

ADAPTIVE EMBEDDED TECHNOLOGIES:

HARDWARE ACCELERATION

By:

Ryan Meghdies-Vardeh

Computer Engineering, BEng

Ryerson University, Toronto, Canada, 2012

A thesis presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2015

©Ryan Meghdies-Vardeh 2015

	 ii	

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

I understand that my thesis may be made electronically available to the public

	 iii	

Adaptive Embedded Technologies: Hardware Acceleration

Master of Applied Science, 2015

Ryan Meghdies-Vardeh

Electrical and Computer Engineering

Ryerson University

	

ABSTRACT

This thesis establishes the benefits of multi-architecture systems by using

reconfigurable modules in conjunction with a case integration strategy to improve

system performance. The modules and strategies discussed in this thesis provide

opportunities to the improve system performance of processing units designed for the

consumer market.

The primary objective for this work is to improve the performance of consumer

processors using programmable logic, while ensuring the changes are abstracted from

operating systems and software applications. This thesis accomplishes this using

specified integration strategies, protocols and through optimization of device drivers.

	 iv	

ACKNOWLEDGMENTS

 First and foremost I thank my family for their motivation and pushing me to be the

ambitious and creative man I am today.

 There have been a number of notable educators who have inspired me and

helped guide me through my undergrad and post-graduate studies. Dr. Vadim Geurkov

has worked with me over the last 4 years. With his supervision, I was awarded a bronze

medal for my undergraduate project. More recently, he has helped inspire and guide me

with the work in this thesis and that found in [1]. Dr. Lev Kirischian provided an

academic foundation for which my research began and provided opportunities which

helped me pursue my areas of interest.

 Finally, I would like to thank AMD who gave me an opportunity to work with

cutting edge hardware design and design verification methodologies. In particular my

mentor Darlington Opera who helped train me and challenge me and Behrooz Karimian

who worked with me in endeavours related to the inventions found in this thesis.

	 v	

TABLE OF CONTENTS
AUTHOR’S	 DECLARATION	 ...	 ii	

ABSTRACT	 ...	 iii	

ACKNOWLEDGMENTS	 ..	 iv	

LIST	 OF	 TABLES	 ..	 vii	

LIST	 OF	 FIGURES	 ..	 viii	

LIST	 OF	 APPENDICES	 ..	 ix	

INTRODUCTION	 ...	 1	
Intellectual	 Property	 ..	 1	
Overview	 ..	 1	

CHAPTER	 I	 ...	 3	
1.1	 MOTIVATION	 ..	 3	
1.2	 OBJECTIVE	 ...	 3	
1.3	 EFFECTIVE	 CONTRIBUTIONS	 ..	 4	
1.4	 THESIS	 ORGANIZATION	 ..	 5	

CHAPTER	 II:	 ...	 6	
2.1	 BACKGROUND	 ..	 6	
2.1.1	 Insight	 Into	 Modern	 Applications	 ...	 6	
2.1.2	 Implementation	 ..	 8	
2.1.3	 Verification	 Tools	 ...	 8	
2.1.4	 ASIC	 &	 FPGA	 Architectures	 ...	 12	

2.2	 FOUNDATION	 OF	 MODERN	 RESEARCH	 ...	 18	
2.2.1	 Reconfigurable	 Technology	 ..	 18	
2.2.2	 Existing	 DPR	 Applications	 ...	 21	
2.2.3	 Theoretical	 DPR	 Gains	 ..	 25	

2.3	 EXISTING	 METHODS	 &	 TECHNIQUES	 ..	 29	
2.3.1	 Intel	 Develops	 FPGA-‐Based	 Coprocessors	 ...	 30	
2.3.2	 Existing	 Mixed	 Chips	 ...	 32	
2.3.3	 Embedding	 ARM	 Processors	 Into	 FPGAs	 ..	 34	

CHAPTER	 III:	 ..	 37	
3.1	 COMPARATIVE	 ANALYSIS	 OF	 EXITING	 SOLUTIONS	 ...	 37	
3.1.1	 Coprocessor	 Systems	 –	 FPGAs	 +	 CPUs/GPUs	 ...	 38	
3.1.2	 System	 Customization	 ..	 40	
3.1.3	 Hardware	 Acceleration	 ..	 41	
3.1.4	 Protocols	 &	 Flashing	 ..	 42	
3.1.5	 Custom	 SOC	 ...	 43	
3.1.6	 Power	 Advantages	 ..	 44	
3.1.7	 Life	 Time	 ...	 45	

3.2	 MODIFYING	 THE	 APPROACH	 ...	 46	
3.2.1	 Hardware	 Acceleration	 Islands	 ..	 49	
3.2.2	 Internal	 Connections	 ...	 53	
3.2.3	 Pre-‐emptive	 Hardware	 Adaptation	 ..	 54	

CHAPTER	 IV:	 ..	 62	

	 vi	

4.1	 Demonstrating	 Performance	 ...	 62	
4.1.1	 Reconfigurable	 Hardware	 Benefits	 ...	 62	
4.1.2	 Improved	 Application	 Performance	 ...	 64	
4.1.3	 Modern	 Design	 Technique	 ..	 70	

4.2	 Automated	 System	 Adaptation	 Capabilities	 ...	 71	
4.2.1	 Manually	 Calculated	 Optimization	 Strategy	 ..	 72	
4.2.2	 Specifications	 of	 System	 ...	 73	
4.2.3	 System	 Sequencing	 Graph	 ...	 76	
4.2.4	 Evaluating	 System	 Options	 ...	 78	
4.2.5	 Mini-‐Max	 Variant	 ..	 80	
4.2.6	 Min	 Resource	 Analysis	 ..	 80	
Calculations:	 ...	 81	
4.2.7	 Max	 Resource	 Analysis	 ...	 81	
4.2.8	 Critical	 Variant	 ...	 82	
4.2.9	 Critical	 Variant,	 Adder	 ..	 82	
4.2.10	 Critical	 Variant,	 Multiplier	 ..	 84	
4.2.11	 Critical	 Variant,	 Clk	 ..	 85	
4.2.12	 Execution	 Time	 Boundary	 ..	 86	
4.2.13	 Power	 Boundary	 ...	 88	
4.2.14	 Area	 Optimization	 ..	 90	
4.2.15	 Resource	 Binding	 ...	 91	
4.2.16	 Multiplexing	 Scheme	 ..	 93	
4.2.17	 Block	 Design	 Using	 Optimization	 Strategy	 ...	 95	

CHAPTER	 V:	 ..	 97	
5.1	 EFFECTIVE	 COMPARISON	 ..	 97	
6.1	 SELF-‐ADAPTING	 SYSTEMS	 ..	 98	
6.2	 SELF-‐TESTING	 CAPABILITIES	 ..	 98	

REFERENCES	 ...	 123	

GLOSSARY	 ..	 122	

	 vii	

LIST OF TABLES

TABLE 1 – FPGA DESIGN [17]	 ..	 15	
TABLE 2 – ASIC DESIGN [17]	 ..	 15	
TABLE 3 - FIR FILTER EVALUATION [24]	 ..	 26	
TABLE 4 – HARDWARE ACCELERATED EMBEDDED SYSTEMS COMPARISON [25]	 	 27	
TABLE 5 - HARDWARE ACCELERATED EMBEDDED SYSTEMS COMPARISON [23]	 	 28	
TABLE 6 - 2ND ORDER EQUATION OF FILTER BLOCKS	 ...	 74	
TABLE 7 - TRANSFER FUNCTION EXPANSION RESULTS	 ..	 74	
TABLE 8 - OPERATION VARIABLE ASSIGNMENT	 ...	 75	
TABLE 9 - RESOURCE OPTIONS	 ...	 78	
TABLE 10 - MULTIPLIER COSTS	 ...	 79	
TABLE 11 - ADDER COSTS	 ..	 79	
TABLE 12 - SYSTEM CONSTRAINTS	 ...	 80	
TABLE 13 - MINIMUM RESOURCE SCHEDULE	 ...	 80	
TABLE 14 - MAXIMUM RESOURCE SCHEDULE	 ...	 81	
TABLE 15 - ADDER CRITICAL VARIANT SCHEDULE	 ...	 83	
TABLE 16 - MULTIPLIER CRITICAL VARIANT SCHEDULE	 ...	 84	
TABLE 17 - CLOCK CRITICAL VARIANT SCHEDULE	 ...	 85	
TABLE 18 - SCHEDULE OF OPTIMAL VARIANT	 ..	 92	
TABLE 19 - ADDER MULTIPLEXING SCHEME	 ...	 93	
TABLE 20 - MULTIPLIER MULTIPLEXING SCHEME	 ..	 94	

	 viii	

LIST OF FIGURES

FIGURE 1 – BIT STREAM CONFIGURATION [12]	 ...	 10	
FIGURE 2 - DESIGN OF AN FPGA [15]	 ..	 13	
FIGURE 3 – THE OPERATIONAL DIFFERENCE OF ASICS AND FPGAS [16]	 ...	 13	
FIGURE 4 – FPGA HARDWARE OVERHEAD	 ...	 16	
FIGURE 6 – HARDWARE MODULE WITHOUT PARTIAL RECONFIGURATION	 ...	 20	
FIGURE 7 – HARDWARE MODULE WITH PARTIAL RECONFIGURATION	 ...	 20	
FIGURE 8 - AMDAHL’S LAW: SPEEDUP IN RELATION TO PORTION OF PROGRAM BEING

ACCELERATED	 ..	 22	
FIGURE 9 – ACCELERATION DESIGN FLOW [24]	 ...	 24	
FIGURE 10 - THE COPROCESSOR APPROACH [28]	 ...	 31	
FIGURE 11 - MULTI-ARCHITECTURE PERFORMANCE COMPARISON [29]	 ...	 32	
FIGURE 12 - DATA TRANSFER TIME ANALYSIS	 ..	 33	
FIGURE 13 - XILINX'S ALL PROGRAMMABLE SOC [33]	 ...	 36	
FIGURE 14 - ISOLATED TECHNOLOGIES, PCIE CONNECTION [34]	 ...	 39	
FIGURE 15 - MULTIMEDIA SYSTEM WITH BLOCK DIAGRAM [35]	 ..	 51	
FIGURE 16 - BUS SYSTEM STRUCTURE [36]	 ..	 52	
FIGURE 17 - REQUIRED CONTROL SIGNALS FOR HWAI	 ..	 53	
FIGURE 18 - RING BUFFER / INSTRUCTION BUFFER	 ..	 57	
FIGURE 19 - PRE-EMPTIVE ADAPTIVE HARDWARE	 ..	 58	
FIGURE 20 - TRADITIONAL SYSTEM ARCHITECTURE OVERVIEW	 ..	 59	
FIGURE 21 - PROGRAMMABLE SOC (EX INTEL’S E600 SERIES)	 ...	 59	
FIGURE 22 - CPU WITH HWAI	 ..	 60	
FIGURE 23 - STREAM PROCESSING UNIT	 ..	 64	
FIGURE 24 - UNCONSTRAINED SEQUENCING GRAPH	 ..	 76	
FIGURE 25 - MINIMUM RESOURCE SEQUENCING GRAPH	 ...	 77	
FIGURE 26 - ACG OF EXECUTION TIME	 ...	 87	
FIGURE 27 - SYNTAX TREE OF EXECUTION TIME	 ..	 88	
FIGURE 28 - POWER ACG	 ..	 88	
FIGURE 29 - POWER BOUNDARY SYNTAX TREE	 ..	 90	
FIGURE 30 - AREA ACG	 ...	 91	
FIGURE 31 - BOUND SEQUENCING GRAPH	 ..	 92	
FIGURE 32 - ADDER MUX PLAN	 ...	 94	
FIGURE 33 - MULTIPLIER MUX PLAN	 ..	 95	
FIGURE 34 - FIR BLOCK SYMBOL	 ...	 96	

	 ix	

LIST OF APPENDICES

APPENDIX	 A:	 UVM	 /	 SYSTEMVERILOG	 ...	 100	
RTL	 &	 Test	 Bench	 Code	 ..	 100	
Makefile	 ..	 100	
test.sv	 ...	 101	
fifo.vh	 ...	 101	
fifo.v	 ..	 101	
fifo_agent.svh	 ..	 103	
fifo_driver.svh	 ..	 105	
fifo_env.sv	 ..	 107	
fifo_monitor.svh	 ..	 108	
fifo_sanity.sv	 ...	 109	
fifo_scoreboard.svh	 ...	 111	
fifo_seq_item.svh	 ...	 114	
fifo_sequence_library.svh	 ..	 116	
fifo_sequencer.svh	 ..	 117	
fifo_tb_wrapper_io.sv	 ..	 118	
fifo_tb.sv	 ...	 119	
test_top.sv	 ..	 120	

APPENDIX	 B:	 ABOUT	 AMD	 ..	 121	

	 1	

INTRODUCTION

Intellectual Property
	

At the time in which this paper was written, Ryan Meghdies-Vardeh had

submitted multiple patent applications to Advanced Micro Devices, Inc. (AMD). AMD

has decided to pursue the protection of two of those filings [2] and [3]. A third filing, is

discussed in the future work section is likely the most promising of the three: [1]. The

research compiled for this thesis lead to the invention of these patents. See Appendix B

to learn more about AMD.

Overview

This thesis provides an introductory analysis of General Purpose Processors

(GPP) and Field Programmable Gate Arrays (FPGA) architectures, their benefits and

drawbacks. In the past, consumer processors and reprogrammable logic, have not

worked in conjunction with one another. Traditional processing architectures are

considered to be the superior choice when there is enough volume demand and

sufficient research and development resources. In contrast, FPGAs provided a platform

that would significantly lower venture development costs and thereby make it possible

for individuals and corporations to invest in, and more importantly afford to, develop new

hardware solutions.

	 2	

 In this thesis, we identify that CPUs/GPUs and FPGAs have their own unique

benefits and the architecture of the future will strategically approach the integration of

these two technologies. It is important to note that this work targets consumer market

devices. There are two key contribution to this future looking architecture presented in

this thesis. First using through the “Hardware Acceleration Islands” (HWAI), a design

strategy which strategically embeds DPR enabled FPGAs within exiting processor

designs (without requiring software changes, minimizing risk and research and

development costs). Secondly, by offering a technique that will enhance the HWAI

modules and optional optimizations to processor device drivers.

	 3	

CHAPTER I

1.1 MOTIVATION
	

With the end of Moore’s Law [4] engineers must make use of smarter and more

innovative processor architecture design concepts. Traditional brute force approaches

translate into larger systems that are power hungry and more costly to manufacture.

This is no longer a feasible technique as mobile processing and portable devices

become the focus of the consumer market. As seen in the figure below [5], existing

architecture designs are for the first time becoming smaller and engineers are looking

for new ways to generate greater performance without proportional overhead.

1.2 OBJECTIVE

A successful solution would be one that minimizes the research and development

risks, is easy to integrate within existing processor designs, and delivers worthwhile

performance improvements using innovative system design. The “Hardware

Acceleration Islands” in conjunction with the proposed case integration strategy offers

such benefits, so as to make market adoption feasible and profitable for semiconductor

manufacturing companies.

While this thesis targets consumer market processors, it is important to recognize

that most modern supercomputers look to high-end consumer processors (GPUs and

CPUs) [6].

	 4	

1.3 EFFECTIVE CONTRIBUTIONS
	

There were a number of problems that arose in developing solutions for the

aforementioned problems while staying within the constraints of the objective goals. As

a result, it is recommended to use the hardware solution in conjunction with the protocol

and strategy.

The hardware solution injects programmable logic into processor technology on

the same die using similar strategies to embedded microprocessors. Using the

proposed strategy, these hardware acceleration islands can absorb high-performance

tasks and reduce area by also absorbing infrequent or temporal hardware logic. This

methodology will not require any 3rd party software changes. Modifying device drivers

will be sufficient to hide the suggested system changes. Future works may require

optimizations to existing operating system settings.

There is also a protocol that hardware systems can take advantage of to improve

the efficiency of the hardware acceleration islands. The protocol will work to

minimize/eliminate delays in the pipeline and requires minimal hardware overhead (only

2 control signals).

	

	

	 5	

1.4 THESIS ORGANIZATION
	

The first chapter will share the motivation of this research, what are the problems

being solved and why they are necessary to be addressed. The objective of this thesis

is clarified as it presents a unique area and set of goals.

The organization of the remainder of this thesis (chapter 2 and onwards) is

structured to provide sufficient background to the build-up towards the primary design

work found here. Chapter 2 will outline existing solutions similar to the work of this

thesis or attempting to solve similar problems. The pros and cons of each will be

evaluated. The following chapter will explain the new approach / primary work of this

thesis. Chapter 3 will walk through the details of how to recreate this work.

 With a strong understanding of the design work, chapter 4 will discuss the

implementation and practical examination of the design work to evaluate the

performance and tools to be used. In the final two chapters the obtained results will be

compared with similar works and finally the future work for myself and hopefully to

motivate other individuals to pursue this avenue of research and development.

 6	

CHAPTER II:

2.1 BACKGROUND

2.1.1 Insight Into Modern Applications

Since the introduction of FPGA technology, hardware developers have been

working to make use of each architecture’s relative benefits. Today these architectures

are used in conjunction with each other. ASIC developers now commonly implement

SOC designs on FPGAs, validating them thoroughly before investing the millions

necessary to tape-out the product in the form of an ASIC. This is referred to as “FPGA

Prototyping”. Understanding such background and the progression of FPGA technology

will provide a clearer image of the direction and impact of this architecture. While this

thesis will not dive into this FPGA prototyping, it is helpful to understand 3 key benefits

that this methodology provides.

 1) Reliable Verification: Implementing designs on FPGAs is a reliable way to

ensure the final ASIC will be functionally correct. Previously verification efforts were

much more costly (in terms of research and development) or almost non-existent.

