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Abstract

We propose a novel approach to event boundary detection, where autonomous
agents are deployed in order to minimize the number of transmissions required to
discover an event boundary. The goal of our algorithm is to reduce the number of non-
boundary node transmissions (i.e. nodes within the event area and not within
transmission distance to the boundary), since the sensory data from these nodes are not
required for event boundary detection. The algorithm works by first randomly
generating a fraction of agents within the event nodes, then discovering and mapping the
boundary, and finally reporting the aggregated results to the user. Simulations
demonstrate that the algorithm exhibits O(n) efficiency relationship with the event area,
which is an improvement over existing methods that show O(@’) relationships.
Furthermore, we demonstrate that the boundary of an event may be successfully mapped

using the proposed algorithm.
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Chapter 1: Introduction

With the advent of wireless communications and the ever decreasing cost to
performance ratio of microcontrollers; smart, low-cost wireless sensor networks have
gained feasibility. A sensor network consists of a set of wireless processing nodes spread
over a region of space in order to provide spatial resolution to the sensory data from that
region. This network could be seen as a mesh of interconnected smart nodes, each with
the capability of relaying sensory data across multiple hops until a map of sensory data is
~ finally delivered to the user. A seismological application could be taken as an example of
such a scheme, where sensor nodes could be spread over a region susceptible to
earthquakes. A seismologist could then learn the varying degrees of vibration seen
throughout the entire region, providing useful information such as the location of the
epicenter or even the wave propagation characteristics of the earthquake.

The main constraint for realizing a practical sensor network is cost; which in turn
can be broken down into the cost of the individual node as well as the implementation of
the overall network. The cost of a node can be reduced by decreasing the size and
complexity of the node. Implementation costs can be reduced by removing restrictions to
node placement as well as the need for infrastructure. Without infrastructure the sensor
node becomes completely wireless and ad-hoc, with limited power resources and the
need for wireless communications. It is this need for power efficiency that drives much
of the current work in wireless sensor networks (WSNs), where efficiency is improved
through the use of various algorithms that balance the trade-off between sensor resolution
and cost/efficiency.

In many typical wireless sensor network applications scalability is a
difficult issue to address. If we assume that a given network is spread over a
considerable distance then the number of nodes which must report their sensory data
increases accordingly. Therefore, as a sensor network becomes larger, the task of routing
information to the user efficiently becomes increasingly more difficult.

It is with this consideration that various wireless sensor network protocols have
been developed, and with the intent on reducing power consumption through the

reduction in the overall number of transmissions without sacrificing the application




requirements. Typically, these methods involve either the restriction of transmissions to
only those nodes that posses’ relevant data or through the aggregation of data within the
network before it reaches the user. Both of these methods require a data centric approach
where the user communicates to the network which types of data and what value ranges
are of interest.

For the case of boundary detection of large event areas the current
algorithms are not optimal. If we assume that the information of interest is the event
boundary and not the individual sensor readings within the event region, then it becomes
a waste of network resources to report the sensor readings of all nodes in the event
“region. Additionally, even if only the nodes along the event boundary report their sensor
data then there is the added overhead of passing that event data through the sensor
network in order to reach the user. Ideally, an algorithm should take into account the
event boundary path and utilize that path to aggregate the event boundary data and reduce

overall number of nodes reporting to the sink.




Chapter 2: Background

In this chapter we discussed recently proposed routing protocols and event

detection schemes for WSN, which are relevant to our work.

2.1 Routing Techniques

Routing protocols for WSN can be broadly categorized into Hierarchical and Data
Centric routing. We first discuss the Hierarchical routing protocols in section 2.1.1

followed by Data Centric protocols in section 2.1.2.

2.1.1 Hierarchical Routing Protocols

The main goal of a hierarchical protocol is to reduce power consumption through
the use of clustering. A cluster is formed within a localized region, where transmission
distance will not deplete resources as much. All queries occur between the sink (or an
intermediary node) and a single node in the cluster (usually termed cluster leader). Once
all nodes within a cluster have communicated their sensor data, the cluster leader then
responds to the query. The main advantage of clustering is that it allows for scalability
since the higher echelon of nodes querying the cluster leaders do not require knowledge
of the cluster member nodes. Additionally, since clusters are localized regions data
aggregation is facilitated.
The LEACH (Low Energy Adaptive Clustering Hierarchical protocol) protocol was one
of the earliest attempts at a hierarchical protocol. In this protocol Clusters are formed
around cluster heads based on signal strength. It is important to not that nodes are not
selected as cluster heads rather they elect themselves randomly. Once a node volunteers
to be a cluster node it then advertises its services to its neighbors who in turn decide to
join the cluster based on signal strength. All queries to and from nodes within the cluster
are routed through the cluster head which performs the task of data aggregation and
routing back to the sink. Once a fixed time elapses new cluster heads are chosen in order
to distribute overhead. The main drawback behind the LEACH protocol is that it

assumes that all nodes can communicate directly to the sink. This is not always possible




in larger networks and usually requires more transmission power then multi-hop routing.
Additionally, in order to setup clusters and cluster heads, a lot of network overhead is
required. Finally, the use of randomly elected cluster heads may lead to “holes” in the
network where some nodes are not sufficiently near enough to a cluster head to become a
member of a cluster.

