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ABSTRACT 

This thesis establishes the benefits of multi-architecture systems by using 

reconfigurable modules in conjunction with a case integration strategy to improve 

system performance. The modules and strategies discussed in this thesis provide 

opportunities to the improve system performance of processing units designed for the 

consumer market. 

 

The primary objective for this work is to improve the performance of consumer 

processors using programmable logic, while ensuring the changes are abstracted from 

operating systems and software applications. This thesis accomplishes this using 

specified integration strategies, protocols and through optimization of device drivers.



	  iv	  

ACKNOWLEDGMENTS 

 First and foremost I thank my family for their motivation and pushing me to be the 

ambitious and creative man I am today. 

 

 There have been a number of notable educators who have inspired me and 

helped guide me through my undergrad and post-graduate studies. Dr. Vadim Geurkov 

has worked with me over the last 4 years. With his supervision, I was awarded a bronze 

medal for my undergraduate project. More recently, he has helped inspire and guide me 

with the work in this thesis and that found in [1]. Dr. Lev Kirischian provided an 

academic foundation for which my research began and provided opportunities which 

helped me pursue my areas of interest. 

 

 Finally, I would like to thank AMD who gave me an opportunity to work with 

cutting edge hardware design and design verification methodologies. In particular my 

mentor Darlington Opera who helped train me and challenge me and Behrooz Karimian 

who worked with me in endeavours related to the inventions found in this thesis. 



	  v	  

TABLE OF CONTENTS 
AUTHOR’S	  DECLARATION	  .................................................................................................................	  ii	  

ABSTRACT	  .............................................................................................................................................	  iii	  

ACKNOWLEDGMENTS	  ........................................................................................................................	  iv	  

LIST	  OF	  TABLES	  ..................................................................................................................................	  vii	  

LIST	  OF	  FIGURES	  ................................................................................................................................	  viii	  

LIST	  OF	  APPENDICES	  ..........................................................................................................................	  ix	  

INTRODUCTION	  .....................................................................................................................................	  1	  
Intellectual	  Property	  ......................................................................................................................................	  1	  
Overview	  ............................................................................................................................................................	  1	  

CHAPTER	  I	  ...............................................................................................................................................	  3	  
1.1	   MOTIVATION	  ..........................................................................................................................................	  3	  
1.2	   OBJECTIVE	  ...............................................................................................................................................	  3	  
1.3	   EFFECTIVE	  CONTRIBUTIONS	  ............................................................................................................	  4	  
1.4	   THESIS	  ORGANIZATION	  ......................................................................................................................	  5	  

CHAPTER	  II:	  .............................................................................................................................................	  6	  
2.1	   BACKGROUND	  ........................................................................................................................................	  6	  
2.1.1	   Insight	  Into	  Modern	  Applications	  .............................................................................................................	  6	  
2.1.2	   Implementation	  ................................................................................................................................................	  8	  
2.1.3	   Verification	  Tools	  .............................................................................................................................................	  8	  
2.1.4	   ASIC	  &	  FPGA	  Architectures	  .......................................................................................................................	  12	  

2.2	   FOUNDATION	  OF	  MODERN	  RESEARCH	  .......................................................................................	  18	  
2.2.1	   Reconfigurable	  Technology	  ......................................................................................................................	  18	  
2.2.2	   Existing	  DPR	  Applications	  .........................................................................................................................	  21	  
2.2.3	   Theoretical	  DPR	  Gains	  ................................................................................................................................	  25	  

2.3	   EXISTING	  METHODS	  &	  TECHNIQUES	  ..........................................................................................	  29	  
2.3.1	   Intel	  Develops	  FPGA-‐Based	  Coprocessors	  .........................................................................................	  30	  
2.3.2	   Existing	  Mixed	  Chips	  ...................................................................................................................................	  32	  
2.3.3	   Embedding	  ARM	  Processors	  Into	  FPGAs	  ............................................................................................	  34	  

CHAPTER	  III:	  ........................................................................................................................................	  37	  
3.1	   COMPARATIVE	  ANALYSIS	  OF	  EXITING	  SOLUTIONS	  ...............................................................	  37	  
3.1.1	   Coprocessor	  Systems	  –	  FPGAs	  +	  CPUs/GPUs	  ...................................................................................	  38	  
3.1.2	   System	  Customization	  ................................................................................................................................	  40	  
3.1.3	   Hardware	  Acceleration	  ..............................................................................................................................	  41	  
3.1.4	   Protocols	  &	  Flashing	  ....................................................................................................................................	  42	  
3.1.5	   Custom	  SOC	  .....................................................................................................................................................	  43	  
3.1.6	   Power	  Advantages	  ........................................................................................................................................	  44	  
3.1.7	   Life	  Time	  ...........................................................................................................................................................	  45	  

3.2	   MODIFYING	  THE	  APPROACH	  .........................................................................................................	  46	  
3.2.1	   Hardware	  Acceleration	  Islands	  ..............................................................................................................	  49	  
3.2.2	   Internal	  Connections	  ...................................................................................................................................	  53	  
3.2.3	   Pre-‐emptive	  Hardware	  Adaptation	  ......................................................................................................	  54	  

CHAPTER	  IV:	  ........................................................................................................................................	  62	  



	  vi	  

4.1	   Demonstrating	  Performance	  .........................................................................................................	  62	  
4.1.1	   Reconfigurable	  Hardware	  Benefits	  .......................................................................................................	  62	  
4.1.2	   Improved	  Application	  Performance	  .....................................................................................................	  64	  
4.1.3	   Modern	  Design	  Technique	  ........................................................................................................................	  70	  

4.2	   Automated	  System	  Adaptation	  Capabilities	  .............................................................................	  71	  
4.2.1	   Manually	  Calculated	  Optimization	  Strategy	  ......................................................................................	  72	  
4.2.2	   Specifications	  of	  System	  .............................................................................................................................	  73	  
4.2.3	   System	  Sequencing	  Graph	  .........................................................................................................................	  76	  
4.2.4	   Evaluating	  System	  Options	  .......................................................................................................................	  78	  
4.2.5	   Mini-‐Max	  Variant	  ..........................................................................................................................................	  80	  
4.2.6	   Min	  Resource	  Analysis	  ................................................................................................................................	  80	  
Calculations:	  ...................................................................................................................................................................	  81	  
4.2.7	   Max	  Resource	  Analysis	  ...............................................................................................................................	  81	  
4.2.8	   Critical	  Variant	  ...............................................................................................................................................	  82	  
4.2.9	   Critical	  Variant,	  Adder	  ................................................................................................................................	  82	  
4.2.10	   Critical	  Variant,	  Multiplier	  ......................................................................................................................	  84	  
4.2.11	   Critical	  Variant,	  Clk	  ....................................................................................................................................	  85	  
4.2.12	   Execution	  Time	  Boundary	  ......................................................................................................................	  86	  
4.2.13	   Power	  Boundary	  .........................................................................................................................................	  88	  
4.2.14	   Area	  Optimization	  ......................................................................................................................................	  90	  
4.2.15	   Resource	  Binding	  .......................................................................................................................................	  91	  
4.2.16	   Multiplexing	  Scheme	  ................................................................................................................................	  93	  
4.2.17	   Block	  Design	  Using	  Optimization	  Strategy	  .....................................................................................	  95	  

CHAPTER	  V:	  ..........................................................................................................................................	  97	  
5.1	   EFFECTIVE	  COMPARISON	  ................................................................................................................	  97	  
6.1	   SELF-‐ADAPTING	  SYSTEMS	  ..............................................................................................................	  98	  
6.2	   SELF-‐TESTING	  CAPABILITIES	  ........................................................................................................	  98	  

REFERENCES	  .....................................................................................................................................	  123	  

GLOSSARY	  ..........................................................................................................................................	  122	  



	  vii	  

LIST OF TABLES 

TABLE 1 – FPGA DESIGN [17]	  ..........................................................................................................................................................	  15	  
TABLE 2 – ASIC DESIGN [17]	  ............................................................................................................................................................	  15	  
TABLE 3 - FIR FILTER EVALUATION [24]	  ..................................................................................................................................	  26	  
TABLE 4 – HARDWARE ACCELERATED EMBEDDED SYSTEMS COMPARISON [25]	  ..................................	  27	  
TABLE 5 - HARDWARE ACCELERATED EMBEDDED SYSTEMS COMPARISON [23]	  ...................................	  28	  
TABLE 6 - 2ND ORDER EQUATION OF FILTER BLOCKS	  ...............................................................................................	  74	  
TABLE 7 - TRANSFER FUNCTION EXPANSION RESULTS	  ............................................................................................	  74	  
TABLE 8 - OPERATION VARIABLE ASSIGNMENT	  ...............................................................................................................	  75	  
TABLE 9 - RESOURCE OPTIONS	  ...................................................................................................................................................	  78	  
TABLE 10 - MULTIPLIER COSTS	  .....................................................................................................................................................	  79	  
TABLE 11 - ADDER COSTS	  ................................................................................................................................................................	  79	  
TABLE 12 - SYSTEM CONSTRAINTS	  ...........................................................................................................................................	  80	  
TABLE 13 - MINIMUM RESOURCE SCHEDULE	  .....................................................................................................................	  80	  
TABLE 14 - MAXIMUM RESOURCE SCHEDULE	  ...................................................................................................................	  81	  
TABLE 15 - ADDER CRITICAL VARIANT SCHEDULE	  .........................................................................................................	  83	  
TABLE 16 - MULTIPLIER CRITICAL VARIANT SCHEDULE	  .............................................................................................	  84	  
TABLE 17 - CLOCK CRITICAL VARIANT SCHEDULE	  .........................................................................................................	  85	  
TABLE 18 - SCHEDULE OF OPTIMAL VARIANT	  ....................................................................................................................	  92	  
TABLE 19 - ADDER MULTIPLEXING SCHEME	  .......................................................................................................................	  93	  
TABLE 20 - MULTIPLIER MULTIPLEXING SCHEME	  ............................................................................................................	  94	  



	  viii	  

LIST OF FIGURES 

FIGURE 1 – BIT STREAM CONFIGURATION [12]	  .................................................................................................................	  10	  
FIGURE 2 - DESIGN OF AN FPGA [15]	  ........................................................................................................................................	  13	  
FIGURE 3 – THE OPERATIONAL DIFFERENCE OF ASICS AND FPGAS [16]	  .....................................................	  13	  
FIGURE 4 – FPGA HARDWARE OVERHEAD	  ...........................................................................................................................	  16	  
FIGURE 6 – HARDWARE MODULE WITHOUT PARTIAL RECONFIGURATION	  .................................................	  20	  
FIGURE 7 – HARDWARE MODULE WITH PARTIAL RECONFIGURATION	  ...........................................................	  20	  
FIGURE 8 - AMDAHL’S LAW: SPEEDUP IN RELATION TO PORTION OF PROGRAM BEING 

ACCELERATED	  ..............................................................................................................................................................................	  22	  
FIGURE 9 – ACCELERATION DESIGN FLOW [24]	  ...............................................................................................................	  24	  
FIGURE 10 - THE COPROCESSOR APPROACH [28]	  .........................................................................................................	  31	  
FIGURE 11 - MULTI-ARCHITECTURE PERFORMANCE COMPARISON [29]	  .......................................................	  32	  
FIGURE 12 - DATA TRANSFER TIME ANALYSIS	  ..................................................................................................................	  33	  
FIGURE 13 - XILINX'S ALL PROGRAMMABLE SOC [33]	  ...................................................................................................	  36	  
FIGURE 14 - ISOLATED TECHNOLOGIES, PCIE CONNECTION [34]	  .......................................................................	  39	  
FIGURE 15 - MULTIMEDIA SYSTEM WITH BLOCK DIAGRAM [35]	  ............................................................................	  51	  
FIGURE 16 - BUS SYSTEM STRUCTURE [36]	  ........................................................................................................................	  52	  
FIGURE 17 - REQUIRED CONTROL SIGNALS FOR HWAI	  ..............................................................................................	  53	  
FIGURE 18 - RING BUFFER / INSTRUCTION BUFFER	  ......................................................................................................	  57	  
FIGURE 19 - PRE-EMPTIVE ADAPTIVE HARDWARE	  ........................................................................................................	  58	  
FIGURE 20 - TRADITIONAL SYSTEM ARCHITECTURE OVERVIEW	  ........................................................................	  59	  
FIGURE 21 - PROGRAMMABLE SOC (EX INTEL’S E600 SERIES)	  .............................................................................	  59	  
FIGURE 22 - CPU WITH HWAI	  ..........................................................................................................................................................	  60	  
FIGURE 23 - STREAM PROCESSING UNIT	  ..............................................................................................................................	  64	  
FIGURE 24 - UNCONSTRAINED SEQUENCING GRAPH	  ..................................................................................................	  76	  
FIGURE 25 - MINIMUM RESOURCE SEQUENCING GRAPH	  .........................................................................................	  77	  
FIGURE 26 - ACG OF EXECUTION TIME	  ...................................................................................................................................	  87	  
FIGURE 27 - SYNTAX TREE OF EXECUTION TIME	  ............................................................................................................	  88	  
FIGURE 28 - POWER ACG	  ..................................................................................................................................................................	  88	  
FIGURE 29 - POWER BOUNDARY SYNTAX TREE	  ..............................................................................................................	  90	  
FIGURE 30 - AREA ACG	  .......................................................................................................................................................................	  91	  
FIGURE 31 - BOUND SEQUENCING GRAPH	  ..........................................................................................................................	  92	  
FIGURE 32 - ADDER MUX PLAN	  .....................................................................................................................................................	  94	  
FIGURE 33 - MULTIPLIER MUX PLAN	  ..........................................................................................................................................	  95	  
FIGURE 34 - FIR BLOCK SYMBOL	  .................................................................................................................................................	  96	  



	  ix	  

LIST OF APPENDICES 

APPENDIX	  A:	  UVM	  /	  SYSTEMVERILOG	  .....................................................................................	  100	  
RTL	  &	  Test	  Bench	  Code	  ............................................................................................................................	  100	  
Makefile	  ..........................................................................................................................................................................	  100	  
test.sv	  ...............................................................................................................................................................................	  101	  
fifo.vh	  ...............................................................................................................................................................................	  101	  
fifo.v	  ..................................................................................................................................................................................	  101	  
fifo_agent.svh	  ................................................................................................................................................................	  103	  
fifo_driver.svh	  ..............................................................................................................................................................	  105	  
fifo_env.sv	  ......................................................................................................................................................................	  107	  
fifo_monitor.svh	  ..........................................................................................................................................................	  108	  
fifo_sanity.sv	  .................................................................................................................................................................	  109	  
fifo_scoreboard.svh	  ...................................................................................................................................................	  111	  
fifo_seq_item.svh	  .........................................................................................................................................................	  114	  
fifo_sequence_library.svh	  ........................................................................................................................................	  116	  
fifo_sequencer.svh	  ......................................................................................................................................................	  117	  
fifo_tb_wrapper_io.sv	  ................................................................................................................................................	  118	  
fifo_tb.sv	  .........................................................................................................................................................................	  119	  
test_top.sv	  ......................................................................................................................................................................	  120	  

APPENDIX	  B:	  ABOUT	  AMD	  ............................................................................................................	  121	  



	  1	  

INTRODUCTION 

Intellectual Property 
	  

At the time in which this paper was written, Ryan Meghdies-Vardeh had 

submitted multiple patent applications to Advanced Micro Devices, Inc. (AMD). AMD 

has decided to pursue the protection of two of those filings [2] and [3]. A third filing, is 

discussed in the future work section is likely the most promising of the three: [1]. The 

research compiled for this thesis lead to the invention of these patents. See Appendix B 

to learn more about AMD.  

 

Overview 
 

This thesis provides an introductory analysis of General Purpose Processors 

(GPP) and Field Programmable Gate Arrays (FPGA) architectures, their benefits and 

drawbacks. In the past, consumer processors and reprogrammable logic, have not 

worked in conjunction with one another. Traditional processing architectures are 

considered to be the superior choice when there is enough volume demand and 

sufficient research and development resources. In contrast, FPGAs provided a platform 

that would significantly lower venture development costs and thereby make it possible 

for individuals and corporations to invest in, and more importantly afford to, develop new 

hardware solutions. 

 



	  2	  

 In this thesis, we identify that CPUs/GPUs and FPGAs have their own unique 

benefits and the architecture of the future will strategically approach the integration of 

these two technologies. It is important to note that this work targets consumer market 

devices. There are two key contribution to this future looking architecture presented in 

this thesis. First using through the “Hardware Acceleration Islands” (HWAI), a design 

strategy which strategically embeds DPR enabled FPGAs within exiting processor 

designs (without requiring software changes, minimizing risk and research and 

development costs). Secondly, by offering a technique that will enhance the HWAI 

modules and optional optimizations to processor device drivers.
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CHAPTER I 

1.1 MOTIVATION 
	  

With the end of Moore’s Law [4] engineers must make use of smarter and more 

innovative processor architecture design concepts. Traditional brute force approaches 

translate into larger systems that are power hungry and more costly to manufacture. 

This is no longer a feasible technique as mobile processing and portable devices 

become the focus of the consumer market. As seen in the figure below [5], existing 

architecture designs are for the first time becoming smaller and engineers are looking 

for new ways to generate greater performance without proportional overhead. 

 

1.2 OBJECTIVE 
 

A successful solution would be one that minimizes the research and development 

risks, is easy to integrate within existing processor designs, and delivers worthwhile 

performance improvements using innovative system design. The “Hardware 

Acceleration Islands” in conjunction with the proposed case integration strategy offers 

such benefits, so as to make market adoption feasible and profitable for semiconductor 

manufacturing companies. 

 

While this thesis targets consumer market processors, it is important to recognize 

that most modern supercomputers look to high-end consumer processors (GPUs and 

CPUs) [6]. 
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1.3 EFFECTIVE CONTRIBUTIONS 
	  

There were a number of problems that arose in developing solutions for the 

aforementioned problems while staying within the constraints of the objective goals. As 

a result, it is recommended to use the hardware solution in conjunction with the protocol 

and strategy. 