Previous to FPGA prototyping, ASIC manufacturers relied primarily on software to verify

their designs. About a third of all current SOC designs are fault-free during first silicon

pass, with nearly half of all re-spins caused by functional logic errors [7].

 2) Time-to-Market (TTM): FPGA prototyping has enabled hardware designers to

shorten the TTM period. Since less verification resources are required and verification

 7	

accounts for as much as 80% of the design process, designers can save money and

release new products faster, which in-turn increases the rate of innovation. In a

consumer driven market that is keen on technology, meeting deadlines set according to

demand peaks is critical to a corporations’ success. These peaks present a small

window in the market, and missing it could render a project useless thereby costing the

company the much of the capital which was invested in the product (typically the

research is reused for the progression of IP(s) [8].

 3) Development Cost: By reducing the number of re-spins required through

FPGA prototyping, hardware design corporations are able to save millions of dollars.

These re-spins are caused by a number of factors including: firmware issues, power

issues, mixed-signal interface related issues, race condition issues (that were not

detected by PD (Physical Design) software, clocking domain issues, functional issues,

and more [9]. In [10], there are five precautionary steps that are listed in which

corporations take to minimize their risk of having a re-spin:

a) Constraint random verification

b) More effective block (IP) level verification

c) Verification reuse from block level to System level

d) Architecture of test bench using reusable methodologies

e) A reusable and scalable verification

	

 8	

2.1.2 Implementation

 The implementation modules, located in Appendix A, demonstrate how

“Constraint random verification” and “More effective block (IP) level verification” are

achieved and being approached within the modern day hardware design industry. The

technologies made use of are the latest solutions used by the most renowned hardware

design corporations and design teams. In fact, many companies are still moving to this

methodology. The demand for this can be seen by the sheer number of job postings to

simply help convert/create design and design verification environments to make use of

these techniques.

	

2.1.3 Verification Tools

 It is well known that verification efforts can account for 60 to 80 percent of the

hardware development process [11]; where larger designs typically requiring the higher

percentages. There are a number of different stages when it comes to hardware

verification, most stages run in parallel during the course of a project. In one of the first

stages, engineers develop their concept design modules and algorithms using software.

Software verification is highly effective at finding high level faults in a design due to two

key characteristics: easy development (fast and low cost approach), as well as fast

results (compile times for an FPGA can take hours when making even the smallest

changes and can take an exorbitant amount of time to simulate). However, software

verification is not without its limitations. Software is limited in its ability to mimic

 9	

hardware. While software models have made leaps and bounds in this area even

capable of modeling the timing delay between modules, hardware and software are still

inherently distinct and therefore limited in verifying the design. They are however an

effective emulation tool for the conceptual design of the module (ex. testing algorithms

which will be implemented in hardware).

In addition to software verification, engineering teams develop and implement

their designs using “Hardware Description Languages” or HDLs. The two foundational

HDLs include VHDL (VHSIC Hardware Description Language) & Verilog. The code

found in these .vhdl and .v files (respectively to the languages above), are then

translated to the required format as per a specific architecture/technology (an ASIC,

Xilinx Kintex 7 FPGA, Altera Cyclone V FPGA, etc.). For example, a bit stream is

generated based on the internal structure and resources available within the specific

FPGA being used. This bit stream is used to program the FPGA being used by

configuring the hardware, typically through JTAG interface, by filling in LUTs,

configuring routing, and manipulating other resources.

 10	

Figure 1 – Bit Stream Configuration [12]

From a verification perspective there are a number of options for engineers to

verify their code at this stage, of which two fundamental concepts are discussed. First,

engineers will often include additional verification oriented code that is built into the

language (VHDL / Verilog) to ensure some conditions within respective states are met.

Secondly, if the correct arguments are passed when invoking modern hardware

simulators, such as VCS developed by Synopsys Inc., then files containing the values of

registers and pins are dumped. These files can then be examined to determine if the

behaviour is as expected.

Processor systems have become far more advanced, consequently hardware

design files have grown exponentially larger over the last years. As a result, improved

verification environments (speed, flexibility, features) have become a central focus in the

hardware design industry. With this growing demand, two key issues were identified: a

 11	

limited library to verify hardware and manually analyzing the waves was extremely time

consuming and difficult. When engineers looked at these limitations they had two goals:

(1) To expand the available verification environment and enable hardware designers to

build with ease similar to that which software provides. (2) To automate the manual

processes that tended are labour intensive and repetitive (both characteristics for

opportunities to develop a software solution).

 In 2002, engineers released the revolutionary HDL (Hardware Description

Language) - HVL (Hardware Verification Language) combination based on extensions

to Verilog [13]. While there were predecessors which SystemVerilog inherited from,

SystemVerilog provided superior functionality and modern features. As a result,

SystemVerilog was selected as the IEEE standard in 2005 and by 2009 was merged

with the base Verilog standard [14]. This decision demonstrates just how significant of a

relationship existed between the hardware design and design verification world. To this

day, SystemVerilog remains as the foundation to which more advanced tools are built

on top of. It is not to be taken for granted by any means or compared against UVM

(Universal Verification Methodology). UVM is built upon SystemVerilog, and as such

should be identified as an extension. This is worth mentioning when examining the

implementation found in Appendix A.

 12	

2.1.4 ASIC & FPGA Architectures
	

	

Field Programmable Gate Arrays have come a long way in recent years and

continue to make leaps and bounds in the semiconductor industry. Their unique ability

to be reconfigured is the reason why FPGAs are able to take on varying complex tasks

that with an optimized hardware configuration. In order to accomplish hardware

reconfigurability, FPGAs are designed using a distinct hardware layout, as seen in

Figure 2 bellow. Logic blocks are LUT representations of the logic gates used inside

ASICs (refer to Figure 2). These logic blocks are linked together using routing lines and

switching blocks are used to select which logic blocks will be connected together.

 13	

Figure 2 - Design of an FPGA [15]

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
Figure 3 – The Operational Difference of ASICs and FPGAs [16]

 14	

An FPGA’s ability to adapt to situations using its reconfigurable properties means

that the hardware can be optimized based on the task at hand. These adaptive

characteristics allow engineers to modify their designs (perhaps for optimizations or

handling new protocols), or upload completely different designs onto a chip. For

instance, an FPGA can be configured to be a router in one instance and a graphics

processing unit in another. System architectures are classified with three parameters:

i. Components: the set of function made available by the hardware architecture

ii. Links: the interconnects between the components

iii. Procedures: the set of variations of functions and links in time

ASICs use a “fixed components, fixed links, variable procedures” architecture.

While FPGAs on the other hand use a “fixed components, variable links, variable

procedures” architecture [17]. This is also how our brains are designed, and despite

running at an operating frequency of approximately 10 Hz, the human mind is the most

advanced processing unit. This added variance allows us to optimize performance for

various tasks, but also comes at a cost.

 One question to be asking is why we still use ASICs if FPGAs have such a large

advantage in being reconfigurable? It is important to note that although FPGAs and

ASICs could theoretically be interchanged (for example ASIC designs are often

implemented on FPGAs for prototyping and testing purposes), FPGAs will never replace

 15	

ASICs completely. This is because they serve different purposes and thus each has its

own advantages, see Table 1 and 2:

 The reconfigurable properties of FPGAs come at a cost however. FPGAs have a

large hardware overhead in comparison with ASICs, thus increasing the size and cost of

the units (see Figure 4). Additionally, since software handles most of the routing,

placement, and timing within FPGAs, the layout is not the optimal solution (even though

the software runs several optimization algorithms) [18]. So although this creates a

simpler design cycle, ASICs have a performance advantage. As a consequence of not

having a design implemented using the optimal layout, the clock frequency also has to

be decreased according to the slowest path in the circuit [19].

Advantage	 Brief	

Faster	 time-‐to-‐market	 No	 layout,	 masks	 or	 other	 manufacturing	

steps	 are	 needed	

No	 upfront	 non-‐recurring	 expenses	 (NRE)	 Costs	 typically	 associated	 with	 an	 ASIC	 design	

Simpler	 design	 cycle	 Due	 to	 software	 that	 handles	 much	 of	 the	

routing,	 placement,	 and	 timing	

More	 predictable	 project	 cycle	 Due	 to	 elimination	 of	 potential	 re-‐spins,	 wafer	

capacities,	 etc.	

Field	 reprogramability	 A	 new	 bitstream	 can	 be	 uploaded	 remotely	

Table 1 – FPGA Design [17]

Advantage	 Brief	

Full	 custom	 capability	 For	 design	 since	 device	 is	 manufactured	 to	

design	 specs	

Lower	 unit	 costs	 For	 very	 high	 volume	 designs	

Smaller	 form	 factor	 Since	 device	 is	 manufactured	 to	 design	 specs	

Table 2 – ASIC Design [17]

 16	

Figure 4 – FPGA Hardware Overhead

As the name states, ASICs are specific to an application and therefore are

optimized for those task(s). Therefore, in systems where tasks are fixed, ASICs are the

better solution. However, in situations where a systems’ tasks are continually changing,

a ASIC architectures may not be the ideal/optimized method of implementation. Despite

the hardware overhead of an FPGA, the unique ability to be reconfigured is the reason

why FPGAs are able to take on complex tasks with an optimal hardware configuration

and outperform traditional processor architectures using less space and power

consumption.

In the past, when a system [implemented on an FPGA] would switch tasks and

require a different hardware configuration, this meant the FPGA had to be placed in

shutdown mode while loading the new configuration file onto the chip (this is known as

static reconfiguration). This limitation significantly impacts the performance of a system,

 17	

and hence the applications for which an FPGA’s adaptive properties would be required.

Engineers recognized this setback was restricting the performance capabilities that

FPGAs had to offer. After several years of research, Xilinx discovered the solution:

Dynamic Partial Reconfiguration.

 18	

2.2 FOUNDATION OF MODERN RESEARCH

2.2.1 Reconfigurable Technology

Dynamic Partial Reconfiguration takes the adaptive properties of an FPGA to a

whole new level. DPR allows selected “parts” of an FPGA to be reprogrammed with

new functionality while the remainder of the FPGA continues to operate (hence the word

“partial” in dynamic partial reconfiguration). Observe Figure 3 bellow, “Part A” of the

FPGA is going to be reconfigured. During this reconfiguration time, the module is shut

down and the rest of the system continues under normal operation. When “Part A” has

finished being reconfigured, it will turn on and resume operation with its new hardware

configuration [20].

Figure 5 – Operation of Dynamic Partial Reconfiguration

 19	

Dynamic partial reconfiguration is not supported on all FPGAs. In fact, up until

recently Altera (one of Xilinx’s primary competitors) did not support partially

reconfigurable FPGAs. The first FPGA to support DPR was Xilinx’s Virtex II Pro. Partial

reconfiguration addresses three fundamental needs by enabling the designer to:

1. Reduce cost and/or board space

2. Change a design in the field

3. Reduce power consumption

Dynamic partial reconfiguration enables designers to fit more logic into an

existing device by time-multiplexing hardware dynamically on a single FPGA. This also

translates into a smaller and less expensive device. The advantages of DPR are clearly

seen when comparing Figures 6 and 7, which are two different implementations of the

same hardware functionality [12].

 20	

Figure 6 – Hardware Module without Partial Reconfiguration

Figure 7 – Hardware Module with Partial Reconfiguration

 21	

DPR provides real-time flexibility for the protocols available in any given moment. This

can translate into cost savings of several orders of magnitude compared to traditional

processors, since the architecture cannot be reprogrammed to support a new protocol.

 With partial reconfiguration, designers can time multiplex parts of their designs on

the FPGA. As long as the stages of the design are independent, this can be done as

many times as needed. Using this methodology then requires a much smaller FPGA

chip since not every part of the design is needed 100% of the time. Using a smaller

FPGA also means that the power consumption and timing (because everything is

closer) is exponentially more optimal [21]. Additional advantages of partial

reconfiguration include:

 Enables the use of new techniques in design security

 Improves FPGA fault tolerance

 Accelerates configurable computing

 Reduces bit stream storage requirements

2.2.2 Existing DPR Applications

 Dynamic Partial Reconfiguration in FPGAs is still a fairly new concept that has

not been taken advantage of fully. FPGAs that support DPR can be utilized in many

applications to increase performance, while reducing costs, area consumption, and

power consumption.

 22	

 A hardware accelerator is an optimized functional block used to offload a specific

task or set of tasks from a general purpose processor (GPP). Hardware accelerators

are optimized frequently used in systems today to improve performance and decrease

dynamic power consumption. However, according to Amdahl’s Law hardware

accelerating a task can only accelerate the overall performance according to how often

that task is used during execution time. Figure 8 bellow further exemplifies this [22].

Figure 8 - Amdahl’s Law: Speedup In Relation To Portion of Program Being Accelerated

 23	

 Using dedicated hardware to accelerate a particular task has proven to be a very

effective method for improving the performance of a system [23]. However, if every task

had its own dedicated set of hardware the static power and area consumption would be

astronomical. One may be able to see where DPR enabled systems can solve this

problem, while maintaining the same performance benefits to the system. For instance,

in most systems not all tasks are used in one instance. So if those tasks were loaded

into configuration memory, then each module could be loaded onto chip (the FPGA) as

needed. By following the suggested strategy being proposed here, only the tasks being

used are loaded into hardware but the system still has access to all the dedicated

hardware sets.

 What [24] proposes is that hardware accelerators in the past can increase

performance and reduce power consumption, but overlook the interface between CPU’s

and FPGA hardware accelerators. The model they present is to analyze the application

running on the GPP (in this case a CPU), and profile the application to determine which

time-critical functions should be accelerated. At this point the correct IP module will be

loaded onto the FPGA. However, the way in which the CPU and the FPGA interface to

each other will also affect the performance of the overall system. The results can be

seen in Table 3 and will be further discussed below.

 24	

Figure 9 – Acceleration Design Flow [24]

 The research and findings found in [25], compliments that of [24]. Using FPGAs

to hardware accelerate embedded systems is a popular and promising area of research.

The benefits and possibilities are promising and will truly expand the capabilities of

present day embedded systems. The basic premise of [25] is that FPGAs in embedded

systems can raise the abstraction level without imposing new tools and practices for

design engineers and corporations. By taking an OOP approach (expressed in UML

and implemented in C++) software coding efforts are significantly reduced. Not only

provides a golden reference model, but may also be used in the actual implementation

of the hardware design. This can prove especially useful in today’s semiconductor

industry. Since about 80% of the time needed to design an ASIC is spent in verification

efforts, overlapping the time spent on developing Bus Function Models (BFMs) for the

test bench and the actual RTL design could reduce the cost of processor design

significantly [26]. For example, assuming 100% of the 30% design time could be

 25	

transferred to verification efforts that would mean a cost saving of 30%. The proposed

methodology being indicated here is what top engineers are striving to achieve.

However, what typically prevents them is the amount of resources and risk involved in

making such drastic changes. With the approach discussed in this thesis and the tools

discussed in Chapter one such results can be achieved. The results will be further

discussed in the following section.

	

2.2.3 Theoretical DPR Gains
	

FPGAs are particularly suited for accelerating compute intensive algorithms that can

take advantage of massive hardware parallelism. This is especially true for FPGAs that

are DPR enabled, since the hardware can adapt to the exact compute operations being

executed. Additionally, being able to reconfigure hardware during run time without

stalling or impairing the performance of a system, makes this all the more promising.

This in effect makes the hardware appear as if all tasks are in hardware and available to

be called upon at any given time. The philosophy behind this appears to mimic that of

virtual memory. In short, a system may only have a few megabytes of memory, but by

virtualizing memory on external storage it appears to the user that the system memory

is much greater.

This visualization of the hardware follows the same principles by context

switching between hardware configurations. In multitasking contexts, virtualizing

 26	

hardware translates to superior hardware utilization and much greater performance can

be achieved [27]. This is truly reflected in Table 3 bellow.

It can be seen that using a general processor architecture means the

implementation must be completed using software. This abstraction means higher

frequencies and hence power consumption. Using DPR to hardware accelerate this

design proves to improve performance by factors greater than 50 times. The area in

this design does increase; this is due to the initial hardware overhead that FPGAs

introduce. However, as the design size increases, the initial investment of hardware

overhead is disguised by the hardware virtualization capabilities.

Table 3 - FIR Filter Evaluation [24]

 27	

Area cost with FPGAs is one of the biggest issues. The problem lies in what was

discussed in the introduction and observed in Table 4. This is why existing FPGA

solutions have not taken off in high volume design cases. As further discussed in [25],

the capabilities to abstract hardware at a level where designers can overlap design and

verifications efforts also come at a cost in the area designs consume. That being said,

perhaps further research could uncover a more optimal method that will not increase the

ASIC’s area. Once again similar to the finding in [24], [25] has a small increase in

hardware resources (area) required but performance increase of an order 10.

Table 4 – Hardware Accelerated Embedded Systems Comparison [25]

 28	

 We have discussed and observed situations where FPGAs increase the area

being consumed and yet other scenarios that decrease the area being consumed. The

designer must truly consider the goals, meaning what the constraints and optimizations

for the given project are. Once these functional specifications are gathered, the

designer can analyze the technical specifications of the system and the resources

available.

 The conclusion of [23] supports the findings of this thesis, one can see that

hardware accelerators can (but don’t always) improve throughput and lower power

consumption. When approaching the problem by proposing re-ordering the requests

put on the accelerators and thereby decreasing the associated overhead with the DPR

enabled system. What my work establishes and what [23] was working towards, is that

an accelerator must be able to maintain performance between context switching, so by

reducing this overhead and general switching occurrences, performance can be

improved. Implementation results for a number of applications can be seen in table 5

bellow showing how such a strategy can improve performance:

Table 5 - Hardware Accelerated Embedded Systems Comparison [23]

 29	

The designs he has implemented are larger than the ones found in previous papers,

and provide a much better estimate as the FPGA overhead is better disguised. As seen

the throughput has once again been improved (although not as much), but the area

differences are equal or less than in the FPGA implementation. This is why the

designer needs to follow careful methodology to determine the correct resources to

implement the design on.