The TEEN protocol (Threshold sensitive Energy Efficient sensor Network
protocol) is a hierarchical protocol that uses a data centric approach to improve energy
conservation [13]. In TEEN clusters are formed on multiple levels, where one cluster
heads form their own clusters. These clusters form a tree structure originating from the
sink. Once this tree structure is formed the sink sends a hard threshold and a soft
threshold to all nodes in the network. These thresholds are used by the sensing nodes to
report back to the sink, up the cluster tree, any sensed data which passes those thresholds.
Once a sensing node detects data above the hard threshold it sends that data back through
the network. However, it will not resend that sensed data until the sensed data has
changed enough to pass the soft threshold. However, this leads to the main disadvantage
of the TEEN protocol since the network will fall silent if no thresholds are reached.
Additionally, the network has no knowledge if nodes have received hard or soft
thresholds since some nodes are expected to remain silent if thresholds are not reached.

The ATEEN protocol (Adaptive Threshold sensitive Energy Efficient sensor
Network protocol) is an extension of TEEN and introduces periodic reporting [14]. In
the ATEEN protocol, a reporting schedule is handed out to all nodes when the soft and
hard thresholds are transmitted. Nodes are given a transmission slot which they must
transmit their status regardless of thresholds. This leads to more enefgy consumed, but a
more responsive and robust protocol. The main drawbacks for both TEEN and ATEEN
is the added complexity of setting up multiple cluster heads at various levels as well as

maintaining thresholds and reporting schedules (in the case of ATEEN).

2.1.2 Data Centric Routing Protocols
Typical routing protocols operate on the principle that the user requests data from
the network, that request is routed throughout the network, and nodes with valid data

respond to that request. This paradigm is useful in scenarios where the user makes
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infrequent requests and does not need to be continuously informed of events sensed out in
the network. For these cases data centric routing was formulated where the number of
events requiring observation or few and far between. Data centric routing formulates that
the network should be given knowledge of what types of data is of interest by the user
and then left to themselves to report if they have seen that data. This requires for the
network to have some application knowledge as well as a naming convention for the data.

The SPIN protocol (Sensor Protocols for information via Negotiation protocol)
was one of the first data centric protocols proposed [12]. This protocol uses a meta-data
descriptor to describe their sensed data. This meta-data descriptor is much smaller then
the actual data itself but is useful in order to communicate to other nodes what data that
node posses. Once new data and a new meta-data descriptor are available that descriptor
is advertised to the nodes neighbors. If those nodes have not themselves collected similar
data then they will already have that meta-data descriptor and will ignore the message. If
neighbors do not have the meta-data descriptor they will then store it and forward it
themselves to their neighbors. In this way the meta-data descriptor for an event can be
propagated until the entire network has knowledge of that event. The user may then poll
any node in the network in order to retrieve the meta-data descriptors which then point to
the source nodes. The use of negotiating with meta-data descriptors avoids flooding the
network and therefore is highly energy efficient. However the main drawback behind
spin is that there is no guarantee for data delivery since not all nodes may be interested in
the data between source and destination nodes.

The directed diffusion protocol is a very popular data centric protocol that has
gained much attention in this field [11]. The main idea behind directed diffusion is that
when an event occurs, a local gradient (or information flow) is setup within the local area
of the event nodes. The requester then diffuses interest throughout the network which
when encountering nodes that posses the required data, setup additional gradients which
flow data back towards the sink. In this method multiple paths are formed from the same
sources and therefore only the strongest paths are reinforced while the weaker paths are
let go. A stronger path is defined as one where a lot of data aggregation is occurring over
a weaker path with less data aggregation. The selection of various paths over others is

primarily used in order to improve data aggregation however it may also be used to




improve reliability and robustness. An important addition to direct diffusion is the use of
caching, which allows for an interest to be stored for later use.

Another version of directed diffusion is gradient routing, which utilizes the
minimum number of hops to the sink rather, then data aggregation in order to determine
which paths survive. Each node keeps track of the height to the sink or the number of
hops to the sink. The difference between two nodes heights is referred as the gradient
and the sharpest gradient is used to route the packet back towards the sink.

