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Abstract

Ventricular fibrillation (VF) is one of the major causes for sudden cardiac deaths (SCD). The

duration from the onset of VF to SCD is a few minutes, making it difficult to study VF. This disser-

tation proposes methods to extract meaningful informationfrom VF electrograms and formulate

associations to underlying structural and physiological properties of the cardiac tissue and clinical

events of interest during VF. This was achieved by analyzingclues in the electrograms during VF

to infer the underlying anatomical and physiological properties of the cardiac tissue and certain

clinical events of interest, which is otherwise not easily available. The proposed methods will be

of great assistance for the diagnosis and treatment planning of cardiac arrhythmias.

The proposed adaptive time-frequency (TF) signal decomposition was separated into two cat-

egories based on two purposes: (1) Time-specific event detection and (2) Time-averaged VA char-

acterization. For the time-specific event detection (in this work rotor detection), electrogram signal

features related to the rotor event were identified with an adaptive TF decomposition and a modified

criterion function. Using the proposed features and a linear discriminant analysis based classifier

with leave-one-out cross validation, overall classification accuracies of80.77% and79.41% were

achieved in detecting rotor events and separating them fromsimilar but non-rotor events.

In the time-averaged ventricular arrhythmia characterization, previously established signal fea-

tures were used to associate electrogram clues to the structural and physiological characteristics of

the cardiac tissue. Using label-consistent K-means singular value decomposition dictionary learn-

ing process, dictionaries of TF basis functions were generated to capture specific electric structures
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and physiological characteristics of the underlying cardiac tissue. The association of these char-

acteristics with the extracted electrogram clues were validated using a cross-validation technique.

The cross-validated results ranged from65.58% to 81.80% for the 7 characteristics used in this

study.

Further to this, to build a decision-support system with non-linear separable capabilities that

could automate and infer the heart events and/or characteristics from the identified electrogram

signal structures, neural network models were generated. The cross-validated accuracies ranged

from 66.99% to 85.90% for each of the developed models for the decision-support system.
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Chapter 1

Introduction

O
NE of the important systems in the human body is the circulatory system. This system

transports blood throughout the body, which is essential for all the vital organs and systems.

Through the transport of blood, cells within these organs and systems exchange oxygen, carbon

dioxide and other essential nutrients. If this exchange is absent for a long duration, the cells begin

to deteriorate and eventually die. The heart is the primary component of the circulatory system

responsible for blood transport. Heart acts as an versatileelectromechanical pump, providing the

pressure required to circulate the blood to the remainder ofthe body.

Rhythmic electrical stimulus from the sino-atrial node of the heart coupled with the biochem-

ical processes, generate and propagate action potentials over the myocardium resulting in a coor-

dinated and rhythmic contraction and expansion of the heart. Due to various patho-physiological

reasons, when the electrical activity of the heart becomes arrhythmic, it leads to cardiac arrhyth-

mias. Depending on the anatomical origin of these arrhythmias, they are broadly classified as atrial

arrhythmia and ventricular arrhythmia (VA). Of these arrhythmias, VA (specifically ventricular fib-

rillation [VF]) is one of the leading causes of cardiac arrest and sudden cardiac death (SCD) [3].

Cardiac arrest is believed to cause between 300,000 to 400,000 deaths on an annual basis in the

United States alone [4]. During a VA episode, the electricalactivations of the ventricles of the

heart become abnormal, thereby resulting in uncoordinatedand ineffective ventricle contractions

causing reduced or no blood output from the heart.

Research into VA has led to a few prevailing theories on the onset and genesis of the arrhythmia;
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however, there is yet to be a definitive theory that can fully explain this phenomenon. A major

obstacle in studying VA (specifically VF) is its lethality and short observation time window as

SCD occurs within minutes of the onset of VF. This makes it practically impossible to study VA

in a living subject to detect events of clinical interest or perform active interventions to extract

and associate the underlying patho-physiological characteristics of the cardiac substrate in the

genesis of VAs. In current practice, often these patho-physiological relations are deduced using

special research setups to study the heart as an isolated organ (i.e. not part of a living subject) and

postmortem analysis.

If using engineering methods we could infer: (i) specific events of clinical interest during VA

and (ii) dynamic/static characteristics of the underlyingcardiac substrate of VAs using their man-

ifestation on multi-channel electrogram morphologies, this would be a significant step towards

studying VAs. As a positive step in this direction, this dissertation presents adaptive signal decom-

position methods in extracting spatio-temporal information from multi-channel electrograms that

could provide inference on relevant events of clinical interest and patho-physiological characteris-

tics of cardiac substrate during VAs.

1.1 Cardiovascular System

This section begins by discussing the general functionality of the heart during normal sinus rhythm

and during a VA episode. The cardiac substrate characteristics relevant for ventricular arrhythmias

will be explored in the later part of this section.

1.1.1 Heart Electrophysiology

Normal Sinus Rhythm

It is important to understand the normal electrophysiologyof the heart prior to further discussing

VA. This section will briefly summarize heart’s electrophysiology from the ”Textbook of Medical

Physiology” [5]. The interested reader may refer to Chapter 3for more detailed information.

The muscle structure of the heart is composed of atrial muscle fibers, ventricle muscle fibers

and the specialized excitation and conductive muscles. Thespecialized excitation and conductive
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Intercalated discs allows the heart to propagate a single electric impulse through the muscle strands in order to 
provide a simultaneous contraction.

Figure 1.1: Intercalated Discs in the Muscle Fiber

muscles are limited in their ability to contract as regular muscle fibers; however, they serve a

significant purpose in propagating an electric impulse through the heart. The atria and ventricle

muscle fibers are responsible for creating the pressure to transport blood through to the rest of the

body. The muscle fibers of the atria and ventricle are made of muscle fibers that are interconnected

through intercalated discs, which are different from other types of muscle fibers found within

the human body. The intercalated discs (illustrated in Figure 1.1) allow for the electric impulse

to propagate between the strands. This helps create a simultaneous contraction of the muscles,

creating the aforementioned pressure required.

The heart is made up of four chambers: the two atrias that act as a primer by forcing blood into

the ventricles, and the two ventricles that create pressure to transport blood to the rest of the body.

The electrical system of the heart is presented in Figure 1.2. The initiation of the electric impulse

responsible for contracting the heart begins at the sino-atrial (or sinus) node (S-A node). This

activation propagates through the internodal pathways in the atria to the atrioventricular node (A-

V node). As the impulse propagates to the A-V node, the atria contracts, pushing the accumulated

blood into the ventricles. Upon reaching the A-V node, the impulse is slightly delayed through the
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Figure 1.2: Electrical Conduction pathways of the heart

A-V bundle before progressing further into the left and right bundle branch. The delay allows for

simultaneous contraction of ventricle muscle fibers as wellas for the atria to pump blood into the

ventricles. Finally, the impulse propagates through the ventricles. Once a cell within the muscle

fiber has been activated by the electric impulse, it will contract for a brief period of time (known

as depolarization) before eventually relaxing (known as repolarization). This rhythmic activation

of the electric impulse is autonomous and can also be initiated in other regions of the conduction

pathway other than the S-A node.

A typical normal sinus rhythm observed as electrical activity on the surface of the body is

illustrated in Figure 1.3 and is referred to as the electrocardiogram (ECG). It begins with the P

wave, which is representative of the electrical impulse traveling from the sino-atrial node to the

atrioventricular node, causing the atria to contract. The QRS complex captures the depolarization
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Figure 1.3: Normal Sinus Rhythm (ECG)

of the ventricles and the T wave is caused by the repolarization of the ventricles. This process

makes up one heart beat, with an average resting heart rate of72 beats per minute (bpm) [5]. The

electrical activity can also be directly recorded on the outer surface of the heart, which is referred to

as an epicardium electrogram, or from within the ventricles(or atria) of the heart, which is referred

to as an endocardium electrogram. In general in the context of cardiac electrophysiology, ECGs

refer to electrical activity measured on the surface of the body and electrograms refer to electrical

activity on the surface of the heart.

Ventricular Arrhythmias

During a VA episode, abnormal electrical activations dictate the contractions (or lack there/of) in

the ventricles of the heart. The two prominent types of ventricular arrhythmias are ventricular

tachycardia (VT) and VF. VT is a condition that causes the ventricles to beat (contract and expand)
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Figure 1.4: Typical Ventricular Arrhythmia Electrograms

abnormally fast (i.e. heart rate around 150 bpm [5]). VF, on the other hand, is characterized by

a heart rate which exceeds that of VT and is a lethal conditionbecause there is no coordinated

contraction of the ventricles. This can lead to sudden cardiac death if not treated within minutes of

its onset. VA remains a field of intensive research due to their persistently high fatality rate, despite

nearly over a century of research.

A sample electrogram of the two prominent types of VA is provided in Figure 1.4. It should be

noted that VT (Figure 1.4a) is classified as an abnormally fast rhythmic beating of the ventricles,

which does not include the increase in heart rate during physical exercise. Rather, this increase

in heart rate is related to physiological conditions or factors. An increase in body temperature,

stimulation of the heart’s nerves from the central nervous system and toxic conditions are some

examples of factors found to cause VT [5]. The blood volume output of the heart during VT is

limited as the increase in heart rate (and non-PQRST sequence) does not allow sufficient time for

the ventricles to fill completely with blood, subsequently diminishing the blood pressure. Some

common side effects of VT include shortness of breath, dizziness, and even fainting. VT was also
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observed to be polymorphic in nature [6], where disorders change the nature of the contractions

and electrogram signal structure observed during the VT episode.

The far more lethal of the arrhythmias is VF. During VF (Figure 1.4b), the electrical activation

of the heart is non-rhythmic, leading to non-uniform contraction of the ventricles. Without a

coordinated contraction, the heart produces little to no cardiac output, thus almost no blood flow.

If there is no blood flow through the cardiovascular system, none of the organs (including the

heart) receive nutrients or oxygen. Within a few minutes, the cells within the organs begin to die

off, leading to sudden cardiac death if left untreated. Some of the known factors that cause VF

include ischemia of the heart muscles, ischemia of the heart’s conduction system, abnormalities in

the conduction pathways, and electric shocks. It is also possible for someone suffering from a VT

episode to develop a VF episode. Due to the reduction of blood flow during VT, the heart muscles

will begin to degrade, causing uncoordinated conduction of the electrical impulse or uncoordinated

contractions due to the muscle degradation. Even with the current understanding of VA, there is

still a lot of uncertainty on the mechanisms that initiate and drive VF.

Depending on the type of arrhythmia affecting someone, the short and long-term treatment op-

tions are different. When considering a patient suffering from VT, one of the immediate treatment

option is to provide electrical pacing to slow the heart rate back to normal sinus rhythm, while for

someone who is afflicted with VF, the standard immediate treatment option is to provide a defib-

rillation shock in an attempt to reset the heart’s electrical conduction system [7]. As long term

treatment options of the arrhythmias, for patients that are prone to recurring VT, the following

are administered: anti-arrhythmic medications, ablation therapy, and placement of an implantable

cardioverter defibrillator (ICD). The ICDs are also a long-term option for VF, and usually ICDs

are equipped with intelligence to choose between defibrillation shock therapy or pacing depending

on the type of arrhythmia [8]. Existing research has shown that a better understanding of the un-

derlying characteristics (either one or a combination of anatomical, pathological and physiological

characteristics) affecting the heart could lead to improved treatment of the arrhythmia [9–11].
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1.2 Current Research

Specific to the subject of this dissertation, there are several characteristics of the heart that are

known to influence the initiation and maintenance of the VA episode. The interaction of the elec-

trical activations between the healthy and scar tissue can influence the arrhythmic episode [12].

The type of disease affecting the scar tissue [13, 14] is alsoan example of the characteristic that

is associated with the genesis of VA. The study of specific characteristics of the action potential

has been shown to play an important factor in influencing the therapy choice [15–17]. The heart’s

wall motion velocity as well as the ejection fraction are twomeasures that determine the capability

of the ventricles of the heart [18, 19]. However, these characteristics cannot be accessed without

intervention, and hence difficult to use in treatment planning.

There have been a few studies that attempted to infer the underlying characteristics of the heart

based on features extracted from the electrograms. The analysis of the electrogram characteristics

(particularly frequency) were observed to have a correlation with the diameter of the left ventricle

[20], but there was no observed relation to the mass of the heart. The conduction velocity and

amplitude were used as determining factors for reducing therecurrence of future VT episodes [21].

The study of delayed potentials causing fractionation in the electrograms were observed to have

a relation for patients with hypertrophic cardiomyopathy [22]. An electrogram signal structure

known as the double potential was also previously identifiedas having a correlation to the vicinity

of a conduction block in the myocardium of the heart [23]. Theregional differences in the dominant

frequencies of the heart were also observed to reflect the characteristics of the heart [24].

Research has also revealed there to be specific or averaged characteristics of the electrogram

without any knowledge on the heart’s characteristics. For example, the occurrence of amplitude

variations observed on the electrograms were used as a determinant in whether a defibrillating

shock would be successful in resuscitating the heart from anarrhythmic episode [25]. Features

that characterize the electrograms (such as the amplitude spectrum area) were observed to be a

marker that predict successful shock outcome [26], but havebeen only marginally successful in

understanding the etiology of the heart [27]. The analysis of the normal electrical activations in a

bipolar electrogram demonstrated that these activations to could be used to determine the organi-
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zational aspect of the arrhythmia [28]. Further research on the organization of the arrhythmia had

observed that regions of the heart that had a variation in its local dominant frequency were more

susceptible to the forming of rotors [29]. These rotors are believed to be centres where the ventric-

ular arrhythmia originates [30–33]. Rotors are of special clinical interests as detecting them and

tracking them could lead to termination of VA through ablation [2, 34]. A conference proceeding

by our group revealed that there exists different distributions of a few repeating electrogram signal

patterns during an arrhythmic episode [35].

Based on the above discussed existing literature there seems to be evidence that the electro-

gram signal structures during VA may have associations with specific events of clinical interest

and different characteristics of VA, which could be stemming from different patho-physiological

combinations occurring in the underlying cardiac substrate. As discussed earlier, although there are

works that have associated patho-physiological characteristics with VA [12–14], often this is done

postmortem or using special isolated organ setups. If the information on the underlying cardiac

substrate is made available during VA for a live subject without interventions, it would positively

impact the treatment options. Multi-channel electrical activity of the heart is relatively easier to

acquire (such as ECG from the body surface, electrograms from the walls of the heart using ICDs,

or using forward-inverse solutions). Therefore, if we can infer specific events of clinical interest

and the underlying characteristics of the cardiac substrate using electrograms, it will be an invalu-

able clinical tool, as simply the availability of this information can inspire new treatment options

and optimize existing treatment options.

1.2.1 Anatomical, Pathological and Physiological Characteristics

The myocardium along with the components of the electrical conduction system of the heart

all play a part in the genesis and maintenance of VA. There are evidences in the literature that

both dynamic and static characteristics of the underlying cardiac substrate does influence VA

[12, 23, 24, 31]. Although there are numerous static and dynamic characteristics of cardiac tissue

that could influence VA, for the purpose of this dissertation we will restrict them to static: anatom-

ical and pathological information of the cardiac tissue and dynamic: physiological information of
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the cardiac tissue. Here, pathological information can be grouped both in static and dynamic char-

acteristics depending on the temporal observation period and progression of the pathology. These

anatomical, pathological, and physiological characteristics of the heart will be abbreviated as the

APP characteristics for the remainder of the dissertation.

As explained previously, despite their significance in influencing the VA episode, it is difficult

to obtain the APP characteristics of a heart in a non-invasive manner. This research, conducted

in collaboration with Toronto General Hospital, provided us with access to a special retrospec-

tive multi-channel electrogram arrhythmia database usingisolated heart experiments that had also

recorded the APP characteristics (obtained during experiments, from health records, and post-

mortem analysis). Therefore, this retrospective data can be used to associate the signal morpholo-

gies in the multi-channel electrograms with specific APP characteristics. The APP characteristics

that were recorded and will be used in this dissertation are presented below.

Anatomical - Scar Tissue

Scar tissue refers to diseased or dead muscle tissue of the heart and is considered a static (i.e.

does not change) characteristic of the cardiac substrate. Usually the spatial distribution of the scar-

healthy regions are obtained postmortem (accurate) or using invasive catheter procedures (approx-

imated by sampling bipolar voltages on few locations). The ability to identify this type myocardial

region is important in diagnosing patients that are prone toventricular arrhythmias. Existing re-

search [12, 36, 37] has shown that the border regions betweenhealthy and scar tissue could be

targeted for ablation therapy in order to better control or prevent the re-occurrence of ventricular

arrhythmia. There are also studies that have shown rotors (i.e. events of interest during VA) tend to

anchor around the scar healthy border zones [9,38]. Researchers have tried to use medical imaging

(positron emission tomography and computed tomography [39], MRI [40], and ultrasound [41])

to identify possible scar sites, but these are time consuming and may not be readily available. If

the spatial extent of the regional scar regions can be inferred from the multi-channel electrogram

morphologies in a non-invasive manner, this could assists the clinician to devise patient specific

treatment plans. Especially for ICDs and catheter procedures, this information will be vital in
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planning shock/ablation therapy, which involves shocking/burning regions of the heart in order to

prevent these regions from triggering future arrhythmic episodes.

Pathological - Cardiomyopathy

Cardiomyopathy describes the underlying disease affectingthe heart muscle, which may be related

to the anatomical and physiological abnormalities in the heart. This characteristic in this disser-

tation is treated as static for a given VA episode or heart since the data used in this dissertation is

from isolated hearts. There are two common types of cardiomyopathies: ischemic cardiomyopathy

(ICM) and dilated cardiomyopathy (DCM).

For someone suffering from ICM, typically the heart muscles become damaged or deceased

because of a lack of blood flow to the muscle itself. This can occur if there is myocyte loss

(leading to loss of blood flow deeper into the tissue), coronary artery disease, hypertension or

artery occlusion [13, 42]. The lack of blood flow will eventually either deteriorate or completely

kill the muscle tissue. Therefore, the healthy regions of the heart (i.e. the parts with adequate blood

supply) will grow in muscle mass to compensate for the dead muscle tissues. These dead regions

can impede the action potential propagation and therefore may cause future VA episodes.

During DCM, the heart muscle becomes diseased and dies out. The death of the muscles in this

case is not due to a lack of blood flow. The dilation of the heartcan be caused by several factors

such as electrolyte imbalance, ion-channel disruption, apoptosis (due to genetics) and alcohol,

among others [14,43]. The enlargement of the heart in a patient suffering from DCM is due to the

disease affecting the heart muscle within the scar region. Similar to ICM, the healthy regions will

become larger as well to compensate for the decreased output.

It is often difficult to determine the type of cardiomyopathyaffecting the patient, and sometimes

genetic testing [44] and/or myocardial biopsy (muscle sample) [45] are required. The type of

cardiomyopathy affecting the patient is of special interest as it can help clinicians narrow down the

unique therapy for each type. VF initiated in ICM hearts are believed to be a result of the healthy

and scar boundary electrical interactions, which results in a targeted treatment solution [46, 47].

The are many underlying etiologies affecting DCM hearts, leading to many other possible therapy

11



options [46, 48]. The characteristics of the disease may be inferred by studying the electrical

activations since the activations are a reflection of the myocardium muscle health.

Physiological

Functional aspects of the cardiac tissue are captured by physiological measurements. Few of the

well known measures that play a role in the arrhythmia are derived from the action potential, as this

is the primary impulse that initiates the muscle contraction. The action potential characteristics can

be dynamic (i.e. constantly changing) over the course of a VAepisode. Action potential duration

and the activation recovery time [10] are two well known measures. The action potential duration

refers to the time width of the action potential that depolarizes the heart muscle. The activation

recovery time refers to the time taken from when the cell begins depolarizing to the time when the

cell finishes repolarizing. It was observed that the therapyselected by a clinician could be better

optimized based on these characteristics [15,16]. Anothermeasure used to characterize the action

potential is the slope of the action potential itself (referred to as DVDT). This is used to deter-

mine whether the cell has the ability to properly depolarize[17], which influences the contraction

strength. The standard slope may be used to determine the healthiness of a particular cell or tissue.

These characteristics of the action potential are usually difficult to measure from the natural action

potential generated by the heart. Therefore, typically a pacing impulse is initiated to record the

cell’s action potential in response to this pacing impulse.The above mentioned characteristics is

then recorded from the resulting action potential. Similarto the previous anatomical and patho-

logical characteristics, it is difficult to obtain these measures from a live subject, since the pacing

impulse cannot be applied directly to the heart. Therefore,it is imperative and would be valuable

if we could infer the influence of these measures on the electrograms.

1.3 Motivation

The VA (specifically VF) is a major cause of SCDs annually in North America. Based on the

existing literature, the influence of the APP characteristics on VA is evident. Likewise, literature

also has shown there are spatio-temporal events (rotors) during VA that could provide valuable
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information in terminating VAs. However, the lethal natureof VA and the practical infeasibility in

obtaining APP characteristics in a non-invasive manner areobstacles in studying VA. Given that

literature has shown that there exists relationships between the electrograms and APP character-

istics (and in turn could influence specific events) [20, 22],this dissertation will develop adaptive

signal decomposition methods to extract information from multi-channel electrograms that could

be used to infer specific events and the APP characteristics during VAs.

The outcome of this research will be a positive step in codingthe inaccessible (in live subjects)

spatio-temporal events during VA and APP characteristics in terms of multi-channel electrogram

features. The association of the APP characteristics with the electrogram morphologies could help

improve the accessibility of obtaining the underlying characteristics of the heart, which may inspire

new directions in treatment option that would eventually reduce the number of fatalities as a result

of SCD.

1.3.1 Objective

The objective of this dissertation is to develop adaptive signal decomposition and dictionary learn-

ing approaches for: (i) time-specific event detection during VAs and (ii) quantifying time-averaged

VA characteristics driven by APP characteristics. The outcomes of these approaches will be used

as inputs to a decision-support system (DSS) that will automate and assist clinicians in inferring the

VA events and/or APP characteristics. In achieving the objective, the following section elaborates

on the proposed approaches and contributions of this dissertation.

1.3.2 Proposed Approaches and Contributions

The contribution by the time-specific event detection aims to develop an adaptive time-frequency

(TF) decomposition for capturing specific electrogram signal structures associated with certain VA

events. These events, such as rotors [31] and double potentials [23], are a manifestation of the

mechanisms that may be responsible for the genesis and maintenance of VA. The novelty of this

approach would be to identify signal structures, as they relate to the occurrence of a VA event, and

provide the clinical community the ability to track these events using only the electrogram record-
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ing, which may be otherwise difficult to ascertain. This contribution could be accomplished by

customizing a criterion function used in adaptive decomposition to specifically target electrogram

signal structures of interest.

The contribution from the time-averaged VA characteristics aims to identify averaged electro-

gram signal structures as they relate to the APP characteristics of the heart. The APP characteristics

have been previously observed to influence the electrical activations of the heart [21, 22, 24]. The

TF dictionary learning process (driven by the APP characteristics) will be valuable in identifying

time-averaged electrogram signal structures. The discussion on the APP characteristics in Sec-

tion 1.2.1 had revealed that it is difficult to know the specific characteristic of the heart, despite

their clinical significance. The novelty of this contribution will be identifying possible electrogram

signal structures that are associated with the underlying APP characteristics.

The signal structures and features that were associated with time-specific event detection and

quantifying the time-averaged VA characteristic will thenbe used as inputs to a DSS that will au-

tomate and assist clinicians in inferring the events and APPcharacteristics. This could potentially

provide clinicians with valuable feedback (which is otherwise difficult to obtain) to plan effective

treatment options (such as anti-arrhythmic medication, ablation therapy or the placement of an

ICD) [7]. The novelty of such a DSS is to provide a tool to the clinical community that auto-

mates and assists with inferring the specific events or APP characteristics. The contributions of

this dissertation can be summarized as follows:

• Development of novel signal decomposition criterion function to automate extraction of elec-

trogram signal structures driven by time-specific events during VAs.

• Using dictionary learning approaches to identify and associate relevant electrogram signal

structures driven by particular APP characteristics of theVA.

• Development of a DSS that incorporates the identified electrogram signal structures to auto-

mate and assist clinicians in the diagnosis and treatment ofVA.

The block diagram for the purpose of achieving the objectives set forth in this dissertation is

provided in Figure 1.5. The diagram begins with two branches: (i) time-specific event detection
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This dissertation will analyze (i) time-specific event detection and (ii) time-averaged VA characteristics. The 
specifics of each block will be further discussed through the dissertation.

Figure 1.5: Dissertation Block Diagram

and (ii) time-averaged VA characteristics. The first two blocks of the top branch is the adaptive TF

decomposition approach that will be used to identify electrogram signal structures of interest for

the time-specific events. The first two blocks of the bottom branch are the TF dictionary learning

process, that is governed by the APP characteristics, used to identify time-averaged electrogram

signal structures of interest. The last two blocks are the DSS that was developed to automate the

process of inferring VA events and/or APP characteristics. This diagram will be discussed in more

detail over the course of this dissertation.

1.4 Dissertation Outline

The chapters in this dissertation will be outlined as follows:
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• Chapter 2: This chapter discusses the background of signal processingconcepts and will

also educate the reader on the fundamentals of the adaptive signal decomposition approach.

Simple statistical analysis and the linear classifier will be discussed for the purpose of feature

validation. Finally, the fundamentals of the DSS will be presented.

• Chapter 3: This chapter will present the proposed method that is significant for identifying

electrogram signal structures of interest in time-specificevents. The identified subspace and

its relation to the signal structure will be further explored. Feature extraction will also be

presented such that they may be used to help generate a DSS associating electrogram signal

structures with the event of interest. The results of these findings will also be discussed.

• Chapter 4: This chapter will present the time-averaged characteristics in ventricular ar-

rhythmia. The correlation of the time-averaged characteristics with the APP characteristics

will also be discussed. The dictionary learning method willbe used to identify electrogram

signal structures of interest that is driven by the underlying APP characteristics. The results

of this method will also be presented in this chapter.

• Chapter 5: This chapter will discuss the DSS (neural-network-based) that is developed

to automate and assist clinicians in inferring the VA events/APP characteristics and signal

structures extracted from the electrogram. The results of this DSS will be discussed. The

DSS will serve as a foundation that can be used by the clinicalcommunity.

• Chapter 6: This chapter will summarize the dissertation with conclusions and potential

applications of the proposed work will also be identified. The possible directions for future

work will also be discussed.
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Chapter 2

Background

C
HAPTER 2 will begin by introducing the fundamental signal analysis concepts that are rel-

evant for adaptive signal decomposition approach, which isused in this dissertation for the

analysis of VA electrograms. While there are many different signal processing tools that exist over

either the time, frequency or time-frequency domains, thischapter will only discuss the necessity

of the time-frequency signal decomposition. Tools that areused for feature validation will also be

discussed in this chapter. The basic concept that was used ingenerating a DSS that approximates

the association between the APP characteristics to the identified electrogram signal structures will

be explored.

2.1 Time-Frequency Signal Decomposition

The TF signal decomposition takes advantage of the joint time and frequency properties of the

signal to aid in analyzing the time-varying frequency components. This is of particular importance

when decomposing signals that has time-varying frequency components. The VF electrogram can

be considered to be of this type of signal, therefore requiring a TF decomposition approach to

better understand its underlying signal structure. The TF decomposition was used for enhancing

and localizing the time and frequency characteristics of the signal as well as for visualization on

the TF plane.

There are several techniques by which to perform TF decomposition with. One of the first TF

decomposition tools was the short time Fourier transform. The discrete generic equation for the

17



short time Fourier transform is given by Equation 2.1 [1].

Sf(l,m) =
∑N−1

n=0
f(n)hf(n−m)e

−i2πln
N (2.1)

In the above Equation 2.1, the windowhf(n − m) (with discrete time shiftsm) is applied

to the discrete signalf(n) (with discrete time indexn) to determine the energy (Sf(l,m)) at

frequencyl and time instancem. The squared modulus of the short time Fourier transformSf is

called the spectrogram represented by|Sf(l,m)|2 [1]. Another aspect of the windowed Fourier

transform is that the user can determine what specific type ofwindowing (hf ) to use (e.g. Hanning,

Butterworth, etc.).

The concept of this method is to compute the Fourier transform on a windowed segment of

the signal. The spectral components within the window is computed to determine its frequency

distribution. The window is then shifted to encompass a different portion of the signal. The spectral

distribution is then captured for this new segment of the signal. This process is repeated until

the window has been shifted through the entire signal. The time-varying frequency components

can be observed through the spectral components produced byeach window component. The TF

distribution is produced from the resulting spectral distributions from each of the windows.

The short time Fourier transform has been used in several applications of electrogram analysis.

The prediction of heart rate and heart rate variability was accomplished by varying the window

function in the short time Fourier transform [49]. The organization of the arrhythmia was also

determined by studying the frequency distribution of the short time Fourier transform [50]. It

has also been used to identify regions of conduction blocks in the heart by identifying the double

potential electrogram signal structure [23].

While this method is one way to observe the time-varying frequency components, there is

an inherent limitation with the short time Fourier transform. The assumption is that within the

window being analyzed, the signal has limited time-varyingfrequency components. While this

may be the case for VT, the VF electrogram does not follow suchan assertion. To put this in

perspective, the traditional Fourier transform has an infinite window (a window that spans the full

duration of the signal). This provides the highest resolution for the signal’s frequency content, but
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The Heisenberg uncertainty illustrated in this figure shows the interdependency between 
the time-localization and frequency resolution. The window length does not vary when 
analyzing different frequency ranges.

Figure 2.1: Heisenberg Uncertainty in the Fourier Transform [1]

it is impossible to determine the exact time instance when a particular frequency occurs. Thus, for

the purpose of localizing the TF energy, the window must be made smaller to determine the exact

time of the frequency content. However, as the window is made smaller, the frequency resolution

becomes poorer, as it is difficult to distinguish individual low frequencies. This phenomena is

known as Heisenberg’s uncertainty principle and is illustrated in Figure 2.1 [1]. From this figure,

it can be observed resolution of the frequency spectrum and the localization in the time domain

are interdependent. Therefore, short time Fourier transform suffers from this frequency resolution

versus time localization.

If it were possible to adaptively vary the window size as per the frequency of interest, then there

would still be another limitation set on Fourier based decomposition. The basis function used in the

Fourier transform (e
−i2πln

N ) spans the entire window length, which has an unlimited support. When
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considering a single frequency within the signal, the basisfunction with this particular frequency

will be used to determine the energy within the span of the window length, which means the

Fourier transform will provide the average energy capturedby that particular frequency within that

portion of the window. When considering a non-stationary signal (such as VF), where the spectral

content varies with time, the analysis falls short, requiring us to consider a decomposition with

more freedom on the basis functions themselves. The choice on the basis function will also aid in

targeting specific signal structures in the arrhythmic episode.

2.2 Adaptive Time-Frequency Signal Decomposition

To overcome some of the limitations (varying window length and basis functions) that were dis-

cussed for the short time Fourier transform, this section will explore some of the well established

tools that are useful for adaptive signal decomposition. These tools include the wavelet transform,

matching pursuit algorithm and label consistent k-mean singular value decomposition dictionary

learning.

2.2.1 Wavelet Based Signal Decomposition

One particular TF decomposition that can better address some of the limitations discussed pre-

viously is the wavelet transform. Similar to the short time Fourier transform, the objective of

the wavelet transform is to capture the frequency components of the signal over time. However,

wavelet analysis uses basis functions (wavelets) with a specific TF localization. Furthermore, the

ability to vary the basis function (time and frequency support) to specific type of structures makes

wavelet better suited for adaptive signal decomposition. The generalized equation for the discrete

implementation of the continuous wavelet transform is given by Equation 2.2 [51].

