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Abstract

In this project, an analysis of the faster detection of shapes using Randomized Hough Trans-
form (RHT) was investigated. Since reduced computational complexity and time efficiency
are the major concerns for complex image analysis, the focus of the research was to investi-
gate RHT for these specific tasks. Also, a detailed analysis of probability theory associated
with RHT theory was investigated as well. Thus effectiveness of RHT was proven mathe-
matically in this project. In this project, RHT technique combined with Generalized Hough
Transform (GHT) using Newton’s curve fitting technique was proposed for faster detection
of shapes in the Hough Domain. Finally, the image under question was enhanced using Min-
imum Cross-Entropy Optimization to further enhance the image and then RGHT process
was carried out. This helped the RGHT process to obtain the required time efficiency.
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Chapter 1

Introduction

This chapter gives an introduction and overview of this project. The moti-
vation, an overview of the project organization, objective and specifications,
technical and functional specifications, technical development tools are the

topics of this chapter.

1.1 Motivation

The motivation of the project is to perform a faster and optimal detection
of parametric shapes using advanced signal and image analysis techniques.
Hough Transform (HT) is a common technique for detecting shapes with
parametric equation in an image. The classical Hough transform is most com-
monly used for the detection of regular curves such as lines, circles, ellipses,
etc. A generalized Hough transform can be employed in applications where
a simple analytical description of a feature(s) is not possible [1]. In order to
apply the HT technique for complex shapes (GHT), a mathematical model
or parametric forms for these shapes was developed using Newton’s curve
fitting technique [4]. Although complex shapes were successfully detected by
this method, the computational complexity was substantially higher because
of the large number of parameters (the number of parameters involved was
5 in this case) involved. In order to optimize the speed and computational
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time of GHT, Randomized Hough Transform (RHT) based on probabilisti<2:
approach was introduced [5].

RHT is based on the fact that a single parametric space can be deter-
mined uniquely with a pair, triple, or generally n-tuple of points from the
ooriginal image [5]. Since random sampling is used, the algorithm works quite
fast with low storage requirement. Due to the fact that one parameter point
has to be solved for one n-tuple of points, computational complexity is less
while comparing with GHT. However, current versions of RHT only work on
binary images so that a preparation step of thresholding or filtering has to be
applied to grayscale images beforehand. Moreover, it can only detect analyt-
ical geometric shapes and cannot be applied on arbitrary ones [5]. This leads
to development of a method named Randomized Generalized Hough Trans-
form(RGHT), which combines the RHT technique with already developed
GHT technique. ’

RGHT combines the advantages of both GHT and RHT. It works on
grayscale images and detects arbitrary grayscale object with various scales
and orientations, like GHT. It adopts the random sampling mechanism and
the converging mechanisms from RHT and thus reduces time and space com-
plexities. It also detects arbitrary shapes as in the case of GHT. Moreover,
it is based on probabilistic method as in RHT, so it has reduced time and
space complexities, high accuracy and arbitrary resolution.

RGHT was able to detect any parametric shape with a high level of accu-
racy but in order to make it further faster, wavelet decomposition technique
was applied. Arbitrary shape images particularly, high resolution images,
occupy a lot of disc space. Discrete Wavelet transform (DWT) can be used
to reduce the image size without losing much of the resolution. By applying
the Wavelet decomposition technique, massive compression of the original
image was obtained without significantly affecting resolution of the image.



Considerable time efficiency was achieved by applying this method.

In order to make the above technique an optimal one, it was important
to preprocess the image. Preprocessing the image is an important step in
image processing. It is a proven result that image preprocessing produces
more accurate results plus preprocessing is an important factor in achieving
further time efficiency. In this project, image enhancement using minimum
cross entropy optimization was performed to achieve better results plus in
order to obtain time efficiency.

The first stage of HT is to convert the image to be analyzed to digital image
format. In the second stage, HT is performed on the digitized image. Once
the transformation is completed, in the third stage, peak detection process
follows. Finally, the parameters of the shapes are computed. The following
block diagram shows how the faster and optimal detection of parametric

shapes were carried out in this project.

Read the Crde Image Enhance the Image using | Apply the Wavelet Apply the RGHT
[~ MCE technique Decomposition of the image

Get the cocfTicients
of the arbitrary shape o —

Figure 1.1: Block diagram of the faster and optimal detection of parametric shapes

1.2 Objective and Specifications

Objective: The main objective of this project is to investigate the real-time
utility of RGHT in detecting complex shapes in an image as well as to make



the detection faster and optimal. One way of achieving the time efﬁcienc;

would be by combining HT and WT. By performing the image enhancement
using the MCE technique before applying the RGHT technique would make

the proposed method an optimal one.
Specifications: The specifications of the project are as follows:
1. Preprocessing the image to get accurate and faster results
2. Detection of simple shapes such as straight lines, circles etc. using HT.

3. Designing a parametric equation for arbitrary shape by using a curve

fitting technique and then applying the HT.

