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ABSTRACT 

Robot Calibration Based on Nonlinear Formulation 

for Modular Reconfigurable Robots (MRRs) 

YuLin 

A thesis for the degree of 

Master of Applied Science, 2008 

Department of Mechanical Engineering, Ryerson University 

Developed in this thesis is a full pose kinematic calibration method for modular 

reconfigurable robots (MRRs). This method is based on a nonlinear formulation as 

opposed to the conventional linear method that has a number of critical limitations. By 

avoiding linearization of the nonlinear robot forward kinematic equations, these nonlinear 

equations are directly used to identify the robot calibration parameters. A hybrid search 

method is developed to solve the nonlinear error equations by combining genetic 

algorithms with Monte Carlo simulations to ensure a global search over the robot 

workspace with good accuracy. A number of comparisons are made between the proposed 

method and the conventional linear method, indicating the advantages of the former over 

the latter by eliminating two critical limitations. The first one is the orthogonality 

sacrifice that leads to ill-conditioning of the Jacobian used in the linear method. The 

second one is quadrant sensitivity during the determination of the (Tait) Bryan angles 

from inverting the rotation matrix. 
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x, y or z coordinate position 
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body vectors 
local body vectors 
motion parameters (s and 8) 
linear translational displacement 
rotation angles 
identity matrix 
Jacobian matrix 
geometry of a robot (bs and Rs) 
end-effector pose of a robot 
robot kinematic parameters error 
end-effector pose errors 
function of forward kinematics 
distance 

Definition 
ith module 
total number of modules 
Initial configuration setup 
Static 
Motion 
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Variables at the tip of module 
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CHAPTER! INTRODUCTION 

1.1 Background 

In general, accuracy is defined by repeatability and bias [I]. Lack of repeatability is due 

to random error and quantified by the variance of a number of measurements. Bias is a 

systematic error and determined by the mean value [2]. Sometimes, they are 

distinguished as repeatability and absolute accuracy. Repeatability of a robot is the 

precision with which its end-effector achieves a particular pose (position and orientation) 

under repeated commands by the same set of joint variables, while "absolute accuracy" is 

the closeness to which the robot's actual pose matches the pose predicted by its controller 

[3]. 

A high repeatability is of prime importance for a variety of robot applications such as 

pick and place, spray painting, and welding. On the other hand, tasks involving off-line 

planning (OLP) depend on the absolute accuracy of the robot [3], especially for high 

precision applications, such as robotic surgery. In reality, while the repeatability can reach 

an order ofO.l mm for the majority oftoday's robots, the absolute positioning accuracy is 

on the order of I mm or even worse, leading to the accuracy/repeatability ratio in the 

range from 3 to 20 [4]. Low accuracy of a robot is currently regarded as one of major 

obstacles for a wider range of applications. 
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While it is difficult to compensate for the random error, compensation for the systematic 

error can be done effectively by means of calibration [2]. Robot calibration has been 

explored and investigated since the 1980s. It evolved into a mainstream of robotics 

research area in the 1990's. At that time, the robot accuracy issue became crucial with 

many robots and off-line programming (OLP) software packages introduced into the 

world market. Calibration is even more important for a modular reconfigurable robot 

(MRR) since after each reconfiguration by re-assembling the modules, the MRR will lose 

its accuracy. Although variations in the kinematic model mostly arise from imprecision in 

manufacturing processes, the direct improvement of manufacturing processes is costly 

[5]. This is another reason to calibrate the robot after it is built. 

Basically, a robot calibration technique is the process of improving robot positioning and 

orientation accuracy by identifying and then modifying the geometric parameters in 

robotic kinematic models rather than changing or altering the mechanical structures or 

redesigning the robot [6]. 

Since the sources of errors vary from one robot design to another, calibration procedures 

can vary in their scope and complexity. For example, some robot calibration procedures 

consider only the joint variables while others may involve changes in the robot kinematic 

model. Roth et al. [6] classified calibration into three levels: joint level, kinematic model 
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level, and dynamic model level. The goal of joint level calibration is to determine the 

correct relationship between the signals produced by joint displacement transducers and 

actual joint displacements. This usually involves calibration of the kinematics of the 

drives and the joint sensors. The kinematic model level calibration is the entire robot 

kinematic model calibration, and its purpose is to determine the correct geometric 

parameters of the robot. The dynamic model level calibration is non-geometric 

calibration, and its concern is about the effects such as joint compliance, friction and 

clearances, as well as link compliance. 

The research reported in this thesis addresses the problem of kinematic model calibration 

considering both position and orientation. The purpose is the determination of an accurate 

relationship between the joint movements and the pose of the robot's end-effector. The 

assumption is that the robot is composed of rigid links and joints, ignoring joint backlash 

and servo errors. 

In general, a calibration procedure can be divided into four steps: modeling, 

measurement, identification and implementation (or correction) [6]. Modeling refers to 

the choice of a functional relationship between the robot parameters and the pose of the 

robot's end-effector. Measurement is to collect the information about the inputs and the 

outputs. Identification is the determination of the errors that could affect calibration. 
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Implementation is to use the corrected model for robot kinematic control. 

Mathematically, robot calibration can be considered as a nonlinear optimization problem, 

which can be solved in two different ways, linear and nonlinear formulations. The linear 

method is to linearize the nonlinear kinematic equations, which leads to a Jacobian matrix 

by ignoring higher order items. The Jacobian matrix, also called the mapping matrix, 

establishes a linear relationship between the errors of the kinematic parameters and the 

errors of the end-effector's pose. The main disadvantage of the linear approach is the 

singularity issue in inverting the Jacobian matrix. The nonlinear method, on the other 

hand, is to solve the nonlinear equations directly without linearization. Because the 

Jacobian matrix is not involved, the singularity issue can be avoided. In this thesis, both 

methods are studied and compared. 

1.2 Modular Reconfigurable Robots (MRRs) 

Traditional robots are fixed structure robots, meaning that a certain type of robot is built 

for a certain type of task. Reconfigurable robots are designed such that their structures 

can be changed to perform a number of different tasks that normally require a number of 

different types of traditional robots. A modular reconfigurable robot (MRR) is a 

reconfigurable robot that is built based on a number of modules. These modules can be 

rearranged through disconnecting and reconnecting in different ways to form a new 
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configuration enabling new functionalities. Figure 1.1 shows an example of a MRR made 

by a company called Engineering Service Inc. [8]. 

(a) (b) 

Figure 1.1: (a) Modular and reconfigurable robot (MRR-1); 

(b) 2 DOF module (MRS) and (c) Rotary module (MRJ); 

Photograph courtesy of Engineering Service Inc. [8]. 

(c) 

Modular reconfigurable robots (MRRs) offer three main advantages over the traditional 

fixed-structure robots: versatility, simplicity, and low cost [9]. Firstly, applications in 

which MRRs surpass purpose-specialized robots include those in which versatility is 

critical, such as those requiring a variety of robots to perform multiple tasks of a similar 

nature. While traditional robots are only capable of performing a particular task for which 

they have been designed, MRRs offer the advantage of employing a single robot with the 

structural adaptability to perform multiple tasks based on demands by means of 

reconfiguration. Employing similar modules in a robotic arrangement leads to simplicity 

in design when compared with a traditional robot composed of various customized 
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components. Secondly, except for offering multi-purposeful tasks, MRRs enhance 

simplicity in the method of reconfiguration by employing a common locking mechanism 

for all joins and modules. Lastly, in addition to offering simplicity in design and 

versatility, modularity significantly reduces the design and manufacturing costs [ 1 0]. 

There are three categories of reconfigurable robots: self-assembly, self-configuring and 

manual-configuring [11]. Self-assembly robots are the robots with the highest level of 

reconfigurability because they are able to detach from and attach into a robotic system 

automatically. For example, the National Mechanical Engineering Laboratory in Japan 

developed a self-assembly robotic system that uses electro-magnetic disks as the basic 

units that can attract and repel each other through computer control for automatic 

reconfiguration [12]. Self-configuring robots cannot perform self-assembly. However, 

they can fulfill reconfiguration after a robotic system is assembled with some form of 

manual assistance. For example, robotic cubes were developed in the United Kingdom 

with an embedded active driving mechanism [13]. Once attached manually, these cubes 

can slide on each other's faces for reconfiguration. Since the cubes are made in different 

sizes and can be combined together, the robot is called the fractal shape-changing robot. 

The manual-configuring types are in fact the modular robots, as shown in Figure 1.1. 

They can only be reconfigured with some form of manual assistance. The modular units 

are built with embedded controllers, and the host computer has the capability to quickly 
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recognize new configurations and then achieve the objective of system control. This 

research work includes the studies at Stanford [14] and Carnegie Mellon University [15]. 

1.3 Robot Kinematics 

To address the problem of robot calibration, the basis is the robot forward kinematics. 

A significant number of papers and monographs have been published on different 

kinematic modeling approaches for calibration [5] [16] [17] [18] [19] [20] [21] [22]. A 

satisfactory kinematic model should exhibit three qualities: completeness, equivalence, 

and proportionality [19]. According to [18], the end effector's pose of a robot can be 

defined by a nonlinear function as follows 

X=f(q, g), qi=[Oi sJ, i=1, ... ,n (1.1) 

where q is the set of joint variables including rotational angles 9i for revolute joints and 

translational displacements Si for prismatic joints, with i ranging from 1 to n, (n is the 

total number of joints); and g is the set of geometric parameters of the robot. 

The end-effector's pose can be further detailed as the position vector and orientation 

matrix, described in the global reference frame as [ 18], 

n 

Pn+I=LRoib:' 
i=l 

n 

Ron =flR(i-I)i' 
i=l 

7 
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where b' is the body vector in the local coordinates, which is transformed to the global 

first and then summed to obtain the position of the end-effector in Equation (1.2); ~i-I)i 

represents the rotation matrix between two adjacent bodies, which is sequentially 

multiplied together to determine the orientation of the end-effector in Equation (1.3). 

Since only three of the nine elements of the rotation matrix are independent, the robot 

orientation is usually specified with three independent parameters. The common approach 

is to use three angles, such as Euler angles and the (Tait) Bryan angles (often called pitch, 

roll, and yaw, (PRY)). The angle-axis representation has also been introduced by using a 

unit vector parallel to the axis of rotation matrix in Equation (1.3) and an angle rotating 

about the axis. However, this invariant vector may correspond to two possible rotation 

matrices [21] [23]. To solve this ambiguity, Angeles [23] modified this angle-axis 

representation and showed that the modified one has a linearity relation with the 

corresponding rotation matrix, hence leading to simple expressions of the Jacobian 

matrix. 

1.4 Problem Formulation 

Due to a number of error sources, including manufacturing, assembly, deflections, 

measurements, and clearances [24], the robot forward kinematic model (Equation (1.1 )) 

will not accurately represent the real robot system. In other words, the manipulator will 
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not be able to locate the end-effector at the desired pose Xo calculated from the nominal 

model given in Equation ( 1.1 ). The actual pose Xm is different, as illustrated in Figure 

1.2. The difference between the two is the end-effector pose error. In order to determine 

the end-effector pose error AX, the actual pose Xm usually needs to be measured after 

moving the robot by joint variables q0 • It is given as 

qo 
Joint Variables 

qo 
Joint Variables ~·.•···· l-..JI'·· 

Error sources 

(1.4) 

Xm 
Actual (Measured) Pose 

Xo 
Nominal (Calculated) Pose 

Figure 1.2: Actual (measured) and nominal (calculated) poses. 

Apparently, the basic consideration is how to eliminate or compensate the pose error in 

Equation (1.4) in order to reach the desired pose. As one of the solutions, calibration 

technique aims at identifying the geometric errors Ag of the robot, and then make a 

correction in the nominal model, i.e., Xo= f (q0 , g0 +Ag). As a result, the nominal pose of 
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the end effector will be getting closer to the measured ones under the corrected model, 

i.e., Xo-? Xm, as shown in the Figure 1.3. A well calibrated robot will be able to reach 

any position within its workspace at the required accuracy. 