Wf(s,m) =
1√
s

∑N

n=1
f(n)ψ∗(

n−m

s
) (2.2)

The signal (f(n)) is multiplied with a wavelet function (ψ) with a particular scale parameter

(s) and a particular translation parameter (m) to produce the wavelet coefficientsWf(s,m). An

example of a complex wavelet function is illustrated in Figure 2.2. The scaling parameters in
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Figure 2.2: Sample Wavelet Function

a wavelet basis function shrinks or expands the wavelet function, which is analogous to altering

the frequency of the function. The translation parameterm centers the wavelet function around

a particular time segment of the signal. Therefore, the coefficientWf is representative of the

correlation between the wavelet function (with a particular scales and translationm) to the signal

f . Based on this transform, it is possible to analyze the TF (or time-scale) energy for signals that

are not necessarily stationary and that have time varying frequency components.

The wavelet transform has several advantages over the short time Fourier transform for the

application of adaptively decomposing the electrograms. The first advantage is the ability to better

localize the TF components of the electrograms, which will provide a more accurate description

of the signal itself. Furthermore, the wavelet transform uses an adaptive window length that is

dependent on the scales. Recall that the short time Fourier transform uses a basis function that

is comprised of sinusoidal signals (i.e.e
−i2πln

N ). This limits the ability to localize the TF energy

within the window of analysis due to its unlimited time support. The wavelet basis functions are

typically limited in their time support, which means they are centered aroundm and decay towards

the edge of the window. Consider the Heisenberg uncertainty for wavelets illustrated in Figure

2.3. For large-scale wavelet functions (i.e. low frequency components), the window is large, thus
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The Heisenberg uncertainty illustrated in this figure shows the varying window length 
when analyzing different frequency ranges.

Figure 2.3: Heisenberg Uncertainty in the Wavelet Transform [1]

allowing for better analysis of low frequency components of the signal. Additionally, for low-

scale wavelet functions (i.e. high frequency components), the window is much smaller, allowing

for better localization of the high frequency components of the signal. Another advantage of the

wavelet transform over the short-time Fourier transform is the flexibility in selecting the basis

function. The basis function itself can be varied to any type of function that is governed based on

certain properties [1]. These basis functions may be selected to better conform to either the general

structure of the signal, or specific sets of signal structures.

The wavelet transform has been used widely for different applications in studying VA. A few

examples of these applications include using the wavelet transform to determine the optimal time to

defibrillate [52–54], distinguishing VF waveforms from non-VF waveforms [52], using the scale

band energy to detect the cardio pulmonary resuscitation waveform and the atria activity in the

ECG during VF [55, 56] and to classify the type of arrhythmia [57, 58]. The ability to capture
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specific recurring signal structures from the ventricular arrhythmia episode was also previously

presented [35], which indicates that there may be various events of interest in characterizing ven-

tricular arrhythmias (specifically VF). This method had used scale-band energy ratios to manually

identify signal structures within the electrogram signal.While manual detection did highlight a

difference in distribution that may be indicative of eventsin the arrhythmia, it would be difficult

to fully represent the signal with a manual detection methodbased on a set of fixed parameters

for these events. Therefore, an adaptive signal decomposition approach that can automatically

decompose the electrogram into a set of signal structures would be invaluable for the purpose of

identifying and associating electrogram signal structures with the APP characteristics.

2.2.2 Matching Pursuit

Adaptive signal decomposition methods are widely used to target specific signal structures of in-

terest. The matching pursuits algorithm (MP) is an example of adaptive signal decomposition

when decomposing a signal with a specific TF dictionaryζ, because it can iteratively decompose

the signal based on the atoms in the dictionary [59]. A TF dictionary is made up with a set of

mathematical functions (i.e. known function and parameters) that satisfy a set of properties (and is

referred to as atoms). The set of atoms used in such a representation should span the Hilbert space

of the signal. This means that the dictionary should be capable of representing the structure of the

signal being analyzed by selecting a variations of atoms that can match all of the signal properties

(such as amplitude, frequency, phase, and structure). Thisconcept is analogous to writing a report

with a given literature dictionary. If the vocabulary is limited, then the report might not convey the

full details of the subject. However, if the dictionary has alarge vocabulary base (with a large vol-

ume of unique and/or redundant words), then the report may bemore accurately written to provide

precise details.

The MP algorithm is a greedy algorithm because the atoms are selected iteratively based on

a set criterion function. This also makes MP with a TF dictionary flexible, as it allows for the

targeting of specific signal structures. The dictionaryζ is comprised of atoms (specific waves that

are used for the decomposition) that can either be orthogonal to one another or redundant over
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the Hilbert Space. The end result of MP is to form a linear expansion of waves that provides an

approximation of the signal. An atomgγ(n) in a dictionary may be defined as given by Equation

2.3.

gγ(n) =
1√
s
g(
n−m

s
)eiξn (2.3)

Similar to the wavelet transform, the termss andm represent the scale and translation param-

eter respectively. The termξ is the frequency modulation for the atomg. The termγ is considered

as a set of the translation (m), scaling (s) and frequency modulation (ξ) parameter for the atom at

a specific iteration. Furthermore,γ also contains the parameters specific to the atom at the given

iteration (i.e. the window length and type). The dictionaryζ has a limited number of such atoms

g that was used to decompose the signal. It is important to notethat the MP itself is simply an

iterative decomposition algorithm. The adaptive decomposition stems from the TF atoms used in

the dictionaryζ to decompose the signal.

The MP algorithm itself maintains an energy conservation that will guarantee convergence of

the vectors after a sufficiently large number of iterationsǫ [59]. The MP algorithm can serve as an

adaptive TF decomposition to highlight specific signal structures within the signal by iteratively

selecting atoms based on a specific criterion function. A signal f(n) is represented as a linear

expansion of atoms from the dictionary, and can be observed in Equation 2.4.

f(n) =
∑+∞

ǫ=0
bǫgγǫ(n) (2.4)

For a given number of iterations (ǫ), a TF wavelet atomgγǫ(n) is selected with specific param-

etersγǫ. The termbǫ is the expansion coefficient for an atomgγǫ(n) at the given iterationǫ. In

this equation, the signalf(n) is represented by a combination of atoms with varying expansion

coefficients. The expansion coefficient is based on the criterion function used to select an atom at a

given iteration. In the original implementation of MP, the criterion function selects an atom based

by maximizing its projection onto the signal (provided in Equation 2.5).

b =< f, gγ >=
∑

f(n)g∗γ(n) (2.5)
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The product between the complex conjugate of an atom (g∗

γ(n)) and the signal (f(n)) forms

the inner productb at the first iteration. After the first iteration, the signal can be represented by

Equation 2.6.

f = b0gγ0 +Rf (2.6)

This equation illustrates that the signal is represented by the atomgγ0 with an expansion coef-

ficient b0 and a residual componentRf . The residual component is the signal that is not captured

by the atomgγ0 . If we were to expand this to large number of iterations (and assuming that the

dictionaryζ spans the complete Hilbert space of the signal f(n)), then the residual component will

become zero, which will give us the linear expansion in Equation 2.4. There are two criteria that

must be met in order to be able to completely represent a signal. First, the dictionary must encom-

pass the full Hilbert Space of the signal (i.e. there are a sufficient atoms to capture all the signal

structure variations). Second, the number of iterations used must be sufficiently large (usually in-

finite) in order to capture all the signal structures present in the signal. If these condition are not

met, then Equation 2.4 becomes an approximation of the original signalf(n). In this case, the

signalf(n) will contain an approximated component after a set number of iterations and a residual

component. Suppose that after a finite number of iterations (ǫ), the residual may be calculated as

given by Equation 2.7.

Rǫf =< Rǫf, gγǫ > gγǫ +Rǫ+1f (2.7)

Equation 2.7 states that the residual component at iterationǫ is decomposed by maximizing the

projection of an atom on the residual, therefore creating an expansion of an atom at that specific

iteration (gγǫ) and a new residual component (Rǫ+1f ). If the number of iterations is not sufficient

to represent the signal or the dictionary is not complete, then the signalf(n) will contain an

approximated component and a residual component (given by Equation 2.8).

f(n) =
∑

ǫ
bǫgγǫ(n) +Rǫ+1f(n) (2.8)
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The approximated component of signalf(n) consists of the summation of the atoms with its

respective expansion coefficients (
∑

ǫbǫgγǫ(n)). The residual component (Rǫ+1f(n)) is the part of

the signalf(n) that is not represented by the atoms. As previously stated, the original MP has

a criterion function that minimizes the norm of the residual||Rf || (or maximizing the projection

of the atom on to the signal or its residual). The criterion functionC can be defined as given by

Equation 2.9.

C = argmax[< Rǫf, gγǫ >] = argmax[bǫ] (2.9)

This iterative process will continuously select the atomgγǫ that maximizes its projection on to

the residualRǫf at a given iteration. This MP algorithm uses a TF dictionary to represent a signal,

and will be referred to as the original MP (ORG MP) decomposition in this dissertation. The

complexity for the ORG MP isO(N2log(N)) [60]. An example of the original MP decomposition

(using a Gabor dictionary) of an arrhythmia signal over 100 iterations is illustrated in Figure 2.4.

The purpose of Figure 2.4 is to explain how the MP decomposition can be visualized. From

this figure, the top panel (Figure 2.4a) illustrates the original arrhythmia signal that is to be decom-

posed. The middle panel (Figure 2.4b) is a plot of all the atoms over the 100 iterations. This plot

shows each atom’s (represented by the boxes) time (locationalong the x-axis), frequency (location

along the y-axis), scale (based on the length and width of a particular box) and coefficient (colour

of the box). The longer boxes represents the atoms with a larger scale. The colour ranging from

dark red to dark blue represents the strength of the coefficient of each atom ranging from strong

to weak, respectively. This type of diagram is useful when observing how specific signal struc-

tures of the arrhythmia are represented by the atoms of the dictionary. The bottom panel (Figure

2.4c) represents the scale-frequency amplitude map [61, 62]. This map categorizes the atoms into

bins of scale and frequency bands and then averaging the coefficients within that particular band.

This type of representation is useful when observing the generic structures of the signals between

different sets.

In terms of capturing specific signal structures from a signal, MP provides an advantage in

terms of its flexibility to approximate structures of interest. This advantage comes from the it-
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erative approximation of the signal based on the TF dictionary. This approximation may also be

constrained in order to analyze specific signal structures.In the analysis of EEG signal structures,

MP was used to identify transients from the EEG [63]. The MP algorithm was also used in cap-

turing the ventricle and atrial activations from the normalECG [64]. The original MP is based

on maximizing the projection of an atom onto the signal. However, if there are specific signal

structures that are of interest, then having the ability to alter either the dictionary, the range of pa-

rameters (γ) and/or the criterion functionC will be invaluable in identifying signal structures that

may be hidden within the electrogram during an arrhythmic episode, as well as associating such

signal structures to the underlying APP characteristics.

Orthogonal Matching Pursuit

The orthogonal matching pursuit (OMP) is a decomposition algorithm that is similar to the original

MP. The objective is to represent a signal with the elements (atoms) of the dictionaryζ. The main

difference between the OMP and MP is with respect to the coefficients and the residual at any given

iteration. Considering the original MP decomposition givenby Equation 2.8, the coefficientbǫ+1

is selected by determining the maximum projection of an atomgγǫ+1
onto the residualRǫ+1f(n).

The MP decomposition becomes suboptimal in terms of selecting the atom because there is no

guarantee that the residualRǫ+1f(n) spans the remaining Hilbert space not captured by the atoms

from the first iteration up untilǫ [65]. On the other hand, the OMP converges to the projection

spanned by the dictionary’s Hilbert space faster than MP. Consider the OMP decomposition given

by Equation 2.10.

f(n) =
∑

ǫ
ρǫgγǫ(n) +Rǫ+1f(n) (2.10)

The termρ refers to the sparse code at any given iterationǫ. The overall decomposition looks

nearly identical to the decomposition by the original MP (Equation 2.8). However, the projection

for the atom atǫ + 1 onto the residual is what is different. The projection of theresidual onto all

the atoms up toǫ (i.e. gγ1 to gγǫ and denoted asgγ1:ǫ) is zero (as illustrated in Equation 2.11).
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< Rǫ+1f, gγ1:ǫ >= 0 (2.11)

If this constraint is considered, then all the atoms selected from iteration 1 toǫ will no longer

have a projection onto the residual, thereby limiting the Hilbert space to the remaining atoms that

were not selected from the dictionary to represent the signal. This means that the maximum number

of iterations in the OMP decomposition is limited to the number of elements in the dictionaryζ.

In order to guarantee that the residual is orthogonal to the atoms selected untilǫ (gγ1:ǫ), the

projection at any given iteration must update all previous sparse code coefficients (ρ1 to ρǫ). In

order to update the sparse code coefficients, it is necessaryto determine the Hilbert space spanned

by the atoms untilǫ. The auxiliary representation for the atom atǫ + 1 (gγǫ+1
) can be redefined as

a component that is dependent on the previous atoms (gγ1:ǫ) and an orthogonal component (given

by Equation 2.12) [65].

gγǫ+1
=

∑ǫ

υ=1
ρǫυgγυ + ηǫ (2.12)

From this equation, the atomgγǫ+1
consists of the component captured by the previously se-

lected atoms and their coefficients (i.e.
∑ǫ

υ=1ρ
ǫ
υgγυ ) and the orthogonal component (ηǫ) that is not

captured by any of the previous atoms. It should be noted thatfor an orthogonal dictionary, only

theηǫ component will exist. The next step is to update all the sparse codesρ. This update is defined

by Equation 2.13 and Equation 2.14.

ρǫ+1
υ = ρǫυ − δǫρ

ǫ
υ

where,υ = 1...ǫ
(2.13)

ρǫ+1
ǫ+1 = δ (2.14)

Equation 2.13 states that the updated sparse codes coefficient (denoted asρǫ+1
υ ) is the differ-

ence between the previous sparse codes coefficient (denotedasρǫυ) and the previous sparse codes

multiplied by aδ factor (denoted asδǫρǫυ). The sparse code for the newest iteration (ρǫ+1
ǫ+1 from

Equation 2.14) is theδ factor. Theδ factor is defined by Equation 2.15.
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δ =
< Rǫf, gγǫ+1

>

< ηǫ, gγǫ+1
>

(2.15)

The δ factor is the ratio between the inner product of the residualsignal and the atomgγǫ+1

and the inner product between theηǫ component and the atomgγǫ+1
. The updated sparse codes

and atoms will be orthogonal to the residual produced atǫ + 1. The application of OMP for this

dissertation is producing the sparse codes using the trained dictionaries. The complexity for OMP

isO(N2.5) [66]. The following section will discuss the dictionary learning algorithm.

2.2.3 Dictionary Learning

The signal decomposition using MP relies on selecting a dictionaryζ that can accurately approxi-

mate the signal. Traditionally, the selection of such a dictionary would rely on understanding the

Hilbert space spanned by the signal structure and then appropriately using a dictionary that is made

up of atoms also spanning this same Hilbert space. When considering a signal such as VF, however,

the underlying signal structure that should be targeted maynot be fully understood. Therefore, it

is not clear which part of the Hilbert space is significant fora given event or APP characteristic in

the VA electrogram. Dictionary learning is a valuable tool for such instances and could be used to

assist in identifying electrogram signal structures of interest in the arrhythmia episode.

The concept of dictionary learning relies on training the atoms of the dictionary to conform to

a set of signal structures that best represent a set of training signals. There are several methods

that can be used for dictionary learning, such as maximum likelihood [67], method of optimal

directions [68], maximum a-posteriori probability [69], and unions of orthonormal bases [70],

but the main focus of dictionary learning that will be discussed is the K-means singular value

decomposition (KSVD) method [71]. This is because the KSVD dictionary learning is considered

a more generalized method for training a dictionary. To better understand the K-SVD algorithm,

assume that a given set of training signals (that can be denoted as[f ]) can be represented with a

dictionaryζ (which consists of a set ofr atoms and is denoted as[g] to describe the KSVD process)

and a coefficient matrix[b] (as given by Equation 2.16).
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[f ] =
∑

[g]× [b] + [e] (2.16)

The term[e] is the error term that is not represented by the coefficient matrix[b] and the dictio-

nary [g] for the given set of training signals[f ]. Given a dictionaryζ, the objective is to minimize

the error term (similar to the MP algorithm minimizing the residual for a single signal). The initial

coefficient matrix[b] is determined by computing the MP for each of the training signals. Once the

coefficients are fixed for a given dictionary, the KSVD algorithm proceeds to update the dictionary

atomgr one at a time. This is accomplished by setting all the remaining columns of the[b] and[e]

matrices to zero with the exception of therth atom (these matrices will be denoted as[b]r and[e]r).

The singular value decomposition is then applied on the error matrix for therth atom such that the

atom could be updated. This is given in Equation 2.17.

[e]r = U∆V T (2.17)

The singular value decomposition of a matrix (in this case the error matrix) produces two

unitary eigenvectorsU andV and a singular value matrix∆. These eigenvectors are representative

of the error matrix. The atom[g]r and the coefficient matrix[b]r are updated based on the first

component of theU unitary matrix and the first component of theV unitary matrix, respectively.

This process is then repeated one at a time until each atom in the dictionary has been updated. This

iterative update of the atom and coefficient is why this algorithm is referred to as K-SVD due to

the similarities by which K-means is used to update the mean of cluster of data points [71]. Once

all of the atoms have been updated, the original MP decomposition is performed on the training

signals again to update the error matrix. This process can then be repeated for as many iterations as

needed. The objective function for the KSVD algorithm is defined as minimizing the error between

the training signals and the trained dictionary (as provided by Equation 2.18). The complexity for

the KSVD dictionary training isO(N3) [66]. However, the training is completed once, at which

point the OMP is used with the trained dictionary.

< [b], ζ >= argmin
[b],ζ

||[f ]− ζ[b]|| (2.18)
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The KSVD dictionary learning method is mainly focused on fully approximating the train-

ing signals and not on creating a discriminative dictionary. By providing supervised information

(labels) and a classification error to the objective function, a dictionary can be trained not only

to approximate the training signals, but also to provide theability to discriminate between sub-

sets in the training samples. The label-consistent-KSVD (LCKSVD) introduces two additional

terms to introduce the discriminative component to the objective function (as provided in Equation

2.19) [72].

< [b], [TM ], [W ], ζ > = arg min
[b],[TM ],[W ],ζ

||[f ]− ζ[b]||22
+ α||[Q]− [TM ][b]||22 + β||[CL]− [W ][b]||22

(2.19)

The first newly added term introduced by Equation 2.19 is the sparse code component (α||[Q]−
[TM ][b]||22). The matrix[Q] are the discriminative sparse codes for the training signals, the matrix

[TM ] is the transformation matrix that will linearly transform the coefficients[b] to the most dis-

criminative sparse feature space and the termα represents the contribution of the sparse component

to the objective function. The classification error component (β||[CL]− [W ][b]||22) is introduced as

the second newly added term to Equation 2.19. The matrix[CL] is the class labels for the training

signals, the matrix[W ] is the classifier parameters and the termβ controls the contribution of the

classification error component to the objective function. Depending on whether approximation,

sparsity or discrimination of the training signals is a priority in the trained dictionary, theα andβ

values should be set.

In order to update the terms< [b], [TM ], [W ], ζ >, a K-SVD algorithm is applied on the crite-

rion function given in Equation 2.19. The updated terms are obtained iteratively. The dictionaryζ

is initialized by any starting dictionary (Gabor dictionary for this dissertation). The[TM ] transfor-

mation matrix as well as the[W ] classifier parameter matrix are initialized using a ridge regression

model [72]. The coefficient matrix[b] is initialized by decomposing the training signals with the

starting dictionary. The LCKSVD dictionary learning algorithm is a valuable tool in trying to iden-

tify components of significance (based on the trained atoms)that may relate to signal structures

found in the arrhythmia episode.
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2.3 Pattern Classification

There are two common types of methods in assessing a feature (or set of features). In order to

determine its ability to discriminate a data set, the statistical significance tests and/or a classification

system can be used. This section will introduce the methods that will be used to test features that

will be introduced in subsequent chapters.

The objective of hypothesis testing is to use simple statistics to determine if a feature belongs to

the same class or is part of separate classes [73]. A null hypothesis (the observations belong to one

single class) is tested based on the statistical analysis. The null hypothesis is rejected only if the

probability value is below a certain threshold. For the purpose of this dissertation, the probability

value threshold was set as 0.01 (denoted byP < 0.01 throughout this dissertation), which is a

commonly accepted value [73]. A simple example of a statistical significance test is the T-test that

analyzes the means of each class to determine if the observation belongs to the same distribution

or not.

The analysis of variance (ANOVA) is another type of statistical significance test that is more

commonly used to determine if a feature is significant. Specifically, the ANOVA method is used to

determine whether the difference in the means of the groups is greater than the expected variation

of the data and is not actually being caused by the variationsthemselves [73]. By considering the

variation of the data, the ANOVA can provide a more robust method for determining if the given

feature could be considered for representing the data. The ANOVA will produce an F-statistic

(denoted asStatF ) based on the significance of the distribution. The equationfor the ANOVA

method is given by Equations 2.20 and 2.21 [74].

StatF =
SST/DoFT

SSR/DoFR

(2.20)

SS =
∑

((κ− κ̄)2) (2.21)

The termSS refers to the sum of squares, which is the square sum of the observations (κ) sub-

tracted by the mean of the observations (κ̄). The termSST refers to the sum of squares produced
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by the treatment deviations, which is the observations subtracted by the total mean of all the obser-

vations. The termSSR is the sum of squares produced by the residual deviation, which is the mean

of each class subtracted by the total mean of all observations. TheDoF term refers to the degrees

of freedom for the observations in the treatment deviation and the residual deviation. This refers

to the number of elements in each deviation table that can be arbitrarily assigned. For example,

if a data set consisted of 4 classes and 8 observations in eachclass, then the degree of freedom

with respect to the treatment deviation (DoFT ) is 23 and the degree of freedom with respect to the

residual deviation (DoFR) is 3. TheDoFT is 23 because there are a total of 24 observations with a

fixed total mean, and it is only possible to vary 23 of the observations while having the same total

mean. Similarly, theDoFR is 3 because there are 4 class means and only 3 can be varied in order

to still produce the fixed total mean. From the ANOVA analysisin Equation 2.20, the F-statistic is

produced, which can then be used to create a probability valueP . Note that the probability value

simply states if the observations are significant or not and does not reveal which set of observations

(i.e. which class) are contributing to the significance. Therefore, the ANOVA tests is a good tool

in determining the strength of the observations, obtained from features, in segregating one or more

classes.

The statistical significance test assesses how viable a feature is for the purpose of separating

multiple groups. Considering the ANOVA test, the combination of the mean and variation of the

observations for each group were used to determine the strength of the feature. However, these

tests do not provide insight into how successful the featureperforms on classifying the data into

a class. Therefore, a classification system must be used to quantify how accurate the feature is in

classifying the data. There are several types of classification systems that can be used to quantify

the accuracy, but only the linear discriminant analysis (LDA) will be discussed. The LDA creates

linear boundaries in the feature space to classify the data.If a feature does not have a strong ability

to discriminate the classes, then the LDA will produce poor accuracies. Thus, this ensures that the

features are discriminative.

The Fisher’s LDA [75] is a supervised machine learning algorithm, which means that the data

has to be pre-classified in order to train the classifier. If a linear classifier were to havecl classes,
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then the number of linear discriminant functions to separate the classes would becl-1. The combi-

nation of discriminant functions will create regions in thefeature space, where a particular region

would represent a given class. The objective of the linear classifier is to create a projection of the

observations (κ) of the feature space into a particular class using a set of weightsΩ. This projection

is defined as given by Equation 2.22.

Class = [Ω]T×κ (2.22)

The training of the classifier will determine the weight matrix ([Ω]) that will be used to project

the observations (κ) to a particular class. The criterion functionJ(Ω) for the training the weights

for a LDA is defined by Equation 2.23.

J(w) =
|[Ω]TSSR[Ω]|
|[Ω]TSST [Ω]|

(2.23)

Based on the distribution of the observation and the class mean (SSR) versus the distribution

of the class mean and the total mean (SST ), the weights will be updated. The objective is to

maximize the criterion function, which means selecting theweights to maximize the variations

between group means while limiting the variation of the feature space for each of the classes. In

order to train the classifier, pre-classified training samples is given to the classifier to establish the

linear discriminant boundaries (by training the weights) such that the testing data can be classified.

Classification systems often require a large number of samples to train the classifier, which is

often difficult when considering biomedical databases. If the database size is limited, it is difficult

to generalize the classifier [75]. Cross validation can be performed on the data set in order to bet-

ter test the feature space for small data sets and arrive at a more generalized performance of the

classifier. The extreme form of cross validation method is the Leave-One Out (LOO). In the LOO

method, the classifier is trained with all the observations except one. The trained classifier is then

tested with the remaining one observation and a classification is given for that observation. This

process is repeated by leaving out each observation one by one and training with the remaining

observations to create a classification for each observation. Finally, a classification accuracy can

be determined by identifying how many observations were correctly classified when compared to
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the total number of observations. Furthermore, the accuracy for each class can also be found by

determining how many observations within each class were correctly classified when compared to

the total number of observations for the specific class. The LOO method is important in determin-

ing the classification accuracy produced by the feature space that will be introduced in subsequent

chapters.

2.4 Decision-Support System

The objective of developing a DSS in this dissertation is to automate and assist clinicians in the di-

agnosis of VA. In particular, the adaptive signal decomposition and dictionary learning approaches

will be used to capture electrogram signal structures as they relate to specific events and APP

characteristics. This means that the signal structures already have a relation with the event and

structures, and the DSS becomes a tool that can automate and assist clinicians in inferring the

events/APP characteristics. The brain of the DSS can be created by many types of machine learn-

ing models. Some examples related to cardiology include decision tree, k-nearest neighbor and

support vector machine based DSS [76, 77]. Neural networks are preferred over these other types

of models because of its ability to support a linear or non-linear model for the DSS [76]. Further-

more, the use of a neural network based DSS is supported by an established relation between the

signal structures and the events/APP characteristics, allowing for a type of explainable artificial

intelligence.

Neural networks resemble a biological system [78, 79], where the inputs to the system are

associated to the outputs of the system through multiple hidden layers, each with a finite set of

neurons. These hidden layers consists of neurons and weights that quantify the relationship be-

tween adjacent layers. In combination, the relationship between the input and output layers could

be established. Consider that, if there ared input parameters (denoted asx), then the input layer

will haved neurons. Similarly, there would becl neurons in the output layer forcl output parame-

ters (denoted asz). The simplest form of the neural network is a three-layer system with one input

layer, one output layer and one hidden layer. A generic equation for the three layer neural network

is given in Equation 2.24 [75].
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zi3 =MFi3((
h

∑

i2=1

Ωi3i2MFi2((
d

∑

i1=1

Ωi2i1xi1) + Ωi20)) + Ωi30) (2.24)

For this equation,zi3 is the output parameter with a modeling functionMFi3 . The termi3 refers

to the neurons (zi3) or functions (MFi3) in the third layer. There also exists a modeling function

MFi2 as a result of the hidden layer (i2). These modeling function describes what the relationship

is between the two layers. The are a total ofh hidden neurons. The two weight functionsΩi3i2 and

Ωi2i1 represent the weights between the hidden and output layer (Ωi3i2) and between the input and

hidden layer (Ωi2i1) respectively. TheΩi30 andΩi20 are the bias values for the respective layers.

The overall relationship between the input parametersx and the output parametersz are a result of

the modeling functions as well as the final weights.

To determine the input parameter’s influence on a particularoutputzk, the weights along that

neural path will have to be explained. The training of the weights is based on the minimization of

a criterion functionJ(Ω) that occurs iteratively for a set of input and output parameters. For neural

networks, this criterion functionJ(Ω) compares the systems current outputzk to the target outputs

tk. The goal of the criterion function is to minimize the squared error between the target outputs

and the trained outputs. The minimization of the square error provides the neural network with a

smoother error surface, which provides better control at arriving to the global minimum error for

the weights [75]. This criterion function is given in Equation 2.25.

J(Ω) =
1

2

cl
∑

k=1

(tk − zk)
2 (2.25)

The trained outputs after a given iteration is dependent on the trained weightsΩ. The back-

propagation learning rule for the weightsΩ is based on a gradient descent [75]. To determine the

step size by which the weightsΩ increments at each iteration (∆Ω), the derivative of the criterion

functionJ(Ω) with respect to the weightsΩ is taken and multiplied by a learning rateν. The up-

dated weights at iterationq + 1 is calculated by adding the step size weight (∆Ω) with the weight

at iterationq. The step-size weight and the updated weight is given by Equations 2.26 and 2.27

respectively.
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Figure 2.5: Example Neural Network Model Diagram

∆Ω = −ν ∂J
∂Ω

(2.26)

Ω(q + 1) = Ω(q) + ∆Ω (2.27)

Figure 2.5 is an example of a three-layer neural network. This general form of the neural net-

work can be used to associate the identified signal structures (the input parameters to the neural

network) with the APP characteristics (the output parameters to the neural network). These mod-

els may serve as micro-models to characterize the VA episode, and the specific models will be

discussed in subsequent chapters.

2.5 Background Summary

This chapter presented the relevant signal processing tools used in this dissertation. It began by

introducing the fundamentals of TF decomposition and discussing the short-time Fourier trans-

form. The fundamentals of the wavelet transform and its significance to TF decomposition were

also explained. For the specific purpose of identifying signal structures from the electrogram,

the matching pursuits algorithm was introduced. The orthogonal matching pursuits as well as the
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LCKSVD dictionary learning was also introduced in an extension to the matching pursuits algo-

rithm. The ANOVA statistical significance test and the LDA classification with LOO for testing

a feature strength were presented. Finally, the neural network system for a DSS was discussed

for its ability to create dynamic relationships between input and output parameters, such as sig-

nal structures and the event/APP characteristics. These methods will be discussed in detail in the

subsequent chapters.
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Chapter 3

Time-Specific Event Detection

T
HE electrical activations of a VF episode was believed to be random with no known mech-

anistic behaviours. Modern research into VF, however, has discovered the manifestation of

time-specific events [30–32] that may govern the initiationand maintenance of VF. This chapter

will discuss some of these time-specific events. Next, the relevant database that is used for this

study will be discussed in detail. The adaptive signal decomposition used to associate electrogram

signal structures with relevant time-specific events will then be introduced. The results and dis-

cussion for the proposed approach will be presented for thischapter followed by a brief summary.

The general block diagram for this chapter is illustrated inFigure 3.1

3.1 Time-Specific Event Background

During a VA episode, abnormal electrical activations of theventricles of the heart causes a re-

duction and/or cessation of normal ventricular activity. While VT can have a highly rhythmic

electrical impulse governing its activations, VF typically has more chaotic electric impulses. How-

ever, despite the differences between VT and VF or the fundamental APP differences from patient

to patient, there are some events of clinical interest during VA episodes that are reflected in the

electrogram morphology. One example of a time-specific event is known as the ”double poten-

tial”, which has been observed to occur near regions of conduction blocks [23]. These conduction

blocks primarily occur when an electrical impulse wave is propagating through the myocardium

and is impeded or blocked by a region of dead or scar tissue, therefore signifying a relation to an
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This chapter will discuss the time-specific event detection. In particular, the adaptive signal decomposition 
approach to identify discriminant electrogram signal structures and the relation of these structures to time-
specific events will be discussed.

