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Abstract 
 

 

 Thermodiffusion phenomenon in fluid mixtures has been investigated by several 

scientists in theoretical as well as experimental fields for decades. Nevertheless, due to 

shortcomings of both methods, interest in searching for alternative approaches to shed 

some light on molecular scale of the phenomenon has spurred. The objective of this 

thesis is to develop an accurate molecular dynamics (MD) algorithm that can predict 

thermodiffusive separation in binary and ternary fluid mixtures. More importantly, the 

proposed algorithm should be computationally efficient in order to be suitable for 

integration into multi-scale computational models to simulate thermodiffusion in a large 

system such as an oil reservoir. In developing such an effective and efficient 

computational tool, this thesis introduces a modified heat exchange algorithms, wherein, 

a new mechanism is introduced to rescale velocities which curbs the energy loss in the 

system and at the same time minimizes the computational time. The performance of the 

new algorithm in studying Soret effect for binary and ternary mixtures has been 

compared with other non-equilibrium molecular dynamics (NEMD) models including 

regular heat exchange algorithm (HEX) and reverse non-equilibrium molecular dynamics 

(RNEMD). Different types of binary mixtures were studied including one equimolar 

mixture of argon (Ar)-krypton (Kr) above its triple point, non-equimolar normal alkane 

mixtures of hexane (nC6)-decane (nC10) as well as hexane (nC6)-dodecane (nC12) for six 

compositions, three non-equimolar mixtures of pentane (nC5) decane (nC10) at 

atmospheric temperature and pressure. Additionally, the new algorithm was validated for 

different ternary mixtures including ternary normal alkanes methane (nC1)-butane (nC4)-
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dodecane (nC12) for three compositions, and one composition of different types of alkane 

mixture of 1,2,3,4-tetrahydronaphthalene (THN)-dodecane (nC12)-isobutylbenzene (IBB). 

The new algorithm demonstrates a significant improvement in reducing the energy loss 

by nearly 32%. Additionally, the new algorithm is about 7-9% more computationally 

efficient than the regular HEX for medium and large systems. In terms of direction of 

thermodiffusive segregations in binary mixtures, in agreement with the experimental 

data, the new algorithm shows that the heavier component moves towards the cold region 

whereas the lighter component accumulates near the hot zone. Additionally, the strength 

of segregation process diminishes as the concentration of heavy component in the 

mixture increases. The new algorithm improved the prediction of thermodiffusion factor 

in binary mixtures by 24% in binary mixtures. With respect to the ternary mixtures, 

similarly to binary mixtures the heaviest and lightest component in the mixture move 

towards, cold and hot zones, respectively. While the intermediate component shows the 

least tendency to segregate. In terms of the strength of Soret effect, the new algorithm is 

about 17% more accurate than the regular HEX algorithm with respect to experimental 

data.  
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NOMENCLATURE 
	

m Mass, (kg) 
r Distance between particles and position of particle, m 
t Time, s 
kb Boltzmann constant, J/K 
x Mole Fraction 
C Concentration, mole/m3 
D Molecular diffusion coefficient, m2/s 
DT Thermodiffusion coefficient, m2/(s. K) 
J1 Mole flow rate, mole/(m2.s) 
Jq Internal energy flux, J/(m2.s) 
Lij Phenomenological coefficient 
N 
T* 

Number of particles 
Dimensionless temperature 

U Energy removal or addition, (J) 
V Velocity, m/s 
Vb Barycentric velocity, m/s 
	
Greek Symbols 
α	 Thermodiffusion factor 
ζ Scaling Factor 
γ Scaling Factor 
ε	 Depth of Potential Well, J 
µ	 Chemical potential, J/mole 
ρ*	 Dimensionless Density 
σ	 Atomic diameter, nm 
φ	 Lennard-Jones potential, J 
	
Subscripts 
1 Component 1, heavy 
2 Component 2, light 
c Cold region 
h Hot region 
i, j Particle type 
k Counting number 
T Thermal diffusion 
Notations 
∇ Spatial derivative 
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CHAPTER 1- RESEARCH OBJECTIVES 
  

1.1 History and General Views of Thermodiffusion 
 

Carl Ludwig, German chemist and physician was the first person noticed the impact of 

temperature nonuniformity on an isotropic liquid mixture in 1856 [1].  The Swiss 

physicist and chemist Charles Soret described the same phenomenon in further details 23 

years later [2]. He discovered that when salt solutions of NaCl and KNO3 confined in 

tube shape containers were subject to different temperatures at the two ends, the solutions 

were not remained even in composition.  After repeating the experiment with different 

salt solutes including KCL, LiCl and CuSO4, he concluded that salt always concentrated 

at the cold end [3, 4]. This coupled mass and heat transfer phenomenon has been 

addressed in literature with different names like thermodiffusion, thermophoresis, 

thermotransport and thermomigration. However, it is often known as Soret effect to 

honour Charles Soret’s extensive work on the subject including formulation of governing 

equations.  

 
The thermodiffusive segregation has been observed and studied in several types of 

mixtures, viz., gases [5-7], electrolytes [8, 9], alcohols [10-12], polymers [13-15], molten 

metals [16], ferrofluids [17-19], semiconductor materials [20-22], latex particles [23] and 

proteins [24, 25]. The strength of the Soret effect, as well as its direction is usually 

determined by a parameter called Soret coefficient, ST (K-1) [26]. The order of magnitude 

of Soret coefficient usually is less than 10-2 K-1 [26]. Nonetheless, the impact of 

thermodiffusion on numerous natural activities such as oceanic thermohaline circulation 

[27] and convection in stars [28] is crucial.  

 

1.2 Different Approaches 
 

1.2.1 Theoretical Models 
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Several theoretical models have been developed to investigate Soret effect in different 

mixtures, though these models first arrived almost a century after the discovery of the 

phenomenon. In general, scientists have better understanding of the thermodiffusion in 

gaseous mixtures based on kinetic theory of gases than non-ideal fluid mixtures [29]. 

Drickamer and his team [30-34] were pioneers in proposing different theories for thermal 

diffusion in non-ideal mixtures based on linear non-equilibrium thermodynamics (LNET) 

principles in 50s. In these models, it is assumed that infinitesimal volume elements of an 

irreversible system are in locally equilibrium condition. As a result, the classical 

thermodynamics relations can be applied to these elementary volumes; which leads to 

emerge of an energy quantity named ‘net heat of transport’. The LNET models have 

puzzled researchers for decades to define the new quantity in terms of measurable 

thermodynamic properties. 

 

Apart from these, other early predominant theoretical studies on comprehending the Soret 

effect are the ones proposed by Haase [35], Moritmer and Eyring [36], Guy [37], and 

Kempers [29, 36]. Hasse’s model for thermal diffusion was derived from analogy of 

mass transfer due to pressure gradient for binary electrolyte mixture. Moritmer and 

Eyring [36] suggested an equation for probability of an individual type of molecule per 

time to jump from an old equilibrium state to a new equilibrium state for binary mixtures 

of molecules with equal size. In Guy’s LNET model [37], Soret coefficients were 

formulated as a function of partial molar excess energy of pure components. While 

Kempers’ [29, 38] models were based on the principles of statistical nonequilibrium 

thermodynamics.  

 

Moreover, the first attempts to explain thermophoresis activities in dilute binary fluid 

mixtures via hydrodynamic/ Brownian motion models were done by Brenner and his 

colleague [39-41]. The essence of their hydrodynamic approach is based on the volume 

transport theory suggested by Brenner [42], in which a non-zero diffusive volume flux   

accompanies the Fourier heat flux even when the fluid is at rest, i.e. mass flux is zero. 

According to his models, thermal diffusivity of a dilute solution only depends on 

solvent’s properties. 
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In recent years, the researchers’ focus in theoretical field has shifted to extend and 

modify previous LNET theoretical models to different types of mixtures including 

associating [43] and non-associating mixtures [44], DNA solutions [45], polymers [46] as 

well as ternary and quaternary mixtures [47, 48]. Several detailed reviews about these 

theories can be found in the literature [49, 50]. 

 

1.2.2 Experimental Models 
 

In parallel attempts, scientists have conducted various experimental approaches to 

measure thermodiffusion coefficients in a multicomponent fluid mixture [51-56]. The 

presence of gravity has a significant impact on thermodiffusion phenomenon. As a result, 

the earliest empirical techniques can be categorized differently based on the 

permissibility of convection. Here two primitive setups with different configurations will 

be explained. Fig. 1.1 illustrates the first common configuration (Soret cell), where liquid 

mixture is confined in a thin space between two horizontally separated plates that are 

kept at different temperatures. The objective of experimental set ups with this 

configuration is to elude any convectional fields [51]. Later, to evaluate Soret coefficients 

the change in density or refractive index of fluid mixture is studied to obtain 

concentration profile. 

 

 

 

 

 

Thermogravitational column is the second common configuration, which was first 

introduced by Clusius and Dickel [52] (c. f. Fig. 1.2). Where the fluid mixture is enclosed 

in a small space between two walls at different temperatures. According to Soret effect, 

the lateral temperature gradients in this configuration create lateral density gradients; 

which introduce a gravitational convection field along the testing cell. In other words, a 

Plate 1                                      T1 

Fluid Mixture 

Plate 2                                      T2 

Fig. 1.1: A schematic of a Soret cell [1]. 
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combination of thermal, gravitational and buoyancy fields affect the segregation process. 

In order to measure Soret coefficient, two distinct methodologies can be used. In the first 

method, extracting fluid samples from the column at different heights to analyse the 

concentration profile along the cell after reaching to steady state condition. Later, 

Dutrieux et al [53] introduced a new methodology to quantify Soret coefficient via using 

laser Doppler velocimetry (LDV) to record the magnitude of mixture’s velocity at 

different time. 

 

 

 

 

 

 

 

 

 

 

With several such apparatus and experimental techniques in the literature, in general, 

experimental techniques can be classified into two major types, viz. optical and non-

optical methods. Optical approaches like Soret cell with beam deflection (BD) [54], 

thermal diffusion forced Rayleigh scattering (TDFRS) [55], microfluidic fluorescence 

[56], and thermal lens model [57] are generally more complicated and expensive. The 

famous non-optical methods are classical Soret cell [51], two-chamber thermodiffusion 

cells [58], thermal field-flow fractionation [59], and thermogravitational column 

approaches [53, 54]. In literature, several comprehensive reviews have addressed the 

weak and strong aspects of these empirical aforementioned models [26, 50, 60]. 

 

1.2.3 Computational Models 
 

Given some inherited deficiencies and shortcomings of theories as well as experimental 

methods, computational approaches can be used as potential substitutes to study the 

Fig.  1.2: A schematic of Thermogravitational column [1]. 

T1
 

T2
 

 

Fluid Mixture 

 

Sampling Ports 
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thermodiffusive flows. On the theoretical front, the choice of equation of states (EOS), 

and proper calculation of the thermodynamic properties of pure components and mixture 

can alter the results significantly [61]. Therefore, theoretical models are not often in good 

agreement with each other on the strength and even sign of thermodiffusion coefficients.  

 

On the other hand, several external sources of errors including undesired natural 

convection fields, mechanical vibrations as well as post-processing errors compromise 

the accuracy of experimental methods [62-64]. In fact, in view of these experimental 

error sources, recently, there has been a significant surge in conducting the 

thermodiffusion experiments on reduced-gravity environment to investigate the impact of 

vibrations and minimalize the unwanted effect of gravity [65-68]. However, these are 

prohibitively expensive and are experiments have to be planned years in advance because 

of limited access to reduced gravity environment. 

 

As a compromise, inexpensive molecular dynamics (MD) techniques, that is also the 

focus of this thesis, can play a significant role to bridge a comprehensive approach 

between molecular scale and macroscopic characteristics of the phenomenon among 

other suggested numerical methods including artificial neural networks [69]. The 

application of MD models to comprehend the thermodiffusive properties of fluid mixture 

dates back to 1980s and 1990s, where three famous non-equilibrium molecular dynamic 

(NEMD) techniques, i.e. synthetic non-equilibrium molecular (SNEMD), heat exchange 

algorithm (HEX) as well as reverse non-equilibrium molecular dynamics (RNEMD), 

were established.  

 

In 1986, Evans and MacGowan [70] introduced a technique called synthetic non-

equilibrium molecular dynamics (SNEMD) to investigate thermodiffusion in an 

equimolar liquid argon-krypton mixture through generalization of his previous 

methodologies for measuring self-diffusion [71] and thermal conductivity [72] of a one 

component liquid system. The system in these algorithms is subjected to specific type of 

time-variable external forces that result in disturbance and deviation from equilibrium 

conditions in phase space. Later, phenomenological coefficients through application of 
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linear response theory and auto-correlation functions can be computed which leads to 

estimation of thermodiffusion factor. 

 

In early 90s Hafskjold [73, 75] and his team established a popular and straightforward 

direct non-equilibrium molecular dynamics (DNEMD) approach to calculate Soret 

coefficients directly via rescaling velocities. In their well-known heat exchange algorithm 

(HEX) [73], the simulation domain is divided into three main zones: hot, middle and cold 

regions. They developed a methodology to introduce heat flux into the system via 

exchanging certain amount of energy between cold and hot zones without violation of 

conservation of momentum and total energy. As a result, linear distributions of 

temperature and concentration will be introduced to the system. Later, the Soret 

coefficient can be computed directly based on the ratio of the slope of these 

aforementioned distributions. The main target of Hafskjold and his colleagues [73] 

studies was to investigate equimolar isotope liquid mixtures and heat conduction near 

liquid-gas interface as well as real equimolar argon-krypton mixture. 

