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ABSTRACT 

FORMATION-KEEPING STRATEGIES AT THE EARTH-MOON L4 
TRIANGULAR LIBRATION POINT 

Frank Y.W. Wong, Master of Applied Science, Aerospace Engineering 
Ryerson University, Toronto, 2009 

This thesis examines the use of thrusters and solar sails for spacecraft formation keeping 

control at the Earth-Moon lA point. Particular emphasis was placed on the study of 

underactuated control, in which fewer control inputs than the system's degrees of 

freedom are available. A linear LQR control scheme, an integral augmented sliding 

mode controller and a bang-bang controller were applied to the dynamic spacecraft 

system. The nonlinear controllers produced errors falling within tighter tolerances than 

the linear controllers in the perturbed environment. Performing similarly well as the 

underactuated thrusters system was the solar-sails-controlled spacecraft formation using a 

bang-bang controller. This shows that solar sails could be a viable propellantless 

technique for relative control. A linear control technique was able to bound errors to 

within a couple hundred metres, using a hybrid propulsion system. Of the cases studied, 

only the fully-actuated thrusters-based system was able to explicitly track a circular 

trajectory, but had a~ V requirement of more than 100 times greater than that needed for 

tracking the natural, elliptical trajectory. 
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Chapter 1 
Introduction 

1.1 Introduction 

The concept of spacecraft formation flying has gained a great deal of interest in recent 

years. Considered to be a technology vital to future space exploration programs [1], 

spacecraft formation flying involves two or more spacecraft flying in particular 

configurations and working cooperatively towards achieving mission goals. Formation 

flying systems have numerous benefits over traditional single spacecraft systems. A 

reduction in the tasks that each spacecraft in a formation performs translates into smaller, 

simpler individual designs. This in tum can shorten development times and lower 

production costs. Mission reliability is also greatly improved, in part due to the inherent 

redundant nature of formation systems. In a single satellite system, a failure in the 

propulsion or power systems could nullify the entire mission, wasting invested resources 

and efforts. In a satellite formation, the failure of these systems in any one satellite 

would not necessarily jeopardize the mission, but rather only diminish the formations 

capacity to perform optimally. The replacement of a spacecraft in a formation would be 

much more cost effective owing to its simpler design and smaller size relative to a single, 

large satellite. 

Aside from its potential to improve a mission's reliability and reduce development costs, 

formation flying missions also opens doors to mission profiles with more ambitious 

objectives. As an example, consider the use of a spacecraft formation for imaging 
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interferometry. Imaging interferometry involves combining light sources from several 

telescopes to form an image that is comparable in clarity to one captured by a single 

telescope with an unattainably large aperture size. A spacecraft formation employing this 

technique can capture images of space phenomenon at resolutions several times sharper 

than images taken by the Hubble Space Telescope. This would be an invaluable resource 

to researchers. Several missions currently under development will make use of imaging 

interferometry. They include: the Micro-Arcsecond X-ray Imaging Mission (MAXIM), 

which will study the accretion disk in the region of a black hole [2]; the Darwin mission, 

which will search for extrasolar planets [3], and; the Stellar Imager, which will study 

solar and stellar magnetic fields [4]. All of these missions will be located at the Sun -

Earth/Moon second equilibrium point, otherwise known as the second Lagrange point 

(L2 point). 

The Lagrangian points are the equilibrium solutions of the classical Circular Restricted 

Three Body Problem (CR3BP). In the CR3BP model, two primary bodies orbit about 

their common barycentre in circular orbits. A third object of negligible mass is added to 

this system and the aim is to describe the motion of this object under the gravitational 

influence of the two primaries. If an object were to be placed at a Lagrangian point, that 

object would remain motionless relative to the orbiting bodies. In total, five such 

equilibrium points can be found. The position of three of these points, L1, L2 and L3, are 

aligned with the two primary bodies whereas the remaining two, L4 and L5, form 

equilateral triangles with them, as shown in Figure 1.1. 