2.3 EXISTING METHODS & TECHNIQUES
	

	

 The industry recognizes the powerful benefits of reprogrammable logic and

FPGA-like resources. Many leading industry and academic research and development

sources have concluded the benefits of converging the two worlds of processor and

FPGA technology. However, thus far implemented systems and proposed architectures

have failed to meet the objective goals found in this paper.

Due to a large granularity approach, such systems cannot strategically extract

benefits of each technology. The cost, risk, and performance suffers for consumer

related processing applications. Reprogrammable logic resources will always consume

more area and be slower than ASIC logic, however it is also true that they consume less

power and are faster at processing algorithms than processors and even DSPs. It is for

this reason, the fusion of these technologies needs to follow a specific set of rules in

order to extract the benefits of each technology and develop the innovative consumer

processing architecture of tomorrow.

 30	

Below are examples of how researchers have approached this concept and what

some semiconductor manufacturers have created.

2.3.1 Intel Develops FPGA-Based Coprocessors

Intel is one of the largest semiconductor manufacturers in the world. They have

been a world leader in developing innovative processor technologies. Given their

success they have invested significant resources into the research of architecture

design improvements.

Intel has made progress in developing processors that make use of FPGA

embedded technology [28]. As can be observed in the figure below, the approach is one

that provides greater potential and flexibility, excluding the consumer market

CPUs/GPUs. As mentioned in chapter 2, FPGAs makes the hardware design process

far more affordable for companies to develop systems. However, what must be

highlighted is how significant an impact FGPAs have had on accelerating the innovation

within the hardware industry.

 31	

Figure 10 - The Coprocessor Approach [28]

Hardware is extremely expensive to manufacture using traditional semiconductor

fabrication plants. The cost is so astronomical that unless millions of chips are being

fabricated, it is typically not worthwhile or feasible to invest in exploring hardware

solutions. With the introduction of FPGAs however, this all changed. Today developing

a hardware module is an affordable option for fuelling growth in the hardware industry,

through the enablement of small projects, small ventures and custom solutions.

Moreover, as demonstrated in [29] FPGA fabrication technology and architecture

advancements have further enabled engineers endeavours and expanded the realm of

possibility. The compute capabilities in today’s FPGAs are tremendous, depending on

applications certainly surpassing the performance of other technologies as seen below.

 32	

Figure 11 - Multi-Architecture Performance Comparison [29]

	

2.3.2 Existing Mixed Chips

It is commonly known that processors (including CPUs and GPUs) contain

microcontroller(s) within their design. This embedded controller provides flexibility to a

processor for particular set of tasks and frequently improves performance through

measured analysis of a hardware pipeline. This can show up in area reductions, power

reductions and other key performance metrics.

Heterogeneous compute devices such as this are become extremely popular, so

much so in fact that the Heterogeneous System Architecture (HSA) Foundation was

established in 2012 to focus on such efforts [30]. The HSA foundation is a not-for-profit

 33	

that develops industry standards to improve innovative efforts of heterogeneous

computing devices. Unfortunately, thus far such efforts have primarily focused on large

processor systems working together. As found in [31] other heterogeneous computing

devices are emerging, the Intel Many Integrated Core (MIC) and the AMD Fusion

technology. [31] is able to unlock additional performance using the microcontrollers

found in GPUs. As seen in the figure below, the methods assist with the reduction of

data transfer times through a method titled “Microcontroller-based data transfer”.

Figure 12 - Data Transfer Time Analysis

	

 Altera and Xilinx have released the new generation FPD-Microprocessor mixed

chips that consist of microcontrollers and programmable logic, though these ICs are

aimed at embedded system markets only and provide limited amount of processing

power compared to high-end processors. This idea has not been explored at high-end

CPU/GPU chipset market. Solutions (such as netbooks, tablets, mobile devices and

 34	

embedded systems) that are power, cost, and space sensitive will benefit tremendously

from the solution that is proposed here.

 By introducing reconfigurable FPGA blocks within ASICs, systems would have far

greater flexibility to the large main chips in order to satisfy the dynamic feature

requirements of different O.E.Ms and system architects. The solution (embedding non-

volatile programmable logic blocks) promises cost reduction, flexibility, performance

enhancements, and size/power reduction from system engineering perspective. Such is

the proposal of this thesis.

2.3.3 Embedding ARM Processors Into FPGAs

Semiconductor companies are making the opposite efforts to integrate traditional

processor technologies (ARM processors) into their systems. Xilinx has been extremely

successful at building processing systems that offer a number of benefits to the

hardware development industry. Recall from previous chapters, FPGAs have enabled

hardware companies and developers to perform research and development affordably.

It was explained how this lead to improved innovation. To expand the level of system

flexibility Xilinx has set a high priority towards integrating both technologies. Today’s

Xilinx Zynq systems are a testimony to the incredible performance and opportunities

that these systems possess [32].

 35	

Xilinx Corporation markets the Zynq platform as an “All Programmable SOC”; this

is an accurate term to describe the flexibility of the system platform. Developers are able

to provide instructions through software, which can be run on the ARM core(s), while the

programmable hardware can mange computation data processing. The system can

execute applications in real time and optimize system interfaces through programmable

I/O [33].

 36	

Figure 13 - Xilinx's All Programmable SOC [33]

	

 37	

CHAPTER III:

3.1 COMPARATIVE ANALYSIS OF EXITING SOLUTIONS
	

	

 The problem solved in the proposed work is to improve the performance of

existing main stream systems (CPUs, GPUs) by incorporating programmable embedded

logic into each ASIC strategically. FPGAs are known for their performance in highly

algorithmic contexts, which are especially common within GPUs. As computing takes

on more complex algorithms, today’s processors can benefit with the proposed design.

It improves the overall performance by accelerating algorithms and offloading certain

intensive CPU or GPU tasks. In an example used in section 4.1, we see an increase of

performance of 0.5% at a system level and as much as 80% on a block level.

 Due to the design strategy proposed here and the characteristics of the

technology being used, the proposed solution would be a low risk endeavour that

corporations could quickly adopt into upcoming technologies. Moving towards the

proposed designs would be a step towards a future looking architecture that

outperforms existing architectures. Additional benefits will be further discussed later.

 The common execution processor stages (IF, ID, ED, MEM, WB) introduce high

overhead in comparison with a stream processors, especially in terms of power and

delay (see implementation results). Processors break up large tasks into small

operations and take them on accordingly. This introduces hazards and high overheads,

 38	

in comparison to a hardware acceleration unit which reprogrammable logic could

provide replicate within an ASIC.

3.1.1 Coprocessor Systems – FPGAs + CPUs/GPUs

	

	

As discussed above there are a number of semiconductor companies investing

into solutions that integrate traditional processor technologies with FPGAs. This has

been extremely effective at custom project solutions. As shown by [33], significant

performance and flexibility can be achieved at low design costs. Xilinx brags about the

lower BOM cost, higher systems performance, and lower system power they are able to

provide with this type of architecture. Such an architecture is not far from the other

methods proposed by Intel and Altera (at least in the system examples used here),

however they have improved on the interface connections.

 It should be understood, that the analysis of the pros and cons of this previous

approach must be addressed in a context for which these systems were not designed.

Therefore, it is not a criticism of the solution as it addresses a different problem all

together. The objective of this thesis is, to the best of my knowledge conceptually

different from all others.

 When FPGAs and consumer processors (CPUs/GPUs) are connected to work

together as coprocessors the system chip becomes very large. The cost of the chip

significantly increases and large overhead IPs must be developed to manage the

 39	

connection. The two technologies stand alone in comparison with what this thesis

proposes. Hence, the memory, contexts, tasks, and all other internal aspects of each

technology are unknown to the other.

 Moreover, due to the architecture the connections can become extremely slow in

comparison the proposed design. Take for example the Altera system below.

Figure 14 - Isolated Technologies, PCIE Connection [34]

The Altera FPGA and Atom processor are connected via PCIE. Such transfer speeds

are considered to have extremely high latency. Communication is ineffective and it is

desirable to avoid “team work” between the two technologies.

This isolation and lack of awareness are exactly what the “Hardware Acceleration

Islands” and supporting strategies resolve. By removing this high latency connection,

 40	

and improving communication between the two technologies the new system can build

upon the success of both CPUs/GPUs and FPGAs.

Moreover, the proposed designs accomplish something very unique to the

hardware development industry. That is, that they do not require a new software to be

developed within the consumer market. This system not only adds performance to

existing CPUs and GPUs, but packages it in such a way that hides these changes from

hardware and software layers above (with the exception of device drivers and potentially

minimal operating system optimizations).

	

3.1.2 System Customization

The suggested design does not have as much customization and flexibility for

after the market adjustments. Since this system is targeting consumer devices too much

flexibility will start to slow down the system and loose the initial benefits purposed. That

said, consumer CPUs and GPUs hardware design companies have incredibly large and

robust systems that require lengthy development cycles. To ensure functionality, time is

taken to verify each IP and final SOCs (see section 2.2). Therefore, it can be expected

that such projects will not / should not add greater customization than necessary and

according to the strategies outlined in this thesis.

The customization that is provided according to this work will be nearly or just as

effective as the isolated task unit in the alternative hardware solutions. However, when

 41	

considering the context of the system the Hardware Acceleration Islands will be far

more performant.

3.1.3 Hardware Acceleration

 By embedding FPGAs into current processors (such as CPUs and GPUs),

algorithms and tasks can be offloaded to the DPR enabled programmable logic.

 The programmable logic can be modified using run time reconfiguration

and a bit stream uploaded characterized by the context of the system during run-

time without impacting the performance of the rest of the system. Moreover, due

to the granularity of these embedded reprogrammable modules and the stream

processing characteristics of FPGAs the performance benefits and flexibility is

precisely what engineers are looking to achieve.

 Looking at the system implementation example in the following chapter, it

is evident that engineers could benefit by embedding an adaptive hardware

acceleration unit. Moreover, when an FPGA logic block is introduced for

hardware acceleration, depending on the interfaces, there may be opportunities

to assist with varying tasks and secondary system requirements. While the FPGA

may not be the most effective at routing and decision-making, there are areas

within system processing where FPGAs would far surpass (such highly

mathematical system contexts).

 42	

3.1.4 Protocols & Flashing

 Custom SOCs are a growing market within the hardware design industry.

The ability to add levels of flexibility and custom protocol support is a sought after

trait. While it is costly, the return on investment is clearly justifiable.

There are a number of blocks within existing systems that have high

demands in terms of the sheer number of protocols they are required to support.

While some systems can afford to use software, most solutions require a

hardware dedicated data path solution. Supporting a protocol is no small task;

these dedicated pipelines are designed for each protocol which incoming data

from the block interface will traverse.

 The lists below are just basic protocols and codecs that many modern

systems need to support. There are several others including a number of other

categories that are not included here:

• H263

• H264

• VC1 Advanced

• VC1 Main (RCV)

• MPEG2 (DXVA)

• MPEG2 (Native)

 43	

• MPEG4

 By using the proposed HWAI unit, not only could engineers target these with less

hardware overhead but the complexity of the hardware would be far less. This would

result in lower research and development costs and verification efforts. This is because

by using a HWAI unit, the solutions become straightforward and simple problems that

are less prone to errors. Currently engineers are faced with needing to come up with

optimization strategies that, while ingenious, can be quite complex.

 HWAI allows live system reprogramming. Moreover, new protocols could

be downloaded post-silicon to consumer devices. Those bit streams can be

implemented within the programmable logic constraints. This not only provides

far-superior flexibility but also customizability. Hardware/software developers can

create their own modules (ex. Apple/Intel’s Thunderbolt protocol) without

requiring extremely expensive hardware re-designs. The alternative for this today

is to use slow software support.

3.1.5 Custom SOC
	

 There is a growing demand for custom SOCs. As the use cases have grown and

costs become difficult to manage, semi-conductor corporations are looking to build

SOCs with greater and simpler customizability. ARM has been a leader in this regard;

their success over these last years speaks for itself. ARM offers great performance

using simple designs that are highly customizable.

 44	

 The flexibility that reconfigurable systems offer is considered highly

advantageous and powerful in today’s industry. The reconfigurable nature of these

blocks would allow CPU designers to create a new type of custom SOC that enables

customers to flash their own configurations and modules. In specific, the internal FPGA

could be flashed at any time, allowing for native hardware support for any task that can

fit the logic cells available on the reprogrammable logic.

 Using reconfigurable logic creates a unique opportunity to provide incredible

flexibility while improving system performance. The simplicity and effectiveness of such

a design truly stands out from existing custom IP solutions. The market this would

attract and cost saving advantages that this design would provide to customers would

be a unique and powerful combination.

3.1.6 Power Advantages

 Currently semi-conductor corporations are investing a large amount of resources

into power management. As an industry engineers are approaching this by developing

new power efficient designs. To further those efforts, HWAI would allow design team to

make use of embedded reprogrammable logic to implement power management

strategies using a central logic unit.

 45	

 As an added benefit for the custom SOC use case, customers can define and

flash their own power templates.

 Today, hardware accelerators inside processors are fixed. It is obvious that if

one could decrease the execution time, the overall power consumption decreases.

Therefore, by hardware accelerating portions of applications (such as an edge detection

algorithm within a GPU) engineers can reduce power consumption. Consider the

following general relationships:

 if ↑ performance by ↑ frequency, then power consumption ↑

 if ↑ performance by dedicated hardware, then power consumption ↓

 if ↑ area, then ↑ cost

 if ↑ area, then strong chance ↑ power consumption

3.1.7 Life Time
	

 Given a system with such adaptive properties, as described in this work, design

teams could reconfigure processors that have already been taped-out. This feature

could be used to add dedicated hardware support for a new protocol that might be

needed down the road, or to improve the performance of a task, power options and

other customizations where allowable through the use of HWAI.

 46	

	

	

3.2 MODIFYING THE APPROACH
	

	

There are three parts that are necessary when considering the proposed design

found in this thesis. Each aspect must be calculated and assessed carefully in order to

achieve the objective goals.

 The name of the proposed design work (as described in my patent filings)

is ”Hardware Acceleration Islands” or sometimes abbreviated as HWAI.

 In the past, corporations researching this area have only looked at

involving FPGAs and ASICs through methods that are insufficient for the

consumer market (as discussed in the previous chapter). As an example, simply

stitching these large architectures together through a traditional bus produced

high latency and did not allow for cooperation without significant overhead.

 While this approach was necessary for the past, this will not be the case in

the near future. Previous strategies were required because the technologies

(transistor gate sizes) greatly differed. CPUs and GPUs are continuously leading

the way making use of the latest transistor technology. FPGAs have remained

behind on the advancements being made (due to unique issues that must be

 47	

overcome). However, that gap is shrinking as time passes and this approach

becomes even more alluring.

 The reason for this gap shrink is in the fact that current transistor

technology is reaching its limitations. There are only a few atoms across the gate

of a transistor. By decreasing it any further quantum physics becomes a factor

affecting the behaviour of the transistor. Due to this hurdle and the increased

number of resources being invested in recent years toward FPGAs, FPGA

technologies have nearly closed the gap.

 Therefore the previous strategy will no longer be necessary in order to

avoid compromising. Moreover, the previous strategy contains 1 major flaw.

FPGAs will never take the place of traditional processor architectures, and the

proposed products have far too much overhead in the way they attempt to fuse

the two technologies together. Rather than simply stitching these two

technologies together I propose a far more strategic approach that will harness

the benefits of both architecture individually. GPP systems currently dominate the

market. The process of stitching an FPGA to a GPP costs a lot of money and the

use reprogrammable use cases are limited in a large granularity implementation.

This means high cost, high risk, and low gain. Alternatively, with my proposal,

engineers take existing processor design and analyze the architectures

strategically with a set of rules and strategies to identify locations to embed

 48	

HWAI. This is not a big task from a research and development point of view.

During a design process there are design problems that simply highlight the

benefits of the FPGA architecture. Similarly, most CPUs and GPUs already have

microcontrollers embedded inside to help with regard to specific problems that

would be solved more optimally by a microcontroller.

 In recent years there have been a number of systems developed that contain a

stitched CPU and FPGA architecture. The hardware design corporation leading the way

in this regard is, Xilinx with their Zynq-7000 All Programmable SOC. The All

Programmable SOC such as the Zynq-7000 has its place, however, the work discussed

below targets hardware developers who are looking for innovative solutions within

consumer processors. As they serve to improve the flexibility of modern day processors

through a low cost, low risk approach that would be simple to implement across the

industry. Providing a number of benefits that will be discussed below.

 Previous to the Zynq-7000, Intel released the E600 series to harness the power

of FPGAs, but they also simply adjoined an FPGA to an existing processor. This is not

the strategy being proposing. Rather than trying to reinvent a new architecture, it is clear

that ASICs are the superior architecture for CPU and GPU technologies. However, the

proposed work compliments traditional processor architectures by harnessing the power

of each technology in calculated locations.

 49	

 There are a number of key benefits that this will offer to current semi-conductor

design teams. The following sections are dedicated to the approach and benefits

analysis of HWAI and what it offers.

3.2.1 Hardware Acceleration Islands
	

	

 By embedding HWAI into current ASIC systems (such as CPUs and GPUs),

algorithms and tasks can be offloaded to the DPR enabled programmable logic. The key

for the success of this is to follow the rules closely.

 The programmable logic can be modified using run time reconfiguration and a bit

stream uploaded characterized by the context of the system during run-time without

impacting the performance of the rest of the system. Moreover, due to the granularity of

these embedded reprogrammable modules and the stream processing characteristics of

FPGAs the performance benefits and flexibility is precisely what engineers are looking

to achieve.

 The rules to create system performance improvements are as follows:

1) Identify system blocks that:

a. Contain logic which are infrequently active or infrequent enough that

the a bit stream of comparable logic can be uploaded within

comparable or better timing. These are especially common in

multimedia and power logic.