 

Reverse non-equilibrium molecular dynamics approach (RNEMD) is another well-known 

DNEMD technique that was introduced by Müller-Plathe [74] in 1997.The initial 

objective of this method like its preceding D-NEMD algorithm was to measure thermal 

conductivity of a pure liquid; however, it can be beneficial to predict mixture transport 

properties in a liquid mixture. The simulation box like HEX technique is divided into 

different slabs, which form the hot, middle and cold regions. In spite of former approach 

the establishment of heat flux in the system is done through a straightforward swapping 

of particles’ velocities with the equal mass in hot and cold layers.  

 

In general, SNEMD approaches have been largely superseded by DNEMD techniques, 

since in these methods the transport coefficient can be estimated directly without 

calculation of phenomenological coefficients. Additionally, despite RNEMD clarity and 

easiness, this technique has not gained the popularity of HEX method. The original and 

affiliated RNEMD techniques often have shown large error margins in predicting Soret 

coefficients with respect to experimental data [76-78] in the literature. The essence of 
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heat flux generation in this method; which involve with sudden swapping particle’s 

velocities may contribute to these relatively large errors.  

1.2.4 Major Drawbacks of the Current Heat Generation Algorithm 
 
In studying Thermodiffusion using Molecular Dynamics, several recent studies have 

employed the HEX algorithm to estimate thermodiffusive properties of different types of 

fluid mixtures including isotopes [79-81] and hydrocarbons [83-85]. However, there are 

several drawbacks of this HEX algorithm: 

 

1.  The accuracy of the HEX results is highly dependent upon the size the system. 

More precisely, for small and medium systems the algorithm often fails to generate a 

stable heat flux [86]. 

2.  The HEX algorithm demonstrates significant energy drifts due to its leading 

order truncation errors and fluctuating scaling factors. In order to restrain these losses 

energy losses smaller time steps can be used which results into more time consuming 

simulation [87, 88]. 

3. Scaling factor in HEX algorithm must be calculated in each time step inside the 

main loop for hot and cold zone which makes the system computationally inefficient. 

More precisely, there is a O(N2) calculation that is to be made at every time step, n being 

the number of molecules in the system.  

 

As a consequence of these drawbacks the algorithm cannot be employed to study large- 

scale systems such as an entire reservoir or even in a multi-scale format to study a 

relatively smaller section of a reservoir.  

1.3. Objectives 
 

In this thesis, we use principles of molecular dynamics to study Thermodiffusion in 

binary and ternary mixtures. In doing so, noting the shortcomings of not only the other 

theoretical approaches and experimental methods but also of the HEX algorithm used in 

MD simulations in studying the large-scale thermodiffusive separation behaviour, the 

main objectives of this research are as follows:  
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1- Study the Soret effect in molecular level via consideration of interactions between 

particles for binary and ternary liquid mixtures.  

2- Develop a computationally efficient and accurate MD simulation tool that can be 

integrated to multi-scale computational models to simulate thermodiffusion in a 

large system like oil reservoirs. 

3-  Evaluate the tool with respect to current commonly used heat generation 

algorithms, i.e. reverse non-equilibrium molecular dynamics (RNEMD) and heat 

exchange algorithm (HEX). 

4- Improve the HEX algorithms in terms of energy stability as well as computational 

efficiency.  

5- Investigate the impact of the size of the system, i.e., the number of particles in the 

system, on the performance of the modified algorithms for different binary and 

ternary mixtures.  

 

1.4 Contributions  
 

In realizing the above objectives, the following major contributions have been made in 

this research: 

1. The velocity rescaling mechanism in the traditional heat exchange algorithm was 

reviewed and it was completely modified in the new algorithm. More precisely, a 

constant rescaling factor was introduced in place of the rescaling equations (c.f. 

Eqns. (2.5) and (2.6)), reducing the number of calculations by O (N2) in each 

iterations. The revised algorithm was employed to study Thermodiffusion in 5 

binary mixtures. It was also compared with respect to RNEMD, HEX and 

experimental data. Overall, it has been shown that the modified algorithm 

proposed in this thesis is nearly 14% and 8% more accurate than RNEMD and 

HEX algorithms, respectively in predicting thermodiffusion for binary mixtures. 

The findings from this are published in ASME Journal of Thermal Science 

Engineering and Applications and details from this publication are given at the 

end of this chapter as well as at the beginning of Chapter 2. 
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2. Subsequent to the above modification, as a major improvement, instead of using a 

constant value for the velocity rescaling factor, an expression in terms of mixture 

properties, namely, atomic parameters, temperature and density of mixture was 

proposed to calculate the scaling factor (c.f. Eqn. (3.3)). Note that this revised 

expression is not the same or even similar to the Eqns. (2.5) and (2.6) referred in 

the previous point. The modified HEX algorithm equipped with this revised 

expression was evaluated with respect to 14 binary and ternary hydrocarbon 

mixtures. It has been shown that the new algorithm suggested in this thesis is 17 

% more accurate than HEX algorithm to predict thermodiffusion in ternary 

mixtures. It must be noted that the experimental results were obtained from 

microgravity environment. The findings from this are published in Journal of 

Thermal Science and Engineering in Progress and details from this publication 

are given at the end of this chapter as well as at the beginning of Chapter 3. 

3. The energy conservation and computational time of the proposed algorithm in this 

thesis were compared with HEX algorithm for 6 different binary mixtures. The 

performance of both systems with respect to the size of the system was studied. It 

has been shown that the computational speed is nearly 9% faster for modified 

algorithm than HEX for large systems. Additionally, the modified algorithm has 

improved the energy drift by 30%. Details pertaining to this are submitted to be 

published with the International Journal of Thermal Sciences.  
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CHAPTER 2- EVALUATIONS OF MOLECULAR DYNAMICS 
METHODS FOR THERMODIFFUSION IN BINARY MIXTURES 
 

This chapter is based on the following published paper: 

Mozaffari, S. H., Srinivasan, S. & Saghir, M. Z.,  

Evaluations of molecular dynamics methods for thermodiffusion in binary mixtures, 

ASME J. Therm. Sci. Eng. Appl., 9 (3) (2017), 031011-1-9. 

2.0 Summary 
 

The objective of this work is to investigate the behavior of two well-known boundary 

driven molecular dynamics (MD) approaches, namely, reverse non-equilibrium 

molecular dynamics (RNEMD) and heat exchange algorithm (HEX), as well as 

introducing a modified HEX model (mHEX) that is more accurate and computationally 

efficient to simulate mass and heat transfer mechanism. For this investigation, the 

following binary mixtures were considered: one equimolar mixture of argon (Ar)-krypton 

(Kr), one non-equimolar liquid mixture of hexane (nC6) and decane (nC10), and three 

non-equimolar mixtures of pentane (nC5) and decane (nC10). In estimating the 

Thermodiffusion factor in these mixtures using the three methods, it was found that 

consistent with the findings in the literature, RNEMD predictions have the largest error 

with respect to the experimental data. Whereas, the mHEX method proposed in this work 

is the most accurate, marginally outperforming the HEX method. Most importantly, the 

computational efficiency of mHEX method is the highest, about 7% faster than the HEX 

method. This makes it more suitable for integration with multi-scale computational 

models to simulate Thermodiffusion in a large system such as an oil reservoir.  

 

2.1 Introduction 
 

A spatial inconsistency of temperature in a homogeneous gaseous or liquid mixture in the 

absence of free convection is a driving force for a coupled mass and heat transport 

phenomenon, which is called thermodiffusion (Soret effect) [89]. In other words, the 

temperature gradient develops a unique separation direction for each component in the 
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mixture. The strength of the Soret effect, as well as its direction is usually characterized 

by a parameter called thermodiffusion factor, αT. Thermodiffusion has several industrial 

applications including isotope segregation in fluid mixture [90], freezing food processing 

[91] and polymer characterization [92]. Additionally, Soret effect influences various 

natural phenomena like salinity gradient in the ocean [93], physical concept of solar 

ponds [94] and distinct compositional variation of constituents in hydrocarbon reservoirs 

[95]. Given the very subtle nature of this phenomenon, the precise estimation of 

thermodiffusion factor has been a challenge for experimentalists for decades.   

 

On the other hand, theoreticians’ attempts to develop an explanation for this phenomenon 

have led to numerous theoretical models. These theoretical techniques can be classified 

in different ways including “static models” versus “dynamic theories” [96] and 

“matching parameter models” versus “independent methods” [49].  The kinetic gas 

theory and its alterations [97, 98], kinetic and phenomenological theories of irreversible 

thermodynamics [31, 37, 99-102], transition state theory [36], hydrodynamic and 

Brownian motion model [103, 104], statistical non-equilibrium thermodynamics [29] are 

principles of theoretical methods in obtaining thermodiffusion factor.  A comprehensive 

review of these theoretical models is presented by Saghir and Eslamian [49].  

  

Nevertheless, both theoretical models and empirical techniques are often in disagreement 

on the strength of thermodiffusive separation. These can be attributed to factors such as 

the choice of equation of state (EOS) and thermodynamic properties of pure components 

and mixture used in the calculations [61]. On the experimental front, errors can creep in 

due to the several external factors including natural gravity, mechanical vibrations and 

the handling of the mixtures constituents during the post-processing of the experiment 

[63, 105-107]. More recently, the use of artificial neural networks to study 

thermodiffusion in liquid mixture has been suggested [69,108, 109].  

 

Among other computational techniques, molecular dynamics (MD) serves as a 

substantial numerical method and a low-cost alternative for experiments. The MD 

methods used to estimate transport properties of a mixture can be broadly divided into 
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two major categories: equilibrium molecular dynamics (EMD) [110, 111] and non-

equilibrium molecular dynamics (NEMD) approaches [112-114]. In the former method 

the transport properties can be calculated through Green-Kubo or Einstein formula, 

which links the integral of auto-correlation of flow quantities to corresponding dynamic 

properties in the absence of any agitating fields. The later technique computes the 

dynamic properties of the system in the presence of external forces or perturbed fields. 

NEMD method comprises of the synthetic (SNEMD) [70, 115, 116], boundary driven 

(direct) approaches including heat exchange algorithm (HEX) [73, 74] and reverse 

(RNEMD) [75, 117] approaches to predict thermodiffusive separation. 

 

SNEMD methods are not capable of measuring thermodiffusion factor directly, and 

calculate phenomenological coefficient instead. As per this algorithm, the system is 

subjected to specific time-varying external forces that induce a disturbance and deviation 

from equilibrium conditions in phase space. Subsequently, phenomenological 

coefficients are computed by applying the linear response theory and auto-correlation 

functions that can be used to estimate thermodiffusion factor. In more recent times, the 

SNEMD algorithms have been replaced by direct approaches in which thermodiffusion 

can be estimated directly without calculation of phenomenological coefficients. Among 

different boundary driven techniques, heat-exchanging algorithm (HEX) [73] has gained 

popularity.  Many researchers adopted the HEX and RNEMD algorithms to predict 

thermodiffusion factor for different mixtures [80, 83-85, 118, 119]. However, there is a 

dearth of comprehensive reviews to compare these techniques in the literature.  

 

In presenting our work in this direction, the rest of the paper is organized as follows: In 

Section 2.2, the underlying theoretical formalism of the Thermodiffusion phenomenon is 

presented. In Section 2.3, the details of the molecular dynamics algorithms to study 

Thermodiffusion are described. The computational implementation of the algorithms and 

the computational cases are discussed in Sections 2.4 and 2.5, respectively. The results 

and findings are discussed in Section 2.6 and the conclusions are drawn in Section 2.7. 
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2.2 Fundamental of Thermodiffusion Phenomenon 
 

The mathematical modeling of thermodiffusion phenomenon can be described via the 

theory of linear non-equilibrium of irreversible thermodynamics (LNET) theory that 

associates non-equilibrium flow quantities like internal energy, heat and mass fluxes with 

thermodynamic forces including temperature and components’ chemical potential 

gradients via phenomenological coefficients [120]. Specifically, the following 

formulations represent governing equations of LNET theory for a binary mixture in the 

absence of viscous dissipation and chemical reaction as well as external forces [120]: 

 

!
Jq = −Lqq

!
∇T
T 2

− Lq1

!
∇T (µ1 −µ2 )

T 2
 

(2.1) 

 

 

!
J1 = −L1q

!
∇T
T 2

− L11

!
∇(µ1 −µ2 )
T 2

 
(2.2) 

 

In the above equations, Jq and J1 represent internal energy flux (J.m-2.s-1) and mole flow 

rate in the mixture mole (mol.m-2.s-1), respectively. T is temperature (K) and µ is 

chemical potential (J.mole-1). The subscripts 1 and q denote component 1 and heat 

transfer, respectively. Lij terms in the two equations are the Onsager phenomenological 

coefficients. They associate the flow quantities like internal energy flux and mole flow 

rate with thermodynamic forces like temperature and chemical potential gradient through 

a linear function [120]. 

 

On the other hand, the mole flow rate of component 1 can also be written through 

conventional transport equation as [121]: 

 
!
J1 = −C[D

!
∇x1 +DT

!
∇T ]  (2.3) 
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where, C, D, and DT denote molar concentration (mole. m-3), molecular diffusion 

coefficient (m2.s-1), and Thermodiffusion coefficients (m2.s-1.K-1), respectively. x1 is mole 

fraction of component 1. 