L4 

-o 

l2 

L5 

Figure 1.1 General locations of Lagrange points in a co-orbiting system 
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Interest in Lagrange points stem from the fact that their positions can provide 

unobstructed views of deep space and celestial bodies, making Lagrange point missions 

ideal for research purposes. Furthermore, the absence of atmospheric and magnetic 

field perturbations combined with the low gravitational environment allows for much 

lower station keeping requirements in comparison to Earth orbiting systems. Solar 

radiation pressure (SRP) is typically treated as a perturbing effect. However, owing to 

the lower station keeping requirements of Lagrange point missions, appropriate 

manipulations of a solar sail's orientation would provide resultant force inputs adequate 

for orbit control and station keeping purposes. This type of propellantless control system 

can reduce the system's dependency on on board fuel, thereby reducing the on board fuel 

mass requirements and costs. Furthermore, using SRP presents a viable means to retain 

or regain control if primary control methods were to fail. 

Although all Lagrange point missions as of now have been deployed at the Sun-Earth Ll 

or L2 points, the reasons for choosing these points have been rooted in mission 

requirements, or the avoidance of the higher costs and engineering challenges associated 

with traveling much greater distances to reach the other Lagrange points in the Sun-Earth 

[5]. However, with advances in technology, the size and weight of satellites can be 

greatly reduced. This in tum results in mass savings for the launch vehicle and ultimately 

leads to lower overall costs. Missions to the triangular Lagrange points in the Sun-Earth 

system and even other Lagrange points in the Solar system will become feasible in the 

near future; allowing missions to take advantage of the stable properties near the 

triangular libration points. 

Lagrange points exist in the Earth-Moon system as well. These points are reasonably 

accessible and have similar advantages to those offered by the Sun-Earth/Moon Lagrange 

points. Farquhar [6] presented some uses of libration points in the Earth-Moon system 

and studied the control of single satellites about them. With recent renewed efforts to 

return to the Moon, it is likely that these points will be used for lunar mission support 

purposes. In the CR3BP, motion about these points are bounded, making them ideal 
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locations for a variety of applications, including imaging interferometry, communication 

relay satellites and space stations. However, this model neglects the effect of the Sun's 

gravitational pull and the eccentricity of the Earth-Moon orbit. The value of these points 

to future space missions necessitates the study and development of effective control 

strategies to counter these perturbations. 

In this thesis, strategies for controlling a spacecraft formation system at the Earth-Moon 

L4 point are developed. Specifically, the issue of relative control in the presence of 

strong perturbing effects from the Sun's gravity is addressed. The use of thrusters is the 

most popular choice for satellite control actuation and hence is investigated in this study. 

Solar sails are also examined in order to assess the feasibility of using this propellantless 

method for control. 

1.2 Literature Review 

Research related to Lagrange points has been ongoing since their discovery, reflecting the 

complexity as well as the interest in these points. The research covers a broad range of 

topics, including studies into the motion of objects near these points, conditions for their 

existence, the effect of perturbing forces on their existence, stability of the points, the 

search for natural orbits about them, and control of spacecraft in the vicinity of them, just 

to name a few. Given the vast amount of research available that directly pertains to this 

thesis, it was necessary to organize the literature review based on the main research areas. 

This literature revtew will be organized as three subsections. The first deals with 

dynamics, stability and the search for periodic orbits for the triangular libration points. 

Next, published results pertaining to formation flying and control at Lagrangian points 

will be reviewed. Finally, selected publications regarding the use of SRP for spacecraft 

control will be briefly summarized. 
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1.2.1 Dynamics, Stability and Periodic Orbits 

The majority of research regarding Lagrange points has been focused on the natural 

motions of an object placed near them. More specifically, they examined whether or not 

objects with non zero initial velocities would remain in the region of these points. Much 

emphasis has also been placed on finding initial conditions that would allow for closed, 

periodic trajectories to be observed. Numerous texts briefly discuss the restricted three 

body problem; [7 ,8,9] are but a couple of them. Few authors, however, go into as much 

depth and discuss the intricacies of the problem as Szebehely did [10]. In it, he presents 

the fundamentals of the problem and also applied complex analytical methods to support 

discussions regarding the motion and stability of objects near the Lagrangian points. 