4. Increasing the speed of detection by combining W'T with the above tech-
nique.
1.3 Technical and Functional specifications

1.3.1 Technical System Requirements

Since time efficiency is the major concern in this project, it is desired to have
faster computer systems. The operating system and other specifications of

the project are given below:
1.3.2 Operating System

1. Linux: Fedora Core 5 with 700 MHz frequency.
1.4 Technical Development Tools

Matlab Software Package version 7.2.0.29

1. Wavelet Toolbox



2. Signal Processing Toolbox

3. Image Processing Toolbox

1.5 Report Organization

This project report is organized into six chapters. Chapter 1 is an introduc-
tory chapter about HT techniques, curve fitting technique as well as a brief
demonstration on how the project is organized. Chapter 1 also describes
the objectives and specifications for this project.Chapter 2 covers the termi-
nology associated with HT as well as the theory behind HT. It also discuss
applications of HT and how HT technique is used in the field of medicine.
This chapter also explain the theory of Wavelet Transform as well as the the-
ory of Discrete Wavelet Decomposition.Chapter 2 also describes the general
theory of polynomial curve fitting, especially, Newton’s general interpolation
technique as well as the image enhancement techniqué using minimum cross
entropy optimization.

Chapter 3 describes how Straight Line Hough Transform is implemented.
This chapter also discusses the results of SLHT test. Chapter 4 briefly covers
the theory and implementation of Circular Hough Transform (CHT). |

Chapter 5 describes how RGHT for arbitrary shapes is implemented in
this project. '
| Chapter 6 discusses the computational complexity of different HT algo-
rithms and also the potential applications of RGHT. This chapter also in-

cludes the conclusion.



Chapter 2

Introduction to Hough Transform

2.1 Hough Transform

Hough Transform (HT) is a simple and an elegant technique in detecting
shapes. The first stage of HT is to convert the image to be analyzed to digital
image form. In the second stage, HT is performed on the digitized image.
Once the transformation is completed, in the third stage, peak detection

process follows. Finally, the parameters of the shapes are found out.

2.2 Theory of Hough Transform

Before getting into the detailed theory of Hough Transform, some terminol-
ogy associated with the Hough Transform has to be defined. Image plane is
‘the X-Y plane where the original image exists. Parameter plane or Parameter
space is where the transformed image is accumulated in an array of n dimen-
sion. The dimension of the array depends on the type of the image to be
analyzed. For example, for a straight line image, there are three parameters
according to the method being adopted in this project, coefficients a0, al
and z1. The elements of the accumulator array correspond to small regions
of parameter space. Prior to the actual transformation, there are some pro-

cedure to be considered in determining which pixel affects in representing the



image. The process starts by setting a threshold, then comparing the pixep{l'
values with the threshold, and whichever passes the threshold measurement
represents part of the image. At the same time, searching the location (row
and column) of each pixel that represents the relative image. From these lo-
cations and the proper formulation of the image, the transformation process

starts.

Basically, the transformation is from image space to parametric space. In
the process of transforming, the parameter is stored in the accumulator. For
example, if there are two parameters involved in the transformation, a two
dimensional accumulator array is required. To start with, every element of
the accumulator array is set to zero. For each point in parameter space to
be recorded, the appropriate element of the array is incremented. Dividing
parameter space up into regions is known as quantisation. Quantisation of
the parameter space is usually done by trial and error method [18].

2.3 How does HT Work ?

In order to illustrate how HT works, consider Straight Line Hough Transform
(SLHT). Parameterization of SLHT involves transforming each point on the

image space to r and 6 parameters as follows:
zcos(f) + ysin(0) = r, (2.1)

where r is the length of the normal from the origin to this line and 6 is the
orientation of r with respect to the X-axis. See figure 2.1. For any point (x,y)

on this line, r and 0 are constant.

PROPERTY OF
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Figure 2.1: Parametric description of a Straight Line

From an image analysis context, the coordinates of the point(s) of edge
segments i.e.,(z;,¥;) in the image are known and, therefore, serve as con-
stants in the parametric line equation, while r and 8 are the unknown vari-
ables. If the possible (r,0) values defined by each (z;,¥;) are plotted, points
in cartesian image space map to curves (i.e. sinusoids) in the polar Hough
parametric space. This point-to-curve transformation is the Hough transfor-
mation for straight lines. When viewed in Hough parameter space, points
which are collinear in the cartesian image space become readily apparent as
they yield curves which intersect at a common (r,0) point. The transform is
implemented by quantizing the Hough parameter space into finite intervals
or accumulator cells(i.e. a multidimensional array). As the algorithm runs,
each (z;,y;) is transformed into a discretized curve and the accumulator cells
which lie along this curve are incremented. Peaks in the accumulator array

‘represent the corresponding straight line that exists in the image space.

2.4 Hough Transform Applications

Hough Transform (HT) has various practical applications such as:

1. Most manufactured parts (and many anatomical parts investigated in
medical imagery) contain feature boundaries which can be described by



regular curves or straight lines.

2. HT is commonly used in computer vision and pattern recognition for
detecting geometric shapes that can be defined by parametric equations.

3. HT is commonly used in machine vision applications for detecting dis-

continuous patterns in noisy images [13].
4. HT finds many applications in astronomical data analysis.

5. HT is used to develop auto-adaptive, fast algorithms for the detection
of echelle disorders and automated arc line identification [14].