 

At steady state, when the net flux is zero, a comparison of the above equations will yield 

an expression for the thermodiffusion factor (αT) as: 

 

αT =T
DT
D

= −
T

x1(1− x1)
(
!
∇x1!
∇T
) !J1=0  (2.4) 

 

In a multiscale modelling of heat and diffusion processes within a macroscale system 

such as an oil reservoir, it is critical to obtain these coefficients at the microscopic 

locations. While experiments are often conducted to estimate these coefficients, an 

alternative approach has been to employ the principles of molecular dynamics to derive 

these coefficients or a relation between them (αT).  As mentioned in the Introduction 

section, in this study, after evaluating the RNEMD and HEX algorithm-based MD 

approaches with respect to two binary systems, we propose a modified version of the 

HEX algorithm to minimize the computing time as well as overcome the instability 

problems faced by HEX algorithm for small systems.   

 

2.3 Details of MD Techniques 
  

2.3.1 Heat Generation Methods 
 

For this study, we have developed in-house MD code based on HEX [73] and RNEMD 

model [75]. The overview of the principles and underlying equations in MD is described 

in Appendix A. Additionally, a modified heat exchange algorithm is also proposed to 

enhance the computing speeds and mitigate the occasional instabilities in the 

investigations of small systems. It must be noted that in the literature, systems with more 

than 1000 particles are considered as a large system [86]. As an underlying principle, in 

all three non-equilibrium MD formulations, heat flux and the consequent temperature 
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gradient are introduced via rescaling particles’ velocities at certain locations inside the 

system. As a result, linear distributions of temperature and concentration will be 

introduced to the system. At a quasi-steady state, the thermodiffusion factor can be 

computed directly based on the ratio of the slope of these aforementioned distributions 

using equation (2.4).  

 
 

 

In the computational implementation of this strategy, the simulation domain is divided 

into three main zones: namely, hot, middle and cold regions (c.f. Figure 2.1). In RNEMD 

method, the velocities of identical components in cold and hot layers are swapped at 

fixed time intervals to generate the heat flow in the system [75]. As will be shown later, 

this swapping interval has a significant influence on the end result. On the other hand, in 

the HEX algorithm, heat flux is introduced by adding certain amount of energy to hot 

zone and simultaneously extracting the same amount from cold region without violating 

the law of conservation of momentum.  In the implementation of HEX algorithm, two 

Middle Region Middle Region 
Hot 
Slab 

Hot 
Slab 

Cold Slabs 

x	

y	

Fig. 2. 1: Schematic view of simulation box [78]. 
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quadratic equations that must be solved to update the velocities in every time step [73] 

are: 

 

Δ
!
Uh =

1
2

mkh [((1+γh
kh=1

Nh

∑ )
!
Vkh −γh

!
Vbh )

2 −
!
Vkh
2 ]  

(2.5) 

 

Δ
!
Uc =

1
2

mkc [((1+γc
kc=1

Nc

∑ )
!
Vkc −γc

!
Vbc )

2 −
!
Vkc
2 ]  

(2.7) 

 

where, N, ∆U and Vb represent number of particles in the hot (h) or cold (c) layers, the 

amount of energy (J) and barycentric velocity (m.s-1) of particles in the region, 

respectively. Also, mk and VK are the mass (kg) and velocity (m.s-1) of the kth particle, 

respectively. γ is a scaling factor, and the terms in right hand sides’ parentheses are the 

rescaled velocities. It must be noted that in order to have real roots, the discriminants of 

above equations must be greater than zero.  

 

Modified HEX algorithm:  

While swapping interval in the RNEMD plays a key role in the equilibrium solution, with 

HEX algorithm, in small to medium size systems, occasionally the algorithms can fail to 

meet the required criteria to obtain real solutions for aforementioned quadratic formula, 

equations (2.5) and equations (2.6). Consequently, this can cause some inaccurate 

unphysical disturbances in generation of heat flow into the system that can lead to 

incorrect solutions. 

 

To overcome these drawbacks, we propose a modification of the HEX algorithm in 

which the particles’ velocities are upgraded by constant factors (ζ) in hot and cold slabs. 

Specifically, the following equation is used to rescale the velocity: 

 
!
Vi =
!
Vi
' (1±ζ ) ∓ζ

!
Vb  (2.7) 
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where, Vi and V’
i are the velocity before and after rescaling in time step, respectively. 

From experience we know the typical fluctuations of γ values in equation (2.5) and 

equation (2.6) and we have noticed the changes are in the order of 10-3. Hence, for this 

study, we have set the value of ζ to 0.005 and 0.0025 for Ar-Kr system and hydrocarbon 

mixtures, respectively. This modification eliminates the iterative process needed to 

calculate the roots of equations (2.5) and (2.6) completely, thereby directly contributing 

in the reduction of the computational time. 

 

2.3.2 Pair Potential Functions and General MD Parameters 
 

To describe the interaction potential, we have chosen the simple Lennard-Jones (LJ) 

potential with a cut-off distance of rc=2.5σij for all boundary-driven methods [122]. We 

would like to add that this simple LJ potential has been successfully used in the literature 

for hydrocarbon mixtures [84, 86]. Additionally, it has also been shown in the literature 

that this simple LJ method has a better quantitative agreement with experimental data in 

comparison to more complicated LJ methods [86]. The mathematical representation of 

the LJ potential is: 

φ(rij ) = 4εij[(
σ ij

rij
)12 − (

σ ij

rij
)6]  

 

(2.8) 

  

where, φ, εij, σij and rij are pair potential (J), well-depth potential (J), atomic diameter 

(m), and distance between particles (m). subscripts i and j denote dissimilar particles. 

 

In order to obtain the potential parameter for dissimilar particles, the following Lorentz-

Berthelot mixing rules have been applied [122]:   

 

σ ij = 0.5(σ ii +σ jj )  (2.9) 
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jjiiij εεε =  (2.10) 

 

The LJ parameters of identical particles that will be needed in the above equations are 

summarized in Table 2.1. 

 
Table 2.1: Lennard-Jones potential parameters. These parameters were obtained from NIST 
Thermophysical Properties of Hydrocarbon Mixtures Database [123]. 

Material Ar Kr C5 C6 C10 

ε /k b (K) 119.8 167 346 393 471 

σ (nm) 0.341 0.363 0.545 0.595 0.68 

 

2.4. Computational Implementation 
 

For the computational domain, a cubic volume assimilated using 32 slabs of identical 

thickness in the direction of the desired heat flux, i.e. x direction, has been used. The 

front view of the three-dimensional domain, as seen from the z-axis is shown in Fig. 2.1. 

The two layers at ends of our simulation box are the hot zones whereas the two middle 

slabs are cold regions in the schematic represented in Fig. 2.1.   

 

For each particle, knowing the total potential, the negative gradient of this potential is the 

force experienced by this particle. By applying the Newton’s law to each particle, we can 

calculate the particle’s acceleration. Subsequently, by employing the Verlet velocity 

integration method we can calculate the velocity and position of each particle at every 

time step [95]. 

 

In all the MD simulations, the particles were initially randomly positioned inside the 

simulation box, whereas the initial velocities of the particles were characterized via 

Maxwell-Boltzmann distribution function at 30% below the desired temperature. Then 

we let the system reach the equilibration period through rescaling velocity to the desired 

temperature. The equilibration period took about 200,000 iterations. Subsequently, using 

this equilibrated state as the starting point of the thermodiffusion simulations, heat flux 
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was introduced to the system, and the simulations were continued for an additional 

1,000,000 iterations. In all simulations, periodic boundary conditions were applied across 

all three directions of the simulations box and the minimum image convention was used 

to reduce the wall impacts. Also, in all the simulations, the Gaussian (velocity-rescaling) 

thermostat to control the system’s temperature has been employed [122]. 

 

2.5. Computational Cases 
 

MD simulations using all three algorithms, namely, RNEMD, HEX and mHEX, have 

been made for equimolar mixtures of Ar-Kr, and a mixture of nC6-nC10 in which the 

mole fraction of nC6=0.62. The choice of an equimolar mixture of Ar-Kr is because of 

ample data in the literature for this composition. The composition for nC6-nC10 was 

chosen because of the availability of experimental data. Additionally, we have examined 

the performance of the HEX and modified HEX method for three different states of non-

equimolar nC5-nC10 mixture that have been studied in the literature via MD simulations 

as well as experimental technique. 

 

In order to decrease the statistical uncertainty due to random nature of the MD 

techniques, the simulation for each individual mixture was repeated 4 times. The 

dimensionless time step for the hydrocarbon mixtures was 0.0008 and each run consisted 

of more than 1,000,000 iterations. On the other hand, the dimensionless time step for Ar-

Kr mixture was 0.002. Additionally, in all runs, the system’s temperature and density of 

the mixture were kept fixed. The number of particles for the Ar-Kr mixture was 500, 

whereas for the hydrocarbon mixtures, 1000 particles were included in the system. The 

value of the reduced heat flux (Ju
* ) was 0.5 for all mixtures. 

2.6. Results and Discussions 
 

In this section, we present the results from the simulation of the three binary systems 

using the MD algorithms. In presenting the results, comparisons have been made with the 

experimental as well as molecular dynamics data available in the literature.  
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2.6.1 Ar-Kr 
 

In this subsection, the thermodiffusive separation of mixture of Ar-Kr at its liquid state 

above the triple point using the three MD techniques is presented. The specific 

thermodynamic sate of this mixture that is considered in this simulation is the one 

investigated by other researchers in the literature [37- 38, 40, 55] and corresponds to 

dimensionless temperature T*= T
ε11 / kb

=0.9650 and dimensionless density, ρ*= Nσ11
V

=0.7137. 

 

For this equimolar system, the average temperature distribution inside the domain at 

steady state as calculated by the RNEMD, HEX and mHEX algorithm is shown in Fig. 

2.2.  As seen in this figure, there is a good agreement in the profile of the temperature in 

the middle region of the domain. However, closer to the hot slabs and the cold slabs, 

there is a disagreement in the temperature values. This is expected because the algorithms 

introduce heat flux into the system by affecting the values of velocities in these end slabs. 

Given that each algorithm does this differently, there is a disagreement in the temperature 

values at these zones. In fact, given that in RNEMD this is done by directly swapping the 

velocities, this algorithm has strong spikes in temperature at the hot and cold slabs (c.f. 

Fig. 2.2). 

 

The concentration profile of Kr and Ar in the middle region in Fig. 2.1 are shown in Fig. 

2.3 and Fig. 2.4, respectively.  As seen in these figures, Kr moves towards the cold region 

(higher concentration near the cold region) and Ar moves towards the hot region (higher 

concentration near the hot region). Further, the prediction from all three methods is in 

close agreement with each other.   
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Fig. 2.2: Dimensionless temperature distribution inside the simulation box for equimolar mixture of 
Ar-Kr using the HEX, RNEMD (with swapping time =20 time step) and mHEX algorithms [78]. 

 

 

 
Fig. 2.3: Kr concentration profile inside the simulation box for equimolar mixture of Ar-Kr using the 

HEX, RNEMD (with swapping time =20 time step) and MHEX algorithms [78]. 
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The calculated values of αT are summarized in Table 2.2 along with the values from the 

literature. As seen in this table, the data from this work and the literature indicates that 

the value of αT varies between 1.6 and 2.4 wherein our MD results for algorithm heat 

generations overlap with the findings in the literature. However, since the details and 

procedures of MD simulations differ including the integration method, pair potential 

functions, and cut off ratio the comparison between them must be done with cautious.  

 
Fig. 2.4: Ar concentration profile inside the simulation box for equimolar mixture of Ar-Kr using the 
HEX, RNEMD (with swapping time =20 time step) and MHEX algorithms [78]. 

 

 
Table 2.2: Predicted thermodiffusion factor for equimolar mixture of Ar-Kr for HEX, mHEX and 
RNEMD method with swapping time=20 iteration [78]a. 

Reference αT 
MD, SNEMD. [70] 1.6±0.5 

MD, SNEMD. [115] 2.4±0.4 
MD, HEX. [73] 1.78±0.07 

MD, GK-EMD [124] 1.6±0.1 
HEX [78] 2.02±0.12 

mHEX [78] 1.91±0.13 
RNEMD [78] 1.58±0.27 

a All error bars related to repeatability errors for MD approaches. 
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2.6.2 nC6-nC10 
 

As in the Ar-Kr system, a similar analysis was done for the n-hexane - n-decane system. 

Specifically, the computational results from the MD simulations were compared with 

experimental data available for non-equimolar system of nC6-nC10 at T*=0.6123 and 

ρ*=1.2130 with mole fraction of nC6 as 0.62. The average temperature distribution inside 

the domain at steady state as calculated by the RNEMD, HEX and mHEX algorithm is 

shown in Fig. 2.5.  Due to symmetrical pattern observed inside the total domain, the 

average temperature in just the first half of the domain is plotted. As seen in this graph, 

all three methods are in close agreement with each other with the RNEMD method 

converging to slightly higher temperatures (about 4-5%) than the HEX and mHEX 

algorithms. Further, in all three methods, is the deviation in the temperature distribution 

is about ±0.008%.  

 

 
Fig. 2.5: Average dimensionless temperature distribution in middle layers for non-equimolar nC6-
nC10 mixture using the HEX, RNEMD (with swapping time =20 time step) and MHEX algorithms 
[78]. 

 
The concentration profile of nC10 and nC6 in the middle zone in Fig. 2.1 are shown in 

Fig. 2.6 and Fig. 2.7, respectively.  As seen in these graphs, nC10 accumulates near the 

cold zone while lighter component moves towards the hot zone. Moreover, the rates of 
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change in concentration profile, i.e. the concentration gradient, for nC10 and nC6 are 

nearly the same for all three algorithms. It must be noted that that y-axis range in these 

figures are quite small for clarity in the representation of the data. 