Most of his work, however, was based on linear analysis, and only covered research up to 

1967. 

Gomez, Jorba, Masdemont and Simo [11] presented more recent findings in their four 

volume text covering the dynamics near libration points. Separate volumes are dedicated 

to the discussions of motion around the triangular and collinear points. They cover the 

fundamentals of the problem, summarize more recent findings and discuss the station

keeping strategies for missions about these points. Heavy emphasis is placed on 

numerical analysis and simulation of motions near the Earth-Sun Lagrange points. 

In spite decades of research into the stability of the Earth-Moon triangular libration 

points, uncertainty regarding the stability and the conditions necessary for bounded 

motions to be observed in the nonlinear system continue to persist. It was generally 

agreed upon that a projected spacecraft's trajectory could be greatly altered with only 

slight variations to initial conditions, and that stability within the orbital plane of the 

primaries was heavily dependent on their respective masses [12, 13]. Motion 

perpendicular to the plane of orbit of the primaries were found to be stable [ 14] and is 

generally not disputed. Differences in opinion emerge regarding what particular mass 

values could give rise to bounded motions, and if the triangular points of the Earth-Moon 

system are naturally stable. 
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Findings of mass ratios allowing stable motions to occur within the orbital plane of the 

two primaries were often contradictory. Studies to find the critical mass ratio, that is, the 

maximum ratio of the masses of the two primary bodies for which bounded motions 

about the triangular points could exist, were often contradictory. One study found that 

only mass ratios less than a critical value of 0.03852 could allow stable motions [15]. 

Yet, another study found that the critical mass ratios deduced using linear stability 

analysis on the classical model did not hold in the relativistic model, concluding that only 

a mass ratio greater than 0.5 could attain truly stable motions [16]. However, simulations 

of satellite motion about the Sun-Jupiter and Earth-Moon L4 point, both of which have 

mass ratios below 0.5, implied otherwise, demonstrating that bounded motions 

sufficiently stable for practical applications could exist in these systems [17]. 

With regards to the stability of the triangular points in the Earth-Moon system, linear 

analysis implies bounded motions in the orbital plane. The motion itself can be described 

as a superposition of two natural periodic orbits; one that is 28.6 days and another that is 

approximately 3 months. The ratio of these two periods is approximately 3:1, which was 

the commensurability ratio studied in [18]. It was found that motions with a 3:1 

commensurability ratio were unstable, despite the absence of external perturbations. This 

was counter to the argument put forth in [ 19] and several other texts that nonlinearities do 

not destabilize the motion at the Earth-Moon L4 point, but perturbing forces would. The 

motion is naturally bounded but only in the absence of solar gravitational forces, which 

acts as the destabilizing factor in the real system. In fact, it is stressed in several 

preliminary studies of motion in the Earth-Moon system that results cannot be considered 

accurate without inclusion of the Sun's perturbing effect on the system. 

Recognizing the inability of the CR3BP model to accurately describe motion in the 

disturbed system, several authors conducted studies into the existence of stable points in a 

perturbed environment. Danby [20] studied the effects of non-spherical primary bodies 

and the addition of a fourth body to the CR3BP, finding that stable motion was attainable 

near the L4 point, but stressed that his linear analysis was an oversimplification of a real 

system. Treating the Sun as the fourth body, de Vries studied its effect on the motion of 
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objects near the Earth-Moon IA point in [21]. His results were deduced using a coplanar 

model with zero eccentricity and varied greatly from simulations using ephemeris 

positions. Breakwell, Pringle and others used advanced perturbation analysis techniques 

in [22- 24] and found that the perturbed system was generally unstable. 

