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Modelling the Safety Performance of Roadways for Specific Collision Types

Master of Applied Science, 2005 

By Tony Chiu

Department o f Civil Engineering 
Ryerson University

Abstract

Safety performance functions (SPFs) are rarely developed for specific accident types 

because this can be very lengthy especially when relevant data are unavailable. Because 

o f this constraint, a factor is applied along with the SPF for all accident types to estimate 

the safety for specific accidents types. This factor is the proportion of the individual 

collision type in the entire population of all accidents. However, there is no reason to 

believe that this factor is a constant which is independent o f Annual Average Daily Traffic 

(AADT). Accordingly, a constant factor and the proportion model are applied to the 

SPF for all accident types combined to estimate the SPF for specific accident types on 

both rural road segments and Two-Way Stop-Controlled (TWSC) intersections. The 

validity o f these factors are tested using the state-of-the-art network screening approaches. 

Furthermore, a detailed investigation on Property Damage Only (PDO) estimates is 

carried out on certain aspects of safety performance functions, using negative binomial 

regression. PDO estimates are then evaluated based on three different approaches.
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------------------------       Chapter One

CHAPTER ONE

INTRODUCTION

1.1 Introduction

In the past several decades, reducing the number o f traffic accidents has become a 

major concern. Motor vehicle accidents are recognized as a very serious matter in both 

urban and rural societies. In the year 2002, Ontario alone reported 244,642 collisions, 

which resulted in 770 fatalities, 56,516 injuries, and 187,356 property damage collisions. 

(77) Not only did these collisions cause the victims to suffer but they also burden our 

society with enormous financial costs. Many countermeasures have been adopted to 

improve road safety. Direct applications, such as vehicle design improvement, were 

implemented inside the vehicle to enhance the safety o f both drivers and passengers. 

Roadway treatments such as modification of the lane widths and shoulders widths, and 

rescheduling the timing of traffic signals were applied to the roadways directly to 

improve road safety. Other implementations include a graduated licensing program, an 

impaired driving program, and safety campaigns were phased in to reduce vehicular 

accidents.

In order to understand and prevent future accidents, one must employ appropriate 

methods to carefully examine and formulated treatment plans for an entity. In this paper, 

statistical safety modelling is applied to rural roadways and Two-Way-Stop-Controlled 

(TWSC) intersections. The intention of a statistical safety model is to estimate the 

expected accident frequency of an infrastructure based on its traits. This method has 

been widely adopted in many research projects in the past few decades. (7-75) Details
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_________________ Chapter One

of statistical safety modelling will be discussed in Chapter Two. One common mistake 

in road safety analysis is to identify sites for treatment merely based on the accident 

counts for a short period of time. Targetting an entity with high accident counts over a 

certain period can be inefficient because accidents take place at random, a phenomenon 

that is further discussed in Chapter Two.

1.2 Safety Analyst

In the last decade, substantial research on statistical safety modelling has been done. 

However, it is still very challenging to develop a good statistical road safety model 

because it requires lots of information (i.e. accident counts, traffic flow, etc.). This 

information is costly and sometimes difficult to obtain. The notion of SafetyAnalyst was 

conceived by Federal Highway Administration (FHWA) in the United States. They 

realized the need of implementing a state-of-the-art safety management method in 

engineering practices. SafetyAnalyst comprises a set of tools that help engineers to 

facilitate and improve road safety using state-of-the-art safety management approaches. 

Currently, it is still under development, with a beta version to be released in year 2006. 

The SafetyAnalyst package is made up of six different modules:

1. Network Screening Tool - identifies sites with promise for safety improvements

2. Diagnosis Tool - analyzes the nature of safety problems at specific sites

3. Countermeasure Selection Tool - assists user in the selection of a proper 

treatment at specific site

4. Economic Appraisal Tool - assesses the economic implications of one or more of 

the selected countermeasures

5. Priority Ranking Tool - distinguishes sites which most urgently call for treatment
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based on the benefit and cost estimates determined by the economic appraisal 

tool

6. Evaluation Tool - helps uçer to conduct a before-and-after study of a treatment 

In a nutshell, the purpose of these modules is to assist engineers when they identify 

problematic sites and to help design an effective treatment for the target sites, using the 

most up-to-date and appropriate road safety management procedures.

1.3 Objectives of the Study

This thesis is a detailed investigation of some of the unresolved elements concerning 

the development o f safety performance functions (SPFs) for accident prediction in the 

SafetyAnalyst tools. The objectives are three-fold:

i) Comparison of two methods for developing safety performance functions for 

specific accident types on road segments

ii) Modelling the proportions of specific collision types at TWSC intersections

iii) Detailed investigation of methods for estimating the expected number of Property 

Damage Only (PDO) accidents

In the first two parts, the objective is to investigate the accuracy o f applying the 

proportion of specific accident type to the total collision model using two different 

approaches. Only traffic count is used for the covariate in this study because AADT 

usually explains more than 70% of the variation in accident occurrence. Another reason 

for doing so is that many jurisdictions do not necessary have the roadways information 

other than the traffic counts. Thus, it is important to understand the relationship 

between traffic count and accident frequency in order to give a clear definition in the 

software SafetyAnalyst. In part three of this thesis, a detailed investigation o f PDO

3



________________________________________________________________ Chapter One

estimates is carried out in certain aspects of safety performance functions. The reason 

for studying this issue is because PDO accident counts contain errors generated during 

the data collection stage. It is not clear whether calibrating models using the PDO data 

produce meaningful results. Thus, three different ways to estimate PDO accident are 

investigated in this thesis to clarify this issue.

1,4 Organization of the Thesis

This thesis is structured into seven chapters. Chapter One contains the background 

and objective of the research. Chapter Two documents the important findings from 

literature reviews. The HSIS database, which was used in the research, is described in 

Chapter Three. Chapters Four, Five and Six are the major findings of this endeavour. 

Conclusions and a number of recommendations are included in Chapter Seven.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Background and Introduction

The literature review focuses on statistical road safety modelling because the content 

o f this thesis lies mainly in this area. In general, a statistical road safety model serves to 

estimate the safety o f road elements based on the information of the roadways. At the 

beginning stage of statistical road safety modelling, there were no guidelines or rules on 

how to develop an appropriate model. Many models were developed using the 

conventional linear regression. However, this method lacks the distributional properties 

to adequately describe the random, discrete, non-negative and sporadic effects of the 

accident counts. Research conducted by Miaou and Lum {11) suggests that the Poisson 

distribution is best employed to describe the accident counts over a period of time at a 

site; its major limitation is that the variance of the accident data is constrained to be equal 

to the mean, which is interpreted as the true level of safety per unit o f time at the site. If 

the variance of accident frequency is greater than its mean, overdispersion occurs. For 

this reason, the Poisson distribution does not accurately reflect the variation in accident 

frequency. As a consequence, the coefficients of the model would be biased and contain 

erroneous standard errors. These biased coefficients may result in the over- or 

under-prediction of accident frequency. Alternative ways to address the overdispersion 

issue are to use the Negative Binomial (NB) distribution or the double Poisson 

distributions. In this thesis, the NB distribution, which is commonly considered the
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most appropriate approach in describing the accident counts in a population of entities, is 

employed in all the SPFs developed in order to overcome this weakness.

Besides the modelling techniques described above, the goodness of fit (GOF) of the 

model is of equal importance. In the past, many researchers used various statistical tests 

to examine the GOF for road safety models. However, the focal point of many of these 

statistical GOF tests was on the overall fit. Thus, the GOF for the entire wide range of a 

covariate was often overlooked. Recently, Hauer et al. (5) have developed a graphical 

method to solve this problem, by examining the residuals and evaluating the GOF for the 

entire range of a covariate. Detailed discussions for all of the above concepts are 

presented in this chapter.

2.2 Accident Prediction Model

The purpose of accident prediction models is to estimate the safety of road segments 

or intersections based on their traits. Accident prediction model is sometimes called 

safety performance function (SPF) and is developed by statistical regression analysis. In 

other words, all historical data on accidents, traffic and other characteristics of the road 

are represented in a model equation. The resultant equation (SPF) enables one to predict 

the number of accidents (the dependent variable) of an entity as a function of its traits 

(the independent variables). The generic form of an SPF is shown below:

^  A ’A ’ (2.1)

where k  is the predicted accidents per unit of time, Xi is the different road traits, and yff, is 

the parameters of the function. Model parameters are often optimized by the method of 

maximum likelihood for the case of generalized linear modelling.

In general, calibration of a SPF requires at least two variables: Annual Average
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Daily Traffic (AADT) and accidents counts. It is possible to include other variables 

such as road geometry, human factors, weather conditions, and others, depending on the 

availability and precision of these data. Since a SPF is used to estimate the accident 

frequency as a function of road characteristics, it is important to categorize the entities 

into different subgroups with similar road trait prior to calibration. For example, one 

must first separate all the entities into different subgroups (i.e. 4-lane urban highway, 

TWSC intersection, etc.) if a researcher wishes to develop the SPFs for an urban area.

2.3 Model Formulation

One o f the major challenges of developing a statistical accident prediction model is 

to select an adequate functional form. Broadly speaking, the process o f developing a 

SPF is merely curve-fitting in which the modeller attempts to select a function which fits 

the data well. It is common to judge the validity o f the model from the GOF tests. 

Some researchers have suggested choosing a function which contains as few parameters 

as possible. Nevertheless, there is no theory to support that this approach has value in 

road safety.

In calibrating an accident prediction model, measures must be taken to avoid 

deficiencies which result from the excluded variables and use of inappropriate functional 

form. Accordingly, researchers typically go through a series o f exploratory data 

analyses in order to determine the adequate independent variables for the model and 

explain how these variables are entered into the model. In statistical road safety 

modelling, the exponential, quadratic, power and gamma functions are often used. 

Following the selection o f a functional form, generalized linear modelling (GLM) is 

commonly used to estimate the parameters o f the model. Software packages such as

7
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SAS, GENSTAT, and GLIM are applied, which allow the modeller to specify the 

different error distributions for the model. In this thesis, parameters are optumzed using 

the GENMOD procedure in SAS.

2.4 Negative Binomial Distribution

Accident counts are random, discrete, sporadic, and non-negative in nature, so they 

are best described by the Poisson distribution (6-5, 11, 20), which is given by:

where K is the observed accidents in a unit of time at a site and k is the mean accident. 

However, the variance of the accident data is restrained by the shortcoming of the 

Poisson distribution, namely,

var(7) = K (2.3).

When the variance of the accident data is greater than the mean, it is said to be 

overdispersed, which implies that the model coefficients and standard errors are 

misinterpreted. Thus, these model parameters cause the model to either over- or 

under-estimate accident likelihood. The overdispersion problem can be overcome by 

using the negative binomial distribution, defined by,

(2.4).

where Y\ is the number of accidents at i location and a, and cp are the parameters of 

NB distribution. Miaou et al. and Hauer (77, 25) have mentioned that overdispersion 

could stem from several reasons in statistical road safety modelling.
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i) Some road traits are excluded from road safety modelling since factors such as 

human factors, time of day, and vehicle type may not be available in the 

database.

ii) Data are subject to sampling errors. For example, AADT, which is the 

average of daily traffic based on a few days of counts throughout the year, may 

be subjected to estimation error.

iii) The roadway environment is different from site to site at the time data were 

gathered and recorded. For instance, weather, time of day, and light condition 

vary.

2.5 The Empirical Bayes Method

Traditionally, prediction of safety of an entity is based on its accident count alone. 

This results in a regression-to-mean (RTM) bias that occurs when one focuses on the 

entities where the accident counts seem to be high or low compared to the other sites. 

For example, treatment sites are often selected based on the high level o f accident 

frequency. In such cases, the safety effect estimates based on a simple before-after 

comparison of these tend to exaggerate the effectiveness of the countermeasures. Safety 

estimates that are based entirely on accident counts can be imprecise. The Empirical 

Bayes (EB) method accommodates this problem with the traditional method of safety 

estimation. In general terms, the EB method combines the accident counts and the SPF 

together to obtain a weighted average of the two. This eliminates the RTM bias in 

addition to improving the precision of an estimate.
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2.6 The Validity of the Statistical Road Safety Model

Besides the concerns which were discussed in the previous sections, the validation 

of the accident prediction model is equally important in order to produce a 

well-established SPF to fit a set of accident data. In the published literature, there isn’t a 

generally acceptable set of guidelines to test the validity of a model. Wood (25) used 

the mean deviance and Chi-square ratio, Poch and Marmering {20) used the likelihood 

ratio. Miaou and Lum (77) adopted r-statistics, and Oh et al. {16) introduced several GOF 

measures which examined the external validity of accident prediction models. Recently, 

Hauer and Bamfo (5) have introduced a graphical method to test the GOF, which uses the 

plot of cumulative residuals against a covariate (e.g. AADT) and the ± 2 a  standard 

deviations to identify how well the model is fit.

In this thesis, the mean deviance and the Chi-square ratio along with the several 

GOF measures introduced by Oh et al. are employed to test the overall GOF of the SPFs. 

The advantage of using these measures is that they are focused on the GOF of statistical 

models to independent data through the investigation of the residuals in different aspect. 

In addition, the graphical method by Hauer and Bamfo is used to test the GOF for the full 

range of the AADT variables.

10
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2.6.1 Examine the Overall Goodness of Fits

Oh et al. {16) have introduced five measures to examine the GOF of accident 

prediction models. Much of the text below is extracted directly from this source.

( 1 ) Pearson’s Product Moment Correlation Coefficients

The Pearson’s product moment correlation coefficient measures the linear correlation 

between the predicted and observed values. The Pearson’s product moment correlation 

coefficient is given by:

where r is Pearson’s product moment correlation coefficient, Ti is the observed values, 

is the predicted values, and Y is the mean of 7, observations. When the linear 

correlation is equal to ±1, the model has a perfect linear correlation. In contrast, a 

linear correlation of 0 indicates that the model completely lacks linear association. One 

would expect the correlation coefficient to be high if the model has an ideal linear 

correlation and vice versa.

(2) Mean Prediction Bias (MPB)

This statistic measures the magnitude and direction of the average model bias based on 

the validation data. It is expected that the magnitude of the mean prediction bias would 

be small when the calibrated model predicts the observed data well. Generally speaking, 

a negative MPB demonstrates that the model under-predicts crashes on average. 

Similarly, a positive MPB means that the model over-predicts crashes. The formula o f 

MPB is shown below:

11
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(2.6)
U P B  = ^ ------------

n

where n is the sample size of the validation data, Ÿi is the fitted values and Y{ is the 

observed values.

(3) Mean Absolute Deviation (MAD)

This statistic measures on average the mis-prediction of the model. It is different from 

MPB because the absolute sign in the equation remains the positive and negative 

prediction errors. A small value indicates the prediction of the model is very accurate. 

An ideal value would be zero which represents an immaculately perfect prediction. The 

equation of MAD is given by;

M A D  = ^ ----------
(2 7)

n

where n is the sample size of the validation data, Ÿi is the fitted values and Tj is the 

observed values.

(4) Mean Squared Prediction Error (MSPE) and Mean Squared Error (MSB)

MSPE is used to measure the error relative to the validation data, whereas the MSB is 

employed to assess the model error in relation to the estimation data. MSB and MSPE 

are given by:

MSE = (2 8)
n ^ -p

= —  (2-9)
n-,

12
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where n\ is the estimated data sample size, ni is the validated data sample size Eind p  is 

the number o f independent variables. By comparing these two statistical measures, one 

can determine whether the models are over-fitting or under-fitting the estimation data. 

An MSPE greater than its corresponding MSE suggests that the model may have been 

over-fit to the estimation data and the observed relationships may be misleading. It is 

also possible that a very important variable is omitted in the model or that the model is 

not well-defined.

2.6.2 Cumulative Residual Plot

The aforementioned GOF measures are only appropriate in determining the models 

overall GOF. However, an accident prediction model with a reasonable overall GOF 

may fit well in some ranges of AADT but not so well in the other ranges o f AADT. 