 50	

b. Implement complex algorithms that do not require mainly

interfaces/variables to be executed and do not have dependencies

and are not atomic in nature.

c. Frequently are modified during custom SOC projects or that would

benefit performance and effective system lifetime through adaptable

logic.

2) Target the smallest division of logic. Remember bit stream sizes increase

exponentially to the size of the design.

3) Determine routing overhead from FPGA to ensure the size will not push chip

outside of specifications.

4) Compare the performance of the existing logic to a model of an optimized

model (ideally developed as a streaming unit).

5) Power saving and cost benefits will be proportional to the decrease in

frequency requirements, saved leakage current, area reduction, the

simplification of the design (design, verification, research and development),

and other factors.

Following this analysis and justification, the development is extremely simplified and the

programmable logic can be embedded accordingly to replace existing blocks.

	

	

 As previously suggested, a particular example where HWAI would be extremely

beneficial would be within media blocks (see section 3.1.4). See the figure below and

compare with Figures 6 and 7, focusing on the “Video Decoder / Encoder” block.

 51	

	
Figure 15 - Multimedia System with Block Diagram [35]

	

An alternative method to the above would be based on a bus system

structure (see figure below). This method would be suitable for high performance

computing. Today corporations such as NVIDIA have modified their processor

designs to optimize for high performance computing systems. This is extremely

expensive and has cause them to take a very reserved approach driven primarily

by the following:

𝐽𝑢𝑠𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 𝑃𝑒𝑟 𝑈𝑛𝑖𝑡 × # 𝑜𝑓 𝑈𝑛𝑖𝑡𝑠 𝑆𝑜𝑙𝑑

− (𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 # 𝑜𝑓 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑈𝑛𝑖𝑡𝑠 𝑆𝑜𝑙𝑑 ∗ 𝑃𝑟𝑜𝑓𝑖𝑡𝑠 𝑃𝑒𝑟 𝑈𝑛𝑖𝑡)

 52	

While this does not account for indirect benefits (especially for marketing), in

general as long as “Justification” is greater than 0 the project is justifiable.

 In a CPU or GPU that follows a bus architecture, adding multiple

Hardware Acceleration Islands (with a calculated number of LUTs) to the bus

could provide dynamic support to the system.

	
Figure 16 - BUS System Structure [36]

 53	

	

3.2.2 Internal Connections
	

	

The physical connections of HWAI to the system must be considered. Depending

on the contextual placement of the programmable logic block and the support the unit

will provide will impact how the connections will be established.

The control signals and data signals will have to remain consistent to duplicate

the functionality. However, the method in which the module reprogrammability can be

implemented will require a set of additional control signals. See the figure below:

Figure 17 - Required Control Signals for HWAI

config_wr: Write enable for configuration bit stream.

config_id: *optional* by implementing cash into the block or nearby to be shared

amongst other blocks (possibly other HWAI units), instead of transmitting the entire bit

stream over a bus the id could be sent and the bit stream could be uploaded far faster.

config_data: The configuration bit stream data.

 54	

out_config_id: This signal can identify to other blocks what the current configuration

inside the block is. This will be helpful for the system to determine the state of the block

but also to determine if something is hung or there is a problem (both pre-silicon and

live system, post-silicon).

out_status: Determine the internal state of the block.

Other control signals may be necessary or used to optimize the block.

In section 2.3.2, mixed chips were discussed as being an existing technology that

conceptually looked at multiple chip designs into one final system. Semiconductor

companies that design CPUs and GPUs already have a set of signals and associated

strategies to incorporating microcontrollers into these processors. While this information

is proprietary it can be expected that this information would be helpful in strategically

designing hardware reprogrammable mixed chips architectures.

3.2.3 Pre-emptive Hardware Adaptation
	

	

The work in this section focuses on is providing simple adoption for the

marketplace in the semiconductor industry and a feasible solution that does not interfere

with current software applications. These are what successful inventions in the

consumer market require to make industry adoption a feasible outcome. This objective

is achieved by combining HWAI and the pre-emptive hardware adaptation strategy.

 55	

The “Hardware Acceleration Islands” was introduced in the previous section.

However, adding hardware functions would be irrelevant if software cannot easily make

use of the features. Ideally the hardware drivers will take care of this such that

developers of operating systems and software applications don’t have to create

separate code. User-friendly hardware is critical to success.

The work found in this section is titled “Pre-emptive Hardware Adaptation”, and is

intended to compliment HWAI. It is helpful to note that although this work was intended

for use in conjunction with HWAI, it can be applied to other hardware acceleration

processes.

By taking advantage of embedded logic in existing processors (CPUs/GPUs),

software drivers can pre-emptively prepare embedded hardware accelerators. FPGAs

are known to shine in highly algorithmic contexts, which are especially common within

GPUs. As computing takes on more complex algorithms a static hardware solution

becomes difficult when trying to keep performance, power, area, and cost in balance.

In the system implementation example, we were forced to make two negative

assumptions on the performance of the hardware accelerators. These assumptions can

be eliminated through this work thus leading to a performance gain of as much as 0.1%

on a system level and 7.5% on a block level. For reference purposes the assumptions

made were as follows:

 56	

1) We will assume worst case scenario such that the DPR enabled hardware

acceleration unit must be reconfigured every single time and that the same

complex task is never invoked after each other.”

2) “The time to reconfigure is an overhead of 3 c.c’s”

However, what if we could remove these or at least minimize these similar to a compiler;

that is what the “pre-emptive adaptive hardware” work accomplishes.

Unfortunately a compiler has the advantage of having all the instructions

available, thereby optimizing previous to run time. In the case of hardware, we do not

have this benefit. Moreover, there is an extremely high performance demand. What we

do have available in hardware is an instruction buffer. Instructions are typically fetched /

placed inside of a ring buffer (as seen in the figure below) before being assigned and

executed.

 57	

Figure 18 - Ring Buffer / Instruction Buffer

In order to achieve this additional acceleration and minimize delay we can do

basic analysis of the packets coming and make simple actions to improve performance.

Through my research I have been able to determine a feasible way of accomplishing

this for existing and upcoming hardware systems. The proposed work here can work in

conjunction with HWAI [2] to provide an even greater performance boost.

 58	

Figure 19 - Pre-emptive Adaptive Hardware

The traditional instruction set (on the left) can easily be modified using hardware

drivers that interface with the hardware and the higher-level applications. The

instruction set with pre-emptive hardware acceleration is seen on the right. Orange

instructions are automatically inserted for pre-emptive preparation of hardware

acceleration units. The implementation strategy behind this will be discussed below.

 59	

Figure 20 - Traditional System Architecture Overview

	

Figure 21 - Programmable SOC (ex Intel’s E600 series)

 60	

Figure 22 - CPU with HWAI

By modifying low-level hardware drivers, engineers can further improve hardware

acceleration by preparing HWAI with the correct bit stream configuration before the task

and data arrives. This abstracts hardware accelerators from programmers, which

traditionally required separate instructions to create the same result. Many existing

applications can take advantage of this feature and there is no need to change existing

programs.

 For example, when developing applications that need to perform graphics

operations, developers make use of APIs such as OpenGL or DirectX to communicate

with a GPU. However, between the hardware layer and these API’s exists low-level

drivers for the GPU. This standardized interface between the drivers and API’s enables

developers to make adjustments without affecting the interfaces between the hardware

 61	

and software. We can determine the exact hardware accelerator required for each call

and pre-emptively load/prepare a hardware accelerator.

An alternative method of solving the objectives of the “Pre-emptive Adaptive

Hardware” would be to introduce hardware overhead. If the system analyzes the

instructions id, it can determine whether or not it would be worthwhile to make use of a

hardware accelerator. Given a set of instructions that require hardware acceleration,

data inside the instruction buffer will be reviewed to determine if this particular

instruction fits into the set of predetermined instructions that can be optimized. These

HWAI bit stream configurations will be available and uploaded to the hardware when the

required conditions are met. As per the implementation, a small microcontroller is

suggested should the software approach be insufficient. The microcontroller, will make

the respective fetches and manage the preparation of the HWAI units. For power

savings efforts, interrupts can activate the microcontroller.

Another note is that while operating system changes could lead to even greater

performance gains, it is not necessary for the implementation and success of this work.

This lines up with the objective goals set for this thesis.

 62	

CHAPTER IV:

	

4.1 Demonstrating Performance
	

4.1.1 Reconfigurable Hardware Benefits

 Accelerating computationally intensive algorithms with custom hardware is

an important area of application and one in which FPGAs really stand out. Many

applications in image processing inherently have high parallelism demands.

FPGAs have shown very high performance in spite of their low operating

frequency by fully extracting the parallelism. This can be achieved through the

featured adaptive procedures that were presented earlier. By operating at lower

clock frequencies but increasing throughput, a system can operate with

decreased power consumption.

 When using an ASIC, which as the name indicates is application specific,

to take on multiple applications we run into complexities and overheads that can

impact the system design negatively. In this case we start to see technologies

such as FPGAs really stand out.

 With the power of reconfigurable logic, the system is able to dynamically

modify/re-configure its’ hardware to meet the needs of the system for the task at

hand. This removes the hardware overhead that is required because of the static

nature of ASICs. The hardware savings can improve the block latency and

 63	

power consumption. More importantly, the performance increase will improve

execution time thus allowing for lower operating frequencies. This translates into

even greater power saving opportunities.

 To demonstrate some of the benefits, see the following example:

𝑌 = [𝑎! + 𝑏!
!
+ (𝑐! + 𝑑!)

!

!

!!!

]

 In a traditional processor we would require approximately 14 instructions to

complete the task above. Each instruction will have an fetch, decode, execute,

memory, and write back stage. Moreover, the stages may have hazards that further

delay the task. Assuming each instruction took 1 c.c and each multiply took 32 c.c’s,

the execution time per loop would be 76 c.c’s. We can use booth multipliers to

accelerate the task. Assuming 2 c.c’s per multiply, we can bring the execution time to 16

c.c’s.

 However, using a DPR enabled hardware acceleration island (HWA), we could

create a dedicated hardware pipeline (as seen in the figure bellow) during run-time. We

can approximate the run time as follows:

𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 5 + 𝑛 − 1 ∗ 2𝑐. 𝑐

 64	

See Figure 23 below to understand what the dedicated hardware pipeline would

look like.

Figure 23 - Stream Processing Unit

4.1.2 Improved Application Performance
	

	

 Traditional hardware accelerators are fixed components that are task/application

specific. They consume minimal power, area, and offer superior performance. However,

due to their fixed nature they cannot adapt to processor contexts, this is a key factor

within the context of this thesis. Due to hardcoded nature of processors, it is challenging

to satisfy the dynamic feature requirements of system developers in post-silicon. While

 65	

ASIC hardware acceleration units have their place and are not to be replaced, there are

contexts where a reconfigurable hardware acceleration unit would be of greater use. To

provide an example for which such context would be beneficial, we can consider the

following scenario:

(1) A process consists of three hundred instructions including 10 core complex tasks

(2) There are 3 hardware platforms:

a. A CPU without any hardware acceleration units

b. A CPU with 4 ASIC hardware acceleration units

c. A CPU with 3 ASIC hardware acceleration units and a single reconfigurable

hardware acceleration unit

(3) Assume a simple instruction takes 1 clock cycle (or c.c.)

(4) Assume the core complex tasks each take 25 times longer than a typical instruction

in the program (ie. 25 c.c.).

(5) If there are 10 complex tasks, let tasks 1-7 occur three times as often as tasks 8-10.

 Therefore it would make sense that in our second hardware model to target our

hardware accelerators toward the first 7 tasks. However, we are only able to improve 4

due the resource limitations. The speedup factor is 5 times (meaning the task now only

takes 5 c.c’s). In contrast, with the reconfigurable module we are able to target the

remaining tasks. The time to reconfigure is an overhead of 3 c.c’s and the speedup

factor is slightly less such that the task takes 10 c.c’s. In the first system, there is no

 66	

speedup however, the system will require less area. That means lower costs. And while

this system would also save power without performance constraints, in order to compete

with the performance of the 2nd and 3rd hardware platforms the frequency would need

to be much higher resulting in far greater power consumption. From a performance

perspective assuming tasks 8-10 occurred once within the 300 instructions and each of

the 300 instructions, aside from the 24 tasks (7 complex tasks * 3 occurrences each + 3

complex tasks * 1 occurrence each), consume 1 c.c., we see the following performance:

System 1 = (300 instructions - 24 complex tasks) * 1 c.c + 24 complex tasks * 25 c.c.

 = 276 c.c. + 600 c.c.

 = 876 c.c.

System 2 = (300 instructions - 24 complex tasks) * 1 c.c

 + 12 accelerated complex tasks * 5 c.c

 + 12 complex tasks * 25 c.c.

 = 276 c.c. + 60 c.c. + 300 c.c.

 = 636 c.c.

We will assume worst-case scenario such that the DPR enabled hardware acceleration

unit must be reconfigured every single time and that the same complex task is never

invoked after each other.

 67	

System 3 = (300 instructions - 24 complex tasks) * 1 c.c

 + 9 accelerated complex tasks * 5 c.c

 + 12 dpr accelerated complex tasks * 3 c.c. to upload bit stream

 + 12 dpr accelerated complex tasks * 10 c.c.

 = 276 c.c. + 45 c.c. + 36 c.c. + 120 c.c.

 = 477 c.c.

Performance improvement:

System 2 —> System 1

 = 876 / 636

 = 1.377

System 3 —> System 1

 = 876 / 477

 = 1.836

System 3 —> System 2

 = 636 / 477

 = 1.333

This is a significant improvement in this context that System 3 was able to achieve.

System 3 is an example of a system enabled with my proposed implementation. The

work found in [2] and [3], enables this to be achieved and as shown in the following is

an easy interface for both hardware and software developers to easily integrate this into

 68	

existing software without any change aside from the hardware driver and into upcoming

hardware using the proposed strategy found here. However, this performance increase

is not always true for every case, let us change one variable. Let us make the number of

instruction 30,000 instead of 300.

System 1 = (30,000 instructions - 24 cmplx tasks) * 1 c.c + 24 cmplx tasks * 25 c.c.

 = 29,976 c.c. + 600 c.c.

 = 30,576 c.c.

System 2 = (30,000 instructions - 24 complex tasks) * 1 c.c

 + 12 accelerated complex tasks * 5 c.c

 + 12 complex tasks * 25 c.c.

 = 29,976 c.c. + 60 c.c. + 300 c.c.

 = 30,336 c.c.

We will assume the worst-case scenario such that the DPR enabled hardware

acceleration unit must be reconfigured every single time and that the same complex

task is never invoked after each other.

System 3 = (30,000 instructions - 24 complex tasks) * 1 c.c

 + 9 accelerated complex tasks * 5 c.c

 + 12 dpr accelerated complex tasks * 3 c.c. to upload bit stream

 69	

 + 12 dpr accelerated complex tasks * 10 c.c.

 = 29,976 c.c. + 45 c.c. + 36 c.c. + 120 c.c.

 = 30,177 c.c.

Performance improvement:

System 2 —> System 1

 = 30,576 / 30,336

 = 1.00791139241

System 3 —> System 1

 = 30,576 / 30,177

 = 1.01322199026

System 3 —> System 2

 = 30,336 / 30,177

 = 1.00526891341

In this case what we see is far less of a performance increase factor. To make a

conclusion as to the correct system one must know what the constraints are or what one

would choose to optimize for (area, power, performance, etc.).

 Finally, consider this assume the area overhead of the CPU is 100 AU and each

accelerator requires an additional 20 AU, in this case the area overhead is quite large

for including these accelerators. However, if the CPU overhead is 10,000 then 20 AU

 70	

looks far more appealing. As a successful engineer all variables must be considered in

order to build the appropriate system.

 As depicted in the example above, in a system that takes on such a variety of

complex algorithms it is impossible to hardware accelerate every single one using old

design strategies. This can be solved using DPR enabled embedded logic.

 The Field programmable logic blocks are in-system programmable by nature

(unlike traditional accelerator logic components). This characteristic is not apparent in

existing architectures. The HWAI design solves this problem with a superior architecture

design. This flexibility can have various benefits during different stages of the IC lifetime

including, smaller die size, less power, more versatility.

4.1.3 Modern Design Technique
	

	

As previously discussed, there a number of design and development tools being

used in the industry today. The code found in the appendix contains the most modern

languages and tools, including SystemVerilog and UVM. The modules developed can

be implemented on an FPGA device or turned into an ASIC design. The compiler and

tools will translate the design according to the requirements. This is one of the reasons

that semiconductor companies can adopt HWAI without intensive research and

development work.

 71	

The work also demonstrates verification principles that can simulate the full

functionality of the modules. The test bench implements “constrained random

verification” and provides easy support for the development of new tests using the

Universal Verification Methodology.

	

	

4.2 Automated System Adaptation Capabilities
	

	 	

While adaptive hardware is a foreign concept to many hardware engineers, it is

well known amongst those acquainted with FPGA technologies. As reconfigurable

embedded technologies continue to gain momentum in the industry, the academic world

has taken a number of extra steps in innovating even further. We introduced the

concept of DPR and how Xilinx FPGAs even allow for run time hardware re-

configuration. What cutting edge research and development teams (both in academia

and industry) are currently looking at are self-adapting systems.

 The demand for this exists in highly constrained systems. Typically constraints

within regular consumer products are more targets and goals for marketing purposes.

However, when we begin to introduce more significant constraints and advanced

systems we require methodologies that are up to the challenges set by these leading

technological needs.

 72	

The concept of self-adapting systems has empowered engineers to overcome

many obstacles that technology has faced for years. Self-adapting systems expand the

possibilities for which engineers can now successfully design.