Qo 

Joint Variables 
Xo-? Xm 

Nominal (Calculated) Pose 

Figure 1.3: Nominal pose after calibration. 

As an alternative approach, we could adjust joint movements by adding L\q to the original 

joint variables, i.e., 

(1.5) 

This is called compensation, rather than the calibration focused on in this thesis. The 

details of this approach are outside the scope of this thesis. 

As mentioned above, two methodologies are available to determine L\g, namely, linear 

and nonlinear formulations [25]. The linear least squares method is used for the linearized 

error model as given below: 

L\X = J L\g. (1.6) 

From equation (1.6), L\g can be solved for by a proper linear least-square method 

depending on the dimensions of the Jacobian matrix. This process is usually carried out 
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iteratively until the tolerance of ~X becomes less than a given threshold. The second 

approach is the nonlinear formulation given as below: 

// (1.7) 

Two types of optimization methods can be applied to solve equation (1.7): gradient-based 

methods and direct-search methods. For gradient-based methods, the identification 

Jacobian is again required in a manner that differs from that of the linear least-square 

algorithm [26]. The Levenberg-Marquardt algorithm is one of the popular methods and 

works surprisingly well even for large residual problems, although in such cases the rate 

of convergence may be quite slow [17]. This technique is designed to overcome problems 

related to singularity of the matrix JTJ by adding a time varying nonnegative scalar 

coefficient, Jl, leading to the matrix JTJ + 11 I. More details can be found in Scales [27]. 

Alternatively, equation (1.7) can be minimized using direct-search methods, such as 

Simplex search, Hooke-Jeeves pattern search, Powell's conjugate-direction method [28], 

genetic algorithm [61] [62] and neural networks [63]. Convergence of all direct search 

algorithms is generally very slow, but no Jacobians are needed. The linear method was 

the only possible way to conduct the robot calibration before, and now the nonlinear 

method becomes possible due to the advent of powerful computers. 

1.5 Outline of Thesis 

The remaining thesis is organized as follows. 
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Chapter 2 provides a literature review on previous researches on the robot calibration, 

including modeling, measurement, identification, and correction. 

Chapter 3 presents a kinematic modeling method for MRRs. Pose analysis is introduced 

using six-parameter representations. 

Chapter 4 discusses the conventional linear formulation for robot calibration. Error 

models are derived from linearization of the forward kinematic model in two schemes, 

depending on how the orientation of an end-effector is measured. 

Chapter 5 investigates the nonlinear formulation without linearizing the kinematic model. 

A genetic algorithm (GA) is applied to solve this problem. Furthermore, Monte Carlo 

simulations are conducted to take into consideration of the random error by running GA. 

Chapter 6 provides the simulations and comparisons between the linear and nonlinear 

formulation of calibration. 

Chapter 7 applies the proposed calibration methods to MRR robots in consideration of 

reconfiguration. 

Chapter 8 provides the summary of conclusions, contributions, and future work. 
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CHAPTER2 LITERATURE REVIEW 

This chapter describes a literature review on previous researches that have been done on 

robot kinematic calibration, including kinematic modeling, measurement, identification, 

and correction. 

2.1 Kinematic Modeling for Calibration 

A significant number of methods have been proposed for modeling robot kinematics for 

the purpose of calibration since the 1980s. For serial robots, joints are either revolute or 

prismatic. Three important qualities that a satisfactory kinematic model should exhibit are 

completeness, equivalence, and proportionality [19]. First, the model should contain a 

sufficient number of parameters to completely satisfy the motion of the robot. Second, 

there must exist a functional relationship between any two acceptable models, i.e., 

models should be equivalent in a functional sense. Finally, small changes in the robot 

geometry should reflect small variations in the model parameters. 

The most common method for robot kinematic representation is the use of four Denavit 

and Hartenberg parameters [29], including link length ai, joint twist ai, link offsets di, and 

joint offsets 8i, as shown in Figure 2.1. 
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\ I 

Figure 2.1: Link frames attached and four DH parameters [30]. 

Paul [16] demonstrated the use of the Denavit-Hartenberg technique for modeling a serial 

link manipulator. For each link, a coordinate frame is attached at the joint, and then 

related consecutively by the four parameters using a homogeneous transformation matrix. 

All these consecutive link transformation matrices are multiplied to produce a total 

transformation matrix that relates the last local coordinate system attached to the end 

effector to the base global coordinate system. The resulting matrix is a nonlinear function 

of the joint variables (8i) and three link parameters (ai ai di) that describe the geometry of 

the manipulator. Furthermore, the Denavit-Hartenberg model has been used for the 

calibration problem by many investigators [ 5]. For example, Wu [31] [32] used it to 

examine robots with small variations in their kinematic arrangement. 

However, the Denavit-Hartenberg representation was found to exhibit ambiguity when 

two successive axes are parallel as pointed out by Mooring [33] and Hayati [22]. The link 
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length a;, representing the length of common normal between two consecutive joint axes, 

varies wildly when two adjacent joint axes deviate slightly from nominally parallel 

configuration. 

For this reason, the Denavit-Hartenberg model was modified. In the nearly-parallel axes 

case, the parameters are treated to vary in proportion to the degree of misalignment, as 

proposed by Hsu and Everett [34]. Ibarra and Perreira [35] modified the Denavit-

Hartenberg based transformation matrix by a differential screw matrix for small 

misalignments. Hayati [22] pointed out the singularity of the Denavit-Hartenberg 

representation, and introduced an additional rotation fJ in the y-direction in the DH link 

transformation to describe a misalignment of two consecutive parallel axes. A number of 

papers subsequently used this modified Denavit-Hartenberg representation as reviewed in 

Hollerbach [5]. The most recent application can be found in Gatla et al. [36] and Lightca 

et al. [37]. Gada et al. [36] combined Craig's modified DH [21] and Hayati's (HR) [22] 

together to build either DH or HR with the four-parameter depending on whether the 

neighboring joint axes are parallel. This model, however, requires two sets of four link 

error parameters according to the geometry of link, which makes the modeling task 

unnecessarily complex. Furthermore, Hayati's model does not cover the transformation 

from the last link to the tool coordinate frame which in general requires a separate 

treatment [38]. 
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Although the description of the robot kinematics needs at most four parameters per joint, 

this minimal set of parameters displays proportionality only when the selection of the 

joint coordinate frames is tailored to a particular manipulator [20]. Thus, a priori 

knowledge of the nominal manipulator geometry is required for any algorithm that uses 

such a mode. On the other hand, it is possible to construct a six-parameter model that 

does not depend on the link geometry and will always display proportionality. As a result, 

a number of papers have abandoned the Denavit-Hartenberg parameters entirely and 

treated the general case of two coordinate systems related by six parameters [5]. Three 

parameters present the coordinate origin displacements, and three parameters for relative 

coordinate system orientation. Papers differ in terms of the representation of orientation; 

some use Euler angles, introduced in Chapter 3, and others use variations of the Euler 

vector, namely, associated rotation about an equivalent vector, detailed in Craig [21]. 

Mooring [33] also pointed out the problem with the Denavit-Hartenberg representation at 

the same time as Hayati [22], but proposed a six-parameter representation using Euler 

vectors. An estimation procedure was outlined but not implemented, in which single 

joints were moved to two positions. The position and orientation of the gripper were 

measured at these two positions, and the six parameters for each joint were determined by 

a direct solution. Mooring and Tang [39] modified the procedure to use three points in a 

fixture, avoiding the need to determine the gripper position and orientation by external 
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sensing. On the other hand, six-parameters with Euler angles were used [40], and both 

geometric and non-geometric parameters were modeled. Chen et al. [ 41] also employed 

six-parameter transformation with Euler angles. Later, Chen and Chao [ 42] extended this 

work to include non-geometric models for gravitational joint deflection and backlash. 

Stone et al. [ 43] used a general-purpose "S-model" to model kinematic errors using six 

parameters per link and then convert them to the Denavit and Harten berg parameters. 

2.2 Computation for Calibration 

As mentioned before, identification of parameters of the robot kinematic model is 

generally considered as a nonlinear optimization problem, which can be approached in 

two ways, namely linear or nonlinear [25]. Many investigators linearized the kinematic 

equations leading to a linear error model and then applied an iterative least-square 

estimation procedure, while others applied other nonlinear estimation procedures directly 

to the nonlinear kinematic equations. 

A recursive least squares procedure was employed by Chen et al. [ 41] to the linearized 

equations. Chen and Chao [42] suggested linearization as a means for indentifying 

dependent parameters. At the same time, Chao and Yang [44] applied the nonlinear 

Levenberg-Marquardt procedure to the same data used by Chao and Chao [42], and 

achieved identical results. 
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An interesting insight of Mooring and Tang's work [39] was to estimate orientation 

parameters before position parameters. While the former leads to a nonlinear estimation 

problem, the latter can then be treated as a linear estimation problem. For the orientation 

errors, the sum of squares of Euler angle differences is minimized by a finite-difference 

Levenberg-Marquardt algorithm, which is commonly employed for nonlinear estimation 

problems. The estimated orientation parameters are then incorporated to apply direct 

linear estimation to the position parameters. However, this method did not consider the 

effect of the angular parameter errors on position errors. In other words, it ignored the 

coupling terms between orientation and position errors in the Jacobian matrix and derived 

two simpler and separable least squares problems. Simulations indicate better results 

could be obtained by including the full pose Jacobian of both orientation and position [5]. 

Lightcap et al. [37] proposed a two-level Levenberg-Marquardt nonlinear least-square 

optimization algorithm for the calibration of geometric and flexibility parameters in a 

serial manipulator without the computation of the generalized Jacobian matrix. Link 

parameters were determined through an outer optimization loop, while robot coordinate 

system parameters were determined in an inner loop. 

Pathre and Driels [25] conducted simulations that have shown that the linear method is 

four to eight times faster than the nonlinear method. However, nonlinear method, for 
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example the Levenberg-Marquardt algorithm, is much more robust than linear method 

especially for large parameters. 

One of the important problems in calibration is the observation strategy that refers to the 

selection of robot configurations and the number of observations to be made during the 

calibration experiment. The selection of measurement configurations during robot 

calibration plays an important role in determining the accuracy and speed of convergence 

of the least-square identification algorithms [17]. The number of necessary observations 

can be reduced if the measurements are performed at robot configurations in which the 

error model is the most sensitive to changes in model parameters, e.g., where it is the 

least sensitive to unmodeled error sources [20]. Simulation experiments can significantly 

help in evaluation of the observation strategy [25]. This strategy may be modified based 

on the results of simulations if necessary. Two groups of references provide the literature 

background for the observation strategy. The first approach [ 45] focuses on the familiar 

numerical analysis concept of "condition number" of the Jacobian. The second one [ 46] 

[47] adopts an observability index as a performance measure. Driels and Pathre [45] have 

shown that the condition number of the Jacobian is related to the observability index 

proposed by Menq and Borm [ 46]. Increase in the observability index implies the 

reduction ofthe condition number. 
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2.3 Measurement for Calibration 

Measurement is an essential part of the calibration procedure. It is conducted by 

measuring the actual robot end effector's position and orientation at given set of joint 

displacements. A set of measurement data is obtained by moving the robot to one location 

within the workspace, recording joint displacements, and then using an external 

measuring system to determine the robot's position and/or orientation. The robot is then 

moved to another location to repeat the process and continue till sufficient data is 

acquired. 

There are two aspects of the measurement process that need to be given careful 

consideration. The first is what measurement system should be used, and the second is 

how to plan the observation strategy correctly. There are only a few systems that have the 

necessary precision to make adequate pose or partial pose measurements. Each has its 

own characteristics such as precision, speed and ease of use, level of measurement noise, 

cost, and the amount of information that can be obtained from each robot pose. In 

general, the measurement process is time consuming, laborious, and prone to human 

error. Textbooks, such as the one by Doebelin [48], provide a much more exhaustive 

treatment of this field. 