The sensitivities of the nonlinear, Sun perturbed system was highlighted in [25], where 

Schechter, using a model that neglected the inclination of the Earth-Moon system relative 

to the ecliptic, determined that even small deviations from the IA point would grow large 

over time. This is in agreement with Tapley, Lewellan and Schutz results in [26] and 

[27], which also showed an increasing amplitude in the out of plane motion when the 

Earth-Moon inclination was factored into the analysis. A trajectory that expanded and 

contracted until approximately 3900 days before leaving the Earth-Moon system was 

observed in their simulations. The amplitude of the motion was approximately 220,000 

km, and the period of motion was determined to be approximately 1500 days. The 

sensitivities of this system's dynamics were clearly demonstrated in a later study by the 

same authors [28]. In this work, it was shown that small changes to the constants in the 

equations of motion was found to have drastically increased the duration by which the 

spacecraft remained in the region of the L4/L5 points of the Earth-Moon system. 

Solar radiation pressure, the shape of the primaries and eccentricity of their orbits also 

affects the stability of the IA point, although not in the same capacitance that a fourth 

attractive body would. The effect of radiation pressure from one primary body on the 

stability and location of the IA point was studied in [29-32]. The position of the 

equilibrium point was found to shift under the effect of solar radiation, but the adjusted 

L4 point remained generally stable for all IA points in the solar system. The analysis was 

extended in [33] and [34] to include oblate and eccentricity effects, drawing similar 

conclusions regarding stability so long as the eccentricity values were small. Considering 

only the eccentricity Earth-Moon orbit, Colombo [35] found that the IA point remained 

stable, but that its degree of stability decreased. 
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Since analytical studies could not bring about consensus over the issue of the Earth-Moon 

L4 point's stability, experimental and numerical studies using ephemeris models were 

required. A famous experiment conducted by Francisco and Freitas involved a visual 

search for objects in the region, which would imply that sufficiently stable conditions 

existed for practical purposes. The results of this photographic search for objects in the 

vicinity of the Earth-Moon L4 point were presented in [36]. In that study, no objects 

were found, implying unstable conditions. However, the search was limited by the 

resolution of the imaging system, which could only detect objects that were at least 

several metres in diameter. Numerical simulations using ephemeris models were 

conducted in [37] and [38]. These simulations found quasi stable regions outside of the 

Earth-Moon plane and generally unstable motions over large time scales, save for a few 

select initial conditions. This highlights the sensitivities of the dynamics to initial states 

and epochs. Ephemeris models were also used by Schutz to assess the possibility of 

space colonies located at the L4 point [39]. His results showed that an object would 

leave the Earth-Moon system within 1300 days, but he stressed that more favorable initial 

conditions could extend that period. Munoz numerically searched for such initial 

conditions [ 40]. He limited his search by focusing on conditions that would result in 

periodic motions, and motions with minimal deviations from the L4 point using 

ephemeredes models. He found several instances in which libration amplitudes near the 

L4 point would be small, but that the existence of such scenarios were heavily dependent 

upon the initial positions of the primary bodies in the system. 

Several articles pertaining to the search for periodic and bounded motions ustng 

analytical methods predate Munoz's numerical study. Of particular interest was the 

existence of such motions in the presence of the Sun's gravitational perturbations. In 

[25], Schechter predicted the existence of coplanar periodic orbits in the Sun perturbed 

system which was later verified by the analysis of Kolenkiewicz and Carpenter [41]. 

More specifically, he predicted that such an orbit could exist for the L4 point, but that its 

stability would be marginal. Rand and Podgorski [42] suggested a time independent 

method of finding approximate periodic orbits using geometrical dynamics and Fourier 

transforms. In [43], mechanisms causing the termination of short and long period motion 
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was investigated. These studies focused on using analytical methods to obtain results. 

Advances in computational capabilities have allowed researchers to find numerous 

periodic orbits about the lA point, but only a few are considered to be applicable to 

practical missions [ 44]. 