The main advantages behind direct diffusion are the lack of any overall routing
topology. In directed diffusion a node only needs knowledge of I-hop neighbors rather
then constructed routing topologies. This reduces overhead required to rebuild any such
topologies whenever there is a topology change. Additionally, directed diffusion is
highly energy efficient since it is an ideal data aggregation model with only 1-hop data
transmissions. The main disadvantage behind directed diffusion is that it is application

dependent and must be set-up that way from the start.

2.2 Event Boundary Detection

Chintalapud [1] laid the groundwork for localized edge detection, where he
proposed in his paper three approaches to event boundary detection. Each of the
proposed methods restricted the number of nodes reporting to the user to only the nodes
that have self-determined themselves as boundary nodes. Nodes determine their status by
retrieving sensory data from all neighboring nodes and performing 1 of 3 suggested
algorithms to self determine their boundary status. These three algorithms are:

A statistical approach where each node in the event area would compile a statistic
based on the results obtained from all of its neighboring nodes. The static is then
compared to a Boolean decision function. This method has the advantage that it is robust
to errors however it does not take into account the geographical location of each node,
resulting in boundary estimation errors.

An imaging approach facilitated through the use of edge filters such as the Prewitt
filter. This method utilizes a weighted approach to overcome the Prewitt filters need for
regularized pixel like data. The Prewitt filter rotates an edge template around the 8

neighboring regions of a pixel in order to determine the closest match to a given edge




orientation. Since node placement is random and any given sub-region within the node
area may have more neighboring nodes then another region; biasing can occur if the
geographic location is not taken into account. Therefore weights are applied to each node
corresponding to its location relative to specific regions.

Finally the he proposes the use of a linear classifier to determine which nodes are
edge nodes. The linear classifier optimally places a linear line such that the maximum
number of non-event nodes lies to one side while the maximum number of event nodes
lies on the opposite side. If the node (i.e. the epicenter and a given radius r from the
epicenter) is on the side of the edge nodes it is deemed an edge node. This method has
the advantage that it inherently takes into account the geography of nodal placement

Finally, once all nodes that have witnessed the event have determined their status,
all nodes which are within the event boundary report back to the sink.

There are several disadvantages to all three methods. The first disadvantage is
that only local area neighborhood data is considered when evaluating an edge condition.
Nodes that exist along network holes may not be considered since although they border
the edge of the event, there may not be a neighboring non-event node within transmission
radius. This may lead to event boundaries that are not contiguous. Additionally, all
nodes within the event area must poll their neighbors to discover if they are an edge node
or not. Assuming that a completely efficient algorithm is used; all nodes within this
region must transmit at least once. With a constant node density, as an event area
increases in size the corresponding number of internal nodes increase exponentially.
Therefore for larger event areas the algorithm becomes increasingly resource intensive.

Further work in using local statistics of the node neighborhodd to discover event
boundaries have been presented by both [4] and [8]. In these papers the authors utilize
local neighborhood sensor data to determine the likelihood of a node being an edge (a
classifier is used in [4] while a statistical approach is used in [8]. The main addition of
these two newer algorithms to the literature is the use of neighboring information to
exclude faulty nodes. These algorithms are still subjected to the same disadvantage,
where all nodes within the event area must discover neighboring node information.

An event boundary detection algorithm involving hierarchical sensor networks

was proposed in [2] where the authors proposed using a cluster based approach. Initially,




the cluster formation occurs similar to that done in hierarchical algorithms such as
LEATCH or (A)TEEN. The sensor network is then divided into quadrant where a single
cluster head in each quadrant is then polled for event status. This process continues as
each cluster head within each quadrant further sub-divides its region into four sub-
quadrants and each sub-quadrant further divides until maximum resolution is reached.
The final sub-quadrant’s that contain event boundary information are then relayed back to
the sink.

Additional work on event boundary detection in hierarchical networks has been
done by [4], where cluster heads are chosen as local maxima or minima in order to allow
for contour lines to be discovered through the polling of bisecting nodes. The method
follows as: cluster formation; course and fine localization; cluster reorganization; and
contour line construction. Cluster heads begin by polling member nodes and each head
determines if its region contains local maxima/minima (the maxima/minima points
correspond to sensory data peaks within the event region). Clusters then re-organize
around cluster heads with maxima/minima points, merging clusters and electing new
cluster heads. Within each newly reorganized cluster, new sub clusters are formed at the
maxima/minima and they poll selected cluster nodes along radiating paths. Since these
radiating paths would bisect the contour lines of the maxima/minima the sensor results of
the nodes along those paths allow for the calculation of contour line points. The cluster
hierarchy then reports the contour lines back to the sink.