 

 

 
Fig. 2.6: Average mole fraction trend of nC10 in middle layers for non-equimolar nC6-nC10 mixture 
using the HEX, RNEMD (with swapping time =20 time step) and mHEX algorithms [78]. 

 
The predicted values of the Thermodiffusion factor, αT, are summarized in Table 2.3 

along with the experimental value from the literature. As seen in this table, the value of 

thermodiffusion factor varies between 0.67 and 0.96. Comparing the results of the three 

molecular dynamics simulations with respect to the experimental data, we find that as in 

the Ar-Kr mixture, the RNEMD method has the largest relative error of 21.52% with 

respect to the experimental data, predicting the thermodiffusion factor of approximately 

0.96±0.16. The HEX algorithm is marginally more accurate than RNEMD and predicts 

thermodiffusion factor close 0.67±0.13 with a 15.19% relative error with respect to the 

experimental data. Finally, the modified HEX method is the most accurate, predicting the 

thermodiffusion factor as 0.83±0.17. This is a relative error of 5.63% with respect to the 

experimental data. Thus, once again the newly proposed method is more accurate than 

the HEX and RNEMD algorithms.  
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Fig. 2.7: Average mole fraction trend of nC6 in middle layers for non-equimolar nC6-nC10 mixture 

using the HEX, RNEMD (with swapping time =20 time step) and MHEX algorithms [78]. 

 
 
Table 2.3: Predicted thermodiffusion factor for equimolar mixture of nC6-nC10 for HEX, MHEX and 
RNEMD method with swapping time=20 iteration [78]a. 

Reference αT Relative Error with respect to experiment (%) 
Expt. [125] 0.79±0.04 - 

HEX this work 0.67±0.13 15.19 
MHEX this work 0.83±0.17 5.63 

RNEMD this work 0.96±0.16 21.52 
a All error bars related to repeatability errors for experimental and MD approaches. The 
thermogravitational column technique was used in reference [125] . 
 

2.6.3 nC5-nC10 
 
Finally, to increase our confidence in the MHEX algorithm, a third mixture of nC5-nC10 

at three different mole fractions of pentane, namely, 0.2, 0.5 and 0.8, respectively was 

studied. These compositions correspond to three different states, i.e., ρ*=1.0491, 

ρ*=1.2088, and ρ*=1.4212, all with a dimensionless temperature of T*=0.6363. Knowing 

that the RNEMD method is expected to have large errors, the focus was to employ only 

the HEX and MHEX algorithms to study these mixtures. 
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Fig. 2. 8: Average dimensionless temperature distribution in middle layers for nC5-nC10 mixture with 

an initial uniform mole fraction of nC5=0.8, using the HEX, and MHEX algorithms [78]. 

 
The average temperature distribution inside the domain at steady state for HEX, and 

MHEX for the mixture with the mole fraction of nC5 at 0.8 is shown in Fig. 2.8. The 

concentration profiles of nC10 and nC5 for this mixture in the middle zone in Fig. 2.1 are 

shown in Fig. 2.9 and Fig. 2.10, respectively. It is evident that as in the previous 

mixtures, the heavy component, i.e., nC10, moves toward the cold zone, whereas nC5 

accumulates near the hot zone.  
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Fig. 2.9: Average mole fraction trend of nC10 in middle layers for nC5-nC10 mixture with an initial 
uniform mole fraction of nC5=0.8, using the HEX, and MHEX algorithms [78]. 

 

 
Fig. 2.10: Average mole fraction trend of nC5 in middle layers for nC5-nC10 mixture with an initial 
uniform mole fraction of nC5=0.8, using the HEX, and MHEX algorithms [78]. 

 
 
The thermodiffusion factor calculated using the gradients of temperature and 

concentration in the middle region in equation (2.4) using either algorithm is summarized 
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in Table 2.4. Additionally, experimental data as well as the values of Thermodiffusion 

factor from the other MD studies are also included in this table. As summarized in the 

table, the results from the present study show a good agreement with experimental data. 

Specifically, in all three mixtures, the mHEX algorithm performed better than the HEX 

algorithm in predicting the Thermodiffusion factor. More precisely, the accuracy in 

predicting the Thermodiffusion coefficient was between approximately 3% and 9%, 

depending upon the composition of the mixture. In comparing the performance of mHEX 

with the SNEMD data available in the literature it is found that except at the mole 

fraction of 0.2 for nC5, the SNEMD estimates of the Thermodiffusion factor were quite 

erroneous. In the anomalous case where the mole fraction of nC5 is 0.2, SNEMD was 

about 6% more accurate than mHEX predictions.  

 
Table 2.4: Predicted thermodiffusion factor for three different mixtures nC5-nC10 for HEX, mHEX. 
Numbers in the parentheses indicate the relative error with respect to the experimental data [78]a. 

nC5 Mole Fraction 

αT 

Exp. [126] 
This Work Literature 

mHEX HEX SNEMD. [126] 

0.8 1.06±0.25 
1.18±0.25 

(10.17%) 

1.21±0.12 

(14.15%) 

1.34±0.25 

(20.89%) 

0.5 0.98±0.23 
0.95±0.12 

(3.16%) 

0.92±0.15 

(6.12%) 

1.08±0.83 

(10.20%) 

0.2 1.14±0.27 
0.98±0.17 

(14.04%) 

0.88±0.20 

(22.81%) 

1.05±0.57 

(7.89%) 
a All error bars related to repeatability errors for experimental and MD approaches. The experimental 
technique used in reference [126] was thermal diffusion forced Rayleigh scattering (TDFRS). 
 
From the results of all the mixtures analyzed so far, it can be argued that given that the 

mHEX algorithm consistently performs better than the original HEX algorithm for the 

mixtures investigated in this study, this modified algorithm is a good candidate to be 

employed to study Thermodiffusion in liquid mixtures. 
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2.6.4 Effect of Swapping Time in RNEMD 
 

It is evident from the thermodiffusion values in Tables 2.2 and 2.3 that the RNEMD is 

able to predict the thermodiffusive separation only qualitatively and that the values of 

Thermodiffusion factor are much further from the experimental or the average values 

reported in the literature. The relatively large quantitative discrepancy in RNEMD 

method and its modified variants with respect to the experimental data on 

thermodiffusion has also been reported in the literature [76, 77]. As mentioned earlier, 

this is most likely attributed to the swapping interval, when one abruptly interchanges the 

velocities of particles in the cold and the hot zone, leading to an unnatural disturbance in 

the system. To investigate this further, we conducted MD simulations of all two Ar-Kr 

and nC6-nC10 mixtures using RNEMD algorithm and studied three different swapping 

intervals, i.e., 20, 40 and 80 time steps.  

 

The thermodiffusion factors from all these simulations are plotted in Fig. 2.11. As seen in 

this figure, in two mixtures, there is a significant variation in the values of 

thermodiffusion factor as we increase the swapping interval. Interestingly, both mixtures 

exhibit a somewhat quadratic behaviour in the values of αT. These large variations clearly 

indicate that one must exercise caution in studying the values αT of from this algorithm. 

 

2.6.5 Computational Time 
 

In studying systems using molecular dynamics techniques, computational time is an 

important factor that often determines the permissible size of the system. Table 2.5 shows 

the average computational time per 1000 iterations for three different systems. For the 

Ar-Kr system, the computational domain had 500 particles, whereas the hydrocarbon 

systems had a computational domain with 1000 particles. Further, for the RNEMD 

simulations, a swapping interval of 20 was used.  
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Fig. 2.11: Thermodiffusion factor versus velocity swapping time for RNEMD method [78]. 

 

As seen in this table, the HEX method is generally the slowest algorithm in all three 

systems. On the other hand, for the RNEMD system, had a moderate computational 

speed. The mHEX method requires the least computation time, i.e., 17.1293sec, and 

36.5197sec, for the Ar-Kr and nC6-nC10, respectively. Also, for the three nC5-nC10 

mixtures with different mole fractions, mHEX required lower computational time than 

the HEX algorithm, i.e., 34.4519sec, 38.1569sec and 39.1747sec, when mole fraction of 

nC5 is equal to 0.2, 0.5 and 0.8, respectively. More precisely, with respect to the HEX 

algorithm, this is a speedup of slightly over 7%. Knowing that the computational time 

does not scale linearly with the size of the system, assuming even a modest 7% savings in 

computational time can be enormous for systems with several thousands of particles that 

have to be simulated for a few million iterations. Put differently, in view of our long-term 

objective of integrating a MD simulation tool in a multi-scale framework to study a 

macroscale system such as an entire reservoir, the proposed mHEX algorithm is perhaps 

an ideal candidate. 
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Table 2.5: Computational time of per 1000 iterations for HEX, mHEX and RNEMD method with 
swapping time=20 iteration [78]. 

 
 
 

2.7 Summary and Conclusions 
 

In this paper, we compared the performance of two widely used MD approaches, i.e. 

HEX and RNEMD, for three different mixtures, namely, an equimolar Ar-Kr mixture, a 

non-equimolar mixture of nC6-nC10 and three different mixtures of nC5-nC10. 

Comparisons were made with respect to the data from the literature (theoretical as well as 

experimental). The following conclusions were drawn from the findings: 

 

(i) All three methods predict nearly the same temperature distribution in the system, 

for either mixture. The predictions of the RNEMD were marginally higher (4-5%) than 

the other two algorithms.  

(ii) The Thermodiffusion factors predicted by the RNEMD was the most erroneous 

with a relative error of about 22% for hydrocarbon mixture of nC6-nC10. This is a direct 

consequence of the abrupt perturbation of the system that happens with the velocity of a 

particle in the hot zone is swapped with a velocity of the particle in the cold zone. This 

disturbance in the system that might be close to equilibrium can have an unsettling effect 

Mixture mHEX (sec) HEX (sec) RNEMD 

(sec) 

Time Saving 

(HEX vs. 

mHEX)% 

Ar-Kr 17.1293 18.4637 17.5570 7.12% 

nC6-nC10 36.5197 39.3129 37.5755 6.92% 

nC5-nC10 (xnC5=0.8) 34.4519 37.5750 - 8.21% 

nC5-nC10 (xnC5=0.5) 38.1569 41.2017 - 7.41% 

nC5-nC10 (xnC5=0.2) 39.1747 41.9639 - 6.64% 
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on the system that can lead us to solutions further away from the experimental 

observations.  

(iii) A closer study of the RNEMD with respect to the “swapping time”, i.e., the time 

at which the velocities of the two particles are swapped, it was found that there were 

large variations in the results predicted by the MD simulations. This directly indicates 

that the results predicted by the RNEMD simulations must be used with greater caution. 
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CHAPTER 3- THERMAL DIFFUSION IN BINARY AND TERNARY 
HYDROCARBON MIXTURES STUDIED USING A MODIFIED 

HEAT EXCHANGE ALGORITHM 
 

This chapter is based on a published paper in the Journal of Thermal Science and 

Engineering Progress: 

Mozaffari, S. H., Srinivasan, S. & Saghir, M. Z.,  

Thermal diffusion in binary and ternary hydrocarbon mixtures studied using a modified 

heat exchange algorithm,  

Therm. Sci. Eng. Progress, 4, 168-174. 

3.0 Summary 
 
In this work, a recently proposed modified form of the heat exchange algorithm (mHEX) 

has been employed to conduct molecular dynamics (MD) simulations of thermodiffusion 

in binary and ternary hydrocarbon mixtures. Two normal alkane binary mixtures of 

hexane (nC6)- docane (nC10) and nC6-dodecane (nC12) with varying concentrations of 

nC12 were studied. In addition to this, the mHEX algorithm was also validated with 

respect to ternary mixtures: three different compositions of methane (nC1)-butane (nC4)-

nC12, and one composition of 1,2,3,4-tetrahydronaphthalene (THN)-nC12-

isobutylbenzene (IBB). For the binary mixtures studied here, our findings were in a good 

agreement with previous work in the literature, i.e., the components in the mixture show 

less tendency to segregate as the concentration of heavy component in the mixture 

increases. Additionally, in agreement with the literature, the heavier component separates 

to the cold side whereas the lighter component separate to the hot side. In ternary 

mixtures, the mHEX algorithm performs much better than regular heat exchange 

algorithm (HEX) in predicting the direction and magnitude of the thermodiffusive 

separation. Once again, the heaviest and the lightest components clearly separate to the 

cold and hot side, respectively. With respect to the ternary mixtures, the mHEX 

algorithm is about 17% more accurate in predicting the thermodiffusive separation than 

the regular HEX algorithm.  It should be noted that all experimental data for comparison 

were obtained from microgravity environment. 
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3.1 Introduction 
 

A coupled mass and heat transport phenomenon caused by temperature difference at 

different locations in a homogeneous fluid mixture is called Soret effect/Thermodiffusion 

[89]. Thermodiffusion plays a significant role in various natural phenomena and 

numerous industrial applications including the oceanic thermohaline circulation [27], 

convection in stars [28], biomolecular binding [45, 56, 127], isotope separation in fluid 

mixtures [128, 129] and polymer characterization [14, 130]. Apart from these, 

thermodiffusion also plays an important role in the stratification of components in crude 

oil reservoirs [62, 131, 132]. 

 

Interest in thermodiffusion has spurred numerous experimental set-ups, as described in 

the review of Srinivasan and Saghir [60]. Apart from these, experimental investigations 

have also been made on reduced-gravity environment on board the international space 

station and free flying satellites [131, 133, 134]. This is because thermodiffusion is a very 

delicate phenomenon and small perturbations like free convection fields or undesired 

mechanical vibrations/disturbances in the experimental set-ups can easily eliminate this 

phenomenon [60]. 