Figure 3.1: Contributions for Chapter 3
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APP characteristic. Another event that was previously observed was a signal-amplitude variation

from low to high was used in determining the defibrillation outcome [25]. The region with a high

electrogram amplitude was found to result in a higher chanceof success for a defibrillation shock

than a region of low electrogram amplitude.

There are also examples of electrogram signatures (refer toFigures 3.2 and 3.3) that were pre-

viously identified [2, 35] and some have relationships with events in the arrhythmia. The electro-

gram signature in Figure 3.2a is an example of the ”double potential” that is known to occur around

conduction blocks. When analyzing the distributions of the unipolar electrogram signatures from

Figure 3.2 (unipolar electrograms will be further discussed in Section 3.2.1), sets of distributions

for different patients were observed [35], which indicatesthat there may be some similarities that

can be observed in different patients suffering from VA. Thebipolar electrogram signatures from

Figure 3.3 [2] (bipolar electrograms will be further discussed in Section 4.2) also demonstrate that

there exists certain sets of activations known to exist in VA. Furthermore, the continuous activity,

multiple component, and wide complex signatures were observed to occur around the vicinity of a

rotor event [2]. The occurrence of the alternating activation was also observed to be a precursor to

an arrhythmic episode [80].

Another spatio-temporal event observed during VA episodesis known as a rotor. Rotors are,

as per rotor theory, organized, rotating, and migrating spatio-temporal centres of electrical activ-

ity, which are believed to be the drivers of VF [30–32]. Rotor theory is one hypothesis on the

initiation and maintenance of ventricular arrhythmia, specifically VF, and has continued to garner

further study [81]. The rationale for such a hypothesis is attributed to the idea that the circulating

wavefront constantly reactivates its own partially refracted cells left in the wake of the wavefront.

Existing literature has also reported that it may be possible to modulate the rotors (through anti-

arrhythmic drugs or ablation [34, 81]) to prevent future arrhythmic episodes. Furthermore, the

occurrence of rotors were found to be around the boundary regions between scar and healthy tis-

sues [9], thereby having a correlation with APP characteristics of the heart. Given the significance

of the rotor event, it is important to the clinical communityto be able to track this event during a VA

episode. Current methods in tracking rotors need spatio-temporal electrical information over the
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Figure 3.2:Unipolar Electrogram Patterns ©[2013] IEEE

43



1000 ms

�

��

��

��

��

�

500 ms 500 ms

500 ms
500 ms

500 ms

1000 ms

�	
��

Normal Activation, AT: Alternans, CA: Continuous activity, WC: Wide complex, 
I:Intermittent, MC: Multiple components, R: Rapid
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surface of the heart, for which the resolution required is ofconcern [82,83]. Furthermore, the axis

of rotors have also been observed to pass through the myocardium transmurally [84, 85], which

requires a more involved acquisition system to capture these events. The ability to identify such an

event using only the electrogram is important for the clinical community. Identifying electrogram

characteristics in the vicinity of a rotor can assist electrophysiologists in possibly modulating ro-

tors in hopes of terminating a fundamental mechanism that isbelieved to initiate and maintain VA

episodes. Hence, this chapter will focus on identifying electrogram signal structures as it relates to

the rotor event.

3.2 Database

This section discusses the databases that will be used for the identification of electrogram signal

structures as they relate to the time-specific rotor event. There were three types of database used for

the identification of signal structures: the retrospectivearrhythmia database, the in-vivo arrhythmia

database, and the synthetic arrhythmia database.

3.2.1 Retrospective Arrhythmia Database

One way to study VA (particularly VF) is by analyzing explanted human hearts. As previously

stated in Chapter 1, a person suffering from VF can only survive for a few minutes before it leads to

SCD. Therefore, the short time frame makes it difficult and unethical to study VF on a live patient.

While studies that have used animal hearts to better understand VF exists [86–88], these may not

directly relate to humans due to the differences in the physiology of the heart. Thus, this study uses

explanted human hearts to study VF and its relation to the APPcharacteristics. In order to analyze

the electrical activations of an explanted heart, the heartwas kept alive using a special Langendorff

setup. Informed consent was obtained from each patient and the REB ethics was approved by

the University Health Network, Toronto, Canada. The hearts being analyzed were kept alive for

a few hours after being explanted, at which time the electrical activations were recorded using a

specialized system [31]. The experiments and collection ofthe electrograms were performed by

Mr. S. Masse, Dr. K. Umapathy, Dr. T. Farid, Dr. K. Nair, Dr. K.Nanthakumar and clinical team
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from Toronto General Hospital. Additional histological information for each heart was collected

by Dr. K. Nair. The retrospective arrhythmia database consisted of 8 individual human hearts

and a total of 13 arrhythmic episodes. In order to record the electrical activations of the heart,

an electrode array of 112 electrodes were attached to the outer surface of the heart. The shape of

the electrode array was in shape of a dome that would be placedon the outer surface of the heart

(Figure 3.4a). This dome consisted of 14 sets of electrodes,with each set having 8 electrodes. The

electrode array can be observed in Figure 3.4b. In this dissertation, only de-identified electrograms

were used for the study.

The multichannel electrodes record the electrical signalsproduced by the heart during the in-

duced arrhythmia episode. The system recorded the electrograms at a specific sampling rate de-

pending on the type of electrogram recording. Once the electrograms were sampled, the signals

were processed through a hardware bandpass filter (between 0.5 to 200 Hz) before being stored.

The retrospective database consisted of the electrical activations during the arrhythmic episode as

well as the APP characteristic. To record some of the APP characteristics (such as the scar tissue

and the action-potential characteristics), a pacing system recorded from the bipolar electrograms

was used (discussed further in Section 4.2). The recording of the arrhythmia episode was done

on the unipolar system for this dissertation. The rotor event is a spatio-temporal phenomena, for

which the unipolar electrogram may be better suited in identifying unique signal structures because

it is an average of the activations around the electrode location.

The unipolar electrogram records the electrical activation by placing one electrode on the sur-

face of the heart and the reference electrode away from the ventricles but on the heart [31]. This

records the far-field effect on the surrounding tissue, as opposed to the local activation recorded by

the bipolar electrograms (discussed in Section 4.2). Once the pacing study is complete, the heart is

resuscitated, such that it creates its own impulse. The heart is then forced into an arrhythmia. The

electrical activations during the arrhythmia episode weresampled at 1000 samples/S and stored for

a specific episode. The electrograms were down-sampled to 250 samples/S in order to reduce the

number of samples for the analysis. These signals were also filtered further to limit the frequency

range to the dominant range for ventricular arrhythmias. A Gaussian windowed FIR bandpass filter
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(a) This figure represents how the electrode array is placed on the outer surface of the
heart. The explanted heart is kept alive in a special Lagendroff system, which allows for
the electrode array to be placed on the outer surface of the heart.
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(b) This figure represents the electrode array that is attached to the surface of the heart.
Each point represents an electrode from which the electrical activation is recorded from.
The X and Y axes represent the spatial location of the myocardium.

Figure 3.4: Electrode Array
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was used to to retain the 1 to 10 Hz frequency range from the electrogram [89] and filter out the

remaining frequency ranges.

The retrospective arrhythmia database consisted of 7 individual human hearts. There were a

total of 13 unique arrhythmia episodes in which the rotor event was identified (identification of the

rotor event was performed by our collaborators at Toronto General Hospital). From each episode,

2 electrodes in the vicinity of a rotor, 2 electrodes in the vicinity of a phase singularity (discussed

further in Section 3.3), and 4 electrodes that were not in thevicinity of a phase singularity were

selected. The electrograms extracted were a 10 S window of the total arrhythmia episode. Even

though there were 112 electrodes used to record the electrical activations of the heart, only 8 elec-

trodes per arrhythmia episode were selected because the number of rotors per case were limited.

Therefore, a total of 104 electrograms (8 electrograms fromeach of the 13 episodes) were used

for this analysis. This recorded arrhythmia episodes were used to identify the rotor events and

identify any relating electrogram signal structures. Thisdatabase will be referred to as RDB in this

dissertation.

3.2.2 In-Vivo Database

There were two clinical patients who were undergoing intraoperative VT mapping, but had acci-

dentally developed VF. During the VT mapping procedure, a similar electrode array to the RDB

was attached to the outer surface of the heart and inside the left ventricles. This unintentional VF

episodes that were recorded were also used to study the time-specific events. Though only two

clinical cases exist, they represent the most ideal cases inorder to study VF because the hearts are

in a live clinical case. Also due to the limited availability, both the available surfaces (the inner

left ventricle and outer heart surfaces) were used for one ofthe patients. Only the inner left ven-

tricle recordings were available for the other patient. Theacquisition system was similar to the

one used for the RDB [31]. The average length of the VF recordings were 2.75 S. Similar to the

RDB, 2 electrodes in the vicinity of a rotor, 2 electrodes in thevicinity of a phase singularity, and

4 electrodes that were not in the vicinity of a phase singularity were selected from each episode.

Since there were 3 unique episodes, a total of 24 electrograms (8 electrograms from each of the
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3 episodes) was used. This database was used to validate the adaptive decomposition approach

presented in this chapter. This database will be referred toas IVDB for this dissertation.

3.2.3 Luo-Rudy Synthetic Database

The synthetic arrhythmia database was created synthetically generate a rotor event in a simulated

cardiac tissue sample and determine whether the electrogram signal structures introduced in subse-

quent sections were valid. The synthetic arrhythmia database was generated using the Luo-Rudy 1

model [90–92]. The Luo-Rudy 1 model characterizes the transmembrane current based on the cell

membrane’s capacitance per unit area and the cell’s transmembrane voltage. This model simulates

the inward and outward current flow that occurs during an action potential. The voltage generated

by the simulated cardiac tissue is used for the analysis. This database was provided by a third party

collaborator (Dr. Edward Vigmond) to analyze the rotor events.

For the model, a36cm2 (6× 6cm2) cardiac tissue area was simulated for different organization

levels of the arrhythmia. From the area of simulated electrical activations, electrograms were

computed on a10 × 10 array. The electrograms were filtered between 1 to 10 Hz. Thisdatabase

was used primarily for the validation of the observed signalstructures that were identified by the

adaptive decomposition method that is discussed in the nextsection. The Luo-Rudy 1 model that

was used to synthetically generate electrograms were not associated to the APP characteristics of

the heart because this information was unavailable for the simulated cardiac tissue. Therefore, this

synthetic arrhythmia will serve only as a means to validate the time-specific event and its associated

signal structures (discussed in Section 3.5.3). This database will be referred to as LRDB.

3.3 Rotor Event

In order to observe the occurrence of these spatio-temporalrotor events, a phase map has to be

generated, as it can provide an easier method by which to observe these points of circulating

wavefronts. The phase is an important and fundamental parameter of a signal. Given a signalf , it

is possible to calculate the instantaneous phase by analyzing the analytical form (y) of the signal

(f ). In order to calculate the analytical signaly, the Hilbert transform was used. Considering the
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signalf(n) with the Fourier transformF (l), the analytical signaly(n) can be obtained by Equation

3.1 [93].

y(n) = IDFT(2us(l)F (l))

= IDFT((1 + sgn(l))F (l))

= IDFT(F (l)) + IDFT(sgn(l)F (l))

= f(n) + jH(f(n))

(3.1)

Equation 3.1 states that the analytical signaly(n) is the inverse discrete Fourier transform

(IDFT) of two times the Fourier step function (us(l)) multiplied by the Fourier transform (F (l)) of

signalf(n). The unit step function is defined in Equation 3.2 [94]. The term sgn(l) is the signum

function and is defined by Equation 3.3 [95]. The termH(f(n)) is the Hilbert transform of signal

f(n). Once the analytical formy(n) was obtained, the instantaneous phase (Φ(n)) was calculated

using Equation 3.4.

us(l) =











0, l < 0

1, l > 0
1
2
, l = 0

(3.2)

sgn(l) =











−1, l < 0

1, l > 0

0, l = 0

(3.3)

Φ(n) = arctan(
H(f(n))

f(n)
) (3.4)

Based on the previous steps used to calculate the instantaneous phaseΦ, it is possible to con-

struct a phase map using the 112 recorded electrograms throughout the surface of the heart. How-

ever, in order to locate the precise location of such rotors,the spatial resolution has to be higher

than that provided by the 112 electrodes. Therefore, a simple linear interpolation was performed

on the electrical activations over the surface of the heart using the 112 electrodes [96]. Figure 3.5

is an example of a phase map.
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(a) Phase map at time instance 1. The X and Y axes are spatial locations along the heart
(refer to Figure 3.4)

Phase Map Frame: 2.3S

0

pi

2pi

(b) Phase map at time instance 2. The X and Y axes are spatial locations along the heart
(refer to Figure 3.4)

Figure 3.5: Sample Phase Maps
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From this figure, there are two example of phase singularity locations (circled in white). The

colour in the phase map represents the phase at the particular time instance, while blue represents

a phase of 0 and red represents a phase of2π. A phase singularity is defined as a point around

which the phase changes from0 to 2π to complete one cycle [31, 96]. During a phase singularity,

the electric waves are rotating around the centre point, which is referred to as the phase singularity.

A rotor is defined as a phase singularity that completes at least two electric wave rotation cycles

around the centre point. The example provided in Figure 3.5 is a phase map frozen in time at

different time instances. In the first time instance (Figure 3.5a), there are two rotors identified

occurring on the surface of the heart. The second time instance (Figure 3.5b) illustrates that the

rotors had migrated to different locations over the heart.

The manifestation of these spatio-temporal events are important in understanding the initiation

and maintenance of VA (particularly VF). One of the fundamental limitations of generating phase

maps is that it requires multiple electrodes [82, 83]. It is difficult to attach an electrode array

to capture the simultaneous activation across the heart for a patient suffering from VA. Current

ablation therapies attach a limited number of electrodes to monitor the electrical activations over a

small region of the heart with very limited spatial resolution. Therefore, the detection of this event

will depend on identifying electrogram characteristics that are in the vicinity of a rotor.

3.4 Envelope Amplitude Variation

In order to detect the occurrence of the rotor event, the electrograms in the vicinity would have to

be closely observed. The generation of the phase maps allowed the cardiologists and clinicians at

Toronto General Hospital to localize the occurrence of these rotor events on the explanted hearts

(previously explained in Section 3.2.1). From these localized regions, it was observed that a re-

peating signal pattern that represented a form of amplitude modulation existed. Figure 3.6 are

examples of electrograms, one in the vicinity of a rotor (Figure 3.6a) and one away from the rotor

(Figure 3.6b).

The occurrence of the amplitude modulation structure is observable in the electrograms near

the vicinity of a rotor (Figure 3.6a) than the electrogram away from the rotor (Figure 3.6b). Based
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Figure 3.6: Sample Electrograms

53



on this observation, an article submitted by our group [2] reported that it is possible to extract a

electrogram feature that could capture the above-mentioned amplitude variation. In the article, an

approximated modulation index feature was proposed for this purpose. Since the electrogram does

not contain identical signal properties of a truly amplitude modulated signal (a signal with a fixed

carrier and modulation frequency), only an approximate modulation index could be determined. In

wireless communication, the modulation index (MI) is calculated from a generic modulated signal

fM (refer to Equation 3.5) using Equation 3.6 [97].

fM(n) = ACsin(ΦC(n)) + AEsin(ΦE(n))(sin(ΦC(n))) (3.5)

MI =
AE

AC

(3.6)

The termAE refers to the envelope amplitude in an amplitude modulated signal and the term

AC refers to the carrier amplitude. For the general modulated signal in Equation 3.5, theΦC and

ΦE are the carrier and envelope phases respectively, which is afunction of time. It should also be

noted that the envelope amplitudeAE should be less than the carrier amplitudeAC (i.e. Ve < Vc)

for traditional amplitude-modulated signals in wireless communication, so as to avoid distortion

of the signal being modulated. The envelope and carrier components for a sample electrogram is

illustrated in Figure 3.7. Since the arrhythmia electrogram has no defined properties of the ampli-

tude modulated signal, the modulation index was approximated from the electrogram signal and

its corresponding envelope. In order to approximate the envelope signal of the electrogram (f(n)),

the analytic form of the signal (y(n)) was required. Similar to the process used for constructingthe

phase maps, the Hilbert transform (given by Equation 3.1) was used to obtain the analytic signal of

the electrogram. However, instead of calculating the instantaneous phase (refer to Equation 3.4),

the magnitude of the analytic signal (My(n)) was obtained given by Equation 3.7.

My(n) = |y(n)| =
√

f(n)2 +H(f(n))2 (3.7)

The magnitude signal (My(n)) captures the envelope amplitude variation (EAV) of the electro-

gram over time. Once both the magnitude signal (treated as the approximated envelope signal) and
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the original electrogram signal were obtained, the approximated modulation index for each peak

(pk) in the magnitude signal was calculated. The approximate modulation index at a given peak

(aMIpk) is the peak-peak amplitude of the magnitude signal at the given peak (AMy ,pk) divided by

the peak-peak amplitude of the electrogram signal at the given peak (Af,pk). Once the approximate

modulation index was calculated, an average was taken for all the peaks (PK) to arrive at a sin-

gle feature value for each of the electrograms. The approximate modulation index as well as its

average is given by Equations 3.8 and 3.9, respectively.

aMIpk =
AMy ,pk

Af,pk

(3.8)

¯aMI =
1

PK

PK
∑

pk=1

aMIpk (3.9)

The objective of such a feature was to quantify the observation made visually from Figure

3.6. Considering the generic modulated signalfM (refer to Equation 3.5), the ¯aMI is a feature

that measures the amplitude-modulated component (i.e.AEsin(ΦE(n))(sin(ΦC(n)))). The re-

sults published in the Circulation Electrophysiology article [2] demonstrated that electrograms in

the vicinity of the rotor had a higher average approximated modulation index ( ¯aMI) than those

electrograms not in the vicinity of a rotor. An overall accuracy of85% was reported between the

rotor event electrograms and non-PS event electrograms (electrograms that are not near any phase

singularity events). The overall accuracy for the LRDB was reported as73%. This finding will be

further expanded on in the results section (Section 3.6).

There are a few advantages to such a feature, including that that it relies on the electrogram’s

signal structure, is related to the electrogram’s vicinityto a rotor, and does not require a large

degree of spatial resolution. Existing literature has alsohighlighted that dominant frequency

maps [9, 29, 32] as well as entropy [98–100] may also be usefulin localizing rotors, but face a

similar limitation with phase maps, which require spatial resolution. One common limitation with

dominant frequency maps as well as the approximated modulation index feature identified above is

that the complexity of the electrical activations during VFalso creates phase singularities that are

not rotors (i.e. do not satisfy the two rotation requirements). These regions with phase singularities
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also demonstrate similar dominant frequency relation and/or the approximated modulation index

feature characteristics with the regions that have rotors,and will be discussed further in the results

section Section 3.6).

Decomposing the EAV structure (with a matching pursuit-based adaptive signal decomposi-

tion) may provide further insight into the rotor events and automate the detection process. The

automated selection of atoms from a TF dictionary can be guided by a customized criterion func-

tion based on the EAV. This will allow for a formulation of theelectrogram signal structure that

would segregate the electrogram into two components: the EAV component and the residual com-

ponent. The EAV and the residual components could then be further analyzed to possibly identify

the rotor events.

3.5 Matching Pursuit Signal Decomposition

The electrical activations occurring during VF are often regarded as multi-component and chaotic

with a high degree of complex signal structures. As previously described in Section 2.2.2, the

ability of MP to decompose a signal relies on the Hilbert space that the dictionary spans as well as

the criterion function. This section will review the dictionary used for the decomposition. Then,

the rotor specific signal decomposition and the identified structures will be introduced.

3.5.1 Dictionary Selection

It is possible to use a number of different types of atoms to make up the dictionaries. Some

examples of the more common matching pursuit basis atoms arethe Gabor, Chirp and Dirac atoms

[59, 60, 101]. While it is possible to create a dictionary thatconsists of all these various atoms to

form an over-complete Hilbert space, there are two issues that should be considered. The first is

that atoms of a particular dictionary type (i.e. dictionaryof Gabor atoms) may overlap the same

Hilbert space as an atom from another dictionary type (i.e. atoms from the Chirp dictionary). This

makes extracting specific signal structures more challenging because a small variation observed in

the signal structure could potentially be characterized bya set of different atoms. Another issue

that arises is the computational complexity. By increasing the number of atoms in the dictionary,
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the MP algorithm will have to check even more atoms per iteration to determine each atom’s

projection onto the signal/residual at that iteration. Thus, selecting the dictionary that is suitable

for the arrhythmia signal structures is important for this dissertation.

In order to determine suitability of the dictionary for the arrhythmia signal structures, sample

dictionaries were created for the Gabor, Chirp and Dirac atoms. The scaling parameters for the

Gabor atoms were selected as 128, 256, 512, 1024, and 2048, asthese represented likely time-

support structures to be observed in the arrhythmia signal based on its sampling frequency (250

Hz). The scaling parameter of 128 would create atoms that area little larger than one half of a

second (precisely128
250

S). Considering the dominant frequency range of VF being between 2 to

6 Hz [102], a scale that is half a second is sufficient to represent the signal structures for this

frequency range. Therefore, the scaling parameter createsatoms that are approximately 0.5, 1, 2, 4

and 8 seconds, which can be used to represent local and generic signal structures in the electrogram.

Once the dictionaries were generated, a sample of 100 electrogram signals were decomposed

by each dictionary individually for 100 iterations. The number of iterations was set to 100 to

benchmark the performance for each of the dictionaries and compare them to one another. The

implementation of the MP algorithm was done using the Matching Pursuit Tool Kit [103] with a

MATLAB interface. Once all the signals were decomposed by each dictionary type, the original

energy and the residual energy were obtained. From these energies, an energy ratio (ER) was

obtained using Equation 3.10. The ER was then averaged for all 100 signals for each dictionary

type. This is presented in Table 3.1.

ER = 10 ∗ log10(
∑

f 2

∑

(R100f)2
) (3.10)

Table 3.1: Average ER for each dictionary type

Gabor Chirp Dirac
ER (dB) 16.034 16.047 1.015

From the results, it can be observed that in 100 iterations, the Gabor and Chirp dictionaries are

quite effective in capturing the signal structures of the arrhythmia sample signals, with the Chirp
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dictionary being better. However, upon closely analyzing the atoms used by the Chirp dictionary

to decompose the arrhythmia signals, it was observed that over 80% of the atoms did not have an

associated Chirp rate, effectively making these atoms a typeof Gabor atom. Therefore, the dictio-

nary that is used through this dissertation will be the Gabordictionary, which has been previously

established for the MP decomposition of ECG signals [64, 104]. Another advantage of using the

Gabor dictionary is it provides optimal TF localization [105,106], which is particularly important

for identifying electrogram signal structures that are related to time-specific events.

3.5.2 Modified Criterion Function

The standard MP decomposition has a criterion function thatmaximizes the projection of the atoms

in the dictionary onto the signal (refer to Equation 2.9) in order to represent the different structures

of the signal. Since VF has a high degree of signal complexity, the ability to focus the adaptive MP

decomposition to target specific signal structures is imperative for associating the signal structure

with the rotor event. The approximated modulation index hasrevealed that amplitude variations

exists in the envelope of the signal, which was also observedto be correlated with the occurrence

of the rotor event [2]. Since the signal structure of interest for the rotor event is already known,

the MP can be modified to capture only this signal structure. Therefore, the LCKSVD will not be

used for this analysis because the LCKSVD is better suited when the electrogram signal structure

is unknown.

If the objective is to emphasize the EAV structure through the MP signal decomposition, then

either the criterion function can be modified or specific atoms that span only the Hilbert space of

these variations must be used in the dictionary. The complexity of the electrical activations makes

it difficult to directly identify the atoms of the Hilbert space, and a customized criterion function is

therefore required. There exists current methods to adaptively decompose a signal for its amplitude

variations [107], but these methods are for deterministic (or quasi-harmonic) type signals. As VF

may not be deterministic, the criterion function must be specifically tailored for the EAV structure

identify and analyze the Hilbert space.

In order to target the EAV structure, the analytic form of theelectrogram as well as the magni-
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tude of the analytic signal were used (refer to Equations 3.1and 3.7). The envelope (My(n)) of the

electrogram (f(n)) can be used to create a criterion function. Since the objective of this criterion

function is to capture the EAV structure, the envelope must be minimized through each iteration

in order for the approximated component of MP to retain the EAV structure. This can be thought

of as the envelope signal component in an amplitude-modulated signal. The criterion function will

also need to preserve the carrier signal component of an amplitude-modulated signal. Therefore,

the following EAV measure was developed (given by Equation 3.11).

EAVf =

∑

n(My(n)− M̄y)
2

∑

n(f(n)− f̄)2
(3.11)

The EAV measure (EAVf ) is the energy of the mean-adjusted envelope signal (denoted by
∑

n(My(n) − M̄y)
2) divided by the energy of the mean-adjusted electrogram signal (denoted by

∑

n(f(n)− f̄)2). The termsM̄y andf̄ are the mean values for the envelope signal and the electro-

gram signal, respectively. Therefore, the numerator term corresponds to the energy in the envelope

signal, whereas the denominator corresponds to the total signal energy, which creates a ratio be-

tween the envelope component to the original signal. One wayto retain only the EAV structure in

the approximated component of the MP algorithm would be to minimize the EAV measure through

each iteration of MP. Based on this, the atomgγǫ that is selected on theǫth iteration is the atom that

minimizes the EAV measure onto its residueRǫ+1f . The modified criterion functionC ′ is defined

by Equation 3.12 and has been presented in a recent article [108].

C ′ = argmin[EAVRǫ+1f ] (3.12)

One requirement for such a criterion function is that the EAVmeasure is not zero (EAVRǫ+1f >

0). This is analogous to the residual energy not being zero in order to perform the original MP

decomposition. If the EAV measure is zero, then the decomposition will stop. With the EAV-based

criterion function, the residualRf does not necessarily need to approach zero as the iterations

approach infinity, which is the case in the original MP algorithm; the residualRf could also

approach a sinusoid with frequency variations, but no amplitude varying components, for which

the proof is provided in Appendix A. To illustrate this, consider an electrogram that is decomposed
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by the original criterion function (denoted as ORG MP) in Figure 3.8a and the EAV-based criterion

function (denoted as EAV MP) in Figure 3.8b.

For each type of MP decomposition (Figure 3.8a and Figure 3.8b), the top panel of the figure

is the original electrogram signal, the middle panel is the approximated component after 100 it-

erations, and the bottom panel is the residual component after 100 iterations. As is expected in

the case of the original MP, the residual component (bottom panel of Figure 3.8a) is approaching

zero (or possibly signal structures that cannot be approximated by the atoms of the dictionary).

This is because the criterion function is to select the atom that maximizes its projection onto the

residual, therefore approximating all signal structures until the residual is zero. The approximated

component (middle panel of Figure 3.8a) also visually showsa close approximation to the original

signal (top panel of Figure 3.8a). This is in contrast to the decomposition by the EAV MP. The

residual component (bottom panel of Figure 3.8b) does not approach zero, but instead appears to

be approaching a sinusoid that will have no amplitude variations as the iteration approaches infin-

ity. The approximated component (middle panel of Figure 3.8b) also appear to visually capture the

amplitude variations in the original electrogram (top panel of Figure 3.8b).

In order to verify the observations that were made visually from Figure 3.8, the EAV MP could

be validated using synthetic sinusoids. Synthetic sinusoids are appropriate for validating the above

mentioned concepts because it removes the variability thatexists in VA electrograms. The standard

notation for a modulated signal was given by Equation 3.5. Three synthetic signals with two

frequency components and varying degrees of amplitude modulations were generated (modulation

index of 0.9, 0.5 and 0.1). The phase component (Φ) were constant with time. Figure 3.9 illustrates

the three different amplitude-modulated signals that weregenerated for this part of the analysis.

These signals were then decomposed using the EAV MP. An example of this decomposition can be

observed in Figure 3.10, where the residual component of thesynthetic sinusoid with a modulation

index of 0.9 is displayed after 10 and 100 iterations in Figures 3.10a and 3.10b, respectively. It can

be observed that the residual component approaches a sinusoid with no amplitude variation as the

number of iterations increase.

In order to quantify the decrease in amplitude variations over the number of iterations, a tech-
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(a) Original signal, approximated and residual component created as a result of decomposing the signal with
ORG MP
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(b) Original signal, approximated and residual component created as a result of decomposing the signal with
EAV MP

Figure 3.8: Signal Decomposition Between the Two Types of MP for a Sample Signal After 100
Iterations
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(a) Synthetic Signal with 0.9 MI
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(b) Synthetic Signal with 0.5 MI
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(c) Synthetic Signal with 0.1 MI

Figure 3.9: Synthetic Amplitude Modulated Signals
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(b) Residual Component after 100 Iterations

Figure 3.10: Residual Component of the Synthetic Signal With 0.9 MI
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The Teager-Kaiser energy approximates the energy of the envelope. This figure illus-
trates this energy for the synthetic sinusoids as it is being decomposed by the EAV MP at
each iteration.

Figure 3.11: Teager-Kaiser Energy over 100 iterations for each Synthetic signal

nique known as Teager-Kaiser energy operator [109] can be used to estimate the energy of the en-

velope at each iteration of the EAV-based decomposition. Figure 3.11 illustrates the Teager-Kaiser

energy at different iterations of the EAV-based MP algorithm for the three synthetic sinusoid exam-

ples. From the figure, we can observe that there is a decrease in the Teager-Kaiser energy over the

iterations, which implies that the atoms selected per iteration does capture the amplitude variations.

It was also observed that the synthetic sinusoid with0.9 modulation index had the largest reduction

in the Teager-Kaiser energy. Therefore, the EAV-based MP could be a valuable tool in identifying

and targeting the amplitude variations of the envelope, which can be used to better understand the

rotor events.

3.5.3 EAV MP and Rotor Event

While the relation of the EAV with the rotor event was already discussed, the signal subspace

captured by this decomposition will help in better understanding the electrogram signal structure.

From the EAV MP, the amplitude variations that were captured are represented by a specific set

of atoms. From these atoms, it is possible to make a scale-frequency map. Figure 3.12 was

constructed by averaging the atom coefficients of the electrograms for the rotor PS event and

comparing to those same electrograms decomposed by the ORG MP.
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The scale-frequency maps were created for the electrograms belonging to the Rotor PS class using the 
EAV MP and the ORG MP. The bottom panel illustrates the difference in the scale-frequency maps between 
the two types of MP.

Figure 3.12: Scale-Frequency Map of EAV MP vs ORG MP for Rotor PS
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This figure illustrates that the subspace captured by the varying MP are different from one

another. The subspace for the ORG MP (top panel of Figure 3.12)is concentrated around the 4 Hz

frequency but spans a larger scale range (512, 1024, 2048). Conversely, the EAV MP (middle panel

of Figure 3.12) subspace has a relatively stronger focus on the lower scale (128). This is indicative

of the amplitude variations expected in ventricular arrhythmias (specifically VF). VF is known to

have high-frequency chaotic signal structures, which may be why EAV MP was more focused on

the low-scale atoms for capturing the time-specific EAV structure. In contrast, the ORG MP uses

atoms with larger scales to better approximate the completeelectrogram signal structure using a

limited number of atoms. The bottom panel of Figure 3.12 shows the difference between the two

scale-frequency maps. It illustrates the observations made previously between the EAV MP and

ORG MP (e.g. EAV MP having more atoms captured by the lower scales).