Because this issue often arises in an accident prediction model, it is important to examine 

both the overall fitness and the GOF for the entire range of AADT to avoid 

misinterpretation of the statistical results.

In order to understand the overall GOF, it is important to investigate the residuals of 

the model. A residual is the difference between the predicted and the observed value of 

an entity. A graph of residuals versus AADT for Minnesota 2-lane undivided rural 

roadways used in this research is shown in Figure 2.1. The graph does not reveal much 

information because the residuals are scattered all over the graph. Hence, one cannot 

conclude that the model chosen would satisfy all ranges o f AADT from this simple 

scatter plot.

13
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Figure 2.1 -  Total Collision Residuals vs. AADT Plot for the Minnesota 2-iane Undivided Rural

Roadways

To address this problem, Hauer et al. (2, J) have developed a graphical method 

termed the cumulative residuals (CURE) procedure to examine the GOF for all ranges of 

AADT. In order to produce a CURE plot, the residuals of the dataset are calculated and 

then the dataset is sorted according to the AADT. The next step is to calculate the 

cumulative residuals. Once completed, cumulative residuals are plotted against the 

AADT. Figure 2.2 illustrates a CURE plot for Minnesota rural, 4-leg TWSC 

intersections.

14
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CURE Plot for 4 leg Angle Collision 
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F igure 2.2 — C U R E  Plot o f  A ngle C ollision for M innesota R ural 4-leg  T W SC  Intersections

The two dotted lines in Figure 2.2 are the ±20 standard deviation limits and it is a 

tool to help distinguish between what may be expected if the model fits perfectly. The 

two dotted lines are calculated based on the assumption that the sum of residuals for the 

model is approximately normally distributed with the mean equalling to zero. With this 

assumption, two normal probability density functions are established. First, the 

probability density function for the random walk reaches the point S(n)=s. This 

ftmction can be written as;

P(Current Position)- (2 .10)
^2n(7{n)

with the mean=0 and variance=</(n). Second, the probability density function for return 

to S(n)=0 at the end point (N) and it is given by:
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.  ^ ____
P(Retum to the End Point')=—, - -  = e  (2 .11)

with the mean-0 and variance=a^(N)-a^(n). Thus, the probability density function to 

describe S(n)=s and return to S(n)=0 at the end point is the product of the two normal 

probability functions and it can be written as,

1P =  ‘ g X ^ ^  g 2[̂ -(N)-̂ '00] (2.12)

Equation 2.12 may be further simplified by representing,

a '  («) = (2 .13 )

The exponential components of equation 2.12 can be rewritten as.

The remaining part of equation 2.12 can be rewritten as.

1 1 , , 1 
• X -  =  C O U S ta n t  ‘

^ 2 2 T y lc T \N ) - a ^  y l 2 fra{n)

This combined equation 2.15 represents a normal probability density with the mean equal 

to 0 and the standard deviation equal to a*, which can be used to calculate the ±2a limits 

shown in Figure 2.2.

Broadly speaking, one would expect the CURE plot to oscillate up and down around 

the zero mark when the model fits well in all ranges of variables (i.e. AADT in this case). 

Conversely, one would expect the CURE plot to be all above or below zero when the 

model is not well-fit. (2) A few points should be emphasized when analysing the CURE 

plot.
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a) The model should perhaps be modified, for example, by changing the functional 

form if  for a substantial range of AADT the predicted accident from the model is 

larger than the observed values in that range and vice versa. For instance, the 

sudden decrease between AADT 4,000 to 5,000 indicates such a case.

b) Where there is a vertical jump in the CURE plot, there is an unusually large 

residual between the predicted accident and the observed accident count at that 

location. Hauer calls this sudden jump the 'outlier’, which is illustrated in 

Figure 2.2 where the AADT is near 27,000.

c) The presence of a certain range of AADT where the random walk lies outside the 

±2a boundaries (the dotted lines in Figure 2.2) indicates that the model is not 

predicting the observed value accurately within that range.

In summary, the CURE method provides an overview for GOF for all ranges o f the 

covariate. If  the model fits well, the cumulative residuals are expected to lie within the 

±2a  boundaries.

2.7 Chapter Summary

From the literature review in this chapter, one may realize that the calibration o f SPF 

requires a lot o f efforts, and there are many factors and concerns behind. Therefore, it is 

worthwhile to elaborate on the development of the SPF. Since the focus o f this thesis is 

on the calibration and application of the SPF, an understanding o f the procedures required 

to develop a meaningful SPF is essential.
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CHAPTER THREE

DATA 

3.1 General Features of the HSIS Data

The data used in this research originate from the Highway Safety Information 

System (HSIS) database. The Federal Highway Administration (FHWA) developed the 

HSIS database by collecting information from nine states and subsequently converting 

this dataset into SAS format for research purposes. In this thesis, the Minnesota 

database is used to calibrate the safety performance functions for road segments and 

intersections. The database consists of four different files containing, respectively, 

information on accidents, traffic, roadlogs, and intersection characteristics.

3.2 Accident Database

The accident database contains case-by-case basic accident information, vehicle data 

that include the information on the associated vehicles, and occupant data that contain 

descriptive and injury information for all occupants involved in the accident. These data 

can be merged by using the accident report number and vehicle number. They can also 

be linked to the roadway or intersection file using the three common variables: route 

system, route number, and reference point.

In Minnesota, the law states that an accident must be reported to the police officer 

for investigation if there is injury in the crash or property damage over USD $1,000. 

Fifteen years of accident data are available in the HSIS database, and the ratio of vehicles 

per crash is between 1.83 and 1.87 for this duration.
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The 1995-1999 Minnesota accident and road segments data were used for all the 

road segments studied, and all accident types are included. 32,400 total collisions, 

12,832 fatal/injury collisions, and 19,544 property damage only (PDO) collisions were 

amassed during these five years on 2-lane undivided rural highways.

The 1995-1999 Minnesota intersection accident data are used in Chapter Five o f this 

thesis and only rural 3-leg and 4-leg TWSC data are included. The database consists o f 

2,497 total accidents, 1,125 fatal/injury accidents, and 1,372 PDO accidents for 3-leg 

TWSC, and 6,218 total collisions, 2,823 fatal/injury collisions, and 3,395 PDO collisions 

for 4-leg TWSC.

3.3 Roadlog Data

The roadlog file consists of all the information of the roadway characteristics; 

however, the layout o f the dataset is different from that of the accident database. Each 

record in the roadlog file contains information on a length of a segment that has similar 

road characteristics over that length. In other words, a new record is created whenever 

there is a change of road traits in a segment; the new starting point is referred to as the 

beginning reference point. The roadlog file includes information such as the surface 

type and width, shoulder and median information, lane information, etc. The database is 

updated daily according to the construction and maintenance plans which are submitted 

to the Minnesota Department of Transportation (MnDOT).

The roadlog file consists of approximately 134,000 miles of road systems: 12,000 

miles o f primary (urban) roadways, 33,000 miles of additional state-maintained rural 

roadways, and 89,000 miles of other non state-maintained county and local roads. Table

3.1 shows the breakdown of roadways from the 1996 HSIS roadlog file. In this research,
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the 1995-1999 roadlog files are used, but the 1997 file is omitted because the original file 

received by HSIS from MnDOT cannot be linked to the crash data due to some errors in 

the dataset. Therefore, four years of road traits data are included in all the calibration 

and analysis processes for road segments, which cover a total of 37,358.37 miles of 

roadways. This number is slightly higher than the one presented in Table 3.1 because 

the 1999 road file is used as the reference instead of 1996. For intersection analyses, all 

five years are included.

Table 3.1 -  Breakdown o f  1996 Minnesota HSIS roadway mileage by category

Roadway Category M ileage

Urban

Urban freeways 345.49 mi

Urban freeways < 4 Lanes 3.59 mi

Urban multilane divided non-freeways 666.60 mi

Urban multilane undivided non-freeways 519.88 mi

Urban 2 lane highways 11,616.20 mi

Rural

Rural freeways 706.10 mi

Rural multilane divided non-freeways 825.16 mi

Rural multilane undivided non-freeways 60.21 mi
Rural 2 lane highways 36,444.34 mi

Other (unpaved/county/local roads) 82,906.66 mi
Total 134,094.22 mi

The Minnesota HSIS database measures roadway length in miles. Therefore, all the 

equations in this thesis are presented in this unit. Because the only non-metric unit 

presented in this thesis is mile, all formulae can be simply transformed into metric unit 

using the conversion factor of 1.00 mi = 1.61 km.
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3.4 Intersection File

The intersection file contains information on the major intersections in Minnesota 

including variables such as approach lane information, entering AADT, and intersection 

control type, among others, and it is maintained by the eight different MnDOT districts 

across the state. Approximately 6,800 intersections are contained in the intersection file; 

only the rural 3-leg and 4-leg TWSC intersections are included in this thesis.

3.5 Traffic Data

The traffic file contains estimated traffic counts based on the yearly AADT, and is 

updated every two years. This estimation is based on a series of counts from both the 

temporary and permanent count stations throughout the State, and is maintained by the 

eight different MnDOT district offices. Similar to the accident file, the traffic file can be 

linked to the roadlog file using the reference point. There are approximately 120 

automatic traffic recording stations throughout the State, covering approximately 55% of 

the urban roadways and 45% of the rural roadways. In addition, there are nearly 34,000 

temporary count stations across the State, where 48 hours o f counts are made. In this 

research, only the sites which contain non-zero AADT for all years are included.
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Table 3.2 -  Statistical Summary o f 2-lane Undivided Rural Roadways for M innesota HSIS Database

Total Length (mi) 28,728.49

Total # of Sites 32,275

Mean Site Length (mi) 0.89

Mean AADT 1,443.56

Total Collisions 32,400

Fatal/Injury Collisions 12,832

PDO 19,544

Other Collisions 24

Table 3.3 - Statistical Sum m ary o f 3-leg & 4-leg TW SC Intersections for M innesota HSIS Database

3 Leg

Total # of Sites 2,033 (966 Used)
Mean Entering AADT 5,435 (7,068)

Total Collisions 2,497

Fatal/Injury Collisions 1,125

4 Leg

Total # of Sites 2,572(1,649 Used)
Mean Entering AADT 4,512(5,582)
Total Collisions 6,218
Fatal/lnjuiy Collisions 2,823
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CHAPTER FOUR

COMPARISON OF TWO METHODS FOR DEVELOPING SAFETY 
PERFORMANCE FUNCTIONS FOR SPECIFIC ACCIDENT TYPES ON ROAD 
SEGMENTS

4.1 Introduction

A safety performance function (SPF) is a mathematical model which relates the 

accident frequency of a road to its traits. The SPF is very powerful because of its ability 

to be utilized in network screening and in evaluation of safety treatments. Typically 

SPFs are developed for all accident types combined but there is a need for SPFs for 

specific accident types (e.g., run-off-road, head-on) so that network screening and 

treatment evaluation in SafetyAnalyst (22) and similar efforts can be so disaggregated. 

However, calibrating these can be very time-consuming especially if relevant data are not 

available in sufficient quantities. Because of this difficulty, a factor is applied in the 

initial version of SafetyAnalyst to the SPF for all accident types combined to estimate the 

SPF for a specific accident type. The factor is the proportion of that accident type in 

the population of all accidents. However, it is not known how these simplistic SPFs 

models stack up against those that might be obtained by using data and negative binomial 

regression to directly estimate SPFs for the specific accident type. The goal o f the work 

described in this chapter is to compare the two methods for estimating SPFs for specific 

accident types. The scheme for this methodology is illustrated in Figure 4.1. The two 

methods were applied to get SPFs to obtain the expected accident counts for the two-lane 

undivided road segments, and the HSIS database from the state of Minnesota was used. 

Various statistical measures along with the CURE plots were used to analyze the GOF for
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the models as described in Chapter Two. The purpose was to determine which of the 

two methods more suitable in predicting accidents for a specific collision type.

Database: 
HSIS Minnesota 

Rural, 2-lane 
undivided roadways

Which one is 
better?

Calibrate SPF for Total 
Accident

Compare the two methods 
using relevant statistical 
m easures & CURE Plots

Divide accident data into 18 
different collision types

Apply “Factors” to the SPF for 
total accident to estimate the 

SP F s for specific accident type

Calibrate SPFs for Specific 
Accident Type

Figure 4.1 -  M odelling Deveiopm ent Process
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4.2 D ata Assembly

Data from 1995 to 1999 taken from the HSIS Minnesota database, as described in 

the previous chapter, were used in the SPFs calibration process. The roadway database 

from HSIS classifies roadways based on their road geometry. Each year it may contain 

different numbers o f road segments due to the development, separation, or combination 

o f roadways. The rearrangement of the roadway database based on one particular year 

was needed in order to proceed further in the SPFs calibration. The year 1999 roadway 

classification was used as a reference base for the newly-merged database because it 

represents the most updated roadways condition in Minnesota. The aggregation work 

was done in the statistical software package SAS, using scripts to rearrange the database 

into a workable format. Collisions were then divided into different groups for the SPF 

calibration purpose.

The resulting database contains a total of 44,894 two-lane undivided rural roadway 

accidents which occurred in Minnesota between 1995 and 1999. However, not all o f the 

44,894 accidents were included in the SPF calibration process due to missing information 

such as AADT for one or more years at several sites. After eliminating all sites that 

which may potentially cause inaccuracy in the regression analysis, 32,275 sites were left 

for the calibration process. A statistical summary of the Minnesota two-lane undivided 

rural roadways is shown in Table 4.1.
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Table 4.1 - Statistical Sum m ary o f  2-lane Undivided Rural Roadways in HSIS M innesota Database

Total Length (mi) 28,728.49

Total # of Sites 32,275

Mean Site Length (mi) 0.89

Mean AADT 1,443.56

Total Collisions 32,400

Fatal/Injury Collisions 12,832

PDO 19,544

Other Collisions 24

Table 4.2 -  The Eighteen Different Collision Types Used for Calibrating SPFs

Collision Type Definition #  o f  Accidents

Total Total Collision 32,400

1 Collision with parked motor vehicle 1,015

2 Collision with railroad train 48

3 Collision with bicyclist 143
4 Collision with pedestrian 230

5 Collision with animal 6,938
6 Collision with fixed object 6,362

7 Collision with other object 130
8 Other single vehicle collision 84
9 Overturn 7,803
10 Fire or Explosion 122
11 Other single vehicle non collision 1,074
21 Rear end 2,866
22 Flead on 874
24 Angle 1,450
25 Sideswipe, same direction 1,039
26 Sideswipe, opposite direction 853
27 Other multiple vehicle collision 1,300
99 Unknown 69
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4.3 SPFs Developed by Negative Binomial Regression Using Generalized Linear 
Modelling

As discussed in Chapter Two, the negative binomial model form is the most 

commonly adopted one in the development of SPFs. The advantage of using the 

negative binomial model is that the overdispersion can be represented through an 

overdispersion parameter k  that is estimated iteratively in the model calibration process. 

The inverse o f overdispersion parameter y is such that:

var{K} = ̂ ^ ^  (4 . 1)

where E{K} is the expected accidents and var{Kj is the variance. Note that variance 

decreases as y increases; thus, the overdispersion parameter can be used to compare the 

goodness of fit for various models fitted with the same dataset. A large y indicates a 

small variance and a better model, and vice versa. As for SAS, the output of 

overdispersion parameter from the GENMOD procedure is the inverse of y.

Separate SPFs were developed for eighteen different collision types using the 

GENMOD procedure in SAS. Table 4.2 shows some details for the 18 different 

collision types. In view of the fact that the intention of this thesis is not to identify 

additional unknown variables but to observe which one of the two methods would 

produce better possible predictive results, AADT was the only independent variable used 

for calibrating the SPFs. Equation 4.2 shows the simple form with AADT as the 

independent variable.