2.5 Generalized Hough Transform (GHT)

Generalized Hough Transform (GHT)can be employed in applications where
a simple analytic description of features is not possible. In order to apply
the GHT technique, a mathematical model/equation has to be developed
and HT technique is applied thereafter. In this project, the Newton’s curve
fitting technique has been applied to represent the arbitrary shape. New-
ton’s general interpolating formula for data pairs (z1,y1) through (zn,yn)
has the form, y(z) = ag + a1 * (z — z1) + az * (z — 1) * (z — z3) + ... +
an-1 * (z — 1) * (x — T2)....(z — Tn—1) where a0,al,... are the coefficients.
When considering the computational time involved in this process, only the
“coefficients a0,al,a2 were taken into consideration and the rest of the coeffi-
cients were ignored. In this case, the accumulator array is five dimensional
which is A(a0, al,a2,z1,22). Even though complex shapes were successfully
detected using this method, the computational complexity was very high be-
cause of the five dimensional accumulator array. In order to optimize the
speed and computational time of GHT, Randomized Hough transform based

on probabilistic approach was introduced.



2.6 Randomized Hough Transform (RHT) 1

In RHT, a pair of pixels is mapped to a single cell in the parameter space.
Because of this characteristic of RHT, it generates only a small subset of all
parameter combinations. This characteristic of RHT is known as the many

to one mapping or converging mapping.

2.7 Main difference between RHT and Conventional
Hough Transform

The main difference between RHT and the conventional HT is that while in
HT a single pixel in the original image is mapped to a curve in the parameter
space, in RHT a pair of pixels is mapped to a single cell in the parameter
space. Thus, while in HT curves are mapped into parameter space using a
function which generates all parameter combinations compatible with both
the observed pixel and the curve model, the RHT generates only a small
subset of all parameter combinations. RHT Algorithm is described as below:

1. Form the set P of all white points in an image.

2. Pick a point pair (pi, pj) randomly from the set P.

3. Solve the parameter space point (a,b) from the curve equation with
points (pi, pj).
4. Accumulate the cell A(a,b) in accumulator space.

The first step can be done by scanning the original binary picture row-wise
and storing the ”white” pixels p;(z,y) to an array. Accumulation of the cell
A(a,b)means incrementing its value by one. A main task in the HT is to
find the local maxima in the accumulator space, giving the parameters of the



. 11
corresponding curves. In RHT, the local maxima can be easily detected one
at a time. Maxima search can be done by the following method:

1. Run the RHT long enough to detect a global maximum in the accumu-

lator space.

2. Remove all those points from the set P which lie under the curve deter-
mined by the location of the maximum in the accumulator space.

3. Set the accumulator space to zero.

4. Continue to step 1.

The RHT algorithm stops when there are no more points left in the set P. The
first step in the above algorithm contains a threshold which an accumulator
point value must reach to be detected as the global maximum. The threshold
must be selected depending on the original curve segment picture. Suitable
values are 2 or 3 or even greater values if the original edge picture contains
much noisy segments. Step 2 and 3 above, introduce an effective method to
eliminate local maxima corresponding to noise or false curves. The points
which lie under the detected curve can be found.

2.8 Mathematical Analysis of RHT

“Mathematical modeling of RHT is based on the Generalized Bernoulli trials
(GBT) of probability theory [7]. Bernoulli distribution is generally repre-

sented as
p(z) = nC,p®(g)" ™, (2.2)
where z is the number of successes in a total of n trials and p is the probability

of success and ¢ = 1 — p is the probability of failure.
A sequence of identical and mutually independent trials each of which has
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m+1 possible outcomes: 'm’ successes such as T, T3, ., Tr, with corresponding

probabilities py, ....pm respectively and one type of failure Ty with probability
of failure=1-(probability of successes)=1-(p1 + .... + pm).

Let &1,&2, ....... ¢mdenote the number of successes for 13,75, .,T;, respec-
tively. In a sequence of n GBT’s , the multinomial (joint probability) distri-

bution of &, &, ........ Em is

k k
nl(p*...... pfnm)pff
kilko!... kplky!

P& =k, =ke,..6m = kem) = (2.3)

where = 1'k; = n — ky.

In general, P(& = k;) = nCy, (p¥) g™ where ¢; = n — p; where k; =
0,1,2,3,...n and &; satisfies the Binomial Distribution.
In this case, E(&) = np; and 02(&) = np;g;.

In an unlimited sequence of GBT’s, let n; denote the total number of trials
which precede (and include) the occurrence of the r* success of type Tj. Its
Probability distribution satisfies the negative Binomial Distribution and can

be written as,
P(mi = ki) = (ki = 1)Clr_1y(p:)"q"" (2.4)

where k; = r, 7+ 1....
In this case, expectation and variance becomes E(n;) = 2. and o?(n;) =

.2.9 Randomized Hough Transform for Straight Lines

In order to illustrate how RHT works, let us take RHT for Straight Line into
consideration. RHT for line detection uses the y = mz + b concept, where
m is the slope of the line and b is the y intercept and z and y are the pixel
coordinates. Since there are two parameters involved in the line detection,
2 points from the image has to be chosen randomly from the given straight
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line image and the RHT algorithm has to be applied for these two points.