A significant focus of this section has been discussing the EAV and its ability to identify elec-

trograms that are in the vicinity of a rotor. However, one of the shortcomings of the EAV alone (as

well as the aMI feature, dominant frequency maps, and entropy) is that it had difficulty distinguish-

ing locations with stable rotors from other locations (suchas locations with phase singularities that

were not rotors and locations with amplitude and frequency variations caused by other sources).

To address this issue, rather than analyzing only the amplitude variations extracted by the EAV

MP, the residual component can also be analyzed.

The decomposition provided by the EAV MP on a sample electrogram is illustrated in Figure

3.13 and is similar to that of Figure 3.8b, only with a different sample electrogram. As previously

noted, the top panel is the original electrogram, the middlepanel is the approximated component

that captures the EAV, and the bottom panel is the residual component once the amplitude variations

have been extracted. It is possible to observe that a type of frequency deviation (FD) exists in the

residual component. Two instances of this FD example can be observed in the bottom panel of

Figure 3.13. The first instance occurs at a time of 2.8 secondsand the second instance occurs at a

time of 5.2 seconds. While the existence of the FD structure isof interest, its correlation with the

phase maps used to identify phase singularities and rotor locations is more interesting.

Figure 3.14 is the corresponding phase map for the heart thatwas used for this specific example.
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A sample electrogram in the vicinity of a rotor was decomposed with the EAV MP. The residual compo-
nent (bottom panel) has an observable frequency deviation that correlates with the time of the rotor occurrence 
in Figure 3.14.

Figure 3.13: Original Signal, Approximated and Residual Component of an Electrogram with
EAV MP After 100 Iterations
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(a) Phase Map at Time Instance of 2.8 S. The X and Y axes are spatial locations along the
heart (refer to Figure 3.4)
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(b) Phase Map at Time Instance of 5.2 S. The X and Y axes are spatial locations along the
heart (refer to Figure 3.4)

Figure 3.14: Corresponding Phase Maps for the Sample Electrogram in Figure 3.13
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This figure provides the phase maps at the time instance of 2.8seconds (Figure 3.14a) and 5.2

seconds (Figure 3.14b). In both figures, the electrode location for the electrogram in Figure 3.13 is

denoted by a white circle, which illustrates its spatial location on the ventricles of the heart. When

considering the residual component (bottom panel of Figure3.13) and the phase maps (Figure

3.14), it is possible to observe that the occurrence of a phase singularity around the electrode

location is corresponding to both the time instances (2.8 s and 5.2 s) presented in the residual

component.

In order to validate the above-mentioned signal structure,the simulated electrogram database

was used. A simulated electrogram in the vicinity of a rotor was extracted from the simulation and

decomposed using the EAV MP. Figure 3.15 presents the simulated electrogram (top panel), ap-

proximated component (middle panel) and residual component (bottom panel). From the residual

component of the simulated electrogram (bottom panel of Figure 3.15), a FD type structure that

is consistent with the electrograms obtained from the hearts of the RDB can be observed. Two

instances of the FD occurrence are also highlighted in the residual component (bottom panel of

Figure 3.15) of the simulated electrogram, for which the corresponding phase maps can be found

in Figure 3.16 for each time instance (Figure 3.16a for time 1.7 s and Figure 3.16b for time 8.0

s). As with the RDB electrogram, the phase map for the simulated electrograms also indicates a

correlation with the occurrence of a phase singularity around the electrode location and the time

instances (1.7 s and 8.0 s) highlighted in the residual component.

Next, the FD structure that exists in the simulated electrogram (as well as the RDB electrogram)

and its association with the phase singularity will be quantified. Since the goal is to capture the

frequency deviation in a frequency-modulated type signal,the straightforward approach would be

to obtain the instantaneous frequency (IF) from the residual component. The IF can be easily

determined from the phase (defined again in Equation 3.13 and3.14). Given that the phase of the

residual component isΦRf , the IF can be calculated as given by Equation 3.15 [110].

y(n) = f(n) + jH(f(n)) (3.13)
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A sample simulated electrogram in the vicinity of a rotor was decomposed with the EAV MP. The residual 
component (bottom panel) also has an observable frequency deviation that correlates with the time of the rotor 
occurrence in Figure 3.16.

Figure 3.15: Original Signal, Approximated and Residual Component of a Simulated Electrogram
with EAV MP After 100 Iterations
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Figure 3.16: Corresponding Phase Maps for the Sample Simulated Electrogram in Figure 3.15
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Φ(n) = arctan(
H(f(n))

f(n)
) (3.14)

IFRf (n) =
dΦRf (n)

dn
(3.15)

Equation 3.15 states that the derivative of the instantaneous phaseΦ will equal the IF. An

example of the IF for the simulated electrogram’s residual component (bottom panel of Figure

3.15) is provided in Figure 3.17. From this figure, it is possible to observe a change in the IF as the

phase singularity is in the vicinity of the electrode location. Based on the EAV and the IF of the

residual component, it is possible to detect the rotor eventusing only signal structures within the

electrogram.

3.5.4 Feature Extraction

Given the EAV MP decomposition structures identified for therotor event, the RDB was used to

identify non-rotor phase singularity and rotor locations.The rotor locations were previously iden-

tified by clinical experts from Toronto General Hospital. The non-rotor phase singularity event

locations were also identified to help validate whether the combination of the EAV and FD struc-

tures were unique for the rotor event. For both the rotor and non-rotor phase singularity locations,

the time at which the phase singularity events had occurred were also recorded, since the EAV and

FD structures were correlated to the time of the event. Electrogram locations and times were also

recorded for non-phase singularity event locations in order to validate the structural significance

for the specific event. The time and locations for the non-phase singularity events were selected

randomly and to specifically not have a phase singularity occurring around the location or at the

selected time. Given the EAV MP decomposition structures identified for the rotor event, the RDB

was used to identify non-rotor phase singularity and rotor locations. The rotor locations were previ-

ously identified by clinical experts from Toronto General Hospital. The non-rotor phase singularity

event locations were also identified to help validate whether the combination of the EAV and FD

structures were unique for the rotor event. For both the rotor and non-rotor phase singularity lo-

cations, the time at which the phase singularity events had occurred were also recorded, since the
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Figure 3.17: Residual Component of the Simulated Electrogram and the Corresponding Instanta-
neous Frequency
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EAV and FD structures were correlated to the time of the event. Electrogram locations and times

were also recorded for non-phase singularity event locations in order to validate the structural sig-

nificance for the specific event. The time and locations for the non-phase singularity events were

selected randomly and to specifically not have a phase singularity occurring around the location or

at the selected time.

The FD structure was analyzed for the different types of electrograms. As previously observed

in Figure 3.17, there is a noticeable change in the IF as the phase singularity is in the vicinity of

the electrogram. In order to quantify this phenomenon, the difference between the IF before and

after the phase singularity was used. The time sample before(nIF,Before) and the time sample

after (nIF,After) the event were extracted by taking the derivative of the IF signal. After taking the

derivative, the zero crossing points before and after (corresponding to the IF local minima/maxima)

the phase singularity event would indicate the desired timesamples. These time samples are il-

lustrated in the bottom panel of Figure 3.18. The approximated FD (aFD) feature is defined by

Equation 3.16. This equation states that theaFD feature is the absolute difference between the

IF at time samplenIF,Before andnIF,After. The distribution of this feature for the three sets of

electrodes is given in Figure 3.19.

aFD = |IFRf (nIF,Before)− IFRf (nIF,After)| (3.16)

From the distribution of this feature in Figure 3.19, it is possible make a few observations. The

first observations is that both the phase singularity cases (denoted as rotor PS and non-rotor PS)

show a difference from the electrodes not in the vicinity of aphase singularity (denoted as non-PS)

and this was statistically significant (P < 0.01). This indicates that the electrode and the time of

the phase singularity (represented by both rotor and non-rotor PS) creates greater change in the IF

feature than those electrodes that do not have a phase singularity (non-PS). It is also interesting

to note that the rotor phase singularity cases (rotor PS) andthe non-rotor phase singularity cases

(non-rotor PS) have a similar distribution with respect to the IF feature. This suggests that the

change in the instantaneous frequency (observed as a FD) is aphenomenon of phase singularities

in general and not specific to rotors themselves.
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Figure 3.18: Residual Component and Corresponding IF with Identified Time Samples
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Considering phase singularities, in terms of the time-domain signals around the centre point,

this phenomena occurs when electric waves circulate aroundthis centre point [31]. Therefore,

a phase singularity consists of signals with a progressive phase change around a point [31, 96].

However, this would mean that the signal at the exact centre point of the phase singularity would

theoretically be zero [96]. Recall the primary difference between a rotor and a non-rotor PS point

is the number of electric wave rotations around the point. A phase singularity is considered a rotor

if the electric waves around the phase singularity completes a minimum of two rotations, as stated

earlier in this section. This may be reflected by the EAV structure (specifically the signal energy)

captured in the approximated component of the EAV MP decomposition. Therefore, analyzing

the EAV around the occurrence of the FD may be useful. This EAVfeature can be obtained from

the approximated component (
∑

ǫbǫgγǫ(n)) of the EAV MP and over the duration of the IF change

(nIF,Before andnIF,After). The feature that is used is an approximate root mean square(aRMS) of

this component over the duration of the IF change is given by Equation 3.17.

EAVaRMS =

√

∑n=nIF,After

n=nIF,Before
(
∑

ǫbǫgγǫ(n))
2

nIF,After − nIF,Before + 1
(3.17)

Equation 3.17 is the root mean squared sum of the approximated component over the time

of the event (betweennIF,Before andnIF,After), and is measured as energy per unit time sample.

Based on this feature, the distribution between the rotor andnon-rotor PS is provided in Figure

3.20. From the EAV aRMS distribution between the groups, we observe that the feature was lower

for the rotor PS when compared to the non-rotor PS (P < 0.01). Given the more stable number of

rotations for rotors PS (or abrupt rotations for non-rotor PS), it is possible that this is reflected by

the EAV structure and the aRMS feature.

Recall, from the generic modulated signal from Equation 3.5 (provided again in Equation

3.18), the two signal structures (and subsequent features)correspond to specific components of

the generic modulated signalfM . The residual IF structure (and theaFD feature) relates to the

FD component (ΦC(n)), refer to Appendix A, and can be described as a measure of theFD cre-

ated as a result of the rotor event. The EAV structure (and theEAVaRMS feature) is related to the

amplitude modulation component(AC) + AEsin(ΦE(n)) (refer to Appendix A) of the signalfM .
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Figure 3.21: Two Stage Classification for the Time-Specific Event

The combination of these features describe different aspects of the electrogram, and will be used

for discussing the final results.

fM(n) = ACsin(ΦC(n)) + AEsin(ΦE(n))(sin(ΦC(n))) (3.18)

3.6 Results and Discussion

The results for this chapter will be discussed in this section. The initial result with the ¯aMI feature

is presented first. Then, the results for the EAV-based MP is provided, followed by a discussion

of the analysis. The RDB can be segregated by a two stage classification system. The first stage

was between PS and non-PS electrograms and the second stage was between rotor and non-rotor

PS electrograms. This is illustrated in Figure 3.21.

3.6.1 EAV Results

For the analysis performed on the average approximated modulation index feature ( ¯aMI), this

feature was determined for each of the rotor PS and non-PS electrograms. There are 2 rotor PS and

2 non-Rotor PS electrograms from each episode, giving a totalof 52 electrograms for this analysis.
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Figure 3.22: Average MI Between the Rotor PS and Non-PS events for RDB

Figure 3.22 and Figure 3.23 illustrates the distribution ofthe ¯aMI feature for the RDB (described

in Section 3.2.1) and the LRDB (described in Section 3.2.3), respectively.

These results show that the amplitude variations in the envelope is a discriminative signal struc-

ture (P < 0.01) for the rotor events when compared to the non-PS events. Theclassification table

for this feature is given by Tables 3.2 and 3.3 for the RDB and LRDB, respectively.

Table 3.2: Confusion Matrix - Average MI for RDB: Rotor PS Versus Non-PS Event

Rotor PS Event Non-PS Event Total
Rotor PS Event 19 7 26

Non-PS Event 3 23 26

Rotor PS Event (%) 73.08 26.92 100

Non-PS Event (%) 11.54 88.46 100

The overall accuracy achieved for the RDB and LRDB were80.77% and72.50%, respectively.

The ¯aMI feature illustrates its strength in identifying rotor PS events from non-PS events. When

analyzing this feature for the rotor PS events and the non-rotor PS events, similarities in its distri-

bution can be observed. Figure 3.24 provides the distribution of the ¯aMI feature for the rotor PS

and non-rotor PS electrograms, which illustrates the limitation of this feature.
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Figure 3.23: Average MI Between the Rotor PS and Non-PS events for LRDB
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Figure 3.24: Average MI Between the Rotor PS and Non-Rotor PS events for RDB
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Table 3.3: Confusion Matrix - Average MI for LRDB: PS Event Versus Non-PS Event

Rotor PS Event Non-PS Event Total
Rotor PS Event 14 6 20

Non-PS Event 5 15 20

Rotor PS Event (%) 70.00 30.00 100

Non-PS Event (%) 25.00 75.00 100

The EAV analysis revealed that the rotor event could be associated with electrogram signal

structures that occur during an arrhythmia episode. Furthermore, this analysis demonstrated that

the time-specific rotor event could be tracked without the need for high-resolution mapping of

the electrical activations of the heart. The average modulation index feature ¯aMI analyzed the

envelope variations of the electrogram, which had been strong for classifying the rotor PS events

from the non-PS events, but could not be used to classify the rotor PS events from the non-rotor PS

events. This led to the MP decomposition constrained by the EAV through the use of a modified

criterion function.

3.6.2 EAV MP Results

The results for the EAV-based MP decomposition was limited to the RDB and IVDB. The LRDB

was used to produce a rotor PS event, but it did not have non-rotor PS events, and thus could not be

used for this result. Based on the observations made from the EAV MP decomposition (Sections

3.5.3 and 3.5.4), a simple two-stage classification (refer to Figure 3.21) was performed to determine

the classification accuracies of theaFD andEAVaRMS feature. A total of 104 electrograms were

used for the results. The first stage classifies PS events and non-PS events. Table 3.4 presents the

results of the first stage of the classification. The feature used for the first stage of the classification

was theaFD feature from Equation 3.16.

The results from Table 3.4 give an overall classification accuracy of80.77%. The sensitivity and

specificity were65.38% and96.15%, respectively. These results have a high specificity, thereby

able to better identify electrograms that are not in the vicinity of a phase singularity. On the other

hand, the ability to identify electrograms around a phase singularity with this feature is65.38%,
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Table 3.4: Confusion Matrix - Stage 1 Percentage: PS Versus Non-PS Event

PS Event Non-PS Event Total
PS Event 34 18 52

Non-PS Event 2 50 52

PS Event (%) 65.38 34.62 100

Non-PS Event (%) 3.85 96.15 100

which highlights that around two-thirds of the phase singularity points exhibit a shift in the IF. This

indicates that the residual component generated by the EAV-based MP creates uniquely identifiable

signal structure to detect phase singularity points. While it may be possible to improve the accuracy

of Stage 1, such as through the use of existing features (including aMI, DF, and entropy), the

objective was to illustrate that the FD structure can be usedto associate an electrogram to the

vicinity of a phase singularity. From the correctly classified phase singularity cases in Stage 1, a

Stage 2 classification ( Table 3.5) was also performed using theEAVaRMS feature.

Table 3.5: Confusion Matrix - Stage 2 Percentage: Rotor PS Versus Non-Rotor PS Event

Rotor PS Non-Rotor PS Total
Rotor PS 14 3 17

Non-Rotor PS 4 13 17

Rotor PS (%) 82.35 17.65 100

Non-Rotor PS (%) 23.53 76.47 100

The overall classification accuracy obtained from Stage 2 was 79.41%. The classification be-

tween the two groups can be observed as being more balanced (sensitivity of82.35% and specificity

of 76.47% for non-rotor events) when compared to the first stage. The strong classification accu-

racy provided by this feature (EAVaRMS) reflects that the EAV structure can be used to distinguish

between these phase singularity types. The EAV MP results was also compared with entropy. The

entropy was another feature that was observed for its ability to identify rotor locations using min-

imal electrodes [100]. This feature was used to classify theRDB. Tables 3.6 and 3.7 presents the

results for stage 1 and stage 2 using the entropy feature. Theaccuracies obtained by this feature

illustrates the strength and balanced results obtained by the approximated RMS of the EAV struc-
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ture, which is better suited in distinguishing the Rotor PS events when compared to the existing

entropy method.

Table 3.6: Confusion Matrix - Stage 1 Entropy Percentage: PS Versus Non-PS Event

PS Non-PS Total
PS 23 29 52

Non-PS 23 29 52

PS (%) 44.23 55.77 100

Non-PS (%) 44.23 55.77 100

Table 3.7: Confusion Matrix - Stage 2 Entropy Percentage: Rotor PS VersusNon-Rotor PS Event

Rotor PS Non-Rotor PS Total
Rotor PS 11 6 17

Non-Rotor PS 9 8 17

Rotor PS (%) 64.71 35.29 100

Non-Rotor PS (%) 52.94 47.06 100

Lastly, the IVDB cases were also decomposed using the EAV MP.The electrical recordings

gathered from the IVDB cases are extremely valuable despitethe limited episodes that were avail-

able. These cases were recorded during intraoperative surgery, which provided a unique insight

to the electrogram signal structures and their relation to the rotor events. It allows for analysis of

the hearts electrical activations in a live clinical case. The above features (aFD andEAVaRMS)

from the respective residual and EAV structures were extracted for the select electrogram locations.

With 3 arrhythmia episodes, a total of 12 electrograms were used. The distribution for the IVDB

cases is given by Figures 3.25 and 3.26.

The distribution of the approximated FD feature appears consistent with the results obtained

through the RDB. The PS electrograms (rotor and non-rotor PS) have a higher approximated FD

feature value when compared to the non-PS electrograms (Figure 3.25). The distribution in the

approximated RMS for the EAV does not show a similar distribution observed in RDB. It should

be noted that two of the three episodes originated from the inner wall of the left ventricle, while all

of the episodes in the RDB were from the outer surface of the heart. This will be further discussed
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Figure 3.25: Approximated FD Feature Boxplot for IVDB
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Figure 3.26: EAV Approximated RMS Feature Boxplot for IVDB
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in the following section.

3.6.3 Discussion

The analysis and results presented in this chapter had introduced the rotor event that is believed to

be the manifestation of a mechanism that initiate and maintain arrhythmic episodes. The analysis

also revealed the existence of electrogram signal structures that are related to the occurrence of such

an event. While the electrogram signal structure may be visually used by the clinical community to

assess a patient, the observations made on the EAV structure(from the approximated component)

and the FD (from the residual component) can be quantified by the features discussed above to

assist in automated analysis of the electrograms. Furthermore, the electrogram signal structure can

be extracted with a minimal number of electrodes, making it more feasible to detect and track the

rotor event in a clinical setup for better treatment planning. In particular, the tracking of the rotor

event on the precise location on the myocardium can enable clinicians to provided targeted therapy.

As discussed earlier in this section, other features have been previously established to help

identify rotors. These include features such as the dominant frequency [9, 29, 32] and entropy

[98–100] because they do not need as high of a resolution as phase maps; however still requiring

multiple electrograms. Furthermore, these features are also known to highlight other non-rotor

regions (either non-rotor PS or non-PS events) as having a similar feature distribution as regions

with rotors, which may be attributed to phase singularitiesthat do not meet the criteria of being

a rotor (i.e. non-rotor PS). The average approximated MI (¯aMI) feature [2] was also initially

proposed as a feature in hopes to limit the number of electrograms required to determine the rotor

location. However, this feature was unable to distinguish rotors from non-rotor phase singularity

events.

The decomposition of the electrogram to highlight the EAV structure using the EAV-based

MP was motivated by the initial results obtained by the average approximated MI and it’s limita-

tions. This decomposition revealed that the electrogram signal structure could be decomposed into

components that correlate with the known rotor-electrophysiological event during an arrhythmic

episode. The tandem of the approximated and residual components, produced as a result of the
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EAV MP decomposition, provides insight to the rotor event, which could be useful in the clinical

setting. Specifically, the residual IF revealed the possibility of segregating the PS from non-PS

events. Analysis on the misclassified PS samples had indicated that the FD feature has a similar

distribution to the non-PS events, and visually the MI component was less prominent in those mis-

classified samples. This could be attributed to inherent natural overlap in the database and possible

far-field effects that may influence the rotor’s effect on theelectrodes. The EAV structure was

analyzed to determine which phase singularity electrograms had a rotor event. The results from

the EAV MP analysis was also observed to outperform the results of entropy. While the approx-

imated FD distribution remained consistent between the RDB and IVDB, the distribution of the

approximated RMS of the EAV structure was different for the clinical cases, which could be due

to the fact that two of the episodes were recorded from the inner wall of the ventricle. It has been

previously observed that the electrical activations from the inner wall was dissimilar from the outer

surface [111], which could explain the discrepancy observed in the EAV structure of the rotor and

non-rotor PS electrograms. These signal structures revealed by the EAV MP decomposition cannot

be easily observed directly from the electrogram, and the decomposition can therefore be useful in

the clinical setting by providing the clinician a tool to better diagnose the arrhythmia episode. One

of the limitations of the EAV MP decomposition is the computational complexity required. The

complexity of such a system (MP based system) wasO(N2log(N)) [60]. The complexity of the

overall system is the MP algorithm (O(N2log(N))) plus the complexity in calculating the resid-

ual’s IF through the Hilbert transform (O(N log(N))) [112]. However, the identification of these

signal structures and its relationship to the rotor event can inspire offline analysis of the arrhythmic

episode. Furthermore, the advent of fast digital signal processors will eventually make the current

analysis near real-time realizable.

Currently, people who are prone to recurring arrhythmic episodes will have an ICD installed in

order to monitor and treat future episodes [8]. The electrograms recorded by this device can later be

analyzed by clinicians to determine probable regions wherethe rotor may have existed during the

episode. The EAV decomposition can also be used for patientswho are in the intensive care unit of

the hospital to better understand the arrhythmic episode (such as the possible locations of the phase
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singularities). The identification of the signal structures revealed by the EAV MP decomposition

can also lead to better strategies in treating future episodes (such as better localization of possible

ablation sites). This finding forms the basis of decomposingthe electrogram signal structures

influenced by time-specific events in the arrhythmia.

3.7 Chapter 3 Summary

This chapter introduced and discussed some of the time-specific event signal structures that may be

found in the electrogram during an arrhythmic episode. Specifically, the rotor event was explained

in more detail because it is believed to be a manifestation ofone of the underlying mechanisms

that initiate and maintain the arrhythmia episode. An envelope amplitude variation is reflected in

the electrogram when a rotor was in the vicinity. This section also introduced a unique criterion

function aimed at capturing this amplitude variation usingthe matching pursuits algorithm. This

decomposition led to identifying two unique components, the approximated component (identi-

fying the approximated RMS of the EAV structure) and the residual component (identifying the

approximated FD structure), which correlated with the occurrence of the rotor, thereby providing

the ability to detect a rotor from the electrogram alone. This analysis on the electrogram signal

structure is associated with the time-specific rotor event (along with APP characteristics known

to be in the vicinity of the rotor), and can be used to drive a DSS in order to assist clinicians in

diagnosing VA for the time-specific rotor event.
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Chapter 4

Time-Averaged Ventricular Arrhythmia
Characteristics

T
HE study of general characteristics of the VA episode has been an area of focus for some

time. The features identified in literature describe some time-averaged characteristic of the

arrhythmia for specific applications, including classifying the type of arrhythmia or even predicting

shock success based on feature distribution. The signal decomposition in the previous chapter

identified structures that was related to events that occurred at a specific time during the arrhythmic

episode. In this chapter, some of the time-averaged characteristics that influences the VA episode

will be discussed. Then, the specific database and the extraction of the APP characteristics for

the analysis is provided. The relationship of the time-averaged characteristics with the underlying

APP of the heart will be presented. The dictionary learning is then discussed to assist in identifying

discriminatory signal structures as they pertain to the APPcharacteristics. Finally, the results

and discussion for the dictionary learning are provided, before the chapter concludes with a brief

summary. The general block diagram for this chapter is illustrated in Figure 4.1.

4.1 Time-Averaged Characteristics Background

While ventricular arrhythmia episodes are known to have one or many events that occur at a given

time instant, as discussed in Chapter 3, there are still some unknown phenomena that initiate and

sustain the arrhythmia. This can sometimes be observed by analyzing characteristics of the ventric-

ular arrhythmia episode. During the occurrence of a ventricular arrhythmia episode (particularly
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This chapter will discuss the time-averaged VA characteristics. In particular, the TF dictionary learning 
approach that is motivated by the APP characteristics to identify discriminant dictionary elements will be 
discussed.

Figure 4.1: Contributions for Chapter 3
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VF), signal characteristics can change over the course of the episode. While the underlying cause

may not be fully understood, these time-averaged signal structures in the arrhythmia episode may

be associated with a set of APP characteristics. Time-average characteristics describe a specific or

set of properties that extends over a time segment of the VA episode, and thus represent the average

characteristics of the VA electrogram. One such example of atime-averaged characteristic of the

VA episode is frequency, which may be time-varying in the case of VA electrograms.

There have been many time-averaged characteristics or features that have been extracted to an-

alyze an arrhythmic episode in existing literature. Each feature describes some general character-

istic of the electrogram signal structure. Time-domain-based characteristics (such as a complexity

measure, threshold-crossing interval and auto-correlation) have been used for the purpose of clas-

sifying the arrhythmia as VT or VF [52, 113]. The frequency domain was also previously used in

applications involving the prediction of the success of a defibrillation shock. Specifically, features

such as the dominant frequency, median frequency, spectralflatness and bandwidth have been used

for the purpose of predicting the shock success [89,114]. Spectral coherence is another frequency

domain feature that was used to analyze how organized the arrhythmia is [115], where VT is highly

organized and VF is highly disorganized. Our group also previously quantified the dynamic range

of the organization of the ventricular arrhythmia episode using features extracted from a wavelet-

based singular value decomposition [58, 116]. Another characteristic of the arrhythmic episode is

the occurrence of electrogram patterns during an episode. Electrogram patterns previously identi-

fied through my Master’s dissertation [116] (refer to Figure4.2) revealed that arrhythmic episodes

from different patients had similarities in their distribution [35]. In this study, the occurrence of

the electrogram patterns over the entirety of the episode were examined in terms of the energy re-

tained by these patterns. This study also revealed that similar distributions among the individual’s

VF episodes had existed, where some groups of patients had a similar type of distribution in the

electrogram patterns. While the above-mentioned features are a small fraction of what exists in

literature, they all demonstrate that there may be some features of the arrhythmic episode that can

be associated with the APP characteristics. The association of the signal structures with the APP

characteristics can help clinicians to better strategize the available therapy options.
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(a) Local Pattern 1
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(b) Local Pattern 2
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(c) Local Pattern 3
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(d) Global Pattern

Figure 4.2: Unipolar Electrogram Patterns ©[2013] IEEE
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4.2 Database

This section will expand on the retrospective arrhythmia database that was introduced in Section

3.2.1. The unipolar recordings that were used to capture theelectrical activations during the ar-

rhythmic episode was used to analyze the time-averaged characteristics. The retrospective arrhyth-

mia database consisted of 7 individual human hearts. While 13arrhythmic episodes existed, only

11 of the episodes were used in this analysis. The 2 episodes that were removed for this analysis

were special cases where the perfusion was stopped (i.e. no synthetic blood flow), and including

these would introduce an added variability for the time-averaged characteristics. Thus, a total of

11 episodes with a maximum of 112 electrograms per episode were used for this analysis.

In order to determine some of the APP characteristics, a pacing system had to be used. The

pacing system produces an impulse on one part of the myocardium, which will then propagate

throughout the heart. The action potential produced by the myocardium is in response to this

paced impulse, which is recorded and used to determine the APP characteristics. The paced im-

pulse and resulting action potential was recorded from a unipolar and bipolar electrode. The unipo-

lar electrode was described previously in Section 3.2.1. Briefly, the unipolar electrode records the

electrical activation on the tissue with respect to a reference electrode that is not on the ventricles.

The hardware sampling frequency for the unipolar electrograms was 1000 samples/S. In contrast,

the bipolar electrogram requires two closely placed electrodes to measure the potential. The po-

tential is determined by subtracting the electrical activation recorded from one electrode from the

other. The hardware sampling frequency for the bipolar electrograms was 2000 samples/S. This

unipolar and bipolar recording of the pacing signals were then used to determine some of the APP

characteristics

The bipolar electrogram was used for extracting the max voltage, which is then used to de-

termine if the tissue was healthy or diseased (scar) [21]. The activation recovery interval (ARI)

was derived by measuring the duration from the end of the action-potential to the beginning of

the repolarization wave in the unipolar electrogram [10]. The approximation of the monophasic

action potential (MAP) duration is a characteristic that isa measure of the action-potential duration

(APD) [117, 118]. In particular, it was observed that90% of the MAP is closely correlated with
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the APD. It was also observed that regression models correlated the ARI recorded from the unipo-

lar electrogram with the MAP duration [119, 120]. The approximation of the MAP duration was

derived from the ARI using a regression model and will be referred to as MAP for the remainder

of this dissertation. The DVDT was determined by first obtaining the derivative of the unipolar

pacing electrogram and then recording the maximum negativeslope [121]. After the pacing sys-

tem was used to record the unipolar and bipolar tracings, theheart was bought to normal sinus

rhythm and then forced into an arrhythmia for the analysis. At the completion of the arrhythmia

tests, the heart was then sent to the histology lab where the pathological characteristics were ob-

tained, thus labeling the type of cardiomyopathy for the heart. These characteristics were recorded

once for each heart, and therefore, a heart with multiple arrhythmia episodes will have the same

APP characteristics. The unipolar electrical recordings during the arrhythmia episode along with

the corresponding APP characteristics were used for the objective of identifying signal structures

from the electrograms and associating them with the APP characteristics.

The APP characteristics for each electrode location were divided into clinically established

categories. The MAP and ARI intervals were classified as normal or abnormal depending on the

value, with a normal value between 193 mS and 277 mS [122]. Themax voltage was classified

as normal, if the value is greater than 0.5 mV, or abnormal [123]. As the more clinical term for

normal is healthy and for abnormal is scar, those terms will be used for this chapter. The DVDT

was also classified as normal, if the negative slope was less than -0.25 mV/mS, or abnormal [17].

Table 4.1 summarizes the normal and abnormal range for each APP characteristic. Additionally,

the type of cardiomyopathy for each heart (i.e. all electrogram locations for that heart) was also

used as a category. The categories serve as the ground truth for the analysis. This database will

continue to be referred to as the RDB.

4.3 Correlation of Time-Averaged Characteristics with APP

Identifying general signal structures from the arrhythmicepisode relies on using some of the time-

averaged characteristics as the starting basis. These characteristics describe an underlying signal

structure of the electrograms. Some of these characteristics or signal features were significant for
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Table 4.1: APP Characteristic Range for Normal and Abnormal

APP Normal Abnormal
MAP 193mS≤ MAP ≤ 277mS MAP < 193mS or MAP> 277mS
ARI 193mS≤ ARI ≤ 277mS ARI < 193mS or ARI> 277mS

Max Voltage ≥ 0.5mV (Healthy) < 0.5 mV (Scar)
DVDT ≤ -0.25mV/mS > -0.25mV/mS

such applications as determining the organization of the arrhythmia [58, 115, 116] and predicting

the shock success [89, 114]. These features, as well as the previously observed distribution of

electrogram patterns in different patients [35], are an indication that the APP characteristics may

influence electrical activations, and by extension the time-averaged characteristics, which is the

foundation for this analysis.