1.2.2 Formation Flight Dynamics and Control 

Most research into spacecraft formation flight about Lagrangian points has been focused 

on the Sun-Earth/Moon or Earth-Moon Ll and L2 collinear points. Segerman and Zedd's 

[45] preliminary dynamics analysis for formation flight about the Sun-Earth L2 point 

made use of the CR3BP model to derive planar relative equations and were able to find 

analytical solutions to them. Luquette [ 46] linearized the relative equations of motion 

and applied a linear control scheme to the system and found that linear control was 

generally validated for formation flight. Howell and Marchand [ 4 7] provide a summary 

of prior research done regarding formation flight at the Sun-Earth/Moon Ll and L2 

collinear points. In this, they discuss different control strategies for formation control of 

natural and non-natural formations. They also developed optimal feedback control laws 

for the reconfiguration of satellites at the Sun-Earth/Moon L2 point in [48]. Li [49] 

developed open and closed loop control methods for formation reconfiguration using 

SRP forces at the Sun-Earth/Moon and Earth-Moon L2 points. 

With regard to formation flying at the Earth-Moon triangular libration points, there has 

not been much emphasis in the literature. Catlin and Mclaughlin completed preliminary 

formation flight analysis at these points in [5,50]. They build upon previous work in [10] 

to derive linearized, relative equations of motion for a formation-flying pair of spacecraft 

for various formation flying configurations. They determined that the largest source of 

errors in their model was the neglect of solar gravitational effects on the system, followed 

by neglecting solar radiation pressure effects and the Earth's oblateness. Their analysis 

showed that not accounting for the Sun's gravity resulted in relative errors that were 2 

orders of magnitude greater than that of the unperturbed case. This helps to illustrate the 
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need to incorporate solar gravitational effects for a more accurate representation of the 

system's dynamics. 

1.2.3 Solar Radiation Pressure Modeling and Control 

The subject of solar sails has been covered extensively by Mcinnes in [51] where he 

discusses modeling, applications, construction and the history of solar sails, among other 

topics. In [52], he and other researchers propose the use of solar sails for stabilizing 

motions at the Sun-Earth/Moon and Earth-Moon Lagrange points. Smimov, 

Ovchinnikov and Guerman [53] extended this further to using solar sails to maintain a 

satellite formation in heliocentric orbit. Baoyin and Mcinnes [54] showed that artificial 

out of plane Lagrange point orbits could be achieved using sails. Although the orbit was 

dynamically unstable, they showed that the system was controllable using solar sails. 

1.3 Motivation 

From the literature survey, it is clear that the dynamics of the Earth-Moon L4 point are 

difficult to accurately model. In the presence of modeling simplifications and 

uncertainties, the applicability of a controller developed using such models to the real 

Earth-Moon system is difficult to assess. However, these points are accessible and are 

stable according to the CR3BP analysis. This makes them ideal locations for a wide 

range of formation flight applications, such as imaging interferometry missions and 

automated spacecraft or space station servicing missions. Due to the destabilizing effect 

of perturbing forces and the precision requirements of some proposed formation flying 

missions, disturbances to the system must be effectively countered by a control system. 

A robust controller could accomplish this task. In addition, SRP, traditionally seen as a 

source of perturbation, has emerged as a potential control input for Lagrange point orbits. 

Thus, the development of innovative control schemes could make formation flight 

missions possible about the Earth-Moon triangular libration points. 

10 



1.4 Scope of Thesis and Research Objectives 

The aim of this research is to develop preliminary control algorithms that will accomplish 

spacecraft formation-keeping tasks and relative orbit corrections for missions at the 

Earth-Moon L4 point. Dynamic models will include the effects of Earth-Moon orbital 

plane inclinations relative to the ecliptic and solar gravitational perturbations. All other 

sources of perturbations will be considered minor and out of the scope of the present 

research. 

1.5 Contribution of Thesis 

This thesis presents the following contributions to the field of satellite control: 

1) Development of closed-loop linear and nonlinear control algorithms for spacecraft 

formation control near the Earth-Moon L4 point; 

2) Analyzing the use of thrusters in fully and underactuated configurations for the 

control of in-plane elliptical and circular formation configurations 

3) Studying the use of solar sails as a means of providing control accelerations, and; 

4) Proposing the use of a hybrid propulsion system to maintain natural formation 

trajectories. 