 Referring back to section 2.1.4 and 4.1.2, one is able to derive two categories of

self-adapting systems: “Adaptive Procedures” (System 2) and “Adaptive Links &

Procedures” (System 3). Within a processor system which has HWAI, as per the given

rule sets and strategies proposed in previous chapters, such a system is primarily

procedurally adaptive. In contrast, an FPGA is capable of link and procedure adaptation.

4.2.1 Manually Calculated Optimization Strategy

 To demonstrate applications for self-adaptive systems it is important to lay a

foundation of the algorithms and theory behind this methodology. To demonstrate the

theorems a low pass FIR (Finite Impulse Response) Filter will be designed.

 The FIR filter being designed was first invented eight years ago. This first

implementation used 9 tap coefficients. This filter was designed for audio applications to

filter out any frequencies above 20 kHz. Due to the structure of FIR filters, they can be

modified to perform other filter functions simply by changing the coefficients. This ability

to easily be modified is a huge advantage to system designers. Through the use of the

design methodology presented in [37], the filter will be optimized to minimize area while

meeting the performance and power constraints.

 73	

 It is important to note that the specifications of the FPGA that this design would

be implemented on as this will affect the resources available, potential constraints, and

how the system will operate (for example the number of inputs on multiplexers inside

the FPGA). Therefore, for the sake of this example we will consider the design to be

implemented using the Xilinx Spartan 3E FPGA.

4.2.2 Specifications of System

 To design the FIR filter, the signal processing toolbox was used. The FDA tool

was given the following parameters: (1) Order of 8, (2) Sampling Frequency of 96000

Hz, and (3) Cut-off Frequency of 20,000 Hz. With these parameters a low pass filter was

generated. The simulations yielded the following results: 8th order filter that was

separated into four 2nd order blocks. The equation of the blocks is listed below in table

6. From the table below it is clear that there are 11 multiplications, 8 Additions and 8

Memory Location. Making use of the results from the simulation of that filter, we can

obtain a more detailed set of specifications for our design. Since the cost of memory is

significantly less than the cost of the functional units, the system transfer function was

expanded and the delay weights from this expansion are listed in Table 7. This reduced

the cost of the system to 8 Multiplications, 9 Additions and 9 storage locations

 74	

Block	 Number	 Block	 Transfer	 Function	

1	 𝑧
!
− 28.83𝑧 + 97.99

𝑧!
⋅ 0.0199	

2	 𝑧
!
− 0.294𝑧 + 0.01

𝑧!
	

3	 0.25𝑧
!
− 0.5𝑧 + 0.85

𝑧!
	

4	 0.25𝑧
!
− 0.5𝑧 + 0.85

𝑧!
	

Table 6 - 2nd Order Equation of Filter Blocks

Table 7 - Transfer function Expansion Results

 To evaluate the effectiveness of each variant it is necessary to evaluate the

performance of the system using the following benchmarks: (1) Total Execution Time,

(2) Area consumption and (3) Power consumption. To get some kind of figure of merit,

the execution time is extracted after the system generates a schedule for the

operations. For ease of reading the operations are assigned a variable that will be

placed in the table below. Using Figure 24 below, the table was developed to provide a

list of the operations and their assigned variable identifiers. It is important to note that

Delay	 Weight	

z0	 0.1244	

z-‐1	 -‐3.125	

z-‐-‐2	 -‐0.5	

z-‐3	 28.12	

z-‐4	 50.74	

z-‐5	 28.12	

z-‐6	 -‐0.5017	

z-‐7	 -‐3.131	

z-‐8	 0.1219	

 75	

the system does not employ any advanced pipelining mechanism so the system will

only be able to perform one operation per functional unit every twelve clock cycles (as

per the performance limitations of the platform being considered).

Operation	 𝑅0 ⋅ 𝑎!
	 𝑅1 ⋅ 𝑎!	 𝑅2 ⋅ 𝑎!	 𝑅3 ⋅ 𝑎!	 𝑅4 ⋅ 𝑎!	 𝑅5 ⋅ 𝑎!	 𝑅6 ⋅ 𝑎!	 𝑅7 ⋅ 𝑎!	 𝑅8

⋅ 𝑎!	

Variable	 	 𝑂𝑃!	 𝑂𝑃!	 𝑂𝑃!	 𝑂𝑃!	 𝑂𝑃!	 𝑂𝑃!	 𝑂𝑃!	 𝑂𝑃!	 𝑂𝑃!	

Operation	 𝑂𝑃!

+ 𝑂𝑃!
	

𝑂𝑃!

+ 𝑂𝑃!	

𝑂𝑃!

+ 𝑂𝑃!	

𝑂𝑃!

+ 𝑂𝑃!	

𝑂𝑃!

+ 𝑂𝑃!"	

𝑂𝑃!!

+ 𝑂𝑃!"	

𝑂𝑃!"

+ 𝑂𝑃!"	

𝑂𝑃!"

+ 𝑂𝑃!"	

Variable	 	 𝑂𝑃!"	 𝑂𝑃!!	 𝑂𝑃!"	 𝑂𝑃!"	 𝑂𝑃!"	 𝑂𝑃!"	 𝑂𝑃!"	 𝑂𝑃!"	

Table 8 - Operation Variable Assignment

 Modelling the Area consumption of the system is a rather simple process. Since

the number of each resource is already know, the equation is presented below, equation

1. The largest drawback of this model is that the system does not account for the area

consumption of the interconnects. From this equation it is rather simple process to

define the power. This is due to the fact that the power is linearly proportional to the

CLB cost; the relationship is defined in equation (2) below. Please note that the power

consumption is dependant of the clock frequency where the Area is multiplied by 9.6 to

10.4 µW.

𝑨 = # 𝒐𝒇 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓𝒔 ∗ 𝟏𝟎𝟐 + # 𝒐𝒇 𝑨𝒅𝒅𝒆𝒓𝒔 ∗ 𝟏𝟏𝟏	 	 	 (1)	

	

𝑷 = 𝑨 𝑹𝒊 ∗ 𝑷(𝒇𝒄𝒍𝒌)	 	 	 	 	 	 (2)	
	

	 	

 76	

4.2.3 System Sequencing Graph

Prior to the optimization process of our design, the systems’ resource constraints

must be determined. To obtain these specifications, an unconstrained Sequencing

graph was generated. From the SG (sequencing graph) observed in the figure below, it

is clear that the maximum number of adders (before total redundancy) that will affect the

performance of the system is 4. Since the left most operation can be performed in T1 or

T2, the maximum number of necessary multipliers is 8. By further analyzing the figure, it

is clear that two multiplications are necessary for every initial addiction so the resource

constrains should maintain a 2:1 ration between multiplier and adder resources,

respectively.

Figure 24 - Unconstrained Sequencing Graph

 77	

Before the resource constraints can be finalized it is also important to observe

the sequencing graph for minimal resource usage. This sequencing graph is presented

in Figure 25 below. From the figure, it is clear that the system can operate with 1

multiplier and 1 adder and no further restrictions need to be placed. Depending on the

operations and pipeline structure, the typical rule of thumb is the fewer resources the

lower the performance.

Figure 25 - Minimum Resource Sequencing Graph

 78	

4.2.4 Evaluating System Options

Since our goal is to minimize our area consumption, so long as our design meets the

performance, power, and resource constraints the variant will be determined. The final

resource that needs to be calculated is the clock frequency. From the sampling rate it is

clear that the system must perform all relevant operation within 10.4 microseconds

(based on the sampling rate). So a frequency of 10 MHz will be used (10 times the

sampling rate), to provide some flexibility in the optimization 15 MHz will be available

(15 times the sampling rate). A list of the resource options in this optimization are

provided in the table below.

R1:	 Adder	 R2:	 Multiplier	 R3:	 Clk	 Frequency	
R1.1	 à	 1	 Adder	 R2.1	 à	 1	 Multipliers	 R3.1	 à	 10	 MHz	

R1.2	 à	 2	 Adders	 R2.2	 à	 2	 Multipliers	 R3.2	 à	 15	 MHz	 	

R1.3	 à	 3	 Adders	 R2.3	 à	 4	 Multipliers	 	

R1.4	 à	 4	 Adders	 R2.4	 à	 6	 Multipliers	

	 R2.5	 à	 8	 Multipliers	

Table 9 - Resource Options

	

Before the optimization process can commence area, power estimations need to

be performed. From [38] the relevant specification of floating point adders and

multipliers are extracted. Tables 10 and Tables 11 present these findings. The costs

that are provided in the above table however are in slices. Using [39] it is clear that

every 4 slices equals one CLB. Using this conversion the cost of a multiplier is 102

CLBs and the cost of the adder is 111 CLBs. So far the only remaining performance

benchmark is the power dissipation. Using source [40] the CLB cost is estimated at 40

µW at 200 MHz. To approximate the power consumption of the system the following

 79	

assumptions are made: (1) 20% of power dissipation is static, and (2) the dynamic

power increases linearly with the clock frequency. Through these assumptions the

power can be approximated. This yields a 9.6 µW power consumption per CLB at a

frequency of 10 MHz and 10.4 µW at a frequency of 15 MHz.

Multiplier	 Cost	

Slices	 408	

Look-‐Up-‐Tables	 646	

Flip-‐Flops	 703	

Latency	 6	 C.C.	

Table 10 - Multiplier Costs

Adder	 Cost	

Slices	 441	

Look-‐Up-‐Tables	 600	

Flip-‐Flops	 590	

Latency	 12	 C.C.	

Table 11 - Adder Costs

 The final task that needs to be performed prior to defining the optimization

parameters and evaluations are the system constraints. It was decided that the system

would accept a standard 32 bit floating point number (24 bit fraction and 8 bit

exponential) for its input and all cost assumptions are based on this value. As for the

system constraints the total execution time must be below the sample time and is

restricted to a maximum delay of 10 µs. The power consumption is restricted to 8 mW

and the optimization’s objective is to minimize the area of the filter. These parameters

are summarized in the table below.

 80	

Restriction	 Condition	

Execution	 Time	 𝑇!"! ≤ 10𝜇𝑆	

Power	 𝑃 ≤ 8 𝑚𝑊	

Area	 𝑚𝑖𝑛 𝐴 	

Table 12 - System Constraints

	

4.2.5 Mini-Max Variant
	 	

The optimization process begins with the evaluation of the design at its Minimum

and maximum points. This is necessary to understand the boundaries of the system.

This provides the opportunity of modifying the specifications due to unrealistic limits and

lays the foundation for the critical variance analysis.

4.2.6 Min Resource Analysis
	 	

R1.1àR2.1àR3.1	

	

This analysis performs a check to see the system behaviour with minimal

resources, this implies that there is one adder, one multiplier and the clock frequency is

operating at 10 MHz. The table below demonstrates the schedule of the system. From

the schedule it is clear that the system can perform the necessary function within 10

clock cycles. The calculations for this variant are demonstrated below.

Table 13 - Minimum Resource Schedule

X	 Op9	 Op8	 Op7	 Op6	 Op5	 Op4	 Op93	 Op2	 Op1	 NOP	

+	 NOP	 NOP	 Op13	 Op12	 Op11	 Op10	 Op15	 Op14	 Op16	 Op17	

 81	

Calculations:

𝑻 = 𝟏𝟎 ∗
𝟏𝟐 𝒄. 𝒄.

𝒇𝒄𝒍𝒌
= 𝟏𝟐𝟎 𝒄. 𝒄.∗

𝟏

𝟏𝟎𝟎 𝑴𝑯𝒛
= 𝟏𝟐 𝝁𝒔	

	

𝑨 = # 𝒐𝒇 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓𝒔 ∗ 𝟏𝟎𝟐+ # 𝒐𝒇 𝑨𝒅𝒅𝒆𝒓𝒔 ∗ 𝟏𝟏𝟏 = 𝟐𝟏𝟑	

	

𝑷 = 𝟐𝟏𝟑 ∗ 𝟗.𝟔𝝁𝑾 = 𝟐 𝒎𝑾	

	

4.2.7 Max Resource Analysis
	

R1.4àR2.5àR3.2	

	

This analysis performs a check to see the system behaviour with maximum

resources, this means there are 8 multipliers, 4 adders and the running clock frequency

is at 15 MHz. The table below presents the schedule for this resource schedule. The

associated calculations are presented below in the calculations section.

X	 Op9	 Op1	 NOP	 NOP	 NOP	

X	 Op8	 NOP	 NOP	 NOP	 NOP	

X	 Op7	 NOP	 NOP	 NOP	 NOP	

X	 Op6	 NOP	 NOP	 NOP	 NOP	

X	 Op5	 NOP	 NOP	 NOP	 NOP	

X	 Op4	 NOP	 NOP	 NOP	 NOP	

X	 Op3	 NOP	 NOP	 NOP	 NOP	

X	 Op2	 NOP	 NOP	 NOP	 NOP	

+	 NOP	 Op13	 Op15	 Op16	 Op17	

+	 NOP	 Op12	 Op14	 NOP	 NOP	

+	 NOP	 Op11	 NOP	 NOP	 NOP	

+	 NOP	 Op10	 NOP	 NOP	 NOP	

Table 14 - Maximum Resource Schedule

	

Calculations:

𝑻 = 𝟓 ∗
𝟏𝟐 𝒄. 𝒄.

𝒇𝒄𝒍𝒌
= 𝟒	

	

𝑨 = 𝟖 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟏𝟐𝟔𝟎	

	

𝑷 = 𝟏𝟐𝟔𝟎 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟏𝟑.𝟏 𝒎𝑾	

	

 82	

4.2.8 Critical Variant

This section presents the calculations of the critical variants for all three

resources. This step is necessary for determining the ACG placement. This step would

help minimize any discontinuity between the ACG variants and provide a better

optimization result. From the calculations that are presented in the following section it is

possible to determine the order of the ACG for each performance check. Using the Time

critical variance it is clear the resource order of the system is the following R3-R1-R2,

where the resources are presented in descending order. The power ACG order is R2-

R1-R3, this order is also applicable to the Area ACG.

4.2.9 Critical Variant, Adder
	

R1.1àR2.5àR3.2	

	

To perform a critical variant check this system set the Adder resource to it’s

minimum value of 1 adder. Afterwards the operation for this system where schedule and

these results are presented in Table 15. The resulting calculations for this variant are

presented in the performance calculation section. From the calculated values the critical

variance of the system can be calculated using the performance calculations from the

maximum resource performance calculations. These results are presented in the critical

variance calculation section.

 83	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	

X	 Op9	 Op1	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

X	 Op8	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

X	 Op7	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

X	 Op6	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

X	 Op5	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

X	 Op4	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

X	 Op3	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

X	 Op2	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

+	 NOP	 Op13	 Op12	 Op11	 Op10	 Op15	 Op14	 Op16	 Op17	

Table 15 - Adder Critical Variant Schedule

Performance Calculation:

𝑻 = 𝟗 ∗
𝟏𝟐 𝒄. 𝒄.

𝟏𝟓 ∗ 𝟏𝟎𝟏𝟔
= 𝟕.𝟐µμ𝑺	

	

𝑨 = 𝟖 ∗ 𝟏𝟎𝟐+ 𝟏 ∗ 𝟏𝟏𝟏 = 𝟗𝟐𝟕	

	

𝑷 = 𝟗𝟐𝟕 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟗.𝟔𝟒 𝒎𝑾	

	

Critical Variance Calculation:
	

𝑲𝑻 =
𝟒µμ𝑺− 𝟕.𝟐µμ𝑺

𝟒− 𝟏
= −𝟏.𝟎𝟔µμ𝑺	

	

𝑲𝑨 =
𝟏𝟐𝟔𝟎− 𝟗𝟐𝟕

𝟒− 𝟏
= 𝟏𝟏𝟏 𝑪𝑳𝑩𝒔	

	

𝑲𝑷 =
𝟏𝟑.𝟏𝒎𝑾− 𝟗.𝟔𝟒𝒎𝑾

𝟒− 𝟏
= 𝟏.𝟏𝟓𝒎𝑾	

	

 84	

4.2.10 Critical Variant, Multiplier
	

R1.4àR2.1àR3.2	

	

The Multiplier resource is set to its minimum value of 1 multiplier this allows the

system to perform a critical variance check on this resource. Afterwards the operation

for this system were scheduled and these results are presented in Table 16. The

calculations for this variant are presented in the performance calculation section. From

the performance calculations the critical variance of the system can be determined. The

results of the critical variance calculations are presented in the critical variance

calculation section.

	
	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

X	 Op9	 Op8	 Op7	 Op6	 Op5	 Op4	 Op3	 Op2	 Op1	 NOP	

+	 NOP	 NOP	 Op13	 Op12	 Op11	 Op10	 Op15	 Op14	 Op16	 Op17	

+	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

+	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

+	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	 NOP	

Table 16 - Multiplier Critical Variant Schedule

Performance Calculation:

𝑻 = 𝟏𝟎 ∗
𝟏𝟐 𝒄. 𝒄.

𝟏𝟓 𝑴𝑯𝒛
= 𝟖µμ𝑺	

𝑨 = 𝟏 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟓𝟒𝟔 𝑪𝑳𝑩𝒔	

𝑷 = 𝟓𝟒𝟔 ∗ 𝟏𝟎.𝟐𝝁𝑾 = 𝟓.𝟓𝟕𝒎𝑾	

	

Critical Variance Calculation:
	

𝑲𝑻 =
𝟒µμ𝑺− 𝟖µμ𝑺

𝟓− 𝟏
= −𝟏µμ𝑺	

𝑲𝑨 =
𝟏𝟐𝟔𝟎− 𝟓𝟒𝟔

𝟓− 𝟏
= 𝟏𝟕𝟖.𝟓 𝑪𝑳𝑩𝒔	

𝑲𝑷 =
𝟏𝟑.𝟏𝒎𝑾− 𝟓.𝟓𝟕𝒎𝑾

𝟓− 𝟏
= 𝟏.𝟖𝟖 𝒎𝑾	

 85	

4.2.11 Critical Variant, Clk
	

R1.4àR2.5àR3.1	

The Clock resource is set to its minimum value of 10 Mhz. The schedule of the

operation for this system is presented in Table 17. The calculations for this variant are

presented in the performance calculation section. From the performance calculations

the critical variance of the system can be determined. The results of the critical variance

calculations are presented in the critical variance calculation section.

