-line programming (OLP) software packages introduced into the

world market. Calibration is even more important for a modular reconfigurable robot

(MRR) since after each reconfiguration by re-assembling the modules, the MRR will lose

its accuracy. Although variations in the kinematic model mostly arise from imprecision in

manufacturing processes, the direct improvement of manufacturing processes is costly

[5]. This is another reason to calibrate the robot after it is built.

Basically, a robot calibration technique is the process of improving robot positioning and

orientation accuracy by identifying and then modifying the geometric parameters in

robotic kinematic models rather than changing or altering the mechanical structures or

redesigning the robot [6].

Since the sources of errors vary from one robot design to another, calibration procedures

can vary in their scope and complexity. For example, some robot calibration procedures

consider only the joint variables while others may involve changes in the robot kinematic

model. Roth et al. [6] classified calibration into three levels: joint level, kinematic model

2

level, and dynamic model level. The goal of joint level calibration is to determine the

correct relationship between the signals produced by joint displacement transducers and

actual joint displacements. This usually involves calibration of the kinematics of the

drives and the joint sensors. The kinematic model level calibration is the entire robot

kinematic model calibration, and its purpose is to determine the correct geometric

parameters of the robot. The dynamic model level calibration is non-geometric

calibration, and its concern is about the effects such as joint compliance, friction and

clearances, as well as link compliance.

The research reported in this thesis addresses the problem of kinematic model calibration

considering both position and orientation. The purpose is the determination of an accurate

relationship between the joint movements and the pose of the robot's end-effector. The

assumption is that the robot is composed of rigid links and joints, ignoring joint backlash

and servo errors.

In general, a calibration procedure can be divided into four steps: modeling,

measurement, identification and implementation (or correction) [6]. Modeling refers to

the choice of a functional relationship between the robot parameters and the pose of the

robot's end-effector. Measurement is to collect the information about the inputs and the

outputs. Identification is the determination of the errors that could affect calibration.

3

Implementation is to use the corrected model for robot kinematic control.

Mathematically, robot calibration can be considered as a nonlinear optimization problem,

which can be solved in two different ways, linear and nonlinear formulations. The linear

method is to linearize the nonlinear kinematic equations, which leads to a Jacobian matrix

by ignoring higher order items. The Jacobian matrix, also called the mapping matrix,

establishes a linear relationship between the errors of the kinematic parameters and the

errors of the end-effector's pose. The main disadvantage of the linear approach is the

singularity issue in inverting the Jacobian matrix. The nonlinear method, on the other

hand, is to solve the nonlinear equations directly without linearization. Because the

Jacobian matrix is not involved, the singularity issue can be avoided. In this thesis, both

methods are studied and compared.

1.2 Modular Reconfigurable Robots (MRRs)

Traditional robots are fixed structure robots, meaning that a certain type of robot is built

for a certain type of task. Reconfigurable robots are designed such that their structures

can be changed to perform a number of different tasks that normally require a number of

different types of traditional robots. A modular reconfigurable robot (MRR) is a

reconfigurable robot that is built based on a number of modules. These modules can be

rearranged through disconnecting and reconnecting in different ways to form a new

4

configuration enabling new functionalities. Figure 1.1 shows an example of a MRR made

by a company called Engineering Service Inc. [8].

(a) (b)

Figure 1.1: (a) Modular and reconfigurable robot (MRR-1);

(b) 2 DOF module (MRS) and (c) Rotary module (MRJ);

Photograph courtesy of Engineering Service Inc. [8].

(c)

Modular reconfigurable robots (MRRs) offer three main advantages over the traditional

fixed-structure robots: versatility, simplicity, and low cost [9]. Firstly, applications in

which MRRs surpass purpose-specialized robots include those in which versatility is

critical, such as those requiring a variety of robots to perform multiple tasks of a similar

nature. While traditional robots are only capable of performing a particular task for which

they have been designed, MRRs offer the advantage of employing a single robot with the

structural adaptability to perform multiple tasks based on demands by means of

reconfiguration. Employing similar modules in a robotic arrangement leads to simplicity

in design when compared with a traditional robot composed of various customized

5

components. Secondly, except for offering multi-purposeful tasks, MRRs enhance

simplicity in the method of reconfiguration by employing a common locking mechanism

for all joins and modules. Lastly, in addition to offering simplicity in design and

versatility, modularity significantly reduces the design and manufacturing costs [1 0].

There are three categories of reconfigurable robots: self-assembly, self-configuring and

manual-configuring [11]. Self-assembly robots are the robots with the highest level of

reconfigurability because they are able to detach from and attach into a robotic system

automatically. For example, the National Mechanical Engineering Laboratory in Japan

developed a self-assembly robotic system that uses electro-magnetic disks as the basic

units that can attract and repel each other through computer control for automatic

reconfiguration [12]. Self-configuring robots cannot perform self-assembly. However,

they can fulfill reconfiguration after a robotic system is assembled with some form of

manual assistance. For example, robotic cubes were developed in the United Kingdom

with an embedded active driving mechanism [13]. Once attached manually, these cubes

can slide on each other's faces for reconfiguration. Since the cubes are made in different

sizes and can be combined together, the robot is called the fractal shape-changing robot.

The manual-configuring types are in fact the modular robots, as shown in Figure 1.1.

They can only be reconfigured with some form of manual assistance. The modular units

are built with embedded controllers, and the host computer has the capability to quickly

6

recognize new configurations and then achieve the objective of system control. This

research work includes the studies at Stanford [14] and Carnegie Mellon University [15].

1.3 Robot Kinematics

To address the problem of robot calibration, the basis is the robot forward kinematics.

A significant number of papers and monographs have been published on different

kinematic modeling approaches for calibration [5] [16] [17] [18] [19] [20] [21] [22]. A

satisfactory kinematic model should exhibit three qualities: completeness, equivalence,

and proportionality [19]. According to [18], the end effector's pose of a robot can be

defined by a nonlinear function as follows

X=f(q, g), qi=[Oi sJ, i=1, ... ,n (1.1)

where q is the set of joint variables including rotational angles 9i for revolute joints and

translational displacements Si for prismatic joints, with i ranging from 1 to n, (n is the

total number of joints); and g is the set of geometric parameters of the robot.

The end-effector's pose can be further detailed as the position vector and orientation

matrix, described in the global reference frame as [18],

n

Pn+I=LRoib:'
i=l

n

Ron =flR(i-I)i'
i=l

7

(1.2)

(1.3)

where b' is the body vector in the local coordinates, which is transformed to the global

first and then summed to obtain the position of the end-effector in Equation (1.2); ~i-I)i

represents the rotation matrix between two adjacent bodies, which is sequentially

multiplied together to determine the orientation of the end-effector in Equation (1.3).

Since only three of the nine elements of the rotation matrix are independent, the robot

orientation is usually specified with three independent parameters. The common approach

is to use three angles, such as Euler angles and the (Tait) Bryan angles (often called pitch,

roll, and yaw, (PRY)). The angle-axis representation has also been introduced by using a

unit vector parallel to the axis of rotation matrix in Equation (1.3) and an angle rotating

about the axis. However, this invariant vector may correspond to two possible rotation

matrices [21] [23]. To solve this ambiguity, Angeles [23] modified this angle-axis

representation and showed that the modified one has a linearity relation with the

corresponding rotation matrix, hence leading to simple expressions of the Jacobian

matrix.

1.4 Problem Formulation

Due to a number of error sources, including manufacturing, assembly, deflections,

measurements, and clearances [24], the robot forward kinematic model (Equation (1.1))

will not accurately represent the real robot system. In other words, the manipulator will

8

not be able to locate the end-effector at the desired pose Xo calculated from the nominal

model given in Equation (1.1). The actual pose Xm is different, as illustrated in Figure

1.2. The difference between the two is the end-effector pose error. In order to determine

the end-effector pose error AX, the actual pose Xm usually needs to be measured after

moving the robot by joint variables q0 • It is given as

qo
Joint Variables

qo
Joint Variables ~·.•···· l-..JI'··

Error sources

(1.4)

Xm
Actual (Measured) Pose

Xo
Nominal (Calculated) Pose

Figure 1.2: Actual (measured) and nominal (calculated) poses.

Apparently, the basic consideration is how to eliminate or compensate the pose error in

Equation (1.4) in order to reach the desired pose. As one of the solutions, calibration

technique aims at identifying the geometric errors Ag of the robot, and then make a

correction in the nominal model, i.e., Xo= f (q0 , g0 +Ag). As a result, the nominal pose of

9

the end effector will be getting closer to the measured ones under the corrected model,

i.e., Xo-? Xm, as shown in the Figure 1.3. A well calibrated robot will be able to reach

any position within its workspace at the required accuracy.

Qo

Joint Variables
Xo-? Xm

Nominal (Calculated) Pose

Figure 1.3: Nominal pose after calibration.

As an alternative approach, we could adjust joint movements by adding L\q to the original

joint variables, i.e.,

(1.5)

This is called compensation, rather than the calibration focused on in this thesis. The

details of this approach are outside the scope of this thesis.

As mentioned above, two methodologies are available to determine L\g, namely, linear

and nonlinear formulations [25]. The linear least squares method is used for the linearized

error model as given below:

L\X = J L\g. (1.6)

From equation (1.6), L\g can be solved for by a proper linear least-square method

depending on the dimensions of the Jacobian matrix. This process is usually carried out

10

iteratively until the tolerance of ~X becomes less than a given threshold. The second

approach is the nonlinear formulation given as below:

// (1.7)

Two types of optimization methods can be applied to solve equation (1.7): gradient-based

methods and direct-search methods. For gradient-based methods, the identification

Jacobian is again required in a manner that differs from that of the linear least-square

algorithm [26]. The Levenberg-Marquardt algorithm is one of the popular methods and

works surprisingly well even for large residual problems, although in such cases the rate

of convergence may be quite slow [17]. This technique is designed to overcome problems

related to singularity of the matrix JTJ by adding a time varying nonnegative scalar

coefficient, Jl, leading to the matrix JTJ + 11 I. More details can be found in Scales [27].

Alternatively, equation (1.7) can be minimized using direct-search methods, such as

Simplex search, Hooke-Jeeves pattern search, Powell's conjugate-direction method [28],

genetic algorithm [61] [62] and neural networks [63]. Convergence of all direct search

algorithms is generally very slow, but no Jacobians are needed. The linear method was

the only possible way to conduct the robot calibration before, and now the nonlinear

method becomes possible due to the advent of powerful computers.

1.5 Outline of Thesis

The remaining thesis is organized as follows.

11

Chapter 2 provides a literature review on previous researches on the robot calibration,

including modeling, measurement, identification, and correction.

Chapter 3 presents a kinematic modeling method for MRRs. Pose analysis is introduced

using six-parameter representations.

Chapter 4 discusses the conventional linear formulation for robot calibration. Error

models are derived from linearization of the forward kinematic model in two schemes,

depending on how the orientation of an end-effector is measured.

Chapter 5 investigates the nonlinear formulation without linearizing the kinematic model.

A genetic algorithm (GA) is applied to solve this problem. Furthermore, Monte Carlo

simulations are conducted to take into consideration of the random error by running GA.

Chapter 6 provides the simulations and comparisons between the linear and nonlinear

formulation of calibration.

Chapter 7 applies the proposed calibration methods to MRR robots in consideration of

reconfiguration.

Chapter 8 provides the summary of conclusions, contributions, and future work.

12

CHAPTER2 LITERATURE REVIEW

This chapter describes a literature review on previous researches that have been done on

robot kinematic calibration, including kinematic modeling, measurement, identification,

and correction.

2.1 Kinematic Modeling for Calibration

A significant number of methods have been proposed for modeling robot kinematics for

the purpose of calibration since the 1980s. For serial robots, joints are either revolute or

prismatic. Three important qualities that a satisfactory kinematic model should exhibit are

completeness, equivalence, and proportionality [19]. First, the model should contain a

sufficient number of parameters to completely satisfy the motion of the robot. Second,

there must exist a functional relationship between any two acceptable models, i.e.,

models should be equivalent in a functional sense. Finally, small changes in the robot

geometry should reflect small variations in the model parameters.

The most common method for robot kinematic representation is the use of four Denavit

and Hartenberg parameters [29], including link length ai, joint twist ai, link offsets di, and

joint offsets 8i, as shown in Figure 2.1.

13

\~~Ji
., z
a~··.

J

'

\ x·

i Zj.JL
... ···························

\ I

Figure 2.1: Link frames attached and four DH parameters [30].

Paul [16] demonstrated the use of the Denavit-Hartenberg technique for modeling a serial

link manipulator. For each link, a coordinate frame is attached at the joint, and then

related consecutively by the four parameters using a homogeneous transformation matrix.

All these consecutive link transformation matrices are multiplied to produce a total

transformation matrix that relates the last local coordinate system attached to the end

effector to the base global coordinate system. The resulting matrix is a nonlinear function

of the joint variables (8i) and three link parameters (ai ai di) that describe the geometry of

the manipulator. Furthermore, the Denavit-Hartenberg model has been used for the

calibration problem by many investigators [5]. For example, Wu [31] [32] used it to

examine robots with small variations in their kinematic arrangement.

However, the Denavit-Hartenberg representation was found to exhibit ambiguity when

two successive axes are parallel as pointed out by Mooring [33] and Hayati [22]. The link

14

length a;, representing the length of common normal between two consecutive joint axes,

varies wildly when two adjacent joint axes deviate slightly from nominally parallel

configuration.