K = f(AADT) = a ( A A D T f  (4,2)

where /c is the accidents/mile/year, AADT is the average annual daily traffic, and a and 

p  are the coefficients estimated in the SPF calibration process. The results o f the 

calibration are shown in Table 4.3,
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Table 4.3 — Calibration Results o f  the AADT Model for all SPFs 

M odel Form: Accidents/mile/year =  a{AADTŸ
Collision Type # o f  Accidents $  (S.E.)* In a (S.E.) Overdispersion

Total 32.400 0.9718 (0.0079) -8.0658 (0.0566) 0.6033

1 1.015 1.0687 (0.0443) -11.6260 (0.3197) 17.8965

2 48 0.4144(0.1637) -10.2450(1.1231) 246.5103

3 143 0.8503 (0.0735) -12.6741 (0. 5454) 0.0038

4 230 1.0456 (0.0664) -13.5219(0.4919) 7.3936

5 6.938 ' 0.9383 (0.0155) -9.4727(0.1117) 1.6576

6 6.362 0.8576 (0.0143) -8.8982 (0.1026) 0.9947
7 130 1.3048 (0.0847) -16.5162 (0.6764) 0.0001

8 84 1.0358 (0.1124) -14.3892 (0.8257) 30.1253

9 7,803 0.6733 (0.0121) -7.4282 (0.0852) 0.5724
10 122 1.1913 (0.0843) -15.4071 (0.6597) 0.0128
11 1.074 Parameters not significant
21 2,866 1.3464 (0.0181) -13.4651 (0.1447) 0.0076
22 874 1.1627 (0.0313) -13.2171 (0.2439) 0.0003
24 1,450 1.1834 (0.0288) -12.6927 (0.2160) 2.3679
25 1.039 1.1096 (0.0284) -12.6356 (0.2195) 0.0002
26 853 Parameters not significant
27 1,300 1.0087 (0.0285) -11.5385 (0.2110) 1.8179
99 69 Parameters not significant

* S.E. denotes standard error

4.4 SPFs Developed by Applying a Factor to the SPF for all Accident Types 
Combined -  The “Proportion” Method

Another approach for predicting accidents for each individual collision type is the 

“proportion” method. This method estimates the proportion of each collision type in the 

population of all accidents and applies it to the model the total accident model for all 

accidents combined. The following mathematical equation illustrates how the ratio is 

actually applied to the total eollision model.

^(accidents / mile / year) = {proportion) x a{AAD TŸ  (4-3) 

where a and ^  are eoeffieients for the “total aeeident” model, estimated to be 0.000314 

and 0.9718, respectively. The overdispersion parameter k for this model was found to 

be 0.6033, whieh indicates that the model is reasonable.
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SPF for Total Accidents
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F ig. 4.2  — SPF for Total Accidents on M innesota 2-lane U ndivided R ural R oadw ays

Figure 4.2 illustrates the SPF for the total accidents on Minnesota two-lane undivided 

rural roadways. Table 4.4 shows the proportions of all collision types.

Table 4.4 -  Proportion o f Accidents by Types

D efin ition Collision Type # of Accident Proportion

C ollision  with parked motor vehicle 1 1,015 0.031

C ollision  with railroad train 2 48 0.002

C ollision  with bicyclist 3 143 0.004

C ollision  with pedestrian 4 230 0.007

C ollision  with animal 5 6.938 0.214

C ollision  with fixed object 6 6,362 0.196

C ollision  with other object 7 130 0.004

Other single vehicle collision 8 84 0.003

Overturn 9 7.803 0.241

Fire or Explosion 10 122 0.004

Other single vehicle non collision 11 1,074 0.033

Rear end 21 2.866 0.089

Head on 22 874 0.027

A ngle 24 1,450 0.045

Sidesw ipe, same direction 25 1,039 0.032

Sidesw ipe, opposite direction 26 853 0.026

Other m ultiple vehicle collision 27 1,300 0,040

U nknown 99 69 0.002
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4.5 Comparison of the Results

The objective here is to compare the two methods for estimating SPFs for specific 

accident types to determine which one is better. To achieve the aforementioned 

objective, the goodness of fit statistics was used to determine the overall fit of the models. 

Notwithstanding that, these goodness of fit statistics only provide a basic measure of the 

overall fit of the model. They cannot specify whether the model is suitable for all 

practical values of a variable. For this reason, SPFs have in the past often failed to 

provide reasonably predictions for all ranges of AADT. The CURE procedure discussed 

in Chapter Two can address this issue by providing an assessment of how well the model 

fits in the full range of AADTs. Figure 4.3 shows the CURE plot for the total collision 

model and the two dashed curves are the + 2 a  boundaries.

The cumulative residuals plot reveal that the total collision model does not predict 

the crashes very accurately because the random walk of the cumulative residuals 

exceeds the ± 2  a  boundaries (the dashed lines) in many ranges of AADT. The main 

reason why the cumulative residuals exceeds + 2  o boundaries is that there are many 

short locations with zero accident in the database. These zero accident locations have 

caused the cumulative residuals to increase or decrease dramatically. Nevertheless, the 

peak values for the cumulative residual curve were found to be +750 and -1,700 with a 

total of 32,400 accident counts. With such high numbers of accidents, the peak values 

seem acceptable and one can conclude that the calibrated model is reasonable. The 

CURE plot indicates that the model overestimates crashes at very low AADT and 

between AADT 3,000-10,000 while it underestimates crashes between AADT 

1,000-2,000 and those AADT is above 10,000.

30



Chapter Four

1000

5 0 0

5 0 0

-1000

- 1 5 0 0

-2000

10000 20000 3 0 0 0 0
A A D T

Fig. 4.3 — C um ulative R esiduals Plot for Total C ollision M odel

The goodness of fit measures and CURE procedure were used to analyze all the 

safety performance functions for both methods. The goodness of fit statistics are 

displayed on Tables 4.5 and 4.6 for Minnesota rural, two-lane undivided roadways. 

The upper portion of Table 4.5 shows the parameters estimation generated from SAS with 

their standard errors indicated by the round brackets below the parameters. The lower 

portion of Table 4.5 shows the goodness of fit statistics for both methods.

All the accident types with less than 300 accident counts, along with the “other” 

single vehicle and other multi-vehicle collisions are excluded from the analysis because 

less accident counts would produce meaningless result and would be moot anyway since 

such types are unlikely to be of interest in SPF applications. For single vehicle 

accidents, only five types of collision were left for further analysis. Similarly, only six 

types of collision were left for multi-vehicle accidents. Tables 4.7 and 4.8 summarize 

the findings for the remaining collision types, for single vehicle and multi-vehicle 

accidents respectively.
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Table 4.5 -  Validation Statistics for Single Vehicle Accidents’ Models (Goodness of Fit were calculated as per mile-year base)

Model Total Collision

Type 1 

Collision w/ Parked 

M otor Vehicle

Type 5 

Collision w/ Animal

Type 6 

Collision w/ Fixed 

O bject

Type 9 

O verturn

# of Accidents 32.400 1.015 6.938 6.362 7.803

In a  (S.E.) -8.0658 (0.0566) -11.6260(0.3197) -9.4727(0.1117) -8.8982 (0.1026) -7.4282(0.0852)

p (S.E.) 0.9718(0.0079) 1.0687 (0.044.3) 0.9383 (0.0155) 0.8576(0.0143) 0.6733(0.0121)

Overdispersion (S.E.)
SPF 0.6033 (0.0160) 17.8965 (1.3213) 1.6576 (0.0668) 0.9947 (0.0496) 0.5724 (0.0325) ’

Proportion - 0.048 0.015 0.022 0.023

Proportion 1.000 0.031 0.214 0.196 0.240

Pearson's Correlation 

Coefficients

Proportion - 0.086 0.519 0.529 0.579

SPF 0.723 0.088 0.521 0.539 0.631

Mean Prediction Bias 

(MPB/Miie-Year)

Proportion - -0.024 0.010 -0.015 0.029

SPF -0.073 -0.013 0.000 -0.022 0.009

Mean Absolute

Deviation

(MAD/Mlle-Year)

Proportion - 0.046 0.120 0.133 0.119

SPF 0.501 0.056 0.114 0.128 0.104

Mean Squared 

Prediction E rro r 

(M SPE/M ile-Year )̂

Proportion - 1.330 1.481 6.566 1.352

SPF 15.421 1.330 1.481 6.567 1.346

Mean Squared E rro r 

(M SE/M ile-Year^)

P roportion - 1.330 1.481 6.566 1.352

SPF 15.422 1.330 1.481 6.567 1.346
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Table 4.6 -Validation Statistics for Multi-Vehicles Accidents’ Models (Goodness o f Fit were calculated as per mile-year base)

Model
Type 21 

Rear-End

Type 22 

Head On

Type 24 

Angle

Type 25 

Sideswipe, Sam e Direction

# of Accidents 2,866 874 1.450 1.039

In a  (S.E.) -13.4651 (0,1447) -13.2171 (0.2439) -12.6927(0.2160) -12.6356(0.2195)

p (S.E.) 1.3464 (0.0181) 1.1627 (0.0313) 1.1834 (0.0288) 1.1096 (0.0284)

O verdispersion (S.E.)
SPF 0.0076 (0.0000) 0.0003 (0.0000) 2.3679 (0.2329) 0.0002 (0.0000)

Proportion 0.040 0.500 0.080 0.182

Proportion 0.088 0.027 0.045 0.032

Pearson's Correlation 

Coefficients

Proportion 0.425 0.369 0.275 0.315

SPF 0.442 0.374 0.281 0.311

Mean Prediction Bias 

(MPB/Mile-Year)

Proportion -0.020 -0.002 -0.013 -0.016

SPF -0.017 -0.002 -0.009 -0.017

Mean Absolute

Deviation

(MAD/Mile-Year)

Proportion 0.075 0.020 0.043 0.038

SPF 0.075 0.020 0.045 0.038

Mean Squared 

Prediction E rror 

(MSPE/Mile-Year )̂

Proportion 0.447 0.021 0.117 2.519

SPF 0.444 0.021 0.117 2.519

Mean Squared E rro r 

(MSE/Mile-Year )̂

Proportion 0.447 0.021 0.117 2.519

SPF 0.444 0.021 0.117 2.519
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Table 4.7a -  Summary of Findings for Type 1: Collision with Parked Vehicle

Observed Counts: 1,015

Proportion Method SPF M ethod

CURE Plots
60

3 200

-40 -500

1110(102000010000
AADT

+48Upper Peak:

-75 -640Lower Peak:

0-1000, 3000-3500 & >8000 Whole RangeRegions Exceed ±2a

Lack of Linear Correlation Lack of Linear CorrelationLinear Correlation

Under-predict crashes Under-predict crashes (Relatively Closer to Zero)Average M odel Bias

Slightly BetterM isprediction

0.0480 17.8965Overdispersion
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Table 4.7b - Summary of Findings for Type 5: Collision with Animal

Observed Counts: 6,938

Proportion Method SPF Method

CURE Plots
2««!

I l l "

- I l l O j I

iiimi» ]IIIHHt ioiuniAADI 20000 30000AAin

Upper Peak: + 120 +440

Lower Peak: -320 -120

Regions Exceed ±2o >4,800 > 1,200

Linear Correlation Average Linear Correlation Average Linear Correlation

Average M odel Bias Over-predict crashes Over-predict crashes (Relatively Closer to Zero)

Mis-prediction Similar Result Similar Result

Overdispersion 0.0150 1.6576
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Table 4.7c - Summary o f Findings for T^pe 6: Collision with Fixed Object

Observed Counts: 6^62

Proportion Method SPF Method

CURE Plots
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Upper Peak: +420 +250

Lower Peak: -320 -230

Regions Exceed ±2o 1,000-4,000 & >6000 0-1,000. 1,500-4,000 & >8,000

Linear Correlation Average Linear Correlation Average Linear Correlation

Average Model Bias Under-predict crashes (Relatively Closer to Zero) Under-predict crashes

Mis-prediction Similar Result Similar Result

Overdispersion 0.0220 0.9947
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Table 4.7d - Summary o f Findings forT^pe 9: Overturn

Observed Counts: 7,803

Proportion M ethod SPF Method

CURE Plots
120()i
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20IHH) IDIKHI 2IKHHI
AADI AADT

+ 1,100Upper Peak: +560

-380Lower Peak: -300

0-6,500 & >7,500Regions Exceed ±2a 0-600 & >1,000

Average Linear Correlation Average Linear CorrelationLinear Correlation

Over-predict crashes Over-predict crashes (Relatively Closer to Zero)Average Model Bias

Similar Result Similar ResultM isprediction

0.0230 0.5724Overdispersion
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Table 4.8a - Summary o f Findings forl^ pe 21: Rear End

Observed Counts: 2,866

Proportion Method SPF Method

CURE Plots 100
0

100
4 -200

-3IMI
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-7(MI

41

V

NO
60

40

I  20

1 " 
S
C  -40 

-61» 

NO

I

1(1000 2(104)0 iOlHHl
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.L\nr « 14)000 20000 304)00
\ADT

Upper Peak: +50

Lower Peak: -640 -58

Regions Exceed ±2o Whole Range None

Linear Correlation Average Linear Correlation Average Linear Correlation

Average M odel Bias Under-predict crashes Under-predict crashes

M isprediction Similar Result Similar Result

Overdispersion 0.0400 0.0076
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Table 4.8b - Summary o f Findings for Type 22: Head On

Observed Counts: 874

Proportion Method SPF Method

CURE Plots

-150

-2Ü0

^ Ifl

V  -2 (1

-40i

lOOOO 211000 .tlllH IOAID!
inmio 20000 30000

AADT

U p p e r  P eak : +20

Lower Peak: -120 -20

Regions Exceed ±2o Whole Range None

Linear Correlation Low Linear Correlation Low Linear Correlation

Average Model Bias Under-predict crashes Under-predict crashes

M isprediction Similar Result Similar Result

Overdispersion 0.5000 0.0003
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Table 4.8c - Summary o f Findings for Type 24: Angle

Observed Counts: 1,450

Proportion Method SPF Method

CURE Plots

125

IIHHKI 20IIIHI jtHHH»

i  -50
■3

-2011 i

lootm 2HIHIU 3(HHI0
AADT

Upper Peak: + 10

Lower Peak: -170 -180

Regions Exceed ±2o Whole Range >3,000

Linear Correlation Low Linear Correlation Low Linear Correlation

Average M odel Bias Under-predict crashes Under-predict crashes

M isprediction Similar Result Similar Result

Overdispersion 0.0800 2.3679
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Table 4.8d - Summary o f Findings fo r iy p e  25: Sideswipe (Same Direction)

Observed Counts: 1,039

Proportion Method SPF Method

CURE Plots 40

20 .
(I

a  -20

i
X
s 60
^  -NO 

100 
120

11IOIKI 2UOOO 30000 10000 20000 30000
Win wnr

Upper Peak: +35

Lower Peak: no -35

Regions Exceed ±2a Whole Range 500-700, 3,000-3,500 & 6,500-7,000

Linear Correlation Low Linear Correlation Low Linear Correlation

Average M odel Bias Under-predict crashes Under-predict crashes

M isprediction Similar Result Similar Result

Overdispersion 0.1820 0.0002
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4.6 Chapter Summary

The Minnesota rural, two-lane undivided roadway database divided accidents into 

eighteen different collision types, and each type was analyzed using its own SPFs by 

applying negative binomial regression and the “proportion” method. In general, not all 

of the SPFs are well-developed in terms of both overall goodness of fit and the CURE 

method. The reason for these poor results is that the models do not include other 

important independent variables except the AADT. Thus, the SPFs are expected to be 

somewhat less accurate.