The main disadvantage of these methods is that although they spatially separate
sampling of the event area in order to reduce the total number of nodes polled they still
operate on the hierarchical polling method which requires high maintenance overhead,
long transmission distances and a two-tiered node structure. Additionally, this method
works on a polling principle where the user must poll the network to discover the event

boundary.
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2.3 Terminology

In this section we defined the terminology used in this paper. A sensor network
consists of a multitude of wireless sensors spread over an area of interest. These wireless
sensors would be interconnected wirelessly, limited by local transmission distances. This
would lead to a mesh like structure, where each node would have a communication link
with its immediate neighbor and would ideally use multi-hop transmissions to
communicate with the user.

If we assume that there exists a case example of a sensor network (N) which was
the set of sensor network nodes from Nj, Na, ... ,N, where n is the maximum number of
nodes.

Furthermore, let us assume that the sensor network N detects a homogenous and
contiguous event, and that event encompasses an event region defined by a subset of N to
be refereed to as Nevent, Where Nevent contained a number of nodes denoted by neyent. If
the sensor network had a constant density (p) and event radius (Reyent) then the number of

nodes within Nevent Would be defined as
Nevent =T ° Revent2 ° p (eq' I)

Furthermore it can be seen from eq.1 that if the sensor network had a constant p
then if Revent Was increasing linearly then nevent would increase exponentially.
Additionally, it can be seen that if we assume all nodes have a transmission radius (Rrx)
smaller then Revenr then there would be a subset of N capable of detecting the event
boundary, denoted by Nai poundary and consisting of Ngi_poundary Number of nodes.

Nait_boundary is dependant on Rrx, where

Na|l_Boundary = T °* P * [(Revent + RTX)2 - (Revent - RTX)Z] (eq' 2)
or
Nall_Boundary=— T * P * 4(Rcvent ° R'I‘X) (eq 3)




Therefore it is easy to see that neyene has an exponential relationship to Reyent
while Nai_boundary has a linear relationship to Reyent.

Furthermore Nay_poundary Would consist of the subset of all boundary nodes, which
are both within the event and within the boundary region (Nevent boundary) as well as the

subset of nodes, which are only within the boundary region and not within the event

(Nnon_event_boundary)- Npon_event_boundary is given by:
NMnon_event_boundary = 7t°p[(Revent + l‘TX)2 = (Rcvent)z] =Tep (2Revcnt'RTX + RTX2) (CQ° 4)
While Nevent_boundary is given by:

Nevent_boundary = 7t’p[(Revent)2 - (Revent - RTX)Z] = *p(2Reven*Rrx - RTXZ) (eq.5)

Leading to the conclusion that the difference between npnon_event_boundary and
Nevent_boundary WOUId consist of n-p-2~RTX2. If we assume Rty is constant then as Revent

increases the assumption that Nnen_event_boundary = Mevent_boundary bECOMES true.

It must be noted that for the above calculations to be valid, the assumption that the
event can be characterized fully by a radius must be valid as well. As the event region
becomes more and more irregular, the ratio of perimeter length versus event area
becomes larger and therefore Nevent_boundary —> Mevent. Considering that most applications
requiring event region characterization such as temperature, acoustics, chemical analysis
and vibration propagate in an omni-directional manner due to either_ diffusion or the
wave-like nature of energy, it is safe to assume that many applications will be contiguous
and mostly spherical in nature. Therefore the assumption that the event can be
characterized by a radius will hold true in many applications leading to the conclusion

_ that the above projections will hold.
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Chapter 3: Our Event Detection Algorithm

We propose a novel algorithm of event boundary detection where the event region
boundary is mapped and reported by autonomous agents. The main objective of this
algorithm is to improve the transmission efficiency of event boundary detection.

The first technique we use to improve efficiency is through decoupling the
increase of efficiency from the increase in event area (Toa1 o Rm..tz) which is an
exponential relationship to event radius and move towards an algorithm that has an
efficiency increase related to the event circumference (Tiota € Revent). It is clear that as
an event area increases in size (within a network with constant node density) that the total
number of nodes that see the event will increase exponentially when compared to the
number of nodes that will see the event boundary. Since nodes have no knowledge of
whether they exist on a boundary until after they have polled their local neighborhood
there is no way to adapt previous methods mentioned in the literature to reduce interior
node transmissions. By first locating the event boundary region and then propagating
event boundary discovery transmissions along that boundary, we hope to reduce interior
node transmissions.