For this reason, the Denavit-Hartenberg model was modified. In the nearly-parallel axes

case, the parameters are treated to vary in proportion to the degree of misalignment, as

proposed by Hsu and Everett [34]. Ibarra and Perreira [35] modified the Denavit-

Hartenberg based transformation matrix by a differential screw matrix for small

misalignments. Hayati [22] pointed out the singularity of the Denavit-Hartenberg

representation, and introduced an additional rotation fJ in the y-direction in the DH link

transformation to describe a misalignment of two consecutive parallel axes. A number of

papers subsequently used this modified Denavit-Hartenberg representation as reviewed in

Hollerbach [5]. The most recent application can be found in Gatla et al. [36] and Lightca

et al. [37]. Gada et al. [36] combined Craig's modified DH [21] and Hayati's (HR) [22]

together to build either DH or HR with the four-parameter depending on whether the

neighboring joint axes are parallel. This model, however, requires two sets of four link

error parameters according to the geometry of link, which makes the modeling task

unnecessarily complex. Furthermore, Hayati's model does not cover the transformation

from the last link to the tool coordinate frame which in general requires a separate

treatment [38].

15

Although the description of the robot kinematics needs at most four parameters per joint,

this minimal set of parameters displays proportionality only when the selection of the

joint coordinate frames is tailored to a particular manipulator [20]. Thus, a priori

knowledge of the nominal manipulator geometry is required for any algorithm that uses

such a mode. On the other hand, it is possible to construct a six-parameter model that

does not depend on the link geometry and will always display proportionality. As a result,

a number of papers have abandoned the Denavit-Hartenberg parameters entirely and

treated the general case of two coordinate systems related by six parameters [5]. Three

parameters present the coordinate origin displacements, and three parameters for relative

coordinate system orientation. Papers differ in terms of the representation of orientation;

some use Euler angles, introduced in Chapter 3, and others use variations of the Euler

vector, namely, associated rotation about an equivalent vector, detailed in Craig [21].

Mooring [33] also pointed out the problem with the Denavit-Hartenberg representation at

the same time as Hayati [22], but proposed a six-parameter representation using Euler

vectors. An estimation procedure was outlined but not implemented, in which single

joints were moved to two positions. The position and orientation of the gripper were

measured at these two positions, and the six parameters for each joint were determined by

a direct solution. Mooring and Tang [39] modified the procedure to use three points in a

fixture, avoiding the need to determine the gripper position and orientation by external

16

sensing. On the other hand, six-parameters with Euler angles were used [40], and both

geometric and non-geometric parameters were modeled. Chen et al. [41] also employed

six-parameter transformation with Euler angles. Later, Chen and Chao [42] extended this

work to include non-geometric models for gravitational joint deflection and backlash.

Stone et al. [43] used a general-purpose "S-model" to model kinematic errors using six

parameters per link and then convert them to the Denavit and Harten berg parameters.

2.2 Computation for Calibration

As mentioned before, identification of parameters of the robot kinematic model is

generally considered as a nonlinear optimization problem, which can be approached in

two ways, namely linear or nonlinear [25]. Many investigators linearized the kinematic

equations leading to a linear error model and then applied an iterative least-square

estimation procedure, while others applied other nonlinear estimation procedures directly

to the nonlinear kinematic equations.

A recursive least squares procedure was employed by Chen et al. [41] to the linearized

equations. Chen and Chao [42] suggested linearization as a means for indentifying

dependent parameters. At the same time, Chao and Yang [44] applied the nonlinear

Levenberg-Marquardt procedure to the same data used by Chao and Chao [42], and

achieved identical results.

17

An interesting insight of Mooring and Tang's work [39] was to estimate orientation

parameters before position parameters. While the former leads to a nonlinear estimation

problem, the latter can then be treated as a linear estimation problem. For the orientation

errors, the sum of squares of Euler angle differences is minimized by a finite-difference

Levenberg-Marquardt algorithm, which is commonly employed for nonlinear estimation

problems. The estimated orientation parameters are then incorporated to apply direct

linear estimation to the position parameters. However, this method did not consider the

effect of the angular parameter errors on position errors. In other words, it ignored the

coupling terms between orientation and position errors in the Jacobian matrix and derived

two simpler and separable least squares problems. Simulations indicate better results

could be obtained by including the full pose Jacobian of both orientation and position [5].

Lightcap et al. [37] proposed a two-level Levenberg-Marquardt nonlinear least-square

optimization algorithm for the calibration of geometric and flexibility parameters in a

serial manipulator without the computation of the generalized Jacobian matrix. Link

parameters were determined through an outer optimization loop, while robot coordinate

system parameters were determined in an inner loop.

Pathre and Driels [25] conducted simulations that have shown that the linear method is

four to eight times faster than the nonlinear method. However, nonlinear method, for

18

example the Levenberg-Marquardt algorithm, is much more robust than linear method

especially for large parameters.

One of the important problems in calibration is the observation strategy that refers to the

selection of robot configurations and the number of observations to be made during the

calibration experiment. The selection of measurement configurations during robot

calibration plays an important role in determining the accuracy and speed of convergence

of the least-square identification algorithms [17]. The number of necessary observations

can be reduced if the measurements are performed at robot configurations in which the

error model is the most sensitive to changes in model parameters, e.g., where it is the

least sensitive to unmodeled error sources [20]. Simulation experiments can significantly

help in evaluation of the observation strategy [25]. This strategy may be modified based

on the results of simulations if necessary. Two groups of references provide the literature

background for the observation strategy. The first approach [45] focuses on the familiar

numerical analysis concept of "condition number" of the Jacobian. The second one [46]

[47] adopts an observability index as a performance measure. Driels and Pathre [45] have

shown that the condition number of the Jacobian is related to the observability index

proposed by Menq and Borm [46]. Increase in the observability index implies the

reduction ofthe condition number.

19

2.3 Measurement for Calibration

Measurement is an essential part of the calibration procedure. It is conducted by

measuring the actual robot end effector's position and orientation at given set of joint

displacements. A set of measurement data is obtained by moving the robot to one location

within the workspace, recording joint displacements, and then using an external

measuring system to determine the robot's position and/or orientation. The robot is then

moved to another location to repeat the process and continue till sufficient data is

acquired.

There are two aspects of the measurement process that need to be given careful

consideration. The first is what measurement system should be used, and the second is

how to plan the observation strategy correctly. There are only a few systems that have the

necessary precision to make adequate pose or partial pose measurements. Each has its

own characteristics such as precision, speed and ease of use, level of measurement noise,

cost, and the amount of information that can be obtained from each robot pose. In

general, the measurement process is time consuming, laborious, and prone to human

error. Textbooks, such as the one by Doebelin [48], provide a much more exhaustive

treatment of this field.

2.3.1 Noncontact Measurement Technology

It is desirable that the measuring instrumentation facilitates non-contact sensing, so that

20

the influence of the measurement to the robot performance characteristics is eliminated

[20]. The most popular technique of the non-contact measurement is based on utilizing a

system of theodolites (Duelen and Schroer [49]; Judd and Knasinski [50]; Caenen and

Angue [51]), which facilitates measurements in a wide range and with high accuracy on

the order of 0.05 mm [52]. By combining the theodolites with a low-resolution vision

system for automatic tracking, focusing and centering, it is possible to build a high-

quality system for automatic calibration measurements [53].

Researchers have also been investigating camera measurement, which basically has two

different setups: a moving camera approach (hand-mounted cameras) and a stationary

camera setup. In the moving camera approach, one or more cameras are mounted on the

end-effector of a robot and several targets or fixtures are fixed in the workspace. In the

stationary setup, cameras are fixed and the fixture or targets are mounted on the robot

end-effector.

Generally speaking, high resolution and large field-of-view may be two conflicting

requirements [38]. The stationary camera setup suffers from this conflict and has to

sacrifice measurement accuracy in order to have a large field-of-view, or the cost of

system may increase dramatically by using higher resolution camera. The moving camera

approach solves this conflict by using a precise fixture and a stereo camera system. It

21

means that the robot can move to a wide range of configurations and still has a calibration

which is as accurate as desired.

Zhuang [38] applied a stereo hand-eye system consisting of a pair of CCD cameras

mounted on the robot's end-effector, a camera calibration board, a robot calibration

fixture and a PC-based image processing system (Figure 2.2a). Without using expensive

or labor-intensive equipment, such as theodolites, laser tracking system, high-resolution

opto-camera systems etc., Zhuang [38] stated that the mobile camera system provides

low-cost, efficient and fully automated features which are suitable for academic research

as well as industrial applications. On the other side, An et al. [54] conducted calibration

experiments by using systems of immobile cameras equipped with optoelectronic

detectors, and additional LED diodes as targets fixed at the robot's end-effector (Figure

2.2b). This technique may also yield satisfactory results, but in a significantly smaller

workspace.

Figure 2.2: (a) Moving camera setup [38]; (b) Stationary camera setup [54].

22

A stationary camera setup provides a non-invasive method, where the camera is often

placed outside the robot workspace and needs not be removed after calibration. However,

it is necessarily invasive for the moving camera approach, where the camera has to be

removed after calibration. Another disadvantage for the moving camera approach is that

it only performs local measurements, whereas the global information on the robot end-

effector pose is provided through a stationary calibration fixture. For the stationary

camera setup, there is no need to identify the transformation relating the camera frame tq

the end-effector frame.

2.3.2 Contact Measurement Technology

Contact measurements vary from coordinate measuring machines (CMM), dial indicator,

linear-variable differential transformer or LVDT, precisely located targets with force

sensors, to a simple ruler etc. A CMM assures extremely high accuracy on the order of

0.01 mm, compared with the other less accurate but less expensive contact measuring

techniques.

The three-point method has been utilized commonly in various measuring systems in the

past, such as Mooring et al. [17], Lightcap et al. [37], Goswami et al. [3], and Xi et al.

[55]. An orientation change can be determined from the initial and final three-point

positions, as detailed in Chapter 3.

23

Lightcap et al. [37] used a CMM to measure the locations of three tooling-ball apparatus

attached to PA 10-6CE robot (Figure 2.3), to determine the transformation between the

CMM coordinate system and a user-defined tooling ball coordinate system. External

loads were lowered onto the weight rack and transmitted through the end-effector of the

robot directly to avoid the deflection in the rods.

~,
Weight Rack

Tooling
Balls
Measured
byCMM

Figure 2.3: Tooling-ball apparatus attached to a robot and CMM [37].

Goswami et al. [3] created a telescopic ball-bar measurement (Figure 2.4) for the

calibration of PUMA 560 using the Stewart platform analogy. The ball-bar system

consists of a single LVDT, which is connected between one steel sphere attached to the

robot endpoint and a magnetic chuck mounted on the table. Imagine that the robot

endpoint triangle (with three steel spheres) and the base triangle (with three magnetic

chucks) are interconnected through six ball-bars, which presents the Stewart platform

geometry.

24

Figure 2.4: The telescopic ball-bar (LVDT) measuring system [3].

Mooring et al. [17] proposed a three-point moving target and a LVDT measuring fixture

which is mounted accurately in the workspace of a robot. A set of three spheres whose

relative positions are already known, can be inserted in an array of short-range

displacement transducers (Figure 2.5). In this case, these transducers are LVDTs but

capacitance probes and dial indicators have also been reported.

Figure 2.5: Three-point moving target and measurement (LVDT) fixture [17].

25

2.4 Self-calibration

Without using external measuring devices introduced in the previous section, self

calibration methods depend on internal measurements, such as joint angle measurements.

Self-calibration is more desirable or practical on a manufacturing floor or in a production

line where external measurements are expensive and difficult to implement.

The existing techniques of serial robot calibration can be classified into open-loop and

closed-loop approaches [36]. Open-loop methods involve measuring the end-effector

pose, which requires measuring equipments, such as theodolites, ball-bar, CMMs, laser

tracking system, cameras, etc., which can be found in the last section. On the other hand,

closed-loop methods use the internal joint angle measurements already in the robot

without external measurement devices, and therefore, can be considered self-calibrating.

Usually, these methods impose some constraints on the end-effector, and the joint

readings alone are used to calibrate the robot using kinematic closed-loop equations.

Some researchers in the past have applied linear constraints on the end-effector positions

allowing the end effector to slide along a line. For example, Neqman et al. [56] used a

laser line. Ikis et al. [57] and Zhuang et al. [58] imposed plane constraints on the end-

effector positions. However, it may be problematic to use a plane constraint since it is

difficult to assure that the end-effector is exactly on the surface.

26

One of recent proposed close-loop methods is the "virtual closed kinematic chain" by

Gatla et al. [36], which did not require any physical constraints used in the previous

closed-loop methods. A laser pointer tool was applied on the end-effector to aim at a

fixed location on a distant object (Figure 2.6), and only joint readings were used to

calibrate the robot. The laser tool on the robot acts as a virtual telescopic (prismatic) link

giving the robot 7 DOFs, the seventh joint being the length of the laser line from the end

effector to the projected laser point on an object. Thus, aiming the laser pointer at a fixed

point creates a virtual closed kinematic chain. The main advantage of this method is that

the distant laser point is very sensitive to joint values, which facilitates acquiring more

accurate joint values for the calibration.

Figure 2.6: A laser pointer tool carried by Staubli RX-130 robot [36].

27

CHAPTER3 KINEMATIC MODELING

This chapter presents the forward kinematic modeling of a modular reconfigurable robot

with rigid modules. In an error-model-based kinematic calibration process, the selection

of a proper kinematic model is one of the keys to the success of a calibration task. In this

chapter, six-parameter representations, rather than the Denavit-Hartenberg parameters,

are used for the robot kinematic modeling.

The main topic of the robot forward kinematics is to compute the position and orientation

of the end-effector relative to the base coordinate as a function of the joint variables. As

shown in Figure 3.1, an MRR system under study can be considered as a multiple module

system. The pose of each module is represented using six parameters, three for position

and three for orientation. The position vector and rotation matrix are first introduced in

this chapter and then the general motion (translation and rotation) of a single module and

a multi-module system are discussed along with the three-point measurement methods.

3.1 Position and Orientation

In this section, the position vector and rotation matrix are introduced to represent the pose

of each module.