 

The hardware solution injects programmable logic into processor technology on 

the same die using similar strategies to embedded microprocessors. Using the 

proposed strategy, these hardware acceleration islands can absorb high-performance 

tasks and reduce area by also absorbing infrequent or temporal hardware logic. This 

methodology will not require any 3rd party software changes. Modifying device drivers 

will be sufficient to hide the suggested system changes. Future works may require 

optimizations to existing operating system settings. 

 

There is also a protocol that hardware systems can take advantage of to improve 

the efficiency of the hardware acceleration islands. The protocol will work to 

minimize/eliminate delays in the pipeline and requires minimal hardware overhead (only 

2 control signals). 
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1.4 THESIS ORGANIZATION 
	  

The first chapter will share the motivation of this research, what are the problems 

being solved and why they are necessary to be addressed. The objective of this thesis 

is clarified as it presents a unique area and set of goals.  

 

The organization of the remainder of this thesis (chapter 2 and onwards) is 

structured to provide sufficient background to the build-up towards the primary design 

work found here. Chapter 2 will outline existing solutions similar to the work of this 

thesis or attempting to solve similar problems. The pros and cons of each will be 

evaluated. The following chapter will explain the new approach / primary work of this 

thesis. Chapter 3 will walk through the details of how to recreate this work. 

 

 With a strong understanding of the design work, chapter 4 will discuss the 

implementation and practical examination of the design work to evaluate the 

performance and tools to be used. In the final two chapters the obtained results will be 

compared with similar works and finally the future work for myself and hopefully to 

motivate other individuals to pursue this avenue of research and development. 
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CHAPTER II: 

2.1 BACKGROUND 

2.1.1 Insight Into Modern Applications 

 

Since the introduction of FPGA technology, hardware developers have been 

working to make use of each architecture’s relative benefits. Today these architectures 

are used in conjunction with each other. ASIC developers now commonly implement 

SOC designs on FPGAs, validating them thoroughly before investing the millions 

necessary to tape-out the product in the form of an ASIC. This is referred to as “FPGA 

Prototyping”. Understanding such background and the progression of FPGA technology 

will provide a clearer image of the direction and impact of this architecture. While this 

thesis will not dive into this FPGA prototyping, it is helpful to understand 3 key benefits 

that this methodology provides. 

 

 1) Reliable Verification: Implementing designs on FPGAs is a reliable way to 

ensure the final ASIC will be functionally correct. Previously verification efforts were 

much more costly (in terms of research and development) or almost non-existent. 

Previous to FPGA prototyping, ASIC manufacturers relied primarily on software to verify 

their designs. About a third of all current SOC designs are fault-free during first silicon 

pass, with nearly half of all re-spins caused by functional logic errors [7]. 

 

 2) Time-to-Market (TTM): FPGA prototyping has enabled hardware designers to 

shorten the TTM period. Since less verification resources are required and verification 
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accounts for as much as 80% of the design process, designers can save money and 

release new products faster, which in-turn increases the rate of innovation. In a 

consumer driven market that is keen on technology, meeting deadlines set according to 

demand peaks is critical to a corporations’ success. These peaks present a small 

window in the market, and missing it could render a project useless thereby costing the 

company the much of the capital which was invested in the product (typically the 

research is reused for the progression of IP(s) [8]. 

 

 3) Development Cost: By reducing the number of re-spins required through 

FPGA prototyping, hardware design corporations are able to save millions of dollars. 

These re-spins are caused by a number of factors including: firmware issues, power 

issues, mixed-signal interface related issues, race condition issues (that were not 

detected by PD (Physical Design) software, clocking domain issues, functional issues, 

and more [9]. In [10], there are five precautionary steps that are listed in which 

corporations take to minimize their risk of having a re-spin: 

a) Constraint random verification 

b) More effective block (IP) level verification 

c) Verification reuse from block level to System level 

d) Architecture of test bench using reusable methodologies 

e) A reusable and scalable verification 
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2.1.2 Implementation 

 

 The implementation modules, located in Appendix A, demonstrate how 

“Constraint random verification” and “More effective block (IP) level verification” are 

achieved and being approached within the modern day hardware design industry. The 

technologies made use of are the latest solutions used by the most renowned hardware 

design corporations and design teams. In fact, many companies are still moving to this 

methodology. The demand for this can be seen by the sheer number of job postings to 

simply help convert/create design and design verification environments to make use of 

these techniques. 

	  

2.1.3 Verification Tools 

 

 It is well known that verification efforts can account for 60 to 80 percent of the 

hardware development process [11]; where larger designs typically requiring the higher 

percentages. There are a number of different stages when it comes to hardware 

verification, most stages run in parallel during the course of a project. In one of the first 

stages, engineers develop their concept design modules and algorithms using software. 

Software verification is highly effective at finding high level faults in a design due to two 

key characteristics: easy development (fast and low cost approach), as well as fast 

results (compile times for an FPGA can take hours when making even the smallest 

changes and can take an exorbitant amount of time to simulate). However, software 

verification is not without its limitations. Software is limited in its ability to mimic 
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hardware. While software models have made leaps and bounds in this area even 

capable of modeling the timing delay between modules, hardware and software are still 

inherently distinct and therefore limited in verifying the design. They are however an 

effective emulation tool for the conceptual design of the module (ex. testing algorithms 

which will be implemented in hardware). 

 

In addition to software verification, engineering teams develop and implement 

their designs using “Hardware Description Languages” or HDLs. The two foundational 

HDLs include VHDL (VHSIC Hardware Description Language) & Verilog. The code 

found in these .vhdl and .v files (respectively to the languages above), are then 

translated to the required format as per a specific architecture/technology (an ASIC, 

Xilinx Kintex 7 FPGA, Altera Cyclone V FPGA, etc.). For example, a bit stream is 

generated based on the internal structure and resources available within the specific 

FPGA being used. This bit stream is used to program the FPGA being used by 

configuring the hardware, typically through JTAG interface, by filling in LUTs, 

configuring routing, and manipulating other resources.
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Figure 1 – Bit Stream Configuration [12] 

 

From a verification perspective there are a number of options for engineers to 

verify their code at this stage, of which two fundamental concepts are discussed. First, 

engineers will often include additional verification oriented code that is built into the 

language (VHDL / Verilog) to ensure some conditions within respective states are met. 

Secondly, if the correct arguments are passed when invoking modern hardware 

simulators, such as VCS developed by Synopsys Inc., then files containing the values of 

registers and pins are dumped. These files can then be examined to determine if the 

behaviour is as expected. 

 

Processor systems have become far more advanced, consequently hardware 

design files have grown exponentially larger over the last years. As a result, improved 

verification environments (speed, flexibility, features) have become a central focus in the 

hardware design industry. With this growing demand, two key issues were identified: a 
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limited library to verify hardware and manually analyzing the waves was extremely time 

consuming and difficult. When engineers looked at these limitations they had two goals: 

(1) To expand the available verification environment and enable hardware designers to 

build with ease similar to that which software provides. (2) To automate the manual 

processes that tended are labour intensive and repetitive (both characteristics for 

opportunities to develop a software solution). 

 

 In 2002, engineers released the revolutionary HDL (Hardware Description 

Language) - HVL (Hardware Verification Language) combination based on extensions 

to Verilog [13]. While there were predecessors which SystemVerilog inherited from, 

SystemVerilog provided superior functionality and modern features. As a result, 

SystemVerilog was selected as the IEEE standard in 2005 and by 2009 was merged 

with the base Verilog standard [14]. This decision demonstrates just how significant of a 

relationship existed between the hardware design and design verification world. To this 

day, SystemVerilog remains as the foundation to which more advanced tools are built 

on top of. It is not to be taken for granted by any means or compared against UVM 

(Universal Verification Methodology). UVM is built upon SystemVerilog, and as such 

should be identified as an extension. This is worth mentioning when examining the 

implementation found in Appendix A. 

 



 12	  

2.1.4 ASIC & FPGA Architectures 
	  

	  

Field Programmable Gate Arrays have come a long way in recent years and 

continue to make leaps and bounds in the semiconductor industry. Their unique ability 

to be reconfigured is the reason why FPGAs are able to take on varying complex tasks 

that with an optimized hardware configuration.  In order to accomplish hardware 

reconfigurability, FPGAs are designed using a distinct hardware layout, as seen in 

Figure 2 bellow.  Logic blocks are LUT representations of the logic gates used inside 

ASICs (refer to Figure 2).  These logic blocks are linked together using routing lines and 

switching blocks are used to select which logic blocks will be connected together. 
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Figure 2 - Design of an FPGA [15] 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  
Figure 3 – The Operational Difference of ASICs and FPGAs [16]
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An FPGA’s ability to adapt to situations using its reconfigurable properties means 

that the hardware can be optimized based on the task at hand.  These adaptive 

characteristics allow engineers to modify their designs (perhaps for optimizations or 

handling new protocols), or upload completely different designs onto a chip.  For 

instance, an FPGA can be configured to be a router in one instance and a graphics 

processing unit in another.  System architectures are classified with three parameters:  

i. Components: the set of function made available by the hardware architecture 

ii. Links: the interconnects between the components 

iii. Procedures: the set of variations of functions and links in time 

 

ASICs use a “fixed components, fixed links, variable procedures” architecture.  

While FPGAs on the other hand use a “fixed components, variable links, variable 

procedures” architecture [17].  This is also how our brains are designed, and despite 

running at an operating frequency of approximately 10 Hz, the human mind is the most 

advanced processing unit.  This added variance allows us to optimize performance for 

various tasks, but also comes at a cost. 

 

 One question to be asking is why we still use ASICs if FPGAs have such a large 

advantage in being reconfigurable? It is important to note that although FPGAs and 

ASICs could theoretically be interchanged (for example ASIC designs are often 

implemented on FPGAs for prototyping and testing purposes), FPGAs will never replace 
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ASICs completely. This is because they serve different purposes and thus each has its 

own advantages, see Table 1 and 2: 

 

 

 The reconfigurable properties of FPGAs come at a cost however.  FPGAs have a 

large hardware overhead in comparison with ASICs, thus increasing the size and cost of 

the units (see Figure 4).  Additionally, since software handles most of the routing, 

placement, and timing within FPGAs, the layout is not the optimal solution (even though 

the software runs several optimization algorithms) [18].  So although this creates a 

simpler design cycle, ASICs have a performance advantage.  As a consequence of not 

having a design implemented using the optimal layout, the clock frequency also has to 

be decreased according to the slowest path in the circuit [19].

Advantage	   Brief	  

Faster	  time-‐to-‐market	   No	  layout,	  masks	  or	  other	  manufacturing	  

steps	  are	  needed	  

No	  upfront	  non-‐recurring	  expenses	  (NRE)	   Costs	  typically	  associated	  with	  an	  ASIC	  design	  

Simpler	  design	  cycle	   Due	  to	  software	  that	  handles	  much	  of	  the	  

routing,	  placement,	  and	  timing	  

More	  predictable	  project	  cycle	   Due	  to	  elimination	  of	  potential	  re-‐spins,	  wafer	  

capacities,	  etc.	  

Field	  reprogramability	   A	  new	  bitstream	  can	  be	  uploaded	  remotely	  

Table 1 – FPGA Design [17] 

Advantage	   Brief	  

Full	  custom	  capability	   For	  design	  since	  device	  is	  manufactured	  to	  

design	  specs	  

Lower	  unit	  costs	   For	  very	  high	  volume	  designs	  

Smaller	  form	  factor	   Since	  device	  is	  manufactured	  to	  design	  specs	  

Table 2 – ASIC Design [17] 
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Figure 4 – FPGA Hardware Overhead 

 

As the name states, ASICs are specific to an application and therefore are 

optimized for those task(s).  Therefore, in systems where tasks are fixed, ASICs are the 

better solution. However, in situations where a systems’ tasks are continually changing, 

a ASIC architectures may not be the ideal/optimized method of implementation.  Despite 

the hardware overhead of an FPGA, the unique ability to be reconfigured is the reason 

why FPGAs are able to take on complex tasks with an optimal hardware configuration 

and outperform traditional processor architectures using less space and power 

consumption. 

 

In the past, when a system [implemented on an FPGA] would switch tasks and 

require a different hardware configuration, this meant the FPGA had to be placed in 

shutdown mode while loading the new configuration file onto the chip (this is known as 

static reconfiguration).  This limitation significantly impacts the performance of a system, 
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and hence the applications for which an FPGA’s adaptive properties would be required.  

Engineers recognized this setback was restricting the performance capabilities that 

FPGAs had to offer. After several years of research, Xilinx discovered the solution: 

Dynamic Partial Reconfiguration. 
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2.2 FOUNDATION OF MODERN RESEARCH 

2.2.1 Reconfigurable Technology 

 

Dynamic Partial Reconfiguration takes the adaptive properties of an FPGA to a 

whole new level.  DPR allows selected “parts” of an FPGA to be reprogrammed with 

new functionality while the remainder of the FPGA continues to operate (hence the word 

“partial” in dynamic partial reconfiguration).  Observe Figure 3 bellow, “Part A” of the 

FPGA is going to be reconfigured. During this reconfiguration time, the module is shut 

down and the rest of the system continues under normal operation.  When “Part A” has 

finished being reconfigured, it will turn on and resume operation with its new hardware 

configuration [20]. 

 

Figure 5 – Operation of Dynamic Partial Reconfiguration 
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Dynamic partial reconfiguration is not supported on all FPGAs. In fact, up until 

recently Altera (one of Xilinx’s primary competitors) did not support partially 

reconfigurable FPGAs. The first FPGA to support DPR was Xilinx’s Virtex II Pro. Partial 

reconfiguration addresses three fundamental needs by enabling the designer to: 

1. Reduce cost and/or board space 

2. Change a design in the field 

3. Reduce power consumption 

 

Dynamic partial reconfiguration enables designers to fit more logic into an 

existing device by time-multiplexing hardware dynamically on a single FPGA. This also 

translates into a smaller and less expensive device. The advantages of DPR are clearly 

seen when comparing Figures 6 and 7, which are two different implementations of the 

same hardware functionality [12].
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Figure 6 – Hardware Module without Partial Reconfiguration 

 

 

 

 

 

 

 

 

Figure 7 – Hardware Module with Partial Reconfiguration
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DPR provides real-time flexibility for the protocols available in any given moment.  This 

can translate into cost savings of several orders of magnitude compared to traditional 

processors, since the architecture cannot be reprogrammed to support a new protocol. 

 

 With partial reconfiguration, designers can time multiplex parts of their designs on 

the FPGA.  As long as the stages of the design are independent, this can be done as 

many times as needed.  Using this methodology then requires a much smaller FPGA 

chip since not every part of the design is needed 100% of the time.  Using a smaller 

FPGA also means that the power consumption and timing (because everything is 

closer) is exponentially more optimal [21].  Additional advantages of partial 

reconfiguration include: 

 Enables the use of new techniques in design security 

 Improves FPGA fault tolerance 

 Accelerates configurable computing 

 Reduces bit stream storage requirements 

 

2.2.2 Existing DPR Applications 

 

 Dynamic Partial Reconfiguration in FPGAs is still a fairly new concept that has 

not been taken advantage of fully.  FPGAs that support DPR can be utilized in many 

applications to increase performance, while reducing costs, area consumption, and 

power consumption. 
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 A hardware accelerator is an optimized functional block used to offload a specific 

task or set of tasks from a general purpose processor (GPP).  Hardware accelerators 

are optimized frequently used in systems today to improve performance and decrease 

dynamic power consumption.  However, according to Amdahl’s Law hardware 

accelerating a task can only accelerate the overall performance according to how often 

that task is used during execution time.  Figure 8 bellow further exemplifies this [22]. 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Amdahl’s Law: Speedup In Relation To Portion of Program Being Accelerated
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 Using dedicated hardware to accelerate a particular task has proven to be a very 

effective method for improving the performance of a system [23].  However, if every task 

had its own dedicated set of hardware the static power and area consumption would be 

astronomical.  One may be able to see where DPR enabled systems can solve this 

problem, while maintaining the same performance benefits to the system.  For instance, 

in most systems not all tasks are used in one instance.  So if those tasks were loaded 

into configuration memory, then each module could be loaded onto chip (the FPGA) as 

needed.  By following the suggested strategy being proposed here, only the tasks being 

used are loaded into hardware but the system still has access to all the dedicated 

hardware sets. 

  

 What [24] proposes is that hardware accelerators in the past can increase 

performance and reduce power consumption, but overlook the interface between CPU’s 

and FPGA hardware accelerators.  The model they present is to analyze the application 

running on the GPP (in this case a CPU), and profile the application to determine which 

time-critical functions should be accelerated.  At this point the correct IP module will be 

loaded onto the FPGA.  However, the way in which the CPU and the FPGA interface to 

each other will also affect the performance of the overall system.  The results can be 

seen in Table 3 and will be further discussed below.
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Figure 9 – Acceleration Design Flow [24] 

 

 The research and findings found in [25], compliments that of [24].  Using FPGAs 

to hardware accelerate embedded systems is a popular and promising area of research.  

The benefits and possibilities are promising and will truly expand the capabilities of 

present day embedded systems.  The basic premise of [25] is that FPGAs in embedded 

systems can raise the abstraction level without imposing new tools and practices for 

design engineers and corporations.  By taking an OOP approach (expressed in UML 

and implemented in C++) software coding efforts are significantly reduced.  Not only 

provides a golden reference model, but may also be used in the actual implementation 

of the hardware design.  This can prove especially useful in today’s semiconductor 

industry.  Since about 80% of the time needed to design an ASIC is spent in verification 

efforts, overlapping the time spent on developing Bus Function Models (BFMs) for the 

test bench and the actual RTL design could reduce the cost of processor design 

significantly [26].  For example, assuming 100% of the 30% design time could be 
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transferred to verification efforts that would mean a cost saving of 30%.  The proposed 

methodology being indicated here is what top engineers are striving to achieve. 