2.3.1 Noncontact Measurement Technology 

It is desirable that the measuring instrumentation facilitates non-contact sensing, so that 
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the influence of the measurement to the robot performance characteristics is eliminated 

[20]. The most popular technique of the non-contact measurement is based on utilizing a 

system of theodolites (Duelen and Schroer [49]; Judd and Knasinski [50]; Caenen and 

Angue [51]), which facilitates measurements in a wide range and with high accuracy on 

the order of 0.05 mm [52]. By combining the theodolites with a low-resolution vision 

system for automatic tracking, focusing and centering, it is possible to build a high-

quality system for automatic calibration measurements [53]. 

Researchers have also been investigating camera measurement, which basically has two 

different setups: a moving camera approach (hand-mounted cameras) and a stationary 

camera setup. In the moving camera approach, one or more cameras are mounted on the 

end-effector of a robot and several targets or fixtures are fixed in the workspace. In the 

stationary setup, cameras are fixed and the fixture or targets are mounted on the robot 

end-effector. 

Generally speaking, high resolution and large field-of-view may be two conflicting 

requirements [38]. The stationary camera setup suffers from this conflict and has to 

sacrifice measurement accuracy in order to have a large field-of-view, or the cost of 

system may increase dramatically by using higher resolution camera. The moving camera 

approach solves this conflict by using a precise fixture and a stereo camera system. It 
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means that the robot can move to a wide range of configurations and still has a calibration 

which is as accurate as desired. 

Zhuang [38] applied a stereo hand-eye system consisting of a pair of CCD cameras 

mounted on the robot's end-effector, a camera calibration board, a robot calibration 

fixture and a PC-based image processing system (Figure 2.2a). Without using expensive 

or labor-intensive equipment, such as theodolites, laser tracking system, high-resolution 

opto-camera systems etc., Zhuang [38] stated that the mobile camera system provides 

low-cost, efficient and fully automated features which are suitable for academic research 

as well as industrial applications. On the other side, An et al. [54] conducted calibration 

experiments by using systems of immobile cameras equipped with optoelectronic 

detectors, and additional LED diodes as targets fixed at the robot's end-effector (Figure 

2.2b ). This technique may also yield satisfactory results, but in a significantly smaller 

workspace. 

Figure 2.2: (a) Moving camera setup [38]; (b) Stationary camera setup [54]. 

22 



A stationary camera setup provides a non-invasive method, where the camera is often 

placed outside the robot workspace and needs not be removed after calibration. However, 

it is necessarily invasive for the moving camera approach, where the camera has to be 

removed after calibration. Another disadvantage for the moving camera approach is that 

it only performs local measurements, whereas the global information on the robot end-

effector pose is provided through a stationary calibration fixture. For the stationary 

camera setup, there is no need to identify the transformation relating the camera frame tq 

the end-effector frame. 

2.3.2 Contact Measurement Technology 

Contact measurements vary from coordinate measuring machines (CMM), dial indicator, 

linear-variable differential transformer or LVDT, precisely located targets with force 

sensors, to a simple ruler etc. A CMM assures extremely high accuracy on the order of 

0.01 mm, compared with the other less accurate but less expensive contact measuring 

techniques. 

The three-point method has been utilized commonly in various measuring systems in the 

past, such as Mooring et al. [17], Lightcap et al. [37], Goswami et al. [3], and Xi et al. 

[55]. An orientation change can be determined from the initial and final three-point 

positions, as detailed in Chapter 3. 
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Lightcap et al. [37] used a CMM to measure the locations of three tooling-ball apparatus 

attached to PA 10-6CE robot (Figure 2.3), to determine the transformation between the 

CMM coordinate system and a user-defined tooling ball coordinate system. External 

loads were lowered onto the weight rack and transmitted through the end-effector of the 

robot directly to avoid the deflection in the rods. 

~, ...... 
Weight Rack 

Tooling 
Balls 
Measured 
byCMM 

Figure 2.3: Tooling-ball apparatus attached to a robot and CMM [37]. 

Goswami et al. [3] created a telescopic ball-bar measurement (Figure 2.4) for the 

calibration of PUMA 560 using the Stewart platform analogy. The ball-bar system 

consists of a single LVDT, which is connected between one steel sphere attached to the 

robot endpoint and a magnetic chuck mounted on the table. Imagine that the robot 

endpoint triangle (with three steel spheres) and the base triangle (with three magnetic 

chucks) are interconnected through six ball-bars, which presents the Stewart platform 

geometry. 
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Figure 2.4: The telescopic ball-bar (LVDT) measuring system [3]. 

Mooring et al. [ 17] proposed a three-point moving target and a LVDT measuring fixture 

which is mounted accurately in the workspace of a robot. A set of three spheres whose 

relative positions are already known, can be inserted in an array of short-range 

displacement transducers (Figure 2.5). In this case, these transducers are LVDTs but 

capacitance probes and dial indicators have also been reported. 

Figure 2.5: Three-point moving target and measurement (LVDT) fixture [17]. 
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2.4 Self-calibration 

Without using external measuring devices introduced in the previous section, self

calibration methods depend on internal measurements, such as joint angle measurements. 

Self-calibration is more desirable or practical on a manufacturing floor or in a production 

line where external measurements are expensive and difficult to implement. 

The existing techniques of serial robot calibration can be classified into open-loop and 

closed-loop approaches [36]. Open-loop methods involve measuring the end-effector 

pose, which requires measuring equipments, such as theodolites, ball-bar, CMMs, laser 

tracking system, cameras, etc., which can be found in the last section. On the other hand, 

closed-loop methods use the internal joint angle measurements already in the robot 

without external measurement devices, and therefore, can be considered self-calibrating. 

Usually, these methods impose some constraints on the end-effector, and the joint 

readings alone are used to calibrate the robot using kinematic closed-loop equations. 

Some researchers in the past have applied linear constraints on the end-effector positions 

allowing the end effector to slide along a line. For example, Neqman et al. [56] used a 

laser line. Ikis et al. [57] and Zhuang et al. [58] imposed plane constraints on the end-

effector positions. However, it may be problematic to use a plane constraint since it is 

difficult to assure that the end-effector is exactly on the surface. 
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One of recent proposed close-loop methods is the "virtual closed kinematic chain" by 

Gatla et al. [36], which did not require any physical constraints used in the previous 

closed-loop methods. A laser pointer tool was applied on the end-effector to aim at a 

fixed location on a distant object (Figure 2.6), and only joint readings were used to 

calibrate the robot. The laser tool on the robot acts as a virtual telescopic (prismatic) link 

giving the robot 7 DOFs, the seventh joint being the length of the laser line from the end 

effector to the projected laser point on an object. Thus, aiming the laser pointer at a fixed 

point creates a virtual closed kinematic chain. The main advantage of this method is that 

the distant laser point is very sensitive to joint values, which facilitates acquiring more 

accurate joint values for the calibration. 

Figure 2.6: A laser pointer tool carried by Staubli RX-130 robot [36]. 
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CHAPTER3 KINEMATIC MODELING 

This chapter presents the forward kinematic modeling of a modular reconfigurable robot 

with rigid modules. In an error-model-based kinematic calibration process, the selection 

of a proper kinematic model is one of the keys to the success of a calibration task. In this 

chapter, six-parameter representations, rather than the Denavit-Hartenberg parameters, 

are used for the robot kinematic modeling. 

The main topic of the robot forward kinematics is to compute the position and orientation 

of the end-effector relative to the base coordinate as a function of the joint variables. As 

shown in Figure 3.1, an MRR system under study can be considered as a multiple module 

system. The pose of each module is represented using six parameters, three for position 

and three for orientation. The position vector and rotation matrix are first introduced in 

this chapter and then the general motion (translation and rotation) of a single module and 

a multi-module system are discussed along with the three-point measurement methods. 

3.1 Position and Orientation 

In this section, the position vector and rotation matrix are introduced to represent the pose 

of each module. 
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Module 1 Joint i 

Joint 1 
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Figure 3.1: Multiple modules system for a MRR. 

3.1.1 Position Vector 

The position of a point in space is represented with respect to a coordinate frame using a 

vector. In general, the vector components in the Cartesian coordinate are expressed as 

(3.1) 

A position vector, as shown in Figure 3.2, can be expressed in terms of the frame axes in 

linear combination as 

or 

'k ( . 
p=p1e1+ p1et+ p~e;· 

p=Ep 

(3.2a) 

(3.2b) 

where E = [e1, ez, e3]. In the Cartesian coordinate system, E = [x, y, z], and x, y, z are the 
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unit vectors along x, y, and z axes relatively, that is, x = [I, 0, of, y = [0, I, O]T, z = [0, 0, 

Figure 3.2: Position vector p [18]. 

3.1.2 Rotation Matrix 

A rotation matrix represents a linear transformation between two coordinate frames. In 

Figure 3.2, position vectors can be expressed either in frame {e1, e2, e3} (Equation 3.2a) 

(3.3a) 

or p=E'p' . (3.3b) 

Since Equations (3.2) and (3.3) represent the same position vector, so 

E'p'=Ep (3.4) 

It leads to 
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p=Rp' (3.5) 

where R is the rotation matrix given as 

(3.6) 

Since ei is orthogonal to ej, then Ci'Cj = Oij = I when i=j; erej = 0 when i:t:j. Hence, E is 

orthogonal, and K 1 = E T. 

R is in fact defined by the dot product of two unit vectors, i.e., the direction cosine. It is 

also called the tensor product, defined as 

[

e1 ·e\ 

R=(E®E')= e2 ·e:1 

e3 ·e I 

el ·e'2 

e2 ·e'2 

e3 ·e'2 
·<'] e2 ·e 3 

e3 ·e'3 

Reversing the order of Equation (3.4), Equation (3.5) becomes 

p' = R'p 

where 

R'=E'T·E 

Obviously 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

Hence, R is orthogonal, and such that all columns are mutually orthogonal and have unit 

magnitude. In fact, it is proper orthogonal, meaning det(R) = I. 

It is clear that the nine elements of a rotation matrix are not all independent. Six 
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dependencies or constraints between the elements can be easily found from a given 

rotation matrix, R = [X Y Z J : 

IXI=I 

IYI=1 

jzj=1 

X·Y=O 
X·Z=O 
Y·Z=O 

(3.11a) 

(3.11 b) 

As a result, three independent parameters representation is developed in the following 

section in order to express the rotation matrix conveniently, using the angle-set 

convention. 

3.1.3 Angle-set Representation of a Rotation 

There are basically two methods to describe the orientation of a frame relative to a 

reference frame by angle-set conventions. According to Craig [21], one is Euler angles, 

and one is fixed angles. In the former representation, each rotation is performed about an 

axis of the moving coordinate system rather than one of the fixed reference frame. For the 

latter one, each of the three rotations takes place about an axis in the fixed reference 

frame. 

For each method, 12 sets of conventions are employed according to different sequence of 

rotation about the X-Y-Z axes. One of them is introduced in details in this section, and the 
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rest can be found in [21]. Usually, there is no particular reason to favor one convention 

over another, but various authors adopt different ones [21]. The following PRY angles (or 

X-Y-Z Euler angles) are applied in this thesis. 