1.6 Thesis Organization 

This thesis will be presented in the following order. In Chapter 2, the dynamic modeling 

of the system is developed. Here, the CR3BP is discussed, including its use in 

determining the various Lagrange points, the stability properties about these points, and 

how this model can be applied to this present research. Modifications necessary for the 

inclusion of the Sun's gravitational effect will be shown, forming a system more 

accurately described by the very restricted four body problem (VR4BP). Equations of 

relative motion for a formation flying pair of spacecraft are then derived for satellites 

flying about the Earth-Moon L4 point and discussed in depth. A simplified model for 

solar radiation pressure will also be briefly discussed in this chapter. 
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Chapter 3 will focus on providing background information regarding the various control 

methods applied in this research, including linear quadratic regulator and variable 

structure control techniques. Control laws for the formation system controlled using 

thrusters and solar sails will also be developed in this chapter. Simplifications which 

helped facilitate the development of the control laws will be discussed. 

The results of the thruster controlled scenario are presented and discussed in depth in 

Chapter 4. The need for control is first established through some simple open-loop 

simulations of the systems dynamics in the linear and nonlinear systems. Both linear and 

nonlinear techniques are applied to progressively complicated models of the system, 

culminating in the relative control of the solar gravitationally-perturbed system using 

thrusters in an underactuated configuration. Comparisons between the performances of 

various controllers will be discussed and their fuel consumption requirements will be 

analyzed. 

Chapter 5 presents the simulation results for a system controlled using solar sails. The 

efficacy of the closed loop controllers applied here will be discussed under various 

scenarios, including for initial state errors and for control under a strong perturbing force. 

These results are compared to the thruster-controlled scenario to assess the effectiveness 

of the solar-sail-controlled system. 

A hybrid propulsion system using both solar sails and thrusters simultaneously for control 

is proposed in Chapter 6. This approach is applied directly to the solar gravitationally 

perturbed system, and the controller's performance is analyzed. Comparisons will be 

made to the performance of similar controllers in the thruster and solar sail controlled 

systems. 

Finally, Chapter 7 presents some suggestions for future research, and offers some 

concluding remarks regarding the validity of this research. 
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Chapter 2 

Motion Near Earth-Moon Triangular 
Libration Points 

2.1 Introduction 
In this chapter, the dynamic model describing the natural motions near the Earth-Moon 

L4 point is developed. Since the circular restricted three body problem forms the 

foundation of the dynamic model, it is discussed in some detail here. Discussions will 

include expressing the nonlinear equations of motion in non-dimensional and linearized 

form, the determination of the Lagrange points, and the stability of these points in the 

absence of perturbations. 

The motion in the Earth-Moon system can be described by the circular restricted three

body model. However, this model does not represent a true model; mainly, because it 

does not account for the perturbing effect of the Sun. To partially remedy this, solar 

gravitational effects are modelled and added to the system to form a more accurate 

system model, as was done in [26]. Although still not a perfect system model, this model 

is sufficiently accurate over short time intervals of a few months for practical purposes. 

Solar radiation pressure (SRP) is also modelled in this chapter. However, in this thesis, 

SRP is not considered as a disturbance to the system. Rather, it is to be manipulated 

through changes to a sail's orientation to provide desired control accelerations. This is 
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followed by derivations of the relative equations of motion for a formation flying pair of 

satellites, which is the last topic of this chapter. 

2.2 Assumptions and Simplifications 
Some assumptions were made to simplify the model and analysis. They are listed as 

follows: 

1) Perturbations from Earth's oblateness (J2) and other planetary perturbations were 

considered minor, and were not taken into account. 

2) Shadowing effects are neglected since the time span in which a satellite is 

shadowed by the primary bodies is small. 

3) Attitude is assumed to be controlled by a separate attitude control system. 