However, what typically prevents them is the amount of resources and risk involved in 

making such drastic changes. With the approach discussed in this thesis and the tools 

discussed in Chapter one such results can be achieved. The results will be further 

discussed in the following section. 

	  

2.2.3 Theoretical DPR Gains 
	  

 

FPGAs are particularly suited for accelerating compute intensive algorithms that can 

take advantage of massive hardware parallelism.  This is especially true for FPGAs that 

are DPR enabled, since the hardware can adapt to the exact compute operations being 

executed.  Additionally, being able to reconfigure hardware during run time without 

stalling or impairing the performance of a system, makes this all the more promising.  

This in effect makes the hardware appear as if all tasks are in hardware and available to 

be called upon at any given time.  The philosophy behind this appears to mimic that of 

virtual memory.  In short, a system may only have a few megabytes of memory, but by 

virtualizing memory on external storage it appears to the user that the system memory 

is much greater. 

 

This visualization of the hardware follows the same principles by context 

switching between hardware configurations.  In multitasking contexts, virtualizing 
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hardware translates to superior hardware utilization and much greater performance can 

be achieved [27].  This is truly reflected in Table 3 bellow. 

 

It can be seen that using a general processor architecture means the 

implementation must be completed using software.  This abstraction means higher 

frequencies and hence power consumption.  Using DPR to hardware accelerate this 

design proves to improve performance by factors greater than 50 times.  The area in 

this design does increase; this is due to the initial hardware overhead that FPGAs 

introduce.  However, as the design size increases, the initial investment of hardware 

overhead is disguised by the hardware virtualization capabilities. 

 

 

 

 

 

 

 

 

 

 

 

Table 3 - FIR Filter Evaluation [24]
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Area cost with FPGAs is one of the biggest issues.  The problem lies in what was 

discussed in the introduction and observed in Table 4. This is why existing FPGA 

solutions have not taken off in high volume design cases.  As further discussed in [25], 

the capabilities to abstract hardware at a level where designers can overlap design and 

verifications efforts also come at a cost in the area designs consume. That being said, 

perhaps further research could uncover a more optimal method that will not increase the 

ASIC’s area. Once again similar to the finding in [24], [25] has a small increase in 

hardware resources (area) required but performance increase of an order 10. 

 

 

Table 4 – Hardware Accelerated Embedded Systems Comparison [25]
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 We have discussed and observed situations where FPGAs increase the area 

being consumed and yet other scenarios that decrease the area being consumed.  The 

designer must truly consider the goals, meaning what the constraints and optimizations 

for the given project are.  Once these functional specifications are gathered, the 

designer can analyze the technical specifications of the system and the resources 

available. 

 

 The conclusion of [23] supports the findings of this thesis, one can see that 

hardware accelerators can (but don’t always) improve throughput and lower power 

consumption.  When approaching the problem by proposing re-ordering the requests 

put on the accelerators and thereby decreasing the associated overhead with the DPR 

enabled system.  What my work establishes and what [23] was working towards, is that 

an accelerator must be able to maintain performance between context switching, so by 

reducing this overhead and general switching occurrences, performance can be 

improved.  Implementation results for a number of applications can be seen in table 5 

bellow showing how such a strategy can improve performance: 

 

Table 5 - Hardware Accelerated Embedded Systems Comparison [23]
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The designs he has implemented are larger than the ones found in previous papers, 

and provide a much better estimate as the FPGA overhead is better disguised.  As seen 

the throughput has once again been improved (although not as much), but the area 

differences are equal or less than in the FPGA implementation.  This is why the 

designer needs to follow careful methodology to determine the correct resources to 

implement the design on.  

 

2.3 EXISTING METHODS & TECHNIQUES 
	  

	  

 The industry recognizes the powerful benefits of reprogrammable logic and 

FPGA-like resources. Many leading industry and academic research and development 

sources have concluded the benefits of converging the two worlds of processor and 

FPGA technology. However, thus far implemented systems and proposed architectures 

have failed to meet the objective goals found in this paper. 

 

Due to a large granularity approach, such systems cannot strategically extract 

benefits of each technology. The cost, risk, and performance suffers for consumer 

related processing applications. Reprogrammable logic resources will always consume 

more area and be slower than ASIC logic, however it is also true that they consume less 

power and are faster at processing algorithms than processors and even DSPs.  It is for 

this reason, the fusion of these technologies needs to follow a specific set of rules in 

order to extract the benefits of each technology and develop the innovative consumer 

processing architecture of tomorrow. 
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Below are examples of how researchers have approached this concept and what 

some semiconductor manufacturers have created. 

 

2.3.1 Intel Develops FPGA-Based Coprocessors 

 

Intel is one of the largest semiconductor manufacturers in the world. They have 

been a world leader in developing innovative processor technologies. Given their 

success they have invested significant resources into the research of architecture 

design improvements. 

 

Intel has made progress in developing processors that make use of FPGA 

embedded technology [28]. As can be observed in the figure below, the approach is one 

that provides greater potential and flexibility, excluding the consumer market 

CPUs/GPUs. As mentioned in chapter 2, FPGAs makes the hardware design process 

far more affordable for companies to develop systems. However, what must be 

highlighted is how significant an impact FGPAs have had on accelerating the innovation 

within the hardware industry. 

 



 31	  

 

Figure 10 - The Coprocessor Approach [28] 

 

Hardware is extremely expensive to manufacture using traditional semiconductor 

fabrication plants. The cost is so astronomical that unless millions of chips are being 

fabricated, it is typically not worthwhile or feasible to invest in exploring hardware 

solutions. With the introduction of FPGAs however, this all changed. Today developing 

a hardware module is an affordable option for fuelling growth in the hardware industry, 

through the enablement of small projects, small ventures and custom solutions. 

Moreover, as demonstrated in [29] FPGA fabrication technology and architecture 

advancements have further enabled engineers endeavours and expanded the realm of 

possibility. The compute capabilities in today’s FPGAs are tremendous, depending on 

applications certainly surpassing the performance of other technologies as seen below. 
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Figure 11 - Multi-Architecture Performance Comparison [29] 

	  

2.3.2 Existing Mixed Chips 

  

It is commonly known that processors (including CPUs and GPUs) contain 

microcontroller(s) within their design. This embedded controller provides flexibility to a 

processor for particular set of tasks and frequently improves performance through 

measured analysis of a hardware pipeline. This can show up in area reductions, power 

reductions and other key performance metrics. 

 

Heterogeneous compute devices such as this are become extremely popular, so 

much so in fact that the Heterogeneous System Architecture (HSA) Foundation was 

established in 2012 to focus on such efforts [30]. The HSA foundation is a not-for-profit 
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that develops industry standards to improve innovative efforts of heterogeneous 

computing devices. Unfortunately, thus far such efforts have primarily focused on large 

processor systems working together. As found in [31] other heterogeneous computing 

devices are emerging, the Intel Many Integrated Core (MIC) and the AMD Fusion 

technology. [31] is able to unlock additional performance using the microcontrollers 

found in GPUs. As seen in the figure below, the methods assist with the reduction of 

data transfer times through a method titled “Microcontroller-based data transfer”. 

 

 

Figure 12 - Data Transfer Time Analysis 

	  

 Altera and Xilinx have released the new generation FPD-Microprocessor mixed 

chips that consist of microcontrollers and programmable logic, though these ICs are 

aimed at embedded system markets only and provide limited amount of processing 

power compared to high-end processors. This idea has not been explored at high-end 

CPU/GPU chipset market. Solutions (such as netbooks, tablets, mobile devices and 



 34	  

embedded systems) that are power, cost, and space sensitive will benefit tremendously 

from the solution that is proposed here. 

 

 By introducing reconfigurable FPGA blocks within ASICs, systems would have far 

greater flexibility to the large main chips in order to satisfy the dynamic feature 

requirements of different O.E.Ms and system architects. The solution (embedding non-

volatile programmable logic blocks) promises cost reduction, flexibility, performance 

enhancements, and size/power reduction from system engineering perspective. Such is 

the proposal of this thesis. 

 

2.3.3 Embedding ARM Processors Into FPGAs 

  

Semiconductor companies are making the opposite efforts to integrate traditional 

processor technologies (ARM processors) into their systems. Xilinx has been extremely 

successful at building processing systems that offer a number of benefits to the 

hardware development industry. Recall from previous chapters, FPGAs have enabled 

hardware companies and developers to perform research and development affordably. 

It was explained how this lead to improved innovation. To expand the level of system 

flexibility Xilinx has set a high priority towards integrating both technologies. Today’s 

Xilinx Zynq systems are a testimony to the incredible performance and opportunities 

that these systems possess [32]. 
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Xilinx Corporation markets the Zynq platform as an “All Programmable SOC”; this 

is an accurate term to describe the flexibility of the system platform. Developers are able 

to provide instructions through software, which can be run on the ARM core(s), while the 

programmable hardware can mange computation data processing. The system can 

execute applications in real time and optimize system interfaces through programmable 

I/O [33].
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Figure 13 - Xilinx's All Programmable SOC [33] 
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CHAPTER III: 

3.1 COMPARATIVE ANALYSIS OF EXITING SOLUTIONS 
	  

	  

 The problem solved in the proposed work is to improve the performance of 

existing main stream systems (CPUs, GPUs) by incorporating programmable embedded 

logic into each ASIC strategically.  FPGAs are known for their performance in highly 

algorithmic contexts, which are especially common within GPUs.  As computing takes 

on more complex algorithms, today’s processors can benefit with the proposed design. 

It improves the overall performance by accelerating algorithms and offloading certain 

intensive CPU or GPU tasks. In an example used in section 4.1, we see an increase of 

performance of 0.5% at a system level and as much as 80% on a block level. 

 

 Due to the design strategy proposed here and the characteristics of the 

technology being used, the proposed solution would be a low risk endeavour that 

corporations could quickly adopt into upcoming technologies.  Moving towards the 

proposed designs would be a step towards a future looking architecture that 

outperforms existing architectures. Additional benefits will be further discussed later. 

 

 The common execution processor stages (IF, ID, ED, MEM, WB) introduce high 

overhead in comparison with a stream processors, especially in terms of power and 

delay (see implementation results). Processors break up large tasks into small 

operations and take them on accordingly.  This introduces hazards and high overheads, 
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in comparison to a hardware acceleration unit which reprogrammable logic could 

provide replicate within an ASIC. 

 

3.1.1 Coprocessor Systems –  FPGAs + CPUs/GPUs 

	  

	  

As discussed above there are a number of semiconductor companies investing 

into solutions that integrate traditional processor technologies with FPGAs. This has 

been extremely effective at custom project solutions. As shown by [33], significant 

performance and flexibility can be achieved at low design costs. Xilinx brags about the 

lower BOM cost, higher systems performance, and lower system power they are able to 

provide with this type of architecture. Such an architecture is not far from the other 

methods proposed by Intel and Altera (at least in the system examples used here), 

however they have improved on the interface connections. 

 

 It should be understood, that the analysis of the pros and cons of this previous 

approach must be addressed in a context for which these systems were not designed. 

Therefore, it is not a criticism of the solution as it addresses a different problem all 

together. The objective of this thesis is, to the best of my knowledge conceptually 

different from all others. 

 

 When FPGAs and consumer processors (CPUs/GPUs) are connected to work 

together as coprocessors the system chip becomes very large. The cost of the chip 

significantly increases and large overhead IPs must be developed to manage the 
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connection. The two technologies stand alone in comparison with what this thesis 

proposes. Hence, the memory, contexts, tasks, and all other internal aspects of each 

technology are unknown to the other. 

 

 Moreover, due to the architecture the connections can become extremely slow in 

comparison the proposed design. Take for example the Altera system below. 

 

Figure 14 - Isolated Technologies, PCIE Connection [34] 

The Altera FPGA and Atom processor are connected via PCIE. Such transfer speeds 

are considered to have extremely high latency. Communication is ineffective and it is 

desirable to avoid “team work” between the two technologies. 

 

This isolation and lack of awareness are exactly what the “Hardware Acceleration 

Islands” and supporting strategies resolve. By removing this high latency connection, 
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and improving communication between the two technologies the new system can build 

upon the success of both CPUs/GPUs and FPGAs. 

 

Moreover, the proposed designs accomplish something very unique to the 

hardware development industry. That is, that they do not require a new software to be 

developed within the consumer market. This system not only adds performance to 

existing CPUs and GPUs, but packages it in such a way that hides these changes from 

hardware and software layers above (with the exception of device drivers and potentially 

minimal operating system optimizations). 

	  

3.1.2 System Customization 

 

The suggested design does not have as much customization and flexibility for 

after the market adjustments. Since this system is targeting consumer devices too much 

flexibility will start to slow down the system and loose the initial benefits purposed. That 

said, consumer CPUs and GPUs hardware design companies have incredibly large and 

robust systems that require lengthy development cycles. To ensure functionality, time is 

taken to verify each IP and final SOCs (see section 2.2). Therefore, it can be expected 

that such projects will not / should not add greater customization than necessary and 

according to the strategies outlined in this thesis. 

 

The customization that is provided according to this work will be nearly or just as 

effective as the isolated task unit in the alternative hardware solutions. However, when 
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considering the context of the system the Hardware Acceleration Islands will be far 

more performant. 

 

3.1.3 Hardware Acceleration 

  

 By embedding FPGAs into current processors (such as CPUs and GPUs), 

algorithms and tasks can be offloaded to the DPR enabled programmable logic.  

 

 The programmable logic can be modified using run time reconfiguration 

and a bit stream uploaded characterized by the context of the system during run-

time without impacting the performance of the rest of the system.  Moreover, due 

to the granularity of these embedded reprogrammable modules and the stream 

processing characteristics of FPGAs the performance benefits and flexibility is 

precisely what engineers are looking to achieve. 

 

 Looking at the system implementation example in the following chapter, it 

is evident that engineers could benefit by embedding an adaptive hardware 

acceleration unit.  Moreover, when an FPGA logic block is introduced for 

hardware acceleration, depending on the interfaces, there may be opportunities 

to assist with varying tasks and secondary system requirements. While the FPGA 

may not be the most effective at routing and decision-making, there are areas 

within system processing where FPGAs would far surpass (such highly 

mathematical system contexts). 
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3.1.4 Protocols & Flashing 

 

 Custom SOCs are a growing market within the hardware design industry. 

The ability to add levels of flexibility and custom protocol support is a sought after 

trait. While it is costly, the return on investment is clearly justifiable. 

 

There are a number of blocks within existing systems that have high 

demands in terms of the sheer number of protocols they are required to support. 

While some systems can afford to use software, most solutions require a 

hardware dedicated data path solution. Supporting a protocol is no small task; 

these dedicated pipelines are designed for each protocol which incoming data 

from the block interface will traverse. 

 

 The lists below are just basic protocols and codecs that many modern 

systems need to support. There are several others including a number of other 

categories that are not included here: 

• H263  

• H264 

• VC1 Advanced 

• VC1 Main (RCV) 

• MPEG2 (DXVA) 

• MPEG2 (Native) 
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• MPEG4 

 

 By using the proposed HWAI unit, not only could engineers target these with less 

hardware overhead but the complexity of the hardware would be far less. This would 

result in lower research and development costs and verification efforts. This is because 

by using a HWAI unit, the solutions become straightforward and simple problems that 

are less prone to errors. Currently engineers are faced with needing to come up with 

optimization strategies that, while ingenious, can be quite complex. 

 

 HWAI allows live system reprogramming. Moreover, new protocols could 

be downloaded post-silicon to consumer devices. Those bit streams can be 

implemented within the programmable logic constraints. This not only provides 

far-superior flexibility but also customizability. Hardware/software developers can 

create their own modules (ex. Apple/Intel’s Thunderbolt protocol) without 

requiring extremely expensive hardware re-designs. The alternative for this today 

is to use slow software support.  

 

3.1.5 Custom SOC 
	  
 

 There is a growing demand for custom SOCs. As the use cases have grown and 

costs become difficult to manage, semi-conductor corporations are looking to build 

SOCs with greater and simpler customizability.  ARM has been a leader in this regard; 

their success over these last years speaks for itself. ARM offers great performance 

using simple designs that are highly customizable. 
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 The flexibility that reconfigurable systems offer is considered highly 

advantageous and powerful in today’s industry.  The reconfigurable nature of these 

blocks would allow CPU designers to create a new type of custom SOC that enables 

customers to flash their own configurations and modules. In specific, the internal FPGA 

could be flashed at any time, allowing for native hardware support for any task that can 

fit the logic cells available on the reprogrammable logic. 

 

 Using reconfigurable logic creates a unique opportunity to provide incredible 

flexibility while improving system performance.  The simplicity and effectiveness of such 

a design truly stands out from existing custom IP solutions.  The market this would 

attract and cost saving advantages that this design would provide to customers would 

be a unique and powerful combination. 

 

3.1.6 Power Advantages 
 
 

 Currently semi-conductor corporations are investing a large amount of resources 

into power management. As an industry engineers are approaching this by developing 

new power efficient designs.  To further those efforts, HWAI would allow design team to 

make use of embedded reprogrammable logic to implement power management 

strategies using a central logic unit.  
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 As an added benefit for the custom SOC use case, customers can define and 

flash their own power templates. 

 

 Today, hardware accelerators inside processors are fixed.  It is obvious that if 

one could decrease the execution time, the overall power consumption decreases. 

Therefore, by hardware accelerating portions of applications (such as an edge detection 

algorithm within a GPU) engineers can reduce power consumption.  Consider the 

following general relationships: 

 if ↑ performance by ↑ frequency, then power consumption ↑  

 if ↑ performance by dedicated hardware, then power consumption ↓ 

 if ↑ area, then ↑ cost 

 if ↑ area, then strong chance ↑ power consumption 

 

3.1.7 Life Time 
	  
 

 Given a system with such adaptive properties, as described in this work, design 

teams could reconfigure processors that have already been taped-out. This feature 

could be used to add dedicated hardware support for a new protocol that might be 

needed down the road, or to improve the performance of a task, power options and 

other customizations where allowable through the use of HWAI. 
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3.2 MODIFYING THE APPROACH 
	  

	  

There are three parts that are necessary when considering the proposed design 

found in this thesis. Each aspect must be calculated and assessed carefully in order to 

achieve the objective goals. 