 

Theoretical approaches to study thermodiffusion have led to numerous thermodynamics 

and physics based models as described in details by Srinivasan and Saghir [89]. 

However, these models often contradict each other and demonstrate a huge sensitivity 

towards the choice of equation of states (EOS) and thermodynamic properties [49]. Apart 

from these, thermodiffusion models have also been proposed using the principles of 

artificial neural networks [69, 108] and simple algebraic expressions [89]. While the 

neural network models are fairly accurate, they are unable to explain the physics behind 

the separation process. On the other hand, the algebraic expressions are empirical models 

that relay on the experimental data for formulation. 

 

A major challenge in the above models is that they are unable to account for the complex 

inter-particle interactions that happen at the molecular level. This can be critical to the 
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development of the understanding of the separation process in thermodiffusive flows. 

Molecular dynamics is a technique that addresses this requirement [78, 84, 124, 135-

137]. 

 

Molecular dynamics techniques can be broadly classified into two major types, namely, 

equilibrium molecular dynamics (EMD) [111], and non-equilibrium molecular dynamics 

(NEMD) [112]. In EMD, the systems' dynamic properties are predicted via Green-Kubo 

relations in which the integral of the autocorrelation of flow quantities are related to the 

dynamic properties of the system that is devoid of any perturbed fields. In NEMD, the 

system's transport properties are calculated in the presence of external or agitating fields. 

Applying NEMD methods to study thermally activated fluids has resulted into three types 

of NEMD methods: synthetic non-equilibrium molecular dynamics (SNEMD) [70,116], 

reverse non-equilibrium molecular dynamics (RNEMD) [75, 117], and heat exchange 

algorithm (HEX) [73, 74]. 

 

The HEX algorithm is a very popular method that is often applied to study heat 

conduction in liquids because of the simplicity with which it can be implemented. More 

precisely, in this algorithm, the computational domain is divided further into sub-

domains, and periodically, a finite amount of kinetic energy is removed from one sub-

domain and added to the other. This is done by maintaining the centre of mass of the 

subdomains and employing velocity rescaling to adjust the non-translational kinetic 

energy. While the algorithm is quite popular, there are issues with its energy conservation 

that arise due to the leading-order truncation of O(Δt3) of the coordinates in the Velocity 

Verlet integration scheme [34]. This leads to significant energy drift even in simulations 

for a few nanoseconds. Put differently, these errors restrict the simulation time scale to 

certain critical values beyond which the energy loses are too high to be neglected.  We 

recently presented an updated algorithm (mHEX), that significantly subdues this 

drawback and enhances the computational speed [78]. The mHEX algorithm was 

validated with respect to the experimental data of several binary mixtures to prove its 

accuracy. 
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In this work, the mHEX algorithm is applied to study the effect of compositional 

variation in two binary mixtures, namely, hexane (nC6)-decane (nC10) and nC6-dodecane 

(nC12). For each mixture, several compositions are studied to understand the effect on 

thermodiffusive separation. Additionally, thermodiffusion has also been studied in two 

ternary mixtures, namely, methane (nC1)-butane (nC4)-nC12, and 1,2,3,4-

tetrahydronaphthalene (THN)-nC12-isobutylbenzene (IBB). While three compositions are 

considered for the former, one composition is considered for the latter. Comparisons have 

been made with experimental data as well as estimates from the HEX algorithm. 

 

In the ensuing sections, molecular dynamics formulations are described (Sec. 3. 2), 

followed by computational cases in Section 3. 3. Section 3. 4 presents the analysis of the 

results and finally, pertinent conclusions are drawn in Section 3. 5. 

 

3. 2. Thermodiffusion Using Molecular Dynamics 
 

3. 2.1. mHEX Algorithm 
 

To define a temperature gradient in the domain, heat flux is introduced via velocity 

rescaling of the particles at particular locations in the system. As mentioned previously in 

section 2.2, this will result in a linear temperature gradient that will in turn induce a 

concentration gradient in the domain. At the steady state, the thermodiffusion factor (αT) 

is calculated as: 

 

αT = −
T

x1(1− x1)
∇x1
∇T

 (3.1) 

 

 

where T is the mean temperature in the domain, ∇x is the spatial gradient of the mole 

fraction and ∇T is the spatial gradient of the temperature. 
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As previously mentioned in section 2.3.2 and as in the HEX algorithm, in the mHEX 

algorithm, the two-step Velocity Verlet scheme is used for the time integration. A key 

aspect of this scheme is the velocity rescaling equation that is given by 

 

Vi = (1−ζ )Vi +ζVΓk  (3.2) 

 

where Vi and Vi  are the velocity before and after rescaling, respectively, for the ith 

particle in the domain at a given time step. VΓk  is the barycentric velocity of the particles 

in the region Γk. In mHEX algorithm, the rescaling factor, is based on the mixture 

constituents as: 

 

ζ = ±0.004
Tkb

(εiiε jj ...εnn )n
[

(xkMk )
k=1

n

∑
(σ ii +σ jj + ...σ nn )

3

n
ρNA

]
1
3  

(3.3) 

 

 

where T is the temperature, ρ is the density of the mixture, NA is the Avogadro number 

and kB is the Boltzmann constant. Also, for the kth component of the mixture, the mole 

fraction and the molecular weight are designated as xk and Mk, respectively. Finally, εii 

and σjj are the depth of the potential well and the atomic diameter, respectively of the 

pure component species in the mixture. 

 

A key highlight of the mHEX algorithm is that is calculated exactly once at the beginning 

of the algorithm. On the other hand, in the HEX algorithm, depends upon the particles in 

the individual zone and as a result is a O(Np) calculation is performed every time the 

velocity rescaling is applied, Np being the size of the system. Thus, the mHEX algorithm 

is computational much faster, yielding savings of about 8% on the CPU time. 

 

3. 2.2. Computational Implementation & Details 
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As mentioned in sections 2.3.2 before, in implementing the Velocity-Verlet scheme, 

modelling the forces exerted on each particle due to its interaction with other particles in 

the system is the most critical and time-consuming part of a molecular dynamics 

simulation. Here, the interaction potential, was modelled via the summation of simple 

Lennard-Jones (LJ) pair potential with cut off ratio of rc = 2.5σij. This L-J potential as 

previously mentioned in section 2.3.2 is given by: 

 

φ(rij ) = 4εij[(
σ ij

rij
)12 − (

σ ij

rij
)6]  

 

(3.4) 

As mentioned in section 2.3.2 in the above equation, to obtain the potential parameters 

between dissimilar particles, the Lorentz-Berthelot mixing rules prescribed by Allen and 

Tildesley [122] have been applied: 

 

σ ij = 0.5(σ ii +σ jj )  (3.5a) 

 

jjiiij εεε =  (3.5b) 

 

where the LJ parameters of the identical particles are obtained from the literature and are 

reported in Table 3.1. 

 

As previously explained in section 2.3.1 for the computational implementation of the 

Velocity-Verlet scheme to study thermodiffusion, a cubic volume was chosen for the 

computational domain that was assimilated using 32 slabs of identical thickness in the 

direction of the desired heat flux. The front view of the three-dimensional setup is shown 

in Figure 3.1. In this domain, the particles were randomly positioned and their velocities 

were characterized via the Maxwell-Boltzmann distribution function at 30% below the 

desired temperature. The system was let to equilibrate through velocity rescaling to the 

desired temperature. The equilibration took 2×105 time steps with a time step size of 

Δt*=0.0008. Subsequently, the equilibrated state was used as the starting point of the 

thermodiffusion simulations wherein heat flux was introduced into the system and the 
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simulations were carried out for an additional 2×106 time steps. A periodic boundary 

condition was used on all the walls of the simulation box, and the minimum image 

convention was used to reduce the wall impacts. The system's temperature was controlled 

using a Gaussian thermostat.  

 
Table 3.1: Lennard-Jones potential parameters obtained from Ref. [123, 138]. 

Material ε /k b (K) σ (nm) 

nC5 346 0.545 

nC4 343 0.510 

nC6 393 0.595 

nC10 471 0.680 

nC12 550 0.710 

IBB 542 0.584 

THN 598 0.608 

 

 

 

3.3 Computational Cases 
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Fig. 3.1: Computational domain subdivided into slabs [139]. 



 

 40 

Computational cases were designed for binary as well as ternary mixtures. Five different 

binary mixtures of nC6-nC12, with increasing composition of nC12 were considered. 

Similarly, five different mixtures of nC6-nC10 were considered with increasing mole 

fraction of nC10. These mixtures were at standard atmospheric pressure and at T = 298K. 

The mixtures are summarized in Table 3.2. 

Two different ternary mixtures were also studied, namely, nC1-nC4-nC12 and nC12-IBB-

THN. For the former, three different compositions were considered (c.f. Table 3.2). The 

ternary mixtures were simulated at 35 MPa and at 333K. 

 

Each simulation case was repeated four times to minimize the statistical uncertainty due 

to the randomness involved in MD simulations. Throughout each simulation, the density 

of the mixture remained unchanged. 

 
Table 3.2: Binary and ternary mixtures for which MD simulations were performed. All compositions 
are in mole fractions except for mixture #14 for which the composition is in mass fraction [139]. 

# Mixture Concentration 

1 nC6-nC12 nC6-0.9 

2 nC6-nC12 nC6-0.7 

3 nC6-nC12 nC6-0.5 

4 nC6-nC12 nC6-0.3 

5 nC6-nC12 nC6-0.1 

6 nC6-nC10 nC6-0.9 

7 nC6-nC10 nC6-0.7 

8 nC6-nC10 nC6-0.5 

9 nC6-nC10 nC6-0.3 

10 nC6-nC10 nC6-0.1 

11 nC1-nC4-nC12 nC4-0.1- nC12-0.7 

12 nC1-nC4-nC12 nC4-0.1- nC12-0.6 

13 nC1-nC4-nC12 nC4-0.1- nC12-0.4 

14 nC12-IBB-THN IBB-0.1, THN-0.8 
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3.4 Results & Discussion 
 

In this section, we present the results from the simulation of the mixtures summarized in 

Table 3.2. The MD simulations of the binary mixtures listed in this table were done using 

the mHEX algorithm. The simulations for the ternary mixtures were done using the 

mHEX as well as the HEX algorithm. Additionally, for the ternary mixture, the results 

from the simulations were also compared with the experimental data. 

 

3.4.1 Binary Mixtures 
 

The thermodiffusion factors from the MD simulations of the two binary mixtures with 

different concentrations of nC6 are summarized in Table 3.3. The typical temperature 

profile inside the domain is shown in Figures 3.2a and b for mixtures #1 and 6, 

respectively.  

 

  
Fig. 3.2: (a, b) Typical temperature distribution in the domain in the nC6-nC10 and nC6-nC12 
mixtures, respectively [139].  

 

The distribution of nC6 in the domain for these two mixtures is shown in Figures 3.3a and 

b, respectively. As seen in these figures, with the establishment of temperature gradient, 

the lighter component in the mixture migrates towards the warmer zone. This will lead to 

the displacement of the heavier component in the respective mixture to the colder zones. 

Put differently, the thermodiffusive flows are such that the heavier component migrates 
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to the cold side and the lighter component migrates to the hot side. This trend was 

observed for all the binary mixtures investigated in this study. 

 

 

  
(a) (b) 
Fig. 3.3: (a, b) Distribution of nC6 in the domain in the nC6-nC10 and nC6-nC12 mixtures, respectively. 
In both mixtures, the mole fraction of nC6= 0.9 [139]. 

 

As mentioned earlier, the strength of this separation is measured quantitatively using the 

thermodiffusion factor, αT. The values of αT for these mixtures are plotted in Figure 3.4. 

As seen in this figure (c.f. Fig. 3.4), for both types of binary mixtures, αT decreases as the 

concentration of heavy component in the mixture increases. This decreasing trend 

indicates that the strength of thermodiffusive separation diminishes as the concentration 

of the heavier component in the mixture increases. This is expected and is due to the fact 

that the amount of energy required to displace and move the heavier component is higher 

and so as its concentration increases, the mobility of the components in the mixture 

progressively decrease. 

 

Another observation that can be made from Figure 3.4 is that for any mole fraction, the 

thermodiffusive separation in the nC6-nC12 mixture is larger than in the nC6-nC10 

mixture. In other words, thermodiffusion is stronger in mixture where there is a larger 

disparity between the two components in terms of the molecular weight. 
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The trend lines have shown in Figure 3.4 present a linear relationship between the 

concentration of the heavier component in the mixture and the thermodiffusion factor. 

More precisely, the relationships for the two binary series studied in this work are: 

 

αTnC12
= −0.720xTnC12

+1.408  (3.6a) 

 

αTnC10
= −0.425xTnC10

+1.023  (3.6b) 

 

From these relations if we extrapolate and find the values of αT at x=0 and x=1 and study 

the ratio, then we find that 
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(3.7) 

 
This behaviour is consistent with the postulates of Galliero et al. [86]. 
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Fig. 3. 4: Thermodiffusion factors in binary mixtures [139]. 
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Table 3.3: Thermodiffusion factor of the binary mixtures [139]. 

xnC6 αT xnC6 αT 
nC6-nC12 nC6-nC10 

0.1 1.37±0.08 0.1 1.01±0.13 
0.3 1.18±0.09 0.3 0.89±0.1 
0.5 1.02±0.14 0.5 0.77±0.11 
0.7 0.86±0.07 0.7 0.7±0.08 
0.9 0.81±0.11 0.9 0.68±0.12 

a All error bars related to repeatability errors for MD approaches. 
 