Based on the sites and accident types considered in the comparison, the proposed 

methods along with the number of crashes for each of the accident types are shown in 

Tables 4.9 and 4.10. The selection of the proposed method is based on the GOF tests 

and CURE plot results. Tables 4.9 and 4.10 show no significant connection between 

accident counts and which method is selected. Generally speaking, the negative 

binomial regression generates more accurate results than the “proportion” method when a 

large number of accident counts are available. Nevertheless, one can still make use of 

the “proportion” method when a dataset is lack of accident counts for a specific collision 

type. In short, it is difficult to draw a definite conclusion based on these findings since 

they are based only on the Minnesota dataset. In order to draw a firm conclusion, 

similar tests on other databases are suggested. In the next Chapter, similar methodology 

was applied to the Minnesota TWSC intersections database.
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Table 4.9 — Proposed M ethod for Single Vehicle C ollision  Types

C ollision  Type Proposed M ethod #  o f  A ccidents

Collision w/ Parked Motor Vehicle Proportion 1,015
Collision w/ Animal Proportion 6,938
Collision w/ Fixed Object SPF 6,362
Overturn SPF 7,803

Table 4 .1 0 -  Proposed M ethod for M ulti-Vehicle C ollision Types

C ollision  Type Proposed M ethod #  o f  A ccidents

Rear-End SPF 2,866

Head-On SPF 874

Angle SPF 1,450

Sideswipe, Same Direction SPF 1,039
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CHAPTER FIVE

MODELLING THE PROPORTIONS OF SPECIFIC COLLISION TYPES

5.1 Background

As discussed in Chapter Four, a constant factor is recommended in SafetyAnalyst to 

apply to the SPF for all accident types combined to estimate the SPF for a specific 

accident type. This factor is the proportion of that accident type in the population of all 

accidents. However, there is no reason to believe that this factor is a constant that is 

independent of AADT. This may in fact be one reason why the proportion method did 

not perform well when compared to direct calibration in the investigation described in 

Chapter Four. To improve this performance an individual model for this proportion 

factor may be desirable. The objective of this chapter is to investigate models for the 

proportion of specific collision types. The investigation is confined to accidents at 

TWSC intersections. The central modelling idea resembles that presented in Chapter 

Four, but the proportion of accidents of a specific type is used as a dependent variable 

instead of the accident frequency. The major difficulty with this endeavour is that there 

is limited previous research on modelling collisions by proportion. One of the main 

challenges is to determine the functional form. Related to this is the need to determine 

the error distribution of accidents’ proportion for use in a generalized linear modelling 

approach. As was done in Chapter Four, this method is compared to that in which a 

constant factor is applied to the SPF for all accident types combined and the method in 

which a negative binomial regression model is estimated for each individual accident 

type. Finally, network screening is done for all three methods to investigate the
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sensitivity o f the ranked lists to the method used. The methodology o f this chapter is 

illustrated in Figure 5.1.

Database: 
HSIS Minnesota 

Rural, 3-leg & 4-leg 
TWSC Intersections

Calibrate SPF for total 
accident

Which one is 
better?

Calibrate “Proportion" m odels 
for specific accident type

3-leg Database 
Divide accident data into 18 

different collision types

Apply Network Screening to 
rank for the top 20 sites

Compare the results

Apply “constant factor" to 
SPF for total accident to 

estimate the SPFs for 
specific accident type

Apply “Proportion" m odels to 
SPF for total accident to 

estimate the SP F s for 
specific accident type

Calibrate S P F s for specific 
accident type

Figure 5.1 -  M odelling D evelopm ent Process
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5.2 Data Assembly

In this part of the research, the Minnesota HSIS rural 3-leg and 4-leg TWSC 

intersection databases were used. Accidents were divided into 18 different collision 

types in the same manner as in Chapter Four. The statistical summaries of the 

Minnesota rural, 3-leg and 4-leg TWSC intersections are shown in Tables 5.1 and 5.2, 

respectively.

Table 5.1 - Statistical Summary of 3-leg TWSC Intersections for M innesota HSIS Database

Total # of Sites 2,033 (966 Used)*

Mean Entering AADT 5,435 (7,068)*

Total Collisions 2,497

Fatal/Injury Collisions 1,125

*Please refer to Section 5.3.3 for details.

Table 5.2 - Statistical Summary o f 4-leg TWSC Intersections for Minnesota HSIS Database

Total # of Sites 2,572(1,649 Used)*

Mean Entering AADT 4,512(5,582)*

Total Collisions 6,218

Fatal/Injury Collisions 2,823

*Please refer to Section 5.3.3 for details.

In this part of the thesis, only collision types with a minimum of 100 accidents were 

included for the modelling process because modelling types with too few accidents would 

reduce the accuracy of the results and would be moot since such types are not of interest 

in the SPF applications. Having eliminated all the collision types with less than 100 

accidents, only three types of single vehicle accident and four types of multi-vehicle 

accident were left for further analysis. Tables 5.3 and 5.4 show the remaining collision 

types with 100 or more accidents, along with their proportion, for Minnesota rural, 3-leg 

and 4-leg TWSC intersections.
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T able 5.3 -C o llis io n  Types w ith 100 or M ore Accident C ounts for 3-leg  T W SC  Intersections

C ollision  T yp e D efin ition #  o f  A ccidents Proportion
S in g le  V eh ic le  C ollision

6 Collision with fixed object 296 0.1185
8 Other single vehicle collision 102 0.0408
9 Overturn 152 0.0609

M u lti-V eh ic le  C ollision  I
21 Rear end 699 0.2799
24 Angle 742 ^ 0.2972
25 Sideswipe, same direction 133 0.0533
27 Other multiple vehicle collision 148 0.0593

T ota l Total Collision 2,497 1.0000

T able 5 .4  -C o llis io n  Types with 100 or M ore Accident C ounts for 4-leg T W SC  Intersections

C ollision  T ype D efin ition #  o f  A ccidents Proportion

S in g le  V eh icle  C ollision

8 Other single vehicle collision 529 0.0851

M u lti-V eh ic le  C o lision

21 Rear end 1,081 0.1739

24 Angle 2,996 0.4818

25 Sideswipe, same direction 347 0.0558

T ota l Total Collision 6,218 1.0000

The data show that single vehicle collisions seldom occur at TWSC intersections, which 

is quite logical because the majority of intersection-related accidents involve two or more 

vehicles.

5.3 Modelling Approach and Results

In the present context, the proper functional form o f modelling collisions by 

proportion is not known. Instead, a graphical method is introduced to determine the 

proper functional form for modelling collisions by proportion. For this, scatter plots
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were employed to identify the relationship between proportion of accidents and a 

candidate independent variable. Since this research is exploratory, AADT was the only 

such variable investigated, which seems reasonable because AADT typically explains 

more than 70% of the variation in accident occurrence. Next, various functions were 

selected to test the relationship between the dependent variable and AADT. To 

accommodate the need of generalized linear modelling (GLM), a suitable distribution 

was also necessary for the dependent variable (proportion of accident); this was achieved 

by using another graphical method known as the Normal Probability Plot, which enables 

modellers to assess the normality of the data. {15, 24)

5.3.1 Selection of Functional Forms

Suitable functional forms were selected after conducting a series of exploratory data 

analyses on the HSIS Minnesota rural, 3-leg and 4-leg TWSC intersections databases. 

Since the only independent variable used in this research is AADT, it is possible to use 

the scatter plots of proportion of accident vs. total entering AADT to explore several 

functional forms for the development of models. Nevertheless, it is unlikely that every 

collision type will make use of the same functional form equally well. For simplicity 

purposes, a common functional form was used for all collision types. As a departure 

point, gamma and power distributions were tested based on previous research indicating 

that these are the typical model forms used in accident modelling. The gamma and 

power functions are shown in Figure 5,2. The scatter plots for various collision types of 

Minnesota rural, 3-leg and 4-leg TWSC intersections are shown in Figures 5.3 and 5.4, 

respectively.
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)p=AADT

F igure 5.2a — P ow er Function

f(x)=orx'^

Chapter Five

p>i

ji-1

x=AADT

Figure 5.2b - G am m a Function

f ( x )= a x ^

Because a proper function is the primary determinant of a reliable model, it should 

be able to clearly explain the relationship between the dependent variable (proportion of 

accident) and the independent variable (AADT). The data points in most of the scatter 

plots show signs o f a reasonable fit to the two proposed functions. Therefore, both 

functions were selected to model collisions by proportion. The two chosen model forms 

are listed below:

Proportion of Accident=of(AADT/1000)^ (5.1)

Proportion o f Accident=a(AADT/1000)^'e^'''^^^‘°““' (5.2)

where A A D T  is the total entering AADT while a  and/? are the constants.
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5.3.2 Investigation of the Error Distribution for the Proportion of Specific 
Accident Types

In any generalized linear model, the response variable follows some kind of 

distribution (i.e. Poisson, binomial, gamma, or negative binomial). The distribution of 

the proportion o f accidents of specific collision types in this study is not known. By 

default the normal distribution was considered. But before making this assumption, the 

normal probability plot was applied to assess the normality of the data. Detailed 

analyses are shown in Appendix A. The normal probability plots from Appendix A 

reveal that accidents’ proportion follows the normal distribution reasonably well, which 

justifies the adoption of this assumption for the error distribution of the dependent 

variable.

5.3.3 Calibration Results

Following the determination of suitable model forms and a correct distribution for

fitting a GLM, calibration procedures were performed in the SAS software. Maximum 

likelihood was used in all parameter estimation, using the GENMOD procedure in SAS, 

as described in Chapter Four. The two models for proportion of accidents, as specified 

in Section 5.3.1, were estimated as a function of AADT.

Throughout the calibration process, only the sites with at least one accident for all 

specific accident types were included. If sites with zero total accidents were included, 

the results would be meaningless because one cannot determine the accidents proportion 

for the specific accident type by dividing zero with zero (i.e. 0 angle accident — 0 total 

accident). The equations below describe the sum of accident proportions following 

equations 5.1 and 5.2 respectively.
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^a,(A A D T /1000/' =1 (5.3)
1 =  1

=1 (5.4)
/=!

where i is the individual collision type. Having eliminated all the sites with zero 

accident for all specific accident types, only 966 and 1,649 sites were left for Minnesota 

rural, 3-leg and 4-leg TWSC intersections, respectively. This sum can also act as a 

check by adding all the proportion estimates from the models. Any sum greater or less 

than one indicates that a mistake has been made during the calibration process. The 

calibration results for Minnesota rural, 3-leg and 4-leg TWSC intersections, using both 

model forms, are shown in Tables 5.5, 5.6, 5.7, and 5.8.
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T able 5 .5  -  C alibration Results: M innesota 3-leg Rural TW SC  Intersections
M odel Form:

Pronortinn n f  A A T ^ T / i

C ollision
Type

Par. E stim ate S.E. P-value
M ean

O bserved
P roportion

M ean
P red icted

P roportion

C o n s tan t
P roportion

O bserved
C ounts

Type 6
Ina -1.2471 0.0891 <.0001

0.049 0.1345 0.1360 0.1185 296
P -0.5111 0.0695 <0001

Type 8
Ina -3.7008 0.2918 <0001

0.028 0.0361 0.0363 0.0408 102
P 0.2255 0.1360 0.0972

Type 9
Ina -1.7214 0.1239 <0001

0.026 0.0763 0.0747 0.0609 152
P -0.6101 0.1110 <.0001

Type 21
Ina -1.9085 0.1104 <0001

0.044 0.2646 0.2659 0.2799 699
P 0.3347 0.0496 <0001

Type 24
Ina -1.5352 0.1046 <.0001

0.004 0.2547 0.2548 0.2972 742
P 0.1006 0.0535 0.0602

Type 25
Ina -2.4492 0.1914 <0001

0.703 0.0642 0.0642 0.0533 133
P -0.1881 0.1173 0.1086

Type 27
Ina -2.8615 0.2565 <0001

0.007 0.0613 0.0613 0.0593 148
P 0.0424 0.1388 0.7597

Sum 0.8916 0.8931

T y p e  6  = C o l l i s io n  w i th  F ix e d  O b je c t
T y p e  8  = O th e r  S in g le  V e h ic le  C o l l is io n
T y p e  9  =  O v e r tu r n
T y p e  2 1  =  R e a r  E n d  C o l l i s io n
T y p e  2 4  = A n g le  C o l l i s io n
T y p e  2 5  =  S id e s w ip e ,  s a m e  d ir e c t io n
T y p e  2 7  =  O th e r  M u l t ip le  V eh ic le  C o ll is io n

= C o e ff ic ie n t  o f  D e te r m in a t io n  
A A D T  =  T o ta l E n te r in g  A A D T  
C  = C o n s ta n t  P r o p o r t io n  f o r  A l l  S i te s
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Table 5.6 — Calibration Results: Minnesota 3-leg Rural TWSC Intersections
Model Form:

Proportion o f Accident=ûr(AADT/lOOO)^ .̂ftcAADT/iooo)

Collision
Type

Par. Estim ate S.E, P-value
Mean

Observed
Proportion

Mean
Predicted

Proportion

C onstant
Proportion

Observed
Counts

Type 6

ina -1.2098 0.1033 <0001

0.056 0.1345 0.1331 0.1185 296pi -0.2287 0.2221 0.3031

P2 -0.0873 0.0693 0.2079

Type 8

Ina -4.3216 0.5771 <0001

0.006 0.0361 0.0364 0.0408 102pi 1.0849 0.6031 0.0721

P2 -0.120 0.0890 0.1772

Type 9

ina -1.7352 0.1186 <.0001

0.030 0.0763 0.0757 0.0609 152pi -0.6866 0.1199 <0001

P2 0.0247 0.0129 0.0560

Type 21

ina -2.0505 0.1531 <.0001

0.266 0.2646 0.2653 0.2799 699pi 0.4697 0.1092 <0001

P2 -0.0129 0.0103 0.2105

Type 24

ina -1.6268 0.1483 <0001

0.006 0.2547 0.2544 0.2972 742pi 0.2509 0.1664 0.1317

P2 -0.0224 0.0240 0.3500

Type 25

ina -2.5856 0.2697 <0001

0.005 0.0642 0.0637 0.0533 133pi 0.2562 0.4528 0.5715

P2 -0.0909 0.0924 0.3254

Type 27

ina -2.8306 0.2743 <0001

0.001 0.0613 0.0614 0.0593 148pi 0.0056 0.1921 0.9769

P2 0.0042 0.0148 0.7761

Sum 0.8916 0.8900

T ype 6  = C o ll is io n  w ith  F ix e d  O b je c t
T ype 8  = O th e r  S in g le  f e h ic le  C o llis io n
T ype 9  = O v e r tu rn
Type 2 1  = R e a r  E n d  C o llis io n
T ype 2 4  = A n g le  C o llis io n
T ype 2 5  = S id e sw ip e , sa m e  d ire c tio n
Type 2 7  = O th e r  M id tip le  V ehicle C o llis io n

= C o e ffic ie n t o f  D e te r m in a tio n  
A A D T  = T otal E n te r in g  A A D T  
C  -  C o n s ta n t P ro p o r tio n  f o r  A H  S ite s
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T able 5 .7  -  C alibration Results: M innesota 4-leg Rural TW SC  Intersections
M odel Form:

C ollision
Type

P ar. E stim ate S.E. P-value
M ean

O bserved
P roportion

M ean
P redicted

P roportion

C onstan t
P roportion

O bserved
C ounts

Type 8
Ina -2.3679 0.1108 <0001

0.002 0.0784 0.0784 0.0851 529P -0.1317 0.0756 0.0812

Type 21
Ina -2.3575 0.0887 <0001

0.028 0.1583 0.1596 0.1739 1,081
P 0.3481 0.0429 <.0001

Type 24
Ina -0.8202 0.0432 <.0001

0 0.4337 0.4337 0.4818 2.996
P -0.0109 0.0273 0.6888

Type 25
Ina -2.3778 0.1228 <.0001

0.002 0.0751 0.0752 0.0558 347
P -0.1568 0.0845 0.0634

Sum 0.7455 0.7469

T y p e  8  = O th e r  S in g le  V eh ic le  C o l l is io n
T y p e  2 1  ~  R e a r  E n d  C o l l i s io n
T y p e  2 4  =  A n g le  C o l l i s io n
T y p e  2 5  =  S id e s w ip e ,  s a m e  d ir e c t io n

Rr = C o e ff ic ie n t  o f  D e te r m in a t io n  
A A D T  = T o ta l E n te r in g  A A D T  
C — C o n s ta n t  P r o p o r tio n  f o r  A l l  S i te s

Table 5.8 -  C alibration Results: M innesota 4-leg Rural T W SC  Intersections
M odel Form:

Proportion o f  Accident=«(AA DT / 1000)^ /̂?,(aadt/iooo)

Collision
Type

P ar, E stim ate S.E. P-value
M ean

O bserved
Proportion

M ean
P red icted

P roportion

C onstan t
P roportion

O bserved
C oun ts

Type 8

Ina -2.3678 0.1122 <0001

0.002 0.0784 0.0784 0.0851 529p i -0.1325 0.1095 0.2264

P2 0.0002 0.0169 0.9927

Type 21

Ina -2.6411 0.1569 <.0001

0.039 0.1583 0.1584 0.1739 1,081p i 0.6759 0.1540 <.0001

P2 -0.0377 0.0197 0.0557

Type 24

Ina -0.8135 0.0445 <0001

0 0.4337 0.4337 0.4818 2,996
p i -0.0251 0.0366 0.4922

P2 0.0023 0.0038 0.5446

Type 25

Ina -2.3745 0.1214 <0001

0.002 0.0751 0.0752 0.0558 347
p i -0.1894 0.1112 0.0885

P2 0.0077 0.0148 0.6029

Sum 0.7455 0.7457

T y p e  8  =  O th e r  S in g le  V e h ic le  C o l l i s io n
T y p e  2 1  =  R e a r  E n d  C o l l i s io n
T y p e  2 4  = A n g le  C o l l i s io n
T y p e  2 5  =  S id e s w ip e ,  s a m e  d ir e c t io n

i f  = C o e ff ic ie n t  o f  D e te r m in a t io n  
A A D T  = T o ta l E n te r in g  A A D T  
C = C o n s ta n t  P r o p o r t io n  f o r  A l l  S i t e s
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At rural 3-leg TWSC intersections, the P-values are slightly better for model (5.1) 

since they are significantly smaller than the P-values for model (5.2) in most cases. 