In order to illustrate this, some of the features discussed in this chapter will be used. It should

be noted that the features discussed here are representative of features used in existing literature

[35, 58, 89, 114–116], but are used to describe the process bywhich to identify general signal

structures as they relate to the APP characteristics. A listof the features and a brief description is

given as follows:

• Dominant Frequency: The DF has been a widely used signal feature for many application

in analyzing ventricular arrhythmias. Some of the applications include predicting shock

success, classifying the degree of organization within theVF arrhythmia class, and using

dominant frequency maps to predict rotor locations [29, 89]. The DF describes the most

dominant frequency structure in the arrhythmia signal.

• Local Pattern Energy: The occurrence of the local patterns and the amount of the signal

energy represented by these local patterns were previouslyobserved to vary from patient to

patient [35], which may be correlated with varying APP characteristics. The local patterns

are presented in Figure 4.2a, Figure 4.2b and Figure 4.2c anddefined as Local Pattern 1,

Local Pattern 2 and Local Pattern 3 respectively.

• Arrhythmia Organization Level: The organized and disorganized structures of an arrhyth-
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mic episode is significant in aiding ICDs and clinicians to determine the short- and long-term

therapy options. The features from a wavelet-based singular value decomposition [58, 116]

were used to determine the organization level observed in anelectrogram and was used to

classify the electrogram as either VT or VF.

• EAV Energy: In the previous chapter, the EAV aRMS energy was significant inidentifying

whether the electrogram was in the vicinity of a rotor event or not. The total amount of

amplitude variations in the electrogram could be used to describe the generic EAV structure

(represented by the approximated component). Therefore, the total energy captured by the

EAV structure (as a ratio to the original electrogram energy) was used.

• Residual Instantaneous Frequency Standard Deviation:Also in the previous chapter,

the deviation in the IF from the residual component was important in identifying electro-

grams with a phase singularity. The IF standard deviation (STD) describes the underlying

deviations in the IF of the residual component after the EAV-based MP decomposition.

The aforementioned features were extracted for each electrogram and were used in conjunction

with the APP characteristics for the electrode location. This makes it possible to determine if a

specific set of signal structures (via features) may be associated with an APP characteristic. To

achieve this association, the features that were extractedfor the electrograms can be tested against

the APP characteristics for the same electrograms. The testing in this case is a combination of

the ANOVA significance test and the LDA-LOO classification. This helps identify which type of

APP characteristics display an association with the signalfeatures, and warrant further adaptive

decomposition analysis.

The previously established APP categories (normal/abnormal for the MAP, ARI, max voltage

and DVDT as well as the cardiomyopathy type) from Table 4.1 were used to asses the feature

significance and classification accuracy. In order to determine if the feature is significant for a par-

ticular APP characteristic, the p-value should be significant (P < 0.01) as well as have an overall

LDA-LOO classification accuracy greater than60%. While the probability threshold for a fea-

ture to be statistically significant has been previously established [73], the classification accuracy
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threshold was selected conservatively to establish if a relation exists between the APP charac-

teristic and the feature in classifying the database. This denotes that the signal features may be

representative of a particular APP characteristic, and thus this threshold to determine the feature

significance was used. Extracting the feature and APP characteristic from the available electro-

grams (maximum of 112) from each of the 11 episodes, the ANOVAsignificance test and the

LDA-LOO classification were performed. The results presented in Table 4.2 are the ANOVA p-

value and the LDA-LOO classification accuracy for the features that were identified as significant

for the APP characteristics across all 11 episodes. For instance, the first two rows are the local

pattern 1 ANOVA p-value and the overall classification respectively for each APP category.

Table 4.2: Feature P-Value and Classification versus APP Characteristic

MAP ARI Max Voltage DVDT Cardiomyopathy
Local Pattern 3 (P-Value) < 0.01 0.02 < 0.01 < 0.01 < 0.01

Local Pattern 3 (%) 51.50% 50.69% 57.92% 73.51% 54.34%

Arrhythmia Organization (P) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Arrhythmia Organization (%) 58.00% 56.78% 53.53% 76.03% 64.82%

The first significant association is the energy captured by local pattern 3 and arrhythmia orga-

nization with the DVDT category and the second significant association is the arrhythmia orga-

nization with the type of cardiomyopathy. The association between the arrhythmia organization

and the type of cardiomyopathy is of special interest because it has been established that the char-

acteristics and the management for each type of cardiomyopathy differ from one another [124].

Existing research has described ICM as having an area of fibrotic tissue caused by previous my-

ocardial infraction [46]. Therefore, future VF episodes may be a result of interaction between the

healthy tissue and the scar fibrotic tissue [47]. When contrasting this to DCM hearts, there are

many possible etiologies [46] that often require multiple simultaneous parameters [48] in order to

provide risk stratification.

It will be worthwhile to observe the signal features and their association to the individual car-

diomyopathy cases. In order to accomplish this, the RDB was separated based on the type of

cardiomyopathy for each heart. Once the database was segregated, the ANOVA p-value and clas-
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sification for each feature was determined for the remainingAPP characteristics for the DCM and

ICM cases. Of the total 11 arrhythmic episodes, there were 5 arrhythmic episodes from DCM

hearts and 6 arrhythmic episodes from ICM hearts. The resultspresented in Tables 4.3 and 4.4 are

the ANOVA p-value and the LDA-LOO classification accuracy for the feature that was significant

for a particular APP characteristic for DCM and ICM hearts, respectively.

Table 4.3: Feature P-Value and Classification versus APP Characteristicfor DCM Hearts

MAP ARI Max Voltage DVDT
Residual IF STD (P) < 0.01 < 0.01 0.01 0.26

Residual IF STD (%) 61.96% 62.68% 53.21% 68.57%

Table 4.4: Feature P-Value and Classification versus APP Characteristicfor ICM Hearts

MAP ARI Max Voltage DVDT
Local Pattern 1 (P) < 0.01 < 0.01 < 0.01 < 0.01

Local Pattern 1 (%) 60.66% 61.70% 61.55% 33.23%

Local Pattern 2 (P) < 0.01 0.50 < 0.01 < 0.01

Local Pattern 2 (%) 56.48% 49.48% 55.44% 63.64%

Local Pattern 3 (P) < 0.01 0.01 < 0.01 < 0.01

Local Pattern 3 (%) 57.08% 50.97% 62.00% 72.58%

Arrhythmia Organization (P) < 0.01 < 0.01 < 0.01 0.05

Arrhythmia Organization (%) 62.59% 61.70% 59.80% 72.28%

From Table 4.3, the residual IF STD feature appears to provide the only significance, which is

for distinguishing the MAP normal and abnormal categories and the ARI normal and abnormal for

the DCM cases. In contrast, there appears to be multiple features (Table 4.4) that are significant in

segregating the four different types of APP characteristicfor the ICM cases. For instance, the MAP

category for the ICM cases has a significance with the energy captured by Local Pattern 1 and the

arrhythmia organization. The stark contrast in the signal features and their significance could be a

result of the underlying the type of cardiomyopathy. These differences may also possibly explain

the variations in the significance of the signal features observed from DCM to ICM hearts (Table

4.3 vs. Table 4.4).
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Based on this difference observed between DCM and ICM hearts, itmay be possible to create

trained dictionaries for each of the APP categories that were significant for the analyzed signal

features. The creation of a trained dictionary to help segregate the type of cardiomyopathy is im-

portant because of the known physiological differences between the two cardiomyopathies [124].

For the DCM cases, the MAP and ARI had a significance with the residual IF STD. Therefore,

the DCM MAP and DCM ARI categories will be considered for dictionary learning. As previ-

ously stated, all the APP categories for the ICM cases were significant for a combination of signal

features. Hence, the following list of APP characteristicswill be used for dictionary learning.

• Cardiomyopathy

• DCM MAP

• DCM ARI

• ICM MAP

• ICM ARI

• ICM Max Voltage

• ICM DVDT

The above mentioned relation identifies that it is possible to associate time-averaged character-

istics of the electrogram with the APP characteristics. However, the exact signal structure that is

representative of a particular APP characteristic may not be directly associated with the feature, but

only a partial representation of the underlying structure.Therefore, the objective of using dictio-

nary learning is two fold: the first is the identification of discriminative signal structures motivated

by the APP characteristics, and the second is using the trained dictionary to label electrograms in

order to be able to infer the APP characteristic.
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4.4 LCKSVD Dictionary Learning

The LCKSVD method outlined in Section 2.2.3 described an objective function used to create a

trained dictionary. The objective function from Equation 2.19 (provided below as Equation 4.1)

consisted of three main components that influence the dictionary learning process. To recap, the

first component was to select atoms that better approximatesthe training signals; the second com-

ponent was to select atoms that sparsely represent the training signals; and the third component

was to select atoms to represent the class labels assigned tothe training signals. The influence of

the sparse component and the class-label component on the objective function can be controlled

through the use of theα andβ parameters, respectively. The process by which to select the param-

eters to arrive at a trained dictionary will be discussed next.

< [b], [TM ], [W ], ζ > = arg min
[b],[TM ],[W ],ζ

||[f ]− ζ[b]||22
+ α||[Q]− [TM ][b]||22 + β||[CL]− [W ][b]||22

(4.1)

4.4.1 LCKSVD Dictionary Learning Process

There are many parameters that can be varied for the LCKSVD dictionary learning. These parame-

ters determine how the objective function will perform the dictionary training. The selection of the

dictionary learning parameters, such as theα, β, number of training iterations, and identification

of the significant trained dictionary elements will be discussed in a LCKSVD dictionary learning

process that consists of 7 steps. Figure 4.3 illustrates theprocess that was applied for the four

identified APP characteristics in order to arrive at a uniquely trained dictionary. This flowchart

will be referred to for the subsequent results.

Process 1: Electrogram Labeling Based on APP

The objective of the LCKSVD dictionary learning is to arrive at trained dictionary elements that

are driven by the APP characteristics. Therefore, the first step in the process is to segregate the

database based on the APP category that is being analyzed. For instance, when considering the

LCCKSVD for the cardiomyopathy, the electrograms from the database were labeled as DCM or
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Figure 4.3: LCKSVD Process to Arrive at a Trained Dictionary
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ICM depending on which type of heart the electrogram originated from. This labeling served as

the ground truth that was then used to create the trained dictionary.

Process 2: LCKSVD Cross-Validation with all Combinations ofα and β

The ability to choose any combination of theα andβ values provide a great deal of flexibility in

training a dictionary such that the atoms are selected basedon one or multiple components. In or-

der to create a trained dictionary for which the objective isto segregate a particular APP category,

it may be straightforward to think that theβ value should selected to provided the largest com-

ponent so that more emphasis on the class-label component for the LCKSVD objective function.

However, it is also important that the trained dictionary represents the underlying signal structure

and sparsely represent the electrogram. Therefore, various combinations of theα andβ values

must be analyzed, with the overall classification as the determining factor for finalizing the value

of α andβ.

In order to provide a robust analysis of the LCKSVD objective function, a wide range for the

α andβ value must be considered. In the LCKSVD objective function from Equation 4.1, the

approximation component always has a weight of 1 to the objective function. For instance, ifα is

much larger than 1 andβ is equal to 1, then a greater emphasis will be placed on selecting atoms

that can sparsely represent the training signals. If bothα andβ are equal and much larger than

1, then there is more emphasis on the sparsity and label components of the objective function.

Also, if theα andβ values are equal and much smaller than 1, more emphasis is placed on the

approximation component of the LCKSVD objective function. Therefore, in order to create a

robust range of theα andβ values, the values must range from much greater than one to much

smaller than one. For selecting a value much larger than 1, 1000 was selected, since it will allow

the LCKSVD to place a much larger emphasis on the sparse or class-label components of its

criterion function. Similarly, the minimumα andβ values were selected as1
1000

to place more

emphasis on the approximation component. The values in between 1000 and 1
1000

were selected

based on a log scale to have a dynamic range for theα andβ values. Based on this, the following

range forα andβ was selected. For the given range ofα andβ values, there are 121 combinations

104



(11× 11) of LCKSVD objective functions that will be analyzed in orderto train the dictionaries.

• α: 1000, 100, 10, 5, 2, 1,1
2
, 1
5
, 1
10

, 1
100

, 1
1000

• β: 1000, 100, 10, 5, 2, 1,1
2
, 1
5
, 1
10

, 1
100

, 1
1000

The starting point for all the dictionaries will be the Gabordictionary that is frequency and

scale limited. The limitation on the starting Gabor dictionary is required by LCKSVD because the

number of atoms in the dictionary has an upper bound [71]. Theupper bound is determined based

on the group with a smaller number of training signals. The number of atoms in the dictionary

cannot exceed half the number of training signals available. The number of iterations used by the

LCKSVD was set to 50 to test all theα andβ combinations. Based on this initial dictionary, the

training of the LCKSVD with the differentα andβ combinations could be completed.

Process 3: Optimalα and β Selection

In order to create a robustly trained dictionary, the dictionary will be cross-validated to ensure

its ability to capture signal structures that exist within the electrogram. It is possible to cross-

validate the trained dictionary by training the dictionarywith a set of electrograms and then testing

it against another set of electrograms. However, care should be taken in selecting the training

and testing database. Each arrhythmia episode is unique, even if they originate from the same

heart. Therefore, in order to create the most robustly trained dictionary, the LCKSVD was trained

with all arrhythmia episodes except one. The remaining episode can then be tested to determine

if the trained dictionary atoms can sparsely represent the electrograms in the episode and still

correctly determine its class labels. This method was repeated with each episode being left out of

the training and then used to test the trained dictionary. For instance, there are 11 episodes that

are available for the purpose of studying the electrogram signal structure in order to determine the

type of cardiomyopathy. The dictionary is trained with 10 episodes and then tested with the last

remaining episode. This process is repeated for a total of 11times, with each episode being the

testing episode once.

It is possible to obtain the accuracy of a given training episode based on the trained dictionary.

To accomplish this, the trained dictionaryζ is used to decompose the testing signals by the OMP.
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The resulting sparse coefficients (ρ) with the classifier parameters[W ] from the LCKSVD can be

used to classify the electrograms with respect to the labels. The approximated label is determined

from the product of the sparse coefficientsρ and the classifier parameters[W ] to produce the sparse

code product (defined asρ[W ]). Recall that the sparse codesρ are the coefficients as a result of the

OMP decomposition (refer to Section 2.2.2) and the classifier parameters[W ] are the LCKSVD

dictionary weights that were trained for each class. The classifier parameter[W ] has multiple

entries, for which each of the entries will determine the strength of the respective label (i.e. first set

of classifier parameters multiplied with the sparse codes will determine the label value for category

1) to a specific dictionary element. After this product, the category with the maximum value is

assigned as the label. Once the labels are approximated for all the electrograms, the labels that are

correctly approximated when compared to the ground truth can be used to define the accuracy of

the trained dictionary.

The accuracy for a givenα andβ is the averaged accuracy obtained from each of the cross-

validated accuracy. The cross-validation of the episodes were done for all combinations ofα andβ.

The averaged accuracy was used to determine whichα andβ should be selected for the final trained

dictionary. Theα andβ value that produced the best average accuracy of the testingepisodes was

used for the optimal values.

Process 4: LCKSVD Cross-Validation with Varying Iterations

Another flexibility given to the LCKSVD objective function isthe number of iterations used to

train the dictionary. As previously discussed in Section 2.2.3, the objective function iteratively up-

dates the atoms in the dictionary and the coefficients. For instance, suppose that theα andβ values

were much smaller than one, thereby placing more emphasis onthe approximation component of

the LCKSVD objective function. If the LCKSVD is trained for a greater number of iterations,

it is expected that the error between training signals and dictionary elements (trained atoms) will

be smaller as the iterations increase. While this is preferable for fully approximating the training

signals, the objective of identifying significant underlying signal structures may not require full

approximation to capture all the subtle discriminative signal structures in the electrograms. There-
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fore, a range of iterations for the LCKSVD will also have to be tested to determine the optimal

number of iterations that can be used to classify the specificAPP characteristic. The iterations

were varied between 25, 50, 100, 250 and 1000 for this process.

Process 5: Optimal Iteration Selection

Given that theα andβ values were selected in the third process, the iterations were varied to

perform the LCKSVD training for thisα andβ value. The LCKSVD was performed for each of

the iterations and for each of the testing episode individually. Similar to Process 3, the optimal

number of iterations was selected based on the maximum average accuracy obtained from the

accuracies for each cross-validated episode.

Process 6: Selection of Significant Trained Dictionary Elements

Using cross-validation of the database, the LCKSVD will produce an individual trained dictionary

for each of the arrhythmia episode that was tested. For instance, if there were 11 episodes, then

there will be 11 trained dictionaries that will be produced.However, rather than selecting all of

the dictionary elements from each of these trained dictionaries, only the most significant elements

from each trained dictionary were selected. In order to determine which element were to be se-

lected, the sparse coefficients from the OMP for all the training signals per trained dictionary were

considered. Since the dictionary was created based on the training signals, the training signals and

not the testing signals were used to select the most significant elements. Simply, the sparse codeρ

produced for each trained dictionary was averaged across all the training signals for a given cate-

gory and then multiplied by the classifier parameters[W ] for that category to produce a weighted

average sparse code (ρ̄[W ]).

Ideally, if a training signal was exactly the same as an element, then the sparse code for that

element of the dictionary would be 1. If all the training signals of a particular category also share

this element, then the weight assigned to this element wouldbe relatively greater (normalized to

a maximum of one). Therefore, a threshold can be set on the weighted average sparse code. The

threshold was selected as1% of the maximum possible product because if the weighted average

sparse code is below1%, then the contribution by this element may be attributed to noise and
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not a relevant electrogram signal structure for the APP characteristic. Any elements that satisfy

having a product greater than this1% threshold were then compared with the average sparse code

product for the other category. The dictionary element is only considered as significant for the

first category when it is above the1% threshold, and the difference between the products for each

category is also greater than1%. The second condition is set to ensure that the signal structure

is more discriminative for a particular category and it is not a signal structure that may be com-

mon to both categories of training signals. This process is repeated for the second category. The

significant dictionary elements along with the corresponding classifier parameters are retained per

cross-validated episode.

Process 7: Final Trained Dictionary

Given that there is a trained dictionary for each episode, the significant dictionary elements from

each of the trained dictionaries were combined o arrive at the final trained dictionary (ζFinal).

The classifier parameter[W ] for each of the significant dictionary elements was also retained.

Therefore, the final trained dictionary (denoted asζFinal) and the final classifier parameter (denoted

as[W ]Final) are used for the final LCKSVD trained dictionary.

4.4.2 LCKSVD Results

The signal features that were previously discussed in this chapter helped to motivate the dictionary

learning for specific APP characteristics. The results werepresented based on these specific APP

characteristics. The complexity of the dictionary learning wasO(N3) [66], but this is a one time

occurrence. Therefore, the complexity for the process thatuses the trained dictionary relies on

the OMP complexity, which isO(N2.5) [66]. This makes the method useful in offline analysis of

patient’s suffering from VA, with a possibility of near real-time analysis due to the advent of more

powerful digital signal processors.

Cardiomyopathy

In order to create a dictionary that is trained specifically to determine the type of cardiomyopathy

the electrogram belongs to, the complete RDB was segregated to hearts that were DCM and hearts
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that were ICM. Thus, all the electrograms from a given heart (even if there were multiple episodes

from the same heart) were labeled as either DCM or ICM. There were a total of 11 arrhythmia

episodes, of which, 5 arrhythmic episodes were from DCM hearts and 6 arrhythmic episodes were

from ICM hearts. Therefore, all the electrograms recorded from a single episode were either

labeled as belonging to the DCM or ICM category. This refers to the first process in Section 4.4.1

and Figure 4.3 for the cardiomyopathy LCKSVD training. The second and third process in the

LCKSVD training of the dictionary (Section 4.4.1 and Figure 4.3) was testing and selecting the

optimalα andβ combination for the database that was previously labeled based on the type of

cardiomyopathy. The LCKSVD training was first performed on 10episodes and tested with the

11th episode. For each of the cross-validation set, the dictionary was trained with a singleα and

β combination and the accuracy for the testing episode was determined. This testing process was

repeated for all of theα andβ combinations. This was again repeated for each of the episodes

being a testing episode, and the accuracies were a matrix with 11 × 121 entries. Finally, the

accuracies were averaged over all of the episodes, and the optimal α andβ value was selected.

Figure 4.4 illustrates the average accuracies from the cross-validated episodes for a fixed iteration

of 50. From the illustration in Figure 4.4, the X axis has the 11 possibleα values and the Y axis

has the 11 possibleβ values. In total, there are 121 possible combinations presented in this figure.

The colours represent the accuracies ranging from40% to 75%. The maximum average accuracy

was obtained for anα andβ combination of 2 and 5 respectively.

Next, theα andβ were fixed and the number of iterations used by LCKSVD were varied to

arrive at an optimal number of training iterations, which corresponds to the fourth and fifth process

in the LCKSVD dictionary learning (Section 4.4.1 and Figure 4.3). The iterations used were 25, 50,

100, 250 and 1000 to determine which iteration was the most optimal for the LCKSVD training.

Similar to theα and β tests, the accuracy for each episode was obtained for a giventraining

iteration. Once the accuracies for each episode and iteration was obtained, a matrix with 11× 5

entries corresponding to the accuracies was used to obtain an average accuracy for the iterations.

Figure 4.5 illustrates the average accuracies for the cross-validated episodes for a fixedα andβ

value of 2 and 5, respectively. From the results in Figure 4.5, the maximum average accuracy was
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obtained with an iteration of 50. Therefore, the LCKSVD training parameters were set asα being

2,β being 5, and the number of iterations for training being 50 (listed in Table 4.5).

Table 4.5: Cardiomyopathy LCKSVD Dictionary Learning Parameter Values

α Value β Value Iterations
Parameter Value 2 5 50

Based on the above LCKSVD parameters, the maximum average cross-validated result was

53.11%. However, this accuracy was achieved using the individually trained dictionary elements

for each cross-validated episode. The next step was to create a single, trained dictionary from a

combination of the individually trained dictionaries, corresponding to the sixth and seventh process
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Figure 4.6: Sample Weighted Average Sparse Code for DCM vs ICM

of the LCKSVD training dictionary (Section 4.4.1 and Figure 4.3). For a given cross-validation

episode, the sparse codeρCM was obtained by decomposing the training signals with the trained

dictionary elements. The sparse codesρDCM belonging to the electrograms from the DCM cate-

gory were averaged and multiplied by the classifier parameters[W ]DCM that belonged to the DCM

category. A similar process was done for the electrograms from the ICM category. From Figure

4.6, it is possible to observe the weighted-average sparse codes for the DCM and ICM categories

for one of the test episodes.

The red and green bars in Figure 4.6 are the weighted-average sparse codes for the DCM and

ICM categories, respectively, for each of the trained dictionary elements (80 dictionary elements

for Figure 4.6). This weighted-average sparse code is an example produced from one of the cross-

validated episode. From this figure, we can observe several elements that are significant for the

DCM and ICM categories. First, there are some elements from the trained dictionary that have a
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higher weighted average sparse code for DCM (red bar) than theICM (green bar). For instance,

dictionary element 11 is an example of a significant component for the DCM category, since the red

bar (value around6%) is larger than the ICM category’s green bar (value around0%). Similarly,

some of the elements from the trained dictionary have a higher weighted average sparse code for

ICM (green bar) than the DCM (red bar). An example of this is observed in element 45, where

the weighted average sparse code higher for the ICM category (value around5%) than the DCM

category (value of0%). For a dictionary element that contributes to both categories (e.g. element

23), the element will belong to the category for which it has alarger weighted average sparse

code. Based on this distribution, significant elements for the DCM and ICM category for this

given cross-validated episode were selected from the trained dictionary. This process was then

repeated to select significant elements from each of the remaining trained dictionaries. The final

trained dictionary (denoted asζFinal,CM ) is a combination of all the significant elements for the

cardiomyopathy LCKSVD cross-validation.

In order to better understand the differences in the signal structure between the DCM and ICM

hearts as a result of the trained dictionary elements, a scale-frequency map was constructed. To

create a scale-frequency map, the standard parameters of the atom (e.g. scale, frequency, etc.)

must be known. However, LCKSVD trains a standard dictionary with known parameters for each

atom into elements that may not have standard parameters, such as a fixed frequency or scale.

Therefore, to create such a scale-frequency map, each element was decomposed using a standard

Gabor dictionary with known parameters. The resulting coefficients, scales, and frequencies were

then used to represent the structure for each element. This was used to create the scale-frequency

maps for the elements belonging to the DCM hearts and similarly for all the coefficients belonging

to the ICM hearts. Figure 4.7 consists of three panels of scale-frequency maps. The top panel is

the resulting scale-frequency map for elements from the DCM hearts and the middle panel is the

scale-frequency map for elements from the ICM hearts. The bottom panel, which illustrates the

difference between the two scale-frequency map, highlights the differences between the two. The

most notable differences occur around 2.5 to 3.5 Hz and for the scale of 2048. Another notable

difference occurs around 4 to 4.5 Hz for the scale of 2048. This indicates that subtle frequency
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components that spans a large part of the electrograms, due to the scale size, may be important in

segregating DCM and ICM electrograms.

With the finalized dictionary (ζFinal,CM ), each episode was decomposed using OMP, and then

labeled. From the OMP decomposition usingζFinal,CM , their resulting sparse codesρFinal,CM

along with the finalized classifier parameters[W ]Final,CM were used to label each electrogram as

DCM or ICM. Given that each episode was either DCM or ICM, all electrograms belonging to that

episode were either DCM or ICM. The accuracy can be determined based on whether the electro-

gram was correctly labeled. Table 4.6 provides classification accuracies for each of the episode

as well an overall classification accuracy. The average accuracy highlights that81.80% (standard

deviation of7.89%) of the electrograms could be correctly classified based on only the sparse code

and the classifier parameters. Looking more closely into thecardiomyopathy categories, we can

make additional observations. For example, the accuraciesfor the DCM cases seem to have less

variation (ranging from74% to 90%) than the ICM cases (ranging from68% to 89%), which is

surprising considering that DCM was expected to have more variations. This may indicate that the

trained elements were more discriminative for the DCM electrograms than the ICM electrograms,

or that the signal structures within the ICM cases differ fromone another, making it more difficult

for the final trained dictionary to focus on a particular electrogram signal structure.

The variation in the cross-validated accuracies also seemsto vary from the feature analysis in

Tables 4.3 and 4.4. The expectation was that the DCM hearts would have many possible etiologies

[46], in turn exhibiting a wide range of electrogram signal structures. This was observed from

the P-values and classification accuracies for the DCM cases from Table 4.3, where most of the

signal features did not show any significance for the APP characteristics. It is possible that the

signal structure identified by the scale-frequency map for the DCM cases were similar from heart

to heart, whereas that may not have been the case for the ICM hearts. Another possibility for the

large variation in the ICM hearts could have been that the underlying APP characteristics, such

as the approximate of the MAP, ARI, scar tissue and DVDT, couldhave been wide ranging. The

LCKSVD was trained to look for common signal structures across all of the ICM hearts, which

would make it more difficult. Theα andβ values (5 and 2, respectively) also placed more emphasis

114



DCM − Scale−Frequency−Amplitude Map

Frequency (Hz)

S
c
a

le
s

0 2 4 6 8 10 12

128
256
512

1024
2048

0

0.1

0.2

ICM − Scale−Frequency−Amplitude Map

Frequency (Hz)

S
c
a

le
s

0 2 4 6 8 10 12

128
256
512

1024
2048

0

0.1

0.2

Diff − Scale−Frequency−Amplitude Map

Frequency (Hz)

S
c
a

le
s

0 2 4 6 8 10 12

128
256
512

1024
2048

0

0.1

0.2

The scale-frequency map was created for the trained dictionary elements for the DCM (top panel) and 
ICM (middle panel) training signals. The bottom panel illustrates the difference in the scale-frequency maps.

Figure 4.7: Scale-Frequency Map for DCM versus ICM
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Table 4.6: Classification of Cardiomyopathy Hearts Using the Finalized LCKSVD Trained Dic-
tionary

Episodes Accuracy (%) Cardiomyopathy
Episode 1 73.21 ICM
Episode 2 89.29 DCM
Episode 3 84.82 DCM
Episode 4 74.11 DCM
Episode 5 90.18 DCM
Episode 6 87.50 DCM
Episode 7 89.29 ICM
Episode 8 68.75 ICM
Episode 9 84.82 ICM
Episode 10 84.82 ICM
Episode 11 72.97 ICM

Episode Average 81.80 N/A
Episode Standard Deviation 7.89 N/A

on creating more sparse elements, thus possibly making it more difficult if the ICM electrograms

if it does not have a common signal structure.

DCM MAP

Another APP characteristic that was identified as significant was the normal and abnormal MAP in

the DCM cases. The APD (related to the MAP duration) was shown to be an important character-

istic in optimizing therapy options [15, 16]. While the ICM MAPcases also showed significance

based on the signal features, the signal features themselves were different from one another. The

DCM MAP had only the residual IF STD signal feature, as significant from Table 4.3. Contrasting

this with the ICM MAP cases, the residual IF STD signal featurewas not significant. Therefore,

the dictionary learning was applied to the DCM MAP cases and ICMMAP cases individually.

As previously mentioned in the LCKSVD training process (Section 4.4.1 and Figure 4.3), the first

process was identifying the DCM episodes and label the DCM electrograms based on the approx-

imate of the MAP characteristic as either normal (DCM M N) or abnormal (DCM M A). There

were 5 DCM arrhythmia episodes for the RDB. The LCKSVD training was conducted on 4 of the
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episodes and tested with the5th episode (similar to the LCKSVD for cardiomyopathy). Following

the second to fifth processes that were the outlined, the LCKSVD training parameters were set as 5

for α, 100 forβ, and 50 for the number of iterations for training (also givenin Table 4.7). A maxi-

mum average cross-validated result of64.64% was achieved with these parameters. The sixth and

seventh process for the LCKSVD dictionary learning involvescombining the significant elements

from each of the trained dictionary to arrive at a final trained dictionary (denoted asζFinal,DCMM ).

This was accomplished with the averaged sparse code for the training signals̄ρDCMM as well as

the classifier parameters[W ]DCMM .

Table 4.7: DCM MAP LCKSVD Dictionary Learning Parameter Values

α Value β Value Iterations
Parameter Value 5 100 50

To visualize the signal structures captured by the finalizedtrained dictionaries, the scale-

frequency maps were constructed for the normal DCM MAP elements and the abnormal DCM

MAP elements. The Gabor dictionary with known atom parameters was used to decompose the

elements. The three panels of Figure 4.8 are the resulting scale-frequency maps for elements

from the normal DCM MAP electrograms (top panel), abnormal DCMMAP electrograms (middle

panel), and difference between the two scale-frequency maps (bottom panel). There exists multiple

scale-frequency structures that are different for the normal DCM MAP and abnormal DCM MAP

scale-frequency maps. The scale of 512 between 1 to 1.5 Hz is an example of a scale-frequency

structure that exists in the abnormal DCM MAP cases when compared to the normal DCM MAP

cases. The other observable difference is at scale 2048 between 2.5 to 3.5 Hz as well as between

4.5 to 5.5 Hz. For this scale-frequency structure, it is possible to observe that this scale-frequency

structure exists in the normal DCM MAP and is not as significantin the abnormal DCM MAP.

The finalized dictionary (ζFinal,DCMM ) was then used to decompose and label the electrograms.