 

 The name of the proposed design work (as described in my patent filings) 

is ”Hardware Acceleration Islands” or sometimes abbreviated as HWAI. 

 

 In the past, corporations researching this area have only looked at 

involving FPGAs and ASICs through methods that are insufficient for the 

consumer market (as discussed in the previous chapter). As an example, simply 

stitching these large architectures together through a traditional bus produced 

high latency and did not allow for cooperation without significant overhead. 

 

 While this approach was necessary for the past, this will not be the case in 

the near future. Previous strategies were required because the technologies 

(transistor gate sizes) greatly differed. CPUs and GPUs are continuously leading 

the way making use of the latest transistor technology. FPGAs have remained 

behind on the advancements being made (due to unique issues that must be 
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overcome). However, that gap is shrinking as time passes and this approach 

becomes even more alluring. 

 

 The reason for this gap shrink is in the fact that current transistor 

technology is reaching its limitations. There are only a few atoms across the gate 

of a transistor. By decreasing it any further quantum physics becomes a factor 

affecting the behaviour of the transistor. Due to this hurdle and the increased 

number of resources being invested in recent years toward FPGAs, FPGA 

technologies have nearly closed the gap. 

 

 Therefore the previous strategy will no longer be necessary in order to 

avoid compromising. Moreover, the previous strategy contains 1 major flaw. 

FPGAs will never take the place of traditional processor architectures, and the 

proposed products have far too much overhead in the way they attempt to fuse 

the two technologies together. Rather than simply stitching these two 

technologies together I propose a far more strategic approach that will harness 

the benefits of both architecture individually. GPP systems currently dominate the 

market. The process of stitching an FPGA to a GPP costs a lot of money and the 

use reprogrammable use cases are limited in a large granularity implementation. 

This means high cost, high risk, and low gain. Alternatively, with my proposal, 

engineers take existing processor design and analyze the architectures 

strategically with a set of rules and strategies to identify locations to embed 
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HWAI. This is not a big task from a research and development point of view. 

During a design process there are design problems that simply highlight the 

benefits of the FPGA architecture. Similarly, most CPUs and GPUs already have 

microcontrollers embedded inside to help with regard to specific problems that 

would be solved more optimally by a microcontroller. 

 

 In recent years there have been a number of systems developed that contain a 

stitched CPU and FPGA architecture. The hardware design corporation leading the way 

in this regard is, Xilinx with their Zynq-7000 All Programmable SOC. The All 

Programmable SOC such as the Zynq-7000 has its place, however, the work discussed 

below targets hardware developers who are looking for innovative solutions within 

consumer processors. As they serve to improve the flexibility of modern day processors 

through a low cost, low risk approach that would be simple to implement across the 

industry. Providing a number of benefits that will be discussed below. 

 

 Previous to the Zynq-7000, Intel released the E600 series to harness the power 

of FPGAs, but they also simply adjoined an FPGA to an existing processor.  This is not 

the strategy being proposing. Rather than trying to reinvent a new architecture, it is clear 

that ASICs are the superior architecture for CPU and GPU technologies. However, the 

proposed work compliments traditional processor architectures by harnessing the power 

of each technology in calculated locations. 
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 There are a number of key benefits that this will offer to current semi-conductor 

design teams. The following sections are dedicated to the approach and benefits 

analysis of HWAI and what it offers. 

 

3.2.1 Hardware Acceleration Islands 
	  

	  

 By embedding HWAI into current ASIC systems (such as CPUs and GPUs), 

algorithms and tasks can be offloaded to the DPR enabled programmable logic. The key 

for the success of this is to follow the rules closely. 

 

 The programmable logic can be modified using run time reconfiguration and a bit 

stream uploaded characterized by the context of the system during run-time without 

impacting the performance of the rest of the system.  Moreover, due to the granularity of 

these embedded reprogrammable modules and the stream processing characteristics of 

FPGAs the performance benefits and flexibility is precisely what engineers are looking 

to achieve. 

 

 The rules to create system performance improvements are as follows: 

1) Identify system blocks that: 

a. Contain logic which are infrequently active or infrequent enough that 

the a bit stream of comparable logic can be uploaded within 

comparable or better timing. These are especially common in 

multimedia and power logic. 
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b. Implement complex algorithms that do not require mainly 

interfaces/variables to be executed and do not have dependencies 

and are not atomic in nature. 

c. Frequently are modified during custom SOC projects or that would 

benefit performance and effective system lifetime through adaptable 

logic. 

2) Target the smallest division of logic. Remember bit stream sizes increase 

exponentially to the size of the design. 

3) Determine routing overhead from FPGA to ensure the size will not push chip 

outside of specifications. 

4) Compare the performance of the existing logic to a model of an optimized 

model (ideally developed as a streaming unit). 

5) Power saving and cost benefits will be proportional to the decrease in 

frequency requirements, saved leakage current, area reduction, the 

simplification of the design (design, verification, research and development), 

and other factors. 

 

Following this analysis and justification, the development is extremely simplified and the 

programmable logic can be embedded accordingly to replace existing blocks. 

	  

	  

 As previously suggested, a particular example where HWAI would be extremely 

beneficial would be within media blocks (see section 3.1.4). See the figure below and 

compare with Figures 6 and 7, focusing on the “Video Decoder / Encoder” block. 
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Figure 15 - Multimedia System with Block Diagram [35] 

	  

An alternative method to the above would be based on a bus system 

structure (see figure below). This method would be suitable for high performance 

computing. Today corporations such as NVIDIA have modified their processor 

designs to optimize for high performance computing systems. This is extremely 

expensive and has cause them to take a very reserved approach driven primarily 

by the following: 

𝐽𝑢𝑠𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙  𝐶𝑜𝑠𝑡  𝑃𝑒𝑟  𝑈𝑛𝑖𝑡  ×  #  𝑜𝑓  𝑈𝑛𝑖𝑡𝑠  𝑆𝑜𝑙𝑑

− (𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  #  𝑜𝑓  𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙  𝑈𝑛𝑖𝑡𝑠  𝑆𝑜𝑙𝑑 ∗ 𝑃𝑟𝑜𝑓𝑖𝑡𝑠  𝑃𝑒𝑟  𝑈𝑛𝑖𝑡) 
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While this does not account for indirect benefits (especially for marketing), in 

general as long as “Justification” is greater than 0 the project is justifiable. 

 

 In a CPU or GPU that follows a bus architecture, adding multiple 

Hardware Acceleration Islands (with a calculated number of LUTs) to the bus 

could provide dynamic support to the system. 

 

	  
Figure 16 - BUS System Structure [36] 
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3.2.2 Internal Connections 
	  

	  

The physical connections of HWAI to the system must be considered. Depending 

on the contextual placement of the programmable logic block and the support the unit 

will provide will impact how the connections will be established. 

 

The control signals and data signals will have to remain consistent to duplicate 

the functionality. However, the method in which the module reprogrammability can be 

implemented will require a set of additional control signals. See the figure below: 

 

 

Figure 17 - Required Control Signals for HWAI 

config_wr: Write enable for configuration bit stream. 

config_id: *optional* by implementing cash into the block or nearby to be shared 

amongst other blocks (possibly other HWAI units), instead of transmitting the entire bit 

stream over a bus the id could be sent and the bit stream could be uploaded far faster. 

config_data: The configuration bit stream data. 
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out_config_id: This signal can identify to other blocks what the current configuration 

inside the block is. This will be helpful for the system to determine the state of the block 

but also to determine if something is hung or there is a problem (both pre-silicon and 

live system, post-silicon). 

out_status: Determine the internal state of the block. 

Other control signals may be necessary or used to optimize the block. 

 

In section 2.3.2, mixed chips were discussed as being an existing technology that 

conceptually looked at multiple chip designs into one final system. Semiconductor 

companies that design CPUs and GPUs already have a set of signals and associated 

strategies to incorporating microcontrollers into these processors. While this information 

is proprietary it can be expected that this information would be helpful in strategically 

designing hardware reprogrammable mixed chips architectures. 

 

3.2.3 Pre-emptive Hardware Adaptation 
	  

	  

The work in this section focuses on is providing simple adoption for the 

marketplace in the semiconductor industry and a feasible solution that does not interfere 

with current software applications. These are what successful inventions in the 

consumer market require to make industry adoption a feasible outcome. This objective 

is achieved by combining HWAI and the pre-emptive hardware adaptation strategy. 
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The “Hardware Acceleration Islands” was introduced in the previous section. 

However, adding hardware functions would be irrelevant if software cannot easily make 

use of the features. Ideally the hardware drivers will take care of this such that 

developers of operating systems and software applications don’t have to create 

separate code. User-friendly hardware is critical to success. 

 

The work found in this section is titled “Pre-emptive Hardware Adaptation”, and is 

intended to compliment HWAI.  It is helpful to note that although this work was intended 

for use in conjunction with HWAI, it can be applied to other hardware acceleration 

processes. 

 

By taking advantage of embedded logic in existing processors (CPUs/GPUs), 

software drivers can pre-emptively prepare embedded hardware accelerators.  FPGAs 

are known to shine in highly algorithmic contexts, which are especially common within 

GPUs.  As computing takes on more complex algorithms a static hardware solution 

becomes difficult when trying to keep performance, power, area, and cost in balance. 

 

In the system implementation example, we were forced to make two negative 

assumptions on the performance of the hardware accelerators. These assumptions can 

be eliminated through this work thus leading to a performance gain of as much as 0.1% 

on a system level and 7.5% on a block level. For reference purposes the assumptions 

made were as follows: 
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1) We will assume worst case scenario such that the DPR enabled hardware 

acceleration unit must be reconfigured every single time and that the same 

complex task is never invoked after each other.” 

2) “The time to reconfigure is an overhead of 3 c.c’s” 

However, what if we could remove these or at least minimize these similar to a compiler; 

that is what the “pre-emptive adaptive hardware” work accomplishes. 

 

Unfortunately a compiler has the advantage of having all the instructions 

available, thereby optimizing previous to run time. In the case of hardware, we do not 

have this benefit. Moreover, there is an extremely high performance demand. What we 

do have available in hardware is an instruction buffer.  Instructions are typically fetched / 

placed inside of a ring buffer (as seen in the figure below) before being assigned and 

executed.   
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Figure 18 - Ring Buffer / Instruction Buffer 

 

In order to achieve this additional acceleration and minimize delay we can do 

basic analysis of the packets coming and make simple actions to improve performance. 

Through my research I have been able to determine a feasible way of accomplishing 

this for existing and upcoming hardware systems. The proposed work here can work in 

conjunction with HWAI [2] to provide an even greater performance boost. 
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Figure 19 - Pre-emptive Adaptive Hardware 

 

The traditional instruction set (on the left) can easily be modified using hardware 

drivers that interface with the hardware and the higher-level applications.  The 

instruction set with pre-emptive hardware acceleration is seen on the right. Orange 

instructions are automatically inserted for pre-emptive preparation of hardware 

acceleration units. The implementation strategy behind this will be discussed below.  
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Figure 20 - Traditional System Architecture Overview 

	  

Figure 21 - Programmable SOC (ex Intel’s E600 series) 
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Figure 22 - CPU with HWAI 

 

By modifying low-level hardware drivers, engineers can further improve hardware 

acceleration by preparing HWAI with the correct bit stream configuration before the task 

and data arrives.  This abstracts hardware accelerators from programmers, which 

traditionally required separate instructions to create the same result.  Many existing 

applications can take advantage of this feature and there is no need to change existing 

programs. 

 

 For example, when developing applications that need to perform graphics 

operations, developers make use of APIs such as OpenGL or DirectX to communicate 

with a GPU.  However, between the hardware layer and these API’s exists low-level 

drivers for the GPU.  This standardized interface between the drivers and API’s enables 

developers to make adjustments without affecting the interfaces between the hardware 
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and software. We can determine the exact hardware accelerator required for each call 

and pre-emptively load/prepare a hardware accelerator. 

 

An alternative method of solving the objectives of the “Pre-emptive Adaptive 

Hardware” would be to introduce hardware overhead. If the system analyzes the 

instructions id, it can determine whether or not it would be worthwhile to make use of a 

hardware accelerator. Given a set of instructions that require hardware acceleration, 

data inside the instruction buffer will be reviewed to determine if this particular 

instruction fits into the set of predetermined instructions that can be optimized. These 

HWAI bit stream configurations will be available and uploaded to the hardware when the 

required conditions are met. As per the implementation, a small microcontroller is 

suggested should the software approach be insufficient. The microcontroller, will make 

the respective fetches and manage the preparation of the HWAI units. For power 

savings efforts, interrupts can activate the microcontroller. 

 

Another note is that while operating system changes could lead to even greater 

performance gains, it is not necessary for the implementation and success of this work. 

This lines up with the objective goals set for this thesis.
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CHAPTER IV: 

	  

4.1 Demonstrating Performance  
	  

4.1.1 Reconfigurable Hardware Benefits 
 

 Accelerating computationally intensive algorithms with custom hardware is 

an important area of application and one in which FPGAs really stand out.  Many 

applications in image processing inherently have high parallelism demands.  

FPGAs have shown very high performance in spite of their low operating 

frequency by fully extracting the parallelism.  This can be achieved through the 

featured adaptive procedures that were presented earlier. By operating at lower 

clock frequencies but increasing throughput, a system can operate with 

decreased power consumption. 

 

 When using an ASIC, which as the name indicates is application specific, 

to take on multiple applications we run into complexities and overheads that can 

impact the system design negatively.  In this case we start to see technologies 

such as FPGAs really stand out. 

 

 With the power of reconfigurable logic, the system is able to dynamically 

modify/re-configure its’ hardware to meet the needs of the system for the task at 

hand. This removes the hardware overhead that is required because of the static 

nature of ASICs.  The hardware savings can improve the block latency and 
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power consumption.  More importantly, the performance increase will improve 

execution time thus allowing for lower operating frequencies.  This translates into 

even greater power saving opportunities.   

 

 To demonstrate some of the benefits, see the following example: 

𝑌 =    [ 𝑎! + 𝑏!
!
+ (𝑐! + 𝑑!)

!

!

!!!

] 

 

 In a traditional processor we would require approximately 14 instructions to 

complete the task above.  Each instruction will have an fetch, decode, execute, 

memory, and write back stage.  Moreover, the stages may have hazards that further 

delay the task.  Assuming each instruction took 1 c.c and each multiply took 32 c.c’s, 

the execution time per loop would be 76 c.c’s.  We can use booth multipliers to 

accelerate the task. Assuming 2 c.c’s per multiply, we can bring the execution time to 16 

c.c’s. 

 

 However, using a DPR enabled hardware acceleration island (HWA), we could 

create a dedicated hardware pipeline (as seen in the figure bellow) during run-time.  We 

can approximate the run time as follows: 

𝑇𝑜𝑡𝑎𝑙  𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛  𝑇𝑖𝑚𝑒 = 5 + 𝑛 − 1 ∗ 2𝑐. 𝑐 
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See Figure 23 below to understand what the dedicated hardware pipeline would 

look like. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 - Stream Processing Unit 

 

4.1.2 Improved Application Performance 
	  

	  

 Traditional hardware accelerators are fixed components that are task/application 

specific. They consume minimal power, area, and offer superior performance. However, 

due to their fixed nature they cannot adapt to processor contexts, this is a key factor 

within the context of this thesis. Due to hardcoded nature of processors, it is challenging 

to satisfy the dynamic feature requirements of system developers in post-silicon. While 
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ASIC hardware acceleration units have their place and are not to be replaced, there are 

contexts where a reconfigurable hardware acceleration unit would be of greater use. To 

provide an example for which such context would be beneficial, we can consider the 

following scenario:  

 

(1) A process consists of three hundred instructions including 10 core complex tasks 

(2) There are 3 hardware platforms: 

a. A CPU without any hardware acceleration units 

b. A CPU with 4 ASIC hardware acceleration units 

c. A CPU with 3 ASIC hardware acceleration units and a single reconfigurable 

hardware acceleration unit 

(3) Assume a simple instruction takes 1 clock cycle (or c.c.) 

(4) Assume the core complex tasks each take 25 times longer than a typical instruction 

in the program (ie. 25 c.c.). 

(5) If there are 10 complex tasks, let tasks 1-7 occur three times as often as tasks 8-10.  

 

 Therefore it would make sense that in our second hardware model to target our 

hardware accelerators toward the first 7 tasks. However, we are only able to improve 4 

due the resource limitations. The speedup factor is 5 times (meaning the task now only 

takes 5 c.c’s). In contrast, with the reconfigurable module we are able to target the 

remaining tasks. The time to reconfigure is an overhead of 3 c.c’s and the speedup 

factor is slightly less such that the task takes 10 c.c’s. In the first system, there is no 
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speedup however, the system will require less area. That means lower costs. And while 

this system would also save power without performance constraints, in order to compete 

with the performance of the 2nd and 3rd hardware platforms the frequency would need 

to be much higher resulting in far greater power consumption. From a performance 

perspective assuming tasks 8-10 occurred once within the 300 instructions and each of 

the 300 instructions, aside from the 24 tasks (7 complex tasks * 3 occurrences each + 3 

complex tasks * 1 occurrence each), consume 1 c.c., we see the following performance: 

 

System 1 = (300 instructions - 24 complex tasks) * 1 c.c + 24 complex tasks * 25 c.c. 

  = 276 c.c. + 600 c.c. 

  = 876 c.c. 

 

System 2 = (300 instructions - 24 complex tasks) * 1 c.c 

   + 12 accelerated complex tasks * 5 c.c 

   + 12 complex tasks * 25 c.c. 

  = 276 c.c. + 60 c.c. + 300 c.c. 

  = 636 c.c. 