4) Torques due to the resultant input forces is assumed negligible; this is equivalent 

to assuming control forces act through the system's centre of mass. 

5) The Sun perturbs the motion of the satellites only, and does not affect the 

assumed circular motions of the Earth and Moon. 

6) The equilibrium points of the three-body system are assumed to remain fixed in 

the presence of disturbances due to solar gravity and eccentricity of the primaries. 

2.3 Restricted Three-Body Problem 
The circular restricted three-body problem can be seen as a simplified model of the 

generalized three-body problem in which three bodies in space mutually exert 

gravitational influence over the motion of the each other. The challenge is to find a 

solution describing the motion of each body. In the circular restricted three-body 

problem, it is assumed that the mass of one of the objects is small and has negligible 

effects on the motion of the other two larger, primary bodies. Furthermore, it is assumed 

that the two larger bodies move about their gravitational mass centres in a circular orbit, 
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thereby reducing the problem to one of determining the motion of the small mass only. 

Even with such simplifications, finding a solution to this problem has proven difficult. 

One complicating factor is the lack of constants of motion in the three body problem. 

Henri Poincare proved near the end of the 19th century that the lack of constants in the 

motion rendered it impossible for a closed form solution to this problem to be found. The 

advent of computers and the rapid improvements in processing power has allowed for the 

numerical integration of the equations. However, this system is very sensitive to initial 

conditions; that is, small variations in initial states can drastically affect the system 

behaviour over time, and even small integration errors can hamper the numerical 

accuracy of the results over time. As such, simulation time frames should be limited to 

shorter time frames where possible. The following is a formulation of the restricted 

three-body problem found in [7]. 

Consider a system of two large masses, M1 and M2, orbiting about their common 

barycentre, as shown in Figure 2.1. The XYZ frame is a rotating frame with its origins at 

the barycentre. Its angular velocity is equal to the mean motion, n, of the two larger 

masses and is directed out of the page, in the Z direction. The unit direction vectors 

are i, ], k, with the k vector pointing out of the page. 

>I< X 

D 

Figure 2.1 Rotating frame with origins at system barycentre 
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A small mass, m, is added to this model. Its position is defined by the vector R and its 

position relative to M 1 and M2 are denoted as vectors ~and~, respectively. The 

distances between the masses and the barycentre are defined as D1,2 and are shown in 

Figure 2.1. 

The position of m can be broken into directional components as 

(2-1) 

Note that the derivatives of i and j are not zero because of the rotation relative to the 

inertial frame. The derivatives of i, ], k can be summarized as follows: 

t = nxi = n(kxi) = n] 

j = nx] = n(kx]) = -ni 

k=nxk=n(kxk)=O 

(2-2) 

Here, the angular velocity vector n points in the direction of the Z axis and its magnitude 

can be found from 

n= (2-3) 

Taking the second derivative of Eq. (2-1) and substituting 1n Eq. (2-2), the inertial 

acceleration of m can be found to be 

(2-4) 
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A force function can be found using Newton's second law and the theory of universal 

gravitation: 

The vectors r1 and r2 can be deduced from Figure 2.1 as being: 

r1 = (X - D1 ) i + Y} + Zk 

r2 =(X +D2 )i +YJ+Zk 

(2-5) 

(2-6a) 

(2-6b) 

Substituting Equation (2-6) into Equation (2-5) and equating the directional components 

of Equation (2-4) and Equation (2-5), the equations of motion for m can be expressed as 

.. . 2 llJ.Y J.12Y 
Y+2nX-n Y=----

3 3 
'i r2 

·· llJZ J.1 Z 
Z=-----2-

3 3 
'i r2 

(2-7a) 

(2-7b) 

(2-7c) 

where constant values of GM 1 and GM 2 have been expressed as J.11 and J.12 to simplify 

the equations. 