Additionally, it is more beneficial to report only absolute boundary nodes rather
then all boundary nodes. All boundary nodes refer to all nodes within Ryx distance of the
actual event boundary. Absolute boundary nodes can be defined as the minimum set of
nodes, which are required to completely circumscribe all event nodes. It is apparent that
absolute boundary nodes (Nabsolute_boundary) are a subset of the event bouhdary nodes
(Nevent_boundary) and therefore Napsolute_boundary << Mevent_boundary- If the application requires
only the event area shape and not the event boundary data statistics (which by the
statistics very nature will be similar data sets divergent only by the tolerance of the
boundary function) then the absolute boundary nodes are more then sufficient and the
additional transmissions created by polling all boundary nodes as well as the larger
packet size that is required to report the extraneous data back to the sink are wasted. The

proposed algorithm conserves this energy by minimizing polling of non-event boundary
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nodes by only requesting event boundary nodes to respond to a query and by assuming
the state of non-event boundary nodes through their null response.

Finally, event boundary detection efficiency can be improved through the
utilization of node collaboration through roaming agents. Agents are program code,
which run locally on the individual nodes. Once the agent code has completed, the
results of the program as well as the program code are compiled in a packet and sent to an
adjacent node. The adjacent node could then open the packet and run the agent code,
utilizing the compiled results from the previous node (also included in the packet) as an
input. The agent would then proceed to create a new result, based on the co-processing
of both nodes. This process could then continue, as the agent is passed from node to
node throughout the network. An example of an agent would be a program which would
compile the average sensor readings of all nodes along the agent path.

Agents are autonomous in the sense that once created they do not require input
from the user to perform their function. In this algorithm we propose to use agents in
order to discover an event boundary node and then map the entire event boundary by
moving along linkages between the absolute event boundary nodes. The function of the
agent would be two-fold: record its path along the boundary of the event as well as utilize
neighboring information to determine which neighboring node is the next absolute event
boundary node. Utilizing agents reduces the total number of nodes needing to report to
the sink, without the need to resort to clustering.

Additionally, the use of agents allows for the selective polling of neighbors, since
if the agent knows it’s on the event boundary, it can use that knowledge to selectively>
poll nodes which have either detected the event or have not detected the event. This
allows for the algorithm to reduce the overall polling of boundary nodes by limiting itself
to polling only event-boundary nodes and not non-event-boundary nodes. Since
Nevent_boundary = Nnon_event_boundary (fOr a sufficiently large network) the total number of

transmissions required can be reduced by at most 50%.
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3.1 Assumptions

We have made several assumptions in order to facilitate the simulation of the
proposed algorithm in a sensor network using Matlab. The first assumption is that there
exists a wireless mesh network of autonomous sensor nodes spread over a geological
area. The distribution of those nodes would be random, with a fixed overall network
density. Additionally, the nodes would have a finite amount of energy available and
therefore energy conservation would be of concern. A MAC layer protocol would also
exist which would allow for the individual nodes to transmit and receive messages
between neighbors within a given transmission radius. Additionally, the MAC layer
protocol would avoid collisions either through the use of scheduling or a back-off
algorithm and therefore the simulation will not consider collisions. Finally we have
assumed that each node will know its local co-ordinate relative to the sink as well as
knowledge of its neighboring node locations. The assumption that there exists a protocol
layer sufficient to support the above mentioned requirements is reasonable since much
previous work in sensor networks has focused on these areas.

We have also assumed that the sensor network will have the capability to run an
agent program transmitted to the node from another neighboring node. The agent located
locally on the node would have access to all incoming and outgoing transmissions as well
the capability to store data locally on the node, to be recovered later by a subsequent
agent.

Additionally we have assumed that events detected by the network are such that
they exist as a contiguous region, with a roughly circular shape. Finally, since errors in
sensor measurements are beyond the scope of this paper we do not considered them

during simulation.
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3.2 Summary of the algorithm

The algorithm involves several distinct phases of operation:

1) A node detects an event within a preset time period/window. Once the time
period has ended the nodes that detected the event will randomly generate an
agent based on a preset threshold probability. This allows for a small

' percentage of agents to be generated.

2) Once an agent is first created it defines a random direction vector and moves
in that direction to discover the edge of the event region. It knows that it has
reached the event region once it hears a response from a node that has not
seen the event. If the agent discovers another agent has visited this node then
it knows that another agent exists which can complete the task and therefore
ceases operation. In order to reduce transmissions, during the edge discovery
phase, the agent requests responses from only nodes that have not seen the

event.

3) When an agent has found the boundary, a second agent (or child agent) is

spawned.