3. 4.2. Ternary Mixtures 
 
 
The validated mHEX algorithm is applied to four ternary mixtures. Specifically, three 

compositions of nC1-nC4-nC12 at T=333K and P=35MPa were studied. Apart from these, 

a ternary mixture of nC12-IBB-THN was also studied. The composition of the individual 

mixture is summarized in Table 3.2. The average temperature distribution inside the 

middle slabs for mixture #11 is shown in Figure 3.5.  

 

 
Fig. 3.5: Temperature distribution in the domain in mixture #11 [139].  

 

The concentration profiles of nC4 and nC12 can be observed in the Figures 3.6a and b, 

respectively. As seen in these figures, nC12 moves towards the colder side whereas nC4 
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moves to the hot side. This trend is similar to the binary mixtures in which the heavier 

component moves to the cold side whereas the lighter component moves to the hot side. 

 

  
(a) (b) 
Fig. 3.6: (a, b) Distribution of nC12 and nC4, respectively, in the domain in mixture #11[139]. 

 

The estimated value of thermodiffusion factor using the mHEX algorithm for each 

component in mixtures #11-13 are shown in Figure 3.7. As seen in this figure, nC1 and 

nC12, the lightest and the heaviest components in the mixtures, respectively, have the 

largest magnitude of thermodiffusion factors. Put differently, the heaviest and the lightest 

components have a strong separation to the cold and hot side, respectively. nC4, which 

has an intermediate molecular weight, has a moderate value of αT . This is because, at the 

molecular level, in its interactions with the heavier component, i.e., nC12, it separates to 

the hot side. On the other hand, when it interacts with the lighter component, i.e., nC1, it 

separates towards the cold side. This is consistent with the observations made in the 

literature [85, 134]. 

 

The values of αT for these three mixtures are summarized in Table 3.4. In this table, 

positive numbers indicate that the component migrates towards the cold side, whereas 

negative values indicate that the component moves towards the hot side. Comparing the 

values of the thermodiffusion factor with the experimental values reported by Srinivasan 

and Saghir [134], it is seen that the values predicted by the mHEX algorithm is in good 

agreement with the experimental data. On the other hand, the results from the predictions 
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of the HEX algorithm are further away from the experimental data. This higher accuracy 

of the mHEX algorithm is consistent with the performance of this algorithm for several 

other the binary mixtures as reported by Mozaffari et al. [78]. This superior performance 

is attributed to the fact that the energy conservation is modelled more accurately in the 

mHEX algorithm than in the HEX algorithm, leading to a more accurate simulation of 

the inter-particle interactions. 

 

 
Fig. 3.7: Thermodiffusion factors in the ternary mixtures #11-13 [139]. 

 

Table 3.4: Thermodiffusion factors in nC1-nC4-nC12 mixtures. The experimental data is from 
Srinivasan and Saghir [134]. The HEX results are from the work of Galliero et al. [85]. The mHEX 
results are from Mozaffari et al. [139]a. 

Mixt. # mHEX HEX Expt. 

nC12 

11 1.16±0.09 1.05±0.03 1.26 

12 1.05±0.12 1.04±0.03 1.2 

13 1.15±0.16 1.17±0.04 1.3 

nC1 

11 -1.26±0.18 -0.88±0.03 -1.53 

12 -1.32±0.11 -0.94±0.03 -1.55 

13 -1.02±0.13 -0.87±0.04 -1.2 
a The error bars in MD techniques are due to repeatability. The experimental method was conducted in 

microgravity environment only once. 
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To validate the superior performance of the mHEX algorithm, another ternary mixture of 

nC12-IBB-THN at atmospheric temperature and pressure has also been considered. The 

composition of this mixture is summarized in Table 3.2. The typical profile of the 

temperature distribution is shown in Figure 3.8.  

 

 
Fig. 3. 8: Temperature distribution in the domain in mixture #14 [139]. 

 

Also, the concentration distribution of IBB and THN is shown in Figures 3.9a-b, 

respectively. As seen in these figures, as the thermal gradient is established in the region, 

IBB tends to migrate towards the hot side whereas THN migrates towards the cold side. 

 

  
(a) (b) 

Fig. 3. 9: (a, b) Distribution of IBB and THN, respectively, in the domain in mixture #14 [139]. 
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The results from the mHEX as well as HEX algorithms are summarized in Table 3.5 

along with the experimental data from Ahadi and Saghir [131] As seen in this table, both 

algorithms are able to predict the direction of separation, in agreement with the 

experimental data. However, the strength of the separation, indicated by the magnitude of 

these values is more accurate in the mHEX algorithm than in the HEX algorithm. More 

precisely, regular HEX algorithm predictions of Soret coefficients are quite erroneous 

with relative errors of about 39%, 44% and 30% for THN, IBB and nC12, respectively. 

On the other hand, with mHEX algorithm these relative errors are approximately 14%, 

15% and 19% for THN, IBB and nC12, respectively. Once again, these results establish 

that the modified algorithm is suitable to study thermodiffusion in ternary mixtures as 

well. 

Table 3.5: Soret Coefficients (1/K) ×104 in nC12-IBB-THN mixture. The experimental data is from 
Ahadi and Saghir [132]. The HEX and mHEX are from Mozaffari et al. [139]a. 

Comp. Expt. mHEX HEX 

IBB -8.15±1.2 -6.93±0.8 -4.57±0.09 

THN 13.69±0.09 11.71±1.1 8.27±0.09 

nC12 -5.66±0.6 -4.61±1.3 -3.99±0.09 
a The error bars in MD techniques are due to repeatability while for experimental method represents the 

repeatability as well as of the instruments errors. 

 

3. 5. Summary & Conclusions 
 

In this study, a recently proposed mHEX algorithm that has been validated with respect 

to binary hydrocarbon mixtures has been used to study thermodiffusion in two different 

types of binary mixtures, namely, nC6-nC10 and nC6-nC12, with varying compositions of 

the constituents. Additionally, we also evaluate this algorithm with respect to the regular 

HEX algorithm by applying it to two ternary mixtures, namely, nC1-nC4-nC12 and nC12-

IBB-THN. Further, for the former mixture, three different compositions at T=333K and 

P=35MPa were considered. The second mixture was at atmospheric temperature and 

pressure. 
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From the results, the following observations and conclusions were made: 

 

1. Binary mixtures: In general, the heavier component separates to the cold side 

whereas the lighter component separates to the hot side. The strength of 

separation of separation, indicated by the magnitude of the thermodiffusion factor, 

becomes weaker as the concentration of the heavier component in the mixture 

increases. 

2. Ternary mixtures: In the normal ternary mixtures of nC1-nC4-nC12, the heaviest 

component accumulated in the cold zone, whereas the other two components 

moved to hot zone. Similarly, in the ternary mixture of nC12-IBB-THN, THN 

migrated towards cold region, whereas IBB and nC12 gathered in hot regions. 

This separation trend is consistent with the experimental observations. 

3. mHEX algorithm: The new mHEX improved the prediction of thermodiffusion 

factors over its regular counterpart algorithm for all mixtures. The associated 

relative errors of mHEX algorithm with respect to experimental data obtained 

from microgravity environment for the studied ternary mixtures were about 17% 

more accurate than the estimates of thermodiffusion factor from the HEX 

algorithm.  
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CHAPTER 4- A MODIFIED HEAT EXCHANGE ALGORITHM TO 
STUDY THERMO-SOLUTAL DIFFUSION IN LIQUID MIXTURES 

 
This chapter is based on a submitted paper to the Journal of Thermal Science  

Mozaffari, S. H., Srinivasan, S. & Saghir, M. Z.,  

A modified heat exchange algorithm to study thermo-solutal diffusion in liquid mixtures, 

Submitted to Int. Therm. Sci. 

4.0 Summary 
 
A modified heat exchange algorithm is proposed to perform N-body molecular dynamics 

investigations. 42 different case studies involving binary mixtures have been conducted 

in which the algorithm has been applied to study coupled heat and mass transport using 

the principles of molecular dynamics. Comparisons have been made with experimental 

data as well as the molecular dynamics approach using the traditional heat exchange 

algorithm. It has been shown that the modified algorithm has significantly better energy 

conservation properties, is more accurate, and is about 9% more computationally efficient 

than the traditional heat exchange algorithm. 

 

4.1 Introduction 
 
 
The problem of understanding the effect of non-uniform thermal field on the separation 

processes in a fluid mixture is an important scientific computation that is relevant to 

many industrial and natural processes. Some of the industrial applications where this 

computation is relevant include isotope separation [140], trapping of DNA [141], thermal 

field flow fractionation devices for characterizing polymers and colloidal systems [142], 

fluid transport in outer space [143], biomolecular binding curves [144] and freeze drying 

of food [145]. It is also relevant in natural processes such as salinity of ocean [146], solar 

ponds [147] and crude oil stratification in underground oil reservoirs [148-150]. This has 

resulted in scientific investigations involving thermal gradient related transport in gases 

[6,7], electrolytes [9], alcohols [10, 11], ferrofluids [18, 19], polymers [13, 15], proteins 

[25] as well as latex particles [23]. 

 



 

 51 

Researchers in theoretical fields have tried to comprehend this coupled mass and heat 

transport phenomenon thoroughly via thermodynamic principles [12, 47, 151-155]. 

However, the suggested theoretical models often contradict each other and their 

preciseness is limited to the proper choice of equation of state (EOS) [61]. On the hand, 

unwanted mechanical vibrations as well as inevitable gravitational fields can lead to 

erroneous experimental results on the ground conditions [63, 106]. Consequently, interest 

in conducting the thermodiffusion experiment in micro-gravity environment has been 

increased in recent years [60, 131]. Similarly, different computational approaches 

including neural networks, finite volume and molecular dynamics (MD) have been 

applied to investigate the thermo-solutal diffusion [78, 80, 118, 156, 157]. In neural 

network methods, lack of enough experimental data to train the system for being able to 

predict its behaviour at new thermodynamic state is problematic.  On the other hand, 

macro level models like control volume finite element deal with continuum problems and 

cannot be used directly to consider the behaviour of the system molecular scale. As a 

result, MD technique is the most popular technique to study thermodiffusion via 

consideration of complex inter-particle interaction at the molecular level. 

 

The MD approaches can be classified into two major types: equilibrium molecular 

dynamics (EMD) [111], and non-equilibrium molecular dynamics (NEMD) methods 

[112]. EMD techniques predict the systems dynamic properties via Green-Kubo or 

Einstein formula wherein the integral of the autocorrelation of flow quantities are related 

to the dynamic properties of the system without perturbed fields. On the other hand, using 

NEMD methods, transport properties of the system can be estimated in the presence of 

agitating or external fields. NEMD methods used to study fluids involving heat 

conduction in literature can be broadly divided into three major groups including 

synthetic non-equilibrium molecular dynamics (SNEMD) [70], re-verse non-equilibrium 

molecular dynamics (RNEMD) [75], and heat exchange algorithm (HEX) [73]. These 

methods vary in their approach to generate heat fluxes. 

 

In SNEMD methods, phenomenological coefficients are measured through linear 

response of the system to intentional deviations from equilibrium conditions in phase 
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space induced by specific time-varying external force. In RNEMD, proposed by Müller-

Plathe [75], after identifying hot and cold particles in the system, their momentums are 

simply swapped. Kuang and Gezelter [158] proposed a variation of this RNEMD 

approach by employing velocity rescaling instead of momentum swaps. 

 

HEX algorithm, which is the focus of this study, was proposed by Ikeshoji and Hafskjold 

[73], and is a popular algorithm to investigate studies involving heat conduction. In this 

algorithm, the computational domain is subdivided into sub-domains and periodically; a 

certain amount of kinetic energy is removed from one sub-domain (source) and added to 

another subdomain (sink). In doing so, the individual subdomains centre of mass 

velocities are preserved and velocity rescaling is used to adjust the non-translational 

kinetic energy. 

 

While this classical algorithm has been used widely since its introduction, studies have 

reported an issue with the energy conservation of this algorithm [74, 87]. This is due to 

the leading-order truncation errors of O(∆t3) of the coordinates in the Velocity Verlet 

integration scheme [88]. Specifically, significant amount of energy drift has been 

observed when the simulations are made for a time scale of few nanoseconds. This 

severely restricts the simulation time scales to critical values beyond which the energy 

losses are deemed unacceptable. While this could be solved using small time steps (e.g. 

O(10-17s)), the computational time can significantly increase. Another option could be to 

use an additional thermostat. However, this could impact the temperature profile that one 

would like to study [88]. 

 

In this work, we present a modified form of the HEX algorithm that subdues the energy 

drift leading to higher accuracy. Additionally, the modification results in higher 

computationally efficiency that can play a significant role in time saving of simulation of 

industrial multi-scale thermodiffusion models like crude oil stratification in an entire oil 

reservoir. The modified algorithm has been applied to study binary mixtures under the 

influence of imposed heat ux. More precisely, the effect of a thermal gradient on the 

separation of constituents in six different binary mixtures has been studied using the 
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modified HEX (mHEX) algorithm. Additionally, comparisons have been made between 

the mHEX and the HEX algorithm with respect to each other as well as experimental data 

to evaluate the performance of the mHEX algorithm. 