The finalized sparse codesρFinal,DCMM and the finalized classifier parameters[W ]Final,DCMM

were used to label the electrogram as normal or abnormal DCM MAP. The accuracy was then

determined by comparing the predicted label against the actual label for the electrogram. Table
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The scale-frequency map was created for the trained dictionary elements for the normal (top panel) and 
abnormal (middle panel) DCM MAP training signals. The bottom panel illustrates the difference in the 
scale-frequency maps.

Figure 4.8: Scale-Frequency Map for Normal versus Abnormal DCM MAP
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4.8 provides the classification accuracies for each of the episode as well an overall classification

accuracy. The average accuracy over all of the episodes was71.43%, with a standard deviation

of 11.85%. This accuracy illustrates that the finalized trained dictionary elements may be able

to capture all of the variations between the DCM MAP normal andabnormal electrograms. The

variations between the episodes indicate that signal structures may not necessarily be consistent

from episode to episode.

Table 4.8: Classification of Normal and Abnormal DCM MAP Using the Finalized LCKSVD
Trained Dictionary

DCM Episodes Accuracy (%)
Episode 1 63.61
Episode 2 69.64
Episode 3 58.03
Episode 4 85.71
Episode 5 82.14

Episode Average 71.43
Episode Standard Deviation 11.85

Based on the initial signal feature analysis from Table 4.3, only the residual IF STD signal

feature was significant for highlighting the DCM MAP. This illustrates that the DCM electrogram

signal structure may be more complex when compared to the ICM electrograms (which had many

significant signal features). Theα andβ values (5 and 100, respectively) place a much larger em-

phasis on the classification error component of the LCKSVD objective function. The electrogram

signal structures that are meant to segregate the assigned labels is targeted by the LCKSVD, which

further indicates the complexity of the DCM MAP electrograms. The structures that were iden-

tified by the dictionary elements placed more emphasis on discrimination, which could possibly

explain the distribution of the accuracies (since emphasiswas not placed on sparsity or represen-

tation). The results indicate that it may be possible to infer the DCM MAP based on the trained

dictionary.
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DCM ARI

The ARI for the DCM cases were also observed to have a significant correlation with the time-

averaged characteristics, specifically with the residual IF STD. Therefore, the ARI cases will also

be analyzed by LCKSVD. The ARI was also another characteristic that could be used to optimize

existing therapy options [15, 16]. The LCKSVD training process (Section 4.4.1 and Figure 4.3)

was used to create a trained dictionary for DCM ARI. The electrograms of the DCM episodes were

labeled as normal (DCM A N) or abnormal (DCM A A) depending on the ARI value. Since there

were DCM arrhythmia episodes in the RDB, there were 5 LCKSVD dictionaries that were created.

From the second to fifth processes, the LCKSVD training parameters were selected as 100 forα,

1000 forβ, and 50 for the number of iterations for training (Table 4.9). The maximum average

cross-validated result obtained with this set of LCKSVD parameters was62.86%. The sixth and

seventh processes were used to combine significant elements from each of the trained dictionaries.

The average sparse code for the training signalsρ̄DCMA and the classifier parameters[W ]DCMA

were used to create the final dictionary (denoted asζFinal,DCMM ).

Table 4.9: DCM ARI LCKSVD Dictionary Learning Parameter Values

α Value β Value Iterations
Parameter Value 100 1000 50

The scale-frequency map was constructed for the normal and abnormal DCM ARI elements

in order to visualize the signal structures captured by this final dictionary. The three panels of

Figure 4.9 are the scale-frequency maps for elements from the normal DCM ARI electrograms

(top panel), elements from the abnormal DCM ARI electrograms (middle panel), and difference

between the two scale-frequency maps (bottom panel). The scale-frequency maps reveal that the

scale-frequency structures at the 2048 scale between 3 and 3.5 Hz as well as 4.5 and 5.5 Hz have

the largest difference. In particular, the abnormal ARI for DCM cases have stronger time-varying

frequency structures (above discussed scale-frequency ranges) that does not exist in the normal

DCM ARI cases.

The finalized dictionary (ζFinal,DCMA) was then used to decompose and label the electrograms.
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The scale-frequency map was created for the trained dictionary elements for the normal (top panel) and 
abnormal (middle panel) DCM ARI training signals. The bottom panel illustrates the difference in the scale-
frequency maps.

Figure 4.9: Scale-Frequency Map for Normal versus Abnormal DCM ARI
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The accuracy was determined label for each electrogram was compared with the predicted label,

which was produced using the finalized sparse codesρFinal,DCMA and the finalized classifier pa-

rameters[W ]Final,DCMA. Table 4.10 provides the classification accuracies for eachof the episode

as well an overall average classification accuracy. The overall average accuracy of75.18% (stan-

dard deviation of13.40%) is an indication that the finalized trained dictionary is able to identify

structures that can be used to indicate normal from abnormalDCM ARI.

Table 4.10: Classification of Normal and Abnormal DCM ARI Using the Finalized LCKSVD
Trained Dictionary

DCM Episodes Accuracy (%)
Episode 1 53.57
Episode 2 71.43
Episode 3 81.25
Episode 4 87.50
Episode 5 82.14

Episode Average 75.18
Episode Standard Deviation 13.40

This ARI for DCM cases was also correlated with the residual IF STD. The combination of the

α andβ values (100 and 1000, respectively) used shows that an increased emphasis was placed

on identifying structures that were better suited for labeling the electrogram. The variation in

the accuracies was similar to what was observed in the MAP analysis, which further supports the

complexity that was observed in literature for DCM hearts. Based on this analysis, the DCM ARI

could be inferred by the LCKSVD trained dictionaries.

ICM MAP

The ICM MAP characteristic was a significant APP characteristic that was supported by two signal

features. From the results provided in Table 4.4, these signal features were the local pattern 1

and arrhythmia organization. The first process in the LCKSVD dictionary learning (Section 4.4.1

and Figure 4.3) was labeling the electrograms. There were 6 ICM arrhythmia episodes from the

RDB. Similar to the DCM MAP LCKSVD, the ICM electrograms were labeled as normal (ICM

MAP N) or abnormal (ICM MAP A) depending on the approximate of the MAP value for the
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electrode. The second to fifth processes were used to determine the optimal LCKSVD dictionary

learning parameters. The LCKSVD training parameters was 1 for α, 100 forβ, and 50 for the

number of iterations for training (listed in Table 4.11). The maximum average cross-validated

result that was obtained for the given LCKSVD parameters was58.06%. Next, the individually

trained dictionaries were used to create a single trained dictionary through the used of the sparse

codesρICMM and the classifier parameters[W ]ICMM (outlined by the sixth and seventh processes

for the LCKSVD dictionary learning). After the significant dictionary elements were identified for

each of the trained dictionaries, the elements were combined to create a final trained dictionary

(ζFinal,ICMM ).

Table 4.11: ICM MAP LCKSVD Dictionary Learning Parameter Values

α Value β Value Iterations
Parameter Value 1 100 50

The scale-frequency maps for the normal and abnormal ICM MAP were also generated by

decomposing the trained dictionary elements for each groupwith a Gabor dictionary with fixed

parameters. Figure 4.10 illustrates the scale-frequency map for the elements from the normal ICM

MAP electrograms (top panel), the elements from the abnormal ICM MAP electrograms (middle

panel) and difference between the two scale-frequency maps(bottom panel). The largest difference

is observed at scale 2048 between 4.5 and 5 Hz. The abnormal ICMMAP electrograms appears to

have more emphasis placed on this scale-frequency structure than the normal ICM MAP.

From the finalized dictionary (ζFinal,ICMM ), the sparse codes for the signals were determined.

The finalized classifier parameters[W ]Final,ICMM were used with the sparse codesρFinal,ICMM

to label each electrogram as normal or abnormal. By comparingthe predicted labels to the actual

labels, the accuracy could be determined. Table 4.12 contains the classification accuracies for all

6 episodes as well as the average accuracy. The average accuracy over the episodes was70.49%.

The standard deviation for the episodes was2.26%. The classification accuracy highlights that

the ICM MAP trained dictionaries can be used for identifying signal structures to segregate the

normal and abnormal ICM MAP electrograms. When considering the variation of the results, the
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The scale-frequency map was created for the trained dictionary elements for the normal (top panel) and 
abnormal (middle panel) ICM MAP training signals. The bottom panel illustrates the difference in the scale-
frequency maps.

Figure 4.10: Scale-Frequency Map for Normal versus Abnormal ICM MAP
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ICM cases had a smaller degree of variation in the classification accuracy. This may indicate that

the ICM arrhythmia episodes have a lower degree of signal structure variation (identified by the

trained dictionaries) from episode to episode.

Table 4.12: Classification of Normal and Abnormal ICM MAP Using the Finalized LCKSVD
Trained Dictionary

ICM Episodes Accuracy (%)
Episode 1 73.21
Episode 2 69.64
Episode 3 73.21
Episode 4 67.86
Episode 5 68.75
Episode 6 70.27

Episode Average 70.49
Episode Standard Deviation 2.26

There were multiple signal features that displayed significance for the ICM MAP from Ta-

ble 4.4. These signal features were the energy capture from local pattern 1 and the arrhythmia

organization. Theα andβ value (1 and 100, respectively) places an increased emphasis on the

classification error component of the dictionary learning process. Therefore, the dictionary ele-

ments were trained to be able to better discriminate between the normal and abnormal ICM MAP

electrograms. These results are indicative that the trained dictionary elements could be used to

infer the ICM MAP.

ICM ARI

The ICM ARI characteristic was also a significant APP characteristic that was correlated with

two signal features (energy captured by local pattern 1 and arrhythmia organization from Table

4.4). The significant correlation with the local pattern and arrhythmia organization may indi-

cate that there a specific time-frequency structures that influence the ARI in ICM cases. The

LCKSVD dictionary learning processes (Section 4.4.1 and Figure 4.3) were used to create the fi-

nalized trained dictionary for the ICM ARI (ζFinal,ICMA). Based on the first process, the 6 ICM

arrhythmia episodes from the RDB were labeled as normal (ICM ARI N) or abnormal (ICM ARI
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A) based on the ARI value or the electrode. The second to fifth processes had selected the optimal

LCKSVD dictionary learning parameters, withα as 10,β as 0.5, and the number of iterations

as 50 (given in Table 4.13). The maximum average cross-validated accuracy was55.28% for the

LCKSVD parameters. The sparse codesρICMA and the classifier parameters[W ]ICMA were used

for each trained dictionary to identify the significant elements and crate the finalized trained dic-

tionary (ζFinal,ICMA).

Table 4.13: ICM ARI LCKSVD Dictionary Learning Parameter Values

α Value β Value Iterations
Parameter Value 10 0.5 50

The finalized dictionary elements for the normal and abnormal ICM ARI were used to generate

the scale-frequency maps in Figure 4.11. The top panel of this figure represents the scale-frequency

map for the normal ICM ARI electrograms, the middle panel represents the scale-frequency map

for the abnormal ICM ARI electrograms and the bottom panel is the difference between the two

scale-frequency maps. The observable difference between the scale-frequency maps occurs at

scales 512 and 2048 between 3.5 and 4 Hz. The ARI normal electrograms from the ICM cases has

more representation of this scale-frequency structure than the abnormal ICM ARI electrograms.

The sparse codesρFinal,ICMA for the signals were determined using the finalized dictionary

(ζFinal,ICMA). Next, the label for each electrogram was determined by thefinalized classifier pa-

rameters[W ]Final,ICMA and the sparse codesρFinal,ICMA. These predicted labels were compared

to the actual labels so that the accuracy could be determined. The classification accuracies for the 6

episodes and the average accuracy is presented in Table 4.14. An average accuracy of67.51% (with

a standard deviation of7.04%) was achieved. The strength of the classification accuracy indicates

the trained dictionary elements identified discriminatorystructures within the ICM ARI electro-

grams that could infer this APP characteristics. The distribution of the accuracies is consistent

with the ICM MAP results.

The ICM ARI cases had two time-averaged characteristics (energy captured by local pattern 1

and arrhythmia organization) from Table 4.4 that were significant. The classification accuracy was
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ICM ARI Normal − Scale−Frequency−Amplitude Map
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The scale-frequency map was created for the trained dictionary elements for the normal (top panel) and 
abnormal (middle panel) ICM ARI training signals. The bottom panel illustrates the difference in the scale-
frequency maps.

Figure 4.11: Scale-Frequency Map for Normal versus Abnormal ICM ARI
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Table 4.14: Classification of Normal and Abnormal ICM ARI Using the Finalized LCKSVD
Trained Dictionary

ICM Episodes Accuracy (%)
Episode 1 74.11
Episode 2 67.86
Episode 3 66.96
Episode 4 73.21
Episode 5 54.46
Episode 6 68.47

Episode Average 67.51
Episode Standard Deviation 7.04

achieved using anα andβ value of 10 and 0.5, respectively. This placed a greater emphasis on

identifying structures that are sparse for each category. The strength of the classification accuracy

indicates that it may be possible to infer the label of the ICM ARI electrograms using the finalized

trained dictionary.

ICM Max Voltage

The ICM max voltage was another significant APP characteristic that will be analyzed by LCKSVD.

Two of the signal features from Table 4.4 were significant (these signal features being the energy

captured by local pattern 1 and local pattern 3). Furthermore, it is known that the area of scar

and healthy tissue for ICM hearts is important for the initiation of future arrhythmia episodes [47],

which makes it important to create trained dictionary elements to infer these regions. Following

the seven processes for the LCKSVD dictionary learning (Section 4.4.1 and Figure 4.3), the first

process was segregating the database. There were 6 ICM arrhythmia episodes originating from 3

hearts. Each electrogram from the episodes were labeled as healthy (ICM Vol H) or scar (ICM

Vol S) depending on the max voltage value. The second to fifth processes were used to arrive

at optimal LCKSVD dictionary learning parameters (providedin Table 4.15). The final ICM Vol

LCKSVD parameters are 5 forα, 0.2 for β and 50 for the number of training iterations. From

the LCKSVD parameter testing, the maximum average accuracy was65.58%. The final trained

dictionary (denoted asζFinal,ICMV ) was then obtained following the sixth and seventh processes
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for the LCKSVD dictionary learning.

Table 4.15: ICM Vol LCKSVD Dictionary Learning Parameter Values

α Value β Value Iterations
Parameter Value 5 0.2 50

After finalizing the dictionary elements for the ICM healthy and scar electrograms, the scale-

frequency maps were generated. The final trained dictionarywas decomposed with the Gabor

dictionary to identify scale and frequencies of significance. The scale-frequency maps in Figure

4.12 represent the ICM healthy (top panel), ICM scar (middle panel) and the difference between

the scale-frequency maps. The largest difference appearedto occur at scale 2048 and between 4

and 4.5 Hz and between 5 and 5.5 Hz. Considering that the scale is 2048, there is an underlying

scale-frequency structure that can differentiate betweenthe ICM healthy and scar electrograms.

To obtain the accuracy from the finalized dictionary (ζFinal,ICMV ), the sparse codes for all

the ICM electrograms were determined. Using the finalized sparse codesρFinal,ICMV and the

finalized classifier parameters[W ]Final,ICMV , the labels for the electrograms were predicted. The

accuracy was calculated based on whether the predicted label was correct or not. The classification

accuracies for the 6 episodes are given in Table 4.16 along with the average accuracy. The average

accuracy and standard deviation were70.19% and6.22%, respectively, for the ICM healthy versus

scar electrograms. The variation for the ICM cases is similarto what was observed for the ICM

MAP and the ICM ARI LCKSVD. These results still indicate that there is a possibility of predicting

whether an electrogram comes from a healthy or scar region.

When compared to the other LCKSVD analysis of the APP characteristics, the signal features

were more local (local patterns) to the electrograms. The significant features were the energy

captured by local pattern 1 and local pattern 3 (from Table 4.4). The signal structures captured by

the LCKSVD analysis appeared to be more generic frequency structure, which is dissimilar from

what was observed from the significant signal features. The ability to identify healthy and scar

regions is important because the scar boundary region for ICMhearts are believed to cause future

arrhythmic episodes [47]. Theα andβ value (5 and 0.2, respectively) focus the dictionary learning
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ICM Healthy Tissue − Scale−Frequency−Amplitude Map
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The scale-frequency map was created for the trained dictionary elements for the healthy (top panel) and 
scar (middle panel) ICM training signals. The bottom panel illustrates the difference in the scale-frequency 
maps.

Figure 4.12: Scale-Frequency Map for ICM Healthy versus Scar Electrograms
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Table 4.16: Classification of Healthy and Scar for ICM Episodes Using the Finalized LCKSVD
Trained Dictionary

ICM Episodes Accuracy (%)
Episode 1 66.96
Episode 2 78.57
Episode 3 72.32
Episode 4 60.71
Episode 5 74.11
Episode 6 68.47

Episode Average 70.19
Episode Standard Deviation 6.22

on sparse atoms. Despite having a relatively higher sparsity factor, the dictionary elements were

discriminative and had revealed that it is possible to inferthe healthy and scar regions in an ICM

heart.

ICM DVDT

The last of the APP characteristics that will be analyzed by LCKSVD is the ICM DVDT. There

were two signal features that were significant for the ICM DVDTcases. These features were the

energy captured by local pattern 2, and local pattern 3 (Table 4.4). The analysis of the DVDT

had revealed that it is related to the contraction strength of the particular region around which

it was recorded from [17], which is important in identifyingregions where the depolarization is

normal in order to better understanding of the heart’s characteristics. The first step of the LCKSVD

dictionary learning process (Section 4.4.1 and Figure 4.3)was identifying regions of normal and

abnormal DVDT. From the 6 ICM episodes, the electrograms wereeither labeled as normal (ICM

DVDT N) or abnormal (ICM DVDT A). The second to fifth steps of theprocess were used to

obtain the LCKSVD dictionary learning parameters that provided the most optimal cross-validated

accuracies. These values wereα of 5, β of 0.2, and the number of training iterations of 50 (listed

in Table 4.17). These LCKSVD parameters resulted in a cross-validation accuracy of55.93%. The

sixth and seventh steps of the process were used to produce a finalized trained dictionary (denoted

asζFinal,ICMDVDT ).
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Table 4.17: ICM DVDT LCKSVD Dictionary Learning Parameter Values

α Value β Value Iterations
Parameter Value 5 0.2 50

The scale-frequency maps (normal ICM DVDT in the top panel, abnormal ICM DVDT in the

middle panel and the difference between the scale-frequency maps in the bottom panel) were then

generated for the normal and abnormal ICM DVDT and is illustrated in Figure 4.13. The scale-

frequency structures that exhibited the largest difference were at scale 1024 between 2.5 to 3 Hz

and 4.5 to 5 Hz as well at scale 2048 between 3.5 to 4 Hz. The normal ICM DVDT electrograms

displayed a strong occurrence of this scale-frequency structure than the abnormal ICM DVDT

electrograms.

Next, the accuracy was created obtained by decomposing the signals using the finalized trained

dictionary (ζFinal,ICMV ) and multiplying the resulting sparse codesρFinal,ICMDVDT with the final-

ized classifier parameters[W ]Final,ICMDVDT . This produced a predicted label for each electrogram

that could be compared with the actual label for each electrogram to produce an accuracy. Table

4.18 lists the accuracies for each episode as well as the average accuracy for the ICM episodes.

The average accuracy across all the ICM episodes (73.77% with a standard deviation of16.52%)

is an indication of the strength of the trained dictionary elements. The variation in the accuracies

is also larger when compared to the other ICM APP categories.

Table 4.18: Classification of normal and abnormal DVDT for ICM Episodes Using the Finalized
LCKSVD Trained Dictionary

ICM Episodes Accuracy (%)
Episode 1 62.50
Episode 2 87.50
Episode 3 91.96
Episode 4 77.68
Episode 5 47.32
Episode 6 75.62

Episode Average 73.77
Episode Standard Deviation 16.52
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ICM DVDT Normal − Scale−Frequency−Amplitude Map
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The scale-frequency map was created for the trained dictionary elements for the normal (top panel) and 
abnormal (middle panel) ICM DVDT training signals. The bottom panel illustrates the difference in the 
scale-frequency maps.

Figure 4.13: Scale-Frequency Map for ICM Normal versus Abnormal DVDT
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The energy captures by local pattern 2 and 3 were observed as significant (from Table 4.4)

for ICM DVDT. The α value of 5 andβ value of 0.2 indicates a slightly higher emphasis on the

sparsity, which may indicate the structures were more unique for the normal and abnormal ICM

DVDT categories. This may also possibly explain the variation observed in the accuracies across

the episodes. This result also indicates that the dictionary elements could be used to possibly infer

the DVDT characteristics for ICM hearts.

4.5 Chapter 4 Summary

This chapter had introduced and discussed some of the time-averaged characteristics that may be

found in an electrogram during an arrhythmic episode. A small variety of signal features that de-

scribe time-averaged characteristics of the electrogram were used to identify the particular APP

characteristics that may have a correlation with the electrogram. Based on the observed correla-

tion, the LCKSVD dictionary learning (driven by the APP characteristics) was used to identify

discriminatory signal structures, which may be used to infer what category an electrogram belongs

to. These signal structures (trained elements) serve as thefoundation to create a DSS, which will

automate the process of identifying the APP characteristics of the heart from the electrograms,

which can in turn assist clinicians in the diagnosis and treatment of VA.
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Chapter 5

Decision-Support System

T
HE focus of Chapter 3 and Chapter 4 involved the decomposition of the electrogram to iden-

tify signal structures that were of significance for the arrhythmia episode. Subsequently, the

objective of this chapter is to develop a DSS to automate and assist clinicians in diagnosing VA.

From Chapter 1, the discussion of the APP characteristics explained that it is difficult to obtain this

information from live patients, and the identification of the previously identified signal structures

can assist clinicians (through the DSS) and allow to infer the specific event/APP characteristics.

Thus, this chapter will use the signal features and the signal structures from the adaptive signal de-

composition (refer to Chapter 3 and 4) to create a DSS, as illustrated by Figure 5.1. The user input

will pick the specific model to be used by the DSS depending on the event or APP characteristic

that is to be targeted by the clinician.

5.1 Decision-Support System For the Diagnosis of Ventricular
Arrhythmias

The adaptive signal decomposition and dictionary learningapproaches from Chapter 3 and Chap-

ter 4, respectively, had already established a relationship between the signal structures and the

events/APP characteristics. The EAV and residual IF structures from the electrograms were iden-

tified and a relationship with the rotor event was established in Chapter 3. The discriminatory

signal structures was identified by the LCKSVD dictionary learning for specific APP character-

istics in Chapter 4. Therefore, after establishing a relationship between the signal structures and
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This chapter will discuss the DSS that was used to automate and assist clinicians in diagnosing VA. 

Figure 5.1: Contributions for Chapter 5
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VA events/APP characteristics, it is possible to devise a DSS to help clinicians in the diagnosis of

VA by inferring these events/APP characteristics using theelectrogram. As stated previously in

Section 2.4 of Chapter 2, neural networks models can provide the DSS with a linear or non-linear

model to support the decision making [76]. Neural network model based DSS have also been used

in the field of cardiology for the purpose of studying heart diseases [76,77]. Therefore, it is possi-

ble to create a DSS that is an explainable artificial intelligence model, which could be used directly

by the clinical community to infer the events/APP characteristics. Figure 5.2 illustrates the basic

diagram for the DSS that will be used in this chapter. The input of a DSS will be the electrogram

and specific user input on which event or APP characteristic to target. The DSS itself is made up

with a combination of neural network models that is used to infer the event/APP characteristic at

the output.

The architecture of the neural network model has a high degree of flexibility. The input layer

of the neural network will take in the input parameters in order to label the unknown electrogram

sample. The output layer will then assign a label based on theweights that transgress from the input

layer through to the hidden layers, to the output layer. The number of hidden layers determine the

complexity of the generic equation (refer to Equation 2.24)of the network. Though the number of

neurons in the hidden layer is flexible, there are limitations that should be considered. For example,

if the number of neurons in the hidden layer are few, then the network will be over-generalized, and

therefore make it difficult to capture the variations in the training data [125]. On the other hand, if

there are too many neurons in the hidden layer, then the network will memorize the training data.

As per literature, the upper bound on the number of neurons ina hidden layer was observed to

be two times the number of neurons in the input layer [125]. However, this does not guarantee an

optimized network. For the neural network models presentedin this chapter, the modeling function

for each layer was defined as the sigmoid function for the input layer and a linear function for all

remaining layers. The sigmoid function is used at the input layer in order to try and capture any

non-linearity in the distribution of the input parameters.If this is captured in the input layer, then

the remaining hidden layers and neurons should be able to model the parameters with a linear

modeling function.

137



�����

���	�
��
�

����
��

�������

�
����


��	�����������
��

�����������
��

�����
 �!��"�

������#

$�����

�%����

����	����

&����'��(��
������

�

�

�

Figure 5.2: Decision-Support System Diagram
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The network architecture created for this chapter was varied for the time-specific event models

and the time-averaged general models. Therefore, the specific architecture for each model is given

in the respective sections. Next, the architecture parameters for each neural network are presented.

Each model describes the input parameter’s association with the output APP characteristic. The

cross-validation result to test the networks will also be presented individually. The models are as

follows:

• Time-Specific Event Model

• Time-Averaged General Model

A diagram for the time-specific event model is illustrated inFigure 5.3. The model consists of

two stages, the first stage will identify if the electrogram is in the vicinity of a PS and the second

stage will determine if the PS electrogram is in the vicinityof a rotor. This will be further discussed

in the time-specific event model section. Figure 5.4 illustrates the diagram for the time-averaged

general model. This model also consisted of two stages. The first stage was used to determine from

what type of heart (DCM or ICM) the electrogram originated from. The DCM electrogram was

then further decomposed to identify either normal and abnormal MAP or normal and abnormal

ARI. The ICM electrograms were also labeled into four subcategories. The first subcategory la-

beled the electrogram a normal or abnormal MAP, the second subcategory labeled toe electrogram

as normal or abnormal ARI, the third subcategory labeled the electrogram as originating from a

healthy or scar region of the ICM heart, and the fourth subcategory labeled the electrogram normal

or abnormal DVDT. The results for each of the models will be presented next.

5.2 Time-Specific Event Model

The event discussed in Chapter 3 looked at events that occurred during the arrhythmic episode.

Specifically, the rotor event was analyzed to determine whether the electrogram signal structure

could be used to identify these events. Before proceeding into the discussion of the model, the

rotor events relationship with the APP characteristics will be briefly explained. As stated previ-

ously in Chapter 3, the rotor event is believed to be a manifestation of mechanisms that initiate
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Figure 5.3: Diagram for the Time-Specific Event Model
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Figure 5.4: Diagram for the Time-Averaged General Model
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and maintain VA [81]. Furthermore, they have been observed to occur in the boundary around

healthy and scar regions [9], meaning that there will be an expected variation in the max volt-

age characteristic. In order to visualize this, the electrogram locations previously identified in the

time-specific event analysis (refer to Chapter 3) was used. For each of the electrode locations pre-

viously identified, the max voltage characteristic for thiselectrode location and for the adjacent

electrodes were recorded. The standard deviation for a particular location could be determined to

observe the distribution. Figure 5.5 illustrates the distribution of the standard deviation for elec-

trode locations in the vicinity of a rotor PS, electrode locations in the vicinity of a non-rotor PS

and non-PS electrode locations. As previously described inliterature, a larger deviation in the max

voltage in the electrode locations adjacent to a rotor PS exists when compared to the other cases

(P < 0.01). Analyzing the other APP characteristics for their mean and standard deviation did not

reveal any other significant characteristics. This sectionwill present the database used to train and

validate the time-specific model, followed by discussing the specifics of the architecture and the

cross-validated results.
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5.2.1 Database

There were two databases specifically used for the time-specific event model. These databases are

the retrospective database and the Faber-Rudy synthetic database.

Retrospective Database

The retrospective database consists of the same electrograms that was used for the time-specific

event signal decomposition in Chapter 3. For the time-specific model, the unipolar recordings

were used to label the electrogram as rotor PS, non-rotor PS or non-PS events. A total of 104

electrograms (8 electrograms from each of the 13 episodes) were used for the time-specific model.

This database is referred to as RDB.

Faber-Rudy Synthetic Database

The Faber-Rudy synthetic database was explicitly created for two purposes: to generate a simulated

rotor and to capture the simulated APP characteristics. Thearrhythmia episodes were generated

using the Faber-Rudy model [92], which is similar to the Luo-Rudy model used in Chapter 3. This

model also simulates the inward and outward current flow using the transmembrane model. The

additional model equation to the Faber-Rudy model is the ion model. The ion model characterizes

the change in the ion concentration within the tissue.

The model consisted of a tissue that was6 × 4cm2. The characteristics of the tissue were se-

lected such that different regions of the tissue had simulated characteristics of a lower max voltage

to represent the scar tissue. The pacing simulation was created by only using a single impulse

to measure the simulated APP characteristics. The arrhythmia episode was then initiated on the

same tissue. One electrogram was recorded near the locationof the rotor event and one electro-

gram was recorded away from the rotor event for each arrhythmia episode. There were a total of

5 arrhythmia episodes that were generated, providing a total of 10 electrograms (5 in the vicinity

of a rotor event and 5 that were away from the PS). The simulated electrogram was generated at

1000 samples/S and then down-sampled to 250 samples/S. Finally, the electrograms were filtered

between 1 and 10 Hz. The simulated electrograms and APP characteristics were used to validate
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the time-specific event model and the association of the electrogram signal structures from the

time-specific event signal decomposition with the event/APP characteristics. This database will be

referred to as FRDB.

5.2.2 Cross-Validated Results and Discussion

The time-specific event model architecture consisted of 4 layers (illustrated in Figure 5.6). The

input layer consisted of neurons for each of the input parameters for the network. The output layer

had 1 neuron to label the electrogram (e.g. PS versus Non-PS or rotor PS versus non-rotor PS). The

first hidden layer was selected based on the upper bound [125] to allow the greatest flexibility in

approximating the function that relates the input to the eventual output space. Thus, the first hidden

layer had double the neurons as the input layer. The second hidden layer had as many neurons as

there were unique labels. The weights were randomly initialized for the training of the networks.

The validation of the neural networks required a testing data set. Due to the limited number of

electrograms for the time-specific event model, cross-validation was carried out based on a single

electrogram set. A random rotor PS electrogram, non-rotor PS electrogram and two of the non-PS

electrograms were chosen to validate the network model created from all the other electrograms.

This process was repeated until all electrograms were used once to validate the network.

The EAV structure along with the frequency deviation structure from the EAV-based MP de-

composition had revealed that these were significant in identifying the rotor events. The IF of the

residual was observed to be able to identify electrograms in the vicinity of a PS, while the approx-

imated RMS of the EAV structure was used to determine if the electrogram was near a rotor or

non-rotor PS. Therefore, the input parameters for the time-specific event model are as follows:

• Approximated FD (aFD) from Equation 3.16

• Approximated RMS of the EAV Structure (EAVaRMS) from Equation 3.17

The signal features for the time-specific event-based signal decomposition classified the data

in two stages; therefore, two network models were created for each stage. The first stage was

used to label the electrogram as PS or non-PS. The number of input neurons was set as 1 because
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Figure 5.6: Standard DSS Neural Network Architecture

only the approximated FD feature (aFD) was needed for stage 1 of the time-specific model. The

number of neurons for the first hidden layer was set to 2 (twicethe number of input neurons) and

the number of neurons in the second hidden layer was set to 2 because there is 2 unique labels

(either PS or non-PS). The labels created for the output layer was 1 for PS electrograms and 2

for non-PS electrograms. Based on the cross-validation, it was possible to evaluate the average

accuracy. Table 5.1 presents the average cross-validated results from stage 1.