28

Module n

Module 2

Module n-1

Module. Jrt-(__ ·__,· f:
l n.······ Joint n-1

dG=.:===, ·.·::::;::;;~·it' Joint n

·····

•••

Module 1 Joint i

Joint 1

Base frame

Figure 3.1: Multiple modules system for a MRR.

3.1.1 Position Vector

The position of a point in space is represented with respect to a coordinate frame using a

vector. In general, the vector components in the Cartesian coordinate are expressed as

(3.1)

A position vector, as shown in Figure 3.2, can be expressed in terms of the frame axes in

linear combination as

or

'k (.
p=p1e1+ p1et+ p~e;·

p=Ep

(3.2a)

(3.2b)

where E = [e1, ez, e3]. In the Cartesian coordinate system, E = [x, y, z], and x, y, z are the

29

Tip

unit vectors along x, y, and z axes relatively, that is, x = [I, 0, of, y = [0, I, O]T, z = [0, 0,

Figure 3.2: Position vector p [18].

3.1.2 Rotation Matrix

A rotation matrix represents a linear transformation between two coordinate frames. In

Figure 3.2, position vectors can be expressed either in frame {e1, e2, e3} (Equation 3.2a)

(3.3a)

or p=E'p' . (3.3b)

Since Equations (3.2) and (3.3) represent the same position vector, so

E'p'=Ep (3.4)

It leads to

30

p=Rp' (3.5)

where R is the rotation matrix given as

(3.6)

Since ei is orthogonal to ej, then Ci'Cj = Oij = I when i=j; erej = 0 when i:t:j. Hence, E is

orthogonal, and K 1 = E T.

R is in fact defined by the dot product of two unit vectors, i.e., the direction cosine. It is

also called the tensor product, defined as

[

e1 ·e\

R=(E®E')= e2 ·e:1

e3 ·e I

el ·e'2

e2 ·e'2

e3 ·e'2
·<'] e2 ·e 3

e3 ·e'3

Reversing the order of Equation (3.4), Equation (3.5) becomes

p' = R'p

where

R'=E'T·E

Obviously

(3.7)

(3.8)

(3.9)

(3.10)

Hence, R is orthogonal, and such that all columns are mutually orthogonal and have unit

magnitude. In fact, it is proper orthogonal, meaning det(R) = I.

It is clear that the nine elements of a rotation matrix are not all independent. Six

31

dependencies or constraints between the elements can be easily found from a given

rotation matrix, R = [X Y Z J :

IXI=I

IYI=1

jzj=1

X·Y=O
X·Z=O
Y·Z=O

(3.11a)

(3.11 b)

As a result, three independent parameters representation is developed in the following

section in order to express the rotation matrix conveniently, using the angle-set

convention.

3.1.3 Angle-set Representation of a Rotation

There are basically two methods to describe the orientation of a frame relative to a

reference frame by angle-set conventions. According to Craig [21], one is Euler angles,

and one is fixed angles. In the former representation, each rotation is performed about an

axis of the moving coordinate system rather than one of the fixed reference frame. For the

latter one, each of the three rotations takes place about an axis in the fixed reference

frame.

For each method, 12 sets of conventions are employed according to different sequence of

rotation about the X-Y-Z axes. One of them is introduced in details in this section, and the

32

rest can be found in [21]. Usually, there is no particular reason to favor one convention

over another, but various authors adopt different ones [21]. The following PRY angles (or

X-Y-Z Euler angles) are applied in this thesis.

I
•I

""/" ' l I I

(Tait) Bryan Angles (Pitch Roll Yaw, PRY) [or X.;.Y-Z Euler angles]

In terms of pitch, roll, and yaw angle (PRY) [18], the three individual rotation matrices

can be given as:

0

(3.12)

0 siney 1
1 0

0 cosey
(3.13)

-sin

0
ez 0~]

cosez (3.14)

Then, the resulting rotation matrix in the global reference frame is given as:

(3.15)

If the order is reversed, it will become the rotation matrix in the local frame

(3.16)

33

Expanding Equation (3.15) leads to

l
ceycez -ceysez

R = s9xs9Yc9z +c9xsez -s9xs9Ysez +c9xcez

-cexseycez +s9xsez cexseysez +s9xcez
(3.17)

When given three PRY angles, Equation (3.17) can be used to compute the rotation

matrix directly. For the reverse problem, some elements in the Equation (3.17) are

selected to determine the PRY angles for a given a rotation matrix, for example:

_ •1 ([)
2

)
2]V2) e y - cos (r23 + (r33

(3.18)

where r23 = -sin(8x)cos(8y), r33 = cos(8x)cos(8y), r, 1 = cos(8y)cos(8z).

Different selection of elements from the given rotation matrix leads to different method

for a solution. Bai and Teo [59] developed another solution using atan2(y, x), a two-

argument arctangent function that uses the signs of both x and y to identify the quadrant

in which the resulting angle lies:

(3.19)

However, none of them is capable of solving this inverse problem with a unique solution

34

from a rotation matrix in all four quadrants, which is called the quadrant sensitivity

problem. Equation (3 .18) is only valid for 0 :S ey 2': 90o, 0 :S ex 2': 180o, and 0 ::=:; ez 2': 180o;

while Equation (3.19) is valid when ey lies in the first and fourth quadrants.

In other words, if ey is located in the second and third quadrants, the values of cos(ey)

would become negative. As a result, the two elements r23 = -sin(ex)cos(ey) and

r33=cos(ex)cos(ey) in Equation (3 .19) change signs, and the values of ex determined from

atan2(r23, r33) are no longer true. It is clearly found from Table (3.1) that there is always

180 degrees offset between the determined values and true ones in this case.

So by modifying Equation (3.19),

cosey = ~rz/ + r3/ = ~(-sexceyf + (cexcey)
2

= ~c8/ '

then 8y can also be determined by

ey = atan2 (rl3' ~rz/ + r3/).

(3.20)

(3.21)

Even though a second solution exists, by using the positive square root in Equation (3.20)

for ey, we always can compute the single solution for which -90" :S 8y 2': 90", making it a

one-by-one mapping orientation representation.

Attention should also be paid to the names pitch, roll and yaw angles, since they are often

given to other related but different angle-set conventions; for instance, it is referred to the

X-Y-Z fixed angles in Craig [21].

35

Table 3.1: PRY angles in versed from a rotation matrix,

ex, ey, ez = 45, 135, 225, 315, stands for the full four quadrants,

x(-135, 45, -135) is the calculated value.

ez=45 135 225 315
ex= 45

ey=45 -1 -1 -1 -1
135 x(-135, 45, -135) X (-135, 45, -45) X (-135, 45, 45) x(-135, 45, 135)
225 x(-135, -45,-135) X (-135, -45, -45) X (-135, -45, 45) x(-135, -45, 135)
315 -1 -1 -1 -1

ex= 135
ey=45 -1 -1 -1 -1

135 x(-45, 45, -135) X (-45, 45, -45) X (-45, 45, 45) x(-45, 45, 135)
225 x(-45, -45, -135) X (-45, -45, -45) X (-45, -45, 45) x(-45, -45, 135)
315 -1 -1 -1 -1

ex= 225
ey=45 -1 -1 -1 -1

135 x(45, 45, -135) X (45, 45, -45) X (45, 45, 45) x(45, 45, 135)
225 x(45, -45, -135) X (45, -45, -45) X (45, -45, 45) x(45, -45, 135)
315 -1 -1 -1 -1

ex= 315
ey=45 -1 -1 -1 -1

135 x(135, 45, -135) X (135, 45, -45) X (135, 45, 45) x(135, 45, 135)
225 x(l35, -45, -135) X (135, -45, -45) X (135, -45, 45) x(135, -45, 135)
315 -1 -1 -1 -1

3.2 Translation and Rotation

The motion of a module in the workspace can be described using rotation or translation

or both.

3.2.1 General Motion of a Single Rigid Module

As shown in Figure 3.4, the general motion of a single module is the combination of

rotation and translation, and the position vector p is

p = Rb' + h = h + Rb' (3.40)

where h is the vector of translation, b' is the body vector in local coordinate system, and

36

R is the rotation matrix.

Rotation first

Translation second

Translation first

Rotation second

Figure 3.4: General motion of a single module [18].

Clearly, Equation (3.40) is communicative, meaning the order of rotation and translation

can be reversed, which can also be found in Figure 3.4. When h is null, it becomes pure

rotation.

3.2.2 General Motion of Multiple Modules

Figure 3.5 shows the vector method used to compute the position of a multi-module

system.

37

Base frame

Figure 3.5: Vector method for a multi-module system [18]

The position of each joint from 1, 2 to i can be expressed respectively as:

Joint 1 PI =bo

Joint 2 P2 = bo + Roib'I =PI+ Roib'I

Joint 3 P3 = bo + Roi (b' I+R12b'2) =PI+ Roi R12 b'2

Joint i Pi= bo + Roi (b'I + ... + Ri-I i b'i) = Pi-I + Ro i-I b'i-I (3.41)

where Ri-I i defines the rotation between two coordinate systems attached to two adjacent

modules i-1 and i; b'i is the local body vector, representing the translation between two

coordinate systems, or defining the ith joint to the (i+ 1)th joint in the ith local coordinate

frame.

38

Clearly, Equation (3.41) is a recursive method for computing the position of a multi-

module system.

Similarly, the recursive method of computing rotation can be given as

(3.42)

Hence, in general, the pose (position and orientation) of the end-effector of a n-module

system can be expressed as [18]

Position

Orientation

n n

Pn+l = LRo;b'; = Lh;
i=O i=O

n

Ron =IT R(j-l)J
J=l

(3.43)

(3.44)

As for a robot system, it usually has the default home configuration or initial

configuration setup. Therefore, it should be noted that all the employed parameters here

may have static part and motion part. The static part is according to the initial

configuration setup, and the motion part represents the movement of each joint.

(3.45)

b= bs+ bm (3.46)

where Rs and bs are initial configuration setup, which are the geometric parameters need

to identify; and Rm and bm are related to active joints, i.e., motors. The static part can be

further expressed by the PRY angles rotation as

39

(3.47)

(3.48)

where Rx, Ry, and Rz are the rotation about x, y and z axis of the configuration setup; bx,

by, and bz are the translation along the x, y, and z axe of the configuration setup.

In terms of different kinematic pairs, they may be expressed differently according to joint

movements, as shown in Table 3.3. As for robotics, usually only revolute and prismatic

joints are considered in reality.

In Table 3.3, R(8z), R(8y), and R(8x) are the rotation about z, y, and x axis of the joint

respectively; while Sz is the translation along z axis of the joint. Conventionally, the first

physical rotation or translation axis of a joint should be defined as axis z, second as y, and

last as x. It should be noted this convention is totally different from the sequence of PRY

angel set, which is used to represent orientation instead of a rotation matrix.

Table 3.3: Rm and bm of different kinematic pairs [18].

Joint Rm bm
Revolute R(8z) 0
Prismatic R(O) = 1 Sz
Cylinder R(8z) Sz
Universal R(8z)R(8y) 0
Spherical R(8z) R(8y) R(8x) 0

3.3 Three-point Target Measurements

We know that no device can directly measure the complete pose of an object in space,

40

because direct measurement of the orientation is difficult. As a result, the triangular three-

point target, which is made of three equal spheres whose relative positions are known, is

introduced and utilized to determine the tip orientation indirectly (Figure 2.3, 2.4, 2.5,

and 3.6).

As shown in Figure 3.6, the robot end-effector has a set of three spheres whose relative

positions are already known, and they can be either inserted in an array of short-range

displacement measuring fixture [17] or measured precisely in a CMM [37]. The

kinematic modeling of the three-point measurement is presented in Figure 3.7. In this

Figure, Poh p02, and Po3 are the initial positions of the three-point target; while Pfl, Po2,

and p03 are the final ones measured by certain devices.

Figure 3.6: Three-point moving target.

41

Po

Pol ~3 Po3

Figure 3.7: Transformation determinations using the three-point position data [55]

The initial and final three line vectors formed by the three-point target are [55]

and

Then, the rotation matrix from the initial pose to the final pose can be obtained by

where

Hence, the measured end-effector rotation matrix can be determined by

42

(3.50a)

(3.50b)

(3.51)

(3.52a)

(3.52b)

(3.53)

CHAPTER4 LINEAR FORMULATION

Chapter 4 discusses the conventional linear formulation for robot calibration. Error

models are derived from linearization of robot forward kinematic equations in two

schemes, partial-pose (position) and full-pose calibration, depending on whether the

orientation of end-effector is available or not. For the full-pose calibration, two

methodologies are also investigated when calculating the end-effector pose error and

implementing kinematic model error compensation, from which four full-pose calibration

categories are generated. Several limitations are found when discussing these two issues.

One downside is the orthogonality sacrifice of the rotation matrix leading to ill

conditioning of the Jacobian in the compensation step, and another is the quadrant

sensitivity during the determination of the PRY angles from inversing the rotation matrix.

Least-square estimation is applied in the identification of the parameter errors from the

error model and tip pose error.

4.1 Error Model

To perform calibration, an error model is developed that takes into consideration all the

geometric errors due to imprecision in manufacturing and assembly [18]. Based on this

error model, it is shown that the error mapping from the geometric errors to the pose error

of the tip of robot depends on the Jacobian matrix. Wu [31] assumed the actual or

43

measured geometric parameters were quite close to the nominal or calculated values and

expanded the total transformation as a Taylor series about the nominal values. Keeping

only the first order terms resulted in a linear expression for the differential deviations of

the Denavit-Hartenberg parameters. Such an idea can be extended here to generate the

linear error formulation of the complete kinematic model in Equation (1.1).

With linearization by Taylor series expanding, the error model can be derived as

oF
~=-~g=J~g og (4.1)

where ~ represents the pose error of the end-effector of a robot, which is the difference

between the actual (or measured) and the nominal (or calculated) tip poses in Equation

(1.4); ~g represents the kinematic errors, which includes manufacturing errors, assembly

errors, joint errors, all of which are to be identified together for the robot; J is the

Jacobian matrix, or the error mapping matrix, mapping the kinematic parameter errors to

the pose error of the end effector.