 

We will assume worst-case scenario such that the DPR enabled hardware acceleration 

unit must be reconfigured every single time and that the same complex task is never 

invoked after each other.  
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System 3 = (300 instructions - 24 complex tasks) * 1 c.c 

   + 9 accelerated complex tasks * 5 c.c 

   + 12 dpr accelerated complex tasks * 3 c.c. to upload bit stream 

   + 12 dpr accelerated complex tasks * 10 c.c. 

  = 276 c.c. + 45 c.c. + 36 c.c. + 120 c.c. 

  = 477 c.c. 

 

Performance improvement: 

System 2 —> System 1 

  = 876 / 636 

  = 1.377 

System 3 —> System 1 

  = 876 / 477 

  = 1.836 

System 3 —> System 2 

  = 636 / 477 

  = 1.333 

 

This is a significant improvement in this context that System 3 was able to achieve. 

System 3 is an example of a system enabled with my proposed implementation. The 

work found in [2] and [3], enables this to be achieved and as shown in the following is 

an easy interface for both hardware and software developers to easily integrate this into 
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existing software without any change aside from the hardware driver and into upcoming 

hardware using the proposed strategy found here. However, this performance increase 

is not always true for every case, let us change one variable. Let us make the number of 

instruction 30,000 instead of 300. 

 

System 1 = (30,000 instructions - 24 cmplx tasks) * 1 c.c + 24 cmplx tasks * 25 c.c. 

  = 29,976 c.c. + 600 c.c. 

  = 30,576 c.c. 

 

System 2 = (30,000 instructions - 24 complex tasks) * 1 c.c 

   + 12 accelerated complex tasks * 5 c.c 

   + 12 complex tasks * 25 c.c. 

  = 29,976 c.c. + 60 c.c. + 300 c.c. 

  = 30,336 c.c. 

 

We will assume the worst-case scenario such that the DPR enabled hardware 

acceleration unit must be reconfigured every single time and that the same complex 

task is never invoked after each other.  

 

System 3 = (30,000 instructions - 24 complex tasks) * 1 c.c 

   + 9 accelerated complex tasks * 5 c.c 

   + 12 dpr accelerated complex tasks * 3 c.c. to upload bit stream 
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   + 12 dpr accelerated complex tasks * 10 c.c. 

  = 29,976 c.c. + 45 c.c. + 36 c.c. + 120 c.c. 

  = 30,177 c.c. 

 

Performance improvement: 

System 2 —> System 1 

  = 30,576 / 30,336 

  = 1.00791139241 

System 3 —> System 1 

  = 30,576 / 30,177 

  = 1.01322199026 

System 3 —> System 2 

  = 30,336 / 30,177 

  = 1.00526891341 

 

In this case what we see is far less of a performance increase factor.  To make a 

conclusion as to the correct system one must know what the constraints are or what one 

would choose to optimize for (area, power, performance, etc.). 

 

 Finally, consider this assume the area overhead of the CPU is 100 AU and each 

accelerator requires an additional 20 AU, in this case the area overhead is quite large 

for including these accelerators. However, if the CPU overhead is 10,000 then 20 AU 
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looks far more appealing. As a successful engineer all variables must be considered in 

order to build the appropriate system. 

 

 As depicted in the example above, in a system that takes on such a variety of 

complex algorithms it is impossible to hardware accelerate every single one using old 

design strategies. This can be solved using DPR enabled embedded logic. 

 

 The Field programmable logic blocks are in-system programmable by nature 

(unlike traditional accelerator logic components). This characteristic is not apparent in 

existing architectures. The HWAI design solves this problem with a superior architecture 

design. This flexibility can have various benefits during different stages of the IC lifetime 

including, smaller die size, less power, more versatility.  

 

4.1.3 Modern Design Technique 
	  

	  

As previously discussed, there a number of design and development tools being 

used in the industry today. The code found in the appendix contains the most modern 

languages and tools, including SystemVerilog and UVM. The modules developed can 

be implemented on an FPGA device or turned into an ASIC design. The compiler and 

tools will translate the design according to the requirements. This is one of the reasons 

that semiconductor companies can adopt HWAI without intensive research and 

development work. 
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The work also demonstrates verification principles that can simulate the full 

functionality of the modules. The test bench implements “constrained random 

verification” and provides easy support for the development of new tests using the 

Universal Verification Methodology. 

	  

	  

4.2 Automated System Adaptation Capabilities 
	  

	   	  

While adaptive hardware is a foreign concept to many hardware engineers, it is 

well known amongst those acquainted with FPGA technologies. As reconfigurable 

embedded technologies continue to gain momentum in the industry, the academic world 

has taken a number of extra steps in innovating even further. We introduced the 

concept of DPR and how Xilinx FPGAs even allow for run time hardware re-

configuration. What cutting edge research and development teams (both in academia 

and industry) are currently looking at are self-adapting systems.  

 

 The demand for this exists in highly constrained systems. Typically constraints 

within regular consumer products are more targets and goals for marketing purposes. 

However, when we begin to introduce more significant constraints and advanced 

systems we require methodologies that are up to the challenges set by these leading 

technological needs. 
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The concept of self-adapting systems has empowered engineers to overcome 

many obstacles that technology has faced for years. Self-adapting systems expand the 

possibilities for which engineers can now successfully design. 

 

 Referring back to section 2.1.4 and 4.1.2, one is able to derive two categories of 

self-adapting systems: “Adaptive Procedures” (System 2) and “Adaptive Links & 

Procedures” (System 3).  Within a processor system which has HWAI, as per the given 

rule sets and strategies proposed in previous chapters, such a system is primarily 

procedurally adaptive. In contrast, an FPGA is capable of link and procedure adaptation. 

4.2.1 Manually Calculated Optimization Strategy 
 

 To demonstrate applications for self-adaptive systems it is important to lay a 

foundation of the algorithms and theory behind this methodology. To demonstrate the 

theorems a low pass FIR (Finite Impulse Response) Filter will be designed.  

 

 The FIR filter being designed was first invented eight years ago.  This first 

implementation used 9 tap coefficients. This filter was designed for audio applications to 

filter out any frequencies above 20 kHz. Due to the structure of FIR filters, they can be 

modified to perform other filter functions simply by changing the coefficients.  This ability 

to easily be modified is a huge advantage to system designers. Through the use of the 

design methodology presented in [37], the filter will be optimized to minimize area while 

meeting the performance and power constraints. 
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 It is important to note that the specifications of the FPGA that this design would 

be implemented on as this will affect the resources available, potential constraints, and 

how the system will operate (for example the number of inputs on multiplexers inside 

the FPGA). Therefore, for the sake of this example we will consider the design to be 

implemented using the Xilinx Spartan 3E FPGA. 

 

4.2.2 Specifications of System 

 

 To design the FIR filter, the signal processing toolbox was used. The FDA tool 

was given the following parameters: (1) Order of 8, (2) Sampling Frequency of 96000 

Hz, and (3) Cut-off Frequency of 20,000 Hz. With these parameters a low pass filter was 

generated.  The simulations yielded the following results: 8th order filter that was 

separated into four 2nd order blocks. The equation of the blocks is listed below in table 

6. From the table below it is clear that there are 11 multiplications, 8 Additions and 8 

Memory Location.  Making use of the results from the simulation of that filter, we can 

obtain a more detailed set of specifications for our design. Since the cost of memory is 

significantly less than the cost of the functional units, the system transfer function was 

expanded and the delay weights from this expansion are listed in Table 7. This reduced 

the cost of the system to 8 Multiplications, 9 Additions and 9 storage locations
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Block	  Number	   Block	  Transfer	  Function	  

1	   𝑧
!
− 28.83𝑧 + 97.99

𝑧!
⋅ 0.0199	  

2	   𝑧
!
− 0.294𝑧 + 0.01

𝑧!
	  

3	   0.25𝑧
!
− 0.5𝑧 + 0.85

𝑧!
	  

4	   0.25𝑧
!
− 0.5𝑧 + 0.85

𝑧!
	  

Table 6 - 2nd Order Equation of Filter Blocks 

 

 

 

 

 

 

 

 

 

Table 7 - Transfer function Expansion Results 

 

 To evaluate the effectiveness of each variant it is necessary to evaluate the 

performance of the system using the following benchmarks: (1) Total Execution Time, 

(2) Area consumption and (3) Power consumption. To get some kind of figure of merit, 

the execution time is extracted after the system generates a schedule for the 

operations. For ease of reading the operations are assigned a variable that will be 

placed in the table below. Using Figure 24 below, the table was developed to provide a 

list of the operations and their assigned variable identifiers. It is important to note that 

Delay	   Weight	  

z0	   0.1244	  

z-‐1	   -‐3.125	  

z-‐-‐2	   -‐0.5	  

z-‐3	   28.12	  

z-‐4	   50.74	  

z-‐5	   28.12	  

z-‐6	   -‐0.5017	  

z-‐7	   -‐3.131	  

z-‐8	   0.1219	  
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the system does not employ any advanced pipelining mechanism so the system will 

only be able to perform one operation per functional unit every twelve clock cycles (as 

per the performance limitations of the platform being considered). 

 

Operation	   𝑅0 ⋅ 𝑎!
	   𝑅1 ⋅ 𝑎!	   𝑅2 ⋅ 𝑎!	   𝑅3 ⋅ 𝑎!	   𝑅4 ⋅ 𝑎!	   𝑅5 ⋅ 𝑎!	   𝑅6 ⋅ 𝑎!	   𝑅7 ⋅ 𝑎!	   𝑅8

⋅ 𝑎!	  

Variable	  	   𝑂𝑃!	   𝑂𝑃!	   𝑂𝑃!	   𝑂𝑃!	   𝑂𝑃!	   𝑂𝑃!	   𝑂𝑃!	   𝑂𝑃!	   𝑂𝑃!	  

Operation	   𝑂𝑃!

+ 𝑂𝑃!
	  

𝑂𝑃!

+ 𝑂𝑃!	  

𝑂𝑃!

+ 𝑂𝑃!	  

𝑂𝑃!

+ 𝑂𝑃!	  

𝑂𝑃!

+ 𝑂𝑃!"	  

𝑂𝑃!!

+ 𝑂𝑃!"	  

𝑂𝑃!"

+ 𝑂𝑃!"	  

𝑂𝑃!"

+ 𝑂𝑃!"	  

Variable	  	   𝑂𝑃!"	   𝑂𝑃!!	   𝑂𝑃!"	   𝑂𝑃!"	   𝑂𝑃!"	   𝑂𝑃!"	   𝑂𝑃!"	   𝑂𝑃!"	  

Table 8 - Operation Variable Assignment 

 

 Modelling the Area consumption of the system is a rather simple process. Since 

the number of each resource is already know, the equation is presented below, equation 

1. The largest drawback of this model is that the system does not account for the area 

consumption of the interconnects. From this equation it is rather simple process to 

define the power. This is due to the fact that the power is linearly proportional to the 

CLB cost; the relationship is defined in equation (2) below. Please note that the power 

consumption is dependant of the clock frequency where the Area is multiplied by 9.6 to 

10.4 µW. 

𝑨 = #  𝒐𝒇  𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓𝒔 ∗ 𝟏𝟎𝟐 + #  𝒐𝒇  𝑨𝒅𝒅𝒆𝒓𝒔 ∗ 𝟏𝟏𝟏	   	   	   (1)	  

	  

𝑷 =    𝑨 𝑹𝒊 ∗ 𝑷(𝒇𝒄𝒍𝒌)	   	   	   	   	   	   (2)	  
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4.2.3 System Sequencing Graph 

 

Prior to the optimization process of our design, the systems’ resource constraints 

must be determined. To obtain these specifications, an unconstrained Sequencing 

graph was generated. From the SG (sequencing graph) observed in the figure below, it 

is clear that the maximum number of adders (before total redundancy) that will affect the 

performance of the system is 4. Since the left most operation can be performed in T1 or 

T2, the maximum number of necessary multipliers is 8. By further analyzing the figure, it 

is clear that two multiplications are necessary for every initial addiction so the resource 

constrains should maintain a 2:1 ration between multiplier and adder resources, 

respectively. 

 

Figure 24 - Unconstrained Sequencing Graph 
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Before the resource constraints can be finalized it is also important to observe 

the sequencing graph for minimal resource usage. This sequencing graph is presented 

in Figure 25 below. From the figure, it is clear that the system can operate with 1 

multiplier and 1 adder and no further restrictions need to be placed.  Depending on the 

operations and pipeline structure, the typical rule of thumb is the fewer resources the 

lower the performance.  

Figure 25 - Minimum Resource Sequencing Graph 



 78	  

4.2.4 Evaluating System Options 

 

Since our goal is to minimize our area consumption, so long as our design meets the 

performance, power, and resource constraints the variant will be determined. The final 

resource that needs to be calculated is the clock frequency.  From the sampling rate it is 

clear that the system must perform all relevant operation within 10.4 microseconds 

(based on the sampling rate).  So a frequency of 10 MHz will be used (10 times the 

sampling rate), to provide some flexibility in the optimization 15 MHz will be available 

(15 times the sampling rate). A list of the resource options in this optimization are 

provided in the table below. 

R1:	  Adder	   R2:	  Multiplier	   R3:	  Clk	  Frequency	  
R1.1	  à	  1	  Adder	   R2.1	  à	  1	  Multipliers	   R3.1	  à	  10	  MHz	  

R1.2	  à	  2	  Adders	   R2.2	  à	  2	  Multipliers	   R3.2	  à	  15	  MHz	   	  

R1.3	  à	  3	  Adders	   R2.3	  à	  4	  Multipliers	   	  

R1.4	  à	  4	  Adders	   R2.4	  à	  6	  Multipliers	  

	   R2.5	  à	  8	  Multipliers	  

Table 9 - Resource Options 

	  

Before the optimization process can commence area, power estimations need to 

be performed. From [38] the relevant specification of floating point adders and 

multipliers are extracted. Tables 10 and Tables 11 present these findings. The costs 

that are provided in the above table however are in slices. Using [39] it is clear that 

every 4 slices equals one CLB. Using this conversion the cost of a multiplier is 102 

CLBs and the cost of the adder is 111 CLBs. So far the only remaining performance 

benchmark is the power dissipation. Using source [40] the CLB cost is estimated at 40 

µW at 200 MHz. To approximate the power consumption of the system the following 
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assumptions are made: (1) 20% of power dissipation is static, and (2) the dynamic 

power increases linearly with the clock frequency. Through these assumptions the 

power can be approximated. This yields a 9.6 µW power consumption per CLB at a 

frequency of 10 MHz and 10.4 µW at a frequency of 15 MHz. 

  

Multiplier	  Cost	  

Slices	   408	  

Look-‐Up-‐Tables	   646	  

Flip-‐Flops	   703	  

Latency	   6	  C.C.	  

Table 10 - Multiplier Costs 

 

Adder	  Cost	  

Slices	   441	  

Look-‐Up-‐Tables	   600	  

Flip-‐Flops	   590	  

Latency	   12	  C.C.	  

Table 11 - Adder Costs 

 

 The final task that needs to be performed prior to defining the optimization 

parameters and evaluations are the system constraints. It was decided that the system 

would accept a standard 32 bit floating point number (24 bit fraction and 8 bit 

exponential) for its input and all cost assumptions are based on this value. As for the 

system constraints the total execution time must be below the sample time and is 

restricted to a maximum delay of 10 µs. The power consumption is restricted to 8 mW 

and the optimization’s objective is to minimize the area of the filter. These parameters 

are summarized in the table below.
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Restriction	   Condition	  

Execution	  Time	   𝑇!"! ≤ 10𝜇𝑆	  

Power	   𝑃 ≤ 8  𝑚𝑊	  

Area	   𝑚𝑖𝑛 𝐴 	  

Table 12 - System Constraints 

	  

4.2.5 Mini-Max Variant 
	   	  

The optimization process begins with the evaluation of the design at its Minimum 

and maximum points. This is necessary to understand the boundaries of the system. 

This provides the opportunity of modifying the specifications due to unrealistic limits and 

lays the foundation for the critical variance analysis.  

 

4.2.6 Min Resource Analysis 
	   	  

R1.1àR2.1àR3.1	  

	  

This analysis performs a check to see the system behaviour with minimal 

resources, this implies that there is one adder, one multiplier and the clock frequency is 

operating at 10 MHz. The table below demonstrates the schedule of the system. From 

the schedule it is clear that the system can perform the necessary function within 10 

clock cycles. The calculations for this variant are demonstrated below. 

Table 13 - Minimum Resource Schedule

X	   Op9	   Op8	   Op7	   Op6	   Op5	   Op4	   Op93	   Op2	   Op1	   NOP	  

+	   NOP	   NOP	   Op13	   Op12	   Op11	   Op10	   Op15	   Op14	   Op16	   Op17	  
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Calculations: 

𝑻 =   𝟏𝟎 ∗
𝟏𝟐  𝒄. 𝒄.

𝒇𝒄𝒍𝒌
= 𝟏𝟐𝟎  𝒄. 𝒄.∗

𝟏

𝟏𝟎𝟎  𝑴𝑯𝒛
= 𝟏𝟐  𝝁𝒔	  

	  

𝑨 =    #  𝒐𝒇  𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓𝒔 ∗ 𝟏𝟎𝟐+ #  𝒐𝒇  𝑨𝒅𝒅𝒆𝒓𝒔 ∗ 𝟏𝟏𝟏 = 𝟐𝟏𝟑	  

	  

𝑷 = 𝟐𝟏𝟑 ∗ 𝟗.𝟔𝝁𝑾 = 𝟐  𝒎𝑾	  

	  

4.2.7 Max Resource Analysis 
	  

R1.4àR2.5àR3.2	  

	  

This analysis performs a check to see the system behaviour with maximum 

resources, this means there are 8 multipliers, 4 adders and the running clock frequency 

is at 15 MHz. The table below presents the schedule for this resource schedule. The 

associated calculations are presented below in the calculations section. 