Let pl = (z1,y1) and p2 = (22,y2) be the randomly chosen points from the
Straight Line image. Corresponding equation of the lines is

yl =azl +b, (2.5)

Y2 = az2 +b. .(2.6)

Solving these two equations determine the values of a and b and thus pa-
rameter space point A(a,b) is obtained. This process is repeated until the
maximum value in the accumulator reaches a certain threshold. The latest
improvements in this area of research propose a new technique which com-
bines RHT and GHT known as Randomized Generalized Hough Transform

(RGHT) [6].

2.10 Randomized Generalized Hough Transform (RGHT)
using Newton’s Curve Fitting technique

In this project, RGHT using Newton’s Curve Fitting technique is proposed
for faster detection.It is well known that RHT works well for features with
parametric equation. In case of features which lack a mathematical equation
we have to fit a polynomial to get the coefficients. RGHT was implemented
using the Newton’s curve fitting technique ([16],[17]). Newton’s general in-
terpolating formula for data pairs (z1,y1) through (zn,yn) has the form

y(z) = ap+arx(z—=1)+agk(z—z1)*(2—22)+....4an_1%(Z—21)*(T—2)....(T—T7_1)
(2.7)

2.11 Wavelet Transform (WT)

In order to optimize the time complexity of HT, Wavelet Transform was
introduced. The Wavelet Transform (WT) provides a joint time-frequency



representation. Passing the time-domain information through various higlﬁ
pass and low pass filters results in the output containing high and low fre-
quency portions of the information. Next, by taking low pass portion of the
filtered signal, the signal is put through the same filtering process as described
above. This operation is called Decomposition. Decomposition process is
continued until the signal reaches a pre-defined decomposition level [4].

2.12 Theory of Discrete Wavelet Transform (DWT)

Discrete wavelet transform (DWT), provides sufficient information both for
analysis and synthesis of the original signal, with a significant reduction in
the computation time. The DWT, decomposes the signal into a crude ap-
proximation and detail information. This method uses filters at different
cutoff frequencies to analyze the signal at different scales. Furthermore, the
signal is passed through a multiple selection of high pass filters to analyze
the high frequencies. At the same time, the signal is passed through a se-
ries of low pass filters in order to analyze the low frequencies (decomposition
process). DWT employs the following two sets of functions, Wavelet func-
tions and Scaling functions, which are associated with high pass, and low
pass filters respectively. The type of filtering that is applied to the signal,
plays a major role in determining the resolution of the signal. Furthermore,
the scale is changed by removing some of the samples of the applied sig-
nal (downsampling) or adding additional samples to the signal (upsampling).
The resolution of the signal, which is a measure of the amount of information
in the signal, is changed by the filtering operations, and the scale is changed
by upsampling and downsampling (subsampling) operations.
Subsampling a signal corresponds to reducing the sampling rate, or remov-
ing some of the samples of the signal. Subsampling by a factor n reduces the
number of samples in the signal n times. Upsampling a signal corresponds to



increasing the sampling rate of a signal by adding new samples to the signa%l?
Upsampling a signal by a factor of n increases the number of samples in the
signal by a factor of n ([4], [19]).

2.12.1 Mathematical Explanation of DWT

Assuming that the original signal z[n] passes through a half band high pass
filter g[n], and through a low pass filter h[n]. Filtering a signal corresponds
to the mathematical operation of convolution of the signal with the impulse
response of the filter. Once filtering is completed, according to the Nyquist
rule, half of the signal’s samples are eliminated, resulting in signal’s frequen-
cies being pi/2, rather than pi as in the case of the original signal. Signal is
subsampled by a factor of 2, which results in a first level decomposition and

is expressed by the equation:
Yiign[k] = 3 _(z[n] * g[2k — n]), (2.8)

Yiow[k] = >_(z[n] * h[2k —n]), (2.9)

where Yiign[k] and Yiew[k] represent outputs of high pass and low pass filters.
On one hand, the decomposition process halves the time resolution due to
the fact that only half the number of samples now characterize the signal.
On the other hand, this operation doubles the frequency resolution due to
the fact that the frequency band of the signal after the decomposition, spans
~ only half of the previous frequency band, effectively reducing the uncertainty

in the frequency by half ([4], [19]).

2.12.2 Decomposition Algorithm

The above procedure, could be repeated for further decomposition. At every
level, the filtering and subsampling resulted in half number of samples of the
previous sample and half time resolution. At the same time, frequency band



span halves and frequency resolution doubles. Decomposition algorithm is

given below:
1. Pass the original signal through high pass and low pass filters and sub-
sample by 2.
Note: The output of the high pass filter after subsampling becomes the
first level DWT coefficients.
2. Take the output of the low pass filter and then repeat step 1.

3. Repeat this procedure until two samples are left.

The following figure gives a detailed explanation of this algorithm. In this
figure, x[n] is the original signal to be decomposed, and h[n] and g[n] are
lowpass and highpass filters, respectively. The bandwidth of the signal at

every level is marked on the figure as f.