Two methods are classified here to do the calibration depending on the availability of the

orientation measurement of the tip, namely partial (only position) and full (position and

orientation) pose measurements.

44

4.1.1 Error Model with Full Pose Measurement

With both position and orientation measurements, the error model in Equation (4.1) can

be further detailed as

~6xl = [~:] = [~ p] ~g6nx]
6xl fJ 6x6n

(4.2a)

(4.2b)

where~ is a 6xl vector representing the robot tip errors including ~p and ~J:l, which are

the position and orientation error of the tip respectively; J is the Jacobian, as shown in

Equation (4.3a), which is a 6x6n matrix, with n joints; ~g is a 6nxl vector representing

the component errors, which are generalized as six infinitesimal errors for each module,

including infinitesimal translation Trans(~xi, ~yi, ~zi) and infinitesimal rotation Rot(~pi,

~ri, ~si), where ~Xi, ~Yi and ~Zi represent the linear errors along x, y and z axes of the

frame i respectively, and ~pi, ~ri and ~Si indicate the angular errors about x, y and z axes

of the frame i respectively. The scripts p, r, and s represent pitch, roll and spin (or yaw)

angles, respectively.

Considering the concept of multi-body velocity computation using the Jacobian [I 8] and

the fact that the velocity is the derivative of the position, the velocity formula can be

transformed and utilized into the error model by replacing the linear and angular

velocities with infinitesimal translational and rotational errors respectively, as below:

45

~gl

~g2

[dp] [J" J P2 JPi J,"] -J~g-

~p 6xl JOI J02 JOi JOn 6x6n ~gi
(4.3a)

~gn 6nxi

where the i th Jacobian matrix Ji is

J,f"}[X, yi zi X xPn+I y xPn+I Z xP""] I I I I I I

JOi 0 0 0 xi yi z
1 6x6

(4.3b)

with i ranges from 1 to n, n is the number of joints. xi, Yi, zi are the three unit vectors

of the global Cartesian coordinate in the ith joint; Pin+ I is the position vector from ith joint

to the tip of a robot,

n n

pin+I = LRo;b~ = Lb; (4.3c)
j=i j=i

Hence, the tip error unit contributed by the ith module is

lui

~Yi
X xPn+I

I I
y xPn+I

I I Z xP~'] &i I I (4.4)
zi 6x6 /).pi

~
t1si 6xl

Obviously, it can be found that this general error model covers all the robot kinematic

parameter errors. Therefore, it can be regarded as a complete parametric calibration

model.

46

4.1.2 Error Model with Position Measurement

Without the orientation measurement of the robot tip, the error model shrinks to

~P3xl = J p3x6n~g6nxi (4.5)

and the position error of the robot tip contributed by the ith module is

Llxi

~Y;

X X pn+I y X pn+I Z X pn+l]
1 l I I I I 3x6

/),zi

!!.pi
(4.6)

~lj

/).si 6xl

Compared with the full pose measurements, pure position measurements are easier to

perform and the calibration algorithms are easier to implement.

4.2 Pose ~rror Calculations

The pose error of end effector, ~X in Equation (4.1), is equal to the difference between

the actual (or measured) and the nominal (or calculated) value of end-effector pose,

(4.7)

where ~p and ~p are the infinitesimal position and orientation error respectively. Two

approaches are considered and compared in detail.

4.2.1 Differential Transformation

Firstly, the pose error in Equation (4.7) is regarded as the differential translation and

rotation respectively, represented as [16],

47

(4.8a)

(4.8b)

Therefore, according to [16], considering the derivative as a differential translation and

rotation in terms of the base coordinate frame, the measured pose transformation T m can

be obtained below,

Tm =Tn +dT=Trans(dx,dy,dz)Rot(ox,oy,oz)Tn (4.9)

where T" is the nominal pose transformation; pose transformation matrix is T ~ [~ ~] .

So the derivative dT is developed as

dT = (Trans(dx,dy,dz)Rot(ox,oy,oz)- I)T =AT (4.10)

where A, the differential translation and rotation transformation, is given as

0 -oz oy dx

oz 0 -ox dy
A= (4.11)

-oy ox 0 dz

0 0 0 0

which can be also called pose error transformation.

Since it is easy to calculate the position error Ap, i.e., ~p = Pactual - Pnominab simply only

considering the differential rotation 8, the transformation in Equation (4.11) becomes

48

-oz

0

ox

(4.12)

which is the skew symmetric matrix ofthe differential rotation 8 in Equation (4.8b).

As a result, Equation (4.1 0) shrinks to

(4.13)

Therefore, from Equation (4.9), the measured end-effecter rotation matrix Rm is

R =R +dR=R +8R =(8+I)R m n n n n (4.14)

where Rm can be measured by the three-point method as described in Chapter 3; Rn is the

nominal rotation matrix of the end-effecter, which is calculated through the nominal

model.

Hence, according to Equation (4.14), two equivalent methods are found to determine the

differential rotation 8, if Rm and Rn are both known:

&=dRR T =(R -R)R T
n m n n (4.15a)

or

&=R R T -1
m n (4.15b)

Actually, the first method in Equation (4.15a) can also be derived by the tensor

transformation,

also

49

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

(4.16)

co=8fdt (4.17)

where (jj is the skew symmetric matrix of angular velocity co.

So, from Equation (4.16) and (4.17),

8/dt = (dR/dt)Rn T (4.18)

Thereby, the skew-matrix of 8 is determined as, identical to Equation (4.15a),

8 = dRR T = (R - R)R T
n m n n (4.19)

Consequently, the orientation errors ~p can be solved as

~fJ=vect(6) (4.20)

where vect() is the vector operation, which transforms a skew symmetric matrix into a

column vector.

4.2.2 Inverse of a Rotation Matrix

Alternatively, another simple and straight-forward approach of determining the end-

effector orientation error is to calculate the Bryan (PRY) rotation angles directly from the

rotation matrix Rm and Rn:

o =f-1(R) I (4.21)

Many approaches about f"\) have been proposed so far, however, none of them is able

to function correctly for all four quadrants from -180° to 180°. This limitation is called

50

quadrant sensitivity stated previously in Section 3.1.3. Hence, the calibration

configurations should be considered and chosen carefully to avoid those limitations.

Here is one of them:

(4.22)

where r,, rJJ and r11 are elements from rotation matrix according to the number subscripts,

as shown in the Appendix A.

Then, the orientation error can be determined by subtraction between the measured and

nominal PRY angles

(4.23)

Hence, as the second approach, the orientation error can be determined from m = <llB

[18], as

(4.24)

where

0 sin (}Y]

-sin (}x cos (}Y

COS (}X COS (}y

(4.25)

51

4.3 Computational Methods

Computational methods involve three aspects. The first one is to perform the inverse of

the error mapping matrix J which is not a square matrix. The second one is component

error compensation, for which two methods are investigated in details. The last aspect is

an iterative algorithm for calibration.

4.3.1 Least Squares Method

In order to identify the linear error model in Equation (4.1), two categories of the least

squares estimation problem are investigated, namely, underdetermined and over-

determined problems, according to the dimension of the error mapping matrix, J, or the

number of measurements, m. To ensure the accuracy, measurement points should be

sufficient to minimize computational errors, and also the condition number of the

Jacobian J should be kept low enough within a reasonable bound.

4.3.1.1 Underdetermined

If only one set of tip poses is measured, as the number of joints n2:1, the number of

unknown geometric error parameters is larger than that of independent equations in the

Equation (4.1). This is a case of an underdetermined problem. The pseudo-inverse

method can be used to obtain a minimum-norm solution as follows,

Ag6nxl =JT 6nx6 (J 6x6nJT 6nx6)"' AX6xl' n ~I and m= 1
6x6

(4.26)

where Jt = Jr (JJT)"' is the pseudo-inverse of J for underdetermined situations.

52

4.3.1.2 Over-determined

A large number of poses must be available to more accurately reflect the robot

geometrical characteristics. In order to make Equation (4.1) over-determined, the number

of measurement, m, is increased sufficiently to make sure the number of equations, 6m, is

larger than the unknown geometric error parameters, 6n. Hence, the pseudo inverse

solution is given as when the matrix JTJ is nonsingular,

Ag6nxl = (JT 6nx6mJ 6mx6n)-I JT 6nx6mAX6mx] , m ~ n
6nx6n

(4.27)

where Jt = (Jr J t JT is also called the pseudo-inverse of J, when m 2:: n.

The condition number of JTJ is used to evaluate the observability and measurement

strategy [45]. The better the strategy, the lower the corresponding condition number [19].

4.3.2 Kinematic Model Error Compensation

After identifying the component errors as given below:

the nominal kinematic model should be updated accordingly until the pose error of the

end-effector meets certain accuracy requirements.

Iterative updating for static body vectors, bs, yields

(4.28)

where

53

Ab=[~x ~y. ~z.]
I I J I

(4.28a)

However, as for the update of static rotation matrix Rs of each module, two iterative

methods are investigated.

The first updating method is more straightforward, which adds the calculated orientation

errors into the initial orientation set up and then determines the static rotation matrix

accordingly by

(4.29)

where

(4.29a)

(4.29b)

The second updating method is derived from the differential rotation in Equation (4.12)

and (4.14). The skew matrix of the identified orientation error for each link is

compensated for the local static rotation matrix through the function below,

(4.30)

where

(4.30a)

54

(4.30b)

However, after being updated by Equation (4.30), the orthogonality df the static rotation
\

matrix is slightly sacrificed, and it may cause the ill-conditioning of th¢ Jacobian, which

would result in the poor performance or non-convergence.

4.3.3 Calibration Algorithm

Calibration is a process of determining a set of parameters in the model that best

describes the specific robot under study [17]. As shown in the flowchart (Figure 4.1), the

whole calibration algorithm is an iterative loop.

In evaluating the pose error, three parameters are used: RMSPE, RMSOE and RMSE,

which are the root mean square of the position, orientation and pose errors defined

respectively as [59]

1 3
2

RMSPE = - LI~PI , ~p = ~x, ~y, ~z
n I

(4.31a)

1 3
2

RMSOE = - L I~PI , ~p = ~p. M, ~s
n I

(4.31b)

1 , 2

RMSE = - :LI~ej , ~e = ~x, ~y, ~z, ~p, M, ~s
n I

(4.31c)

55

Robot Geometry

g (bs & Rs)

Input Motions: q (8, S)
U date~----~r-------'

Kinematic Model Equation (1.1)

X= f(q, g)

Nominal Tip Pose

Xo(R & p)

Tip Pose Error

Error Mapping Matrix

J (or Jacobian)

Error Model

~=J~g

Identification

~g=J-I ~X

g ~ (g+~g)

Measured Tip

Two methods of calculating the

orientation errors of the end

effector:

Equation (4.20) and (4.24)

y

Calibrated Kinematic Model

X= f(q, g+~g)

Two methods of updating the

identified errors to the nominal

kinematic model:

Equation (4.29) and (4.30)

Figure 4.1: Conventional calibration algorithm (linear formulation).

56

After carrying out the full pose calibration simulation, different convergent features are

found between these three parameters. The termination of the iterative looping occurs

when the pose deviation of the robot tip is within the certain specified precision, RMSE ::;

1<>1.

As mentioned in the Sections 4.2 and 4.3.2, there are mainly two methods of determining

the end-effector pose error and compensating the component errors in the nominal

kinematic model, which are combined together in Table 4.1. There are four categories

studied in the calibration simulations.

Table 4.1: Four categories of calibration simulations

Component Errors Compensation

Rs.+1 =Rs. +dRs. =Rs. (1 +J)
I I I 1 t

Equation (4.30)
Rsi+I =Rpry (Oi +AOi) Equation (4.29)

End-Effector Pose Errors Calculation

Afl= vect (8)
Equation (4.20)

and (4.17)

3

Afl =«<»(Om -On)
Equation (4.23)

and (4.24)

2

4

Simulations have showed that the static rotation matrix is no longer orthogonal after

being updated recursively using the first compensation method, i.e., Equation (4.30).

After losing the crucial orthogonality, a rotation matrix is no longer eligible to represent

the orientation for a robot, which indicates that robot kinematic calibration should avoid

57

this compensation method shown in Equation (4.30). Therefore, the second method in

Equation (4.29) would be a better way to update the identified component orientation

error into the static rotation matrix for individual links. Furthermore, attention should be

paid to quadrant sensitivity in the second method of the end-effector orientation error

calculation (Equation (4.23)), which may fail to yield unique Euler angles from a rotation

matrix ofthe end-effector in Equation (4.21).

58

CHAPTERS NONLINEAR FORMULATION

This chapter investigates the nonlinear formulation without linearizing the kinematic

model. The norms of tip position error and rotation matrix error are used as the objective

function to search for an optimal or global solution. A genetic algorithm (GA) is applied

as the search engine. Attention is paid to the population size, generation numbers,

crossover or mutation factors, initial population, and other GA options. Furthermore,

Monte Carlo simulations are conducted to reduce the stochastic or random error.

5.1 Nonlinear Formulation

Compared with the conventional linear formulation, the nonlinear one determines the

pose error of the end-effector between the nominal and measured pose directly,

n n n

Lll~ll2 = LIIXm-Xollz = LIIXm- f(qo,go+L'lg)llz < E (5.la)
i=l i=l i=l

(5.lb)

n

where LIIXm - X
0

112 represents the summation of 2-norm values of end-effector pose
i= I

errors from n different measurements; E is the acceptable accuracy for the pose error of

the end effector, which is the termination condition for the calibration iterations. Equation

(5.la) can be solved using genetic algorithm to search the optimal geometric errors L'lg at

which the norm value of pose errors is less than E.