I 
•I 

""/" ' l I I 

(Tait) Bryan Angles (Pitch Roll Yaw, PRY) [or X.;.Y-Z Euler angles] 

In terms of pitch, roll, and yaw angle (PRY) [18], the three individual rotation matrices 

can be given as: 

0 

(3.12) 

0 siney 1 
1 0 

0 cosey 
(3.13) 

-sin

0
ez 0~] 

cosez (3.14) 

Then, the resulting rotation matrix in the global reference frame is given as: 

(3.15) 

If the order is reversed, it will become the rotation matrix in the local frame 

(3.16) 
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Expanding Equation (3.15) leads to 

l 
ceycez -ceysez 

R = s9xs9Yc9z +c9xsez -s9xs9Ysez +c9xcez 

-cexseycez +s9xsez cexseysez +s9xcez 
(3.17) 

When given three PRY angles, Equation (3.17) can be used to compute the rotation 

matrix directly. For the reverse problem, some elements in the Equation (3.17) are 

selected to determine the PRY angles for a given a rotation matrix, for example: 

_ •1 ([ )
2 

)
2]V2) e y - cos ( r23 + ( r33 

(3.18) 

where r23 = -sin(8x)cos(8y), r33 = cos(8x)cos(8y), r, 1 = cos(8y)cos(8z). 

Different selection of elements from the given rotation matrix leads to different method 

for a solution. Bai and Teo [59] developed another solution using atan2(y, x), a two-

argument arctangent function that uses the signs of both x and y to identify the quadrant 

in which the resulting angle lies: 

(3.19) 

However, none of them is capable of solving this inverse problem with a unique solution 
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from a rotation matrix in all four quadrants, which is called the quadrant sensitivity 

problem. Equation (3 .18) is only valid for 0 :S ey 2': 90o, 0 :S ex 2': 180o, and 0 ::=:; ez 2': 180o; 

while Equation (3.19) is valid when ey lies in the first and fourth quadrants. 

In other words, if ey is located in the second and third quadrants, the values of cos(ey) 

would become negative. As a result, the two elements r23 = -sin(ex)cos(ey) and 

r33=cos(ex)cos(ey) in Equation (3 .19) change signs, and the values of ex determined from 

atan2(r23, r33) are no longer true. It is clearly found from Table (3.1) that there is always 

180 degrees offset between the determined values and true ones in this case. 

So by modifying Equation (3.19), 

cosey = ~rz/ + r3/ = ~(-sexceyf + (cexcey)
2 

= ~c8/ ' 

then 8y can also be determined by 

ey = atan2 (rl3' ~rz/ + r3/). 

(3.20) 

(3.21) 

Even though a second solution exists, by using the positive square root in Equation (3.20) 

for ey, we always can compute the single solution for which -90" :S 8y 2': 90", making it a 

one-by-one mapping orientation representation. 

Attention should also be paid to the names pitch, roll and yaw angles, since they are often 

given to other related but different angle-set conventions; for instance, it is referred to the 

X-Y-Z fixed angles in Craig [21]. 
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Table 3.1: PRY angles in versed from a rotation matrix, 

ex, ey, ez = 45, 135, 225, 315, stands for the full four quadrants, 

x(-135, 45, -135) is the calculated value. 

ez=45 135 225 315 
ex= 45 

ey=45 -1 -1 -1 -1 
135 x(-135, 45, -135) X (-135, 45, -45) X (-135, 45, 45) x(-135, 45, 135) 
225 x(-135, -45,-135) X (-135, -45, -45) X (-135, -45, 45) x(-135, -45, 135) 
315 -1 -1 -1 -1 

ex= 135 
ey=45 -1 -1 -1 -1 

135 x(-45, 45, -135) X (-45, 45, -45) X (-45, 45, 45) x(-45, 45, 135) 
225 x(-45, -45, -135) X ( -45, -45, -45) X (-45, -45, 45) x( -45, -45, 135) 
315 -1 -1 -1 -1 

ex= 225 
ey=45 -1 -1 -1 -1 

135 x( 45, 45, -135) X (45, 45, -45) X (45, 45, 45) x(45, 45, 135) 
225 x(45, -45, -135) X (45, -45, -45) X (45, -45, 45) x( 45, -45, 135) 
315 -1 -1 -1 -1 

ex= 315 
ey=45 -1 -1 -1 -1 

135 x(135, 45, -135) X (135, 45, -45) X (135, 45, 45) x(135, 45, 135) 
225 x(l35, -45, -135) X (135, -45, -45) X (135, -45, 45) x(135, -45, 135) 
315 -1 -1 -1 -1 

3.2 Translation and Rotation 

The motion of a module in the workspace can be described using rotation or translation 

or both. 

3.2.1 General Motion of a Single Rigid Module 

As shown in Figure 3.4, the general motion of a single module is the combination of 

rotation and translation, and the position vector p is 

p = Rb' + h = h + Rb' (3.40) 

where h is the vector of translation, b' is the body vector in local coordinate system, and 
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R is the rotation matrix. 

Rotation first 

Translation second 

Translation first 

Rotation second 

Figure 3.4: General motion of a single module [18]. 

Clearly, Equation (3.40) is communicative, meaning the order of rotation and translation 

can be reversed, which can also be found in Figure 3.4. When h is null, it becomes pure 

rotation. 

3.2.2 General Motion of Multiple Modules 

Figure 3.5 shows the vector method used to compute the position of a multi-module 

system. 
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Base frame 

Figure 3.5: Vector method for a multi-module system [18] 

The position of each joint from 1, 2 to i can be expressed respectively as: 

Joint 1 PI =bo 

Joint 2 P2 = bo + Roib'I =PI+ Roib'I 

Joint 3 P3 = bo + Roi (b' I+R12b'2) =PI+ Roi R12 b'2 

Joint i Pi= bo + Roi (b'I + ... + Ri-I i b'i) = Pi-I + Ro i-I b'i-I (3.41) 

where Ri-I i defines the rotation between two coordinate systems attached to two adjacent 

modules i-1 and i; b'i is the local body vector, representing the translation between two 

coordinate systems, or defining the ith joint to the (i+ 1 )th joint in the ith local coordinate 

frame. 
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Clearly, Equation (3.41) is a recursive method for computing the position of a multi-

module system. 

Similarly, the recursive method of computing rotation can be given as 

(3.42) 

Hence, in general, the pose (position and orientation) of the end-effector of a n-module 

system can be expressed as [ 18] 

Position 

Orientation 

n n 

Pn+l = LRo;b'; = Lh; 
i=O i=O 

n 

Ron =IT R(j-l)J 
J=l 

(3.43) 

(3.44) 

As for a robot system, it usually has the default home configuration or initial 

configuration setup. Therefore, it should be noted that all the employed parameters here 

may have static part and motion part. The static part is according to the initial 

configuration setup, and the motion part represents the movement of each joint. 

(3.45) 

b= bs+ bm (3.46) 

where Rs and bs are initial configuration setup, which are the geometric parameters need 

to identify; and Rm and bm are related to active joints, i.e., motors. The static part can be 

further expressed by the PRY angles rotation as 
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(3.47) 

(3.48) 

where Rx, Ry, and Rz are the rotation about x, y and z axis of the configuration setup; bx, 

by, and bz are the translation along the x, y, and z axe of the configuration setup. 

In terms of different kinematic pairs, they may be expressed differently according to joint 

movements, as shown in Table 3.3. As for robotics, usually only revolute and prismatic 

joints are considered in reality. 

In Table 3.3, R(8z), R(8y), and R(8x) are the rotation about z, y, and x axis of the joint 

respectively; while Sz is the translation along z axis of the joint. Conventionally, the first 

physical rotation or translation axis of a joint should be defined as axis z, second as y, and 

last as x. It should be noted this convention is totally different from the sequence of PRY 

angel set, which is used to represent orientation instead of a rotation matrix. 

Table 3.3: Rm and bm of different kinematic pairs [ 18]. 

Joint Rm bm 
Revolute R(8z) 0 
Prismatic R(O) = 1 Sz 
Cylinder R(8z) Sz 
Universal R(8z)R(8y) 0 
Spherical R(8z) R(8y) R(8x) 0 

3.3 Three-point Target Measurements 

We know that no device can directly measure the complete pose of an object in space, 
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because direct measurement of the orientation is difficult. As a result, the triangular three-

point target, which is made of three equal spheres whose relative positions are known, is 

introduced and utilized to determine the tip orientation indirectly (Figure 2.3, 2.4, 2.5, 

and 3.6). 

As shown in Figure 3.6, the robot end-effector has a set of three spheres whose relative 

positions are already known, and they can be either inserted in an array of short-range 

displacement measuring fixture [17] or measured precisely in a CMM [37]. The 

kinematic modeling of the three-point measurement is presented in Figure 3.7. In this 

Figure, Poh p02, and Po3 are the initial positions of the three-point target; while Pfl, Po2, 

and p03 are the final ones measured by certain devices. 

Figure 3.6: Three-point moving target. 
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Po 

Pol ~3 Po3 

Figure 3.7: Transformation determinations using the three-point position data [55] 

The initial and final three line vectors formed by the three-point target are [55] 

and 

Then, the rotation matrix from the initial pose to the final pose can be obtained by 

where 

Hence, the measured end-effector rotation matrix can be determined by 
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CHAPTER4 LINEAR FORMULATION 

Chapter 4 discusses the conventional linear formulation for robot calibration. Error 

models are derived from linearization of robot forward kinematic equations in two 

schemes, partial-pose (position) and full-pose calibration, depending on whether the 

orientation of end-effector is available or not. For the full-pose calibration, two 

methodologies are also investigated when calculating the end-effector pose error and 

implementing kinematic model error compensation, from which four full-pose calibration 

categories are generated. Several limitations are found when discussing these two issues. 

One downside is the orthogonality sacrifice of the rotation matrix leading to ill

conditioning of the Jacobian in the compensation step, and another is the quadrant 

sensitivity during the determination of the PRY angles from inversing the rotation matrix. 

Least-square estimation is applied in the identification of the parameter errors from the 

error model and tip pose error. 

4.1 Error Model 

To perform calibration, an error model is developed that takes into consideration all the 

geometric errors due to imprecision in manufacturing and assembly [18]. Based on this 

error model, it is shown that the error mapping from the geometric errors to the pose error 

of the tip of robot depends on the Jacobian matrix. Wu [31] assumed the actual or 
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measured geometric parameters were quite close to the nominal or calculated values and 

expanded the total transformation as a Taylor series about the nominal values. Keeping 

only the first order terms resulted in a linear expression for the differential deviations of 

the Denavit-Hartenberg parameters. Such an idea can be extended here to generate the 

linear error formulation of the complete kinematic model in Equation ( 1.1 ). 

With linearization by Taylor series expanding, the error model can be derived as 

oF 
~=-~g=J~g og (4.1) 

where ~ represents the pose error of the end-effector of a robot, which is the difference 

between the actual (or measured) and the nominal (or calculated) tip poses in Equation 

(1.4); ~g represents the kinematic errors, which includes manufacturing errors, assembly 

errors, joint errors, all of which are to be identified together for the robot; J is the 

Jacobian matrix, or the error mapping matrix, mapping the kinematic parameter errors to 

the pose error of the end effector. 

Two methods are classified here to do the calibration depending on the availability of the 

orientation measurement of the tip, namely partial (only position) and full (position and 

orientation) pose measurements. 
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4.1.1 Error Model with Full Pose Measurement 

With both position and orientation measurements, the error model in Equation (4.1) can 

be further detailed as 

~6xl = [~:] = [~ p] ~g6nx] 
6xl fJ 6x6n 

(4.2a) 

(4.2b) 

where~ is a 6xl vector representing the robot tip errors including ~p and ~J:l, which are 

the position and orientation error of the tip respectively; J is the Jacobian, as shown in 

Equation (4.3a), which is a 6x6n matrix, with n joints; ~g is a 6nxl vector representing 

the component errors, which are generalized as six infinitesimal errors for each module, 

including infinitesimal translation Trans(~xi, ~yi, ~zi) and infinitesimal rotation Rot(~pi, 

~ri, ~si), where ~Xi, ~Yi and ~Zi represent the linear errors along x, y and z axes of the 

frame i respectively, and ~pi, ~ri and ~Si indicate the angular errors about x, y and z axes 

of the frame i respectively. The scripts p, r, and s represent pitch, roll and spin (or yaw) 

angles, respectively. 