Table 5.1: Confusion Matrix - Stage 1 Percentage: PS Versus Non-PS Event

PS Non-PS Total
PS 71.15% 28.85% 100%

Non-PS 9.62% 90.38% 100%

This table illustrates that the network can be readily used to determine whether an electrogram

can be labeled as a PS or non-PS electrogram with an overall accuracy of80.77%. The overall

accuracy was determined by dividing the correctly classified testing samples by the total number

of testing samples and then averaging it across all the crossvalidation sets. The results for the non-

PS electrograms had a better classification accuracy (90.38%) when compared to the classification

accuracy for PS electrograms (71.15%). The stage 2 was generated in order to determine if the
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correctly identified PS electrogram from stage 1 was a rotor or non-rotor PS event. A similar

network architecture to stage 1 was used for stage 2. However, the input parameter was changed

to the approximated RMS of the EAV. Table 5.2 shows the validation results from stage 2.

Table 5.2: Confusion Matrix - Stage 2 Percentage: Rotor PS Versus Non-Rotor PS Event

Rotor PS Non-Rotor PS Total
Rotor PS 83.33% 16.67% 100%

Non-Rotor PS 26.32% 73.68% 100%

The cross-validated labeling from stage 2 also indicates the strength of the model to predict the

electrogram as rotor or non-rotor with an overall accuracy of 76.09%. The second hidden layer

distributions for stage 1 and stage 2 is illustrated in Figure 5.7. The values produced from neuron

1 of the second hidden layer is given by the x-axis while the values produced from neuron 2 of the

second hidden layer is given by the y-axis. This figure provides an illustration on how the input

parameters were mapped to the output layer in order to label the electrograms. It is observable that

there is a linearly separable boundary for both models, which was also observed from the results

presented in Chapter 3.

The computer-simulated electrogram model generated by theFRDB was also used to test the

two stages by simulating a rotor on a sample tissue. An electrogram around the vicinity of a

rotor and one away from the rotor was extracted for each of thesimulated arrhythmia episodes.

The max voltage characteristic was also recorded for both locations as well as the surrounding

regions around the electrogram. From the recorded max voltages, the standard deviation of the max

voltage for each of the electrograms were determined. The average of the standard deviation for the

electrograms in the vicinity of the rotor was 2.75mV and the average of the standard deviation for

the electrograms away from the rotor was around 0.29mV. These simulated values are comparable

to the distribution from Figure 5.5. Next, the electrogramswere decomposed using the EAV-based

MP to capture the EAV and residual components. Then, for the electrogram in the vicinity of a

rotor, the approximated FD and the EAV-approximated RMS feature around the time occurrence

of the rotor were recorded. These two features were also recorded for an arbitrary time sample for

the electrogram away from PS. The features of the electrograms were tested using both stages to
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label the electrograms.

Table 5.3: Confusion Matrix - Stage 1 Percentage: Simulated Electrogram PS Versus Non-PS
Event

PS Non-PS Total
PS 100% 0% 100%

Non-PS 0% 100% 100%

Table 5.4: Confusion Matrix - Stage 2 Percentage: Rotor-PS Versus Non-Rotor PS Event

Rotor PS Non-Rotor PS Total
Rotor PS 60.00% 40.00% 100%

From stage 1, the electrograms in the vicinity of a rotor werelabeled correctly as a PS elec-

trogram and the electrograms that were away from the rotor were labeled correctly as a non-PS

electrogram. The classification from stage 1 (Table 5.3) wastherefore100% with the approxi-

mated FD feature as the input to the model. The electrograms in the vicinity of a rotor was then

used to validate the stage 2 with the approximated RMS of the EAV structure. The label assigned

from stage 2 was the rotor event label. The electrograms fromthe simulated arrhythmia episode

were labeled with an accuracy of60% (Table 5.4), which is an indication of the strength of the

input parameters to the models.

It should be noted that the analysis of the electrograms in a two-stage model could also have

been accomplished with a single model. However, testing thedatabase with the single model made

it difficult to validate the rotor event because of the approximated RMS of the EAV structure.

While it was observed that the approximated RMS value was lowerfor rotor PS than the non-rotor

PS events, it had a large variations for the non-PS electrogram cases. This variation added more

parameters to the input space in a single combined model, andthe model was therefore segregated

into two stages. The model provided in Appendix B shows the function and the weights and bias

values that relates the input parameter with the label of theevent. The number of input parameters

was also increased by including the signal features that were discussed for the general signal de-

composition (local pattern energies, DF and arrhythmia organization). The cross-validation results

146



from a single model and a two-stage model performed poorly when compared to the approximated

FD and approximated RMS of the EAV structure alone. Finally, the two-stage model was validated

with simulated electrograms generated from the FRDB. These electrograms were correctly labeled

in stage 1, while having some difficulty in being labeled in stage 2. The simulated electrograms

also had a similar distribution with respect to the max voltage APP characteristic. The label output

created for the rotor event can then be associated with the max voltage distribution expected for

the rotor events, which can provide clinical insight by locating the important scar/healthy boundary

region. The two stage time-specific event model is useful in clinical practice, as clinicians could

infer when an electrogram is in the vicinity of a rotor event and what the expected distribution of

the max voltage should be.

5.3 Time-Averaged General Model

The time-averaged general models were developed to automate the time-averaged signal character-

istics and the LCKSVD trained dictionary elements such that it may be used to infer the APP char-

acteristics. The time-averaged general model was also broken into two stages. The first stage was

used to label the electrogram as DCM or ICM. The second stage then determined the subcategory

of either the DCM electrogram (normal/abnormal MAP, and normal/abnormal ARI) or the ICM

electrogram (normal/abnormal MAP, normal/abnormal ARI, healthy/scar, and normal/abnormal

DVDT). The cross-validation for the time-averaged generalmodels were done differently when

compared to the time-specific event models. For the time-averaged general models,95% of the

total dataset was first used to train the network. This network was then tested with the remaining

with the5% data points. This process was repeated until all the observations were used once as

testing data. This was done because of the relatively largerdata size for the time-averaged general

models when compared to the time-specific event models. The following subsections will discuss

the database followed by the cross-validated results and discussion for each time-averaged DSS.
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Figure 5.7: Distribution of the Second Hidden Layer for the Time-Specific Event Model
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5.3.1 Database

The database that was used to create the time-averaged general models was the RDB (described

in Section 4.2). A total of 11 episodes with a possible 112 electrograms per episode were used to

generate the DSS. Similar to the analysis carried out in Chapter 4, the APP characteristics for each

electrogram were also used to label the electrograms.

5.3.2 Cross-Validated Results and Discussion

The results for each of the time-averaged general models will be discussed in this section.

Time-Averaged General Model - Cardiomyopathy

The time-averaged general model for the cardiomyopathy wascreated to map the input space for

the electrograms with the cardiomyopathy type. The significant signal features and the LCKSVD

output parameters (the product of the[W ]Final,CM classifier parameter and the OMP sparse code

ρ
[W ]
Final,CM ) were selected for the purpose of labeling the electrogram as DCM or ICM. From

the significance test conducted in the general signal decomposition in Chapter 3 (refer to Table

4.2 of Chapter 4), the significant signal feature was the arrhythmia organization. The trained

final dictionary ζFinal,CM was used to produce the sparse codesρFinal,CM for all the electro-

grams, and along with the final classifier parameters[W ]Final,CM , the second (ρ[W ]
Final,CMDCM ),

and third (ρ[W ]
Final,CMICM ) input parameter can be created. Recall that the sparse code product with

the classifier parameter (ρ[W ]
Final,CM ) is used to define the sparse code product for the DCM dic-

tionary elements (ρ[W ]
Final,CMDCM ) and the sparse code product for the ICM dictionary elements

(ρ[W ]
Final,CMICM ). Therefore, the input space consisted of three parameters, as follows:

• Arrhythmia organization

• Sparse code product for DCM

• Sparse code product for ICM

With the input parameters set, the neural network architecture was established (architecutre

illustrated in Figure 5.6). The general model consists of 4 layers, 1 input layer, 1 output layer
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and 2 hidden layers. The input layer had 3 neurons, the first hidden layer had 6 neurons, the

second hidden layer had 2 neurons and the output layer had 1 neuron. The labeling provided for

the output layer was 1 for DCM electrograms and 2 for ICM electrograms. The total number of

available electrograms from the 11 episodes was separated into training observations (95%) and

testing observations (5%). The model was tested and then this process was repeated until the entire

data set was used as a testing data set. The average of the cross-validated results is provided in

Table 5.5.

Table 5.5: Confusion Matrix - Time-Averaged General Model-Cardiomyopathy Percentage

DCM ICM Total
DCM 82.07% 18.06% 100%

ICM 18.93% 89.12% 100%

As evident from Table 5.5, the input parameters have a strongrelation with the type of car-

diomyopathy. The classification accuracy is also fairly balanced between the two groups, indi-

cating the strength of the input parameters. The overall accuracy was determined by dividing

the correctly classified testing samples by the total numberof testing samples and then averag-

ing it across all the cross validation sets. The average overall cross-validation accuracy achieved

was85.90% with a standard deviation of5.43% for the cross-validation sets. The sensitivity was

82.07% and the specificity was89.12%. The second hidden layer space could also be visualized

from the network parameters. Since the neural network consists of 4 layers, the first 3 layers were

used to map the input space to the function space, for which a label is given in the output layer.

The output at the last hidden layer reveals how the input parameters were mapped to the label.

Figure 5.8a illustrates the network space for one of the cross-validated data sets. In this figure, the

x-axis shows the values produced from neuron 1 of the second hidden layer while the y-axis shows

the values produced from neuron 2 of the second hidden layer.The network space for the second

hidden layer appears to be linearly distributed for the DCM and ICM electrograms. This distribu-

tion does not necessarily mean that the input space is linearly related to this network space. The

distribution of the DCM electrograms appear to be grouped towards the right half of this network

space when compared to the ICM electrograms. The weight and bias parameters for the general
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cardiomyopathy model can be found in Appendix B. This distribution does indicate, however, that

the model can use the arrhythmia organization and LCKSVD parameters to appropriately label the

type of cardiomyopathy based on the electrogram.

The results indicate that the model provides a strong DSS to assist clinicians in determining

the type of cardiomyopathy. Considering the results achieved by the LCKSVD trained dictionary

(81.80% from Table 4.6 of Chapter 4) and the arrhythmia organization signal feature (64.82%

from Table 4.2 of Chapter 4), the benefit of the model (based on the neural network) is evident.

The combination of the input parameters and the non-linear relationship created a strong associ-

ation between the input and output space; adding the other non-significant signal features to the

input parameters only changed the overall results slightly, with a maximum increase of2%. The

model generated to label the electrogram as DCM or ICM allows the prediction of the type of car-

diomyopathy based on only the electrograms of the arrhythmic episode. As previously discussed

in Chapter 4, the difference between DCM and ICM hearts is important, given that the therapy op-

tions vary for the two cardiomyopathies [46–48]. The time-averaged general model developed for

the cardiomyopathy was also used for the subsequent models,where only the correctly identified

electrograms were used for the validation of the subsequenttime-averaged general models.

Time-Averaged General Model - DCM MAP

The next time-averaged general model was developed to labelthe DCM electrograms as normal or

abnormal MAP. This required that the electrogram was already labeled as DCM from the general

model for the cardiomyopathy. The signal feature that was identified from the general decomposi-

tion in Chapter 4 (refer to Table 4.3) was the standard deviation of the residual IF. This parameter,

along with the LCKSVD parameters (the product of the sparse codeρFinal,DCMM and the classi-

fier parameters[W ]Final,DCMM ) for each category serves as the input of the model and is provided

below.

• Residual IF STD

• Sparse code product for DCM MAP N
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• Sparse code product for DCM MAP A

The input parameters were used to train and cross-validate the 4 layer network. There were 3

neurons in the input layer, 6 neurons in the first hidden layer, 2 neurons in the second hidden layer

and 1 neuron in the output layer. The labeling provided for the output layer was 1 for normal DCM

MAP electrograms and 2 for abnormal DCM MAP electrograms. There were 5 DCM episodes for

this analysis. The cross-validation sets had used5% of the electrograms to test the trained model.

Table 5.6 presents the average cross-validated results forthe general model for the DCM MAP

cases.

Table 5.6: Confusion Matrix - Time-Averaged General Model-DCM MAP Percentage

DCM MAP N DCM MAP A Total
DCM MAP N 87.68% 12.32% 100%

DCM MAP A 47.95% 52.05% 100%

The distribution of the results from Table 5.6 indicates that the input space has a strong re-

lationship with the normal DCM MAP electrograms, but a relatively weak relationship with the

normal DCM MAP electrograms. The overall accuracy was determined by dividing the correctly

classified testing samples by the total number of testing samples and then averaging it across all

the cross validation sets. An overall accuracy of79.98% was achieved in the cross-validation, with

a sensitivity and specificity of87.68% and52.05%, respectively. The standard deviation for the

set of cross validation was7.38%. The distribution for the second hidden layer space, provided in

Figure 5.8b, is shown for one of the cross-validated data sets. The x-axis and y-axis represent the

neuron values for the second hidden layer. The distributionfor this space appears to be linear. The

distribution of the normal and abnormal DCM MAP electrogramsis poor, which is reflected in the

low cross-validation accuracy for the DCM Normal MAP electrograms. The network parameters

(weight and bias) for the general DCM M model is presented in Appendix B.

The results presented for the general DCM MAP model implies that the signal feature and

the LCKSVD parameters were better suited to identifying normal DCM MAP electrograms. This

result could be a result of the discrepancy in the number of electrograms available for normal and
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abnormal DCM MAP. Of the 560 electrograms from the DCM hearts, only 121 electrograms were

from abnormal DCM MAP. This meant that there were almost twiceas many electrograms for the

normal DCM MAP electrograms, placing more emphasis for both the LCKSVD and the neural

network model for this category. The general model for the DCMMAP electrograms were also

varied to include additional signal features, but did not improve the balance of the classification

accuracies or the overall classification accuracy. This analysis indicates that the time-averaged

DCM MAP model could be used to infer the label, particularly normal MAP in DCM hearts.

Time-Averaged General Model - DCM ARI

The dictionary learning was also applied on the normal and abnormal ARI for DCM electrograms

because of the significance with the standard deviation of the residual IF signal feature (Table

4.3). Using the DCM electrograms that were correctly labeledby the time-averaged model for

the cardiomyopathy, the model was generated for the DCM ARI. The DCM ARI model used the

residual IF STD and the LCKSVD parameters (the product of the sparse codeρFinal,DCMA and the

classifier parameters[W ]Final,DCMA) for each category as the model inputs.

• Residual IF STD

• Sparse code product for DCM ARI N

• Sparse code product for DCM ARI A

The neural network was a 4 layer network, with 3 neurons in theinput layer, 6 neurons in the

first hidden layer, 2 neurons in the second hidden layer and 1 neuron in the output layer. A label

of 1 was assigned for the normal DCM ARI electrograms and a labelof 2 was assigned for the

abnormal DCM ARI electrograms. There were a total of 5 DCM episodes used to train the model.

The average results of the cross-validation is given in Table 5.7.

The overall accuracy produced as a result of averaging the cross-validation result was78.19%

(standard deviation of8.02%). The sensitivity for this result was86.43%, while the specificity

was52.00%. The overall accuracy for each cross-validation set was calculated by dividing the

correctly labeled testing samples by the total number of testing samples. The results are indicative
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Table 5.7: Confusion Matrix - Time-Averaged General Model-DCM ARI Percentage

DCM ARI N DCM ARI A Total
DCM ARI N 86.43% 13.57% 100%

DCM ARI A 48.00% 52.00% 100%

that the normal DCM ARI can be inferred more accurately by the model. Figure 5.8c illustrates

the distribution of the second hidden layer space for one of the cross-validated sets. The x-axis and

y-axis represent the neuron values for the second hidden layer. The distribution appears to have a

linear representation. The network parameters (weight andbias) for the general DCM A model is

presented in Appendix B.

These results imply that it maybe possible to infer the DCM ARI characteristics from the

LCKSVD parameters. Similar to the DCM MAP cases, the discrepancy of the number of normal

and abnormal DCM ARI electrograms may have played a factor in training the models. This can

be observed in the classification accuracy difference between the normal and abnormal DCM ARI

categories, with the normal DCM ARI category performing well.The general model for DCM

ARI revealed that the trained elements can be provided to a model to automate and assist clinicians

in inferring the normal ARI regions in DCM hearts.

Time-Averaged General Model - ICM MAP

Similar to the DCM MAP electrograms, a time-averaged generalmodel was generated for the

ICM MAP electrograms that would label the correctly assignedICM electrograms from the time-

averaged general cardiomyopathy model as normal or abnormal MAP. The input parameters con-

sisted of multiple signal features as well as the LCKSVD output parameters. The signal features

that were observed to be significant (Table 4.4) were the energy captured by local pattern 1 and

the arrhythmia organization. These signal features along with the LCKSVD output parameters

ρ
[W ]
Final,ICMMAP , formed the input space that consisted of 4 parameters, and are given below.

• Local pattern 1

• Arrhythmia Organization
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• Sparse code product for ICM MAP N

• Sparse code product for ICM MAP A

The input layer consisted of 4 neurons for each of the input parameters, the first hidden layer

had 8 neurons, the second hidden layer had 2 neurons and the output layer had 1 neuron. The

labeling provided for the output layer was 1 for normal ICM MAPelectrograms and 2 for abnormal

ICM MAP electrograms. A total of 6 arrhythmic episodes existed for this model. The average

cross-validated accuracies (given in Table 5.8) were obtained by averaging the results from each

of the cross-validation sets.

Table 5.8: Confusion Matrix - Time-Averaged General Model-ICM MAP Percentage

ICM MAP N ICM MAP A Total
ICM MAP N 90.02% 9.98% 100%

ICM MAP A 47.47% 52.53% 100%

The overall accuracy was determined by dividing the correctly classified testing samples by the

total number of testing samples and then averaging it acrossall the cross validation sets. The results

from Table 5.8 had an overall classification accuracy of75.06% (sensitivity of90.02%, specificity

of 52.53%, and standard deviation of7.92%), which shows a strong ability to infer the normal ICM

MAP. The accuracy for the normal ICM MAP was stronger when compared to the abnormal ICM

MAP, and the distribution of the second hidden layer for one of the cross-validated sets is given in

Figure 5.8d also illustrates this. The axis represent the values for the two neurons in the second

hidden layer. This distribution appears to be linearly separable based on the second hidden layer.

Furthermore, the distribution indicates that more of the abnormal ICM MAP is distributed along

the upper right quadrant of this space while the abnormal ICM MAP is distributed along the lower

half quadrant. The weight and bias network parameters for this model are provided in Appendix

B.

The electrogram signal structures appear to be better suited for identifying the normal ICM

MAP electrograms. This observation was also similar to the DCM MAP case. The normal MAP

for the ICM hearts appear to have a more discriminative electrogram signal structure than that of
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the DCM hearts, as evident from the discrepancies in the normal MAP accuracies between ICM

(Table 5.8) and DCM (Table 5.6). Though the results indicate that the signal structures are better

suited for labeling the normal MAP electrograms, the ICM hearts also had an imbalance in the

number of electrograms for each category, with normal ICM MAPhaving almost twice as many

electrograms than the abnormal ICM MAP. The addition of the 4 remaining signal features did not

significantly improve the model (increase of2%). The overall accuracy does suggest that the model

could be important for identifying regions of the heart withnormal and abnormal MAP values in

ICM cases (with better accuracy for normal MAP), which could help clinicians to better optimize

existing therapy option [15,16].

Time-Averaged General Model - ICM ARI

The ICM ARI was another characteristic for which LCKSVD dictionaries were created to reveal

its hidden structures that may be used to represent the normal and abnormal ARI. From the analysis

of the signal features (Table 4.4), the energy captured local pattern 1, and arrhythmia organization

were observed as significant for ICM ARI. The LCKSVD parameters (ρ
[W ]
Final,ICMARI) and the

signal features were used for the input space and is providedbelow.

• Local pattern 1

• Arrhythmia organization

• Sparse code product for ICM ARI N

• Sparse code product for ICM ARI A

A 4 layer neural network was generated for this model. The input layer had 4 neurons, the first

hidden layer had 8 neurons, the second hidden layer had 2 neurons, and the output layer had 1

neuron. The normal ICM ARI was given a label of 1 and the abnormalICM ARI was given a label

of 2. The 6 ICM episodes were used to train the model. Table 5.9 presents the average results for

the cross-validated accuracies.

The overall accuracy for each cross-validation set was determined based on dividing the cor-

rectly labeled testing electrograms by the total number of testing electrograms. An average overall
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Table 5.9: Confusion Matrix - Time-Averaged General Model-ICM ARI Percentage

ICM ARI N ICM ARI A Total
ICM ARI N 74.77% 26.23% 100%

ICM ARI A 46.98% 53.02% 100%

classification accuracy of66.99% (with sensitivity and specificity of74.77% and53.02%, respec-

tively) was achieved using the ICM ARI model. The standard deviation across the cross-validation

sets was8.29%. The model had a relatively better accuracy for the normal ICMARI (similar to

ICM MAP). The second hidden layer distribution can be observed in Figure 5.8e. The axis for this

figure represents the two neurons in this layer. The distribution of the normal and abnormal appear

to be clustered but linearly separable. The weight and bias network parameters for this model are

provided in Appendix B.

The model used for ICM ARI shows a stronger ability to infer the normal ARI. This could

be a result of the structures identified by the trained dictionary, where the structure was better

captured for the normal ICM ARI. Similar to the ICM MAP, DCM MAP, and DCM ARI cases,

the discrepancy between the number of electrograms for the normal and abnormal ARI could

have influenced the accuracies that were presented. This model serves as an automated tool that

clinicians may use to better infer the ICM ARI characteristics, and in particular the normal ARI

region within ICM hearts.

Time-Averaged General Model - ICM Vol

The time-averaged general model that was developed was for the ICM max voltage was done on the

electrograms that were correctly labeled as ICM from the time-averaged general cardiomyopathy

model were used in the validation set. The energy captured bylocal pattern 1 and local pattern 3

(refer to Table 4.4 of Chapter 3) were observed to be the significant signal features. The LCKSVD

output parametersρ[W ]
Final,ICMV ol served as additional input parameters for the model. The input

space consisted of the following input parameters:

• Local pattern 1
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• Local pattern 3

• Sparse code product for ICM healthy

• Sparse code product for ICM scar

The neural network had 4 total layers. The first input layer had 4 neurons, the first hidden layer

had 8 neurons, the second hidden layer had 2 neurons and the final output layer had 1 neuron. Sim-

ilar to the general model for the ICM MAP, a total of 539 electrograms from 6 arrhythmic episodes

were used, with approximately 512 (95%) electrograms used to train the model and approximately

27 (5%) electrograms used per cross-validation set. The average accuracies produced from the

cross-validated accuracies are given in Table 5.10.

Table 5.10:Confusion Matrix - Time-Averaged General Model-ICM Vol Percentage

ICM Healthy ICM Scar Total
ICM Healthy 70.03% 29.97% 100%

ICM Scar 20.88% 79.12% 100%

The average overall accuracy for this table was74.41% and a standard deviation of8.65%. The

sensitivity and specificity were70.03% and79.12%, respectively. The overall accuracy was deter-

mined by dividing the correctly classified testing samples by the total number of testing samples

and then averaging it across all the cross validation sets. These results demonstrate a good rela-

tionship between the input and output space, with the relationship being stronger for the healthy

regions of the ICM hearts than the scar regions. Figure 5.8f illustrates the distribution in the second

hidden layer space for one of the cross-validated sets. The neuron values for the second hidden

layer is represented by the X and Y axes. The distribution of this hidden layer appears linear, with

the healthy ICM electrograms being tightly clustered with the scar ICM electrograms. The distri-

bution of the healthy ICM electrograms is more towards the lower right of the network space when

compared to the scar ICM electrograms. The weight and bias parameters for the general ICM V

model can be found in Appendix B.

The signal structures that were targeted for the healthy andscar regions of ICM hearts were

more discriminant for electrograms origination from the healthy regions of the ICM hearts. The
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addition of the remaining signal features to the input spaceof the model did not change the overall

accuracy. The number of training electrograms were more balanced for this model when compared

to the ICM MAP and ICM ARI cases. The healthy/scar boundary region was established as a

potential cause for future arrhythmic episodes in ICM hearts[47]. A model that can infer the

health of the tissue using only the electrogram can provide clinicians with more insight of the

signal structure of the heart, which can then be used to devise a more suitable strategies in treating

patients with ICM.

Time-Averaged General Model - ICM DVDT

The last of the time-averaged general model was for the ICM DVDT. The correctly labeled ICM

electrograms was used to validate the model generated for the ICM DVDT. There were several

signal features (Table 4.4) that were significant for the ICM DVDT. These signal features included

the energies captured by local pattern 2, and local pattern 3. The combination of these features

and the LCKSVD parameters (ρ[W ]
Final,ICMDVDT ) were used for the input space of the model. The

variables provided to the input space is also listed below.

• Local pattern 2

• Local pattern 3

• Sparse code product for normal ICM DVDT

• Sparse code product for abnormal ICM DVDT

The number of neurons for the 4 layers of the neural network were 4 for the input layer, 8 for

the first hidden layer, 2 for the second hidden layer, and 1 forthe output layer. A total of 6 ICM

episodes were used to train the model. The average accuracies for the cross-validation sets are

listed in Table 5.11.

The average overall accuracy (determined by dividing the correctly classified testing samples

by the total number of testing samples and then averaging it)was85.78% (with a standard deviation

of 5.63%). A sensitivity and specificity of51.87% and93.01%, respectively, were achieved. The
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Table 5.11:Confusion Matrix - Time-Averaged General Model-ICM DVDT Percentage

ICM DVDT N ICM DVDT A Total
ICM DVDT N 51.87% 48.13% 100%

ICM DVDT A 6.99% 93.01% 100%

accuracy indicates that the combination of features and LCKSVD parameters was better suited to

infer the abnormal ICM DVDT electrograms. The distribution in the second hidden layer space for

an example cross-validation set also illustrates this (Figure 5.8g), where the normal ICM DVDT

is clustered around the abnormal ICM DVDT. The X and Y axis represent the values for the two

neurons in the second hidden layer. The weight and bias parameters for the general ICM DVDT

model can be found in Appendix B.

This result illustrates that the structures for the abnormal ICM DVDT may have been more

discriminatory when compared to the structures for the normal ICM DVDT. There also existed a

discrepancy between the number of electrograms that were used for the normal and abnormal ICM

DVDT. There were almost 6 times as many abnormal electrograms, which could possibly explain

the accuracies observed. The DVDT was a measure on the ability of the tissue to contract [17], and

thus being able to infer abnormal ICM DVDT can allow clinicians to identify regions that have an

abnormal contraction.

5.4 Chapter 5 Summary

In this chapter, a DSS was introduced to create a decision function that will assist clinicians in using

the identified signal structures (previously described from Chapter 3 and 4) that were associated

with specific event and/or APP characteristic labels and automating the process by which to infer

these events/APP characteristic labels. Time-specific event models were developed for the rotor

event that associated the EAV and residual IF structures with the variations observed in the max

voltage around the vicinity of a rotor. The time-specific event model was broken into two stages:

the approximated FD feature was used in stage 1 to label the electrograms as PS or non-PS and

the approximated EAV RMS was used in stage 2 to label the electrograms as rotor and non-rotor
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(c) General DCM A Model Distribution
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(e)General ICM A Model Distribution
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Figure 5.8: Distribution of the Second Hidden Layer for the Time-Averaged General Model
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PS. Seven time-averaged general models were developed to relate the general arrhythmia LCKSVD

parameters and time-averaged characteristics with the APPcharacteristics of the heart. The general

model was broken into two stages: stage 1 consisted of labeling the electrogram as belonging to a

DCM or ICM heart, and stage 2 used the labeled electrogram to identify further APP characteristics

for each type of cardiomyopathy. These models crated a DSS toautomate and assist clinicians in

inferring the VA event/APP characteristic, which could be valuable in a clinical setup.
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Chapter 6

Conclusions and Future Works

V
ENTRICULAR arrhythmias is one of the leading causes of death. There are approximately

300,000 to 400,000 sudden cardiac deaths on an annual basis in the United States alone [4].

These arrhythmias, and in particular VF, has traditionallybeen regarded as chaotic in nature, but

recent evidence suggests the existence of mechanisms and events that might initiate and sustain

the arrhythmias [30–33]. The methodologies outlined in this dissertation focused on identifying

underlying signal structures in the VA episode, such that the events and characteristics of the heart

could be inferred and clinical therapy could be better strategized. The adaptive signal decompo-

sition of the arrhythmia electrogram aimed at identifying signal structures that were related to a

time-specific event (rotor) as well as signal structures that can describe time-averaged VA charac-

teristics of the heart. These signal structures were used asinputs into a DSS that could infer the

VA event and APP characteristics in order to assist clinicians. The proposed approaches were well

suited in achieving the objective set out for this dissertation.

6.1 Summary of Results and Impact

The contributions for the dissertation are two-fold. The first contribution was the use of adaptive

signal decomposition to identify signal structures uniqueto the arrhythmic episode. This contribu-

tion can be further separated into the time-specific events and the time-averaged VA characteristics.

For the time-specific events, a modified criterion function was used to extract the EAV structure that

was observed in electrograms in the vicinity of a rotor. In the process of segregating the EAV struc-
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ture (through the approximated component) from the electrogram, it was observed that the residual

component also consisted of a deviation in its frequency component around the occurrence of a PS.

The combination of these signal structures were used to classify the 104 electrograms originating

from 13 arrhythmia episodes. The electrograms were classified as rotor PS events, non-rotor PS

events and non-PS electrograms. A two-stage LDA classifier was used to classify the data set using

the LOO method. The first stage of the classification had an overall accuracy of80.77% for classi-

fying the PS electrograms from the non-PS electrograms using the residual IF feature. The second

stage of the classification had an overall accuracy of79.41% for classifying the rotor PS from the

non-rotor PS electrograms using the approximated RMS of the EAV structure. These results are

significant in that they demonstrate an electrogram structural relationship with a phenomenon that

is believed to be a manifestation of mechanisms that initiate and sustain VA.

The time-averaged VA characteristics identified some common signal features that are of sig-

nificance to the APP characteristics of the heart. Given thatsome APP characteristics showed a

relationship with these signal features, the LCKSVD dictionary learning algorithm was used to

train dictionaries that would specifically capture signal structures of interest from the electrograms

to represent the APP characteristics. For this analysis, a maximum of 11 arrhythmia episodes were

used to train the dictionary for specific electrogram signalstructures driven by the APP charac-

teristics. The scale-frequency maps were used to identify the space represented by the possible

discriminant signal structures. The LCKSVD was used to determine signal structures that targeted

the type of cardiomyopathy, normal versus abnormal approximate of the MAP in DCM hearts,

normal versus abnormal ARI in DCM hearts, normal versus abnormal approximate of the MAP

in ICM hearts, normal versus abnormal ARI in ICM hearts, healthyversus scar regions in ICM

hearts and normal versus abnormal DVDT in ICM hearts. The trained dictionary cross-validated

results were81.80%, 71.43%, 75.18%, 70.49%, 67.51%, 70.19%, and73.77%, respectively. The

outcome of the dictionary learning indicate that there exists signal structures within the arrhythmic

electrogram that could be used to infer the APP characteristics of the heart, which will provide

clinicians with valuable insight and feedback on the VA.