	

	

	

	

	

	

	

	

	

Table 17 - Clock Critical Variant Schedule

Performance Calculation:

𝑻 = 𝟓 ∗
𝟏𝟐 𝒄. 𝒄.

𝟏𝟎 𝑴𝑯𝒛
= 𝟔µμ𝑺	

	

𝑨 = 𝟖 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟓𝟒𝟔 𝑪𝑳𝑩𝒔	

	

𝑷 = 𝟏𝟐𝟔𝟎 ∗ 𝟗.𝟔𝝁𝑾 = 𝟏𝟐.𝟏 𝒎𝑾	

	

	 1	 2	 3	 4	 5	

X	 Op9	 Op1	 NOP	 NOP	 NOP	

+	 Op8	 NOP	 NOP	 NOP	 NOP	

+	 Op7	 NOP	 NOP	 NOP	 NOP	

+	 Op6	 NOP	 NOP	 NOP	 NOP	

+	 Op5	 NOP	 NOP	 NOP	 NOP	

+	 Op4	 NOP	 NOP	 NOP	 NOP	

+	 Op3	 NOP	 NOP	 NOP	 NOP	

+	 Op2	 NOP	 NOP	 NOP	 NOP	

+	 NOP	 Op13	 Op15	 Op16	 Op17	

+	 NOP	 Op12	 Op14	 NOP	 NOP	

+	 NOP	 Op11	 NOP	 NOP	 NOP	

+	 NOP	 Op10	 NOP	 NOP	 NOP	

 86	

Critical Variance Calculation:

𝑲𝑻 =
𝟒µμ𝑺− 𝟔µμ𝑺

𝟐− 𝟏
= −𝟏µμ𝑺	

	

𝑲𝑨 =
𝟏𝟐𝟔𝟎− 𝟏𝟐𝟔𝟎

𝟐− 𝟏
= 𝟎 𝑪𝑳𝑩𝒔	

	

𝑲𝑷 =
𝟏𝟑.𝟏𝒎𝑾𝟏− 𝟏𝟐.𝟏𝒎𝑾

𝟐− 𝟏
= 𝟏.𝟏 𝒎𝑾	

4.2.12 Execution Time Boundary

Before a search of the design space can be performed it is necessary to

determine the boundaries that the system should not explore. To perform this check a

dichotomy that is similar to a binary search is used by constantly dividing the design

space in half and performing an execution time check on the variant. Figure 26 presents

the ACG for the execution time. The calculations section presents the calculations of the

search, in the interest of space the schedules are not provided. The syntax tree section

provides a figure with the check that should be performed on each variant based on the

resources to determine whether or not it is an acceptable design.

 87	

Figure 26 - ACG of Execution Time

Calculations:
	

Var	 #20	 -‐	 R3.1àR1.4àR2.5	

𝑻 = 𝟓 ∗
𝟏𝟐 𝒄. 𝒄.

𝟏𝟎 𝑴𝑯𝒛
= 𝟔µμ𝑺	

	

Var	 #10	 -‐	 R3.1àR1.2àR2.5	

𝑻 = 𝟔 ∗
𝟏𝟐 𝒄. 𝒄.

𝟏𝟎 𝑴𝑯𝒛
= 𝟕.𝟐µμ𝑺	

	

Var	 #5	 -‐	 R3.1àR1.1àR2.5	

𝑻 = 𝟗 ∗
𝟏𝟐 𝒄. 𝒄.

𝟏𝟎 𝑴𝑯𝒛
= 𝟏𝟎.𝟖µμ𝑺	

	

Var	 #7	 -‐	 R3.1àR1.2àR2.2	

𝑻 = 𝟕 ∗
𝟏𝟐 𝒄. 𝒄.

𝟏𝟎 𝑴𝑯𝒛
= 𝟖.𝟒µμ𝑺	

	

Var	 #6	 -‐	 R3.1àR1.2àR2.1	

𝑻 = 𝟏𝟎 ∗
𝟏𝟐 𝒄. 𝒄.

𝟏𝟎 𝑴𝑯𝒛
= 𝟏𝟐µμ𝑺	

 88	

Syntax Tree:

	
Figure 27 - Syntax Tree of Execution Time

	

4.2.13 Power Boundary

The calculations performed in this section are similar to the ones performed

above. However since the power is dependent on the area of the system, both

calculations are performed and provided in the calculations sections. Similarly the

syntax tree of the power boundary is provided in the Syntax Tree section.

	

Figure 28 - Power ACG

 89	

Calculations:
	

Var	 #24	 –	 R2.3àR1.4àR3.2	

𝑨 = 𝟒 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟖𝟓𝟐 𝑪𝑳𝑩𝒔	

𝑷 = 𝟖𝟓𝟐 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟖.𝟖𝟔 𝒎𝑾	

	

Var	 #32	 –	 R2.4àR1.4àR3.2	

𝑨 = 𝟔 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟏𝟎𝟓𝟔 𝑪𝑳𝑩𝒔	

𝑷 = 𝟏𝟎𝟓𝟔 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟏𝟎.𝟗𝟖 𝒎𝑾	

	

Var	 #28	 –	 R2.4àR1.2àR3.2	

𝑨 = 𝟔 ∗ 𝟏𝟎𝟐+ 𝟐 ∗ 𝟏𝟏𝟏 = 𝟖𝟑𝟒 𝑪𝑳𝑩𝒔	

𝑷 = 𝟖𝟑𝟒 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟖.𝟔𝟕 𝒎𝑾	

	

Var	 #30	 –	 R2.4àR1.3àR3.2	

𝑨 = 𝟔 ∗ 𝟏𝟎𝟐+ 𝟑 ∗ 𝟏𝟏𝟏 = 𝟗𝟒𝟓 𝑪𝑳𝑩𝒔	

𝑷 = 𝟗𝟒𝟓 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟗.𝟖𝟑 𝒎𝑾	

	

Var	 #31	 –	 R2.4àR1.4àR3.1	

𝑨 = 𝟔 ∗ 𝟏𝟎𝟐+ 𝟒 ∗ 𝟏𝟏𝟏 = 𝟏𝟎𝟓𝟔 𝑪𝑳𝑩𝒔	

𝑷 = 𝟏𝟎𝟓𝟔 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟏𝟎.𝟒𝟒 𝒎𝑾	

 90	

Syntax Tree:
	

	

Figure 29 - Power Boundary Syntax Tree

	

4.2.14 Area Optimization

This step performs the optimization of the system. To perform the optimization

the ACG is arranged in such a way that the left most variant (Figure 30) is the minimal

area that could be used, and the area should increase as the variant moves to the right.

The calculations are provided in the calculations section.

	

	

	

	

	

	

	

	

	

	

 91	

	

	

Figure 30 - Area ACG

Calculations:
	

Var	 #1	 –	 R2.1àR1.1àR3.1	

FAILED EXECUTION TIME SYNTAX CHECK
	

Var	 #2	 –	 R2.1àR1.1àR3.2	

PASSED ALL SYNTAX CHECKS PASS

𝑻 = 𝟏𝟎 ∗
𝟏𝟐 𝒄. 𝒄.

𝟏𝟓 𝑴𝑯𝒛
= 𝟖µμ𝑺	

	

𝑨 = 𝟏 ∗ 𝟏𝟎𝟐+ 𝟏 ∗ 𝟏𝟏𝟏 = 𝟐𝟏𝟑 𝑪𝑳𝑩𝒔	

	

𝑷 = 𝟐𝟏𝟑 ∗ 𝟏𝟎.𝟒𝝁𝑾 = 𝟐.𝟐 𝒎𝑾	

	

	

4.2.15 Resource Binding

From the above it is clear that the optimal variant is variant 2 from the area ACG.

This means that only one multiplier and one adder are necessary to perform the

necessary operation running at 15 MHz. The bound sequencing graph of the system is

provided in Figure 31. Note that RI is an intermediate memory stage that is necessary

so the multiplication performed during T0 and T1 is not lost. The schedule of this system

 92	

is provided in the table below. It is also important to note that the Difference between T0

and T1 is 12 clock cycles at 15 MHz.

	
Figure 31 - Bound Sequencing Graph

	

	
Table 18 - Schedule of Optimal Variant

X	 Op9	 Op8	 Op7	 Op6	 Op5	 Op4	 Op93	 Op2	 Op1	 NOP	

+	 NOP	 NOP	 Op13	 Op12	 Op11	 Op10	 Op15	 Op14	 Op16	 Op17	

 93	

4.2.16 Multiplexing Scheme

After the resource binding is determined the multiplexing scheme for the

resources can be generated. This stage is important because it determines the data

path of the system and ensures that the optimal resource usage. The multiplexing

scheme of the Adder can be observed in Table 19, while the multipliers multiplexing

scheme can be observed in Table 20. From the tables mentioned above the mux plans

were generated. Figure 32 presents the mux plan of the adder while Figure 33 presents

the mux plan of the multiplier.

	
Adder1	 Op	 In1	 In2	 Output	

T0	 NOP	 -‐	 -‐	 -‐	

T1	 NOP	 -‐	 -‐	 -‐	

T2	 NOP	 MUL1	 RI1	 -‐	

T3	 +	 MUL1	 Adder1	 Adder1	

T4	 +	 MUL1	 Adder1	 Adder1	

T5	 +	 MUL1	 Adder1	 Adder1	

T6	 +	 MUL1	 Adder1	 Adder1	

T7	 +	 MUL1	 Adder1	 Adder1	

T8	 +	 MUL1	 Adder1	 Adder1	

T9	 +	 MUL1	 Adder1	 Adder1	

T10	 +	 -‐	 -‐	 Y	

	
Table 19 - Adder Multiplexing Scheme

 94	

Multiplier1	 Op	 In1	 In2	 Output	

T0	 NOP	 R8	 A9	 -‐	

T1	 X	 R7	 A8	 RI	

T2	 X	 R6	 A7	 Adder1	

T3	 X	 R5	 A6	 Adder1	

T4	 X	 R4	 A5	 Adder1	

T5	 X	 R3	 A4	 Adder1	

T6	 X	 R2	 A3	 Adder1	

T7	 X	 R1	 A2	 Adder1	

T8	 X	 R0	 A1	 Adder1	

T9	 X	 -‐	 -‐	 Adder1	

T10	 NOP	 -‐	 -‐	 -‐	

Table 20 - Multiplier Multiplexing Scheme

	
Figure 32 - Adder Mux Plan

	

 95	

	
Figure 33 - Multiplier Mux Plan

	

4.2.17 Block Design Using Optimization Strategy

The block level symbol of the digital system is presented in Figure 34. The block

has five input terminals they are: Data In, which is responsible for providing the input

data; Data IN CLK, which provide a clock that is aligned with the input data; Reset,

which is responsible for resetting the FIR BLOCK; EN, which enables or disables the

FIR block; and CLK , which is the input clock for the system. On the other hand there

are two output terminals: Data Out, where the data leaves the system; and Data OUT

CLK, which is provides a clock that is aligned with the output data. All terminals are one

bit with the exception of the Data IN and Data out which are left as 32 bit words. The

reason the inputs are left as 32 bit buses is because the data arrives at 32 bits from the

 96	

ADC, and the Data out is usually transmitted to a DAC which will only support one word

length.

	
Figure 34 - FIR Block Symbol

 97	

CHAPTER V:

5.1 EFFECTIVE COMPARISON
	

	

The performance gains can manifest through a number of metrics and

considerations (as discussed in section 3.1), including: faster execution time, area

savings, reduced development costs, lower risks, customization enablement, and

extended effective processor lifetime.

One of the challenges in this analysis is that the performance gains directly

correlate to the system tasks being replaced with the work of this thesis. The rules found

in 3.2.1 outline how to identify opportune logic. Moreover there is still a responsibility on

the system developer(s) and engineer(s) to effectively develop and integrate these

suggested changes. Due to the fact that performance metrics will be influenced

proportional to the room for opportunity of each metric and the actual implementation it

is difficult to standardize the performance gains.

That said, and as demonstrated in chapter 4, there is a room to achieve

significant system performance gains. Knowing each case will achieve varying

performance gains, the case in the previous chapter provided a performance gain of

1.32% at a system level and 183.60% on a block level.

 98	

CHAPTER VI: FUTURE WORK

6.1 SELF-ADAPTING SYSTEMS
	

	

 Chapter V laid the foundation for a number of advancements to existing systems.

A system that is capable of self-adaptation provides nearly endless areas of opportunity.

[2] and [3] were just two examples of this.

This technology, for example, opens new horizons for FPGA testing, diagnosis

and self-restoration (all together this is called “fault-tolerance”). It also makes it possible

to easily apply test methods. FPGA fault-tolerance is an endless topic and is only

growing in terms of demand as transistor technology continues to shrink and designs

become more complex.

6.2 SELF-TESTING CAPABILITIES
	

	

Following the rules/guidelines set out from [2], we can use FPGA for other areas

as well. For example, the work in [1] patent allows ASICs to recover from a radiation

(power or other) event, which damages one or many transistors. This is going to be a

bigger problem as semi-conductor corporations use smaller and smaller transistors and

especially with a growing demand for cloud computing (as there is a higher risk of

radiation damage).

 99	

Once a chip has been verified and tested it can be shipped to the end customer.

Although these chips have successfully passed lab testing, there is still a possibility

where transistors can be damaged during runtime as a result of alpha particles. If this

happens the chip is now considered damaged. The issue is two-fold: (1) identifying the

issue (2) working around the issue (if possible). There is a huge push for this within

space exploration, and my work seeks to offer feasible solutions to these companies.

There is still much to research and examine in this field.

 100	

APPENDIX A: UVM / SYSTEMVERILOG

RTL & Test Bench Code
Portions of the code below have been modified or removed so as to honour confidentiality.

Makefile

root = $(STEM)/FIFO/src
rtl_path = $(root)/rtl
tb_path = $(root)/test
DUT = $(tb_path)/fifo_tb_wrapper_io.sv $(tb_path)/fifo_tb_wrapper_io.sv $(rtl_path)/fifo.vh
$(rtl_path)/fifo.v
TB_TOP = $(root)/test.sv
FSDB_NAME = ${test}.fsdb

VCSFLAGS = +v2k -full64

TB_TOP = $(root)/test.sv
HARNESS_TOP = $(tb_path)/fifo_tb.sv
UVM_HOME = _____________________
defines = UVM_NO_DEPRECATED+UVM_OBJECT_MUST_HAVE_CONSTRUCTOR
uvm_ver = uvm-1.1
test = fifo_sanity
seed = 1
#verbosity = UVM_HIGH
#option = UVM_TR_RECORD +UVM_LOG_RECORD
verbosity = UVM_DEBUG

compile_dut: $(DUT)
 mkdir -p ./out
 vcs $(VCSFLAGS) -timescale="1ns/100ps" -l out/comp.log -debug_all ${SOURCES}
${DUT} -o out/simv

uvm_compile:
 mkdir -p ./out
 vcs $(VCSFLAGS) -sverilog ${UVM_HOME}/____/uvm_dpi.cc -CFLAGS -DVCS
${UVM_HOME}/___/uvm_pkg.sv +incdir+${UVM_HOME}/___/vcs -timescale="1ns/100ps" -l
out/comp.log -debug_all ${SOURCES} ${DUT} ${HARNESS_TOP} ${TB_TOP}
+define+${defines} -o out/simv

run_base_test: uvm_compile
 ./out/simv -l out/${test}_run.log +ntb_random_seed=$(seed) +UVM_TESTNAME=$(test)
+ntb_solver_mode=$(SOLVER) +UVM_VERBOSITY=$(verbosity) +${option}

$(FSDB_NAME): uvm_compile

 101	

 ./out/simv -l out/${test}_run.log +ntb_random_seed=$(seed) +UVM_TESTNAME=$(test)
+ntb_solver_mode=$(SOLVER) +UVM_VERBOSITY=$(verbosity) +${option} +DEBUSSY=1
+DUMP=1 +dumpfile=$(FSDB_NAME) +fsdb+all=on +fsdbfile+$(FSDB_NAME)

verdi: $(SOURCES) $(FSDB_NAME)
 verdi -onfatalerrorcontinue $(NWAVE_FLAGS) -f $(SOURCES) ${DUT} -sv -ssf
$(FSDB_NAME)

nwave: $(FSDB_NAME)
 nWave -ssf $(FSDB_NAME)

clean:
 rm -rf out csrc *.rc *.key verdiLog vericomLog vc_hdrs.h $(test).log work.lib++ *.log

test.sv
`ifndef TEST__SV
`define TEST__SV

import uvm_pkg::*;
`include "test/test_top.sv"
`include "test/fifo_sanity.sv"

program automatic test;
 initial begin
 $timeformat(-9, 1, "ns", 10);
 run_test();
 end
endprogram

`endif

fifo.vh
`ifndef __FIFO_VH
`define __FIFO_VH

`define QUEUE_DEPTH 8
`define QUEUE_WIDTH 4
`define MAX_DATA_SIZE 16

`endif

fifo.v
`include "rtl/fifo.vh"

module fifo (

 102	

 clk,
 rst,
 iEn,
 iData,
 oData,
 iPush,
 oSend,
 iPop,
 oFull,
 oAlmostFull,
 oEmpty
);

input clk, rst, iEn;
input [`QUEUE_WIDTH-1:0] iData;
output reg [`QUEUE_WIDTH-1:0] oData;
input iPush, iPop;
output oFull, oAlmostFull, oEmpty; // Can't "assign" if reg
output reg oSend;

reg [`QUEUE_DEPTH-1:0] rdPtr;
reg [`QUEUE_DEPTH-1:0] wrPtr;
reg [`QUEUE_WIDTH-1:0] myQueue [`QUEUE_DEPTH-1:0];
reg loop;

assign oFull = ((wrPtr == rdPtr) && (loop == 1));
assign oAlmostFull = ((wrPtr == rdPtr - 1) && (loop == 1));
assign oEmpty = ((rdPtr == wrPtr) && (loop == 0));
//assign oSend = rst ? 0 : iPop;

always @(posedge clk) begin
 if (rst == 1) begin
 loop <= 0;
 wrPtr <= 0;
 rdPtr <= 0;
 oData <= 0;
 oSend <= 0;
 end
 else begin
 if (iEn == 1) begin
 // Push Logic
 if (iPush == 1) begin
 if ((wrPtr == rdPtr) && (loop == 1)) begin
 // assert
 $display ("ERROR: Push while full in %m\n");
 $finish;
 end
 else begin
 myQueue[wrPtr] <= iData;