However, the P-values reveal that the models for same direction sideswipe collision 

(Type 25) and other multiple-vehicle collision (Type 27) are not so good. The observed 

counts in both Type 25 and Type 27 show fewer than 150 accidents, compared to other 

collision types where the accident counts are relatively higher, and this may be the reason 

for the poor P-values.

The P-values for rural 4-leg TWSC intersections are slightly better for model (5.1) 

but less significant for angle collision (Type 24) and same direction sideswipe collision 

(Type 25). In contrast to the 3-leg models, both collision types have a large number of 

accident counts but both models are insignificant. Thus, the functional forms do not 

describe the dataset well and perhaps other functional forms should be considered for 

Type 24 and Type 25.

Of the two functional forms, model (5.1) is a better choice for modelling proportion 

by type for rural 3-leg and 4-leg TWSC intersections. The P-values indicate that the 

model for 4-leg TWSC intersections is not significant for one type of multi-vehicle 

collision (Type 24) but is quite good for single vehicle collision. However, both models 

have very small coefficients of determination for all collision types, indicating a weak 

relationship. Given that the exploratory nature of this project was to compare this 

method with the other two approaches, and not to determine an ideal model to describe 

accidents’ proportion for all collision types, model (5.1) was chosen for proceeding to the 

next stage.
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5.4 Comparison of Networking Screening Methods for Angle Collisions at Rural
Two-Way Stop-Controlled Intersections

In any traffic safety improvement smdy, one is interested in identifying sites which 

require attention for road safety treatments. For years, engineers have used the 

traditional screening techmques that rely on observed counts - a method now proven to be 

unreliable due to the fact that an accident is a random event. The randomness in 

collisions can cause misinterpretation of the safety of sites with relatively high or low 

accidents. In order to efficiently identify sites with promise of safety treatment, a 

screening method which is more reliable must be used.

The SPF screening approach, which had been documented in FHWA (22), was 

adopted and applied in this study. This approach is trustworthy but it requires extensive 

SPF development and the availability o f reliable traffic volume data. Acquiring these 

can be costly, time consuming, and difficult. Therefore, an alternative is sought to 

overcome such shortfalls. This potential network screening approach known as the 

collision pattern recognition method or the method screening for high proportions of 

specific accident types was developed by Hey decker and Wu (9), which is based on the 

Bayes’ theorem. The theoretical framework for both SPF and collision pattern 

recognition methods will be discussed in the following sections.

5.4.1 Potential for Safety Improvement (PSI) Method for Intersections

The purpose of network screening is to identify sites with promise for detailed 

engineering studies (DES). Traditionally, engineers have selected ha2ardous sites for 

road improvement purely based on the observation of high accident occurrences within a 

short period of time. Nevertheless, this traditional method is biased for safety
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estimation for reasons explained earlier. Recently, two alternative ways to identify sites 

with promise which are based on EB framework were documented by FHWA. (22)

1) PSI based on Expected Accident Frequency

2) PSI based on Excess Accident Frequeney

The chief advantage of these methods is that they remove the Regression-To-Mean (RTM) 

bias. However, the main disadvantage of these methods is that they require a database 

which contains reliable information of AADT as well as SPFs.

Specifically, the first method ranks sites based on the EB expected accident 

frequency, X, whereas the second method ranks sites using the difference between the EB 

expected accident frequency, X, and the SPF predicted accident frequency, k \

Excess ~ X - K  (5.5).

The procedures for calculating the PSI are very straightforward and both methods follow

similar procedures except for the fact that there is an additional step in calculating the

excess accident frequency. Stepwise, the procedures for the PSI methods are listed 

below.

Step 1: Determine the Safety Performance Function and estimate the SPF model

parameters. Calculate the predicted accidents for each year (y = 1, 2 ,..., Y)

ŷ(Type) = ^̂ '̂iType) {Major AADT, Miuor AADT} (5.6)

where /c y is the predicted accident frequency with unit accidents/year, and the subscript 

Type denotes the collision types.
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Step 2: Use the model in Step 1 to calculate the yearly correction factors, Cy, for years

(y = 1,2,

r  -  ’̂ y(Type)'-'y(Type) ~  (5.7)
'‘̂KTy-pe)

Step 3 : Calculate the EB weight.

1
= ■

1 + d  Y a t  (5.8)
Type Y

I
v = l

where d  is the overdispersion parameter and w is the EB weight for the target collision 

type.

Step 4: Calculate the EB adjusted expected number of accidents, X u  for the target type

o f collision during Year 1 :

S  ̂ y(Type)
^UTypa) ~ T̂ypê l̂ Type) + ~ ̂ Type)~ (5-9)

'^^^y(Type)
y = l

where Ky is the observed accident count in year_y.

Step 5: Calculate Xy for all other years using the yearly correction factor, Cy, for the

target collision type.

^raype)~ ^UTypef-Ydype) (5.10)

The variance ofYy is obtained by.

Cya )
Var{XY^Jyp^^) =  Xy^Pyp^){\.-yVType)~T (5 .11)

2 ^ ^ y ( T y p e )
y= \
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If sites were indeed ranked based on expected accident frequency, the results obtained 

from Step 5 would then be used for ranking. The expected accidents Xy(Type) are ranked 

in descending order. If sites were to be ranked based on the excess accident frequency, 

the investigator should then follow Step 6.

Step 6: Calculate the excess accident frequency and the variance of the target collision

type:

ExcesSŷ -j-yp̂  ̂= Xyyi-yp̂ ) ~̂ Y(Type) (5-12)

and

Var{ExcesSŷ Pyp̂ )̂ = Var{Xy^y^ ;̂) + -^{Ky^yyp^^)- (5.13)
<̂Type

where Excess is the excess accident frequency. The sites are ranked using the results 

obtain from Step 6, PSI = T̂ (Type) -  K ydypo-

5.4.2 Method of Identifying Sites with High Proportions of Specific Accident Types

As discussed above, there are two shortfalls for the PSI method. Because it 

requires an SPF and traffic volumes, Heydecker and Wu (P) have developed an 

alternative screening approach which can avoid this need. The Bayesian method is now 

used to determine the probability of a specific collision types (i.e. angle collision) by 

combining two sources of information - the range of frequency of occurrence for the 

specific collision type, and the counts of specific accident type.
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Mathematically, the proportion of a collision type at a site / can be represented by 

the binomial distribution:

/(x,. I %, ,#) = (5.14)

where is the binomial coefficient, defined by:

f  n \ n\
%!(»-%)!

where is the count of target accident, with total accident «, and the mean proportion 6i 

at a site. The variation between different sites is assumed to follow the Beta 

distribution:

where

where a and ^  are the parameters of the prior distribution (Eq. 5.16) which can be 

determined by fitting the observations data from the reference group (x, and nî) into the 

Beta distribution.

There are several reasons for choosing the beta distribution. First, the beta 

distribution can cover wide range of shapes. Second, it is a conjugate prior for the 

binomial distribution parameter 6 which makes the integration process of the Bayes’ 

theorem more convenience. Conjugate prior refers to the selection of prior distribution 

which makes the posterior distribution to have the same algebraic form as the prior. In 

other words, the posterior distribution acts as an update version of the prior distribution. 

The mean and variance of the Beta distribution are given by:
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E{e) ^  (5.18)
a-^ P

Var{6)=--------- ^ ---------- ^ E{0){\-/^  (5.19)
{a + p f { a  + p  + \) a  + p  + \

The binomial distribution, which explains the proportion of a specific accident type 

at a site can be combined with the beta distribution, which describes the variation 

between similar sites, to form an unconditional Binomial-Beta distribution.

h{x,\n^,a,P) =
^ n \ B{a + x.,p + n - x p  
^ x j  B{a,P)

Note that the parameter 6, which is unknown, is eliminated after the combination.

It is now possible to combine the prior Beta distribution (Eq. 5.16) with the site 

specific collision data («/, xi) for each site to obtain the posterior distribution of G using 

the Bayes’ theorem, which is defined as;

h { x , \ n „ a , p )   ̂ ^

where the subscripts a denotes after (posterior) and b denotes before (prior). The 

adjusted posterior Beta distribution becomes
o ff+ .r ,  -1  - . t ,  -1

= — (5.22).

To further simplify Equation 5.22, two new parameters a ’ and P’ are introduced:

a ' = a  + x, (5 23)

and

P' = p  + n,-x^  (5.24)
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By substituting Equations 5.23 and 5.24 into Eq. 5.22,

It is clear that Equation 5.25 is now the updated beta distribution, which is very similar to 

Equation 5.16. In fact, one of the reasons for choosing Beta prior at the outset is that the 

posterior distribution will then result in an updated version o f the prior distribution. 

Mathematically, this is known as the conjugate priors. The posterior estimate o f is 

obtained by

= ^  (5.26)

and the variance of each site is given by

To rank the sites using these results, a ‘pattern score’ is introduced. As for network 

screening, sites are ranked in descending order of the pattern score, defined as the 

probability o f expected value of 6i being greater than the median value of 0m from the 

beta prior distribution. A pattern score of one indicates that the given site is 

experiencing a relatively high proportion of a certain accident type. Conversely, a 

pattern score of zero implies the opposite.

= (5.28)

where 0m is written as

1
jg {0 \a ,/3 )d 0 ^7 T  (5.29)

In this thesis, and following the lead of Heydecker and Wu, n: is assumed to be 0.5, which 

is the median value of the beta prior distribution.
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The posterior distribution can be estimated by the method of maximum likelihood — 

a very simple idea that yields complicated equations. The likelihood function for Eq. 

5.20 can be expressed as:

L, = (5.30).

The log-likelihood function is used to simplify this equation:

log(Z,.) = log ' +\og[B{a + x ,,p  + n,-x^)]-\og[B{a,p)] (5.31)

Parameters a and ^  are estimated by maximizing the log-likelihood function. Note that

the first component on the right hand side of the Equation 5.31 can be removed since for

each site it is a constant. By applying the beta function into Equation 5.31, the

components on the right hand side of Equation 5.31 become:

\og[B{a + X,, + «, -  X , )] = log[r{a + %,)] + log[f (/) + n,. -  x, )]
- io g [ r ( a +/?+«,)]

and

log[5(a , /?)] = log[r(a)] + log[r(/?)] -  logfffcr + /5)] (5.33).

Substituting equations 5.32 and 5.33 into Eq. 5.31, the log-likelihood function becomes,

log(Z, ) = log[r (or + X , )] + log[r iP + n , -  x, )] -  log[f (or + /? + « J]
-  log[5(or, P)\ -  log[f(or)] -  log[f(y9)] + log[r(or + /?)]

This expression can be maximized using the Solver tool in Microsoft Excel to obtain the 

beta prior estimates of a and p. {14)
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5.5 Application to Minnesota HSIS Data

Before proceeding to the next step, a recapitulation of the three different approaches 

to estimating SPFs would be useful. They are represented by the capital letters A, B and 

C.

A) Using data and negative binomial regression to directly estimate the SPF for a 

specific accident type.

B) Applying a constant factor to the SPF for all accident types combined to 

estimate the SPF for the specific accident type.

C) Applying a proportion model to the SPF for all accident types combined to 

estimate the SPF for the specific accident type.

Both PSI screening methods were applied to the angle collision data for Minnesota rural,

3-leg and 4-leg TWSC intersections to test the accuracy and sensitivity the results from 

the three approaches to developing the SPFs. The expected accident frequency for the 

PSI method was established as the reference to compare with the other two screening 

methods the PSI based on the Excess Accident Frequency and the High Proportion 

Screening Method. Statistics for both the databases and the angle collisions are listed in 

Tables 5.9 and 5.10 respectively.

Table 5.9 -  Sum m ary o f  M innesota TW SC  D atabases

T ype o f  S ite # o f  Sites Years #  o f  A ccidents

Rural, 3-leg TWSC Intersections 2,033 1995-1999 2,497

Rural, 4-leg TWSC Intersections 2,572 1995-1999 6,218

Table 5.10 -  Sum m ary o f  Angle C ollision for M innesota T W SC  Intersections

O bserved Target Accidents O bserved Proportion

Rural, 3-leg TWSC Intersections 742 0.2972

Rural, 4-leg TWSC Intersections 2,996 0.4818
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Three most common forms of SPFs for intersections were selected to test the fitting 

of accident data. Both GOF statistics and CURE plots were used to select the best 

fitting model to proceed with the networking screening study. The SPF parameter 

estimates for all three models are shown in Tables 5.11 and 5.12, for 3-leg and 4-leg as 

for total and angle accidents, respectively.