4) Both agents move along the boundary (parent agent in CW fashion while child
agent CCW). As the agent reaches the next node it:
I. Retrieves event status of all neighboring nodes
II. Sorts’ nodes based on direction angle relative to the angle from the
previous node in the agents path, and move to the next event node on
that sorted list.
I1I. Stores all nodes that agent has visited that are on the boundary in the
agent’s boundary stack
5) When a parent agent meets the path of a child agent, the node hosting the

agent combines the stored agent paths and reports to the sink.
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The basic operation of this algorithm requires that the detection of an event be
separated within individual periods or time windows. The period would define the
frequency in which the algorithm would run as well as the time resolution of the resulting
data. Once a period of time has passed, each node that detected the event within the
region can then generate an agent. Since this algorithm would operate ideally with only
one agent generated, a random probability is used to reduce the total number of event
nodes that generate an agent. Therefore each node that wishes to create an agent must
first randomly generate a number and if that number is below a pre-set threshold the
agent will be generated. The wake-up threshold can be chosen based on the allowable
resolution of the event area, since the smaller the event area the fewer nodes exist and
therefore the less likely a small threshold will generate an agent.

Once the agents are generated they then begin searching for the boundary
of the event area. This is accomplished through performing a directed random walk
across the network until a non-event boundary node is reached. The random walk
consists of first choosing a direction vector and then moving along that vector until a
boundary node is reached. Since there is a higher probability of the agent originating
from an internal node, only nodes that have not seen the event need to reply to the node
hosting the agent. This reduces the overall number of transmissions required to find the
boundary. During this random walk, if the agent encounters the path of another agent
(one that is either searching for the boundary or is moving along the boundary) it ceases.
Again, since the ideal algorithm would only generate one agent there is no need for the
agent to continue since there is already an existing agent running.

When the agent discovers a boundary node it then begins moviﬁg along the
boundary. This involves first generating a child agent which then moves along the
opposite direction along the boundary, away from the parent agents’ direction. This
reduces the time required to detect an event region since there are two simultaneous
agents moving along the boundary rather then a single agent. Ideally only one agent
would be generated, which would then find the boundary and split, moving along the
boundary in opposite directions. Once both parent and child agent meet, the child agent
passes along its boundary path to the parent agent, who would in-turn pass it along to the

sink.
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In order to discover the next boundary node (node,+;) the agent must first
learn which of its neighbors have seen the event and which have not. In order to discover
the event status of its neighbors the node hosting the agent (node,) polls all of its
neighbors requesting for a response from only those who have not seen the event. Once
this information is gathered the node hosting the agent then uses it’s knowledge of the
location of it’s neighbors as a pre-generated table of angles to determine which event
node lies clock-wise (or counter-clockwise depending on the direction the agent is
traveling on the boundary) from the previous node in the agent’s path (node,.;). It is
clear that if an imaginary line is drawn from node,.; to node, and if that line was to move
clockwise (with node, as its pivot) until it encountered a node that had seen the event
then that node would be the next node along the boundary path (node,+1). This case is
true for the majority of boundary decisions made by the agent except for a couple of

specific scenarios that will be detailed in section 3.3.
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3.3 Transmission Cost

In order to calculate the cost associated with a statistical method (the control
which the algorithm we are proposing must be compared to) as proposed in [1] we must
take into account that all nodes within the event as well as all nodes within Rty of any

node within the event must exchange their event states. This can be characterized by:
NTX control = T*P(Revent + RTX)2 (eq. 6)

The algorithm that we have proposed will have the following transmission cost.
Once the algorithm has completed, the number of nodes related to the wake-up threshold
(THwakup) Will have created an agent. These agents will have traversed an average
distance of Reyent to reach the event boundary. Additionally, the average distance
between nodes will be half the transmission radius if we assume an even distribution of
nodes. Therefore the total number of node transmissions required to at most:
NTX_boundary discovery = 2 * (Revent/RTX) * Nevent * THwakup. (eq.7)

=2 ¢ (Revent/RTX)(T * Revent” * P)*THuakup

As long as (Rrx/Reyent) << 1 and THyakyp << 1 is true then the number of interior
event nodes polled by the algorithm will be a fraction of the total number of interior
nodes. Additionally, since during the boundary discovery phase of the algorithm only
non-event boundary nodes are polled, the total number of boundary nodes will be reduced
by almost 50% considering that Nnon_event_boundary = Nevent_boundary @S pre equation 3.
Therefore the total number of nodes which must be polled along the boundary will be

equal to Nevent boundary s Well as the cost to transmit the agent information between nodes.

NTX_agent_overhead = 2+7*Revent*(2/R1x) (eq. 8)
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Therefore the total cost of the algorithm would be equivalent to:

NTX_proposed = MTX_boundary_discovery T MTX_agent_overhead T Mevent_boundary (eq.9)
=2 (Revent/ll'l'x)("t M Revent2 ® p)'THwakup+ 2'n°Re\'ent°(2/RT,\') +
+ *p(2Revent"Rx - Rrx”)

Comparision of transmission cost bet control and proposed algorithm

1800 + E
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Control

800

600 -
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1 2 3 4 5 6 7 8 9 10
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Figure 1: graphical results of the transmission cost of the control
algorithm and the proposed algorithm.