59

Furthermore, the determination of the pose error can be formulated as follows,

(5.2)

where IIPm -Po 112 and IIRm -Ro 112 are the Euclidean norm of position error and the spectral

norm of rotation matrix error of the end-effector respectively. llxll
2
=

the Euclidean norm of x in vector space, IIAII
2

=)A-max (A • A) represents the spectral

norm, defined by the largest singular value of A or the square root of the largest

eigenvalue of the positive-semidefinite matrix A* A.

The use of rotation matrices directly instead of PRY angles to represent the orientation in

Equation (5.2) avoids the inverse operation that may cause the quadrant sensitivity

problem. Pm and Rm are the measured position and rotation matrix of the robot's end

effector. For Po and Ro. it can be given by the robot forward kinematic equations (3.43) ~

(3.46) in Chapter 3.

5.2 Genetic Algorithm

A genetic algorithm (GA) is a kind of global adaptive probabilistic searching algorithm

simulating biological heredity and evolution, first presented by Prof. Holland in Michigan

University [60] [61]. GA includes four basic operators, namely, selection, crossover,

mutation, and migration. The genetic algorithm repeatedly modifies a population of

individual solutions with these operators. Meanwhile, the fitness of each individual in a

60

population is valued by its cost of fitness function, and the best individual has the lowest

cost, which has the priority to be selected into the next generation.

5.2.1 Fitness Function

The fitness function is also known as the objective function in other standard

optimization algorithms. This is the ultimate cost function that determines the

optimization process and direction of GA. The fitness function assigns a higher selection

probability to the individuals with the lower cost values. After the global search based on

GA is over, we transform the best individual whose cost value is the lowest into the final

indentified kinematic parameter errors [7]. A nonlinear identification approach can be

regarded as a typical GA optimization problem by setting Equation (5.1) as the fitness,

while adding appropriate weighting factors between position and orientation error, as

given below

Min(~~~Xm-Xollz) (5.3)

IIXm -Xollz = wiiiPm -Po liz + wziiRm -Rollz (5.4)

where w1 and w2 are the weighting factors for position and orientation errors of the end

effector, respectively, which are utilized to weigh the importance of two errors. When

w1=1 and w2=0, it shrinks to a pure position calibration only; when w1=0 and w2=l, it

shrinks to a pure orientation one.

61

Each individual of a population has 6n parameters in total as the variables in the GA

search. Meanwhile, the geometric errors ~gi (Equation 4.2b) are the variables that are

optimized to minimize the cost of fitness function given in Equation (5.3). Furthermore,

the position and orientation errors can be written as follows

IIPm -Poll2 = IIPm -Po (q, g+~gi)112

IIRm -Roll2 = IIRm -Ro (q, g+~gi)112

(5.5)

(5.6)

where g represents the geometric parameters of each link, including the body vectors and

initial configuration set up; q represents the joint variables, including rotational angles for

revolute joints and translational displacements for prismatic joints.

5.2.2 Initial Population

A genetic algorithm starts generating a new population from the initial population that

can be either created by a random generator, say, using a uniform distribution, or set

manually. The initial population should provide the diversity of individuals. Assuming

there are m population size and n number of variables, the initial population should use

an mxn matrix to store. For robot kinematic calibration, the identified kinematic

parameter errors from the linear formulation with position measurements can be

considered to be an initial population. Both methods are evaluated in the calibration

simulations, and better performance can be found when using calibrated ~g from the

linear formulation. It requires fewer generations and therefore saves calculation times.

62

5.2.3 Individual Selection and Population Generations

The classical algorithm generates a single point at each iteration, and the sequence of

points approaches an optimal solution. While GA generates a population of points at each

iteration, the best point in the population approaches the optimal solution. Moreover, GA

selects the next population by computation which uses a random number generator, as

opposed to selecting the next point in the sequence by a deterministic computation in the

classical algorithm [62]. With a large population size, the genetic algorithm searches the

solution space more thoroughly, thereby reducing the chance that the algorithm will

return a local minimum that is not a global minimum. However, a large population size

also causes the algorithm to run more slowly.

To create the next generation, GA selects certain individuals in the current population,

called parents, and then uses them to create individuals in the next generation, called

children. Typically, the algorithm is more likely to select parents that have better fitness

values. There are basically four operations for generation, which are selection, crossover,

mutation, and migration. An individual with the lowest cost value of the fitness function,

called an elite child, will be selected with priority into next generation automatically and

survive to the next generation. Besides elite children, other relative lower individuals are

selected as parents that contribute to the population at the next generation with crossover

and mutation rules. Crossover operation combines two parents to form children for the

63

next generation. Mutation rules apply random changes to a single individual in the

current generation to create a child. Mutation broadens the search space for GA and

creates genetic diversity. Migration copies the best individuals in one subpopulation to

replace the worst individuals in another subpopulation when the population size is more

than one.

5.3 Calibration Algorithm

In Figure 5.1, a flowchart is given to show the robot calibration procedure based on the

nonlinear formulation using GA. The initial population provides the genes for GA. The

individuals with lower cost values are selected with priority to be parents for the next

generation. The children are generated through the four basic operators, namely,

selection, crossover, mutation, and migration. The final best individual is transformed to

be the kinematic parameter errors and implemented into the robot kinematic model when

it meets the required accuracy.

64

Robot geometry: g (bs & Rs)

Joint variables: q (8, s)

Initial population

{Jg}

Fitness calculation

{//L1Xj/}

Best individual (minjjJXj /i)

Jgi

Children

{Jg}

Measured Tip

y

Calibrated Kinematic Model

X= f(q, g+Jg)

Figure 5.1: Nonlinear calibration using a genetic algorithm.

65

5.4 Monte Carlo Simulation

After each run, GA (loop 1 in Figure 5.2) returns a set of results for component kinematic

parameter errors, L\g. In order to reduce stochastic simulation error, Monte Carlo

simulation (loop 2 in Figure 5.2) for the genetic algorithm is conducted by running GA

for n times, roughly around 50 times, until the mean value of all searched parameter

errors of all runs (Equation 5.9) become stable and fluctuates within a certain preset

tolerance L1 in Equation (5.7).

(5.7)

k-1

-k-1 L:L\gi
L\g = ..:..i=...:..1 __

k-1
(5.8)

k k-1

-k I L\g; I L\g; + L\gk -k-1

L\g = i=1 _ i=1 = _L\=g_x--'(--'k_-.....:l)_+_L\....::g:..::...k
k k k

(5.9)

Simulations show that the more the run times, the more stable is the mean value. In

addition to conducting a Monte Carlo simulation for a single configuration (loop 2), more

random m configurations in the workspace are generated to repeat loop 2 until the mean

value (Equation 5.10) for all the different configurations becomes stable, which can be

considered as the global solution in the whole workspace (loop 3 in Figure 5.2).

(5.10)

66

GA; .. i-l,n
-7Lig, -2(C.g;)/n

Monte Carlo Ieveil
(n GA runs in one configuration)

ConfJ, i'-l,m -7
!o.o = '\' (Ao);fm ~-~ tiobal ~ '-¥.,. J ''"

Monte Carlo lever 2
(m configurations in workspace)

Figure 5.2: Three loops of simulation.

67

CHAPTER6 SIMULATIONS AND

COMPARISONS

In this chapter, the calibration algorithms, both linear and nonlinear formulations, are first

tested individually and then compared. Figure 6.1 shows the graphical user interface

(GUI) for the robot kinematic calibration simulation created in MatLab R14. It consists of

a static configuration set-up, motion parameters, assumed link errors, the calibration

using linear formulation, the calibration using nonlinear formulation, and outputs. The

outputs include graphs of the robot configuration representation and the robot end-

effector pose errors, and identified kinematic parameters.

f I· I ~ '" Ill Ill I .I ill lfl - -,.-X

Robot Configurations

"~[~:'~~:lll:.J
.5 1 ----····; 0.5 0 .()5

X

3 5
- Root: Mean Sqare ~osrt1on Error

3 .. ·········+············+··········
25 ··········+··········+···········

2 •..•.• ······:,,············+
15 ------------>---

0~ ::::::::·:_··[::::::::::::::::::::::::::

01

--PIIele ,..., of ll'ldM:

bO: Bille Vedon (m) oooe
.......... _

j T,..ot_
bs. Sltillc loclf Body Veda's (m) 000.2

Rs· Sl*OrilrtllltanwrJ ZeroReterenceFIWIIII(Ci~Wee) _ .. _
Ratllkln(deg)/ T,......,.,(m) 02

0 _:.[- _j ..:.! 0.5

.,.
..oJiOtlMI o.liieMII.OJiiMcine 01Xm4178 o ...

1e-5 __ ,.._ .,_, _
10 """' I """ I

-J

OHIOO

--

~~-~(In)

0.~ DJIODI7847 -0.14101 A
040002 0.0019131 O.CW98828

-2.2856e.OOS 0 0019132 019901

v

ICSU_Ciill:nltcl (dig)

O.ot212157 .O.Dt322334 Cl.D332! A
0.002892411 -0002765421 00052
-0 0026'95145 180.0199 OD3854 v

.!_ .!

-

_
Podian(m)

From l.IXI379439

To !ll2ale-007

.....
To

-------~F-*ws Vlrill:lltBcvld(m) ~PqiUition

WI

W2 "'"* 0005

30 1000 1e-5 _.,.._
11111n v-.. DMition ~ Cc:Jnf9nllant ~

1e-4

Figure 6.1: Graphical user interface (GUI) for robot kinematic calibration.

68

The simulations are carried out on the MRR-1 robot. as shown in Figure 6.2. The robot

has three joints: two revolute and one prismatic. Table 6.1 lists the robot's kinematic

parameters, including local body vectors, initial orientation set-up, and joint motions for

simulations.

Figure 6.2: MRR-1 [8] and SolidWorks model.

Table 6.1: Nominal link kinematic parameters for MRR-1

Local Body Vectors
Zero Reference

Joint Motions
Joint i Initial Orientation

(m)
set up (de g)

(deg/m)

X y z Pitch Roll Yaw
Base 0 0 0.8 n/a n/a n/a n/a
I (R) 0.5 0 -0.15 0 0 0 30
2 (R) 0.4 0 0 0 0 0 60
3 (P) 0 0 0.2 0 180 0 0.2

All the kinematic parameters in Table 6.1 are inputs in the GUI (Figure 6.3). The robot

configurations before and after movements Uoint motions are shown in Table 6.1) are

illustrated by red and blue solid lines, respectively, in Figure 6.4, and the dashed line

represents the base vector from the global frame origin to the first revolute joint centre.

69

.-------------------~MkC~~·------------------~

Please inpli the number o1 modules:

bO: Base Vectors (m)

Number o1 Module Type o1 Module

bs: stlillic local Body Vectors (m) 00 0.2

Rs: Stlillic Orientation w.r.t. Zero Re1erence Frame (degree)

Rotation (deg) I Translation (m)

0 -·~1------~~--------~

..------- A8eumed Component Errore------o

l-0.0017649 0.0065496-0.00040919 0.00034179 If .,:·I
I •i
lc >

I Randomly Generate the Preset Errors (m a rad)

r Kinematic Modell

I Next] I

I Reset I

I '*"• Con! J •

Figure 6.3: Kinematic parameter input panels in the GUI.

Robot Configurations

0.8

0.6 .--c'~ -!---

N 0.4

0.2

0
-0.5

y X

Figure 6.4: Robot configurations before (red lines) and after (blue) movements.

70

In the calibration simulations, the measured end-effector pose is determined using the

nominal model with the assumed joint geometric parameter errors according to the

manufacturing tolerances in Table 6.2. The nominal pose is determined using the model

without the errors [59]. These assumed errors are generated randomly by the Gaussian

(normal) distribution with the mean value /-1 = 0 and variance cr2 = 0.003. The random

generator can be found in Figure 6.3. A set of assumed component geometric errors,

listed in Table 6.3, is added to both local body vectors and initial orientation set-ups in

the nominal kinematic model through Equations (4.28) and (4.29) or (4.30).

Table 6.2: Typical tolerance limits for various manufacturing processes [65]

Typical Tolerance Limit Typical Tolerance Limits

Process mm inches Process mm inches

Sand casting: Abrasive processes:
Cast iron ±1.3 ±0.050 Grinding ±0.008 ±0.0003
Steel ±1.5 ±0.060 Lapping ±0.005 ±0.0002
Aluminum ±0.5 ±0.020 Honing ±0.005 ±0.0002

Die casting ±0.12 ±0.005 Nontraditional process:
Plastic molding: Chemical machining ±0.08 ±0.003

Polyethylene ±0.3 ±0.010 Electric discharge ±0.025 ±0.001
Polystyrene ±0.15 ±0.006 Electrochem. grind ±0.025 ±0.001

Machining: Electrochem. machine ±0.05 ±0.002
Drilling, diameter Electron beam cutting ±0.08 ±0.003
6 mm (0.250 in) +0.08, -0.003 +0.003, -0.001 Laser beam cutting ±0.08 ±0.003
25 mm (1.000 in) +0.13, -0.05 +0.006, -0.002 Plasma arc cutting ±1.3 ±0.050

Milling ±0.08 ±0.0003
Turning ±0.05 ±0.002

Table 6.3: Assumed geometric parameter errors (m or rad)

Joint i Position errors Orientation errors

11x; ~Y; &i /),pi tlJj &i

i=l -1.2977e-3 -4.9968e-3 3.76e-4 -8.6303e-4 3.4394e-3 3.5727e-3
i=2 3.5675e-3 -1.129e-4 9.8188e-4 5.2392e-4 -5.6013e-4 2.1774e-3
i=3 -1.7649e-3 6.5496e-3 -4.0919e-4 3.4179e-4 3.2003e-3 1.7784e-4

71

6.1 Linear Formulation

For the linear formulation (Figure 6.5), two calibration schemes are simulated. The first

one is the position calibration and the second one is the full-pose calibration.