Table 5.11 — SPF Parameter Estimates for Minnesota Rural 3-leg TW SC Intersections

Collision

Type
Par. Estimate S.E. P-value k Deviance Chi-Square

Observed

Counts

Model I: A c c / y i =  A A D T ^ a j , ,  + A A D T ^ , ,

Total

Accident

Ina -8.7944 0.3540 <0001
1.1798 0.9153 1.1084 2,497

P 0.8687 0.0416 <.0001

Angle
Ina -11.8868 0.6492 <0001

2.6614 0.5252 0.9976 742
P 1.0820 0.0753 <0001

Model II: A c c / y i = o r ( A A D T , 4, j „ A A D T „ „ ) ^

Total

Accident

Ina -7.3506 0.2984 <.0001
1.2228 0.9189 1.1490 2,497

P 0.4098 0.0205 <.0001

Angle
Ina -10.4125 0.5383 <.0001

2.5884 0.5289 1.0598 742
P 0.5315 0.0364 <.0001

Model III: Acc/yr=a(AADT„.j„, ) '' (AADT„j,„ ) *

Total

Accident

Ina -8.7565 0.3398 <.0001

1.1123 0.9186 1.1194 2,497pi 0.7103 0.0406 <.0001

P2 0.2325 0.0279 <.0001

Angle

Ina -11.9309 0.6260 <0001

2.4334 0.5283 1.0174 742pi 0.8486 0.0722 <.0001

P2 0.3499 0.0483 <.0001
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Table 5.12 -  SPF Param eter Estim ates for M innesota R ural 4-leg TW SC  Intersections

C ollision

lype
Par. Estim ate S.E. P-value k D eviance C hi-Square

O bserved

C ounts

Model I: A cc/yi=a(A A D T „.^„+A A D T M .„)"

Total

Accident

Ina -9.2752 0,2562 < 0001 0.83

90
1.0248 1.1344 6,218

P 1.0198 0.0307 <0001

Angle
Ina -10.0197 0.3510 < 0001 1.42

56
0.8633 1.1005 2,996

P 1.0217 0.0420 <0001

Model II: A cc/yi=a(A A D T M ,j„A A D T ^„,)"

Total

Accident

Ina -8.7473 0.2162 < 0001 0.70

80
1.0131 1.0370 6,218

P 0.5583 0.0151 < 0001

Angle
Ina -10.0197 0.3023 < 0001 1.14

67
0.8552 1.0367 2,996

P 0.5954 0.0209 <.0001

Model III: Acc/yr=tz(AADT^,j,, Y' (AADT^^„, Ŷ -

Total

Accident

Ina -9.1266 0.2347 < 0001
0.69

34
1.0160 1.0552 6,218pi 0.6614 0.0290 <0001

P2 0.4826 0.0232 < 0001

Angle

Ina -10.0161 0.3242 < 0001
1.14

71
0.8554 1.0365 2,996pi 0.5911 0.0393 < 0001

P2 0.5986 0.0327 < 0001

The CURE plots for the total accidents models are shown in Figures 5.5 and 5.6 for 

both 3-leg and 4-leg TWSC intersections. Likewise, the CURE plots for angle collision 

models are shown in Figures 5.7 and 5.8, respectively. The statistics and CURE plots 

reveal that Model III is the best choice to model accident frequency for both 3-leg and

4-leg rural TWSC intersections. Thus, Model III was chosen to combine with the PSI 

method for network screening.
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Figure 5.5 -  The CURE Plots o f  Total Accidents for 
Three Different Functional Forms 

(M innesota Rural 3-leg TW SC Intersections)

CURE Plot for 3U gTot«l Accid«ai 
Punctton t l  F onn M1

1300000

lOODOOO

300000

1
I 30(0013000

A A D T M qor

Figure 5.6 -  The CURE Plots o f  Total Accidents for  
Three Different Functional Form s 

(M innesota Rural 4-leg TW SC Intersections)
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Figure 5 .7  -  The CURE Plots o f  Angle Accidents for 
T hree D ifferent Functional Forms 

(M innesota R ural 3-leg TW SC Intersections)
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Figure 5.8 -  The CURE Plots o f  Angle Accidents for 

Three D ifferent Functional Form s 
(M innesota Rural 4-leg TW SC Intersections)
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For each dataset, the two PSI methods and the high proportion method were applied 

to screen for the top 20 sites that require attention. The beta prior distributions were 

calibrated for angle collision using the method of maximum likelihood. Table 5.13 

shows the beta prior estimates for Minnesota rural, 3-leg and 4-leg TWSC intersections. 

The results of the top 20 sites ranked for both screening methods are listed in Appendix 

B.

Table 5.13 -  M axim um  Likelihood Beta Prior Estimates for M innesota Rural, TW SC Intersections

Type o f  Site Observed

Proportion

Total

Sites

a E(0) var(0)

Rural, 3-leg TWSC Intersections 0,2972 2,033 1.6721 4.3581 0.2773 0.0285

Rural, 4-leg TWSC Intersections 0.4818 2,572 4.8955 5.5944 0.4667 0.0217

5.6 Comparison of the Screening Results

Using the PSI method based on expected accident frequency as a reference point for 

a screening method, the results of the other two methods were sorted by types as listed on 

Tables 5.14 and 5.15, for 3-leg and 4-leg, respectively.

As for 3-legged rural TWSC intersections, the PSI method based on expected 

accident frequency shows that applying a constant factor with SPF for total collision 

yielded 16 of 20 sites which were also ranked top 20 by using the SPF for angle collision 

from the reference group. As well, applying the proportion model with SPF for total 

collision also yielded 17 of 20 similar sites. Likewise, the PSI method based on the 

excess accident frequency reveals that using a constant factor or proportion model with 

the SPF for total collision both yielded 15 of 20 sites which were also ranked in the top 

20 using the SPF for angle collision from the reference group.

7 2



Chapter Five

Table 5 .14 -  R anking Results by Different Types o f  Method for 3-leg TW SC Intersections

D atabase  
A ccident Type 
# o f  S ites Ranked

H SIS, M innesota  
Angle Collision  
2,033

AADT
Observed

Expected A ccident 

Frequency

Excess A ccident 

Frequency

High

P roportion
Counts M ethod

1

Method

2

Method

3

M ethod

1

M ethod

2

M ethod

3
M LE

Site No. M ajo r M inor
Total

E ntering
Total Angle R ank

281 4.300 3.755 8,055 19 15 1 1 I 1 1 1 1

2017 16.750 2.294 19.044 9 6 2 4 3 6 6 6 9

1355 13.825 1.177 15.002 17 8 3 2 2 2 2 2 21

97 18.800 1.285 20.085 8 6 4 5 4 7 7 7 5

646 14.400 3.922 18.322 12 5 5 9 9 11 12 11 70

277 10,300 2.592 12.892 15 7 6 6 6 4 5 4 28

1371 11.700 4.081 15.781 14 5 7 10 10 12 15 13 104

103 26.700 267 26.967 12 6 8 8 7 8 8 8 29

488 13.000 5.140 18.140 7 4 9 17 16 25 26 24 42

489 12.900 12.900 25.800 3 3 10 21 20 116 59 57 22

1078 8,275 1.255 9.530 16 9 11 3 5 3 3 3 7

84 7.125 2.307 9,432 16 8 12 7 8 5 4 5 15

202 7,750 6.644 14.394 7 5 13 16 15 13 19 18 12

497 14.500 1.441 15.941 8 5 14 11 11 14 16 14 17

2018 14.900 1.071 15.971 7 5 15 13 13 17 17 16 12

201 16.700 679 17.379 9 5 16 15 14 18 18 17 27

102 12.300 709 13.009 14 6 17 12 12 10 10 10 45

107 26.700 679 27.379 6 3 18 26 22 52 53 48 71

1848 10.275 3.063 13.338 6 4 19 23 21 23 28 26 25

645 14.722 2.722 17.444 5 3 20 30 28 50 47 43 64

# o f S m i l a r  S l U ; s  R a n k e d  b y  t h e  R e f e r e n c e  G r o u p - 16/20 17/20 15/20 15/20 15/20 8/20

M ethod I: Using SPF fo r  angle collision
M ethod 2: Combine a constant proportion with SPF fo r  total collision 
M ethod 3: Combine a proportion model with SPF fo r  total collision 
MLE: Maximum Likelihood Estimation
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Table 5.15 -  R anking Results by Différent Types o f  M ethod for 4-leg TW SC Intersections

D atabase  
Accident Type 
#  o f  Sites Ranked

HSIS, M innesota  
Angle Collision  
2,572

AADT
Observed

Counts

Expected Accident 

Frequency

Excess A ccident 

Frequency

High

P roportion

Method

1

Method

2

M ethod

3

M ethod

1

Method

2

M ethod

3
M LE

Site No. M ajor M inor
Total

E ntering
Total Angle R ank

247 25.400 612 26.012 32 19 1 1 1 1 3 1 56

122 16.225 3.445 19.670 27 16 2 3 2 14 15 13 72

146 4.825 1.760 6.585 29 19 3 2 3 2 1 2 17

925 10.600 1.988 12.588 24 16 4 5 5 5 5 5 21

1405 12.100 1.000 13.100 19 17 5 4 4 4 4 4 1

391 8.700 3.140 11.840 19 15 6 7 7 11 10 9 3

744 7.100 6.393 13.493 22 14 7 10 10 26 19 16 50

1413 2.263 1.880 4.143 32 20 8 6 6 3 2 3 28

270 23.200 1.752 24.952 22 14 9 8 8 21 28 23 50

250 23.300 1.615 24.915 24 14 10 9 9 19 23 20 99

222 17.000 1.366 18.366 18 14 11 12 11 12 14 14 6

261 21.550 1.936 23.486 20 13 12 14 14 32 32 30 38

1335 7.325 1.632 8.957 24 15 13 13 13 7 6 6 52

1888 13.600 2.188 15.788 21 13 14 15 15 22 22 21 62

257 16.600 597 17.197 24 15 15 11 12 6 7 7 52

706 15.250 2.591 17.841 24 12 16 17 17 42 46 33 613

118 12.000 874 12.874 18 14 17 16 16 10 11 11 6

700 12.950 1.154 14.104 24 12 18 20 19 17 20 22 613

1407 19.750 1.414 21.164 14 11 19 22 21 36 50 37 14

1757 2.358 1.825 4.183 22 15 20 19 20 8 9 10 20

# o f  S i m i l a r  S i t e s  R a n k e d  b y  t h e  R e f e r e n c e  G r o u p - 19/20 19/20 14/20 14/20 14/20 7/20

Method 1: Using SPF fo r  angle collision
Method 2: Combine a constant proportion with SPF for total collision 
Method 3; Combine a proportion model with SPF for total collision 
MLE: Maximum Likelihood Estimation
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Similar outcomes were found for 4-leg rural TWSC intersections. For one thing, 

the PSI method based on expected accident frequency shows that applying a constant 

factor with the SPF for total collisions yielded 19 of 20 sites which were also reinked in 

the top 20 by using the SPF for angle collision from the reference group. Applying the 

proportion model with SPF for total collision also yielded 19 of 20 similar sites. 

Likewise, the PSI method based on the excess accident frequency suggests that applying 

a constant factor or proportion model with the SPF for total collision both yielded 14 of 

20 sites which were also ranked in the top 20 using the SPF for angle collision from the 

reference group. In addition, the ranking results obtained from the high proportion 

method seem to be very different from the results obtained from the PSI methods, which 

yielded 8 of 20 and 7 of 20 sites for 3-leg and 4-leg TWSC intersections respectively. It 

is not surprising to observe a difference in ranking using the high proportion method 

because the method itself does not depend on AADT.

Based on the sites and accident types considered for comparison, the ranking results 

suggest that whether the factor (proportion of accident type) is constant does not 

influence the network screening results significantly. Also, the ranking results obtained 

by applying a constant factor to the SPF for total collision is very close to the one 

determined by the SPF for angle collision.
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CHAPTER SIX

DETAILED INVESTIGATION OF METHODS FOR ESTIMATING THE 
EXPECTED NUMBER OF PROPERTY DAMAGE ONLY ACCIDENTS

6.1 Background and Introduction

Safety performance functions have been widely used in many applications for years. 

More often than not, an SPF provides a good measure of safety. However, using an SPF 

to estimate PDG accidents may be generate uncertainty due to several reasons. First, an 

SPF for PDG accidents may be based on accident count data with relatively large errors 

developed during the data collection stage. This is because these counts are based on 

police records, which may be quite inaccurate. Invariably, police reports may only 

include a portion of the PDG accidents because not all PDG collisions are reported to the 

police. Second, the laws state that an accident must be reported to the police only if the 

damage sustained is over a certain amount. For example, Minnesota requires drivers to 

report a collision to the police if the damage caused is over $1,000 USD. Therefore, the 

PDG data do not include records under this amount. As a result, the collision data for 

PDG accidents is unreliable due to the inconsistency in reporting because of inflation, 

and biased in estimating PDG accidents that is over $1,000 USD. In SafetyAnalyst, the 

expected number of PDG accidents is estimated by subtracting the difference between 

SPF estimates for total accidents and injury accidents. This method of calculating PDG 

estimates may seem inaccurate if the PDG data consist of the errors noted. Because of 

these difficulties, there is a need of detailed investigation on PDG modelling to assess 

whether modelling PDGs using the method suggested in SafetyAnalyst is indeed reliable.
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6.2 Em pirical Bayes Procedure

For this investigation, the EB method, proposed by Hauer, is used to estimate safety. 

The EB procedure is described below.

Step 1; Calibrate the SPF for total accidents and determine the SPF predicted accidents, 

K ,  for each year (y=l, 2... Y).

K ^= a {A A D T f  (6.1)

Step 2: Calculate the yearly correction factor, Cy.

= ~T  (6.2)

Step 3; Calculate the EB weight, w, using the SPF predicted accidents (K i, K2... Ky).

1
w =  ■

(6.3)
>■=1

where k is the overdispersion parameter of the model.

Step 4: Determine the EB-adjusted expected number of accidents, X\, for year 1.
Y

EB(YJ = + (1 -  (6.4)
E q
>-i

Step 5 : Calculate the EB-adjusted expected number of accidents for y= Y, the final year

for which the data exist for the site.

m { X y ]  = X,Cy (6.5)

The EB procedure describes above was used in both schemes in this study.
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6.3 Methodology

The objective for this chapter is to compare the accuracy of two modelling 

techniques for PDO accidents for road segments. Generally speaking, the negative 

binomial regression and “yearly multipliers” methods follow similar calculation and 

validation procedures, but are different in the calibration process.

On one hand, the negative binomial method uses all four years of data to obtain 

different alphas for each year. Throughout the calibration process, the parameter ‘year’ 

was set as a class variable. This is illustrated by Equation 6.6,

K{accidents / mile) = a^.^^^(AADT)^ (6.6)

where «year is the yearly alphas and is a constant. Different alphas are generated from 

SAS for each year, which are then applied to derive the Empirical Bayes (EB) PDO 

estimates. On the other hand, the “yearly multipliers” method uses the four years’ 

accident data to calculate the ratios of the observed and the predicted accident coimts for 

each year. These yearly multipliers are then applied to the SPFs calibrated from all four 

years of data, such that:

/c{acciderjts / mile) = [Multiplier]x[a{AADT)^ ] (6.7)

where « and yî are the constant. These yearly multipliers act like the alphas in part one, 

and are implemented with the SPFs calibrated from all years of data to derive the EB 

estimates of PDO accidents. Finally, comparisons of the two methods are made based 

on the accuracy of the results.
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6.3.1 Scheme One: Negative Binomial Regression Using Generalized Linear Model

The GENMOD procedures in SAS were performed to calibrate the negative binomial 

SPFs for total, injury, and PDO accidents respectively and the variable ‘year’ was set as a 

class variable. Different yearly alphas were generated from SAS and these yearly alphas 

were then applied to the SPFs to obtain the EB estimates of PDO accidents. Three 

methods are introduced to arrive at the PDO estimation:

A) The SPF estimates for PDO accidents were calculated by applying the corresponding 

yearly alpha:

SPFp^o = Predicted { ( 6 . 8 )

where K is the expected accident frequency. Subsequently, the EB procedure was 

then performed to obtain the EB estimates.

B) The PDO estimates were computed by subtracting the SPF for injury accidents from 

SPF for total accidents:

SPF,,,, -SPF ,.,^  = Predicted >EB{Ac}p^ (6.9)

where a is the expected accident frequency. Then EB procedure was then

performed to obtain the EB estimates.

C) The PDO estimates for both total and injury accidents were determined from the 

corresponding SPFs;

SPF,„, = Predicted (6.10)

SPF,,Predicted ( 4 . ^  (6.11)
“ In ju iy
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Next, the EB estimates for total and injury accidents were calculated individually. 

Last, the EB estimates for PDO accidents were determined by subtracting the EB 

estimates of injury accidents from the EB estimates of total accidents.

E B {^ },_ ,-E B {4m ju^  =EB{4pDo (6.12)

These EB predictions for PDO accidents were obtained from two years of data for the 

three methods and were compared with the observed accidents from the two subsequent 

years using various GOF measures. The scheme for this methodology is illustrated in 

Figure 6.1.