-18 -



3.4 Special cases for determining next node in boundary path

During the event boundary discovery phase there are several special conditions
that must be considered where the basic algorithm fails. If a communication hole exists
along the boundary of the event, there may be nodes that are situated along the event
boundary yet are not in communication range with a non-event node. In these cases,
seeing itself surrounded by nodes which have seen the event the agent will not find a
referencing non-event neighbor node to base its decision on the next event node.
However, if the agent assumes that it has encountered a hole in the sensor network then it
can follow the boundary of that hole by choosing the next node in clock-wise direction.
The hole along the boundary may be thus circumvented until the agent reaches a node at
the end of the hole with a non-event boundary node neighbor.

Another special condition that may arise during the event boundary discovery
phase is the presence of event nodes chains. A chain would consist of a series of event
nodes that would only have two or fewer neighboring event nodes. As the agent moves
along this chain it would come to a point where non-event boundary nodes could exist on
either side of the chain, leading to a ping-pong effect where the agent would bounce back
and forth along two points in the chain. In order to avoid this, the agent must detect these
chains by recording previously visited nodes and avoid considering them when choosing
noden+.

The agent may also get trapped when considering nodes that exist within a
concave boundary. In this situation an interior node (node;) can falsely be considered as
the noden+1. To understand these situations consider an agent at node,.; analyzing its
neighbors (including node; and node,.;) to determine the next node in the event boundary
path. It will sort all neighbors in order of angle and will choose node,; and ignore node;
since [0(node, ;—node,.,—node,.1))] < [0(node,.;—node,,—node;)]. However, once
the agent moves to node,.; and then polls all of its neighbors it will find that 8(node,,.
2—node,.;—node;)) < 0(node, ,—node,.;—node,) and will therefore choose node; as
the next node in the agent path. In order to detect this condition all nodes that lie within

the region shown within figure 1 must not be considered when determining the next node
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(nodey+1). If the boundary is a concave boundary then these nodes will be those which
are interior nodes, and if the boundary is convex then these nodes will be non-event

nodes.

Trapezoidal
Region

) ® node,,_, node,), o
a) b) c)

Figure 2: Special conditions for next node selection in event boundary discover. Chain of event
nodes (a) concave boundary (b) trapezoidal region for concave boundary node exclusion (c).
Note: Event boundary nodes shown in dark gray while non-event boundary nodes shown in light
|_gray while the error path are shown in gray.
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Chapter 4: Simulations/Observations

We used Matlab in order to simulate and validate the performance of this
algorithm. Since Matlab cannot simulate multiple simultaneous agents processing in
parallel, we divided the simulation into distinct time slices. Each time slice represented
the time it would take for a node to transmit to all neighbors, receive a response and
transmit the agent program code to the next node. The simulation involved defining all
nodes in a circular area as having seen an event. Additionally, the network size, density,
transmission radius as well as wakeup threshold were all variables that could be varied in
the simulation.

The algorithm was tested for variation in efficiency and accuracy against event
radius size. Other variables, which have an impact on algorithm efficiency and accuracy,
are node density and the wakeup threshold. The node density is the average number of
nodes within a square unit of area, and this was fixed at 5 nodes/unit®. The wakeup
threshold was fixed at 0.005 and is the chance that any given event node will generate an
agent at the start of a time slice. The algorithm was simulated within a sensor network
located within a square area (LxL) with variation in area size from 10x10 to 50x50 units
(i.e. L varied in steps of 2 from 10 to 50). The event radius was fixed in relation to the
network area with event radius of L/3 (i.e. 3.3 to 17.33 units). For each step in event
radius size, we performed three simulations for each step and the average of the results
was reported. _

An example of the simulation output can be seen in figures 3a and 3b. Within
figure 3a the randomized sensor network is shown where all event nodes are marked in
black gray while non-event nodes are marked in light gray. Additionally it is shown that
the boundary of the event area was (shown in black) was successfully detected. Within
figure 3b the agent paths are shown in black (agent 2) and gray (agent 4). Both agents 1
and 3 in this example were terminated before reaching phase 2 of the algorithm since

they already encountered another agent.
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Figure 3: graphical results of simulation output. Event boundary (a) and agent paths (b). light
gray lines and nodes depict sensor network and communication paths, black nodes depict event
nodes, black line depicts detected event boundary. Note, in figure b) agent starting regions
marked as A#, Agent 1 and 3 aborted, while Agents 2 and 4 successfully found the boundary and
mapped it.