Another important contribution of this dissertation is thedevelopment of a DSS that can be
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used to automate the analysis of the electrograms and assistclinicians in diagnosing VA. The DSS

consisted of a combination of time-specific events models and time-averaged general models. The

time-specific event-based model used the approximated RMS ofthe EAV structure as well as the

approximate FD of the residual IF to label the electrograms.This was separated into two stages:

The first stage labeled the electrogram as PS or non-PS using the residual IF and a neural net-

work and the second stage labeled the PS electrograms as rotor PS or non-rotor PS events. The

cross-validated accuracy for stage 1 was80.77% and the cross-validated accuracy for stage 2 was

76.09%. Additionally, 5 computer-simulated rotor models were also generated and tested on the

time-specific event-based model. An electrogram in the vicinity of a rotor and one electrogram

away from the rotor were extracted from each simulation. TheEAV and residual structures were

obtained using the EAV MP decomposition to highlight the approximated RMS of the EAV and

the approximated FD features for the simulated electrograms. The simulated electrograms were la-

beled correctly (100%) by the Stage 1 time-specific event model. The rotor simulated electrograms

had an average accuracy of60% in the Stage 2 time-specific event model. The APP characteristics

of the rotor simulation also resembled what was observed forthe rotor event in the retrospective

database. The two-stage time-specific event model successfully crated a DSS that used the elec-

trogram signal structure to label the rotor event.

The objective of the time-averaged general model was to provide the clinician with a DSS to

infer the APP characteristics based on the signal features and discriminatory dictionary elements.

The specific APP characteristic were the type of cardiomyopathy, normal versus abnormal approx-

imate of the MAP in DCM hearts, normal versus abnormal ARI in DCM hearts, normal versus

abnormal approximate of the MAP in ICM hearts, normal versus abnormal ARI in ICM hearts,

healthy versus scar regions in ICM hearts and normal versus abnormal DVDT in ICM hearts. The

time-averaged general model was also separated into two stages. The first stage used the arrhyth-

mia organization signal feature with the LSCKSVD output parameter for the cardiomyopathy to

label the electrograms as either DCM or ICM. The cross validated accuracy for stage 1 was85.90%.

The second stage of the time-averaged general DSS then further sub-classified the DCM and ICM

electrograms. In the time-averaged general models for DCM MAP, the cross validated accuracies
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for the normal versus abnormal approximate of the MAP in DCM hearts and the normal versus

abnormal ARI in DCM hearts were79.98%, and78.19%, respectively. The time-averaged general

model for ICM consisted of a stage 2 model for ICM MAP, ICM ARI, ICM max voltage, and ICM

DVDT. The cross validated accuracies were75.06%, 66.99%, 74.41%, and85.78%, respectively.

The strength of the stage 1 and stage 2 accuracies in the time-averaged general model indicate that

it is possible for the DSS to use the underlying electrogram signal structures to infer the label of

the APP characteristics.

6.1.1 Potential Applications

The following are few of the potential applications that canstem from this dissertation.

Retrospective Time-Specific Event Analysis of the Arrhythmia Episode

The electrogram signal structure presented for the rotor event detection provides a unique approach

to track the rotor event with the electrogram. This is uniquebecause identifying the electrogram

signal structure does not require multiple electrogram recordings. Therefore, one of the applica-

tions can be the retrospective analysis of electrograms forpatients who suffer from a VA episode.

The electrogram may be recorded when the patient is recovering in the ICU or can be obtained by

the ICD. The ICD is placed inside a patient who suffer from reoccurring arrhythmia episodes. The

electrograms that are recorded by the ICD during a VA episode can be analyzed by the clinician to

determine if the rotor event was present at any of the electrode locations. The electrode locations

could also be better strategized for the ICD to record suspected regions that may have a rotor event

(e.g. suspected healthy/scar boundary locations). These recorded sited can then be used for future

ablation strategies.

Retrospective Time-Averaged Characteristic Analysis of the Arrhythmia Episode

The identified time-averaged characteristics as well as theLCKSVD trained dictionaries had re-

vealed that it is possible to infer the APP characteristics from the electrogram. By being able to

infer the APP characteristics without post-morterm analysis, clinicians can determine or adjust ex-

isting therapy options that have already been established for specific sets of APP characteristics.
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Furthermore, the effectiveness of a therapy option could be analyzed by monitoring the progres-

sion of the APP characteristic from abnormal to normal. The ability to infer the APP characteristic

from the electrogram can also allow for better regional therapeutic solutions to specifically target

abnormal characteristics.

Modeling Synthetic Electrograms Based on APP Characteristics

Another potential future application would be generating synthetic (computer simulated) models

that relate the APP characteristic with the electrogram signal structure. The idea is to provide the

clinician with the ability to input a set of APP characteristics that affects the tissue sample, and

a combination of electrogram signal structures will be produced to form the electrical activations

of the tissue. This can be thought of a reverse model that produces the likely electrogram signal

structures based on known APP characteristics. The model can help clinicians to further study the

ventricular arrhythmia and help inspire newer treatment options. Another benefit of such a model

would be in training future generation of cardiologists.

6.2 Direction for Future Works

The adaptive signal decomposition methods used to extract signal structures focused on a sig-

nificant event (i.e. rotor). However, there are other events known to occur during an arrhythmia

episode, such as a conduction block creating a double potential in the electrogram. With a database

that includes more representative VA events, other events could potentially be targeted for adap-

tive decomposition to better characterize the signal structure. Furthermore, it may also be possible

to further analyze the approximated and residual components of the EAV MP decomposition to

determine if the may be used to represent other events. Other APP characteristics could also be in-

corporated to determine if an electrogram structural relationship with the APP characteristic exists.

Another potential future work that could stem from this dissertation is extrapolating the identified

signal structures in the electrogram to the surface electrocardiogram. The existence of a model

(known as the forward problem in cardiac electrophysiology [126]) relates the electrogram activa-

tion on the surface of the heart to the non-invasive electrical activations of the electrocardiogram.
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Therefore, projecting the electrogram signal structures tothe electrocardiograms will be another

possible direction that will be of benefit to the clinical community.

The adaptive signal decomposition and LCKSVD dictionary learning had revealed that a rela-

tionship between the electrogram signal structure and the events/APP characteristics exists, which

was the objective set out for this dissertation. The DSS was developed to automate the ability to

infer the events/APP characteristics so that it could be used to assist clinicians in diagnosing VA. It

is our hope that the identification of electrogram signal structures can provide further insight into

understanding ventricular arrhythmias, which may in turn help identify more electrogram signal

structures that can then be used to expand the the DSS. The ideal end goal of this work is to be able

to fully characterize the events and APP characteristics of the heart with signal structures from the

electrogram in the hope of easily diagnosing VA and limiting the number of sudden cardiac deaths,

for which this dissertation has created the foundation.
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Appendix A

Appendix A: EAV MP Decomposition Proof

T
HE EAV based MP decomposition discussed in Section 3.5.2 hadpresented the decompo-

sition that extracted the amplitude variations, with the residual being a sinusoid with no

varying amplitude components. The proof of this will be given in this chapter of the appendix.

Consider the general sinusoidal modulated signal (providedagain in Equation A.1).

fM(n) = ACsin(ΦC(n)) + (AEsin(ΦE(n)))(sin(ΦC(n))) (A.1)

The termAE refers to the envelope amplitude in an amplitude modulated signal and the term

AC refers to the carrier amplitude. For the general modulated signal in Equation 3.5, theΦC and

ΦE are the carrier and envelope phases respectively, which is afunction of time. Before proceeding

into the proof, Equation A.1 can be expanded using the trigonometric identity given in Equation

A.2 [97].

2sin(Φ1)sin(Φ2) = cos(Φ1 − Φ2)− cos(Φ1 + Φ2) (A.2)

Therefore, Equation A.1 can be rewritten as Equation A.3.

fM(n) = ACsin(ΦC(n)) +
AE

2
cos(ΦC(n)− ΦE(n))−

AE

2
cos(ΦC(n) + ΦE(n)) (A.3)

The next step is to determine the magnitude (My(n)) of the analytic signal (yfM (n)). Recall

the Hilbert transform can be used to determine the complex component for any real signal. The
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Hilbert transform for a sinusoid is a90 deg shift in phase [127]. Therefore the complex component

for Equation A.3 can be given by Equation A.4.

H(fM(n)) = −ACcos(ΦC(n)) +
AE

2
sin(ΦC(n)− ΦE(n))−

AE

2
sin(ΦC(n) + ΦE(n)) (A.4)

Combining the Equations A.3 and A.4 creates the analytic signal (yfM (n)) given by Equation

A.5.

yfM (n) = fM(n) + iH(f(n))

= ACsin(ΦC(n))− iACcos(ΦC(n))

+
AE

2
cos(ΦC(n)− ΦE(n)) + i

AE

2
sin(ΦC(n)− ΦE(n))

− AE

2
cos(ΦC(n) + ΦE(n))− i

AE

2
sin(ΦC(n) + ΦE(n))

(A.5)

Equation A.5 was rearranged to keep the real and complex terms together in each line of the

equation. Next, using the trigonometric identities in Equation A.2 and A.6, it is possible to simplify

the second and third lines of Equation A.5 to give Equation A.7.

2cos(Φ1)sin(Φ2) = sin(Φ1 + Φ2)− sin(Φ1 − Φ2) (A.6)

yfM (n) = ACsin(ΦC(n))− iACcos(ΦC(n))

+ AEsin(ΦC(n))sin(ΦE(n))− iAEcos(ΦC(n))sin(ΦE(n))
(A.7)

The next step is to factor out the common components from the first and second line in Equation

A.7. This will produce the formulation given by Equation A.8.

yfM (n) = [AC + AEsin(ΦE(n))]×[sin(ΦC(n))− icos(ΦC(n))] (A.8)

From this equation it is possible to note that there are two components (each denoted by its own

set of square brackets). It is easy to show that the first square bracket is the envelope amplitude vari-

ation by converting the second component complex number to polar form. Consider the following

equation (Equation A.9) to convert the sine and cosine complex number into an exponential.
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sin(Φ)− icos(Φ) =
eiΦ − e−iΦ

2i
− i

eiΦ + e−iΦ

2

= −ie
iΦ

2
+ i

e−iΦ

2
− i

eiΦ

2
− i

e−iΦ

2

= −ieiΦ

(A.9)

Therefore, we can rewrite Equation A.8 into a polar form given by Equation A.10.

yfM (n) = [AC + AEsin(ΦE(n))]×[−ieΦC(n)] (A.10)

The first component in the polar form of a signal is the magnitude of the analytical signal, while

the second component refers to the phase of the analytical signal. The EAV decomposition uses a

criterion function that selects an atom at a given iterationthat will minimize the magnitude of the

analytical signal. Therefore, as the iterationǫ approaches infinity, the residual produced as a result

of the EAV based MP decomposition will have the form given by Equation A.11.

RinffM(n) = [sin(ΦC(n))− icos(ΦC(n))]

= [−ieΦC(n)]
(A.11)

This proof shows that a synthetically generated amplitude modulated sinusoid could be seg-

regated into the amplitude and frequency modulation component. Though this process is straight

forward when considering the amplitude modulated sinusoid, this can be extended to electrograms

during VF. For the cases of electrograms during VF, as the iterationǫ approaches infinity using the

EAV MP, the residual’s frequency could be time-varying withthe envelope variation approaching

zero.
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Appendix B

Appendix B: Weights and Bias for the
Decision-Support System

T
HE DSS comprised of multiple four layer neural networks. The number of neurons for the

input and first hidden layer were varied for each DSS. The second hidden layer and the

output layer had 2 and 1 neurons respectively. Based on this network architecture, the general

model can be written by Equation B.1. The first hidden layer modeling function was the sigmoid

function (given by Equation B.2) [128].

z =
2

∑

i3=1

(MFi3((
h

∑

i2=1

Ωi3i2MFi2((
d

∑

i1=1

Ωi2i1xi1) + Ωi10)) + Ωi20) + Ωi30) (B.1)

MFi2 =
1

1 + e−x
(B.2)

Given these models, the final bias and weights from the cross validated cases was determined.

Since there was be a single set of weights for each of the neural network models, the weights and

bias values were averaged and presented for each of the model.

B.1 Weights and Bias for Time-Specific Event Model

The time-specific model presented in Chapter 5 was broken into two stages. The first stage had

modeled the residual IF feature in order to label the electrogram as PS or non-PS electrogram.
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The second stage of the model was used to label the PS electrogramsas rotor or non-rotor using

the approximated RMS on the EAV structure. These models with their corresponding weights are

presented in this section.

B.1.1 Stage 1: PS vs. Non-PS Model

The DSS used for this stage was a neural network with 1 neuron in the input layer, 2 neurons in

the first hidden layer, 2 neurons in the second hidden layer and 1 output neuron. The number of

weights between the input and first hidden layer was 2, with 2 bias values for each of the hidden

layer neurons. The average weight and bias between the input and first hidden layer is presented

in Table B.1. The rows represent the neurons for the first hidden layer (referred to as HL1) while

the columns represent the neuron for the input layer as well as the bias values.

Table B.1: Stage 1 Average Weight and Bias Between Input and First Hidden Layer

Weight Bias
Residual IF Feature

HL1 Neuron 1 -60.96 1.91
HL1 Neuron 2 -22.28 0.06

The average weight and bias between the first (HL1) and second (HL2)hidden layers is given

in Table B.2. The rows represents the neurons for the second hidden layer and the columns are the

average weights for the first hidden layer and bias for the second hidden layer. There were a total

of 4 (2×2) weights and 2 bias values.

Table B.2: Stage 1 Average Weight and Bias Between First and Second Hidden Layer

Weight Bias
HL1 Neuron 1 HL1 Neuron 2

HL2 Neuron 1 -0.24 -0.37 0.15
HL2 Neuron 2 -0.02 0.63 -0.34

Lastly, the average weight and bias between the second hidden layer(HL2) and the output

layer is provided by Table B.3. The row represents the output layer neuron and the columns are the
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average weight for the second hidden layer neurons and the biasfor the output layer. There were a

total of 2 weights and 1 bias value.

Table B.3: Stage 1 Average Weight and Bias Between Second Hidden and Output Hidden Layer

Weight Bias
HL2 Neuron 1 HL2 Neuron 2

Output Neuron -0.81 -0.40 0.56

Considering that the input was only a single feature, the weightsand bias simply highlight the

non-linear relationship between the feature and the label. The large weight factors prior to the first

hidden layer may be indicative that there is a degree of non-linearity in the feature space for PS

versus non-PS electrograms, which the large weight values amplify prior to entering the sigmoid

function in the first hidden layer. This could also be visually observed from the boxplot in Figure

3.19. The feature distribution is more widely spread for the PS electrogram cases when compared

to the non-PS electrograms.

B.1.2 Stage 2: Rotor vs. Non-Rotor Model

The second stage consisted of labeling the PS electrograms as rotor or non-rotor. The model was

a neural network with 1 neuron in the input layer, 2 neurons in the first hidden layer, 2 neurons

in the second hidden layer and 1 output neuron. Table B.4 presents the weights and bias values

between the input layer and the first hidden layer (HL1). The input feature used for this model was

the approximated EAV RMS.

Table B.4: Stage 2 Average Weight and Bias Between Input and First Hidden Layer

Weight Bias
Approximated EAV RMS

HL1 Neuron 1 -0.30 -0.03
HL1 Neuron 2 -0.19 -0.05

Next, Table B.5 provides the average weight and bias between thefirst (HL1) and second (HL2)

hidden layers as well as the bias values for the second hidden layer.
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Table B.5: Stage 2 Average Weight and Bias Between First and Second Hidden Layer

Weight Bias
HL1 Neuron 1 HL1 Neuron 2

HL2 Neuron 1 -0.49 -0.13 -0.01
HL2 Neuron 2 0.08 0.35 -0.01

Lastly, the values provided by Table B.6 are the average weightand bias between the second

hidden layer (HL2) and the output layer.

Table B.6: Stage 2 Average Weight and Bias Between Second Hidden and Output Hidden Layer

Weight Bias
HL2 Neuron 1 HL2 Neuron 2

Output Neuron 0.08 0.07 0.72

Considering that the input was only a single feature, the weights and bias simply highlight the

non-linear relationship between the feature and the label. The relatively lower weights (compared

to stage 1) may be indicative that the feature is more linear, for which the lower weights will restrict

the range on the sigmoid function. The linearity of the feature can be observed in the boxplot from

Figure 3.20.

B.2 Weights and Bias for Time-Averaged Model

The time-averaged models from chapter 5 were used to label the electrograms based on the type

of cardiomyopathy and then another subcategory depending on the type of cardiomyopathy. The

subcategory for the DCM electrograms were DCM MAP normal or abnormal and DCM ARI nor-

mal or abnormal, while the subcategories for the ICM hearts were ICM MAP normal or abnormal,

ICM ARI normal or abnormal, ICM healthy or Scar, and ICM DVDT normal or abnormal. The

following subsections will present the average weights and bias values from the cross validated

models.
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B.2.1 Time-Averaged General Model: Cardiomyopathy

The model architecture was 3 neurons for the input layer, 6 neurons for the first hidden layer, 2

neurons for the second hidden layer and 1 neuron for the output layer. The weights and bias values

in Table B.7 are for the parameters between input layer and thefirst hidden layer (HL1). The input

features were the arrhythmia organization (AO), the sparsecode product for DCM (ρ[W ]
Final,CMDCM ),

and the sparse code product for ICM (ρ
[W ]
Final,CMICM ).

Table B.7: Cardiomyopathy Model Average Weight and Bias Between Input andFirst Hidden
Layer

Weight Bias

AO ρ
[W ]
Final,CMDCM ρ

[W ]
Final,CMICM

HL1 Neuron 1 -5.70 -6.90 0.71 -1.51
HL1 Neuron 2 -3.47 -2.86 -4.02 10.34
HL1 Neuron 3 0.90 0.25 -4.06 5.85
HL1 Neuron 4 1.16 -2.82 -0.01 3.04
HL1 Neuron 5 -3.25 16.13 -10.07 5.18
HL1 Neuron 6 1.03 11.73 16.63 -4.14

Next, the average weight and bias between the first (HL1) and second (HL2) hidden layers and

the bias values for the second hidden layer is given in Table B.8.

Table B.8: Cardiomyopathy Model Average Weight and Bias Between First andSecond Hidden
Layer

Weight Bias
HL1 N1 HL1 N2 HL1 N3 HL1 N4 HL1 N5 HL1 N6

HL2 Neuron 1 -0.31 0.64 -0.54 0.45 -0.36 -0.35 -0.29
HL2 Neuron 2 1.51 -0.08 0.16 -1.53 0.15 -0.05 0.27

The values for the average weight and bias between the secondhidden layer (HL2) and the

output layer are provided in Table B.9.
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Table B.9: Cardiomyopathy Model Average Weight and Bias Between Second Hidden and Output
Hidden Layer

Weight Bias
HL2 Neuron 1 HL2 Neuron 2

Output Neuron 0.96 1.26 0.58

B.2.2 Time-Averaged General Model: DCM MAP

The number of neurons for the 4 layer network was 3, 6, 2, and 1 respectively. The weights

and bias values between the input layer and the first hidden layer (HL1) is given by Table B.10.

The input features were the Residual IF STD, the sparse code product for DCM MAP normal

(ρ[W ]
Final,DCMMN ), and the sparse code product for DCM MAP abnormal (ρ[W ]

Final,DCMMA).

Table B.10: DCM MAP Model Average Weight and Bias Between Input and First Hidden Layer

Weight Bias

Residual IF STD ρ
[W ]
Final,DCMMN ρ

[W ]
Final,DCMMA

HL1 Neuron 1 291.03 -32.72 44.18 -10.49
HL1 Neuron 2 194.57 -24.61 18.01 5.16
HL1 Neuron 3 53.99 8.05 9.65 -14.06
HL1 Neuron 4 50.24 -21.68 -21.86 57.23
HL1 Neuron 5 55.75 15.25 24.14 -26.50
HL1 Neuron 6 -30.96 4.49 16.89 -19.70

Table B.11 provides the average weight and bias between the first (HL1) and second (HL2)

hidden layers and the bias values for the second hidden layer.

Table B.11: DCM MAP Model Average Weight and Bias Between First and Second Hidden Layer

Weight Bias
HL1 N1 HL1 N2 HL1 N3 HL1 N4 HL1 N5 HL1 N6

HL2 Neuron 1 3.64 -3.04 -1.80 3.01 -1.53 -0.70 1.47
HL2 Neuron 2 2.43 -3.07 0.04 1.18 0.82 -1.90 0.49

The average weight and bias between the second hidden layer (HL2) and the output layer is

given by Table B.12.
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Table B.12: DCM MAP Model Average Weight and Bias Between Second Hidden and Output
Hidden Layer

Weight Bias
HL2 Neuron 1 HL2 Neuron 2

Output Neuron 10.22 -4.29 0.31

B.2.3 Time-Averaged General Model: DCM ARI

The 4 layers of the network had 3, 6, 2, and 1 neurons respectively. The weights and bias values

between the input layer and the first hidden layer (HL1) is given by Table B.13. The input features

were the Residual IF STD, the sparse code product for DCM ARI normal (ρ[W ]
Final,DCMAN ), and the

sparse code product for DCM MAP abnormal (ρ[W ]
Final,DCMAA).

Table B.13: DCM ARI Model Average Weight and Bias Between Input and First Hidden Layer

Weight Bias

Residual IF STD ρ
[W ]
Final,DCMAN ρ

[W ]
Final,DCMAA

HL1 Neuron 1 14.55 -1.64 2.21 5.37
HL1 Neuron 2 9.73 -1.23 0.90 -0.23
HL1 Neuron 3 2.70 0.40 0.48 -0.25
HL1 Neuron 4 2.51 -1.08 -1.09 27.29
HL1 Neuron 5 2.79 0.76 1.21 26.61
HL1 Neuron 6 -1.55 0.22 0.84 -0.70

Table B.14 provides the average weight and bias between the first (HL1) and second (HL2)

hidden layers and the bias values for the second hidden layer.

Table B.14: DCM ARI Model Average Weight and Bias Between First and Second Hidden Layer

Weight Bias
HL1 N1 HL1 N2 HL1 N3 HL1 N4 HL1 N5 HL1 N6

HL2 Neuron 1 0.18 -0.15 -0.09 0.15 -0.08 -0.03 -0.33
HL2 Neuron 2 0.12 -0.15 0.00 0.06 0.04 -0.10 1.75

The average weight and bias between the second hidden layer (HL2) and the output layer is

given by Table B.15.
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Table B.15: DCM ARI Model Average Weight and Bias Between Second Hidden and Output
Hidden Layer

Weight Bias
HL2 Neuron 1 HL2 Neuron 2

Output Neuron 0.51 -0.21 0.40

B.2.4 Time-Averaged General Model: ICM MAP

The time-averaged ICM MAP model had 5, 10, 2, and 1 respectively for the 4 layer network.

Table B.16 presents the weights and bias values between the input and first hidden layer. The input

features were the DF, energy captured by local pattern 2 (LP2), arrhythmia organization (AO), the

sparse code product for ICM MAP normal (ρ[W ]
Final,ICMMN ), and the sparse code product for ICM

MAP abnormal (ρ[W ]
Final,ICMMA).

Table B.16: ICM MAP Model Average Weight and Bias Between Input and First Hidden Layer

Weight Bias

LP2 AO ρ
[W ]
Final,ICMMN ρ

[W ]
Final,ICMMA

HL1 Neuron 1 3.81 -1.02 -0.14 3.51 -9.52
HL1 Neuron 2 3.77 -0.26 -8.56 8.41 -2.79
HL1 Neuron 3 -23.99 0.02 2.24 -2.45 4.91
HL1 Neuron 4 24.18 0.97 -7.42 -1.82 -0.88
HL1 Neuron 5 8.00 2.44 -6.13 0.65 -0.57
HL1 Neuron 6 9.21 -0.29 -3.64 -8.21 3.86
HL1 Neuron 7 3.93 -1.37 -2.27 -0.48 -19.38
HL1 Neuron 8 10.85 1.55 3.57 5.57 -5.71

Table B.17 presents the average weight and bias between the first(HL1) and second (HL2)

hidden layers and the bias values for the second hidden layer.

Table B.17: ICM MAP Model Average Weight and Bias Between First and Second Hidden Layer

Weight Bias
HL1 N1 HL1 N2 HL1 N3 HL1 N4 HL1 N5 HL1 N6 HL1 N7 HL1 N8

HL2 N1 1.41 -0.73 -0.64 -0.48 -0.99 1.26 -0.69 0.45 0.30
HL2 N2 -0.22 0.24 -0.11 0.18 2.30 -0.92 0.66 0.39 -1.51
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Table B.18 presents the average weight and bias between the second hidden layer (HL2) and

the output layer.

Table B.18: ICM MAP Model Average Weight and Bias Between Second Hidden and Output
Hidden Layer

Weight Bias
HL2 Neuron 1 HL2 Neuron 2

Output Neuron -0.81 -5.87 0.62

B.2.5 Time-Averaged General Model: ICM ARI

The time-averaged ICM ARI model had 5, 10, 2, and 1 respectively for the 4 layer network. The

weights and bias values between the input and first hidden layer are presented in Table B.19. The

input features were the DF, energy captured by local pattern 2 (LP2), arrhythmia organization

(AO), the sparse code product for ICM ARI normal (ρ[W ]
Final,ICMMN ), and the sparse code product

for ICM MAP abnormal (ρ[W ]
Final,ICMAA).

Table B.19: ICM ARI Model Average Weight and Bias Between Input and First Hidden Layer

Weight Bias

LP2 AO ρ
[W ]
Final,ICMAN ρ

[W ]
Final,ICMAA

HL1 Neuron 1 7.37 -0.60 2.05 1.07 -0.40
HL1 Neuron 2 0.39 1.76 5.42 -5.40 2.25
HL1 Neuron 3 32.82 -1.50 -10.82 1.50 -7.07
HL1 Neuron 4 -15.93 0.33 -1.05 -4.29 -4.88
HL1 Neuron 5 -35.31 -2.69 0.12 -9.21 14.86
HL1 Neuron 6 -12.38 -0.63 1.16 0.40 6.14
HL1 Neuron 7 51.83 0.75 2.44 6.28 -17.75
HL1 Neuron 8 12.76 -0.77 -1.49 11.71 -14.57

Table B.20 presents the average weight and bias between the first (HL1) and second (HL2)

hidden layers and the bias values for the second hidden layer.

Table B.21 presents the average weight and bias between the second hidden layer (HL2) and

the output layer.
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Table B.20: ICM ARI Model Average Weight and Bias Between First and Second Hidden Layer

Weight Bias
HL1 N1 HL1 N2 HL1 N3 HL1 N4 HL1 N5 HL1 N6 HL1 N7 HL1 N8

HL2 N1 0.48 0.32 -0.63 1.04 -1.63 0.13 0.65 -0.55 0.08
HL2 N2 –0.23 0.09 1.61 -0.41 0.41 0.62 0.74 -1.64 -0.47

Table B.21: ICM ARI Model Average Weight and Bias Between Second Hidden and Output
Hidden Layer

Weight Bias
HL2 Neuron 1 HL2 Neuron 2

Output Neuron 1.56 0.12 0.21

B.2.6 Time-Averaged General Model: ICM Vol

The 4 layer network for the time-averaged ICM Vol model had 4, 8, 2, and 1 neurons for each

layer respectively. The weights and bias values between the input and first hidden layer is given in

Table B.22. The input features were the energy capture by local pattern 1 (LP1), energy captured

by local pattern 3 (LP3), the sparse code product for ICM Healthy (ρFinal,ICMVH), and the sparse

code product for ICM Scar (ρFinal,ICMV S).

Table B.22: ICM Vol Model Average Weight and Bias Between Input and First Hidden Layer

Weight Bias
LP1 LP3 ρFinal,ICMVH ρFinal,ICMV S

HL1 Neuron 1 0.92 30.79 -21.07 -13.29 10.30
HL1 Neuron 2 -5.66 0.70 0.07 39.99 -2.26
HL1 Neuron 3 -11.63 -12.77 1.74 13.40 10.88
HL1 Neuron 4 -11.80 3.66 8.00 3.85 4.82
HL1 Neuron 5 -1.88 4.77 -1.55 -10.91 -1.41
HL1 Neuron 6 36.58 12.29 1.11 -14.41 -13.19
HL1 Neuron 7 -0.58 20.53 14.84 4.45 -21.73
HL1 Neuron 8 3.71 12.74 -0.79 -2.60 -1.75

Table B.23 provides the average weight and bias between the first(HL1) and second (HL2)

hidden layers and the bias values for the second hidden layer.

Lastly, Table B.24 presents the average weight and bias between the second hidden layer (HL2)
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Table B.23: ICM Vol Model Average Weight and Bias Between First and Second Hidden Layer

Weight Bias
HL1 N1 HL1 N2 HL1 N3 HL1 N4 HL1 N5 HL1 N6 HL1 N7 HL1 N8

HL2 N1 -0.50 -0.19 2.81 1.42 -2.00 -1.60 2.79 0.65 -2.07
HL2 N2 -2.19 0.67 0.61 1.22 0.03 -2.36 4.90 -0.07 -1.59

and the output layer.

Table B.24: ICM Vol Model Average Weight and Bias Between Second Hidden and Output Hid-
den Layer

Weight Bias
HL2 Neuron 1 HL2 Neuron 2

Output Neuron -0.80 1.20 0.24

B.2.7 Time-Averaged General Model: ICM DVDT

The time-averaged ICM DVDT model had 4, 8, 2, and 1 neurons respectively for each layer of the

network. The weights and bias values between the input and first hidden layer is given in Table

B.25. The input features were the energy capture by local pattern 1 (LP1), energy captured by local

pattern 3 (LP3), the sparse code product for ICM DVDT (ρFinal,ICMDVDTN ), and the sparse code

product for ICM DVDT abnormal (ρFinal,ICMDVDTA).

Table B.25: ICM DVDT Model Average Weight and Bias Between Input and First Hidden Layer

Weight Bias
LP2 LP3 ρFinal,ICMDVDTN ρFinal,ICMDVDTA

HL1 Neuron 1 -127.86 -27.45 15.85 -25.47 -13.52
HL1 Neuron 2 -17.23 19.77 -2.79 17.86 5.07
HL1 Neuron 3 -11.84 10.80 56.94 -19.55 -25.71
HL1 Neuron 4 -1.48 -0.59 7.96 -2.14 -3.19
HL1 Neuron 5 -42.68 -53.10 -49.42 27.22 17.83
HL1 Neuron 6 -1.53 6.15 -2.87 0.41 -0.60
HL1 Neuron 7 15.52 -0.61 1.71 0.89 1.84
HL1 Neuron 8 16.41 11.59 -29.89 8.46 5.89
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Table B.26 provides the average weight and bias between the first (HL1) andsecond (HL2)

hidden layers and the bias values for the second hidden layer.

Table B.26: ICM DVDT Model Average Weight and Bias Between First and Second Hidden Layer

Weight Bias
HL1 N1 HL1 N2 HL1 N3 HL1 N4 HL1 N5 HL1 N6 HL1 N7 HL1 N8

HL2 N1 -0.62 2.03 0.77 -0.34 -1.58 1.67 -4.16 1.84 -0.35
HL2 N2 0.59 0.84 0.37 0.96 -1.70 -0.56 2.28 2.86 -3.03

Lastly, Table B.27 presents the average weight and bias between the secondhidden layer (HL2)

and the output layer.

Table B.27: ICM DVDT Model Average Weight and Bias Between Second Hidden and Output
Hidden Layer

Weight Bias
HL2 Neuron 1 HL2 Neuron 2

Output Neuron 8.74 -7.29 0.63
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