X[n] f=0-=

f=0~n/2

f=n/2~7

Levei 1
DWT coefficients

f=m/4 ~ /2 =0~ w'4

Level 2
DWT coefficients

I=7/8 ~ W f=0 ~ w8

Level 3
DWT coefficients

Figure 2.2: Block diagram of the Wavelet Decomposition process



2.13 Applications of DWT 17

The concept of Wavelet decomposition can be applied to images or signals.
Matlab commands ’dwt’ and ’dwt2’ performs the single level discrete 1D
wavelet transform and single level discrete 2D wavelet transform of a signal
respectively. Since images are of two dimensional nature, only ‘dwt2’ can be
applied to an image in order to do a single level discrete 2D wavelet transform.
Matlab commands ’wavedec’ and *wavedec2’ performs multi level 1D wavelet
transform and multi level 2D wavelet decomposition of a signal respectively

4].
2.13.1 Wavelet Decomposition of Images

In this project, the concept of Wavelet Decomposition is applied to images.
Due to the fact that images are of two dimensional nature, only ‘wavedec?’
can be applied to an image in order to do a multi level 2D wavelet decomposi-
tion. In the decomposed images, the number of columns and rows reduce by
a factor of 2. Wavelet decomposition takes a 2D image and convert it to four
minimized standard decomposed images. These four decomposed images are:
approximated (corresponds to the low pass portion of the image), horizontal,
vertical, and diagonal. The last three decomposed images (corresponds to
the high pass portion of the image) are called detailed information [4].

| 2.13.2 Advantages of Wavelet Decomposition

One area that has benefited the most from the data reduction property of the
wavelet transforms is image processing. Images, particularly high-resolution
images, occupy a lot of disk space. DWT can be used to reduce the image size
without losing much of the resolution. When applying DWT on any image, it
can be noted that massive compression of the original image is obtained



without significantly affecting the resolution of the image.

2.14 Image Enhancement using minimum cross entropy
Optimization

2.14.1 What is cross entropy minimization?

Cross-entropy minimization is a general method of inference about an un-
known PDF when there exists a prior estimate of the function and new in-
formation in the form of constraints on expected values is available [10]. If
the optimized / enhanced image constraint (an unknown PDF) is denoted
by Q(t, f)(Q(%, f) is a positive joint distribution), then it should satisfy the

marginals

[ Q. £ df =15()% = mo(t), (2.10)
[ @ £)dt =15(5)| = mo(f). (2.11)
The above equations can be treated as constraint equations (new informa-

tion) for optimization. Now Q(t, f) may be obtained from P’'(¢, f) (a prior
estimate of the function) by minimizing the cross entropy between them given

by

HQ,P)= [ [ Q(t flog((Q(t, f)/P'(t, f)) dfdt (2.12)

Lagrange multipliers can be used to solve for the Q(¢, f) that satisfies the
above constraints and minimize the cross entropy between them. Thus

Q(t, ) = P'(t, ) exp{—(Ao+sho+ A f 49t + o f24+4at® ..o+ A fP+4hnt™) }
(2.13)
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where ); and v; are Lagrange multipliers to be determined via the corlls-)

straint equations.

2.15 Iterative Solution to Obtain Q(t,f)

At the ”zeroth” iteration equation (2.13) becomes
Q°(¢, f) = P'(¢, f) exp(—Xo). (2.14)

Ao can be solved by imposing the time marginal constraint of (2.10) on
(2.14).

Ao = In((p'(t)/mo((2)) (2.15)
where mg(t) is the true (desired) time marginal of (2.10) and p/(t)) is the
time marginal of P'(¢).

Substituting the value of Ag back into (2.14) gives

Q(t, f) = P'(t, £)(mo(1)) /¥ (1)) (2.16)

In this iteration Qo(t, f) has the correct time marginal but at this stage
it need not contain the correct frequency margin. In order to obtain the

correct frequency marginal Q°(¢, f) is used as a new prior estimate in the

next iteration.

Ql (t’ f) = Qo(ta f) eXp(—?ﬁ()) (2.17)
1 can be solved by imposing the time marginal constraint of (2.11) on (2.14)
Yo = In((¢'(f)/mo((f)) (2.18)

Substituting the value of 9y back into (2.17) gives

Q1(t, f) = Q°(t, £)(mo(£)/d°(f)) (2.19)



where mo(f) is the true(desired) frequency marginal constraint of (2.11) an23
¢°(f)is the frequency marginal of Q°(t, f). After this iteration, Q!(t, f) yields
the desired frequency marginal, but no longer contains the correct time mar-
ginal. By continuing the iteration helps to get a more accurate Q(¢, f),since
H(Q,QW) < H(Q,QW), QD) £ QW [because of the convexity of cross
entropy]. This process is continued until convergence is reached. Conver-
gence criterion is determined depending on the specific application[11]; at
this point,the solution @~ (¢, f) is the MCE-TFD Q(t,f)[12].



Chapter 3

Randomized Generalized Hough
Transform (RGHT) for Straight Lines

Straight Line Hough transform (SLHT) is one of the method utilized to
transform points on straight line image to a corresponding parametric plane,
which consists of two parameters. For an equation of a straight line, y =
a0 + al(z — z1), a0 and al are the coefficients of the line. The SLHT
transforms the X-Y form into a0 and al image parameter forms. These
image parameter is accumulated in three - dimensional accumulator array
A(a0,al,zl1). Furthermore, before computing the HT of straight line, the
parameter space is quantized between appropriate maximum and minimum
values of a0min and a0Omaz, and almin and almaz, and zlmin and zlmaz.