Event accuracy was measured by calculating the total number of event nodes
correctly bounded within the reported event boundary versus all nodes which detected the
event. A second statistic, false positives, was used to ensure that no node was incorrectly

found as an event node. This was important since this would not be reflected in the
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accuracy statistic, and could in fact alter the accuracy statistic if present. The event
efficiency was broken down into two statistics: efficiency of boundary detection and
efficiency of event area detection. The efficiency of boundary detection was determined
as the average number of transmissions made per boundary node (i.e. nodes within
transmission radius of the boundary). The efficiency of event area detection was
determined as the average number of transmissions made by each individual interior or
boundary node (i.e. all nodes within event radius + transmission radius).

As shown in the theory section of this paper we theorized that the ratio of
boundary nodes to event nodes would decrease as the event radius increased. This
concept was demonstrated within figure 4b. Additionally, it can be seen in figure 4a that
the relationship of event boundary nodes versus event radius is a linear one while the
relationship of event area nodes versus event radius is an exponential one. It should be
noted that during simulation the starting algorithm was insensitive to the starting position

of the agents.
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Boundary nodes versus Event area nodes with respect to event radius
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Figure 4: Comparison of the relationship of boundary nodes to event nodes as event radius is
increased (a). Relationship of event transmission efficiency to event radius (b)

The accuracy and false positives were found to be 99% and 0% respectively,
regardless of the event area size. However, the accuracy and false positives were highly

susceptible to smaller node densities, since smaller densities could cause small isolated
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pockets of event nodes along the boundary. This condition was not further examined
since, for this paper, it was assumed that the event area would be homogenous where all
event nodes are interconnected.

Furthermore the efficiency of the algorithm was theorized to increase as an
inverse function of the event radius, similar to the ratio of boundary nodes over area
nodes as shown in figure 4b. Additionally, it can be observed that the efficiency of
boundary node transmissions was constant as shown in figure 5, demonstrating that the

majority of the algorithm’s functions were seen in the event boundary.
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Figure 5: efficiency of event boundary node transmissions (a) and all boundary node
transmissions (b).

Finally, the simulations do not take into account the overall reduction in overhead
required to report the boundary back to the sink. Considering that the overall size of the
sensor network can not be pre-judged as well as the transport algorithm, it becomes
impossible to predict the number of transmissions reduced when reporting to the sink.
However, that being said it is possible to conclude that the overall number of nodes
requiring transmission has been significantly reduced, from all nodes that have seen the
event boundary to only a select few nodes that are the final resting locations for the

agents.
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Chapter S: Conclusions

We can conclude from the simulation results that the algorithm operated as
expected with the assumptions and restrictions given. Additionally, we have shown that
a homogenous event boundary can be successfully mapped using the proposed algorithm
with 99% efficiency. Furthermore, with the use of agents to facilitate boundary
discovery, the majority inter-node transmissions were successfully restricted to the
boundary region for network of sufficient size. The main value of this algorithm is that
transmission efficiency is not exponentially related to event radius size but instead
linearly related to it, allowing for the algorithm to be much more scalar then traditional
algorithms.

It is important to note the effects that the assumptions have made on the results.
The density of the sensor network, highly affects the contiguity of the event area. If the
event area is not a contiguous region, it has the risk of being recognized as multiple
events or have some of its regions unrecognized at all. However it should be noted that
this could be solved if 2™ hop neighbor event polling is used with the drawback of
impacting efficiency.

Additionally, the effect of density and the wakeup threshold has a large effect on
the number of agents generated. If we assume that the density of nodes is sufficient that
the area remains contiguous, then we can see that as the event size increases the number
of nodes that “wake up” and generate agents will increase. However, if we look at the
reverse case, where the event size is decreasing, then there will come a point where the
network will not generate any agents. Therefore for any threshold value given (as well as
density), there will be a minimum event area resolution, whereby any event smaller then
this resolution may not be detected at all. This can in some cases be considered an
advantage, since in many situations a minimum event size threshold may be acceptable.
Also, if the event exists within the network for a prolonged period of time, other time-
slices may see the event.

Another limitation of this algorithm is that it does not estimate the exact boundary

of the event, but instead resolves the minimum detectable boundary presented by the
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network. This limitation can be addressed if the algorithm is adapted to include some
filtering, and boundary estimation.

Finally, in this paper we do not take into account the effects of failed nodes or
nodes which incorrectly determine that they have viewed the event. It can be seen
however, that future work could occur where the algorithm could utilize 2™ hop neighbor

information as well as filters such as those used in [4] to ignore false positives/negatives.
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