Considering the concept of multi-body velocity computation using the Jacobian [I 8] and 

the fact that the velocity is the derivative of the position, the velocity formula can be 

transformed and utilized into the error model by replacing the linear and angular 

velocities with infinitesimal translational and rotational errors respectively, as below: 
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~gl 

~g2 

[dp] [J" J P2 JPi J,"] -J~g-

~p 6xl JOI J02 JOi JOn 6x6n ~gi 
(4.3a) 

~gn 6nxi 

where the i th Jacobian matrix Ji is 

J,f"}[X, yi zi X xPn+I y xPn+I Z xP""] I I I I I I 

JOi 0 0 0 xi yi z 
1 6x6 

(4.3b) 

with i ranges from 1 to n, n is the number of joints. xi, Yi, zi are the three unit vectors 

of the global Cartesian coordinate in the ith joint; Pin+ I is the position vector from ith joint 

to the tip of a robot, 

n n 

pin+I = LRo;b~ = Lb; (4.3c) 
j=i j=i 

Hence, the tip error unit contributed by the ith module is 

lui 

~Yi 
X xPn+I 

I I 
y xPn+I 

I I Z xP~'] &i I I (4.4) 
zi 6x6 /).pi 

~ 
t1si 6xl 

Obviously, it can be found that this general error model covers all the robot kinematic 

parameter errors. Therefore, it can be regarded as a complete parametric calibration 

model. 
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4.1.2 Error Model with Position Measurement 

Without the orientation measurement of the robot tip, the error model shrinks to 

~P3xl = J p3x6n~g6nxi (4.5) 

and the position error of the robot tip contributed by the ith module is 

Llxi 

~Y; 

X X pn+I y X pn+I Z X pn+l] 
1 l I I I I 3x6 

/),zi 

!!.pi 
(4.6) 

~lj 

/).si 6xl 

Compared with the full pose measurements, pure position measurements are easier to 

perform and the calibration algorithms are easier to implement. 

4.2 Pose ~rror Calculations 

The pose error of end effector, ~X in Equation (4.1), is equal to the difference between 

the actual (or measured) and the nominal (or calculated) value of end-effector pose, 

(4.7) 

where ~p and ~p are the infinitesimal position and orientation error respectively. Two 

approaches are considered and compared in detail. 

4.2.1 Differential Transformation 

Firstly, the pose error in Equation (4.7) is regarded as the differential translation and 

rotation respectively, represented as [16], 

47 



(4.8a) 

(4.8b) 

Therefore, according to [16], considering the derivative as a differential translation and 

rotation in terms of the base coordinate frame, the measured pose transformation T m can 

be obtained below, 

Tm =Tn +dT=Trans(dx,dy,dz)Rot(ox,oy,oz)Tn (4.9) 

where T" is the nominal pose transformation; pose transformation matrix is T ~ [ ~ ~] . 

So the derivative dT is developed as 

dT = (Trans(dx,dy,dz)Rot(ox,oy,oz)- I)T =AT (4.10) 

where A, the differential translation and rotation transformation, is given as 

0 -oz oy dx 

oz 0 -ox dy 
A= (4.11) 

-oy ox 0 dz 

0 0 0 0 

which can be also called pose error transformation. 

Since it is easy to calculate the position error Ap, i.e., ~p = Pactual - Pnominab simply only 

considering the differential rotation 8, the transformation in Equation ( 4.11) becomes 
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which is the skew symmetric matrix ofthe differential rotation 8 in Equation (4.8b). 

As a result, Equation ( 4.1 0) shrinks to 

(4.13) 

Therefore, from Equation ( 4.9), the measured end-effecter rotation matrix Rm is 

R =R +dR=R +8R =(8+I)R m n n n n (4.14) 

where Rm can be measured by the three-point method as described in Chapter 3; Rn is the 

nominal rotation matrix of the end-effecter, which is calculated through the nominal 

model. 

Hence, according to Equation (4.14), two equivalent methods are found to determine the 

differential rotation 8, if Rm and Rn are both known: 

&=dRR T =(R -R )R T 
n m n n (4.15a) 

or 

&=R R T -1 
m n (4.15b) 

Actually, the first method in Equation (4.15a) can also be derived by the tensor 

transformation, 

also 
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co=8fdt (4.17) 

where (jj is the skew symmetric matrix of angular velocity co. 

So, from Equation ( 4.16) and ( 4.17), 

8/dt = ( dR/dt )Rn T (4.18) 

Thereby, the skew-matrix of 8 is determined as, identical to Equation ( 4.15a), 

8 = dRR T = (R - R )R T 
n m n n (4.19) 

Consequently, the orientation errors ~p can be solved as 

~fJ=vect(6) (4.20) 

where vect( ) is the vector operation, which transforms a skew symmetric matrix into a 

column vector. 

4.2.2 Inverse of a Rotation Matrix 

Alternatively, another simple and straight-forward approach of determining the end-

effector orientation error is to calculate the Bryan (PRY) rotation angles directly from the 

rotation matrix Rm and Rn: 

o =f-1(R) I (4.21) 

Many approaches about f"\ ) have been proposed so far, however, none of them is able 

to function correctly for all four quadrants from -180° to 180°. This limitation is called 
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quadrant sensitivity stated previously in Section 3.1.3. Hence, the calibration 

configurations should be considered and chosen carefully to avoid those limitations. 

Here is one of them: 

(4.22) 

where r,, rJJ and r11 are elements from rotation matrix according to the number subscripts, 

as shown in the Appendix A. 

Then, the orientation error can be determined by subtraction between the measured and 

nominal PRY angles 

(4.23) 

Hence, as the second approach, the orientation error can be determined from m = <llB 

[18], as 

(4.24) 

where 

0 sin (}Y ] 

-sin (}x cos (}Y 

COS (}X COS (}y 

(4.25) 
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4.3 Computational Methods 

Computational methods involve three aspects. The first one is to perform the inverse of 

the error mapping matrix J which is not a square matrix. The second one is component 

error compensation, for which two methods are investigated in details. The last aspect is 

an iterative algorithm for calibration. 

4.3.1 Least Squares Method 

In order to identify the linear error model in Equation ( 4.1 ), two categories of the least 

squares estimation problem are investigated, namely, underdetermined and over-

determined problems, according to the dimension of the error mapping matrix, J, or the 

number of measurements, m. To ensure the accuracy, measurement points should be 

sufficient to minimize computational errors, and also the condition number of the 

Jacobian J should be kept low enough within a reasonable bound. 

4.3.1.1 Underdetermined 

If only one set of tip poses is measured, as the number of joints n2:1, the number of 

unknown geometric error parameters is larger than that of independent equations in the 

Equation (4.1). This is a case of an underdetermined problem. The pseudo-inverse 

method can be used to obtain a minimum-norm solution as follows, 

Ag6nxl =JT 6nx6 (J 6x6nJT 6nx6 )"' AX6xl' n ~I and m= 1 
6x6 

(4.26) 

where Jt = Jr ( JJT )"' is the pseudo-inverse of J for underdetermined situations. 
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4.3.1.2 Over-determined 

A large number of poses must be available to more accurately reflect the robot 

geometrical characteristics. In order to make Equation ( 4.1) over-determined, the number 

of measurement, m, is increased sufficiently to make sure the number of equations, 6m, is 

larger than the unknown geometric error parameters, 6n. Hence, the pseudo inverse 

solution is given as when the matrix JTJ is nonsingular, 

Ag6nxl = (JT 6nx6mJ 6mx6n )-I JT 6nx6mAX6mx] , m ~ n 
6nx6n 

(4.27) 

where Jt = ( Jr J t JT is also called the pseudo-inverse of J, when m 2:: n. 

The condition number of JTJ is used to evaluate the observability and measurement 

strategy [45]. The better the strategy, the lower the corresponding condition number [19]. 

4.3.2 Kinematic Model Error Compensation 

After identifying the component errors as given below: 

the nominal kinematic model should be updated accordingly until the pose error of the 

end-effector meets certain accuracy requirements. 

Iterative updating for static body vectors, bs, yields 

(4.28) 

where 
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Ab=[~x ~y. ~z.] 
I I J I 

(4.28a) 

However, as for the update of static rotation matrix Rs of each module, two iterative 

methods are investigated. 

The first updating method is more straightforward, which adds the calculated orientation 

errors into the initial orientation set up and then determines the static rotation matrix 

accordingly by 

(4.29) 

where 

(4.29a) 

(4.29b) 

The second updating method is derived from the differential rotation in Equation ( 4.12) 

and (4.14). The skew matrix of the identified orientation error for each link is 

compensated for the local static rotation matrix through the function below, 

(4.30) 

where 

(4.30a) 

54 



(4.30b) 

However, after being updated by Equation ( 4.30), the orthogonality df the static rotation 
\ 

matrix is slightly sacrificed, and it may cause the ill-conditioning of th¢ Jacobian, which 

would result in the poor performance or non-convergence. 

4.3.3 Calibration Algorithm 

Calibration is a process of determining a set of parameters in the model that best 

describes the specific robot under study [17]. As shown in the flowchart (Figure 4.1), the 

whole calibration algorithm is an iterative loop. 

In evaluating the pose error, three parameters are used: RMSPE, RMSOE and RMSE, 

which are the root mean square of the position, orientation and pose errors defined 

respectively as [59] 

1 3 
2 

RMSPE = - LI~PI , ~p = ~x, ~y, ~z 
n I 

(4.31a) 

1 3 
2 

RMSOE = - L I~PI , ~p = ~p. M, ~s 
n I 

(4.31b) 

1 , 2 

RMSE = - :LI~ej , ~e = ~x, ~y, ~z, ~p, M, ~s 
n I 

(4.31c) 
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Robot Geometry 

g (bs & Rs) 

Input Motions: q ( 8, S) 
U date~----~r-------' 

Kinematic Model Equation (1.1) 

X= f(q, g) 

Nominal Tip Pose 

Xo(R & p) 

Tip Pose Error 

Error Mapping Matrix 

J (or Jacobian) 

Error Model 

~=J~g 

Identification 

~g=J-I ~X 

g ~ (g+~g) 

Measured Tip 

Two methods of calculating the 

orientation errors of the end

effector: 

Equation (4.20) and (4.24) 

y 

Calibrated Kinematic Model 

X= f(q, g+~g) 

Two methods of updating the 

identified errors to the nominal 

kinematic model: 

Equation (4.29) and (4.30) 

Figure 4.1: Conventional calibration algorithm (linear formulation). 
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After carrying out the full pose calibration simulation, different convergent features are 

found between these three parameters. The termination of the iterative looping occurs 

when the pose deviation of the robot tip is within the certain specified precision, RMSE ::; 

1<>1. 

As mentioned in the Sections 4.2 and 4.3.2, there are mainly two methods of determining 

the end-effector pose error and compensating the component errors in the nominal 

kinematic model, which are combined together in Table 4.1. There are four categories 

studied in the calibration simulations. 

Table 4.1: Four categories of calibration simulations 

Component Errors Compensation 

Rs.+1 =Rs. +dRs. =Rs. (1 +J ) 
I I I 1 t 

Equation (4.30) 
Rsi+I =Rpry (Oi +AOi) Equation ( 4.29) 

End-Effector Pose Errors Calculation 

Afl= vect ( 8) 
Equation ( 4.20) 

and (4.17) 

3 

Afl =«<»(Om -On) 
Equation ( 4.23) 

and (4.24) 

2 

4 

Simulations have showed that the static rotation matrix is no longer orthogonal after 

being updated recursively using the first compensation method, i.e., Equation (4.30). 