Once quantization of the parameter space is done, the actual HT method can

be implemented.

3.1 Software Design

In order to implement SLHT, the following steps are considered:
1. Scan the image and accumulate the image points in set P.

2. Initialize the accumulator array vote(a0, al,z1)=0.

21



3.

4.

Pick two points randomly from the set P. 22
For each point (i, y7), vary al from 1 to the number of rows in the image,
also vary zl from 1 to the number of columns in the image. Next, in
the limited quantized plane, increment the number of counts each time a,
line passes through each cell until the transformation is completed. The
number of counts in each cell of the parametric image are called votes,
A(a0,al,z1) = A(a0,al,z1).

Local maximum in the accumulator array corresponds to collinear points
in the image plane. The accumulator array provides a measure of the
number of points on the line. Algorithm is stopped when the accumula-

tor array reaches a certain threshold value.

The next step is to search for the peak in the accumulator array. The peaks

and their corresponding coordinates are used to identify potential lines within

the image plane. These peaks provide the values of a0, al and z1.

3.2 Pseudo code for RGHT for Straight Lines

1.

First, digitize the original image.

Initialize the accumulator array to zero.

Save the values of the image pixel to a data set P.
Randomly pick two points from set P.

For each pixel that passes the certain threshold value, calculate the co-
efficient a0 for all possible values of al and z1. The formula to calculate
a0 is given below: a0 =y — al * (z — z1).

Then increment the accumulator array.



2
7. end. 3

3.3 Analysis of Results

Using steps mentioned above, SLHT was applied on a 45 degree straight line
(See figure 3.1).

2 4 L] L] 10 ”? " 1 18

Figure 3.1: A Straight Line Image of 45 degree Inclination

For this straight line image, the coefficients are a0=1, al=1 and z1=1. From
the SLHT program output, the maximum vote was found to be 3 points lo-
cated at a0=18, al=1 and 1=18. Since the original equation of this straight
line is

y=al+alx(z—2zl)=14+1%(z—zl)=1z. (3.1)
It can be observed that the coeflicient al determines the characteristics of the
~ line as well as the orientation of the line. For example if a1=1, then the image
in question is a straight line of the orientation of 45 degree. After carefully
reviewing all possible values for al, it can be interpreted that the value of the
coefficient al determines the shape and orientation of the particular image.
From the output of the SLHT, the equation of the line is found as

y=18+ 1% (z —18) ==z, (3.2)



which agrees with the original equation of the image as in Equation (3.22)‘%
Also note that al values for the original image as well as the al value obtained
from the SLHT are same, thus confirming the result.

The intention is to extend the HT for other shapes as well and the next
chapter describes the Randomized Circular Hough Transform.



Chapter 4

Randomized Circular Hough
Transform (RCHT)

As a follow up, RCHT has been implemented. For circles, the parameters

were derived using the basic equation of the circle,
(¢ —af+ -8 —r?=0 (4.1)

where z and y are image coordinates, a and b are location of the center, and r
is the radius. From the above equation, there are three parameters a, b, and
r. For example, if the edge pixels of an image are arranged on a circle with
parameters ao, bo, and ro , the resultant loci of the parameters for each such
point passes through the same point (@o,bo,r0). Thus, many such circles
intersects at a common point. As in the case of SLHT, implementation of
RCHT also involves a three dimensional array. From Equation (3.1), fix z

“and y, and let a, b and r to vary.

4.1 RCHT Algorithm

The algorithm used to implement RCHT is given below:
1. Scan the image and accumulate the image points in set P.
2. Initialize the accumulator array vote(a, b, r )=0.
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3.
4.

Pick 3 points randomly from the set P. 26

For image exist in each pixel for fixed values of row value and y value
calculate radius r of the circle for all possible values of a@ and b. For each
set of (a,b,r) thus found, a vote is added to the corresponding cell of
accumulator array. A(a,b,r) = A(a,b,r) + 1.

Algorithm is stopped when the accumulator array reaches a certain
threshold value. The next step is to search for the peaks in the ac-

cumulator array.

4.2 Pseudo code for RCHT

6.
7.

First, digitize the original image.

Initialize the accumulator array to zero.

Save the values of the image pixel to a data set P.
Randomly pick three points from set P.

Set up a threshold value. For each pixel passes the certain threshold
value calculate the value for radius r, for all possible values of a and b.

Then increment the accumulator array.

end.

In order to achieve computational time efficiency, wavelet based downsam-

pling technique was applied. The downsampling factor (defined as inc in the

RCHT implementation) in this case was found as 15. This factor was cho-

sen in such a way that both computational time and error reduction could be

balanced. For downsampling values less than 15, the process takes more than
half a day to compile. For values greater than 15, more error is introduced.



4.3 Simulation Results 27

Using steps mentioned above, RCHT was applied on a circular image of size
185x185 pixels.