Simulations of the calibration using only position measurements are carried out

successfully and usually converge to the specified accuracy by no more than 6 iterations,

even though it (Equation (4.6)) is simpler and less complete compared with the full pose

calibration. For this case, the root mean square position error (RMSPE) values converged

from 3.8xi0-3 m to 6.2xi0-7 m by only 4 iterations in Figure 6.6(a). Figure 6.6(b) shows

the calibration results.

r Termination Conditiuns -

Tip Pose Error Tolerance

Maximum Iteration Times

... __ I r·-~'"""
!

Condition Humber ~----'"--1

Calibration
Categories

I , ~, I
[3.180~_] I Curve j I

...... _ ~ --~ J
[e-ll

Figure 6.5: Calibration using Linear Formulation panel.

Table 6.4 shows the identified actual kinematic parameters for MRR-1 compared with the

nominal values. The positioning accuracy of MRR-1 can be improved when the actual

values are implemented into the kinematic model. The differences between the nominal

and actual values are the geometric parameters errors, as shown in Table 6.5.

72

.-..

.§. ...
g
w
c:

.!a
·~
0
0.
(1,)

:::e
0::

--Root Mean Sqare Position Error
3.5 lr-----.---_;_--.-----4

3

2.5

2

1.5

0.5

0
1

~- ~*~~~~-~··r~-~-----·--··r•••··--·--~· ---- --------~-------------~------------.
------ ------;-------------~------------.
-------- ----~-------------~------------. .

'
•••··~···~ ~~~····~~M~~-···r·······--*~•

' .
·----~------ ~--------~----~------------. .

2

. .
3

Number of Iterations

(a)

4

Calibrated Kinematic Parameters-- ,........--- RMS Errors--.....,

Bs_Calibrated (m)

0.40002 0.0019131 0.00098828
2.2856e-005 0.0019132 0.19901

ICSU _Calibrated (deg) [Rs _Calibrated J

! 0.01212957 '-0.01~22334. 0.0332f l
1 o.oo2692411 -o.oo2'7s5421 o.oo52

1
;

1-0.002695145 180.0199 0.03854 v

~~. . .. i ' >~-~J

(b)

Position (m)

From

To

Orientation (rad)

From

To

Figure 6.6: Partial pose (position) calibration outputs.

i
..... J

With the identified errors in Table 6.5, Table 6.6 indicates that the position of the MRR-

1 's end-effector after calibration is much closer to the actual position than the nominal

values before calibration. However, the differences between the calibrated rotation matrix

73

and the actual values are found even after calibration in Table 6.6. Clearly, the orientation

accuracy is not taken into account in position calibration.

Joint

1
2
3

1
2
3

Joint i

i=1
i=2
i=3

Table 6.4: MRR-1 kinematic parameters before and after calibration

Kinematic Nominal values Calibrated actual values
Earameters (m I de~) (m I de~)

X y z X y z
Local Body 0.5 0 -0.15 0.49835 9.76e-4 -0.1490

Vectors 0.4 0 0 0.40002 0.0019131 9.88e-4
(m) 0 0 0.2 -2.3e-5 0.0019132 0.19901

Pitch Roll Yaw Pitch Roll Yaw

Initial Orientation
0 0 0 0.0121 -0.013 0.0332

set up (deg)
0 0 0 0.0027 -0.003 0.0052
0 180 0 -0.003 180.02 0.0385

Table 6.5: Identified geometric parameter errors (m or rad)

/),xi

-1.6453e-3
2.2946e-5
-2.2856e-5

Position errors

~Y;
9.7647e-4
1.9131e-3
1.9132e-3

&i
9.8828e-4
9.8828e-4
-9.8831e-4

Orientation errors

/¥J;
2.1170e-4
4.6991e-5
-4.7039e-5

~
-2.3079e-4
-4.8266e-5
3.4700e-4

Table 6.6: End-effector poses before and after calibration

Tip position End-effector rotation matrix

/),si

5.8048e-4
9.2338e-5
6.7282e-4

Nominal
4.330127e-l 0 -1 0
1.7987616e-4 -1 0 0

values
2.5000e-1 0 0 -1

Actual
4.2722476e-1 -1.8588651e-4 -9.9999914e-1 1.2975389e-3
6.5018508e-1 -9.9998926e-1 1. 7987616e-4 -4.6306960e-3

values
2.531 0769e-1 4.6304586e-3 -1.2983857e-3 -9.9998844e-1

Calibrated
4.2722582e-1 -6.7281 084e-4 -9.999997 4e-1 2.4911461e-4
6.5018489e-1 -9. 9999969e-1 6.7270681e-4 -4.1745853e-4

values
2.531 0762e-1 4.1729084e-4 -2.4939540e-4 -9.9999988e-1

74

On the other hand, due to the limitations of the linear formulation, simulations have

shown that these limitations tend to cause the full-pose calibration results to be non-

convergent, as shown in Figure 6. 7. The root mean square values of position, orientation,

and pose errors are represented by blue, red, and black curves, respectively, in Figure 6. 7.

0.16 .--------,.-----,---.,...------,

-+- RMS Position Error
2 °' 14

····-f+···· RMS Orientation Error '
w 0 12 ---- --+--- RMS Pose Error ___ / :5 . (j)

; I
·u; 0 1 ---------·------------------ -- ·- -- ___ , __
cr · : : : d
m , , , r·
~ 0.08 ---------~----------;---------~----1'-- -

i:: : : T 27
E ' d'
0

o:: O.D2 --------

Number of Iterations

Figure 6.7: Non-convergent results for the full-pose calibration.

6.2 Nonlinear Formulation

For the nonlinear formulation using GA, the options of GA need to be adjusted after

several trials in order to obtain a better performance, consisting of the number of

populations, generations, crossover factors, initial populations, and weighting factors etc.

Figure 6.8 shows the GUI for the nonlinear formulation using GA.

With 50 populations and around 250 generations, the best fitness value has changed from

about 4.5><10-3 to 9.8075x1Q-6 (Figure 6.9), indicating that the norm ofthe pose error of

robot end-effector has been decreased below the satisfied accuracy, I xI o-5
. The best and

75

mean fitness values of each generation are represented by black and blue points. Figure

6.9 also indicates that GA's initial convergence speed is very fast and then gradually

becomes slow. Generally, GA needs longer computing time than other optimization

methods.

Nonlinnr Formullition using Genetic Algorlthm---

Weigi'Dlg Factors Variable Bc:uld (m) lnlial PopUetion

W1 ~ Lower 1-o.oosl QCelibrated

W2 [- 1 J Upper I o.oosl
I GA l

Population Size Generations Flness limit

~ 11soo I ~
I Resuls]

.-------Monte Cerlo Simullltion------:

Mean Value Deviation I MC 1 l Configl.rations I MC 2]

~>,JtC· f·e-·,r. ~ f·.F!~'

Figure 6.8: Nonlinear Formulation using Genetic Algorithm panel in the GUI.

Best: 9.BJ75e.OJ6 Mean: 0.0024816
0.018 ---- --;------ ~-- ---- ~------:----- -;----- -~----- -·----- --------.------:

: : : : : : • Best11tness :

o.o16 -----+-----1------j------!------r------r------ • MeMflness j
I I I I I I I I I

0.014 ----- +-- --- ~- ----- i------ i-- ---- ~---- --~-- ----:------ i--- --- i- -----;
I I I I I I I I I I
I I I I I I I I I I
I I I I I I I I I I

0.012 ------:------ ~-- --- -~---- --!- ---- -~----- -~-- ----:----- -~------ t-- ---- ~

~ : : : : : : : : : :
~ 0.01 ------:------:------:------:------:------:------:------:------:------:
UJ I I I I I I I I I I
U) I I I I I I I I I I s o.C03 ------:------ i- ----- ~--- --- t-- ---- ~---- --r----- -:------ ~--- --- t- ----- ~
~ : : : : : : : : : :

O.OCE ------:------ i·- --- -~---- -- f------ ~----- -r-- --- -;- ---- ·i------f------ i . : : : : : : : : : :
0.004 -·- -t---- -- ~------ ~--- ---:------; ----- -~----- -:------ ~---- --:------:

I I I I I I I I I

0.002 • I ! • • ~- • • •• • ~ • • •• • • ~ • • • • --~ • • • • • -~- • • • • ·1• • • •• • f • • • • • • ~
I I I I I I I I
I I I I I I I I

Generatioo

(a)

76

x 1 o-3 Best: 9.8075e-006
4.5 ---- -~------ ---- ·:·-- --- :··-- ·:···- -- j- --- ··:···--- ----- ·:·- ----

4 -----j------ ----+-----r·---+-----(·--+----- -----+-----
3. 5 ----- (---- ------1------(· ---1------ j·---- ·r----- ----- ·r-----

Q) 3 -----1------ ------j·-----t·-----j··----1------r----- ------r-----
-= I o I I I I 1 E 2"5 ---··t··-- -----r----~------i""·---~----·t··-- ---··t··--
(J) • I I I I I I I .s 2 -- ---i-- ---- ---- -~---- --r----- ~------f---- --:------ ------:------
u: 1. 5 : -- __ j_----- ----- _j_----- i---- --!------ ~----- _;_----- ----- -!------

I I I I I I I
I I I I I I t

• I I I I I I I

1 --~--:------ ------r-----r------r-----r-----~----- ------~-----
.. : I I I I I I

0.5 --- ,------ ------:------:------:------:------~----- ------~-----
1 I I I I 0
I I I I I I
I I I I I I

0oL--1~0-0~2-00~~30_0 __ 4~00--5~0-0 __ 6L00--~70_0 __ 8L00--~90-0~1000

Generation

(b)

Figure 6.9: (a) Best and Mean fitness; (b) Best fitness.

Table 6.7 shows the MRR-1 kinematic parameters before and after calibration using the

nonlinear formulation. The satisfactory results of the end-effector pose after calibration

are presented in Table 6.8, as compared to the pure position calibration values using the

linear formulation in Table 6.6. The calibrated rotation matrix of the end-effector in Table

6.8 is much closer to the actual values compared with the one in Table 6.6, indicating the

better performance of the nonlinear formulation using GA.

The final best individual with 18 variables for the MRR-1 is shown in Table 6.9 after 250

generations. They are transformed to be the identified kinematic parameter errors and

implemented into the robot kinematic model.

77

Table 6.7: MRR-1 kinematic parameters before and after calibration

Joint Kinematic Nominal values Calibrated values
Earameters (m/deg) (m/deg)

X y z X y z
1 Local Body 0.5 0 -0.15 4.9647e-1 2.9079e-3 -I.4903e-1
2 Vectors 0.4 0 0 3.9975e-1 1.9099e-3 5.7817e-4
3 (m) 0 0 0.2 -8.6127e-4 1.0051 e-3 1.9903e-1

Pitch Roll Yaw Pitch Roll Yaw
1 Initial 0 0 0 1.3983e-2 -1.6551 e-1 8.3171e-2
2 Orientation 0 0 0 -7.2005e-2 -8.2925e-2 -1.5142e-1
3 set U£ (deg) 0 180 0 -9.0582e-3 1.8008e+2 9.9070e-3

Table 6.8: End-effector poses before and after calibration

Tip position End-effector rotation matrix

Nominal
4.330 127e-1 0 -1 0

6.5000e-1 -1 0 0
values

2.5000e-1 0 0 -1

Actual
4.2722476e-1 -1.8588651e-4 -9 .9999914e-1 1.2975389e-3
6.5018508e-1 -9 .9998926e-1 1.7987616e-4 -4.6306960e-3

values
2.531 0769e-1 4.6304586e-3 -1.2983857e-3 -9.9998844e-1

Calibrated
4.2722444e-1 -1.80270 19e-4 -9.9999915e-1 1.2921556e-3
6.50 18405e-1 -9.9998925e-1 1.7428246e-4 -4.6325272e-3

values
2.531 0623e-1 4.6322980e-3 -1.2929769e-3 -9.9998843e-1

Table 6.9: Geometric parameter errors from the final best fit individual

Joint

1
2
3

Local Body Vectors Errors
(m)

X

-3.5280e-3
-2.4508e-4
-8.6127e-4

y
2.9079e-3
1.9099e-3
1.0051e-3

z
9.7299e-4
5.7817e-4
-9.6915e-4

78

Zero Reference Orientation
set up Errors (de g)

Pitch (p) Roll (r) Yaw (s)
2.4404e-4 -2.8887e-3 1.4516e-3
-1.2567e-3 -1.44 73e-3 -2.6428e-3
-1.5809e-4 1.4089e-3 1.7291e-4

Basically, the better performance can be expected with a larger population and more

generations, although it increases computing time. Figure 6.10 illustrates the different

performance for different population and generations. With the same 1000 generations,

the final best fitness is improved to 0.0010523, 7.2879xi0-5
, and 5.1947xto-5 for 100,

150, and 200 populations, respectively. With the same 200 population, the final best

fitness is enhanced to 5.1947xl0-5
, and 1.465lx10-5 for 1000 and 1500 generations,

respectively.

O.D3

0.04

0.03
~
~
~O.Q2
~ ..
u.. om

Best: 0.0010523 Mean: 0.0011444

• Best fitness
• Mlanfilness

200 4)0 600 roo 1000
Generation

(a) Population 100, Generation 1000;

Best: 7.2379e.005 Me~n: 0.0011399

• Best ftness

• Mean filness

200 400 600 800 1000
Gererati m

(b) Population 150, Generation I 000;

79

..
.2 ..
>

0.04

0.03

::: 0.02 ..
c

"" ...
0.01

Best: 5.1947e-005 Mean: 0.000<¥1433

Best 1i1ness

• M!ill flness

oL---~~~._ ____________ __
0 200 <DO 000 800 1000

0.03

~ 0.02
!§!