After losing the crucial orthogonality, a rotation matrix is no longer eligible to represent 

the orientation for a robot, which indicates that robot kinematic calibration should avoid 
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this compensation method shown in Equation (4.30). Therefore, the second method in 

Equation ( 4.29) would be a better way to update the identified component orientation 

error into the static rotation matrix for individual links. Furthermore, attention should be 

paid to quadrant sensitivity in the second method of the end-effector orientation error 

calculation (Equation (4.23)), which may fail to yield unique Euler angles from a rotation 

matrix ofthe end-effector in Equation (4.21). 
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CHAPTERS NONLINEAR FORMULATION 

This chapter investigates the nonlinear formulation without linearizing the kinematic 

model. The norms of tip position error and rotation matrix error are used as the objective 

function to search for an optimal or global solution. A genetic algorithm (GA) is applied 

as the search engine. Attention is paid to the population size, generation numbers, 

crossover or mutation factors, initial population, and other GA options. Furthermore, 

Monte Carlo simulations are conducted to reduce the stochastic or random error. 

5.1 Nonlinear Formulation 

Compared with the conventional linear formulation, the nonlinear one determines the 

pose error of the end-effector between the nominal and measured pose directly, 

n n n 

Lll~ll2 = LIIXm-Xollz = LIIXm- f(qo,go+L'lg)llz < E (5.la) 
i=l i=l i=l 

(5.lb) 

n 

where LIIXm - X
0 

112 represents the summation of 2-norm values of end-effector pose 
i= I 

errors from n different measurements; E is the acceptable accuracy for the pose error of 

the end effector, which is the termination condition for the calibration iterations. Equation 

(5.la) can be solved using genetic algorithm to search the optimal geometric errors L'lg at 

which the norm value of pose errors is less than E. 
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Furthermore, the determination of the pose error can be formulated as follows, 

(5.2) 

where IIPm -Po 112 and IIRm -Ro 112 are the Euclidean norm of position error and the spectral 

norm of rotation matrix error of the end-effector respectively. llxll
2 
= 

the Euclidean norm of x in vector space, IIAII
2 

=)A-max (A • A) represents the spectral 

norm, defined by the largest singular value of A or the square root of the largest 

eigenvalue of the positive-semidefinite matrix A* A. 

The use of rotation matrices directly instead of PRY angles to represent the orientation in 

Equation (5.2) avoids the inverse operation that may cause the quadrant sensitivity 

problem. Pm and Rm are the measured position and rotation matrix of the robot's end

effector. For Po and Ro. it can be given by the robot forward kinematic equations (3.43) ~ 

(3.46) in Chapter 3. 

5.2 Genetic Algorithm 

A genetic algorithm (GA) is a kind of global adaptive probabilistic searching algorithm 

simulating biological heredity and evolution, first presented by Prof. Holland in Michigan 

University [60] [61]. GA includes four basic operators, namely, selection, crossover, 

mutation, and migration. The genetic algorithm repeatedly modifies a population of 

individual solutions with these operators. Meanwhile, the fitness of each individual in a 
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population is valued by its cost of fitness function, and the best individual has the lowest 

cost, which has the priority to be selected into the next generation. 

5.2.1 Fitness Function 

The fitness function is also known as the objective function in other standard 

optimization algorithms. This is the ultimate cost function that determines the 

optimization process and direction of GA. The fitness function assigns a higher selection 

probability to the individuals with the lower cost values. After the global search based on 

GA is over, we transform the best individual whose cost value is the lowest into the final 

indentified kinematic parameter errors [7]. A nonlinear identification approach can be 

regarded as a typical GA optimization problem by setting Equation (5.1) as the fitness, 

while adding appropriate weighting factors between position and orientation error, as 

given below 

Min( ~~~Xm-Xollz) (5.3) 

IIXm -Xollz = wiiiPm -Po liz + wziiRm -Rollz (5.4) 

where w1 and w2 are the weighting factors for position and orientation errors of the end 

effector, respectively, which are utilized to weigh the importance of two errors. When 

w1=1 and w2=0, it shrinks to a pure position calibration only; when w1=0 and w2=l, it 

shrinks to a pure orientation one. 
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Each individual of a population has 6n parameters in total as the variables in the GA 

search. Meanwhile, the geometric errors ~gi (Equation 4.2b) are the variables that are 

optimized to minimize the cost of fitness function given in Equation (5.3). Furthermore, 

the position and orientation errors can be written as follows 

IIPm -Poll2 = IIPm -Po ( q, g+~gi )112 

IIRm -Roll2 = IIRm -Ro ( q, g+~gi )112 

(5.5) 

(5.6) 

where g represents the geometric parameters of each link, including the body vectors and 

initial configuration set up; q represents the joint variables, including rotational angles for 

revolute joints and translational displacements for prismatic joints. 

5.2.2 Initial Population 

A genetic algorithm starts generating a new population from the initial population that 

can be either created by a random generator, say, using a uniform distribution, or set 

manually. The initial population should provide the diversity of individuals. Assuming 

there are m population size and n number of variables, the initial population should use 

an mxn matrix to store. For robot kinematic calibration, the identified kinematic 

parameter errors from the linear formulation with position measurements can be 

considered to be an initial population. Both methods are evaluated in the calibration 

simulations, and better performance can be found when using calibrated ~g from the 

linear formulation. It requires fewer generations and therefore saves calculation times. 

62 



5.2.3 Individual Selection and Population Generations 

The classical algorithm generates a single point at each iteration, and the sequence of 

points approaches an optimal solution. While GA generates a population of points at each 

iteration, the best point in the population approaches the optimal solution. Moreover, GA 

selects the next population by computation which uses a random number generator, as 

opposed to selecting the next point in the sequence by a deterministic computation in the 

classical algorithm [62]. With a large population size, the genetic algorithm searches the 

solution space more thoroughly, thereby reducing the chance that the algorithm will 

return a local minimum that is not a global minimum. However, a large population size 

also causes the algorithm to run more slowly. 

To create the next generation, GA selects certain individuals in the current population, 

called parents, and then uses them to create individuals in the next generation, called 

children. Typically, the algorithm is more likely to select parents that have better fitness 

values. There are basically four operations for generation, which are selection, crossover, 

mutation, and migration. An individual with the lowest cost value of the fitness function, 

called an elite child, will be selected with priority into next generation automatically and 

survive to the next generation. Besides elite children, other relative lower individuals are 

selected as parents that contribute to the population at the next generation with crossover 

and mutation rules. Crossover operation combines two parents to form children for the 
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next generation. Mutation rules apply random changes to a single individual in the 

current generation to create a child. Mutation broadens the search space for GA and 

creates genetic diversity. Migration copies the best individuals in one subpopulation to 

replace the worst individuals in another subpopulation when the population size is more 

than one. 

5.3 Calibration Algorithm 

In Figure 5.1, a flowchart is given to show the robot calibration procedure based on the 

nonlinear formulation using GA. The initial population provides the genes for GA. The 

individuals with lower cost values are selected with priority to be parents for the next 

generation. The children are generated through the four basic operators, namely, 

selection, crossover, mutation, and migration. The final best individual is transformed to 

be the kinematic parameter errors and implemented into the robot kinematic model when 

it meets the required accuracy. 
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Robot geometry: g (bs & Rs) 

Joint variables: q (8, s) 

Initial population 

{Jg} 

Fitness calculation 

{//L1Xj/} 

Best individual (minjjJXj /i) 

Jgi 

Children 

{Jg} 

Measured Tip 

y 

Calibrated Kinematic Model 

X= f(q, g+Jg) 

Figure 5.1: Nonlinear calibration using a genetic algorithm. 
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5.4 Monte Carlo Simulation 

After each run, GA (loop 1 in Figure 5.2) returns a set of results for component kinematic 

parameter errors, L\g. In order to reduce stochastic simulation error, Monte Carlo 

simulation (loop 2 in Figure 5.2) for the genetic algorithm is conducted by running GA 

for n times, roughly around 50 times, until the mean value of all searched parameter 

errors of all runs (Equation 5.9) become stable and fluctuates within a certain preset 

tolerance L1 in Equation (5.7). 

(5.7) 

k-1 

-k-1 L:L\gi 
L\g = ..:..i=...:..1 __ 

k-1 
(5.8) 

k k-1 

-k I L\g; I L\g; + L\gk -k-1 

L\g = i=1 _ i=1 = _L\=g_x--'(--'k_-.....:l)_+_L\....::g:..::...k 
k k k 

(5.9) 

Simulations show that the more the run times, the more stable is the mean value. In 

addition to conducting a Monte Carlo simulation for a single configuration (loop 2), more 

random m configurations in the workspace are generated to repeat loop 2 until the mean 

value (Equation 5.10) for all the different configurations becomes stable, which can be 

considered as the global solution in the whole workspace (loop 3 in Figure 5.2). 

(5.10) 
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GA; .. i-l,n 
-7Lig, -2(C.g;)/n 

Monte Carlo Ieveil 
(n GA runs in one configuration) 

ConfJ, i'-l,m -7 
!o.o = '\' (Ao );fm ~-~ tiobal ~ '-¥.,. J ''" 

Monte Carlo lever 2 
(m configurations in workspace) 

Figure 5.2: Three loops of simulation. 
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CHAPTER6 SIMULATIONS AND 

COMPARISONS 

In this chapter, the calibration algorithms, both linear and nonlinear formulations, are first 

tested individually and then compared. Figure 6.1 shows the graphical user interface 

(GUI) for the robot kinematic calibration simulation created in MatLab R14. It consists of 

a static configuration set-up, motion parameters, assumed link errors, the calibration 

using linear formulation, the calibration using nonlinear formulation, and outputs. The 

outputs include graphs of the robot configuration representation and the robot end-

effector pose errors, and identified kinematic parameters. 
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Figure 6.1: Graphical user interface (GUI) for robot kinematic calibration. 

68 



The simulations are carried out on the MRR-1 robot. as shown in Figure 6.2. The robot 

has three joints: two revolute and one prismatic. Table 6.1 lists the robot's kinematic 

parameters, including local body vectors, initial orientation set-up, and joint motions for 

simulations. 

Figure 6.2: MRR-1 [8] and SolidWorks model. 

Table 6.1: Nominal link kinematic parameters for MRR-1 

Local Body Vectors 
Zero Reference 

Joint Motions 
Joint i Initial Orientation 

(m) 
set up (de g) 

(deg/m) 

X y z Pitch Roll Yaw 
Base 0 0 0.8 n/a n/a n/a n/a 
I (R) 0.5 0 -0.15 0 0 0 30 
2 (R) 0.4 0 0 0 0 0 60 
3 (P) 0 0 0.2 0 180 0 0.2 

All the kinematic parameters in Table 6.1 are inputs in the GUI (Figure 6.3). The robot 

configurations before and after movements Uoint motions are shown in Table 6.1) are 

illustrated by red and blue solid lines, respectively, in Figure 6.4, and the dashed line 

represents the base vector from the global frame origin to the first revolute joint centre. 
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Figure 6.3: Kinematic parameter input panels in the GUI. 
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Figure 6.4: Robot configurations before (red lines) and after (blue) movements. 
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In the calibration simulations, the measured end-effector pose is determined using the 

nominal model with the assumed joint geometric parameter errors according to the 

manufacturing tolerances in Table 6.2. The nominal pose is determined using the model 

without the errors [59]. These assumed errors are generated randomly by the Gaussian 

(normal) distribution with the mean value /-1 = 0 and variance cr2 = 0.003. The random 

generator can be found in Figure 6.3. A set of assumed component geometric errors, 

listed in Table 6.3, is added to both local body vectors and initial orientation set-ups in 

the nominal kinematic model through Equations (4.28) and (4.29) or (4.30). 