X	   Op9	   Op1	   NOP	   NOP	   NOP	  

X	   Op8	   NOP	   NOP	   NOP	   NOP	  

X	   Op7	   NOP	   NOP	   NOP	   NOP	  

X	   Op6	   NOP	   NOP	   NOP	   NOP	  

X	   Op5	   NOP	   NOP	   NOP	   NOP	  

X	   Op4	   NOP	   NOP	   NOP	   NOP	  

X	   Op3	   NOP	   NOP	   NOP	   NOP	  

X	   Op2	   NOP	   NOP	   NOP	   NOP	  

+	   NOP	   Op13	   Op15	   Op16	   Op17	  

+	   NOP	   Op12	   Op14	   NOP	   NOP	  

+	   NOP	   Op11	   NOP	   NOP	   NOP	  

+	   NOP	   Op10	   NOP	   NOP	   NOP	  

Table 14 - Maximum Resource Schedule 

	  

Calculations: 

𝑻 =   𝟓 ∗
𝟏𝟐  𝒄. 𝒄.

𝒇𝒄𝒍𝒌
= 𝟒	  

	  

𝑨 =    𝟖 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟏𝟐𝟔𝟎	  

	  

𝑷 = 𝟏𝟐𝟔𝟎 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟏𝟑.𝟏  𝒎𝑾	  
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4.2.8 Critical Variant 

 

This section presents the calculations of the critical variants for all three 

resources. This step is necessary for determining the ACG placement. This step would 

help minimize any discontinuity between the ACG variants and provide a better 

optimization result. From the calculations that are presented in the following section it is 

possible to determine the order of the ACG for each performance check. Using the Time 

critical variance it is clear the resource order of the system is the following R3-R1-R2, 

where the resources are presented in descending order. The power ACG order is R2-

R1-R3, this order is also applicable to the Area ACG. 

 

4.2.9 Critical Variant, Adder 
	  

R1.1àR2.5àR3.2	  

	  

To perform a critical variant check this system set the Adder resource to it’s 

minimum value of 1 adder. Afterwards the operation for this system where schedule and 

these results are presented in Table 15. The resulting calculations for this variant are 

presented in the performance calculation section. From the calculated values the critical 

variance of the system can be calculated using the performance calculations from the 

maximum resource performance calculations. These results are presented in the critical 

variance calculation section. 
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	   1	   2	   3	   4	   5	   6	   7	   8	   9	  

X	   Op9	   Op1	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

X	   Op8	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

X	   Op7	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

X	   Op6	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

X	   Op5	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

X	   Op4	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

X	   Op3	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

X	   Op2	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

+	   NOP	   Op13	   Op12	   Op11	   Op10	   Op15	   Op14	   Op16	   Op17	  

Table 15 - Adder Critical Variant Schedule 

 

Performance Calculation: 

𝑻 =   𝟗 ∗
𝟏𝟐  𝒄. 𝒄.

𝟏𝟓 ∗ 𝟏𝟎𝟏𝟔
= 𝟕.𝟐µμ𝑺	  

	  

𝑨 =    𝟖 ∗ 𝟏𝟎𝟐+ 𝟏 ∗ 𝟏𝟏𝟏 = 𝟗𝟐𝟕	  

	  

𝑷 = 𝟗𝟐𝟕 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟗.𝟔𝟒  𝒎𝑾	  

	  

Critical Variance Calculation: 
	  

𝑲𝑻 =   
𝟒µμ𝑺− 𝟕.𝟐µμ𝑺

𝟒− 𝟏
= −𝟏.𝟎𝟔µμ𝑺	  

	  

𝑲𝑨 =   
𝟏𝟐𝟔𝟎− 𝟗𝟐𝟕

𝟒− 𝟏
= 𝟏𝟏𝟏  𝑪𝑳𝑩𝒔	  

	  

𝑲𝑷 =   
𝟏𝟑.𝟏𝒎𝑾− 𝟗.𝟔𝟒𝒎𝑾

𝟒− 𝟏
= 𝟏.𝟏𝟓𝒎𝑾	  

	  



 84	  

4.2.10 Critical Variant, Multiplier 
	  

R1.4àR2.1àR3.2	  

	  

The Multiplier resource is set to its minimum value of 1 multiplier this allows the 

system to perform a critical variance check on this resource. Afterwards the operation 

for this system were scheduled and these results are presented in Table 16. The 

calculations for this variant are presented in the performance calculation section. From 

the performance calculations the critical variance of the system can be determined. The 

results of the critical variance calculations are presented in the critical variance 

calculation section. 

	  
	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

X	   Op9	   Op8	   Op7	   Op6	   Op5	   Op4	   Op3	   Op2	   Op1	   NOP	  

+	   NOP	   NOP	   Op13	   Op12	   Op11	   Op10	   Op15	   Op14	   Op16	   Op17	  

+	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

+	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

+	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	   NOP	  

Table 16 - Multiplier Critical Variant Schedule 

 

Performance Calculation: 

𝑻 =   𝟏𝟎 ∗
𝟏𝟐  𝒄. 𝒄.

𝟏𝟓  𝑴𝑯𝒛
= 𝟖µμ𝑺	  

𝑨 =    𝟏 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟓𝟒𝟔  𝑪𝑳𝑩𝒔	  

𝑷 = 𝟓𝟒𝟔 ∗ 𝟏𝟎.𝟐𝝁𝑾 = 𝟓.𝟓𝟕𝒎𝑾	  

	  

Critical Variance Calculation: 
	  

𝑲𝑻 =   
𝟒µμ𝑺− 𝟖µμ𝑺

𝟓− 𝟏
= −𝟏µμ𝑺	  

𝑲𝑨 =   
𝟏𝟐𝟔𝟎− 𝟓𝟒𝟔

𝟓− 𝟏
= 𝟏𝟕𝟖.𝟓  𝑪𝑳𝑩𝒔	  

𝑲𝑷 =   
𝟏𝟑.𝟏𝒎𝑾− 𝟓.𝟓𝟕𝒎𝑾

𝟓− 𝟏
= 𝟏.𝟖𝟖  𝒎𝑾	  
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4.2.11 Critical Variant, Clk 
	  

R1.4àR2.5àR3.1	  

 

The Clock resource is set to its minimum value of 10 Mhz. The schedule of the 

operation for this system is presented in Table 17. The calculations for this variant are 

presented in the performance calculation section. From the performance calculations 

the critical variance of the system can be determined. The results of the critical variance 

calculations are presented in the critical variance calculation section. 

	  

	  

	  

	  

	  

	  

	  

	  

	  

Table 17 - Clock Critical Variant Schedule 

 

Performance Calculation: 

𝑻 =   𝟓 ∗
𝟏𝟐  𝒄. 𝒄.

𝟏𝟎  𝑴𝑯𝒛
= 𝟔µμ𝑺	  

	  

𝑨 =    𝟖 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟓𝟒𝟔  𝑪𝑳𝑩𝒔	  

	  

𝑷 = 𝟏𝟐𝟔𝟎 ∗ 𝟗.𝟔𝝁𝑾 = 𝟏𝟐.𝟏  𝒎𝑾	  

	  

	   1	   2	   3	   4	   5	  

X	   Op9	   Op1	   NOP	   NOP	   NOP	  

+	   Op8	   NOP	   NOP	   NOP	   NOP	  

+	   Op7	   NOP	   NOP	   NOP	   NOP	  

+	   Op6	   NOP	   NOP	   NOP	   NOP	  

+	   Op5	   NOP	   NOP	   NOP	   NOP	  

+	   Op4	   NOP	   NOP	   NOP	   NOP	  

+	   Op3	   NOP	   NOP	   NOP	   NOP	  

+	   Op2	   NOP	   NOP	   NOP	   NOP	  

+	   NOP	   Op13	   Op15	   Op16	   Op17	  

+	   NOP	   Op12	   Op14	   NOP	   NOP	  

+	   NOP	   Op11	   NOP	   NOP	   NOP	  

+	   NOP	   Op10	   NOP	   NOP	   NOP	  
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Critical Variance Calculation: 

𝑲𝑻 =   
𝟒µμ𝑺− 𝟔µμ𝑺

𝟐− 𝟏
= −𝟏µμ𝑺	  

	  

𝑲𝑨 =   
𝟏𝟐𝟔𝟎− 𝟏𝟐𝟔𝟎

𝟐− 𝟏
= 𝟎  𝑪𝑳𝑩𝒔	  

	  

𝑲𝑷 =   
𝟏𝟑.𝟏𝒎𝑾𝟏− 𝟏𝟐.𝟏𝒎𝑾

𝟐− 𝟏
= 𝟏.𝟏  𝒎𝑾	  

 

4.2.12 Execution Time Boundary 

 

Before a search of the design space can be performed it is necessary to 

determine the boundaries that the system should not explore. To perform this check a 

dichotomy that is similar to a binary search is used by constantly dividing the design 

space in half and performing an execution time check on the variant. Figure 26 presents 

the ACG for the execution time. The calculations section presents the calculations of the 

search, in the interest of space the schedules are not provided. The syntax tree section 

provides a figure with the check that should be performed on each variant based on the 

resources to determine whether or not it is an acceptable design.
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Figure 26 - ACG of Execution Time 

 

Calculations: 
	  

Var	  #20	  -‐	  R3.1àR1.4àR2.5	  

𝑻 =   𝟓 ∗
𝟏𝟐  𝒄. 𝒄.

𝟏𝟎  𝑴𝑯𝒛
= 𝟔µμ𝑺	  

	  

Var	  #10	  -‐	  R3.1àR1.2àR2.5	  

𝑻 =   𝟔 ∗
𝟏𝟐  𝒄. 𝒄.

𝟏𝟎  𝑴𝑯𝒛
= 𝟕.𝟐µμ𝑺	  

	  

Var	  #5	  -‐	  R3.1àR1.1àR2.5	  

𝑻 =   𝟗 ∗
𝟏𝟐  𝒄. 𝒄.

𝟏𝟎  𝑴𝑯𝒛
= 𝟏𝟎.𝟖µμ𝑺	  

	  

Var	  #7	  -‐	  R3.1àR1.2àR2.2	  

𝑻 =   𝟕 ∗
𝟏𝟐  𝒄. 𝒄.

𝟏𝟎  𝑴𝑯𝒛
= 𝟖.𝟒µμ𝑺	  

	  

Var	  #6	  -‐	  R3.1àR1.2àR2.1	  

𝑻 =   𝟏𝟎 ∗
𝟏𝟐  𝒄. 𝒄.

𝟏𝟎  𝑴𝑯𝒛
= 𝟏𝟐µμ𝑺	  
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Syntax Tree: 

	  
Figure 27 - Syntax Tree of Execution Time 

	  

4.2.13 Power Boundary 

 

The calculations performed in this section are similar to the ones performed 

above. However since the power is dependent on the area of the system, both 

calculations are performed and provided in the calculations sections. Similarly the 

syntax tree of the power boundary is provided in the Syntax Tree section. 

	  

Figure 28 - Power ACG 
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Calculations: 
	  

Var	  #24	  –	  R2.3àR1.4àR3.2	  

𝑨 =    𝟒 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟖𝟓𝟐  𝑪𝑳𝑩𝒔	  

𝑷 = 𝟖𝟓𝟐 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟖.𝟖𝟔  𝒎𝑾	  

	  

Var	  #32	  –	  R2.4àR1.4àR3.2	  

𝑨 =    𝟔 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟏𝟎𝟓𝟔  𝑪𝑳𝑩𝒔	  

𝑷 = 𝟏𝟎𝟓𝟔   ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟏𝟎.𝟗𝟖  𝒎𝑾	  

	  

Var	  #28	  –	  R2.4àR1.2àR3.2	  

𝑨 =    𝟔 ∗ 𝟏𝟎𝟐+ 𝟐 ∗ 𝟏𝟏𝟏 = 𝟖𝟑𝟒  𝑪𝑳𝑩𝒔	  

𝑷 = 𝟖𝟑𝟒   ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟖.𝟔𝟕  𝒎𝑾	  

	  

Var	  #30	  –	  R2.4àR1.3àR3.2	  

𝑨 =    𝟔 ∗ 𝟏𝟎𝟐+ 𝟑 ∗ 𝟏𝟏𝟏 = 𝟗𝟒𝟓  𝑪𝑳𝑩𝒔	  

𝑷 = 𝟗𝟒𝟓   ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟗.𝟖𝟑  𝒎𝑾	  

	  

Var	  #31	  –	  R2.4àR1.4àR3.1	  

𝑨 =    𝟔 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟏𝟎𝟓𝟔  𝑪𝑳𝑩𝒔	  

𝑷 = 𝟏𝟎𝟓𝟔   ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟏𝟎.𝟒𝟒  𝒎𝑾	  
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Syntax Tree: 
	  

	  
 

Figure 29 - Power Boundary Syntax Tree 

	  

4.2.14 Area Optimization 

 

This step performs the optimization of the system. To perform the optimization 

the ACG is arranged in such a way that the left most variant (Figure 30) is the minimal 

area that could be used, and the area should increase as the variant moves to the right. 

The calculations are provided in the calculations section. 
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Figure 30 - Area ACG 

 

Calculations: 
	  

Var	  #1	  –	  R2.1àR1.1àR3.1	  

***FAILED EXECUTION TIME SYNTAX CHECK*** 
	  

Var	  #2	  –	  R2.1àR1.1àR3.2	  

***PASSED ALL SYNTAX CHECKS PASS*** 
 

𝑻 =   𝟏𝟎 ∗
𝟏𝟐  𝒄. 𝒄.

𝟏𝟓  𝑴𝑯𝒛
= 𝟖µμ𝑺	  

	  

𝑨 =    𝟏 ∗ 𝟏𝟎𝟐+ 𝟏 ∗ 𝟏𝟏𝟏 = 𝟐𝟏𝟑  𝑪𝑳𝑩𝒔	  

	  

𝑷 = 𝟐𝟏𝟑 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟐.𝟐  𝒎𝑾	  

	  

	  

4.2.15 Resource Binding 

 

From the above it is clear that the optimal variant is variant 2 from the area ACG. 

This means that only one multiplier and one adder are necessary to perform the 

necessary operation running at 15 MHz. The bound sequencing graph of the system is 

provided in Figure 31. Note that RI is an intermediate memory stage that is necessary 

so the multiplication performed during T0 and T1 is not lost. The schedule of this system 
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is provided in the table below. It is also important to note that the Difference between T0 

and T1 is 12 clock cycles at 15 MHz.  

	  
Figure 31 - Bound Sequencing Graph 

	  

	  
Table 18 - Schedule of Optimal Variant 

X	   Op9	   Op8	   Op7	   Op6	   Op5	   Op4	   Op93	   Op2	   Op1	   NOP	  

+	   NOP	   NOP	   Op13	   Op12	   Op11	   Op10	   Op15	   Op14	   Op16	   Op17	  
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4.2.16 Multiplexing Scheme 
 
 

After the resource binding is determined the multiplexing scheme for the 

resources can be generated. This stage is important because it determines the data 

path of the system and ensures that the optimal resource usage. The multiplexing 

scheme of the Adder can be observed in Table 19, while the multipliers multiplexing 

scheme can be observed in Table 20. From the tables mentioned above the mux plans 

were generated. Figure 32 presents the mux plan of the adder while Figure 33 presents 

the mux plan of the multiplier. 

	  
Adder1	   Op	   In1	   In2	   Output	  

T0	   NOP	   -‐	   -‐	   -‐	  

T1	   NOP	   -‐	   -‐	   -‐	  

T2	   NOP	   MUL1	   RI1	   -‐	  

T3	   +	   MUL1	   Adder1	   Adder1	  

T4	   +	   MUL1	   Adder1	   Adder1	  

T5	   +	   MUL1	   Adder1	   Adder1	  

T6	   +	   MUL1	   Adder1	   Adder1	  

T7	   +	   MUL1	   Adder1	   Adder1	  

T8	   +	   MUL1	   Adder1	   Adder1	  

T9	   +	   MUL1	   Adder1	   Adder1	  

T10	   +	   -‐	   -‐	   Y	  

	  
Table 19 - Adder Multiplexing Scheme
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Multiplier1	   Op	   In1	   In2	   Output	  

T0	   NOP	   R8	   A9	   -‐	  

T1	   X	   R7	   A8	   RI	  

T2	   X	   R6	   A7	   Adder1	  

T3	   X	   R5	   A6	   Adder1	  

T4	   X	   R4	   A5	   Adder1	  

T5	   X	   R3	   A4	   Adder1	  

T6	   X	   R2	   A3	   Adder1	  

T7	   X	   R1	   A2	   Adder1	  

T8	   X	   R0	   A1	   Adder1	  

T9	   X	   -‐	   -‐	   Adder1	  

T10	   NOP	   -‐	   -‐	   -‐	  

Table 20 - Multiplier Multiplexing Scheme 

	  
Figure 32 - Adder Mux Plan 

	  



 95	  

	  
Figure 33 - Multiplier Mux Plan 

	  

4.2.17 Block Design Using Optimization Strategy 

 

The block level symbol of the digital system is presented in Figure 34. The block 

has five input terminals they are: Data In, which is responsible for providing the input 

data; Data IN CLK, which provide a clock that is aligned with the input data; Reset, 

which is responsible for resetting the FIR BLOCK; EN, which enables or disables the 

FIR block; and CLK , which is the input clock for the system. On the other hand there 

are two output terminals: Data Out, where the data leaves the system; and Data OUT 

CLK, which is provides a clock that is aligned with the output data. All terminals are one 

bit with the exception of the Data IN and Data out which are left as 32 bit words. The 

reason the inputs are left as 32 bit buses is because the data arrives at 32 bits from the 
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ADC, and the Data out is usually transmitted to a DAC which will only support one word 

length. 

	  
Figure 34 - FIR Block Symbol 
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CHAPTER V: 

5.1 EFFECTIVE COMPARISON 
	  

	  

The performance gains can manifest through a number of metrics and 

considerations (as discussed in section 3.1), including: faster execution time, area 

savings, reduced development costs, lower risks, customization enablement, and 

extended effective processor lifetime. 