~
G)
c
i:f 0.01

Generation

(c) Population 200, Generation I 000;

Best: 1. 4651 e-005 M een: 0.00032731

• Best ftness

• M!an 1ilness

OOL_--~~~ .. -.~-~~
500 1 oro 150o

Generation

(d) Population 200, Generation 1500;

Figure 6.10: Better performance with large populations and generations.

Furthermore, a high crossover probability and a low mutation probability are proved to be

more likely to obtain a good performance [61]. Since GA is a stochastic process, each

time the program is run, slightly different results are returned. From simulations, it is

shown that satisfactory results are generated and enough accuracy of position and

orientation is guaranteed after calibration.

80

6.3 Monte Carlo Simulation

In order to reduce the stochastic random error in GA, Monte Carlo simulations (Figure

6.8) in the loop 2 (Figure 5.1) are carried out by repeatedly running GA in loop 1 to

calculate the mean values of ~g until they become stable and fluctuate within certain

bounds. The standard deviations around the mean value are calculated each time when

new results are generated from GA, and a convergent pattern is found and illustrated in

Figure 6.11.

Since there are 18 parameters for the MRR-1 robot in total, the standard deviations of the

mean values for all parameters are plotted together in one chart (Figure 6.11 a) and one of

them is clearly shown with 44 iterations (Figure 6.11 b). The final stable mean value of all

the best fit individuals from 44 GA runs is calculated and shown in the Table 6.1 0.

Furthermore, in order to obtain a global solution, the Monte Carlo simulation is

conducted again repeatedly for 8 random configurations in the robot workspace (Figure

6.8). Random movements for all three joints are generated with a uniform distribution

within joint motional bounds (Figure 6.13, 6.14). The results in Figure 6.12 show that all

the 16 parameters do not fluctuate significantly and remain almost stable in the 8 random

configurations over the robot's workspace, which indicates the global property of the

solution from Monte Carlo level 1.

81

x 10-3 Mean Values Deviations

3~--------------------~
I I
I I I

2.5 .. - - - ~ - - - - - -:- - - - - - i- - - - - - -: .. - - - -
I I I I

2 - - - - ; - - .. - - -:- - - - .. - ~ - - ... - - ~- - - - -
I I I
I I I
I I

I I I
...... ~ L ~

I I I I
I I
I

I I I

.... J • L J
I I I I

10

I
I
I

I I

-----·------~-----~-----1 I I
I I

I

20 30 40
Number of Iterations

(a)

50

x 10"
3

Mean Values Deviations
2~--~------~----r---~

I
I I I 1

1.:5 - .. --- t ---- - ~ -- --- -:-- - - -- ~ --- --

0.5 -

I I 1
I I

I
I
I

I I I
'"'1. "'I,.I L

I I I I
I I

I
I

I
I I I

...... £ ~ 1 L
I I I I
I I I I

I 1

Number of Iterations

(b)

Figure 6.11: (a) Standard deviations of mean values of all the parameter errors ~g from

GA; (b) one of the parameters.

Table 6.10: The stable mean value of all best fit individual from GA runs

Joint i X y z p r s
-1.5468941 -4.2133711 -3.4040037 -6.5581664 -2.7366316 -3.9937420

e-3 e-4 e-5 e-4 e-4 e-4

2
-1.1226324 9.9691850 3.6835343 -3.7540076 -8.0672008 1.3481633

e-3 e-4 e-4 e-005 e-4 e-3

3
2.0275948 9.1848455 9.1167962 -2.4716377 1.1293914 4.2085826

e-3 e-4 e-4 e-004 e-3 e-3

82

16 calibrated p~sers in 8 rtndom col'llgunlti(J'lS

' '
---------~----------£----------~---------~----------~----------~---------1 I I I I

' ' ' '

8 con1g .. n111:ions
8

-deltax1
-+-deltay1
-+-deltaz1
-deltap1
-+-deltar1

delta s1
---e- delta x2
---e- delta y2
----e- delta z2
---e--- delta p2
---e-- delta r2

---e- delta s2

delta x3
----A- delta y3
----A- delta z3
-A- deltap3
----8---- delta r3
--6- deltas3

Figure 6.12: 16 calibrated parameters in 8 random configurations.

·~r-----r-----.-----.------r-----.----1?====~
I I I I I ---+-.laniJ

80 ~~···---~--------:-·------~-------~------ ~~nl::

60
----/ t- :·~~~ 1- -~=-*------ -~------- t-------:-------

40 i,/ r -----~- --- ... ·!·'\ ----:- ------- ,. ------- ~---- - -i / I I I \ 0 0 0

? :oJr _____ t------- '........... ... \~----~-------t-------~--
i ' I I I
~ 0 ,........... -~-------~--

6 •::0 ~ :............ --~----•••T••• ,

J - ·.0 ' ..,..,..,.., T ,,..,~..,..,..,

' '
' : ------~/:r-=--=--:.:..:.:

-GO -------.------ -~- ------ -·------- ------.--- ... _ _- ------
I I ""-. I / I

-eo -------!------- ~------- ... : ... ------ -~--- :--::."":'! ~ .. .-::.··~---- ~-------
: : : : "'7 :

··~~.------~--------~------~.~------~;~----~6~------~------~.
a ccntual<nr

Figure 6.13: Revolute joint 1 and 2 random movements for 8 configurations.

IS 05
Pdnnolc .tcrotl

~ o .• ..
IS

' I I I I ··-·---r-------r---····r······-········
--PIIIIIIIIIc.Jcjnt)

~ 0.3
0 I

-------~----- ~ ------·--·----~-------~-·-----~----.. o~
~ 0.1 :;

'
·~~~~~~·------~--- --~-------~-------~-------~-- ----

-------~-------~-------

I 0
I :: 8 •

8 confguoltcnr

Figure 6.14: Translational displacements of the prismatic joint 3 for 8 configurations.

83

CHAPTER 7 CALIBRATION

CONSIDERING RECONFIGURATION

The chapter is to develop a method to perform calibration when considering

reconfiguration for an MRR. A path matrix is introduced to represent the sequence

change of modules. A snap point is introduced first before the path matrix. Furthermore, a

self-calibration methodology is proposed for future research on MRRs.

7.1 Snap Point

A snap point is the point on the end of each module at which the next module is

connected [II]. As shown in Figure 7 .I, the snap point can be regarded as the common

point between two adjacent modules. According to Equation (3.41), the position of the ith

snap point can be expressed as:

Snap Point

si-1

Module i-1

Module i

Figure 7.1: Snap point between two adjacent modules.

84

(7.1)

Based on Equation (7 .1), snap points can be computed recursively:

(7.2)

where bk and bk' are the body vector representing the kth module in global and local

coordinates, respectively, and Si is the vector representing its snap point.

7.2 Path Matrix

The kinematics equations can be generated for a system with the defined sequence of the

connecting modules given in Chapter 3. However, for a reconfigurable system, this

sequence is subject to change and so is the number of modules. To account for this

change, the path matrix [64] is applied. A path matrix is used to define the connectivity of

the modules in matrix form as below:

(7.3)

where the rows correspond to the joints as indicated by letter J; the columns correspond

to the bodies as indicated by letter B; and the subscript number indicates the body

number. The component values of the matrix are either 1 or 0. Tij = 1 if joint i is in the

route from Bi to Bj, meaning that the motion of body Bi contributes to that of body Bj. If

not in the route, Tij = 0.

85

The matrix given in Equation (7.3) is for the original system shown in Figure 7.2(a). The

diagonal values are 1 indicating that the joints are associated with their own bodies.

Furthermore, T 12 = 1, as joint 1 is in the route to body 2; T 13 = 1 and T 23 = 1 as joint 1

and 2 are in the route to body 3; the rest are zero. lfthe original system in Figure 7.2(a) is

reconfigured to the system shown in Figure 7.2(b), then the path matrix of Equation (7.3)

is changed to:

(a)

BI B2 BJ

1 0 0 Jl

T= 1 1 1 J2

1 0 1 J3

Figure 7.2: (a) Original connection

(b)

(b) Reconfigured connection

By re-ordering the matrix of Equation (7.4) into an upper triangle form, it becomes:

86

(7.4)

Bz BJ Bl

1 1 1 J 2

T= 0 1 1 J' (7.5) j

0 0 1 Jl

The sequence of the body indicated by the column headings in the matrix of Equation

(7.5) is the true sequence for the reconfigured system.

In general, the relationship between the path matrix and the snap points can be expressed:

(7.6)

where S = [sT 1, sT2, •.. ST11]T are the snap points with the number indicating the true

T T T T .
sequence of the system; and H = [h 1, h 2···· h 11] are the vectors of each body With the

number indicating the body numbers.

In the light of Equation (7.6), the snap points of the original system can be determined as:

(7.7)

For the reconfigured system it becomes:

(7.8)

87

Note that the order of matrix H is changed according to the new path matrix and matched

with the column headings. Hence, the utilization of the path matrix provides a means to

relate the true sequence of the bodies for calibration of a MRR.

7.3 Simulations

Here is the calibration simulation for the MRR-1 after reconfiguration that corresponds to

Figure 7.2(b). Figure 7.3 is the GUI where the sequence of the existing modules in a new

configuration can be rearranged. Figure 7.4 illustrates the robot configuration before and

after changing the sequence of the modules connection.

Next

Figure 7.3: Simulation when reconfiguration.

Robot Configurations Robot Configurations

y X X

Figure 7.4: Robot configuration before and after reconfiguration.

88

Figure 7.5 shows the satisfactory convergent results using GA: the best fitness steadily

declines from about 0.005 to 9.4893 x 1 o-6 after around 150 generations.

Best: 9.48938-0!li Mean: 0.0030246
0.025 ---------- -;----------- ~-- --------- ~----------- -;----------- ------------- ~

: : : : • Beslflness :
: ' : : • Meannness :
' ' ' I I I I I I

0.02 ----------!--- -------- ~----------- ~--- ---------:----------- -~---- ------- ~
I I I I I I
I I I I I I
I I I I I

I I I I I
I I I I I
I I I I I I

I I I I I I

~ 0.015 -----------:-----------:------ -----~----- ------ ~---- ------- -~- ----------:
ro I I I I I I

> : : : : : :
(f:1 I I I I I I

en I I I I I I

~ : : : : : :
[[0.01 -----------:-----------:-----------:-----------:------------:------------:

I I I I I
I I I I I
I I I I I
I I I I I . : : : : : :

0.005 • ----------:-----------:-----------:-----------:---- -------+--- --------:

0
0

I I I I I I
I I I I I I
I I I I I I
I I I I I I

I I I I I
I I I I I

I I I I I

400 500 600
Generatirn

Figure 7.5: GA results for MRR-1 after reconfiguration

7.4 Self-calibration Formulation for MRRs

Assuming there are two fixed and arbitrary points (or targets) in the workspace of an

MRR, whose positions p 1 and p2 are both unknown, but the relative distance between

them is precisely provided before the calibration:

(7.9)

A pointing tool is rigidly attached on the end-effector of an MRR, such as a laser pointer.

Then the MRR is moved and adjusted in order to aim the pointing tool at the two fixed

89

targets one by one; meanwhile, the readings of joint sensors (q 111) are recorded for each

configuration. Assuming an additional prismatic joint from the pointer tool to the fixed

target, the target can be actually treated as the fixed tip of the virtual prismatic joint.

Hence, for the two targets (or virtual tips), their positions can be denoted by

PI= f (qoJ, go)

P2 = f (qoz, go)

(7.1 Oa)

(7.1 Ob)

where q01 and q 0z are the nominal joint movements for two targets; and q0 is adjusted to

aim the pointer at the fixed target.

From Equation (7.9) and (7.1 0), the preset distance should be equal to

(7 .11)

However, the recorded readings of all joint sensors (q 111) are slightly different from the

nominal values (q 0), and this leads to the nonlinear fitting formulation of self-calibration,

which uses only joint readings without external measuring devices:

(7.12)

where ~g is the set of geometric parameter errors in the robot model, to be identified and

fitted into nonlinear Equation (7.12) to ensure the values of IP1- pzl are close enough to

the preset accurate distance d.

90

Moreover, this self-calibration idea might be further extended by setting two full-pose

targets, such as three-point targets, which can provide both position and orientation,

instead of position only, for fixed point targets. The relative pose (P) of these two pose

targets should also be precisely established in advance. The MRR should then be moved

to match the end-effector with the preset full-pose targets one by one, and the joint sensor

readings should also be recorded in the meantime. Hence, similar nonlinear formulation

might be developed:

(7.12)

91

CHAPTERS

WORK

8.1 Conclusions

CONCLUSIONS AND FUTURE

In this thesis, both linear and nonlinear kinematic calibration methods are investigated

and compared for MRRs. Linear position calibration has proved to be a quick convergent

method, normally, by less than 6 iterations. However, only the position of the end

effector is considered rather than full-pose accuracy. Linear full-pose calibration appears

to be non-robust and susceptible to many aspects during calibration, which may cause

divergent and singularity issues. On the other hand, nonlinear calibration using genetic

algorithm has been demonstrated to be a robust method, although it usually takes a few

minutes to converge to a required accuracy. Both position and orientation accuracies are

improved successfully after the nonlinear calibration.

8.2 Contributions

The following contributions are made in this thesis:

• Robot kinematic calibration based on the nonlinear formulation is developed and

implemented with genetic algorithm (GA). Without using the PRY angles to

represent the tip orientation in the nonlinear formulation, it avoids the quadrant

sensitivity problem by using the rotation matrix directly. A Euclidean norm, a

92

spectral norm and weighting factors are used to unify the position and orientation

errors of the end-effector.

• Linear full-pose calibration is discussed in four categories, where some downsides

are found. These downsides include quadrant sensitivity problem and

orthogonality sacrifice issues.

• Monte Carlo simulation is implemented in the calibration simulations. It includes

two levels of Monte Carlo simulation; one in single configuration and another one

in 8 random configurations.