Table 6.2: Typical tolerance limits for various manufacturing processes [65] 

Typical Tolerance Limit Typical Tolerance Limits 

Process mm inches Process mm inches 

Sand casting: Abrasive processes: 
Cast iron ±1.3 ±0.050 Grinding ±0.008 ±0.0003 
Steel ±1.5 ±0.060 Lapping ±0.005 ±0.0002 
Aluminum ±0.5 ±0.020 Honing ±0.005 ±0.0002 

Die casting ±0.12 ±0.005 Nontraditional process: 
Plastic molding: Chemical machining ±0.08 ±0.003 

Polyethylene ±0.3 ±0.010 Electric discharge ±0.025 ±0.001 
Polystyrene ±0.15 ±0.006 Electrochem. grind ±0.025 ±0.001 

Machining: Electrochem. machine ±0.05 ±0.002 
Drilling, diameter Electron beam cutting ±0.08 ±0.003 
6 mm (0.250 in) +0.08, -0.003 +0.003, -0.001 Laser beam cutting ±0.08 ±0.003 
25 mm (1.000 in) +0.13, -0.05 +0.006, -0.002 Plasma arc cutting ±1.3 ±0.050 

Milling ±0.08 ±0.0003 
Turning ±0.05 ±0.002 

Table 6.3: Assumed geometric parameter errors (m or rad) 

Joint i Position errors Orientation errors 

11x; ~Y; &i /),pi tlJj &i 

i=l -1.2977e-3 -4.9968e-3 3.76e-4 -8.6303e-4 3.4394e-3 3.5727e-3 
i=2 3.5675e-3 -1.129e-4 9.8188e-4 5.2392e-4 -5.6013e-4 2.1774e-3 
i=3 -1.7649e-3 6.5496e-3 -4.0919e-4 3.4179e-4 3.2003e-3 1.7784e-4 
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6.1 Linear Formulation 

For the linear formulation (Figure 6.5), two calibration schemes are simulated. The first 

one is the position calibration and the second one is the full-pose calibration. 

Simulations of the calibration using only position measurements are carried out 

successfully and usually converge to the specified accuracy by no more than 6 iterations, 

even though it (Equation (4.6)) is simpler and less complete compared with the full pose 

calibration. For this case, the root mean square position error (RMSPE) values converged 

from 3.8xi0-3 m to 6.2xi0-7 m by only 4 iterations in Figure 6.6(a). Figure 6.6(b) shows 

the calibration results. 

r Termination Conditiuns -

Tip Pose Error Tolerance 

Maximum Iteration Times 

... __ I r·-~'""" 
! 

Condition Humber ~----'"--1 

Calibration 
Categories 

I , ....... ~, I 
[ 3.180~_] I Curve j I 

...... _ ......... ~ ................................. --~ ......................... J 
[e-ll 

Figure 6.5: Calibration using Linear Formulation panel. 

Table 6.4 shows the identified actual kinematic parameters for MRR-1 compared with the 

nominal values. The positioning accuracy of MRR-1 can be improved when the actual 

values are implemented into the kinematic model. The differences between the nominal 

and actual values are the geometric parameters errors, as shown in Table 6.5. 
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Figure 6.6: Partial pose (position) calibration outputs. 

i 
..... J 

With the identified errors in Table 6.5, Table 6.6 indicates that the position of the MRR-

1 's end-effector after calibration is much closer to the actual position than the nominal 

values before calibration. However, the differences between the calibrated rotation matrix 
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and the actual values are found even after calibration in Table 6.6. Clearly, the orientation 

accuracy is not taken into account in position calibration. 

Joint 

1 
2 
3 

1 
2 
3 

Joint i 

i=1 
i=2 
i=3 

Table 6.4: MRR-1 kinematic parameters before and after calibration 

Kinematic Nominal values Calibrated actual values 
Earameters (m I de~) (m I de~) 

X y z X y z 
Local Body 0.5 0 -0.15 0.49835 9.76e-4 -0.1490 

Vectors 0.4 0 0 0.40002 0.0019131 9.88e-4 
(m) 0 0 0.2 -2.3e-5 0.0019132 0.19901 

Pitch Roll Yaw Pitch Roll Yaw 

Initial Orientation 
0 0 0 0.0121 -0.013 0.0332 

set up (deg) 
0 0 0 0.0027 -0.003 0.0052 
0 180 0 -0.003 180.02 0.0385 

Table 6.5: Identified geometric parameter errors (m or rad) 

/),xi 

-1.6453e-3 
2.2946e-5 
-2.2856e-5 

Position errors 

~Y; 
9.7647e-4 
1.9131e-3 
1.9132e-3 

&i 
9.8828e-4 
9.8828e-4 
-9.8831e-4 

Orientation errors 

/¥J; 
2.1170e-4 
4.6991e-5 
-4.7039e-5 

~ 
-2.3079e-4 
-4.8266e-5 
3.4700e-4 

Table 6.6: End-effector poses before and after calibration 

Tip position End-effector rotation matrix 

/),si 

5.8048e-4 
9.2338e-5 
6.7282e-4 

Nominal 
4.330127e-l 0 -1 0 
1.7987616e-4 -1 0 0 

values 
2.5000e-1 0 0 -1 

Actual 
4.2722476e-1 -1.8588651e-4 -9.9999914e-1 1.2975389e-3 
6.5018508e-1 -9.9998926e-1 1. 7987616e-4 -4.6306960e-3 

values 
2.531 0769e-1 4.6304586e-3 -1.2983857e-3 -9.9998844e-1 

Calibrated 
4.2722582e-1 -6.7281 084e-4 -9.999997 4e-1 2.4911461e-4 
6.5018489e-1 -9. 9999969e-1 6.7270681e-4 -4.1745853e-4 

values 
2.531 0762e-1 4.1729084e-4 -2.4939540e-4 -9.9999988e-1 
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On the other hand, due to the limitations of the linear formulation, simulations have 

shown that these limitations tend to cause the full-pose calibration results to be non-

convergent, as shown in Figure 6. 7. The root mean square values of position, orientation, 

and pose errors are represented by blue, red, and black curves, respectively, in Figure 6. 7. 

0.16 .--------,.-----,---.,...------, 

-+- RMS Position Error 
2 °' 14 

····-f+···· RMS Orientation Error ' 
w 0 12 ---- --+--- RMS Pose Error ___ / :5 . (j) 

; I 
·u; 0 1 ---------·------------------ -- ·- -- ___ , __ 
cr · : : : d 
m , , , r· 
~ 0.08 ---------~----------;---------~----1'-- -

i:: : : T 27 
E ' d' 
0 

o:: O.D2 --------

Number of Iterations 

Figure 6.7: Non-convergent results for the full-pose calibration. 

6.2 Nonlinear Formulation 

For the nonlinear formulation using GA, the options of GA need to be adjusted after 

several trials in order to obtain a better performance, consisting of the number of 

populations, generations, crossover factors, initial populations, and weighting factors etc. 

Figure 6.8 shows the GUI for the nonlinear formulation using GA. 

With 50 populations and around 250 generations, the best fitness value has changed from 

about 4.5><10-3 to 9.8075x1Q-6 (Figure 6.9), indicating that the norm ofthe pose error of 

robot end-effector has been decreased below the satisfied accuracy, I xI o-5
. The best and 
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mean fitness values of each generation are represented by black and blue points. Figure 

6.9 also indicates that GA's initial convergence speed is very fast and then gradually 

becomes slow. Generally, GA needs longer computing time than other optimization 

methods. 

Nonlinnr Formullition using Genetic Algorlthm---

Weigi'Dlg Factors Variable Bc:uld (m) lnlial PopUetion 

W1 ~ Lower 1-o.oosl QCelibrated 

W2 [- 1 J Upper I o.oosl 
I GA l 

Population Size Generations Flness limit 

~ 11soo I ~ 
I Resuls] 

.-------Monte Cerlo Simullltion------: 

Mean Value Deviation I MC 1 l Configl.rations I MC 2 ] 

~>,JtC· f·e-·,r. ~ f·.F!~' 

Figure 6.8: Nonlinear Formulation using Genetic Algorithm panel in the GUI. 
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Figure 6.9: (a) Best and Mean fitness; (b) Best fitness. 

Table 6.7 shows the MRR-1 kinematic parameters before and after calibration using the 

nonlinear formulation. The satisfactory results of the end-effector pose after calibration 

are presented in Table 6.8, as compared to the pure position calibration values using the 

linear formulation in Table 6.6. The calibrated rotation matrix of the end-effector in Table 

6.8 is much closer to the actual values compared with the one in Table 6.6, indicating the 

better performance of the nonlinear formulation using GA. 

The final best individual with 18 variables for the MRR-1 is shown in Table 6.9 after 250 

generations. They are transformed to be the identified kinematic parameter errors and 

implemented into the robot kinematic model. 
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Table 6.7: MRR-1 kinematic parameters before and after calibration 

Joint Kinematic Nominal values Calibrated values 
Earameters (m/deg) (m/deg) 

X y z X y z 
1 Local Body 0.5 0 -0.15 4.9647e-1 2.9079e-3 -I.4903e-1 
2 Vectors 0.4 0 0 3.9975e-1 1.9099e-3 5.7817e-4 
3 (m) 0 0 0.2 -8.6127e-4 1.0051 e-3 1.9903e-1 

Pitch Roll Yaw Pitch Roll Yaw 
1 Initial 0 0 0 1.3983e-2 -1.6551 e-1 8.3171e-2 
2 Orientation 0 0 0 -7.2005e-2 -8.2925e-2 -1.5142e-1 
3 set U£ (deg) 0 180 0 -9.0582e-3 1.8008e+2 9.9070e-3 

Table 6.8: End-effector poses before and after calibration 

Tip position End-effector rotation matrix 

Nominal 
4.330 127e-1 0 -1 0 

6.5000e-1 -1 0 0 
values 

2.5000e-1 0 0 -1 

Actual 
4.2722476e-1 -1.8588651e-4 -9 .9999914e-1 1.2975389e-3 
6.5018508e-1 -9 .9998926e-1 1.7987616e-4 -4.6306960e-3 

values 
2.531 0769e-1 4.6304586e-3 -1.2983857e-3 -9.9998844e-1 

Calibrated 
4.2722444e-1 -1.80270 19e-4 -9.9999915e-1 1.2921556e-3 
6.50 18405e-1 -9.9998925e-1 1.7428246e-4 -4.6325272e-3 

values 
2.531 0623e-1 4.6322980e-3 -1.2929769e-3 -9.9998843e-1 

Table 6.9: Geometric parameter errors from the final best fit individual 

Joint 

1 
2 
3 

Local Body Vectors Errors 
(m) 

X 

-3.5280e-3 
-2.4508e-4 
-8.6127e-4 

y 
2.9079e-3 
1.9099e-3 
1.0051e-3 

z 
9.7299e-4 
5.7817e-4 
-9.6915e-4 
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Zero Reference Orientation 
set up Errors (de g) 

Pitch (p) Roll (r) Yaw (s) 
2.4404e-4 -2.8887e-3 1.4516e-3 
-1.2567e-3 -1.44 73e-3 -2.6428e-3 
-1.5809e-4 1.4089e-3 1.7291e-4 



Basically, the better performance can be expected with a larger population and more 

generations, although it increases computing time. Figure 6.10 illustrates the different 

performance for different population and generations. With the same 1000 generations, 

the final best fitness is improved to 0.0010523, 7.2879xi0-5
, and 5.1947xto-5 for 100, 

150, and 200 populations, respectively. With the same 200 population, the final best 

fitness is enhanced to 5.1947xl0-5
, and 1.465lx10-5 for 1000 and 1500 generations, 

respectively. 

O.D3 

0.04 

0.03 
~ 
~ 
~O.Q2 
~ .. 
u.. om 

Best: 0.0010523 Mean: 0.0011444 
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(a) Population 100, Generation 1000; 
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(b) Population 150, Generation I 000; 
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Figure 6.10: Better performance with large populations and generations. 

Furthermore, a high crossover probability and a low mutation probability are proved to be 

more likely to obtain a good performance [61]. Since GA is a stochastic process, each 

time the program is run, slightly different results are returned. From simulations, it is 

shown that satisfactory results are generated and enough accuracy of position and 

orientation is guaranteed after calibration. 
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6.3 Monte Carlo Simulation 

In order to reduce the stochastic random error in GA, Monte Carlo simulations (Figure 

6.8) in the loop 2 (Figure 5.1) are carried out by repeatedly running GA in loop 1 to 

calculate the mean values of ~g until they become stable and fluctuate within certain 

bounds. The standard deviations around the mean value are calculated each time when 

new results are generated from GA, and a convergent pattern is found and illustrated in 

Figure 6.11. 