 

One of the challenges in this analysis is that the performance gains directly 

correlate to the system tasks being replaced with the work of this thesis. The rules found 

in 3.2.1 outline how to identify opportune logic. Moreover there is still a responsibility on 

the system developer(s) and engineer(s) to effectively develop and integrate these 

suggested changes. Due to the fact that performance metrics will be influenced 

proportional to the room for opportunity of each metric and the actual implementation it 

is difficult to standardize the performance gains.  

 

That said, and as demonstrated in chapter 4, there is a room to achieve 

significant system performance gains. Knowing each case will achieve varying 

performance gains, the case in the previous chapter provided a performance gain of 

1.32% at a system level and 183.60% on a block level.
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CHAPTER VI: FUTURE WORK 

 
6.1 SELF-ADAPTING SYSTEMS 
	  

	  

 Chapter V laid the foundation for a number of advancements to existing systems. 

A system that is capable of self-adaptation provides nearly endless areas of opportunity. 

[2] and [3] were just two examples of this.  

 

This technology, for example, opens new horizons for FPGA testing, diagnosis 

and self-restoration (all together this is called “fault-tolerance”). It also makes it possible 

to easily apply test methods. FPGA fault-tolerance is an endless topic and is only 

growing in terms of demand as transistor technology continues to shrink and designs 

become more complex. 

 

6.2 SELF-TESTING CAPABILITIES 
	  

	  

Following the rules/guidelines set out from [2], we can use FPGA for other areas 

as well. For example, the work in [1] patent allows ASICs to recover from a radiation 

(power or other) event, which damages one or many transistors. This is going to be a 

bigger problem as semi-conductor corporations use smaller and smaller transistors and 

especially with a growing demand for cloud computing (as there is a higher risk of 

radiation damage). 
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Once a chip has been verified and tested it can be shipped to the end customer. 

Although these chips have successfully passed lab testing, there is still a possibility 

where transistors can be damaged during runtime as a result of alpha particles. If this 

happens the chip is now considered damaged. The issue is two-fold: (1) identifying the 

issue (2) working around the issue (if possible). There is a huge push for this within 

space exploration, and my work seeks to offer feasible solutions to these companies. 

There is still much to research and examine in this field. 
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APPENDIX A: UVM / SYSTEMVERILOG 

RTL & Test Bench Code 
Portions of the code below have been modified or removed so as to honour confidentiality. 

Makefile 
 
root    = $(STEM)/FIFO/src 
rtl_path    = $(root)/rtl 
tb_path     = $(root)/test 
DUT     = $(tb_path)/fifo_tb_wrapper_io.sv $(tb_path)/fifo_tb_wrapper_io.sv $(rtl_path)/fifo.vh 
$(rtl_path)/fifo.v   
TB_TOP   = $(root)/test.sv 
FSDB_NAME   = ${test}.fsdb 
 
VCSFLAGS = +v2k -full64 
 
TB_TOP      = $(root)/test.sv 
HARNESS_TOP = $(tb_path)/fifo_tb.sv 
UVM_HOME    = _____________________ 
defines     = UVM_NO_DEPRECATED+UVM_OBJECT_MUST_HAVE_CONSTRUCTOR 
uvm_ver     = uvm-1.1 
test        = fifo_sanity 
seed    = 1 
#verbosity  = UVM_HIGH 
#option   = UVM_TR_RECORD +UVM_LOG_RECORD 
verbosity   = UVM_DEBUG 
 
compile_dut: $(DUT) 
 mkdir -p ./out 
 vcs $(VCSFLAGS) -timescale="1ns/100ps" -l out/comp.log -debug_all ${SOURCES} 
${DUT} -o out/simv 
 
uvm_compile: 
 mkdir -p ./out 
 vcs $(VCSFLAGS) -sverilog ${UVM_HOME}/____/uvm_dpi.cc -CFLAGS -DVCS 
${UVM_HOME}/___/uvm_pkg.sv +incdir+${UVM_HOME}/___/vcs -timescale="1ns/100ps" -l 
out/comp.log -debug_all ${SOURCES} ${DUT} ${HARNESS_TOP} ${TB_TOP}  
+define+${defines} -o out/simv 
 
run_base_test: uvm_compile 
 ./out/simv -l out/${test}_run.log +ntb_random_seed=$(seed) +UVM_TESTNAME=$(test) 
+ntb_solver_mode=$(SOLVER) +UVM_VERBOSITY=$(verbosity) +${option} 
 
$(FSDB_NAME): uvm_compile 
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 ./out/simv -l out/${test}_run.log +ntb_random_seed=$(seed) +UVM_TESTNAME=$(test) 
+ntb_solver_mode=$(SOLVER) +UVM_VERBOSITY=$(verbosity) +${option} +DEBUSSY=1 
+DUMP=1 +dumpfile=$(FSDB_NAME) +fsdb+all=on +fsdbfile+$(FSDB_NAME) 
 
verdi: $(SOURCES) $(FSDB_NAME) 
 verdi -onfatalerrorcontinue $(NWAVE_FLAGS) -f $(SOURCES) ${DUT} -sv -ssf 
$(FSDB_NAME) 
 
nwave: $(FSDB_NAME) 
 nWave -ssf $(FSDB_NAME) 
 
clean: 
 rm -rf out csrc *.rc *.key verdiLog vericomLog vc_hdrs.h $(test).log work.lib++ *.log 
 

test.sv 
`ifndef TEST__SV 
`define TEST__SV 
 
import uvm_pkg::*; 
`include "test/test_top.sv" 
`include "test/fifo_sanity.sv" 
 
program automatic test; 
     initial begin 
  $timeformat(-9, 1, "ns", 10); 
          run_test(); 
     end 
endprogram 
 
`endif 
 
 

fifo.vh 
`ifndef __FIFO_VH 
`define __FIFO_VH 
 
`define   QUEUE_DEPTH              8 
`define   QUEUE_WIDTH              4 
`define   MAX_DATA_SIZE            16 
 
`endif 
 

fifo.v 
`include "rtl/fifo.vh" 
 
module fifo ( 
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     clk, 
     rst, 
     iEn, 
     iData, 
     oData, 
     iPush, 
     oSend, 
     iPop, 
     oFull, 
     oAlmostFull, 
     oEmpty 
); 
 
input clk, rst, iEn; 
input [`QUEUE_WIDTH-1:0] iData; 
output reg [`QUEUE_WIDTH-1:0] oData; 
input iPush, iPop; 
output oFull, oAlmostFull, oEmpty;    // Can't "assign" if reg 
output reg oSend; 
 
reg [`QUEUE_DEPTH-1:0] rdPtr; 
reg [`QUEUE_DEPTH-1:0] wrPtr; 
reg [`QUEUE_WIDTH-1:0] myQueue [`QUEUE_DEPTH-1:0]; 
reg loop; 
 
assign oFull = ((wrPtr == rdPtr) && (loop == 1)); 
assign oAlmostFull = ((wrPtr == rdPtr - 1) && (loop == 1)); 
assign oEmpty = ((rdPtr == wrPtr) && (loop == 0)); 
//assign oSend = rst ? 0 : iPop; 
 
always @(posedge clk) begin 
     if (rst == 1) begin 
          loop <= 0; 
          wrPtr <= 0; 
          rdPtr <= 0; 
          oData <= 0; 
          oSend <= 0; 
     end 
     else begin 
          if (iEn == 1) begin 
               // Push Logic 
               if (iPush == 1) begin 
                    if ((wrPtr == rdPtr) && (loop == 1)) begin 
                         // assert 
                         $display ("ERROR: Push while full in %m\n"); 
                         $finish; 
                    end 
                    else begin 
                         myQueue[wrPtr] <= iData; 



 103	  

                    end 
               end 
 
               // Pop Logic 
               if (iPop == 1) begin 
                    if ((wrPtr == rdPtr) && (loop == 0)) begin 
                         // assert 
                         $display ("ERROR: Pop while empty in %m\n"); 
                         $finish; 
                    end 
                    else begin 
                         oData <= myQueue[rdPtr]; 
                    end 
                    oSend <= 1; 
               end 
               else begin 
                    oSend <= 0; 
               end 
 
               // Pointer Update Logic 
               if (iPush == 1) begin 
                    if (wrPtr == `QUEUE_DEPTH) begin 
                         wrPtr <= 0; 
                         if (!((iPop == 1) && (rdPtr == `QUEUE_DEPTH))) begin 
                              loop <= 1; 
                         end 
                    end 
                    else begin 
                         wrPtr <= wrPtr + 1; 
                    end                          
               end 
               if (iPop == 1) begin 
                    if (rdPtr == `QUEUE_DEPTH) begin 
                         rdPtr <= 0; 
                         loop <= 0; 
                    end 
                    else begin 
                         rdPtr <= rdPtr + 1; 
                    end 
               end 
          end 
     end 
end 
endmodule 
 
 

fifo_agent.svh 
`ifndef _FIFO__AGENT__SVH 
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`define _FIFO__AGENT__SVH 
 
`include "test/fifo_driver.svh" 
`include "test/fifo_seq_item.svh" 
`include "test/fifo_monitor.svh" 
`include "test/fifo_scoreboard.svh" 
`include "test/fifo_sequencer.svh" 
 
//typedef uvm_sequencer #(Fifo_Data_inPacket) fifo_sequencer; 
 
class fifo_agent extends uvm_agent; 
     virtual fifo_tb_wrapper_io uFIFO_IO; 
// fifo_env _fifo_env;  
 
 fifo_sequencer _fifo_sequencer;  
 fifo_driver _fifo_driver;  
 fifo_monitor _fifo_monitor;  
 
     `uvm_component_utils(fifo_agent) 
 
     function new(string name, uvm_component parent); 
          super.new(name, parent); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
     endfunction: new 
     
     virtual function void build_phase(uvm_phase phase); 
          super.build_phase(phase); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
         
          _fifo_sequencer = fifo_sequencer::type_id::create("_fifo_sequencer", this); 
          _fifo_driver = fifo_driver::type_id::create("_fifo_driver", this); 
          _fifo_monitor = fifo_monitor::type_id::create("_fifo_monitor", this); 
 
          if (!uvm_config_db#(virtual fifo_tb_wrapper_io)::get(this, "", "dut_io", uFIFO_IO))begin 
               `uvm_fatal("CFGERR", "The interface has not been set!"); 
          end  
 
          uvm_config_db#(virtual fifo_tb_wrapper_io)::set(this, "*", "dut_io", uFIFO_IO); 
     endfunction: build_phase 
 
     virtual function void connect_phase(uvm_phase phase); 
          super.connect_phase(phase); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 
          _fifo_driver.seq_item_port.connect(_fifo_sequencer.seq_item_export); 
     endfunction: connect_phase 
 
     task main_phase(uvm_phase phase); 
          forever begin 
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               @(uFIFO_IO.driver_cb); 
               this.randomize(); 
          end 
     endtask 
 
endclass: fifo_agent 
`endif  
 

fifo_driver.svh 
`ifndef _FIFO__DRIVER__SVH 
`define _FIFO__DRIVER__SVH 
 
`include "rtl/fifo.vh" 
`include "test/fifo_seq_item.svh" 
 
class fifo_driver extends uvm_driver #(Fifo_Data_inPacket); 
     virtual fifo_tb_wrapper_io uFIFO_IO; 
 
     `uvm_component_utils(fifo_driver) 
 
     function new(string name, uvm_component parent); 
          super.new(name, parent); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
     endfunction: new 
 
     function void build_phase(uvm_phase phase); 
          super.build_phase(phase); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 
          uvm_config_db #(virtual fifo_tb_wrapper_io)::get(this, "", "dut_io", uFIFO_IO); 
          if (uFIFO_IO == null) begin 
               `uvm_fatal("CFGERR", "Interface for fifo_driver not set!"); 
          end 
     endfunction 
 
     virtual task reset_phase(uvm_phase phase); 
          super.reset_phase(phase); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 
          // ---- RESET DUT ---- 
          phase.raise_objection(this); 
          uFIFO_IO.driver_cb.rst        <=  1'b0; 
          uFIFO_IO.driver_cb.iEn        <=  1'b0; 
          uFIFO_IO.driver_cb.iData      <=  1'b0; 
          uFIFO_IO.driver_cb.iPush      <=  1'b0; 
          uFIFO_IO.driver_cb.iPop       <=  1'b0; 
          repeat (10) @(uFIFO_IO.driver_cb); 
          uFIFO_IO.driver_cb.rst        <=  1'b0; 
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          repeat (10) @(uFIFO_IO.driver_cb); 
          phase.drop_objection(this); 
          // ---- END RESET ---- 
     endtask: reset_phase 
 
     virtual task run_phase(uvm_phase phase); 
     forever begin 
          Fifo_Data_inPacket req; 
          seq_item_port.get_next_item(req); 
 
          `uvm_info("DRV_RUN", req.sprint(), UVM_MEDIUM); 
 
          send(req); 
          seq_item_port.item_done(); 
     end 
     endtask 
 
    virtual task send(Fifo_Data_inPacket req); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 
          req.randomize(); 
 
          uFIFO_IO.driver_cb.rst   <= req.rst; 
          uFIFO_IO.driver_cb.iEn   <= req.iEn; 
          uFIFO_IO.driver_cb.iPush <= req.iPush; 
          uFIFO_IO.driver_cb.iPop  <= 1'b1; 
          uFIFO_IO.driver_cb.iData <= req.iData; 
          @(uFIFO_IO.driver_cb);          
          uFIFO_IO.driver_cb.iPush <= 1'b0; 
    endtask: send 
 
endclass: fifo_driver 
`endif  
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fifo_env.sv 
`ifndef _FIFO__ENV__SVH 
`define _FIFO__ENV__SVH 
 
`include "test/fifo_agent.svh" 
 
class fifo_env extends uvm_env; 
 
    fifo_agent           _fifo_agent; 
    fifo_scoreboard      _fifo_scoreboard; 
     
    `uvm_component_utils(fifo_env) 
 
    function new(string name, uvm_component parent); 
        super.new(name, parent); 
        `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
    endfunction: new 
 
    virtual function void build_phase(uvm_phase phase); 
        super.build_phase(phase); 
        `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 
        _fifo_agent = fifo_agent::type_id::create("_fifo_agent", this); 
        _fifo_scoreboard = fifo_scoreboard::type_id::create("_fifo_scoreboard", this); 
 
    endfunction: build_phase 
 
    function void connect_phase(uvm_phase phase); 
        `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 
        
_fifo_agent._fifo_monitor.mon_AnlysPort.connect(_fifo_scoreboard.fifo_iPort.analysis_export); 
        
_fifo_agent._fifo_monitor.out_AnlysPort.connect(_fifo_scoreboard.fifo_oPort.analysis_export); 
    endfunction: connect_phase 
 
endclass: fifo_env 
 
`endif 
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fifo_monitor.svh 
`ifndef FIFO_MONITOR__SVH 
`define FIFO_MONITOR__SVH 
 
`include "test/fifo_seq_item.svh" 
 
class fifo_monitor extends uvm_monitor; 
     virtual fifo_tb_wrapper_io uFIFO_IO; 
     uvm_analysis_port #(Fifo_Data_outPacket) out_AnlysPort; 
     uvm_analysis_port #(Fifo_Data_inPacket) mon_AnlysPort; 
 
     `uvm_component_utils(fifo_monitor); 
 
     function new(string name, uvm_component parent); 
          super.new(name, parent); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 
 
     endfunction: new 
 
     function void build_phase(uvm_phase phase); 
          super.build_phase(phase); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 
          uvm_config_db#(virtual fifo_tb_wrapper_io)::get(this, "", "dut_io", uFIFO_IO); 
          if (uFIFO_IO == null) begin 
               `uvm_fatal("CFGERR", "Interface for monitor not set!"); 
          end 
 
          out_AnlysPort = new("out_AnlysPort", this); 
          mon_AnlysPort = new("mon_AnlysPort", this); 
     endfunction: build_phase 
 
     virtual task run_phase(uvm_phase phase); 
          Fifo_Data_inPacket in_pkt; 
          Fifo_Data_outPacket out_pkt; 
 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 
          fork 
               forever begin 
                    in_pkt = Fifo_Data_inPacket::type_id::create("in_pkt"); 
                     
                    /*...get pkt...*/ 
                    @(uFIFO_IO.driver_cb); 
                         in_pkt.rst          = uFIFO_IO.front_monitor_cb.rst; 
                         in_pkt.iEn          = uFIFO_IO.front_monitor_cb.iEn; 
                         in_pkt.iData        = uFIFO_IO.front_monitor_cb.iData; 
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                         in_pkt.iPush        = uFIFO_IO.front_monitor_cb.iPush; 
                         in_pkt.iPop         = uFIFO_IO.front_monitor_cb.iPop; 
 
                    `uvm_info("Collected In Pkt...", {"\n", in_pkt.sprint()}, UVM_MEDIUM);  
                    mon_AnlysPort.write(in_pkt); 
               end 
 
               forever begin 
                    out_pkt = Fifo_Data_outPacket::type_id::create("out_pkt"); 
                     
                    /*...get pkt...*/ 
                    @(uFIFO_IO.driver_cb; 
                    wait (uFIFO_IO.front_monitor_cb.iPop); 
                         @(uFIFO_IO.driver_cb); 
                         out_pkt.oData       = uFIFO_IO.end_monitor_cb.oData; 
                         out_pkt.oFull       = uFIFO_IO.end_monitor_cb.oFull; 
                         out_pkt.oAlmostFull = uFIFO_IO.end_monitor_cb.oAlmostFull; 
                         out_pkt.oEmpty      = uFIFO_IO.end_monitor_cb.oEmpty; 
 
                    `uvm_info("Collected Out Pkt...", {"\n", out_pkt.sprint()}, UVM_MEDIUM);  
                    out_AnlysPort.write(out_pkt); 
               end 
          join_none 
     endtask: run_phase 
 
endclass: fifo_monitor 
 
`endif  
 

fifo_sanity.sv 
`ifndef FIFO_SANITY__SV 
`define FIFO_SANITY__SV 
 
`include "test/fifo_sequence_library.svh" 
 
class fifo_sanity extends test_base; 
     `uvm_component_utils(fifo_sanity) 
 