8.3 Future Work

First of all, attention should be paid to improve the efficiency of the nonlinear

identification with GA, especially for MRR robots with a large number of modules. Some

better results identified by the linear formulation may be considered for initial

populations. Good initial populations dramatically increase the efficiency of GA.

Secondly, although the nonlinear formulation has been proposed by several investigators

in similar or slightly different ways, different methods can be found in fitting this

nonlinear regression model, such as the Levenberg-Marquardt algorithm, genetic

algorithms and neural networks. Hence, another future work would be to compare those

different methods through convergence and robustness. Thirdly, a self-calibration

approach for MRRs with the formulation in the Chapter 7 should be another important

93

future work to carry out. Last but not least, only simulations were provided to test the

calibration methods in this thesis; experiments should be conducted to compare with the

simulation results.

94

APPENDIX A (TAIT) BRYAN ANGLE

(PITCH, ROLL, YAW, PRY) [18]

[

1 0 0 l
R(ex)= 0 cos ex -sin ex

0 sin ex cos ex

-si

0

nez o~l
cosez

In the body fixed frame

r

ceycez -ceysez
R = sexseycez + cexsez -sexseysez + cexcez

-cexseycez + sexsez cexselez + sexcez

Relation of PRY with R

95

REFERENCE

[1] American National Standards Institute, "ANSI A15 Standards on Finding Target

Features With Optical Equipment."

[2] M., Verner, F., Xi, and C., Mechefske, "Optimal Calibration of Parallel Kinematic

Machines," ASME Trans. Mechanical Design. Vol. 127, 2005, pp. 62-69.

[3] A. Goswami, A. Quaid, and M. Peshkin, "Complete Parameter Identification of a

Robot from Partial Pose Information", 1993 IEEE Int. Conf. on Robotics and

Automation.

[4] J. 0. Berg, Ind. Robot 18, 1991, pp. 29-31.

[5] J. M. Hollerbach, "A survey of kinematic calibration," The Robotics Review, 0.,

Khatib, J. J., Craig, and T., Lozano-Perez (Eds), MIT Press, Cambridge, MA, 1989,

pp. 206-242.

[6] Z. S. Roth, B. W. Mooring, and B. Ravani, "An overview of robot calibration,"

IEEE Journal ofRobotics and Automation RA-3, No.5, Oct. 1887, pp. 377-385.

[7] B. Liu, C. L. Liang, L. J. Xue, S. H. Hu, andY. S. Jiang, "Calibration of a steward

parallel robot using genetic algorithm," Proc. of the 2007 IEEE Int. Conf. on

Mechatronics and Automation, Aug. 5-8, 2007, pp. 2495-2500.

[8] Engineering Service Inc., http://www.esit.com/frame _ automation.htm 1.

96

[9] D. Duff, K. Roufas, M. Yim, W. Zhang, and S. Homans, "Modular Reconfigurable

Robots in Space Applications," Proc. of the IEEE Int. Conf. on Robots and

Automation, Mar. 200I, pp. 235-237.

[IO] N. Bajaj, "Design of a Modular and Reconfigurable Robot for Space and

Manufacturing Applications", AER070 Design I Thesis Project - Final Report,

Dept. of Aerospace Eng., Ryerson Univ., Apr. 04, 2005, pp. 1, 3-4, I4-I5.

[II] S. J. Qiang, "Modeling and Simulation ofReconfigurable Systems with Application

to the Polishing Process", MASc. Thesis, Ryerson Univ., 2004.

[I2] K. Tomita, S. Murata, E. Yoshida, H. Kurokawa, and S. Kokaji. "Reconfiguration

Method for a Distributed Mechanical System", Distributed Autonomous Robotic

System, Vol. 2, I996, pp. I7-25.

[I3] J. Michael. "Fractal Shape Changing Robot Construction Theory & Application

Note", Robodyne Cybernetics Ltd, I995.

[I4] M. Yim. "Locomotion with a Unit-modular Reconfigurable Robot", Ph.D. Thesis,

Stanford Univ., I994.

[I5] C. Unsal, H. Kiliccote, M. Patton, and P. Khosla. "Motion Planning for a Modular

Self-reconfiguring Robotic System", Distributed Autonomous Robotic Systems, 4,

2000.

[16] R. P. Paul, "Robot manipulators: mathematics, programming, and control," MIT,

97

Cambridge, MA, 1981.

[17] B. W. Mooring, A. A. Roth, and M. R. Driels, "Fundamentals of manipulator

calibration," Wiley, New York, 1991.

[18] F. Xi, "Computational Dynamics lecture notes", Ryerson Univ., Toronto, ON.

Canada, c2007.

[19] L. J. Everett, M. Driels, and B. W. Mooring, "Kinematic modeling for robot

calibration," Proc. of IEEE Int. Conf. of Robotics and Automation, 1987, pp. 183-

189.

[20] B. Karan, and M. Vukobratovic, "Calibration and accuracy of manipulation robot

models- an overview," Mechanism and Machine Theory, Vol. 29, No. 3, 1994, pp.

479-500.

[21] J. J. Craig, "Introduction to Robotics: Mechanics and Control," Third Edition,

Pearson Education, 2005.

[22] S. A. Hayati, "Robot Arm Geometric Link Parameters Estimation", Proc. of 22nd

IEEE Conf. of Decision and Control, San Antonio, Dec. 14-16, 1983, pp. 1477-

1483.

[23] J. Angeles, "On the Numerical Solution of the Inverse Kinematic Problem," The

Int. Journal ofRobotics Research, Vol. 4, No.2, MIT, 1985, pp. 21-37.

[24] C. Mavroidis, S. Dubowsky, P. Drouet, J. Hinterstreiner, and J. Flanz, "A

98

systematic error analysis of robotic manipulators: application to a high performance

medical robot," Proc. of the 1997 IEEE Int. Conf. on Robotics and Automation,

Albuquerque, New Mexico, April 1997, pp. 980-985.

[25] U. S. Pathre and M. R. Driels, "Simulation experiments in parameter identification

for robot calibration," The Int. Journal of Advanced Manufacturing Technology,

1990, pp. 13-33.

[26] H. P., Schwefel, "Numerical Optimization of Computer Models", Wiley, New York,

1981.

[27] L. E. Scales, "Introduction to Non-Linear Optimization", Springer-Verlag, New

York, 1985.

[28] F. S., Acton, "Numerical Methods that Work", Harper and Row, New York, 1970.

[29] J. Denavit, and R. S. Hartenberg, "A Kinematic Notation for Lower Pair

Mechanisms Based on Matrices", ASME Journal of Applied Mechanics, June 1955,

pp. 215-221.

[30] R. Manseur, "Robot Modeling and Kinematics", First Edition, Da Vinci

Engineering Press, 2006.

[31] C. Wu, "The kinematic error model for the design of robot manipulators," Proc. of

the American control conf., San Francisco, California, 1983, pp. 497-502.

[32] C. Wu, "A Kinematic CAD Tool for the Design and Control of a Robot

99

Manipulator", The Int. Jour. of Robotics Research, Vol. 3, No. I, spring 1984, pp.

58-67.

[33] B. W. Mooring, "The Effect of Joint Axis Misalignment on Robot Positioning

Accuracy", Proc. Computers in Engineering Conf. and Exhibit, 1983, pp. 151-155.

[34] T. W. Hsu and L. J. Everett, "Identification ofthe Kinematic Parameters of a Robot

Manipulator for Positional Accuracy Improvement", Proc. 1985 Computers in

Engineering Conf. and Exhibition, vol. I, 1985, pp. 263-267.

[35] R. Ibarra and N. D. Perreira, "Determination of Linkage Parameter and Pair

Variable Errors in Open Chain Kinematic Linkages using a Minimal set of Pose

Measurement data", ASME Jour. of Mechanisms, Transmissions, Automation in

Design, June 1986, pp. 159-166.

[36] C. S. Gada, R. Lumia, J. Wood, and G. Starr, "An Automated Method to Calibrate

Industrial Robots Using a Virtual Closed Kinematic Chain", IEEE Trans. on

Robotics, vol. 23, on. 6, Dec. 2007, pp. 1105-1116.

[37] C. Lightcap, S. Hamner, and T. Schmitz, and S. Banks, "Improved Positioning

Accuracy of the PAI0-6CE Robot with Geometric and Flexibility Calibration",

IEEE Trans. on Robotics, vol. 24, no 2, April, 2008, pp. 452-456.

[38] H. Q. Zhuang, L. K. Wang, and Z. S. Roth, "Error-Model-Based Robot Calibration

using a Modified CPC Model", Robotics & Computer-Integrated Manufacturing.

100

Vol. IO, no. 4, I993, pp. 287-299.

[39] B. W. Mooring and G. R. Tang, "An Improved Method for Identifying the

Kinematic Parameters in a Six-axis Robot", Proc. 1984 Int. Computers in

Engineering Conf. and Exhibit, vol. I, I984, pp. 79-84.

[40] D. E. Whitney, C. A. Lozinski, and J. M. Rourke, "Industrial Robot Forward

Calibration Method and Results", ASME Jour. Dynamic Syst., Meas. Contr., vol.

I 08, Mar. I986, pp. I-8.

[4I] J. Chen, C. B. Wang, and J. C. S. Yang, "Robot Positioning accuracy improvement

through kinematic parameter identification", Proc. 3rd Canadian CAD/CAM and

Robotics Conf., Toronto, Junei9-22, I984, pp. 4.7-4.I2.

[42] J. Chen, and L. M. Chao, "Positioning Error Analysis for Robot Manipulators with

All Rotary Joints", Proc. IEEE Int. Conf. Robotics and Automation, San Francisco,

April 7-IO, I986, pp. I011-IOI6.

[43] H. W. Stone, A. C. Sanderson, and C. P. Neuman, "Arm signature identification",

Proc. I986 IEEE Int. Conf. on Robotics and Automation (San Francisco, CA, Ap.

I986), vol. I, I986, pp. 4I-48.

[44] L. M. Chao, and J. C. S. Yang, "Development and Implementation of a Kinematic

Parameter Identification Technique to Improve the Positioning Accuracy of

Robots", Robots 1 0 Conference Proceeding, Chicago, April 20-24, 1986, pp. 11-69

101

- 11-81.

[45] M. R. Oriels, and U.S. Pathre, "Significance of Observation Strategy on the Design

of Robot Calibration Experiments", Journal of Robotics Systems 7(2), June, 1990,

pp. 197-223.

[46] C. H. Menq, and J. H. Borm, "Estimation and Observability Measure of Parameter

Errors in a Robot Kinematic Model", Proc. Of USA-Japan Symposium on Flexible

Automation, pp. 65-70, Minneapolis, Minnesota, July, 1988.

[47] J. H. Borm, and C. H. Menq, "Determination of Optimal Measurement

Configurations for Robot Calibration Based on Observability Measure", the Int.

Journal of Robotics Research, Vol. 10, No. I, Feb. 1991, pp. 5 I -63.

[48] E. 0. Doebelin. "Measurement Systems: Application and Design". McGraw-Hill,

New York, 1983.

[49] G. Duelen and K. Schroer, "Robotics and Computer Integrated Manufacturing",

1991' pp. 223-231.

[50] R. P. Judd and A. B. Knasinski, IEEE Trans. Robotics and Automation 6, 1990, pp.

20-30.

[51] J. L. Caenen and J. C. Angue, Proc. 1990 IEEE Conf. Robotics and Automation,

1990,pp. 1032-1037.

[52] J. F. Jarvis, Proc. 1988 IEEE Int. Conf. Robotics and Automation, 1988, pp. 635-

102

640.

[53] M. R. Driels and U.S. Pathre, IEEE Trans. Robotics and Automation, 7, 1991, pp.

351-360.

[54] C. H. An, C. G. Atkenson, and J. M. Hollerbach, "Model-Based Control of a Robot

Manipulator", MIT Press, Cambridge, MA, 1988, pp. 62.

[55] F. Xi, D. Nancoo, and G. Knopf, "Total lease-Squares methods for active view

registration of three-dimensional line laser scanning data," ASME Journal of

Dynamic Systems, Measurement, and Control, Vol. 127, March 2005, pp. 50-56.

[56] D. W., Osborn, and W. S., Newman, "A New Method for Kinematic Parameter

Calibration via Laser Line", in Proc. IEEE Int. Conf. Robot Automation, Vol. 2,

1993, pp. 160-165.

[57] M. Ikits and J. M. Hollerbach, "Kinematic calibration using a Plane Constraint", in

Proc. IEEE Int. Conf. Robot and Automation, 1997, pp. 3191-3196.

[58] H., Zhuang, S. H., Motaghedi, and A. S., Roth, "Robot Calibration with Planar

Constraints", in Proc. IEEE Int. Conf. Robot and Automation, Detroit, MI, 1999,

pp. 805-810.

[59] S. Bai, and M. Y. Teo, "Kinematic calibration and pose measurement of a medical

parallel manipulator by optical position sensors," Journal of Robotic Systems,

Wiley, 2003, pp. 202-209.

103

[60] J. H. Holland, "Adaptation in natural and artificial systems," The University of

Michigan Press, Ann Arbor, MI, 1975.

[61] D. E. Goldberg, "Genetic algorithms m search, optimization and learning,"

Addison-Wesley, Reading, MA, 1989.

[62] "Help- Genetic Algorithm and Direct Search Box",© 1994-2005 The Math Works,

Inc.

[63] D. L. Wang, and Y. Bai, "Improving Position Accuracy of Robot Manipulators

Using Neural Networks", Instrumental and Measurement Tech. Conf., Ottawa,

Canada, 17-19 May 2005, pp. 1524-1526.

[64] R. L. Huston, "Multibody Dynamics", Butterworth-Hernemann, 1990.

[65] M.P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and

Systems", 2002, pp. 87.

104