Method 1: 
Alpha X SPFppQ

Compare the 98-99 EB 
estim ates from the 3 

methods with the 98-99  
observed counts

Method 2: 
(Alpha X SPFt„,3 , ) 
(Alpha X SPF|„j^^)

Method 3: 
(Alpha X SPF^^^i ) 
(Alpha X SPF„j,^)

Calculate EB 
estim ates of PDO for 

98-99

Calculate EB estimates 
of PDO for 98-99

Calculate EB estim ates 
of Total & Injury 

Accidents then subtract 
them to get EB estim ates 

of PDO for 98-99

Calibrate SP F s for Total, Injury & 
PDO accidents using all four 

years of accident data 
(“Year” set as a Class Variable)

Fig. 6.1 -  M ethodology for the Class Variable Regression
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6.3.2 Scheme Two: Apply Multiplier to the SPF — “Yearly Multipliers" Method

The second method involves the calibration and use of the total, injury and PDO 

SPFs. These SPFs were calibrated using the GENMOD procedure in SAS and all four 

years o f accident data. Then, yearly multipliers were calculated for total, injury and 

PDO accidents as the value of the observed accident counts divided by the predicted 

accidents as shown in Equation 6.6.

^  Observed Counts
Multiplier^ =   (6.13)

^E xpected  Accidents

where i is the total number of sites and Y is the year (i.e. 1995). Again the dataset was 

subdivided into the two earlier years and two later years. The first two years were used 

for prediction purposes and the last two years of the data served as the observed accident 

counts for comparison. These multipliers were then applied to the SPFs to obtain the 

EB estimates o f PDO accidents for the two later years. Based on the EB estimates for 

PDO accidents, comparisons of the following three different methods were made.

A) The SPF estimates for PDO accidents were calculated by applying the 

predetermined yearly multipliers:

(Multipier) x SPFp^o = Predicted {/cjpgQ — > EB{/c}poo (6.14)

where k is the expected accident frequency. Then the EB procedure was 

performed to obtain the EB estimates.

B) The SPF estimates for PDO accidents were computed by subtracting the SPF 

estimates for injury accidents from the SPF estimates for total accidents:
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(Multipier) xSPFi-otai -  (Multipier) x = Predicted {Ar}pDo
(6.15)

PDO ^ I PDOPredicted { x } ^  _aiü»!ïiL^EB{Ar}

where k. is the expected accident frequency. As before, the EB procedure was 

used to determine the EB estimates.

C) First, the SPF estimates for the total and injury accidents were calculated

respectively by applying the multipliers with the SPFs;

(Multipier) x S P F t „ , 3 | = Predicted eb  Procedure ( 6 . 1 6 )

(Multipier)xSPF^j^ = Predicted he Procedure >e B{;c},„.^ (6.17)

where /c is the expected accident frequency. The EB estimates for total and 

injury accidents were calculated individually. Then, the EB estimates for PDO 

accidents were determined by subtracting the EB estimates of injury accidents from 

the EB estimates of total accidents.

EB { -  EB { /c} = EB { ( 6 . 1 8 )

The PDO estimates obtained from the two years of data for the above three methods were 

compared with the observed counts for the two subsequent years using various goodness 

of fit statistics. The scheme for this method is shown in Figure 6.2.
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Calculate Yearly 
Multipliers for 95-99

Method 3: 
(Multiplier x SPFy,^, ) 

and
(Multiplier x SPF,^,^^)

Method 2: 
(Multiplier xSP F ^ g,,,)- 
(Multiplier X SPF,

Method 1 : 
Multiplier x SPFp^Q

Calibrate SPFs for 
Total, Injury & PDO 

accidents using all four 
year of accident data

Compare the 98-99 EB 
estim ates from the 3 

methods with the 98-99 
observed counts

Calculate EB 
estim ates of PDO for 

98-99

Calculate EB 
estim ates of PDO for 

98-99

Calculate EB estim ates 
of Total & Injury 

Accidents than subtract 
them to get EB 

estim ates of PDO for 
98-99

Fig. 6.2 -  M ethodology for the Yearly M ultipliers M ethod

6.4 Application to Minnesota Rural 2-lane Undivided Road Segments

The negative binomial regression and “yearly multipliers” schemes were applied 

following similar procedures and the three methods to derive EB estimates for PDO 

accidents, using the HSIS Minnesota rural 2-lane undivided road segments database. 

Four years of accident and traffic data, from 1995-1996 to 1998-1999, were used to 

estimate SPFs and the corresponding EB estimates. The Minnesota database was 

divided into two. The 1995-1996 accident data were used to obtain the EB estimates, 

whereas the 1998-1999 accident data were treated as observed counts to compare with the 

EB estimates based on the 1995-1996 data.

83



___________________________________ _Chapter Six

6.4.1 Development of Safety Performance Functions for Scheme One

Safety performance functions were developed from the HSIS database adopting the 

GENMOD procedures in SAS. The calibration methods follow the same GENMOD 

procedures as described in the previous chapter. In the same manner, SPFs were 

calibrated in the simplest functional form with AADT as the only independent variable; 

however, this time the variable ‘year’ was used as a class variable, as shown in Equation 

6 . 12.

K{accidents / mile) = /  {AADT) = a^.^^^{AADTŸ (6.19)

SPFs for total, injury and PDO accidents were calibrated and the SPF parameter estimates 

are shown on Table 6.1.

Table 6.1 -  Schem e One; SPF Param eter Estim ates for M innesota Rural 2-lane Undivided H ighw ays

in (CCi99s )  

(S.E.)

In (<*1996)

(S.E.)

In (<*1998)

(S.E.)

In ((* 1999)  

(S.E.)
P

(S.E.)

k

Total -7.4128
(0.0224)

-7.3050
(0.0220)

-7.5030
(0.0223)

-7.6315
(0.0511)

0.8877
(0.0066)

0.6841

Injury -7.6838
(0.0319)

-7.6143
(0.0314)

-7.7768
(0.0318)

-7.9557
(0.0726)

0.7973
(0.0093)

0.6214

PDO -8.2216
(0.0281)

-8.0910
(0.0275)

-8.3117
(0.0280)

-8.4423
(0.0650)

0.9283
(0.0084)

0.8777

* S . E . s t a n d s  f o r  s t a n d a r d  e r r o r

These parameters were used to calculate the expected accidents for each site. The 

estimates of the overdispersion parameter, k, were used in the EB estimation for each of 

three methods introduced in Section 6.3. The EB procedure is outlined in Section 6.2.

6.4.2 Development of Safety Performance Functions for Scheme Two

Again, SPFs for total, injury, and PDO collisions with AADT as the only covariate 

were calibrated using the GENMOD procedures in SAS. The estimated parameters are
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shown in Table 6.2. Note that the estimates of are quite different from those in Table 

6 . 1.

Table 6.2 — Schem e Two: SPF Param eter Estim ates for M innesota Rural 2-lane U ndivided H ighw ays

M odel Form: /c(accidents / mile ! year)  = a {A A D T Ÿ

In a
(S.E.)

f i
(S.E.)

k

Total -8.0658 0,9718 0.6033
(0.0566) (0.0079)

Injury -8..2071 0.8588 0.4752
(0.0713) (0.0099)

PDO -8.8996 1.0176 0.7608
(0.0702) (0.0097)

* S . E . s t a n d s  f o r  s t a n d a r d  e r r o r  

The yearly multipliers calculated by dividing the observed accident counts in each year 

by the expected accident counts derived from the SPFs are presented in Table 6.2. Table 

6.3 displays the yearly multipliers for each of the collision types.

Table 6.3 -  Yearly M ultipliers for Individual Collision Type

1995 1996 1998 1999

Total 1.0295 1.1415 0.9288 0.6686

Injury 1.0902 1.1650 0.9850 0.7371

PDO 1.0051 1.1422 0.9086 0.6467

The SPFs and the yearly multipliers were used to calculate the expected accident 

frequency for the first two years, while the overdispersion parameter, k, was used to 

derive the EB estimates as shown in Section 6.2.

6.5 Interpretations of the Results

The overall GOF measures for each method for both schemes were calculated and

are listed in Tables 6.4 and 6.5, respectively.

85



Chapter Six

Table 6.4 - Validation Statistics for Scheme One* (Negative Binom ial Regression)

M ethod M PB M AD M SE M PSE
Predicted
Accidents

O bserved
Counts

A 0.121 0.762 469.88 469.86 8,352 7,575

B 0.109 0.770 383.04 383.03 8,561 7,575

C 0.103 0.770 339.37 339.36 8,673 7,575

*Goodness o f Fit measures were calculated as per mile-year base 
M ethod A: Using calibrated PDO SPF estimate in EB procedure
M ethod 8: Subtracting injury SPF estimate from  total accidents SPF estimate to ge t PD O  SPF  estimate 
used fo r  EB PD O  estimate
M ethod C: Subtracting EB injury estimate from  EB total estimate to get EB PDO estimate

Table 6.5 - Validation Statistics for Scheme Two* (“Yearly M ultipliers” M ethod)

M ethod M PB MAD MSE MPSE
Predicted
Accidents

O bserved
C ounts

A 0.148 0.743 708.08 708.06 7,975 7,575

B 0.145 0.745 679.43 679.41 7,928 7,575

C 0.141 0.744 642.58 642.56 7,836 7,575

* Goodness o f Fit measures were calculated as per mile-year base 
M ethod A: Using calibrated PDO SPF estimate in EB procedure
M ethod B: Subtracting injury SPF estimate from total accidents SPF estimate to get PDO SPF estimate 
u sedfor EB PD O  estimate
M ethod C: Subtracting EB injury estimate from EB total estimate to get EB PDO estimate

The validation statistics show that both schemes are slightly over-predicting crashes. 

The GOF measures are very similar in both cases, and the predicted values generated 

from both methods are very reliable. Generally speaking, the expected accident counts 

suggest that the “yearly multipliers” technique predicts accidents more accurately 

compared to the negative binomial regression, as shown in Table 6.5, where the predicted 

accidents closely resemble the observed counts. As for the three different methods, the 

results from both schemes suggest that method A (using a calibrated PDO SPF estimate in 

the EB procedure) predicts accidents more accurately compared to methods B and C.

86



_________________________________________     Chcipler Six

6.6 Chapter Summary

Despite the similarity of the values of the expected and observed accidents as 

calculated using the “yearly multipliers" method, one cannot hastily conclude that the 

multiplier method is as good as the negative binomial regression. This is because 

adopting multipliers in the SPFs is somewhat forcing the sum of predicted accidents to 

equal the sum of observed counts because the ratios were actually determined using all 

four years of the same dataset.

That notwithstanding, the results obtained from the directly calibrated PDO model 

(Method A) are more satisfactoiy in both schemes compared to the other two methods. 

Simply put, it is recommended that the SPF for PDO accidents be calibrated, at least for 

the dataset explored. Nevertheless, it is suggested to explore the same issue on other 

datasets before one can generalize the results.
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CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions and Recommendations for Future Work

Typically SPFs are developed for total, injury, or PDO accidents. However, there is 

a demand for development of SPFs for specific accident types so that network screening 

and treatment evaluation in Safety/Analyst and similar tasks can be disaggregated by these 

accident types. In light of the fact that calibrating SPFs for individual collision types is 

not trivial and is somewhat difficult in the absence of relevant information, inclusion of a 

factor (accidents’ proportion) in SafetyAnalyst to apply with the SPF for total collision 

has been recommended.

A comparison of the two methods of negative binomial regression and “proportion” 

methods, which are used in developing SPFs for specific accident types on road segments, 

shows no significant pattern in the findings. Therefore, it is impractical to generalize 

which method works better in each case. It seems worthwhile to calibrate appropriate 

SPFs for individual collision types when there is a large sample of accident counts. 

Conversely, the “proportion” method seems to be a more logical approach in predicting 

accidents when the database lacks sufficient accident counts. Further studies of this 

issue are suggested for databases for other jurisdictions and entity types, to identify 

patterns that may be generalizable.

A careful study of the proportion method for developing SPFs for specific accident 

types reveals that generalized linear modelling is capable of modelling collisions by 

proportion. It is reasonable to assume that the error structure for the dependent variable
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follows the normal distribution and that the functional form follows either the power or 

gamma function. Application of network screening based on angle collisions at TWSC 

intersections suggests that whether the proportions of specific accident types remain 

constant or not does not significantly influence of the ranking. In other words, applying 

a constant factor or proportion model would not drastically change the results of the 

ranking. Based on the current dataset, one can conclude that it is reasonable to apply a 

constant factor to the SPF for total collision for network screening purposes. Moreover, 

it is suggested that a similar application for other collision types on the same database as 

well as datasets from other jurisdictions be repeated in order to draw a more definitive 

conclusion.

Lastly, the detailed investigation of methods for estimating the expected number of 

PDO accidents demonstrates that it is logical and practical to model PDO accidents 

despite the errors during the data collection stage. In general, both ‘yearly multiplier’ 

and negative binomial regression methods are accurate ways of estimating PDO accidents. 

Although one cannot generalize which method is more accurate in safety prediction, it is 

recommended that the SPF for PDO accidents be calibrated based on the dataset used. 

Notwithstanding that, further explorations on other datasets are advisable before one can 

make a more definitive statement.
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APPENDIX A

STATISTICS BACKGROUND FOR ROAD SAFETY

A.l Normal Probability Plot

Normal probability plot is a tool to assess the normality of the data. Generally 

speaking, the probability plot is a graphical method for determining whether a set of data 

is conformed by the hypothesized distribution (the distribution of accident proportion, in 

our case). In the present context, one is interested in showing whether the proportion of 

specific accident type follows the normal distribution.

The concept of normal probability plot is very simple and convenience. It works 

well for both large and small sample sizes. A stepwise procedure is presented below.

1) The data is disaggregated such that similar AADT are grouped together. In the 

present context, an interval of five hundreds is used.

2) Each group is ranked from smallest to largest, %i, xj, ..., Since there are too 

many groups in this case, only ten groups are randomly selected from various 

collision types and applied to this test.

3) The ordered observations are plotted against their cumulative frequency. The 

cumulative frequency for normal distribution is calculated using Equation A .l,

Cumulative Frequency = (A. l )

where j  is the rank order and n is the total numbers of observation.

4) If the proposed distribution adequately describes the data, the plotted points are 

expected to lie approximately on a straight line. Otherwise, the plotted points
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would scatter all over the place.

Figure A. 1 shows the normal probability plots for the ten randomly selected groups.
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All o f the graphs reveal that the plotted points fall approximately along a straight line, 

meaning that the normal distribution adequately describes the accidents’ proportion. 

Therefore, the assumption of choosing normal distribution as the response variable for 

generalized linear model is indeed valid.
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APPENDIX B

RESULTS AND FINDINGS

B.l A Detailed Interpretation of the Results for Chapter Four

lUO60
i40

-100

1-200

;.-20!

-60

0

Proportion Method SPF M ethod

Figure B .l - Cum ulative Residuals vs. AADT for Collision Type 1

Type 1 : Collision with Parked Motor Vehicle

The validation statistics in Table 4.5 shows that both models are very similar in terms of 

the overall fitness. Pearson’s correlation coefficients explain that both models lack of 

linear correlation. The MPB/mi-yr statistics show that the SPF model has a smaller 

average model bias and MAD/mi-yr statistics shows that the “proportion” model has a 

slightly better fit. Finally, the MSE/mi-yr^ and MSPE/mi-yr^ illustrate that the two 

models have a similar fit relative to the validation data. The overdispersion parameter 

was found to be 17.8965, which indicates that the SPF model is not well established. 