 

4.2. Modified HEX (mHEX) Algorithm 
 

As mentioned previously in sections 2.3.1 & 3.2.1, the time integration scheme of the 

mHEX algorithm is the same as the HEX algorithm, namely, the two-step Velocity Verlet 

scheme. The key modification is in the velocity rescaling equation, the rescaling factor 

(ζ) in particular: 

 

Vi = (1−ζ )Vi +ζVΓk  (4.1) 

 

where Vi and Vi  are the velocity before and after rescaling, respectively, for the ith 

particle in the domain at a given time step. VΓk  is the barycentric velocity of the particles 

in the region Γk. In mHEX algorithm, the rescaling factor, is based on the mixture 

constituents as: 

 

ζ = ±0.008
Tkb
εiiε jj

[
(xkMk )

k
∑
(σ ii +σ jj )

3

1
ρNA

]
1
3  

 

(4.2) 

 

 

 In above equation T is the temperature, ρ is the density of the mixture, kB is the 

Boltzmann constant, NA is the Avogadro number. xk and Mk are mole fraction and the 

molecular weight, respectively, of the kth component of the mixture. σii and εii are the 

atomic diameter and depth of the potential well, respectively of the pure component 

species in the mixture. This is different from the original HEX algorithm in which the 

scaling factor depends upon the particles in the individual zone and as a result is a O (Np) 

calculation is performed every time the velocity rescaling is applied, Np being the size of 

the system. 
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Thus, for the ith particle in the system, the steps of the Velocity Verlet implementation for 

mHEX algorithm are 

 

Vi
n+1
2 =V

n
i +
fi
n

2mi
Δt  

 

(4.3a) 

ri
n+1 = ri

n +
1
2
Vi
n+1
2Δt  

 

 

(4.3b) 

fi
n+1 = −∇ri

φ(rn+1)  (4.3c) 

Vi
n+1 =Vi

n+1
2 +
fi
n+1

2mi
Δt  

 

 

(4.3d) 

Vi
n+1 = (1−ζ )Vi

n+1 +ζV n
Γk

 

 

(4.3e) 

In the last equation, ζ is a fixed value that is calculated using Eqn. (4.2) at the beginning 

of the simulation, outside the time loop of algorithm. As previously mentioned in sections 

1.3.1, 2.3.2 and 3.2.2 the interaction potential function, φ is modelled using the simple 

Lennard-Jones (LJ) potential with a cut off ratio of rc=2.5σij. This LJ potential is given by 

 

φ(rij ) = 4εij[(
σ ij

rij
)12 − (

σ ij

rij
)6]  

 

(4.4) 

  

where, φ, εij, σij and rij are pair potential (J), well-depth potential (J), atomic diameter (m), 

and distance between particles (m). subscripts i and j denote dissimilar particles. 

 

Furthermore, to obtain the potential parameter for dissimilar particles, the following 

Lorentz-Berthelot mixing rules have been applied [122]:   
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σ ij = 0.5(σ ii +σ jj )  (4.5) 

 

jjiiij εεε =  (4.6) 

 

 Where the LJ parameters of identical particles are obtained from the literature for 

different binary mixtures (c.f. Table 4.1). 

 
Table 4.1: Lennard-Jones potential parameters. These parameters were obtained from NIST 
Thermophysical Properties of Hydrocarbon Mixtures Database [123]. 

Material Ar Kr nC5 nC6 nC10 nC12 

ε /k b (K) 119.8 167 346 393 471 550 

σ (nm) 0.341 0.363 0.545 0.595 0.680 0.710 

 

4.3. Computational Setup and Equilibration 
 

As mentioned in the introduction section, the mHEX algorithm has been evaluated by 

studying the separation of constituents in the presence of a non-uniform thermal field in 

six different binary mixtures. For this, the computational domain is a cubic volume that 

was assimilated using 32 slabs of identical thickness in the direction of the desired heat 

flux. The front view of the three-dimensional setup is shown in Figure 4.1 (Previously 

explained in sections 3.2.2). As shown in the figure, the two end layers are the hot zones, 

whereas the two central layers are the cold zones. 
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In all MD simulations, the particles were initially distributed with random coordinates. 

The velocities of the particles were characterized via the Maxwell-Boltzmann distribution 

function at 30% below the desired temperature. By intentionally setting the system 

temperature away from the desired temperature, we can increase the rate of equilibration. 

The system was let to equilibrate through velocity rescaling to the desired temperature. 

The equilibration took 2×105 time steps with a time-step size of t = 0.002 for the Ar-Kr 

system and t = 0.0008 for the hydrocarbon mixtures. The equilibrated state was used as 

the starting point of the thermodiffusion simulations wherein heat flux was introduced 

into the system and the simulations were carried out for an additional 1×106 time steps. A 

periodic boundary condition was used on all the walls of the simulation box, and the 

minimum image convention was used to reduce the wall impacts. The system's 

temperature was controlled using a Gaussian thermostat during the first 100,000 

iterations. 

 

Computational cases were considered to evaluate the following: (i) the accuracy of the 

modified algorithm, (ii) the computational speed with respect to the HEX algorithm and 

(iii) the effect of increasing the size of the system. To study these, the 42 MD simulations 

that were conducted are summarized in Appendix B. Each case listed in this table was 
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Fig. 4.1: Computational domain subdivided into slabs. 
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simulated four times, and the average of the results are presented in this work. The 

thermodynamic conditions of these mixtures are summarized in Appendix C.  

 

4.4 Simulation Results and Discussions 
 

The first step is the validation of the proposed algorithm and its comparison with the 

HEX algorithm. For this, the algorithm has been applied to study thermal-gradient 

induced separation in binary liquid mixtures. Specifically, in response to a temperature 

gradient along a domain, the constituents of a mixture separate to hot/cold zones, creating 

a concentration gradient. As previously mentioned in sections 2.2 and 3.2.1 the strength 

of this separation is characterized by the thermodiffusion factor (αT) that is calculated as: 

 

αT = −
T

x1(1− x1)
(
∇x1
∇T
)  (4.7) 

 

The estimate of αT using the mHEX and HEX algorithm for the six mixtures are 

summarized in Table 4.2 alongside the experimental data from the literature. As seen in 

this table (Table 4.2), the modified algorithm proposed in this work fares superior to the 

traditional HEX algorithm. The only aberration seems to be the last mixture where the 

modified algorithm under performs compared to the HEX algorithm. However, the 

estimate with the error bar is still close to the experimental data. 

 

The improved accuracy of algorithm can be attributed to the fact that scaling factor, ζ, in 

mHEX is uniform throughout the simulation. On the other hand, in HEX algorithm, the 

fluctuations in ζ through the iterations are tremendous. Due to this, with HEX algorithm, 

the system experiences much stronger arbitrary disturbances when velocity rescaling is 

applied, introducing errors in the separation process in the domain. On the other hand, 

with the mHEX algorithm, due to the uniform value of ζ, this issue is greatly subdued, 

resulting in more accurate calculations. The fluctuation of ζ in the Ar-Kr mixture is 

shown in Figure 4. 2, and is similar for the other mixtures. 

 



 

 58 

 
Fig. 4.2: Value of ζ  in Ar-Kr mixture using the mHEX and HEX algorithms. 

 

Another important feature of the mHEX algorithm is the improvement in its energy 

conservation property. In Figure 4. 3 we illustrate this with the energy loss in the nC5-

nC10 mixture as a function of time. As seen in this figure (Figure 4.3), the loss is 

significantly lower in with the mHEX algorithm almost stabilizing at about half way 

through the simulation. On the other hand, the energy loss is continuous through the 

simulation with the HEX algorithm. The trend is similar in the other mixtures. In fact, the 

total energy loss at the end of the simulation for three mixtures is summarized in Figure 

4. 4. As seen in this figure, irrespective of the size of the system, i.e., the number of 

particles (molecules) in the domain, the mHEX algorithm has much better energy 

conservation than the HEX algorithm. Further, in both algorithms, the energy 

conservation improves as the size of the system increases, approaching a plateau. 

Collectively, these results are evidence of the accuracy of the modified algorithm. For 

instance in small systems with only 400 particles, mHEX algorithm subdued energy loss 

by 17%, 21% and 23% for non-equimolar mixtures of nC6-nC10, nC6-nC12 and equimolar 

mixture of nC5-nC10, respectively with respect to HEX algorithm. While for the largest 

system with 3200 particles mHEX algorithm reduced the energy loss approximately by 

50% for all mixtures. 
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Table 4.2: Thermodiffusion factor estimated using the mHEX and HEX algorithm on a system of 
1000 particles. The value in parentheses indicates the deviation from the experimental/ benchmark 
data in the reported reference. 

αT 

Mixture mHEXa HEXa Litratureb 

Ar-Kr 1.91±0.13 

(3.24%) 

2.02±0.12 

(9.19%) 

1.85±0.11 

MD[78] 

nC5-nC10( XnC5=0.2) 0.98±0.17 

(14.04%) 

0.88±0.12 

(22.81%) 

1.14±0.27 

Expt.[126] 

nC5-nC10 (XnC5=0.5) 0.95±0.12 

(3.16%) 

0.92±0.15 

(6.12%) 

0.98±0.23 

Expt.[126] 

nC5-nC10 (XnC5=0.8) 1.18±0.25 

(10.17%) 

1.21±0.12 

(14.15%) 

1.06±0.25 

Expt.[126] 

nC6-nC10 0.83±0.17 

(5.63%) 

0.67±0.13 

(15.19%) 

0.79±0.04 

Expt.[125] 

nC6-nC12 1.19±0.13 

(11.16%) 

1.12±0.10 

(5.66%) 

1.06±0.07 

Expt.[125] 
a,b The error bars in all methods are due to repeatability. 

 

In evaluating the proposed algorithm further, the effect of employing the algorithm to 

study systems of different sizes was considered. The outcome of this investigation is 

summarized in Figure 4. 5. It is evident that for smaller systems with fewer particles 

(molecules), there are much larger deviations from the experimental data. As we move 

towards larger systems, there is a more stable performance of the algorithm, with the 

results containing smaller errors and matching closely with the experimental data. For 

instance for equimolar mixture of nC5-nC10 in a small system with only 400 molecules 

mHEX overestimated the experimental with 39.75% while for the largest system with 

3200 molecules the relative error is reduced to 4.16%. Collectively, these results present 

a strong case for using moderately large systems to investigate problems pertaining to 

heat conduction and thermodiffusive flows. 
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Fig. 4.3: Magnitude of cumulative energy loss for the MD simulation of the nC5-nC10 mixture with 

mole fraction of nC5=0.2 from the mHEX and HEX algorithms. 

 
While large systems with many particles are desirable, the computational power needed 

to make such calculations can be a limiting factor. Everything else remaining fixed, the 

computational efficiency of the algorithm plays an important role in dictating the size of 

the system. The computational efficiency of mHEX is quantified by comparing the 

computational times of the two algorithms with each other when the serial 

implementation of the two algorithms are used to investigate the mixtures on the same 

cpu. Figure 4. 6 summarizes the savings in computational time by switching to mHEX 

algorithm. As seen in this figure, the computational time is a nonlinear function of the 

size of the system, and the disparity in the computational time needed by the two 

algorithms increase with the number of particles in the system, favouring the mHEX 

algorithm. As expected, for the smaller systems the savings in computational time are 

smaller. However, as the size of the system increases, there is an average saving of about 

9% when the system size is at 3200 particles.  
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Fig. 4.4: Magnitude of the total energy loss at the end of the simualtion as a function of number 

of particles. 
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Fig. 4.5: Thermodiffusion factor calculated using mHEX algorithm as a function of the number of 

particles in the system. 

4.5. Summary & Conclusions 
 

In this work we propose a modified form of HEX algorithm to conduct molecular 

dynamics simulations of liquid mixtures subject to thermal gradients. The main 

application areas include isotope separation, biomolecular binding curves, trapping of 

DNA, thermal field flow fractionation devices for polymer characterization, fluid 

transport in outer space and freeze drying of food. This scientific computation is also 

relevant in natural processes such as salinity of ocean, solar ponds and crude oil 

stratification in underground oil reservoirs. 
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Fig. 4.6: Savings in the computational time as a function of the size of the system. Dotted line 

indicates the logarithmic trend. 

 

The modification includes eliminating a O(Np) calculation of the rescaling factor in the 

velocity rescaling equation, from inside the main time loop of the HEX algorithm. This is 

replaced by Equation (2), based on the composition and thermodynamic properties of the 

mixture, that is calculated only once at the beginning of the simulation, outside the main 

time loop. 

 

The modified algorithm (mHEX) has been applied to six different binary mixtures to 

study the diffusion of the species in response to a temperature gradient. From the results 

of 42 molecular dynamics simulation cases, each repeated 4 times, it has been found that: 
 
 

(1) The uniform value of in mHEX means that there are no arbitrary 

fluctuations of velocity of particles when applying velocity rescaling in the 

domain, thereby resulting in more accurate calculations, closely matching 
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the experimental data. The mHEX algorithm overestimated the 

thermodiffusion factor with average relative error 37 % for the smallest 

systems with 400 molecules. While the average relative error for largest 

system with 3200 molecules was reduced to 7%. 

 

(2) The mHEX algorithm subdued the energy loss by 20 % for small systems 

with 400 particles, while for large system consisting of 1600 and 3200 

particles the improvement was 44%. 

 

 

(3) Finally, by eliminating the calculation of   inside the main time loop and 

replacing it by a fixed value determined by Eqn. (4.2) outside the main time 

loop, there is a O(Np) savings in computations. More precisely, an overall 

savings of about 9% in computational time has been observed by employing 

mHEX algorithm proposed in this work. 
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Chapter 5- Conclusions & Future Work 
 

5.1. Conclusions 
 
 

Given the importance of thermodiffusion in oil industry, several researchers investigated 

thermodiffusive segregation in hydrocarbon mixtures in macro scale in both theoretical 

and experimental fronts. The major objective of these studies was to predict the strength 

and sign of thermodiffusion via parameter called thermodiffusion factor. The theoretical 

models often contradict each other while the experimental methods are prone to various 

sources of errors including unwanted vibrations and natural gravity fields. As a result, the 

main objective of this research is to study thermodiffusive flows through consideration of 

molecular interactions between different type particles as well as estimation the Soret 

coefficient for binary and ternary hydrocarbon mixtures via molecular dynamics 

simulations. In doing so, a computationally efficient and accurate algorithm has been 

developed. 