 103	

 end
 end

 // Pop Logic
 if (iPop == 1) begin
 if ((wrPtr == rdPtr) && (loop == 0)) begin
 // assert
 $display ("ERROR: Pop while empty in %m\n");
 $finish;
 end
 else begin
 oData <= myQueue[rdPtr];
 end
 oSend <= 1;
 end
 else begin
 oSend <= 0;
 end

 // Pointer Update Logic
 if (iPush == 1) begin
 if (wrPtr == `QUEUE_DEPTH) begin
 wrPtr <= 0;
 if (!((iPop == 1) && (rdPtr == `QUEUE_DEPTH))) begin
 loop <= 1;
 end
 end
 else begin
 wrPtr <= wrPtr + 1;
 end
 end
 if (iPop == 1) begin
 if (rdPtr == `QUEUE_DEPTH) begin
 rdPtr <= 0;
 loop <= 0;
 end
 else begin
 rdPtr <= rdPtr + 1;
 end
 end
 end
 end
end
endmodule

fifo_agent.svh
`ifndef _FIFO__AGENT__SVH

 104	

`define _FIFO__AGENT__SVH

`include "test/fifo_driver.svh"
`include "test/fifo_seq_item.svh"
`include "test/fifo_monitor.svh"
`include "test/fifo_scoreboard.svh"
`include "test/fifo_sequencer.svh"

//typedef uvm_sequencer #(Fifo_Data_inPacket) fifo_sequencer;

class fifo_agent extends uvm_agent;
 virtual fifo_tb_wrapper_io uFIFO_IO;
// fifo_env _fifo_env;

 fifo_sequencer _fifo_sequencer;
 fifo_driver _fifo_driver;
 fifo_monitor _fifo_monitor;

 `uvm_component_utils(fifo_agent)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 endfunction: new

 virtual function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 _fifo_sequencer = fifo_sequencer::type_id::create("_fifo_sequencer", this);
 _fifo_driver = fifo_driver::type_id::create("_fifo_driver", this);
 _fifo_monitor = fifo_monitor::type_id::create("_fifo_monitor", this);

 if (!uvm_config_db#(virtual fifo_tb_wrapper_io)::get(this, "", "dut_io", uFIFO_IO))begin
 `uvm_fatal("CFGERR", "The interface has not been set!");
 end

 uvm_config_db#(virtual fifo_tb_wrapper_io)::set(this, "*", "dut_io", uFIFO_IO);
 endfunction: build_phase

 virtual function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 _fifo_driver.seq_item_port.connect(_fifo_sequencer.seq_item_export);
 endfunction: connect_phase

 task main_phase(uvm_phase phase);
 forever begin

 105	

 @(uFIFO_IO.driver_cb);
 this.randomize();
 end
 endtask

endclass: fifo_agent
`endif

fifo_driver.svh
`ifndef _FIFO__DRIVER__SVH
`define _FIFO__DRIVER__SVH

`include "rtl/fifo.vh"
`include "test/fifo_seq_item.svh"

class fifo_driver extends uvm_driver #(Fifo_Data_inPacket);
 virtual fifo_tb_wrapper_io uFIFO_IO;

 `uvm_component_utils(fifo_driver)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 endfunction: new

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 uvm_config_db #(virtual fifo_tb_wrapper_io)::get(this, "", "dut_io", uFIFO_IO);
 if (uFIFO_IO == null) begin
 `uvm_fatal("CFGERR", "Interface for fifo_driver not set!");
 end
 endfunction

 virtual task reset_phase(uvm_phase phase);
 super.reset_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 // ---- RESET DUT ----
 phase.raise_objection(this);
 uFIFO_IO.driver_cb.rst <= 1'b0;
 uFIFO_IO.driver_cb.iEn <= 1'b0;
 uFIFO_IO.driver_cb.iData <= 1'b0;
 uFIFO_IO.driver_cb.iPush <= 1'b0;
 uFIFO_IO.driver_cb.iPop <= 1'b0;
 repeat (10) @(uFIFO_IO.driver_cb);
 uFIFO_IO.driver_cb.rst <= 1'b0;

 106	

 repeat (10) @(uFIFO_IO.driver_cb);
 phase.drop_objection(this);
 // ---- END RESET ----
 endtask: reset_phase

 virtual task run_phase(uvm_phase phase);
 forever begin
 Fifo_Data_inPacket req;
 seq_item_port.get_next_item(req);

 `uvm_info("DRV_RUN", req.sprint(), UVM_MEDIUM);

 send(req);
 seq_item_port.item_done();
 end
 endtask

 virtual task send(Fifo_Data_inPacket req);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 req.randomize();

 uFIFO_IO.driver_cb.rst <= req.rst;
 uFIFO_IO.driver_cb.iEn <= req.iEn;
 uFIFO_IO.driver_cb.iPush <= req.iPush;
 uFIFO_IO.driver_cb.iPop <= 1'b1;
 uFIFO_IO.driver_cb.iData <= req.iData;
 @(uFIFO_IO.driver_cb);
 uFIFO_IO.driver_cb.iPush <= 1'b0;
 endtask: send

endclass: fifo_driver
`endif

 107	

fifo_env.sv
`ifndef _FIFO__ENV__SVH
`define _FIFO__ENV__SVH

`include "test/fifo_agent.svh"

class fifo_env extends uvm_env;

 fifo_agent _fifo_agent;
 fifo_scoreboard _fifo_scoreboard;

 `uvm_component_utils(fifo_env)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 endfunction: new

 virtual function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 _fifo_agent = fifo_agent::type_id::create("_fifo_agent", this);
 _fifo_scoreboard = fifo_scoreboard::type_id::create("_fifo_scoreboard", this);

 endfunction: build_phase

 function void connect_phase(uvm_phase phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

_fifo_agent._fifo_monitor.mon_AnlysPort.connect(_fifo_scoreboard.fifo_iPort.analysis_export);

_fifo_agent._fifo_monitor.out_AnlysPort.connect(_fifo_scoreboard.fifo_oPort.analysis_export);
 endfunction: connect_phase

endclass: fifo_env

`endif

 108	

fifo_monitor.svh
`ifndef FIFO_MONITOR__SVH
`define FIFO_MONITOR__SVH

`include "test/fifo_seq_item.svh"

class fifo_monitor extends uvm_monitor;
 virtual fifo_tb_wrapper_io uFIFO_IO;
 uvm_analysis_port #(Fifo_Data_outPacket) out_AnlysPort;
 uvm_analysis_port #(Fifo_Data_inPacket) mon_AnlysPort;

 `uvm_component_utils(fifo_monitor);

 function new(string name, uvm_component parent);
 super.new(name, parent);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 endfunction: new

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 uvm_config_db#(virtual fifo_tb_wrapper_io)::get(this, "", "dut_io", uFIFO_IO);
 if (uFIFO_IO == null) begin
 `uvm_fatal("CFGERR", "Interface for monitor not set!");
 end

 out_AnlysPort = new("out_AnlysPort", this);
 mon_AnlysPort = new("mon_AnlysPort", this);
 endfunction: build_phase

 virtual task run_phase(uvm_phase phase);
 Fifo_Data_inPacket in_pkt;
 Fifo_Data_outPacket out_pkt;

 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 fork
 forever begin
 in_pkt = Fifo_Data_inPacket::type_id::create("in_pkt");

 /*...get pkt...*/
 @(uFIFO_IO.driver_cb);
 in_pkt.rst = uFIFO_IO.front_monitor_cb.rst;
 in_pkt.iEn = uFIFO_IO.front_monitor_cb.iEn;
 in_pkt.iData = uFIFO_IO.front_monitor_cb.iData;

 109	

 in_pkt.iPush = uFIFO_IO.front_monitor_cb.iPush;
 in_pkt.iPop = uFIFO_IO.front_monitor_cb.iPop;

 `uvm_info("Collected In Pkt...", {"\n", in_pkt.sprint()}, UVM_MEDIUM);
 mon_AnlysPort.write(in_pkt);
 end

 forever begin
 out_pkt = Fifo_Data_outPacket::type_id::create("out_pkt");

 /*...get pkt...*/
 @(uFIFO_IO.driver_cb;
 wait (uFIFO_IO.front_monitor_cb.iPop);
 @(uFIFO_IO.driver_cb);
 out_pkt.oData = uFIFO_IO.end_monitor_cb.oData;
 out_pkt.oFull = uFIFO_IO.end_monitor_cb.oFull;
 out_pkt.oAlmostFull = uFIFO_IO.end_monitor_cb.oAlmostFull;
 out_pkt.oEmpty = uFIFO_IO.end_monitor_cb.oEmpty;

 `uvm_info("Collected Out Pkt...", {"\n", out_pkt.sprint()}, UVM_MEDIUM);
 out_AnlysPort.write(out_pkt);
 end
 join_none
 endtask: run_phase

endclass: fifo_monitor

`endif

fifo_sanity.sv
`ifndef FIFO_SANITY__SV
`define FIFO_SANITY__SV

`include "test/fifo_sequence_library.svh"

class fifo_sanity extends test_base;
 `uvm_component_utils(fifo_sanity)

 Fifo_Data_inPacket iDataPkt;
 fifo_req_sequence req_seq;
 fifo_sequencer _fifo_sequencer;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 endfunction: new

 virtual function void build_phase(uvm_phase phase);

 110	

 super.build_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 iDataPkt = Fifo_Data_inPacket::type_id::create("iDataPkt");
 req_seq = fifo_req_sequence::type_id::create("req_seq");

 endfunction: build_phase

 task main_phase(uvm_phase phase);
 uvm_component uvm_comp_ptr;

 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 phase.raise_objection(this);

 uvm_comp_ptr = uvm_top.find("*fifo_sequencer"); // Cast method better
practice then (_env._fifo_agent._fifo_sequencer)

 // Assign to point to actual sequencer
 $cast(_fifo_sequencer, uvm_comp_ptr);

 // Randomize each sequence!
 if (!(iDataPkt.randomize() with {iData == 0;}))
 `uvm_fatal("RNDMERR", "Randomization failed!");

 // Start Sequencer
 req_seq.start(_fifo_sequencer);

 phase.drop_objection(this);
 endtask: main_phase

endclass: fifo_sanity

`endif

 111	

fifo_scoreboard.svh
`ifndef FIFO_SCOREBOARD__SVH
`define FIFO_SCOREBOARD__SVH

class fifo_scoreboard extends uvm_scoreboard;
 `uvm_component_utils(fifo_scoreboard)

 virtual fifo_tb_wrapper_io uFIFO_IO;

 uvm_tlm_analysis_fifo #(Fifo_Data_inPacket) fifo_iPort; // Send Req
 uvm_tlm_analysis_fifo #(Fifo_Data_outPacket) fifo_oPort; // Out Data

 Fifo_Data_inPacket _inQueue;
 Fifo_Data_outPacket _outQueue;

 Fifo_Data_inPacket in_queue[$];
 Fifo_Data_outPacket out_queue[$];

 int num_matches = 0, num_mismatches = 0;
 int num_elements = 0;
 int scan_pointer = -1;
 int cmp_ptr = 0;
 bit oBus_busy = 0; // Ensure one data_out per c.c.
 bit ptr_update = 1; // Pointer doesn't need to update on pop

 function new(string name, uvm_component parent);
 super.new(name, parent);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 endfunction : new

 virtual function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 if (!uvm_config_db#(virtual fifo_tb_wrapper_io)::get(this, "", "dut_io", uFIFO_IO)) begin
 `uvm_fatal("CFGERR", "[SBD] INTERFACE IS NOT SET!");
 end

 fifo_iPort = new("fifo_iPort", this);
 fifo_oPort = new("fifo_oPort", this);
 endfunction

 virtual function void start_of_simulation_phase(uvm_phase phase);
 super.start_of_simulation_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 112	

 uvm_top.print_topology();
 factory.print();
 endfunction: start_of_simulation_phase

 task run_phase(uvm_phase phase);
 super.build_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 fork // Record in -> DUT
 forever begin
 @(posedge uFIFO_IO.clk);
 if (~fifo_iPort.is_empty()) begin
 fifo_iPort.get(_inQueue);
 in_queue.push_back(_inQueue);
 rcv_iWrite();
 end
 end
 join_none

 fork // Record DUT -> Out
 forever begin
 @(posedge uFIFO_IO.clk);
 if (~fifo_oPort.is_empty()) begin
 fifo_oPort.get(_outQueue);
 out_queue.push_back(_outQueue);
 rcv_oWrite();
 end
 end
 join_none
 endtask

 virtual function void final_phase(uvm_phase phase);
 super.final_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 `uvm_info("TRACE", $sformatf("[SBD] Comparing Tables!\n"), UVM_LOW);

 if (in_queue.size() != out_queue.size()) begin
 `uvm_error("TRACE",$sformatf("[SBD] Output size does not match expected
size!\nExpected: %d\nActual: %d\n",in_queue.size(),out_queue.size()));
 end
 else begin
 `uvm_info("TRACE",$sformatf("[SBD] Array Sizes...\nExpected: %d\nActual:
%d\n",in_queue.size(),out_queue.size()), UVM_DEBUG);

 `uvm_info("TRACE", $sformatf("[SBD] Sizes matched...Comparing Elements...\n"),
UVM_LOW);
 final_compare();

 113	

 end

 dump_buffers();
 endfunction

 virtual task run_time_compare();
 `uvm_info("TRACE", $sformatf("[SBD] RUN_TIME: Scoreboard Comparing Model Queue
with Actual Queue"), UVM_LOW);
 cmp_ptr = out_queue.size();

 if (!(in_queue[cmp_ptr].compare(out_queue[cmp_ptr]))) begin
 `uvm_error("TRACE", $sformatf("[SBD] Element does not match expected!\nExpected:
%s\nActual: %s\n",in_queue[cmp_ptr].sprint(),out_queue[cmp_ptr].sprint()));
 end
 endtask

 virtual function void final_compare();
 `uvm_info("TRACE", $sformatf("[SBD] FINAL: Scoreboard Comparing Model Queue with
Actual Queue"), UVM_LOW);

 num_elements = out_queue.size();
 for (int i = 0; i < num_elements; i++) begin
 if (in_queue[i].compare(out_queue[i])) begin
 num_matches++;
 end
 else begin
 `uvm_error("TRACE", $sformatf("[SBD] Element does not match
expected~\nExpected: %s\nActual: %s\n",in_queue[i].sprint(),out_queue[i].sprint()));
 num_mismatches++;
 end
 end

 if (num_mismatches > 0) begin
 `uvm_info("TRACE", $sformatf("[SBD] Dumping Buffers For Debug!"), UVM_LOW);
 end
 else begin
 `uvm_info("TRACE", $sformatf("[SBD] All elements matched!\nTEST
SUCCESSFULL"), UVM_LOW);
 end
 endfunction

 virtual task dump_buffers();
 `uvm_info("TRACE", $sformatf("[SBD] Dumping Buffers"), UVM_LOW);

 for (int i = 0; i < in_queue.size(); i++) begin
 `uvm_info("TRACE",$sformatf("[SBD] Expected[%d]: %s\n",i,in_queue[i].sprint()),
UVM_LOW);
 end

 114	

 for (int i = 0; i < out_queue.size(); i++) begin
 `uvm_info("TRACE",$sformatf("[SBD] Actual[%d]: %s\n",i,out_queue[i].sprint()),
UVM_LOW);
 end
 endtask

 virtual task rcv_iWrite();
 `uvm_info("TRACE", $sformatf("[SBD] Scoreboard observed an input to the DUT"),
UVM_LOW);

 `uvm_info("TRACE",$sformatf("[SBD] iWrite: %s\n",_inQueue.sprint()), UVM_DEBUG);
 endtask

 virtual task rcv_oWrite();
 `uvm_info("TRACE", $sformatf("[SBD] Scoreboard observed an output from the DUT"),
UVM_LOW);
 run_time_compare();

 `uvm_info("TRACE",$sformatf("[SBD] oWrite: %s\n",_outQueue.sprint()), UVM_DEBUG);
 endtask

endclass: fifo_scoreboard

`endif

fifo_seq_item.svh
`ifndef FIFO_SEQ_ITEM__SVH
`define FIFO_SEQ_ITEM__SVH

`include "rtl/fifo.vh"

class Fifo_Data_outPacket extends uvm_sequence_item;
 bit [`QUEUE_WIDTH-1:0] oData;
 bit oSend;
 bit oFull;
 bit oAlmostFull;
 bit oEmpty;

 `uvm_object_utils_begin(Fifo_Data_outPacket)
 `uvm_field_int(oData, UVM_ALL_ON)
 `uvm_field_int(oSend, UVM_ALL_ON)
 `uvm_field_int(oFull, UVM_ALL_ON)
 `uvm_field_int(oAlmostFull, UVM_ALL_ON)
 `uvm_field_int(oEmpty, UVM_ALL_ON)
 `uvm_object_utils_end

 function new(string name = "Fifo_Data_outPacket");