The plot of cumulative residuals against AADT for collision with parked motor vehicle is 

shown in Figure B. 1. The CURE plot for the “proportion” method in Figure B. 1 shows
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an oscillation of cumulative residuals around zero, an indication that the 

"proportion" model fits better compared to the SPF model. The “proportion” model 

seems to be overestimating crashes in low and mid ranges AADTs and underestimating 

between AADT 1,000 and 3,500 and AADT from 13,000 onwards. Moreover, there are 

a few locations in this model where the AADT exceeds the ± 2  <7 boundaries. The 

peak values were found to be +48 and -75 with 1,015 accidents in total; therefore, the fit 

is ideal.
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Figure B.2 - Cum ulative Residuals vs. AADT for Collision Type 5

Type 5: Collision with Animal

Pearson’s correlation coefficients show a fairly linear correlation for both models. While a 

comparison of MPB/mi-yr shows that the “proportion” model has somewhat over-predicted 

crashes on average, the figure for SPF method was found to be approximately zero, 

suggesting that the model is of little average bias. Other GOF statistics shows marginal 

differences between the two models. The overdispersion parameter for the SPF was found 

to be 1.6576, which indicates that the goodness of fit to the dataset is fair. In Figure B.2, 

the CURE plot for the proportion model shows an encroachment of random walk exceeding 

the lower boundary between AADT 5,000 and 30,000. The peak values were found to be 

+120 and -320 with a total of 6,938 accidents, which is satisfactory for that particular number 

of accident counts. The random walk in the SPF method illustrates an intrusion of the upper 

boundary between AADT 2,500 and 30,000. The peak values of cumulative residuals were 

found to be +420 and -110, not as exact as the proportion method. In brief, the “proportion” 

model shows a better predictability. However, the extrusion of the cumulative residuals 

curve between AADT 5,000 and 30,000 suggests a need of detailed investigation or even 

perhaps the use of a better functional form.
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Figure B.3 - C um ulative Residuals vs. AADT for Collision Type 6

Type 6: Collision with Fixed Object

The results of the goodness of fit statistics are alike for both models, with the exception of 

which the MPB/mi-yr figures show an improvement when predicting observed data in the 

“proportion” model. Pearson’s correlation coefficients suggest that a moderate linear 

correlation exists in both models. The overdispersion parameter was found to be 0.9947. 

This small value indicates that the variance of the accident prediction model is small; thus, 

the SPF is satisfactory. The CURE plots shown in Figure B.3 illustrate that both models 

fit poorly for all ranges of AADT. Generally speaking, the SPF model over-predicts 

crashes in low and mid ranges AADTs and under-predicts crashes between AADT 1,000 

and 3,000 and AADT above 13,000. In contrast, the cumulative residuals’ curve exceeds 

the ± 2 o  boundaries in the SPF model but the largest accumulative residuals are about ±  

240 with a total of 6,362 accidents in the data. To a certain extent, this is acceptable, 

especially when compared to the “proportion” model.
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Figure B.4 - Cumulative Residuals vs. AADT for Collision Type 9

Type 9: Overturn

All the validation statistics in Table 4.6 suggest that the SPF method does a better job in 

predicting accident counts. Pearson’s correlation coefficient shows a satisfactory linear 

correlation between the observed and calibrated data for the SPF method. Also, the 

small value of overdispersion parameter suggests that the variance of the prediction is 

very small, which is to say that the SPF model has a better overall GOF. The CURE 

plots in Figure B.4 show that the cumulative residuals’ curve continuously exceeds the 

± 2 o  boundaries for both models. The models are therefore insignificant in almost all 

ranges of AADT. Nevertheless, based on 7,803 accident counts in the dataset, the peak 

values for the SPF method are approximately +550 and -300, comparatively acceptable in 

this case. One can conclude that the SPF method works better for the overturn model.
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Figure B.5 - C um ulative Residuals vs. AADT for Collision Type 21

Type 21 : Rear-End

In terms of goodness of fit statistics, Pearson’s correlation coefficients show moderate 

linear correlation in both models. All validation statistics show that the overall fitting 

for both models are quite alike. A small overdispersion parameter demonstrates an 

excellent fit for the SPF. The CURE plots in Figure B.5 show a big discrepancy 

between the two methods. Whereas the proportion model completely lacks fit in all 

ranges of AADT, the SPF method shows a very impressive fitting for all ranges of AADT 

since the random walk reveals no encroachment which exceeds the + 2 o  boundaries. 

Generally speaking, the SPF overestimates crashes between AADT 0 and 1,000 and 

between 2,000 and 4,000, but it underestimates crashes between AADT 1,000 and 2,000 

and 4,000 onwards. Hence, one can conclude that the SPF model is ideal for the 

purpose of accident prediction.
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Figure B.6 - Cumulative Residuals vs. AADT for Collision Type 22 

Type 22: Head On

Based on the GOF measures, one can conclude that both models have very good fits 

while Pearson’s correlation coefficients suggest that both models lack linear correlation. 

The overdispersion parameter was found to be 0.0003, and which means that the variance 

in the predicted accidents is very small. In terms of CURE plots, the SPF method shows 

an excellent fit in all ranges of AADT and the fluctuations of random walk are all 

bounded within the ± 2 o  boundaries. The consistent upward drift in the low AADT 

indicates that the model underestimates crashes, whereas the consistent downward drift in 

the mid- and high-ranges AADT is an indication of overestimation. On the contrary, the 

CURE plot shows that the proportion method is completely lack of fit in all ranges of 

AADT. Apparently, the SPF method is a better one for head-on collisions.
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Figure B.7 - C um ulative Residuals vs. AADT for Collision Type 24

Type 24: Angle

The validation statistics reveal a good overall fit for both models, except for the 

correlation coefficients, which indicate that both models lack linear association. The 

overdispersion parameter denotes a high variance of the SPF. As a result, the prediction 

is not ideal. The CURE plots show that both models completely lack fit in all ranges of 

AADT since the fluctuations of random walk are all below zero. As the proportion 

model seems to overestimate crashes between AADT 0 and 5,000 and under-predict 

crashes above 5,000, the SPF method seems to overestimate crashes between AADT 0 & 

10,000 and under-predict crashes above. In brief, the SPF method is slightly better than 

the proportion method. Nevertheless, both models are poorly developed and further 

investigation is required for a more accurate measurement.
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Figure B.8 - Cum ulative Residuals vs. AADT for Collision Type 25

Type 25: Sideswipe. Same Direction

The validation statistics indicate an excellent overall fit for both models, but Pearson’s 

correlation coefficients denote that both of the models lack linear correlation. The 

overdispersion parameter suggests that the SPF method is more exact because a small 

overdispersion implies only a small variance of the prediction. CURE plots suggest that 

the SPF model will predict accidents more accurately in all ranges of AADT. Unlike the 

proportion model, the fluctuation of random walk does not oscillate around zero. 

However, the cumulative residuals in the SPF method display some ranges of AADT 

which exceed the ±  2a boundaries. Thus, the model requires some detailed 

investigation for those ranges of AADT. In general, SPF seems to be underestimating 

crashes between AADT 500 and 3,000 and between 5,000 and 8,000; other ranges seem 

to be overestimating crashes. The peak values of the CURE plot for the SPF method 

were foimd to be +35 and -34 respectively. Hence, the SPF method is still adequate 

even though the cumulative residuals exceed the ± 2 a  boundaries.
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B.2 Network Screening Results for Chapter Five

Appendix B

Table B.1 -  Top 20 R ankings for M innesota Rural 3-leg TW SC Intersections

Screening C riterion  

A ccident Type 

N o o f  Sites Ranked

Excess A ccident Frequency

Angle Collisions

2,033

M ethod 1 Vlethod 2 Vlethod 3
R an k Site No. Xy V ar (Xy) Site No. Xy V ar(X y) Site No. X y V a r(X v )

1 281 0.61 0.07 281 0.97 0.09 281 0.91 0.07
2 1355 0.45 0.18 1355 0.66 0.12 1355 0.65 0.12
3 1078 0.40 0.09 1078 0.64 0.08 1078 0.61 0.07
4 277 0.39 0.19 84 0.57 0.08 277 0.55 0.10
5 84 0.37 0.10 277 0.56 0.11 84 0.55 0.07
6 2017 0.36 0.36 2017 0.51 0.16 2017 0.51 0.16
7 97 0.35 0.30 97 0.51 0.15 97 0.50 0.15
8 103 0.32 0.19 103 0.49 0.13 103 0.49 0.13
9 1352 0.28 0.05 1352 0.48 0.05 1352 0.44 0.04
10 102 0.28 0.10 102 0.44 0.08 102 0.43 0.07
11 646 0.28 0.40 22 0.41 0.07 646 0.40 0.15
12 1371 0.27 0.29 646 0.40 0.15 22 0.40 0.06
13 202 0.26 0.21 657 0.40 0.06 1371 0.39 0.12

14 497 0.26 0.21 909 0.40 0.04 497 0.38 0.10

15 657 0.26 0.09 1371 0.40 0.13 657 0.38 0.05

16 22 0.26 0.08 497 0.39 0.11 2018 0.38 0.10

17 2018 0.25 0.18 2018 0.38 0.10 201 0.38 0.09

18 201 0.25 0.16 201 0.38 0.10 202 0.37 0.09

19 909 0.22 0.03 202 0.38 0.10 909 0.37 0.03

20 1613 0.22 0.05 1613 0.37 0.05 1613 0.35 0.04
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Table B.2 -  Top 20 Rankings for M innesota Rural 4-leg TW SC Intersections

Screening Criterion  

A ccident Type 

No o f Sites Ranked

Excess Accident Frequency

Angle Collisions

2,572

M ethod I M ethod 2 M ethod 3

Rank Site No. Xy Var (Xy) Site No. Xy V ar(X y) Site No. Xy V ar (Xy)

1 247 2.67 1.58 146 2.96 0.86 247 2.93 1.32

2 146 2.63 1.00 1413 2.93 0.61 146 2.93 0.78

3 1413 2.57 0.63 247 2.88 1.51 1413 2.85 0.56

4 1405 2.33 1.24 1405 2.58 1.09 1405 2.60 0.97

5 925 2.08 1.96 925 2.29 1.38 925 2.35 1.21

6 257 1.99 1.00 1335 2.23 0.92 1335 2.24 0.82

7 1335 1.99 1.18 257 2.21 0.98 257 2.24 0.86

8 1757 1.86 0.54 1329 2.19 0.56 1329 2.16 0.51

9 1329 1.84 0.50 1757 2.14 0.49 391 2.11 1.30

10 118 1.82 1.02 391 2.03 1.50 1757 2.09 0.45

11 391 1.79 2.46 118 2.03 0.91 118 2.05 0.81

12 222 1.67 2.06 1750 2.00 0.48 1750 1.96 0.44

13 1750 1.66 0.43 1311 1.90 0.39 122 1.91 2.41
14 122 1.51 5.09 222 1.80 1.54 222 1.89 1.32
15 1311 1.51 0.30 122 1.75 2.89 1311 1.84 0.35
16 973 1.47 1.11 2393 1.70 0.33 744 1.76 1.64
17 700 1.44 1.32 1120 1.68 0.45 973 1.68 0.75
18 1120 1.43 0.46 973 1.65 0.85 1120 1.66 0.41
19 250 1.43 3.30 744 1.65 1.93 2393 1.65 0.30
20 2393 1.39 0.29 700 1.58 1.04 250 1.65 1.92
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Table B.3 -  Top 20 R ankings for M innesota Rural 3-leg TW SC Intersections

S creen in g  C riterion  

A ccident Type 

No o f  S ites Ranked

Expected Accident Frequency

A ngle Collisions

2,033

Method 1 Method 2 Method 3
R ank Site No. Xy V ar (Xy) Site No. Xy V ar(X y) Site No. Xy V ar(X y)

1 281 0.75 0.03 281 1.09 0.07 281 I.OI 0.06
2 2017 0.71 0.06 1355 0.86 0.08 1355 0.84 0.08
3 1355 0.69 0.05 1078 0.78 0.06 2017 0.77 0.08
4 97 0.67 0.05 2017 0.78 0.08 97 0.75 0.08
5 646 0.65 0.06 97 0.76 0.08 1078 0.73 0.05
6 277 0.63 0.04 277 0.76 0.07 277 0.73 0.07
7 1371 0.59 0.05 84 0.72 0.06 103 0.72 0.07

8 103 0.57 0.04 103 0.72 0.07 84 0.68 0.05

9 488 0.56 0.05 646 0.67 0.07 646 0.66 0.07

10 489 0.56 0.06 1371 0.63 0.06 1371 0.62 0.06

11 1078 0.56 0.03 497 0.60 0.06 497 0.59 0.06

12 84 0.54 0.03 102 0.60 0.05 102 0.58 0.05

13 202 0.53 0.04 2018 0.59 0.06 2018 0.57 0.05

14 497 0.53 0.04 1352 0.58 0.04 201 0.57 0.05

15 2018 0.50 0.03 201 0.58 0.05 202 0.56 0.05

16 201 0.48 0.03 202 0.57 0.05 488 0.55 0.06

17 102 0.46 0.02 488 0.56 0.06 1352 0.53 0.03

18 107 0.45 0.04 22 0.56 0.04 22 0.52 0.04

19 1848 0.45 0.03 657 0.54 0.04 657 0.50 0.04

20 645 0.45 0.04 909 0.50 0.03 489 0.49 0.06

105



Appendix B

Table B.4 -  Top 20 Rankings for M innesota Rural 4-leg TW SC Intersections

Screening Criterion  

A ccident Type 

No o f  Sites Ranked

Expected Accident Frequency

Angle Collisions

2,572

Method 1 M ethod 2 M ethod 3

R ank Site No. X y V ar(X v) Site No. Xy Var(XY> Site No. X y V ar (X y)

1 247 3.58 0.64 247 3.91 0.78 247 3.84 0.75

2 122 3.47 0.70 146 3.53 0.63 122 3.47 0.72

3 146 3.27 0.53 122 3.51 0.74 146 3.45 0.60

4 925 3.17 0.59 1405 3.38 0.65 1405 3.32 0.62

5 1405 3.12 0.54 925 3.31 0.66 925 3.26 0.64

6 391 3.07 0.58 1413 3.28 0.52 1413 3.18 0.49

7 744 3.02 0.60 391 3.15 0.63 391 3.10 0.61

8 I4I3 2.99 0.42 270 3.07 0.64 270 3.03 0.63
9 270 2.99 0.59 250 3.06 0.64 250 3.02 0.62

10 250 2.97 0.58 744 3.02 0.62 744 2.98 0.60

II 222 2.83 0.53 257 2.98 0.57 222 2.92 0.58
12 261 2.80 0.55 222 2.96 0.60 257 2.92 0.54
13 1335 2.77 0.48 1335 2.95 0.56 1335 2.89 0.53
14 1888 2.71 0.52 261 2.86 0.60 261 2.82 0.58
15 257 2.69 0.45 1888 2.79 0,57 1888 2.75 0.55
16 706 2.59 0.51 118 2.78 0.52 118 2.72 0.50
17 118 2.54 0.43 706 2.63 0.54 706 2.59 0.53
18 700 2.33 0.41 1329 2.62 0.44 1329 2.54 0.41
19 1407 2.31 0.44 1757 2.50 0.40 700 2.43 0.46
20 1757 2.29 0.33 700 2.47 0.48 1757 2.42 0.37
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Table B .5 -  Top 20 R anking for M innesota Rural 3-leg and 4-leg TW SC  Intersections 

Screen ing  Criterion: H igh Proportion M ethod  

A ccident Type: A ngle Collisions 

No o f  S ites R anked (3-leg): 2,033  

N o o f  Sites R anked (4-leg): 2,572

4 leg 3 leg

R ank Site no Score R ank Site no Score

1 1405 0.9991 1 281 1.0000

2 1750 0.9915 2 1352 0.9997

3 391 0.9900 3 657 0.9948

4 1695 0.9881 4 552 0.9932

5 1974 0.9852 5 22 0.9902

6 118 0.9846 5 97 0.9902

6 222 0.9846 7 1078 0.9900

8 1795 0.9822 8 986 0.9865

9 2393 0.9766 9 2017 0.9830

10 229 0.9762 10 341 0.9816

10 489 0.9762 10 1002 0.9816

12 226 0.9723 12 202 0.9763

13 1329 0.9714 12 2018 0.9763

14 1407 0.9685 14 548 0.9729

15 2440 0.9681 15 84 0.9698

16 1756 0.9650 16 1302 0.9666

17 146 0.9627 17 497 0.9617

18 95 0.9625 17 1015 0.9617

18 1370 0.9625 19 348 0.9581

20 1757 0.9558 19 909 0.9581
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