Figure 4.1: 185x185 pixels sample circular image

For this image, the parameters r, a and b are found as r= 82, a=6*inc=90
and b=T*inc=105. For this image, the values for r, a and b were found
out by using the ’ginput’ command. These values are, r=76.9, a=94.5 and
b=94.5. While comparing program outputs and the original parameters of
the circle, it can be observed that from RCHT, the parameters of the circle
were detected with an accuracy of more than 90 percent.

It is clear that any parametric shape could be optimally processed by
HT and it is typical in many signal/image processing applications to detect
and recognize information carrying arbitrary shapes. The next chapter talks

about applying HT for arbitrary shapes.



Chapter 5
RGHT For arbitrary shapes

5.1 RGHT For arbitrary shapes

It is well known that RHT works well for features with parametric equation.
In case of features which lack a mathematical equation we have to fit a poly-
nomial to get the coefficients. RGHT was implemented using the Newton’s
curve fitting technique. Newton’s general interpolating formula for data pairs
(z1,yl) through (zn,yn) has the form

y=a0+alx*(z—2zl)+a2* (z—zl)* (z — 22) + ....... (5.1)

where a0,al,... are the coefficients. When considering the computational
time involved in this process, Aonly the coefficients a0,al,a2 were taken into
consideration and the rest of the coefficients were ignored. In this case,
~ the accumulator array is five dimensional which is A(a0,al,a2,z1,22). By

rearranging this equation to solve for a0, we get
a0 =y —al x (z — z1) — a2 * (z — z1) * (z — 22)

Before computing the RGHT of any curve, the parameter space between
appropriate maximum and minimum values of aOmin and aOmaz, almin
and almaz, a2min and a2maz, zlmin and zlmaz, and 22min and z2mazx

should be quantized. Once quantization of the parameter space is done,
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the actual HT method can be implemented. The procedure is the same as

adopted for straight line except the dimensionality is high as compared to

the straight line problem.
The algorithm used to implement RGHT for Arbitrary Shapes is given

below:

1. Scan the image and accumulate the image points in set P.

2. Initialize accumulator array vote (a0, al,a2, z1,22)=0.

3. Pick 5 points randomly from the set P.

4. For each point (zi,yi) vary al and a2 from 1 to the number of rows in
the image, also vary =1 and z2 from 1 to the number of columns in the
image.

5. Next, in the limited quantized plane, increment the number of counts
each time a point in the arbitrary shape passes through each cell un-
til the transformation is completed. The number of counts in each
cell of the parametric image are called votes, A(a0,al,a2,z1,22) =
A(a0,al,a2,z1,22) + 1.

6. Local maximum in the accumulator array corresponds to collinear points
in the image plane. The accumulator array provides a measure of the
number of points on the arbitrary shape.

7. Algorithm is stopped when the accumulator array reaches a certain

threshold value. The next step is to search for the peak in the accu-
mulator array. The peaks and their corresponding coordinates are used
to identify potential shapes within the image plane. These peaks provide
the values of a0, al, a2, z1 and z2.



5.2 Pseudo code for RGHT for Arbitrary Shape 50

1. First, digitize the original image.

2. Initialize the accumulator array to zero. Save the values of the image
pixel to a data set P.

3. Set up a threshold value. For each pixel passes the certain threshold
value calculate the coefficient a0 for all possible values of al, a2, z1 and
x2. The formula to calculate a0 is given below: a0=y-al*(x-x1)-a2*(x-
x1)*(x-x2).

4. Then increment the accumulator array.

5. end.

5.3 Analysis of Results

Using steps mentioned above, RGHT was applied on an arbitrary shape (See
figure 5.1). The parametric equation of this arbitrary shape is
y = ao+al*(z—zl)+a2*(z—zl)*(z—22) = 14+ 1*x(z—1)+1x(z—1)*(z—1)

Figure 5.1: An arbitray shape represented by the mathemaical equation y = ao+al * (z—=z1)+
a2 (z—zl)*x(x—22)=1+1%x(z—-1)+1x(x—1)*(z—1)



From the RGHT program output, the maximum vote was found as 5 poin?:é
located at a0=7, al=4, a2=3, £1=>5 and z2=2. Since the original equation
of the arbitrary shape is

y=1l+1*(z—zl)+1x(z—1)*(z—-1)=2~z+1. (5.2

Since a2 denotes the coefficient of the highest order term in the above eqn,
a2 determines the characteristics of the shape. From the output of the GHT,

the equation of the arbitrary shape is obtained as
y=7+4*(m—3)+1*(.’1}—3)*(:17—2):;1;2—:1;+]_, (5.3)

which agrees with the original equation of the image as in equation (4.2). Also
note that a2 value for the original image as well as the a2 value obtained from
the Basic RGHT are the same, thus confirms the accuracy of the result.
Since the accumulator array is five dimensional for RGHT, computational
complexity is very high. In order to achieve computational time efficiency,
Wavelet decomposition technique was applied on the image. RGHT algo-
rithm was applied on the decomposed version of the image and the value of
a0, al,a2,z1,z2 are found as a0=3, al=3, a2=1 z1=2, £2=2 Therefore, the

equation of the arbitrary shape is found as
3x(x—2)+ 1(z —2) * (z — 2). (5.4)
After simplification, the equation (5.4) becomes, y = z? — z 4+ 4 which agrees

with the equation of the original image, except for the intercept.