     Fifo_Data_inPacket iDataPkt; 
     fifo_req_sequence req_seq; 
     fifo_sequencer _fifo_sequencer; 
      
     function new(string name, uvm_component parent); 
         super.new(name, parent); 
         `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
     endfunction: new 
      
     virtual function void build_phase(uvm_phase phase); 
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          super.build_phase(phase); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 
          iDataPkt = Fifo_Data_inPacket::type_id::create("iDataPkt"); 
          req_seq = fifo_req_sequence::type_id::create("req_seq");  
 
     endfunction: build_phase 
    
     task main_phase(uvm_phase phase); 
          uvm_component uvm_comp_ptr;  
           
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);  
 
          phase.raise_objection(this); 
           
  uvm_comp_ptr = uvm_top.find("*fifo_sequencer");        //   Cast method better 
practice then (_env._fifo_agent._fifo_sequencer) 
 
  // Assign to point to actual sequencer 
  $cast(_fifo_sequencer, uvm_comp_ptr);  
 
  // Randomize each sequence!  
          if (!(iDataPkt.randomize() with {iData == 0;}))  
               `uvm_fatal("RNDMERR", "Randomization failed!"); 
 
  // Start Sequencer 
  req_seq.start(_fifo_sequencer);  
 
          phase.drop_objection(this); 
     endtask: main_phase 
 
endclass: fifo_sanity 
 
`endif  
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fifo_scoreboard.svh 
`ifndef FIFO_SCOREBOARD__SVH 
`define FIFO_SCOREBOARD__SVH 
 
class fifo_scoreboard extends uvm_scoreboard; 
     `uvm_component_utils(fifo_scoreboard) 
      
     virtual fifo_tb_wrapper_io uFIFO_IO; 
      
     uvm_tlm_analysis_fifo #(Fifo_Data_inPacket) fifo_iPort;               // Send Req 
     uvm_tlm_analysis_fifo #(Fifo_Data_outPacket) fifo_oPort;              // Out Data 
      
 
     Fifo_Data_inPacket _inQueue; 
     Fifo_Data_outPacket _outQueue; 
      
     Fifo_Data_inPacket in_queue[$]; 
     Fifo_Data_outPacket out_queue[$]; 
      
      
     int num_matches = 0, num_mismatches = 0; 
     int num_elements = 0; 
     int scan_pointer = -1; 
     int cmp_ptr = 0; 
     bit oBus_busy = 0;         // Ensure one data_out per c.c. 
     bit ptr_update = 1;        // Pointer doesn't need to update on pop 
      
     function new(string name, uvm_component parent); 
          super.new(name, parent); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
     endfunction : new 
      
     virtual function void build_phase(uvm_phase phase); 
         super.build_phase(phase); 
         `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
      
         if (!uvm_config_db#(virtual fifo_tb_wrapper_io)::get(this, "", "dut_io", uFIFO_IO)) begin 
             `uvm_fatal("CFGERR", "[SBD] INTERFACE IS NOT SET!"); 
         end 
      
         fifo_iPort = new("fifo_iPort", this); 
         fifo_oPort = new("fifo_oPort", this); 
     endfunction 
      
      
     virtual function void start_of_simulation_phase(uvm_phase phase); 
         super.start_of_simulation_phase(phase); 
         `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
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         uvm_top.print_topology(); 
         factory.print(); 
     endfunction: start_of_simulation_phase 
      
     task run_phase(uvm_phase phase); 
         super.build_phase(phase); 
         `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
      
         fork  // Record in -> DUT 
              forever begin 
              @(posedge uFIFO_IO.clk); 
              if (~fifo_iPort.is_empty()) begin 
                  fifo_iPort.get(_inQueue); 
                  in_queue.push_back(_inQueue); 
                  rcv_iWrite(); 
              end 
              end 
         join_none 
      
         fork  // Record DUT -> Out 
              forever begin 
              @(posedge uFIFO_IO.clk); 
               if (~fifo_oPort.is_empty()) begin 
                   fifo_oPort.get(_outQueue); 
                   out_queue.push_back(_outQueue); 
                   rcv_oWrite(); 
               end 
              end 
         join_none 
     endtask 
      
     virtual function void final_phase(uvm_phase phase); 
         super.final_phase(phase); 
         `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
      
         `uvm_info("TRACE", $sformatf("[SBD] Comparing Tables!\n"), UVM_LOW); 
      
         if (in_queue.size() != out_queue.size()) begin 
             `uvm_error("TRACE",$sformatf("[SBD] Output size does not match expected 
size!\nExpected: %d\nActual: %d\n",in_queue.size(),out_queue.size())); 
         end 
         else begin 
             `uvm_info("TRACE",$sformatf("[SBD] Array Sizes...\nExpected: %d\nActual: 
%d\n",in_queue.size(),out_queue.size()), UVM_DEBUG); 
 
             `uvm_info("TRACE", $sformatf("[SBD] Sizes matched...Comparing Elements...\n"), 
UVM_LOW); 
             final_compare(); 
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         end 
      
         dump_buffers(); 
     endfunction 
      
     virtual task run_time_compare(); 
         `uvm_info("TRACE", $sformatf("[SBD] RUN_TIME: Scoreboard Comparing Model Queue 
with Actual Queue"), UVM_LOW); 
         cmp_ptr = out_queue.size(); 
      
         if (!(in_queue[cmp_ptr].compare(out_queue[cmp_ptr]))) begin 
             `uvm_error("TRACE", $sformatf("[SBD] Element does not match expected!\nExpected: 
%s\nActual: %s\n",in_queue[cmp_ptr].sprint(),out_queue[cmp_ptr].sprint())); 
         end 
     endtask 
      
     virtual function void final_compare(); 
         `uvm_info("TRACE", $sformatf("[SBD] FINAL: Scoreboard Comparing Model Queue with 
Actual Queue"), UVM_LOW); 
      
         num_elements = out_queue.size(); 
         for (int i = 0; i < num_elements; i++) begin 
             if (in_queue[i].compare(out_queue[i])) begin 
                 num_matches++; 
             end 
             else begin 
                 `uvm_error("TRACE", $sformatf("[SBD] Element does not match 
expected~\nExpected: %s\nActual: %s\n",in_queue[i].sprint(),out_queue[i].sprint())); 
                 num_mismatches++; 
             end 
         end 
      
         if (num_mismatches > 0) begin 
             `uvm_info("TRACE", $sformatf("[SBD] Dumping Buffers For Debug!"), UVM_LOW); 
         end 
         else begin 
             `uvm_info("TRACE", $sformatf("[SBD] All elements matched!\nTEST 
SUCCESSFULL"), UVM_LOW); 
         end 
     endfunction 
      
     virtual task dump_buffers(); 
         `uvm_info("TRACE", $sformatf("[SBD] Dumping Buffers"), UVM_LOW); 
 
         for (int i = 0; i < in_queue.size(); i++) begin 
             `uvm_info("TRACE",$sformatf("[SBD] Expected[%d]: %s\n",i,in_queue[i].sprint()), 
UVM_LOW); 
         end 
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         for (int i = 0; i < out_queue.size(); i++) begin 
             `uvm_info("TRACE",$sformatf("[SBD] Actual[%d]: %s\n",i,out_queue[i].sprint()), 
UVM_LOW); 
         end 
     endtask 
      
     virtual task rcv_iWrite(); 
         `uvm_info("TRACE", $sformatf("[SBD] Scoreboard observed an input to the DUT"), 
UVM_LOW); 
      
         `uvm_info("TRACE",$sformatf("[SBD] iWrite: %s\n",_inQueue.sprint()), UVM_DEBUG); 
     endtask 
      
     virtual task rcv_oWrite(); 
        `uvm_info("TRACE", $sformatf("[SBD] Scoreboard observed an output from the DUT"), 
UVM_LOW); 
         run_time_compare(); 
          
         `uvm_info("TRACE",$sformatf("[SBD] oWrite: %s\n",_outQueue.sprint()), UVM_DEBUG); 
     endtask 
      
      
endclass: fifo_scoreboard 
 
`endif  
 

fifo_seq_item.svh 
`ifndef FIFO_SEQ_ITEM__SVH 
`define FIFO_SEQ_ITEM__SVH 
 
`include "rtl/fifo.vh"  
 
class Fifo_Data_outPacket extends uvm_sequence_item; 
     bit  [`QUEUE_WIDTH-1:0]  oData; 
     bit                      oSend; 
     bit                      oFull; 
     bit                      oAlmostFull; 
     bit                      oEmpty; 
 
     `uvm_object_utils_begin(Fifo_Data_outPacket) 
          `uvm_field_int(oData, UVM_ALL_ON) 
          `uvm_field_int(oSend, UVM_ALL_ON) 
          `uvm_field_int(oFull, UVM_ALL_ON) 
          `uvm_field_int(oAlmostFull, UVM_ALL_ON) 
          `uvm_field_int(oEmpty, UVM_ALL_ON) 
     `uvm_object_utils_end 
 
     function new(string name = "Fifo_Data_outPacket"); 
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          super.new(name); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
     endfunction 
endclass: Fifo_Data_outPacket 
 
 
class Fifo_Data_inPacket extends uvm_sequence_item; 
     rand bit                      iEn; 
     rand bit  [`QUEUE_WIDTH-1:0]  iData; 
     rand bit                      iPush; 
     rand bit                      iPop; 
     rand bit                      rst; 
 
     constraint rand_enable { 
          iEn dist { 
               0 := 1, 
               1 := 20 
          }; 
     } 
 
     constraint rand_reset { 
          rst dist { 
               0 := 150, 
               1 := 1 
          }; 
     } 
 
     constraint rand_sigs { 
          iPush dist { 
               0 := 1, 
               1 := 100 
          }; 
 
          iPop dist { 
               0 := 1, 
               1 := 200 
          }; 
 
          iData inside {[0:`MAX_DATA_SIZE-1]}; 
     } 
 
     `uvm_object_utils_begin(Fifo_Data_inPacket) 
          `uvm_field_int(iEn, UVM_ALL_ON) 
          `uvm_field_int(iData, UVM_ALL_ON) 
          `uvm_field_int(iPush, UVM_ALL_ON) 
          `uvm_field_int(iPop, UVM_ALL_ON) 
          `uvm_field_int(rst, UVM_ALL_ON) 
     `uvm_object_utils_end 
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     function new(string name = "Fifo_Data_inPacket"); 
          super.new(name); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
     endfunction 
endclass: Fifo_Data_inPacket 
 
`endif  
 

fifo_sequence_library.svh 
`ifndef FIFO_SEQUENCE_LIBRARY__SVH  
`define FIFO_SEQUENCE_LIBRARY__SVH 
 
class fifo_base_sequence extends uvm_sequence #(Fifo_Data_inPacket);  
 `uvm_object_utils(fifo_base_sequence) 
  
 function new(string name = "fifo_base_sequence");  
  super.new(name); 
  `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
 endfunction  
 
 virtual task pre_body(); 
  if(starting_phase!=null) 
   starting_phase.raise_objection(this);  
 endtask  
 
 virtual task post_body(); 
  if (starting_phase != null) begin 
   uvm_objection objection = starting_phase.get_objection();  
   #50;  
   starting_phase.drop_objection(this);  
  end  
 endtask  
endclass: fifo_base_sequence 
 
class fifo_req_sequence extends fifo_base_sequence #(Fifo_Data_inPacket);  
 `uvm_object_utils(fifo_req_sequence) 
 
 function new(string name = "fifo_request");  
  super.new(name);  
  `uvm_info("TRACe", $sformatf("%m"), UVM_HIGH);  
 endfunction  
 
 task body(); 
  `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);  
  `uvm_do(req);  
 endtask  
endclass: fifo_req_sequence 
`endif 
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fifo_sequencer.svh 
`ifndef _FIFO__SEQUENCER__SVH 
`define _FIFO__SEQUENCER__SVH 
 
class fifo_sequencer extends uvm_sequencer #(Fifo_Data_inPacket); 
     virtual fifo_tb_wrapper_io uFIFO_IO; 
 
     function new (string name, uvm_component parent); 
          super.new (name, parent); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
     endfunction: new 
 
     `uvm_component_utils (fifo_sequencer) 
 
     virtual function void build_phase(uvm_phase phase); 
          super.build_phase(phase); 
 
          if (!uvm_config_db#(virtual fifo_tb_wrapper_io)::get(this, "", "dut_io", uFIFO_IO)) begin 
               `uvm_fatal ("CFGERR", "fifo_tb_wrapper_io is not set"); 
          end 
     endfunction 
 
     function void connect(); 
          super.connect(); 
     endfunction 
 
endclass 
 
`endif  
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fifo_tb_wrapper_io.sv 
`ifndef FIFO_IO__SV 
`define FIFO_IO__SV 
 
`include "rtl/fifo.vh" 
 
interface fifo_tb_wrapper_io(input logic clk); 
     logic rst; 
     logic iEn; 
     logic [`QUEUE_WIDTH] iData; 
     logic [`QUEUE_WIDTH] oData; 
     logic iPush; 
     logic oSend; 
     logic iPop; 
     logic oFull; 
     logic oAlmostFull; 
     logic oEmpty; 
 
     clocking driver_cb @(posedge clk); 
          output rst; 
          output iEn; 
          output iData; 
          output iPush; 
          output iPop; 
     endclocking: driver_cb 
 
     clocking front_monitor_cb @(posedge clk); 
          input rst; 
          input iEn; 
          input iData; 
          input iPush; 
          input iPop; 
     endclocking: front_monitor_cb 
 
     clocking end_monitor_cb @(posedge clk); 
          input oData; 
          input oSend; 
          input oFull; 
          input oAlmostFull; 
          input oEmpty; 
     endclocking: end_monitor_cb 
 
     modport TB(clocking driver_cb, clocking end_monitor_cb); 
endinterface: fifo_tb_wrapper_io 
 
`endif 
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fifo_tb.sv 
// TOP level FIFO testbench  
`timescale 1ns/10ps 
 
module fifo_tb(); 
     parameter HALF_CLOCK_PERIOD = 50; 
 
     logic clk; 
     real half_clock_period; 
 
     fifo_tb_wrapper_io uFIFO_IO(clk);           // Interface 
 
     //test fifo_sanity(uFIFO_IO);    // Instantiate Test Program 
      
     fifo fifo( 
        .clk        (uFIFO_IO.clk), 
        .rst        (uFIFO_IO.rst), 
        .iEn                  (uFIFO_IO.iEn), 
        .iData            (uFIFO_IO.iData), 
        .oData            (uFIFO_IO.oData), 
        .iPush            (uFIFO_IO.iPush), 
        .oSend        (uFIFO_IO.oSend), 
        .iPop            (uFIFO_IO.iPop), 
        .oFull            (uFIFO_IO.oFull), 
        .oAlmostFull      (uFIFO_IO.oAlmostFull), 
        .oEmpty       (uFIFO_IO.oEmpty) 
     ); 
      
 initial begin 
          half_clock_period = HALF_CLOCK_PERIOD; 
  $display ("Default Clock Period is twice: %0gns",half_clock_period);  
 
  clk = 0; 
  forever begin 
   #(half_clock_period); 
   clk <= ~clk; 
  end 
 end 
 
 // FSDB dump 
 
// initial begin 
//  #1;  
//  $display("Dump all sub blocks"); 
//  $fsdbDumpvars(0, tb, "+all"); 
// end      
 
endmodule  
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test_top.sv 
`ifndef TEST_TOP__SV 
`define TEST_TOP__SV 
 
`include "test/fifo_env.sv" 
 
class test_base extends uvm_test;  
 `uvm_component_utils(test_base) 
 
     fifo_env _env; 
 
 function new(string name, uvm_component parent); 
       super.new(name, parent); 
       `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
    endfunction 
 
 
     virtual function void build_phase(uvm_phase phase); 
          super.build_phase(phase); 
          `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
           
          _env = fifo_env::type_id::create("_env", this); 
 
          uvm_config_db#(virtual fifo_tb_wrapper_io)::set(this, "_env._fifo_scoreboard", "dut_io", 
fifo_tb.uFIFO_IO); 
          uvm_config_db#(virtual fifo_tb_wrapper_io)::set(this, "_env._fifo_agent", "dut_io", 
fifo_tb.uFIFO_IO); 
     endfunction: build_phase 
 
 virtual function void final_phase(uvm_phase phase); 
  super.final_phase(phase); 
  `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH); 
  uvm_top.print_topology(); 
 
  factory.print(); 
 endfunction 
endclass  
`endif  
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APPENDIX B: ABOUT AMD 

AMD is a global semiconductor company with facilities around the world. AMD 

was incorporated in 1969, establishing its headquarters in Sunnyvale, California. AMD 

designs and integrates technology that powers millions of intelligent devices, including 

personal computers, tablets, game consoles and cloud servers that define the new era 

of surround computing. AMD solutions enable people everywhere to realize the full 

potential of their favourite devices and applications to push the boundaries of what is 

possible. 

 

AMD achieved recognition as a world leader in energy efficiency and compute 

power with AMD FireProTM professional graphics being awarded the top spot on the 

Green500 List, a ranking of the world’s most energy-efficient supercomputers, and the 

AMD OpteronTM server CPU receiving the number two spot on the latest TOP500 List, 

a ranking of the 500 most powerful supercomputers in the world. Strong demand 

continued for AMD-based game consoles, with Microsoft and Sony having shipped 

nearly 30 million AMD-based consoles through 2014.
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GLOSSARY 

 

ASIC – Application Specific Processor 

AU — Area Units 

C.C. — Clock Cycle(s) 

DPR — Dynamic Partial Reconfiguration 

FPGA — Field Programmable Gate Array 

GPP — General Purpose Processor 

HDL — Hardware Description Language 

HVL — Hardware Verification Language 

LUT — Look-Up Table 

OOP — Object Oriented Programming 

RTL — Register Transfer Logic 

SW — Software 

UML — Unified Markup Language 

VHSIC — Very High Speed Integrated Circuits 
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