Since there are 18 parameters for the MRR-1 robot in total, the standard deviations of the 

mean values for all parameters are plotted together in one chart (Figure 6.11 a) and one of 

them is clearly shown with 44 iterations (Figure 6.11 b). The final stable mean value of all 

the best fit individuals from 44 GA runs is calculated and shown in the Table 6.1 0. 

Furthermore, in order to obtain a global solution, the Monte Carlo simulation is 

conducted again repeatedly for 8 random configurations in the robot workspace (Figure 

6.8). Random movements for all three joints are generated with a uniform distribution 

within joint motional bounds (Figure 6.13, 6.14 ). The results in Figure 6.12 show that all 

the 16 parameters do not fluctuate significantly and remain almost stable in the 8 random 

configurations over the robot's workspace, which indicates the global property of the 

solution from Monte Carlo level 1. 
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Figure 6.11: (a) Standard deviations of mean values of all the parameter errors ~g from 

GA; (b) one of the parameters. 

Table 6.10: The stable mean value of all best fit individual from GA runs 

Joint i X y z p r s 
-1.5468941 -4.2133711 -3.4040037 -6.5581664 -2.7366316 -3.9937420 

e-3 e-4 e-5 e-4 e-4 e-4 

2 
-1.1226324 9.9691850 3.6835343 -3.7540076 -8.0672008 1.3481633 

e-3 e-4 e-4 e-005 e-4 e-3 

3 
2.0275948 9.1848455 9.1167962 -2.4716377 1.1293914 4.2085826 

e-3 e-4 e-4 e-004 e-3 e-3 
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Figure 6.12: 16 calibrated parameters in 8 random configurations. 
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Figure 6.13: Revolute joint 1 and 2 random movements for 8 configurations. 
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Figure 6.14: Translational displacements of the prismatic joint 3 for 8 configurations. 
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CHAPTER 7 CALIBRATION 

CONSIDERING RECONFIGURATION 

The chapter is to develop a method to perform calibration when considering 

reconfiguration for an MRR. A path matrix is introduced to represent the sequence 

change of modules. A snap point is introduced first before the path matrix. Furthermore, a 

self-calibration methodology is proposed for future research on MRRs. 

7.1 Snap Point 

A snap point is the point on the end of each module at which the next module is 

connected [II]. As shown in Figure 7 .I, the snap point can be regarded as the common 

point between two adjacent modules. According to Equation (3.41 ), the position of the ith 

snap point can be expressed as: 

Snap Point 

si-1 

Module i-1 

Module i 

Figure 7.1: Snap point between two adjacent modules. 
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Based on Equation (7 .1 ), snap points can be computed recursively: 

(7.2) 

where bk and bk' are the body vector representing the kth module in global and local 

coordinates, respectively, and Si is the vector representing its snap point. 

7.2 Path Matrix 

The kinematics equations can be generated for a system with the defined sequence of the 

connecting modules given in Chapter 3. However, for a reconfigurable system, this 

sequence is subject to change and so is the number of modules. To account for this 

change, the path matrix [64] is applied. A path matrix is used to define the connectivity of 

the modules in matrix form as below: 

(7.3) 

where the rows correspond to the joints as indicated by letter J; the columns correspond 

to the bodies as indicated by letter B; and the subscript number indicates the body 

number. The component values of the matrix are either 1 or 0. Tij = 1 if joint i is in the 

route from Bi to Bj, meaning that the motion of body Bi contributes to that of body Bj. If 

not in the route, Tij = 0. 
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The matrix given in Equation (7.3) is for the original system shown in Figure 7.2(a). The 

diagonal values are 1 indicating that the joints are associated with their own bodies. 

Furthermore, T 12 = 1, as joint 1 is in the route to body 2; T 13 = 1 and T 23 = 1 as joint 1 

and 2 are in the route to body 3; the rest are zero. lfthe original system in Figure 7.2(a) is 

reconfigured to the system shown in Figure 7.2(b), then the path matrix of Equation (7.3) 

is changed to: 

(a) 

BI B2 BJ 

1 0 0 Jl 

T= 1 1 1 J2 

1 0 1 J3 

Figure 7.2: (a) Original connection 

(b) 

(b) Reconfigured connection 

By re-ordering the matrix of Equation (7.4) into an upper triangle form, it becomes: 
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(7.4) 



Bz BJ Bl 

1 1 1 J 2 

T= 0 1 1 J' (7.5) j 

0 0 1 Jl 

The sequence of the body indicated by the column headings in the matrix of Equation 

(7.5) is the true sequence for the reconfigured system. 

In general, the relationship between the path matrix and the snap points can be expressed: 

(7.6) 

where S = [sT 1, sT2, •.. ST11 ]T are the snap points with the number indicating the true 

T T T T . 
sequence of the system; and H = [h 1, h 2···· h 11 ] are the vectors of each body With the 

number indicating the body numbers. 

In the light of Equation (7.6), the snap points of the original system can be determined as: 

(7.7) 

For the reconfigured system it becomes: 

(7.8) 
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Note that the order of matrix H is changed according to the new path matrix and matched 

with the column headings. Hence, the utilization of the path matrix provides a means to 

relate the true sequence of the bodies for calibration of a MRR. 

7.3 Simulations 

Here is the calibration simulation for the MRR-1 after reconfiguration that corresponds to 

Figure 7.2(b). Figure 7.3 is the GUI where the sequence of the existing modules in a new 

configuration can be rearranged. Figure 7.4 illustrates the robot configuration before and 

after changing the sequence of the modules connection. 

Next 

Figure 7.3: Simulation when reconfiguration. 

Robot Configurations Robot Configurations 

y X X 

Figure 7.4: Robot configuration before and after reconfiguration. 
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Figure 7.5 shows the satisfactory convergent results using GA: the best fitness steadily 

declines from about 0.005 to 9.4893 x 1 o-6 after around 150 generations. 

Best: 9.48938-0!li Mean: 0.0030246 
0.025 ---------- -;----------- ~-- --------- ~----------- -;----------- ------------- ~ 

: : : : • Beslflness : 
: ' : : • Meannness : 
' ' ' I I I I I I 

0.02 ----------!--- -------- ~----------- ~--- ---------:----------- -~---- ------- ~ 
I I I I I I 
I I I I I I 
I I I I I 

I I I I I 
I I I I I 
I I I I I I 

I I I I I I 

~ 0.015 -----------:-----------:------ -----~----- ------ ~---- ------- -~- ----------: 
ro I I I I I I 

> : : : : : : 
(f:1 I I I I I I 

en I I I I I I 

~ : : : : : : 
[[ 0.01 -----------:-----------:-----------:-----------:------------:------------: 

I I I I I 
I I I I I 
I I I I I 
I I I I I . : : : : : : 

0.005 • ----------:-----------:-----------:-----------:---- -------+--- --------: 

0 
0 

I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 

I I I I I 
I I I I I 

I I I I I 

400 500 600 
Generatirn 

Figure 7.5: GA results for MRR-1 after reconfiguration 

7.4 Self-calibration Formulation for MRRs 

Assuming there are two fixed and arbitrary points (or targets) in the workspace of an 

MRR, whose positions p 1 and p2 are both unknown, but the relative distance between 

them is precisely provided before the calibration: 

(7.9) 

A pointing tool is rigidly attached on the end-effector of an MRR, such as a laser pointer. 

Then the MRR is moved and adjusted in order to aim the pointing tool at the two fixed 
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targets one by one; meanwhile, the readings of joint sensors (q 111 ) are recorded for each 

configuration. Assuming an additional prismatic joint from the pointer tool to the fixed 

target, the target can be actually treated as the fixed tip of the virtual prismatic joint. 

Hence, for the two targets (or virtual tips), their positions can be denoted by 

PI= f (qoJ, go) 

P2 = f ( qoz, go) 

(7.1 Oa) 

(7.1 Ob) 

where q01 and q 0z are the nominal joint movements for two targets; and q0 is adjusted to 

aim the pointer at the fixed target. 

From Equation (7.9) and (7.1 0), the preset distance should be equal to 

(7 .11) 

However, the recorded readings of all joint sensors (q 111 ) are slightly different from the 

nominal values (q 0), and this leads to the nonlinear fitting formulation of self-calibration, 

which uses only joint readings without external measuring devices: 

(7.12) 

where ~g is the set of geometric parameter errors in the robot model, to be identified and 

fitted into nonlinear Equation (7.12) to ensure the values of IP1- pzl are close enough to 

the preset accurate distance d. 
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Moreover, this self-calibration idea might be further extended by setting two full-pose 

targets, such as three-point targets, which can provide both position and orientation, 

instead of position only, for fixed point targets. The relative pose (P) of these two pose 

targets should also be precisely established in advance. The MRR should then be moved 

to match the end-effector with the preset full-pose targets one by one, and the joint sensor 

readings should also be recorded in the meantime. Hence, similar nonlinear formulation 

might be developed: 

(7.12) 
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CHAPTERS 

WORK 

8.1 Conclusions 

CONCLUSIONS AND FUTURE 

In this thesis, both linear and nonlinear kinematic calibration methods are investigated 

and compared for MRRs. Linear position calibration has proved to be a quick convergent 

method, normally, by less than 6 iterations. However, only the position of the end

effector is considered rather than full-pose accuracy. Linear full-pose calibration appears 

to be non-robust and susceptible to many aspects during calibration, which may cause 

divergent and singularity issues. On the other hand, nonlinear calibration using genetic 

algorithm has been demonstrated to be a robust method, although it usually takes a few 

minutes to converge to a required accuracy. Both position and orientation accuracies are 

improved successfully after the nonlinear calibration. 

8.2 Contributions 

The following contributions are made in this thesis: 

• Robot kinematic calibration based on the nonlinear formulation is developed and 

implemented with genetic algorithm (GA). Without using the PRY angles to 

represent the tip orientation in the nonlinear formulation, it avoids the quadrant 

sensitivity problem by using the rotation matrix directly. A Euclidean norm, a 
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spectral norm and weighting factors are used to unify the position and orientation 

errors of the end-effector. 

• Linear full-pose calibration is discussed in four categories, where some downsides 

are found. These downsides include quadrant sensitivity problem and 

orthogonality sacrifice issues. 

• Monte Carlo simulation is implemented in the calibration simulations. It includes 

two levels of Monte Carlo simulation; one in single configuration and another one 

in 8 random configurations. 

8.3 Future Work 

First of all, attention should be paid to improve the efficiency of the nonlinear 

identification with GA, especially for MRR robots with a large number of modules. Some 

better results identified by the linear formulation may be considered for initial 

populations. Good initial populations dramatically increase the efficiency of GA. 

Secondly, although the nonlinear formulation has been proposed by several investigators 

in similar or slightly different ways, different methods can be found in fitting this 

nonlinear regression model, such as the Levenberg-Marquardt algorithm, genetic 

algorithms and neural networks. Hence, another future work would be to compare those 

different methods through convergence and robustness. Thirdly, a self-calibration 

approach for MRRs with the formulation in the Chapter 7 should be another important 
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future work to carry out. Last but not least, only simulations were provided to test the 

calibration methods in this thesis; experiments should be conducted to compare with the 

simulation results. 
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APPENDIX A (TAIT) BRYAN ANGLE 

(PITCH, ROLL, YAW, PRY) [18] 

[

1 0 0 l 
R( ex)= 0 cos ex -sin ex 

0 sin ex cos ex 

-si

0

nez o~l 
cosez 

In the body fixed frame 

r 

ceycez -ceysez 
R = sexseycez + cexsez -sexseysez + cexcez 

-cexseycez + sexsez cexselez + sexcez 

Relation of PRY with R 
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