5.4 HWT for Arbitrary Shapes

Since the accumulator array is five dimensional for RGHT, computational
complexity is very high. In order to achieve computational time efficiency,
Wavelet decomposition technique was applied on the image. RGHT algorithm



. . 32
was applied on the decomposed version of the image. The following table gives
a comparison of the RGHT results before and after the decomposition.

RGHT without decomposition | RGHT with level 1 Decomposition

Time (sec) 3.133 0.8907

Table 5.1: RGHT time comparison table before and after decomposition

It can be observed that the decomposition process considerably improved the
time efficiency of RGHT. Time efficiency achieved in this case was more than

78

5.5 Image Enhancement

In this project, the theory of minimum cross entropy optimization has been
applied for image enhancement purposes and also to achieve time efficiency.
In the crude image,there were 4 less intensity points and the intensity of
them were 150 each.After applying the newly developed MCE optimization
coding, it was found out that 3 out of 4 of the less intensity points became
significantly enhanced with intensity values of 238, 238 and 405 and thus
confirms MCE’s applicability in image enhancement. RSLHT was applied
on the crude image and also on the enhanced image and the results were
compared. The following table gives a comparison of the RSLHT results

before and after the enhancement.

Crude Image | Enhanced Image
Maximum vote 3 3
Coordinate(a0,al,x1) (50,1,50) (50,1,50)
Time (sec) 0.1646 0.0987

Table 5.2: RSLHT Results



From table 4.2, it can be noted that considerable time efficiency was achievgg

when applying RLSHT on an enhanced image.

5.6 Observations

It can be observed from the RGHT results that the coefficients of a0, al and
x1 obtained from the first level of wavelet decomposition are about half the
value of the coefficients obtained from the Basic RGHT. However, the value
of coefficients a2 and x2 remain the same before or after applying the wavelet
decomposition. In conclusion, after applying the wavelet decomposition, the
coefficients of the image maintain a 50 percent ratio while comparing to the
real coefficients before applying the decomposition technique.

5.7 Performance

The RGHT using the proposed method proved as a very efficient technique for
the detection of complex shapes. The new technique was able to detect any
arbitrary shape. Since the dimensionality of the accumulator array was high,
without applying wavelet decomposition technique, it was almost impossible
to perform RGHT. Also, enhancing the image(before applying the HT) using
the MCE technique, proved to accomplish the required time efficiency.



Chapter 6

Computational Complexity of
Proposed Method

6.1 Computational Complexity of Proposed Method

Computational complexity of RGHT is very less compared to other HT types.
Random sampling mechanism and the converging mechanism of RGHT helps
it to be the best computationally attractive technique among other HT types.
The following table provides a detailed analysis of this.

Algorithm | HT | GHT |[RHT | RGHT
image type—

Binary yes yes yes yes
Grayscale no yes no' yes
target—

line yes no yes yes
circle yes yes yes yes
parametric | yes(slow) yes yes yes
Arbitrary no yes no* yes
Speed slow slow fast fast
Storage high high low low
Accuracy | medium | medium | high | high
Resolution low low any any

Table 6.1: Comparison between RGHT and other Hough Transforms
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*RHT itself is not suitable for arbitrary shape detection. In order to mal%g
this possible, a mathematical way of representing any arbitrary shape has to
be developed.

1 RHT itself is not suitable for grayscale images. In order to make RHT
suitable for grayscale images, thresholding or filtering has to be applied. The
following table provides an illustration of the Time Complexity of HT related

Algorithms.

Algorithm Time of Complexity
HT N/A
GHT O (Xsize 'Ysize)
RHT | O(number of sample: f(n))
RGHT | O(number of sample: f(n))

Table 6.2: Time Complexity of HT related Algorithms

Since HT is unable to detect arbitrary shapes , the time complexity of HT
is not included here. In RHT, f(n) is a function which depends on the number
of parameters n of the analytical object. Since there are two parameters

2

involved in the case of a line, f(n)=n°. Also number of sample is the

number of pixels which are picked randomly in a specific image which is n.
Therefore, in the case of a straight line, the time complexity is found as n®.
Since newly proposed RGHT follows the same concept as in the case of RHT,
the time complexity equation will be same. But the only difference is that
since 3 parameters are involved in the proposed method in the case of line

detection, f(n) will be n® and therefore the time complexity of the proposed

method is nt.



6.2 Potential Applications of RGHT 50

This promising technique could find many practical applications in the area
of Spectroscopy, Pattern Recognition, Machine Vision and also in several
medical areas. One such application is the detection of Echelle disorders.
This technique also can be used for the detection of linear /non-linear chirp

interferences in a spread spectrum signal [15] .

6.3 Conclusion

The RGHT using the proposed method proved as a very efficient technique
for the detection of complex shapes. The new technique was able to detect
any arbitrary shape. Since the dimensionality of the accumulator array was
high, applying the wavelet decomposition technique, helped the process to
become faster. Also MCE’s applicability on image enhancement was also
proven effective in this pro ject. After applying RGHT on the enhanced image
proved much more time efficient than applying RGHT on the crude image

itself.
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