 115	

 super.new(name);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 endfunction
endclass: Fifo_Data_outPacket

class Fifo_Data_inPacket extends uvm_sequence_item;
 rand bit iEn;
 rand bit [`QUEUE_WIDTH-1:0] iData;
 rand bit iPush;
 rand bit iPop;
 rand bit rst;

 constraint rand_enable {
 iEn dist {
 0 := 1,
 1 := 20
 };
 }

 constraint rand_reset {
 rst dist {
 0 := 150,
 1 := 1
 };
 }

 constraint rand_sigs {
 iPush dist {
 0 := 1,
 1 := 100
 };

 iPop dist {
 0 := 1,
 1 := 200
 };

 iData inside {[0:`MAX_DATA_SIZE-1]};
 }

 `uvm_object_utils_begin(Fifo_Data_inPacket)
 `uvm_field_int(iEn, UVM_ALL_ON)
 `uvm_field_int(iData, UVM_ALL_ON)
 `uvm_field_int(iPush, UVM_ALL_ON)
 `uvm_field_int(iPop, UVM_ALL_ON)
 `uvm_field_int(rst, UVM_ALL_ON)
 `uvm_object_utils_end

 116	

 function new(string name = "Fifo_Data_inPacket");
 super.new(name);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 endfunction
endclass: Fifo_Data_inPacket

`endif

fifo_sequence_library.svh
`ifndef FIFO_SEQUENCE_LIBRARY__SVH
`define FIFO_SEQUENCE_LIBRARY__SVH

class fifo_base_sequence extends uvm_sequence #(Fifo_Data_inPacket);
 `uvm_object_utils(fifo_base_sequence)

 function new(string name = "fifo_base_sequence");
 super.new(name);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 endfunction

 virtual task pre_body();
 if(starting_phase!=null)
 starting_phase.raise_objection(this);
 endtask

 virtual task post_body();
 if (starting_phase != null) begin
 uvm_objection objection = starting_phase.get_objection();
 #50;
 starting_phase.drop_objection(this);
 end
 endtask
endclass: fifo_base_sequence

class fifo_req_sequence extends fifo_base_sequence #(Fifo_Data_inPacket);
 `uvm_object_utils(fifo_req_sequence)

 function new(string name = "fifo_request");
 super.new(name);
 `uvm_info("TRACe", $sformatf("%m"), UVM_HIGH);
 endfunction

 task body();
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 `uvm_do(req);
 endtask
endclass: fifo_req_sequence
`endif

 117	

fifo_sequencer.svh
`ifndef _FIFO__SEQUENCER__SVH
`define _FIFO__SEQUENCER__SVH

class fifo_sequencer extends uvm_sequencer #(Fifo_Data_inPacket);
 virtual fifo_tb_wrapper_io uFIFO_IO;

 function new (string name, uvm_component parent);
 super.new (name, parent);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 endfunction: new

 `uvm_component_utils (fifo_sequencer)

 virtual function void build_phase(uvm_phase phase);
 super.build_phase(phase);

 if (!uvm_config_db#(virtual fifo_tb_wrapper_io)::get(this, "", "dut_io", uFIFO_IO)) begin
 `uvm_fatal ("CFGERR", "fifo_tb_wrapper_io is not set");
 end
 endfunction

 function void connect();
 super.connect();
 endfunction

endclass

`endif

 118	

fifo_tb_wrapper_io.sv
`ifndef FIFO_IO__SV
`define FIFO_IO__SV

`include "rtl/fifo.vh"

interface fifo_tb_wrapper_io(input logic clk);
 logic rst;
 logic iEn;
 logic [`QUEUE_WIDTH] iData;
 logic [`QUEUE_WIDTH] oData;
 logic iPush;
 logic oSend;
 logic iPop;
 logic oFull;
 logic oAlmostFull;
 logic oEmpty;

 clocking driver_cb @(posedge clk);
 output rst;
 output iEn;
 output iData;
 output iPush;
 output iPop;
 endclocking: driver_cb

 clocking front_monitor_cb @(posedge clk);
 input rst;
 input iEn;
 input iData;
 input iPush;
 input iPop;
 endclocking: front_monitor_cb

 clocking end_monitor_cb @(posedge clk);
 input oData;
 input oSend;
 input oFull;
 input oAlmostFull;
 input oEmpty;
 endclocking: end_monitor_cb

 modport TB(clocking driver_cb, clocking end_monitor_cb);
endinterface: fifo_tb_wrapper_io

`endif

 119	

fifo_tb.sv
// TOP level FIFO testbench
`timescale 1ns/10ps

module fifo_tb();
 parameter HALF_CLOCK_PERIOD = 50;

 logic clk;
 real half_clock_period;

 fifo_tb_wrapper_io uFIFO_IO(clk); // Interface

 //test fifo_sanity(uFIFO_IO); // Instantiate Test Program

 fifo fifo(
 .clk (uFIFO_IO.clk),
 .rst (uFIFO_IO.rst),
 .iEn (uFIFO_IO.iEn),
 .iData (uFIFO_IO.iData),
 .oData (uFIFO_IO.oData),
 .iPush (uFIFO_IO.iPush),
 .oSend (uFIFO_IO.oSend),
 .iPop (uFIFO_IO.iPop),
 .oFull (uFIFO_IO.oFull),
 .oAlmostFull (uFIFO_IO.oAlmostFull),
 .oEmpty (uFIFO_IO.oEmpty)
);

 initial begin
 half_clock_period = HALF_CLOCK_PERIOD;
 $display ("Default Clock Period is twice: %0gns",half_clock_period);

 clk = 0;
 forever begin
 #(half_clock_period);
 clk <= ~clk;
 end
 end

 // FSDB dump

// initial begin
// #1;
// $display("Dump all sub blocks");
// $fsdbDumpvars(0, tb, "+all");
// end

endmodule

 120	

test_top.sv
`ifndef TEST_TOP__SV
`define TEST_TOP__SV

`include "test/fifo_env.sv"

class test_base extends uvm_test;
 `uvm_component_utils(test_base)

 fifo_env _env;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 endfunction

 virtual function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);

 _env = fifo_env::type_id::create("_env", this);

 uvm_config_db#(virtual fifo_tb_wrapper_io)::set(this, "_env._fifo_scoreboard", "dut_io",
fifo_tb.uFIFO_IO);
 uvm_config_db#(virtual fifo_tb_wrapper_io)::set(this, "_env._fifo_agent", "dut_io",
fifo_tb.uFIFO_IO);
 endfunction: build_phase

 virtual function void final_phase(uvm_phase phase);
 super.final_phase(phase);
 `uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
 uvm_top.print_topology();

 factory.print();
 endfunction
endclass
`endif

 121	

APPENDIX B: ABOUT AMD

AMD is a global semiconductor company with facilities around the world. AMD

was incorporated in 1969, establishing its headquarters in Sunnyvale, California. AMD

designs and integrates technology that powers millions of intelligent devices, including

personal computers, tablets, game consoles and cloud servers that define the new era

of surround computing. AMD solutions enable people everywhere to realize the full

potential of their favourite devices and applications to push the boundaries of what is

possible.

AMD achieved recognition as a world leader in energy efficiency and compute

power with AMD FireProTM professional graphics being awarded the top spot on the

Green500 List, a ranking of the world’s most energy-efficient supercomputers, and the

AMD OpteronTM server CPU receiving the number two spot on the latest TOP500 List,

a ranking of the 500 most powerful supercomputers in the world. Strong demand

continued for AMD-based game consoles, with Microsoft and Sony having shipped

nearly 30 million AMD-based consoles through 2014.

 122	

GLOSSARY

ASIC – Application Specific Processor

AU — Area Units

C.C. — Clock Cycle(s)

DPR — Dynamic Partial Reconfiguration

FPGA — Field Programmable Gate Array

GPP — General Purpose Processor

HDL — Hardware Description Language

HVL — Hardware Verification Language

LUT — Look-Up Table

OOP — Object Oriented Programming

RTL — Register Transfer Logic

SW — Software

UML — Unified Markup Language

VHSIC — Very High Speed Integrated Circuits

 123	

REFERENCES

[1]	 Ryan	 Meghdies-‐Vardeh,	 "Adaptive	 ASIC	 Recovery,"	 Hardware/ASIC	 Design,	 May	 08,	 2014.	

[2]	 Ryan	 Meghdies-‐Vardeh,	 "Integrated	 Hardware	 Acceleration	 Islands,"	 Hardware/ASIC	 Design,	 May	 22,	

2013.	

[3]	 Ryan	 Meghdies-‐Vardeh,	 "Automated	 Preemptive	 Hardware	 Acceleration	 Block,"	 Hardware/ASIC	 Design,	

May	 22,	 2013.	

[4]	 A.A.	 Chien	 and	 V.	 Karamcheti,	 "Moore's	 Law:	 The	 First	 Ending	 and	 a	 New	 Beginning,"	 Computer,	 vol.	 46,	 no.	

12,	 pp.	 48-‐53,	 December	 2013.	

[5]	 Rachel	 Courtland.	 (2013,	 October)	 IEEE	 Spectrum.	 [Online].	

http://spectrum.ieee.org/semiconductors/devices/the-‐status-‐of-‐moores-‐law-‐its-‐complicated	

[6]	 R.	 Ammendola	 et	 al.,	 "QUonG:	 A	 GPU-‐based	 HPC	 System	 Dedicated	 to	 LQCD	 Computing,"	 in	 Application	

Accelerators	 in	 High-‐Performance	 Computing	 (SAAHPC),	 2011,	 pp.	 113-‐122.	

[7]	 Gary	 Stringham,	 Hardware/Firmware	 Interface	 Design:	 Best	 Practices	 for	 Improving	 Embedded	 Systems	

Development,	 1st	 ed.	 Burlington,	 USA:	 Elsevier,	 2010.	

[8]	 P.	 Avss,	 S.	 Prasant,	 and	 R.	 Jain,	 "Virtual	 prototyping	 increases	 productivity	 -‐	 A	 case	 study,"	 in	 VLSI	 Design,	

Automation	 and	 Test,	 2009,	 pp.	 96-‐101,	 28-‐30.	

[9]	 G.	 Venkataramani,	 K.	 Kintali,	 S.	 Prakash,	 and	 S.	 van	 Beek,	 "Model-‐based	 hardware	 design,"	 in	 Computer-‐

Aided	 Design	 (ICCAD),	 2013,	 pp.	 69-‐73,	 18-‐21.	

[10]	 Ankit	 Gopani.	 (2013,	 Jan.)	 ASIC	 with	 Ankit.	 [Online].	 http://asicwithankit.blogspot.ca/2013/01/most-‐of-‐

re-‐spins-‐are-‐due-‐to-‐functional.html	

[11]	 Marco	 Bernardo	 Alessandro	 Cimatti,	 Formal	 Methods	 for	 Hardware	 Verification,	 6th	 ed.	 Bertinoro,	 Italy:	

Springer,	 2006.	

[12]	 Xilinx	 Inc.	 (2010,	 May)	 Xilinx.	 [Online].	

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/ug702.pdf	

[13]	 Synopsys	 Inc.	 (2014,	 Oct.)	 Synopsys.	 [Online].	

http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx	

[14]	 Dylan	 McGrath.	 (2005,	 Sep.)	 EE	 Times.	 [Online].	

 124	

http://www.eetimes.com/document.asp?doc_id=1157473	

[15]	 S.	 Oldridge,	 "A	 Novel	 FPGA	 Architecture	 Supporting,"	 in	 IEEE	 Transactions	 on	 Very	 Large	 Scale	 Integration	

(VLSI)	 Systems,	 vol.	 13,	 2010,	 pp.	 1-‐107.	

[16]	 Justin	 Force.	 (2007,	 Sep.)	 CMOS	 NAND.svg.	 [Online].	 http://en.wikipedia.org/wiki/File:CMOS_NAND.svg	

[17]	 Lev	 Kirischian,	 Reconfigurable	 Computing	 Systems	 Engineering,	 2012,	 Course	 Material.	

[18]	 Yen-‐Tai	 Lai,	 Hsin-‐Ya	 Lai,	 and	 Chia-‐Nan	 Yeh,	 "Compiling	 for	 reconfigurable	 computing:	 A	 survey,"	 ACM	

Computing	 Surveys,	 vol.	 42,	 no.	 4,	 pp.	 1-‐65,	 2010.	

[19]	 R.	 V.	 Satish	 Ganesan,	 "An	 integrated	 temporal	 partitioning	 and	 partial	 reconfiguration	 technique	 for	 design	

latency	 improvement,"	 Automation	 &	 Test	 in	 Process	 Design,	 2000.	

[20]	 Wang	 Lie	 and	 Wu	 Feng-‐yan.,	 "Dynamic	 partial	 reconfiguration	 on	 cognitive	 radio	 platform,"	 vol.	 4,	 pp.	

381-‐384,	 2009.	

[21]	 David.	 Dye.	 (2012,	 May)	 Partial	 Reconfiguration	 of	 Xilinx	 FPGAs	 Using	 ISE	 Design	 Suite.	 [Online].	

http://www.xilinx.com/support/documentation/white_papers/wp374_Partial_Reconfig_Xilinx_FPGAs.pdf	

[22]	 M.	 Edwards,	 "Software	 acceleration	 using	 coprocessors:	 is	 it	 worth	 the	 effort,"	 Proceedings	 of	 the	 Fifth	

International	 Workshop	 on	 Hardware/Software	 Codesign,	 pp.	 135-‐139,	 1999.	

[23]	 Xiaotao	 Chang	 et	 al.,	 "Optimization	 of	 Stateful	 Hardware	 Acceleration	 in	 Hybrid	 Architectures,"	 Design,	

Automation	 &	 Test	 in	 Europe	 Conference	 &	 Exhibition,	 2011.	

[24]	 P.	 Possa,	 D.	 Schaillie,	 and	 C.	 Valderrama,	 "Exploration,	 FPGA-‐based	 Hardware	 Acceleration:	 A	

CPU/Accelerator	 Interface,"	 pp.	 374-‐377,	 2012.	

[25]	 S.	 Pedre,	 T.	 Krajnik,	 E.	 Todorovich,	 and	 P.	 Borensztejn,	 "A	 co-‐design	 methodology	 for	 processor-‐centric	

embedded	 systems	 with	 hardware	 acceleration	 using	 FPGA,"	 in	 VIII	 Southern	 Conference	 on	 Programmable	

Logic	 (SPL),	 Buenos	 Aires,	 2012.	

[26]	 Wen	 Chen,	 Li-‐Chung	 Wang,	 J.	 Bhadra,	 and	 M.	 Abadir,	 "Simulation	 knowledge	 extraction	 and	 reuse	 in	

constrained	 random	 processor	 verification,"	 in	 Design	 Automation	 Conference	 (DAC),	 2013,	 pp.	 1-‐6.	

[27]	 Ju	 Hwa	 Pan,	 T.	 Mitra,	 and	 Weng-‐Fai	 Wong,	 "Configuration	 bitstream	 compression	 for	 dynamically	

reconfigurable	 FPGAs,"	 Computer	 Aided	 Design,	 2004.	

[28]	 Intel	 Corporation.	 (2012)	 Intel.	 [Online].	

http://www.intel.com/content/dam/www/public/us/en/documents/white-‐papers/xeon-‐phi-‐life-‐

sciences-‐computing-‐paper.pdf	

 125	

[29]	 Daniel	 L.	 Rosenband	 and	 Till	 Rosenband,	 "A	 design	 case	 study:	 CPU	 vs.	 GPGPU	 vs.	 FPGA,"	 in	 Formal	

Methods	 and	 Models	 for	 Co-‐Design,	 2009,	 pp.	 69-‐72.	

[30]	 HSA	 Foundation.	 (2012,	 June)	 HSA	 Foundation.	 [Online].	 http://www.hsafoundation.com/hello-‐hsa-‐

foundation/	

[31]	 Y.	 Fujii,	 T.	 Azumi,	 N.	 Nishio,	 S.	 Kato,	 and	 M.	 Edahiro,	 "Data	 Transfer	 Matters	 for	 GPU	 Computing,"	 in	

Parallel	 and	 Distributed	 Systems	 (ICPADS,	 2013,	 pp.	 275-‐282.	

[32]	 R.	 Dobai	 and	 L.	 Sekanina,	 "Towards	 evolvable	 systems	 based	 on	 the	 Xilinx	 Zynq	 platform,"	 in	 Evolvable	

Systems	 (ICES),	 2013,	 pp.	 89-‐95.	

[33]	 Xilinx	 Inc.	 (2014)	 Xilinx.	 [Online].	 http://www.xilinx.com/publications/prod_mktg/zynq-‐7000-‐

generation-‐ahead-‐backgrounder.pdf	

[34]	 Intel,	 Block	 Diagram	 of	 Intel	 Stellarton,	 2010,	 http://edc-‐cache.intel.com/App_Shared/Pix/Block-‐

Diagrams/Stellarton-‐v2-‐Small.gif.	

[35]	 http://gareth.halfacree.co.uk/pubimages/wm8710-‐blkgram.jpg,	 Multimedia	 System	 Block	 Diagram.	

[36]	 ARM	 Holdings	 Plc,	 Trust	 Zone,	 2015,	 http://www.arm.com/assets/images/TrustZone-‐Tier-‐3-‐lg.jpg.	

[37]	 Lev	 Kirischian,	 Computer	 Aided	 Synthesis	 and	 Design	 of	 Digital	 Systems,	 2013,	 Course	 Material.	

[38]	 Xilinx	 Inc.	 (2011,	 January)	 Xilinx	 Inc.	 [Online].	

http://www.xilinx.com/support/documentation/boards_and_kits/ug230.pdf	

[39]	 Xilinx	 Inc.	 (2008,	 May)	 Xilinx	 Inc.	 [Online].	

http://www.xilinx.com/support/documentation/boards_and_kits/ug500.pdf	

[40]	 Xilinx	 Inc.	 (2012,	 Oct.)	 Xilinx	 Inc.	 [Online].	

http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf	

	

	