 

The new algorithm proposed in this thesis has been exhaustively evaluated with respect to 

20 binary and ternary liquid mixtures. More precisely, three different types of binary 

hydrocarbon mixtures, namely, nC6-nC10, nC6-nC12 and nC5-nC10 were studied. The first 

two mixtures were studied for six different compositions while only three compositions 

were considered for the last mixture. Additionally, during validation process the 

numerical results for one non-equimolar mixture of nC6-nC12 and nC6-nC10, three non-

equimolar mixture of nC5-nC10 were compared with available experimental data in the 

literature. In case of ternary mixtures, three different compositions of normal alkanes of 

nC1-nC4-nC12 as well as one composition of different types alkane mixtures of nC12-IBB-

THN were validated with respect to numerical and experimental results in the literature, 

respectively. 

 

In the MD simulations, hydrocarbon mixtures were modelled as a N-body particle system 

within a cubic simulation domain. The intermolecular interactions were modelled by 

Lennard-Jones pair potential with a cut of ratio. The Lorentz-Berthelot rules were applied 
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to obtain the atomic parameters of unlike particles in the system. The Verlet-velocity 

integration method were used to update the particles’ velocities and at every time step. 

Additionally, periodic boundary conditions as well as minimum image convection were 

applied across directions to curb the wall impacts.  

 

First, two popular well-known algorithms in literature, i.e. RNEMD and HEX, were 

adopted for heat generation process in the system. The primary application of these 

algorithms was to calculate thermal conductivity in the system; however, they have been 

used to study the thermodiffusive flows as well. Given the dearth of comprehensive and 

detailed reviews in literature, the performance of these two algorithms for different binary 

mixtures including mixture of Ar-Kr as well as hydrocarbon mixture of nC6-nC10 were 

compared with respect to experimental and numerical results in the literature. The HEX 

algorithm demonstrated marginal superiority over the RNEMD.   

 

Second, after close observation of HEX algorithm, a new modified version of HEX, viz. 

mHEX, was presented in this research for the first time. The behaviour of the new 

modified version in predicting Soret coefficients for several binary and ternary mixtures 

was validated with respect to experimental data in literature. With respect to the regular 

HEX algorithm, the mHEX algorithm has shown significant improvements in accuracy of 

estimation of the Soret coefficients with respect to experimental data as well as savings in 

the computational time. While the principle of heat generation in all the algorithms 

involves the manipulation of particles’ velocity at certain location in the simulation 

domain, each algorithm has a unique methodology to rescale the velocities without 

violation of conservation of momentum. However, the algorithm proposed in this thesis is 

the most accurate and efficient. 

 

5.2. Contributions 
 

The major contributions of this dissertation based on the results and conclusions 

presented in pervious chapters are as follows: 
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• A modified version of widely used boundary driven HEX algorithm, i.e. mHEX, 

was introduced to study Soret effect in binary and ternary mixtures in molecular 

level. 

• The scaling factor in mHEX algorithm is calculated once at the beginning of the 

simulation as a function of mixtures properties. This methodology to calculate the 

scaling factor saved computational time for small systems 3-4% and 8-9% for 

large systems. This is an O (N2) savings in computational time, N being the 

number of particles in the system.  

• The energy drift in the new proposed algorithm has been curbed in early stage of 

simulation and the magnitude of accumulative energy loss decreased by nearly 

30% from the regular HEX algorithm that is usually used in the literature. 

• In general, the new algorithm has improved the prediction of thermodiffusion 

factor in binary mixture by 24% in comparison with regular HEX algorithm. 

Additionally, the results of mHEX algorithm for estimating the strength of 

thermodiffusive segregation in ternary mixture was 17% more accurate than 

traditional HEX algorithm. It must be mentioned that the experimental data were 

obtained in microgravity environment. 

 

5.3. Future Work 
 

The following research areas are recommended for the future works: 

 

§ Studying thermodiffusive flow in a multi-scale structure of an oil reservoir by 

integration of the current MD simulation tool. This can help determine the large-

scale stratification process of crude oil. 

§ Implementation of more sophisticated intermolecular potential functions by 

adding more features into current MD simulation tool. This can further enhance 

accuracy. However, this can lead to slowing down of the algorithm, so one must 

tread carefully if speed is an important criteria. 

§ Studying and investigating the Soret effect for quaternary hydrocarbon mixtures 

using mHEX algorithm. 



 

 68 

§ Validating the mHEX algorithm for different types of mixtures including 

polymers and associating mixtures. This can enable us to apply the algorithm to 

study other applications. 
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Appendices 

 

Appendix A  
 

A.1 General Overview Molecular Dynamics 
 

Molecular dynamics (MD) is a powerful computational tool to study physical movements 

of particles. It must be noted that in this thesis we use the word particles and molecules 

interchangeably since we do not consider the intra-molecular effects such as the size, 

shape, bond angles etc. in our simulations. Instead we look at the entire molecule as a 

single “particle”. Where, the constituents of N –body system are allowed to interact with 

each other. The application of molecular dynamics (MD) in estimation of equilibrium and 

dynamic properties of simple fluid systems as well as complicated fluid mixtures has 

demonstrated a noticeable success in various research areas including biology, material 

and thermofluids. The MD techniques can be classified into two main categories: 

equilibrium methods [110, 111] and non-equilibrium approaches including boundary 

driven and synthetic NEMD [112,113,159].  In the former method the transport properties 

can be calculated through Green-Kubo or Einstein formula, which links the integral of 

auto-correlation of flow quantities to corresponding dynamic properties in the absence of 

any agitating field. The later technique computes the dynamic properties of the system in 

the present of external forces or perturbing field. 

 

A.2 Potential Function 
 

The most significant and tedious part of modelling an N-particle system in molecular 

level is simulation of constituents’ interaction.  In general, quantum mechanics describes 

the interaction of simple and complicated molecular structure; however; MD methods by 

adopting its classical viewpoint, assume that molecules are massive point objects and 

interactions between these points can be explained through pair potential functions that 

depend upon the distance of separations of these points [122]. 
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Various potential functions have been proposed for different application range of 

intermolecular interactions [122]. Lennard-Jones (LJ) pair potential function is the 

simplest suggested potential function with strong repulsive core and weak attractive tail, 

Eq. (1.1). This simple pair potential function has proved to be a suitable choice for 

hydrocarbon mixtures [84, 86]. Moreover, it is less time-consuming and often 

outperforms the more complicated models [86]. 

 

φi = φ(rij ) = 4εij[
σ ij

rij

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

12

−
σ ij

rij

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

6

]  
 

(A.1) 

 

where, φi rij, εij and σij represent pair potential (J), distance between the particles (m), 

well-depth potential (J) and atomic diameters (m), respectively. Also, subscripts i, j 

indicate unlike particles. 

 

Since the major simulation time spends on calculation of these potentials and their 

corresponding forces, cut off ratio distance ( rc ) technique can be used to reduce the 

computational time. When the separation distance between particles are greater than cut 

of ratio, the potential and its related force are set to zero. Different methods can be used 

to calculate the atomic diameter as well as potential strength for dissimilar particles. 

However, Lorentz-Berthelot rules have been widely used for hydrocarbon mixtures [80, 

84-86], Eq. (A.2) and Eq. (A.3). 

 

σ ij = 0.5(1− lij )(σ ii +σ jj )  (A.2) 

 

εij = (1− kij ) (εiε j )  (A.3) 

 

In the above equations lij and kij are cross-interaction parameters and for simple alkane 

molecules are negligible. Besides, the intermolecular force on each particle is equal to the 

negative sign of gradient of pair potential, i. e. 
!
Fij = −

!
∇φij . 
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These forces are only function of particle’s separation distance and intermolecular 

parameters and dictate the amount of accelerations on each particle. At every time step, 

particles positions are updated based on obtained accelerations and previous position and 

velocity of each particle. 

A.3 Integration Methods 
 

In order to achieve a reliable average macroscopic property of a microscopic N-particle 

system, three basic steps must be implemented properly. First, an acceptable potential 

function to represent the intermolecular interaction must be selected. Second, the 

calculation of forces based on the elected potential model in preceding stage. Finally, an 

effective algorithm for integration of equation of motion is required. The essence of most 

common numerical integration technique is implementation of Taylor series. Verlet and 

Gear’s predictor- corrector algorithms are the most common integration methods [122]. 

However, Verlet algorithm outperforms the Gear’s predictor-corrector technique in terms 

of energy drift [86]. 

 

!ri (t +Δt) =
!ri (t)+

!
Vi (t)Δt +

2
Δt
2mi

!
Fij (
!ri (t),
!rj (t))

j, j≠i
∑  

 

(A.4) 

 

!ai (t +Δt) =
1

mi

!
Fij (
!ri (t +Δt),

!rj (t +Δt))
j, j≠i
∑  

 

(A.5) 

 
!
Vi (t +Δt) =

!
Vi (t)+

Δt
2
( !ai (t)+

!ai (t +Δt))  
                                                  

(A.6) 

 

where, t, V, m and a are time (s), velocity (m.s-1), mass (kg) and acceleration (m.s-2). 

 

A.4 Periodic Boundary Condition 
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In general, considerable amount of molecules lie on boundary surfaces in MD models. 

Simulation can be subjected to the substantial inaccuracy in determination of properties 

due to the different nature of the forces applied on particles on the boundaries. In most 

cases, implementation of periodic boundary condition can reduce the errors. 

 

Periodic boundary condition simply can be considered as an infinite, space-filling array 

of identical copies of simulation region. In another words, a central simulation cell will 

be replicated through the space to form an infinite lattice. As a result, when a particle 

leaves the simulation region through a particular bounding face immediately re-enters 

another cell through the opposite face. Moreover, the particles’ interactions within 𝑟! 

distance will be limited to adjacent cells [122].  

 

A.5 Calculation of Properties 
 

Monitoring the temperature and energy are crucial for a system that is subjected to the 

thermal field. The instantaneous temperature of a system can be determined via applying 

statistical mechanics and Virial theorem. The average temperature of a system can be 

achieved through time average [122].  

 

Tins =
1
3Nkb

mi
i=1

N

∑ V 2
i   

(A.7) 

 

Total potential and kinetic can be calculated based on following equations: 

 

Ek =
3
2
Nkb <Tins >  

(A.8) 

 

Ep =< φ ji
i=1

N

∑
j=1

N

∑ >   

(A.9) 
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Additionally, the microscopic heat flux can be obtained based on the following formula 

[122]: 

 

Ju =<
1
Vol

((Ek + Ep )(vi − vb )∑ −
1
2

| (Fij .(vi − vb ) |
i=1

N

∑ .rij ) >   

(A.10) 

 

In the above equations, Tins, N, kb, Ek and Ep denote instantaneous temperature (K), 

number of particles, Boltzmann constant (J.K-1), kinetic energy and potential energy, 

respectively. Also, <> symbol represent mathematical averaging. 

 

Additionally, in MD simulation dimensionless parameters (reduced parameters) are often 

considered noticeable asset. Some of the essential reduced parameters can be obtained 

based on following formulas [86]. 

 

ρ* =
N
Vol

σ 3  (A.11) 

 

  

T * =
KbT
ε

 (A.12) 

  

t* = t
σ

ε
m

 
(A.13) 

 

V * =V m
ε

 
(A.14) 

 

E* = E
ε

 (A.15) 

 

Ju
* = Ju

σ 3

ε
m
ε

 
(A.16) 
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Appendix B 
 
Table. B Computational cases used in chapter 4 outlining each mixture, the size of the system and the 
mole fraction of the first component in the system. 

Case # Mixture # Particles Mole Fraction of component 1 

1  

 

 

Ar-Kr 

100  

 

 

0.5 

2 200 

3 400 

4 800 

5 1000 

6 1600 

7 3200 

8  

 

 

nC5-nC10 

100  

 

 

0.2 

9 200 

10 400 

11 800 

12 1000 

13 1600 

14 3200 

15  

 

 

nC5-nC10 

100  

 

 

0.5 

16 200 

17 400 

18 800 

19 1000 

20 1600 

21 3200 

22  

 

 

100  

 

 

23 200 

24 400 
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25 nC5-nC10 800 0.8 

26 1000 

27 1600 

28 3200 

29  

 

 

nC6-nC10 

100  

 

 

0.38 

30 200 

31 400 

32 800 

33 1000 

34 1600 

35 3200 

36  

 

 

nC6-nC12 

100  

 

 

0.34 

37 200 

38 400 

39 800 

40 1000 

41 1600 

42 3200 
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Appendix C 
 
Table. C: Thermodynamic state of each mixture used in Chapter 4.  

Mixture T* ρ* References 

Ar-Kr 0.9650 0.7137 [78] 

nC5-nC10 ( XnC5=0.2) 0.6363 1.0491 [126] 

nC5-nC10 (XnC5=0.5) 0.6363 1.2088 [126] 

nC5-nC10 (XnC5=0.8) 0.6363 1.4212 [126] 

nC6-nC10 0.6123 1.2130 [125] 

nC6-nC12 0.5462 1.2580 [125] 
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