The equations of motion can be expressed in non dimensional form through the 

substitutions described in [10]. Setting the unit of distance equal to D, the unit of mass 

equal to M 1 + M 2 , p = M 2 
, and the unit of time equal to n - I, substitution into 

Mt+M2 

equations (2-7 a,b,c) yields 
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X -2Y -X= (I-p)(X -p) p(X +1-p) 
- 3 - 3 
'i r2 

(2-8a) 

-
Y +2X -Y = 

(I-p)Y pY 
- 3 - 3 
'i r2 

(2-8b) 

Z= 
(I-p)Z 

- 3 
'i 

(2-8c) 

where bar represents nondimensional quantities. It should be noted that the period of the 

orbit is equal to 21[ in this representation. The distances ~ and ~can be expressed as 

2.4 Equilibrium Points 

~ = ~( x- P )2 + f 2 + z2 

~ = ~( x +I- p f +Y2 +Z2 

(2-9a) 

(2-9b) 

It is well known that five stationary points exist in the CR3BP. These equilibrium points 

were discovered by Euler and Lagrange in the mid-18th century, and have garnered much 

interest since the mid-20th century with the development of satellites. Such points could 

be ideal locations for placing communications relay satellites, space research satellites, 

mission support satellites, and even space stations. Understanding how these points are 

determined is useful to the study of satellite orbits about these points. The determination 

of the five equilibrium points' locations was shown in [8] using the nondimensionalized 

equations of motion and briefly summarized in this section. 

Collinear Equilibrium Points 

At the equilibrium points, the velocity and acceleration relative to the two larger bodies is 

zero. Substituting this into Equations (2-8), we have 
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-x =- (1-p)CX -p) __ PC_X_+_1-_p_) 
- 3 - 3 
'i r2 

(2-10a) 

-Y=-(1-p)Y pY 
- 3 - 3 
'i r2 

(2-10b) 

(1-p).Z p.Z 
0=- --

-3 - 3 
'i r2 

(2-10c) 

From Equation (2-1 Oc ), it can immediately be deduced that the Z components of the 

equilibrium positions are zero. Hence, all equilibrium points of a restricted three body 

system lie in the XY plane. 

If Y is set to zero in Equation (2-1 Ob ), then the only equation of significance left is 

Equation (2-10a). Substituting Equation (2-9) into Equation (2-10a) as well as the result 

Y = Z = 0, we obtain 

- ( 1- p) c x - p) p( x + 1- p) 
X = 3t 2 + 3t2 ' 0 < P < 1 

( ( x- p )
2

) ( ( x + 1- p f) 
(2-11a) 

Equation (2-11a) can be solved numerically for the three real roots that satisfy the 

condition of p < 1. Alternatively, when the sign of the square root terms are accounted 

for, Equation (2-11 a) can be expressed as three 5th -order equations valid only in the 

ranges specified: 

X = (1-p) p 
---2 + 2 ' 

(x-p) (X+1-p) 
-1+p<X<p (2-11 b) 

x =- (1-p) P 
( x- p )

2 
( x + 1-)

2
' 

-1+p>X (2-11c) 

- (1-p) p 
X= 2+ 2 ' 

(x-p) (X+1-p) 
1-p<X (2-11d) 
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These roots represent the positions of the first 3 equilibrium points, known as the 

collinear equilibrium points because they lie on the line joining the primary bodies. For 

the Earth-Moon system, p ~ 0.012151. Solving the above equation, the 

nondimensionalized coordinates of the collinear points in the Earth-Moon system are [9]: 

Triangular Equilibrium Points 

~ ~ X = -0.8369 

~~X=-1.1560 

~~X =1.005 

In the collinear case, it was assumed that the Y component of the equilibrium points were 

zero. If Y does not equal zero, then Equation (2-1 Ob) can be expressed as 

(1-p) p 
1= -3 +=3 

'i r2 
(2-12) 

Substituting Equation (2-12) into Equation (2-10a), we have 

(2-13) 

Simplifying Equation (2-13 ), we find the result~ = 1. Substituting this back into 

Equation (2-12), and solving, we find that If= 1 as well. Therefore, with If=~ = 1, we 

can equate Equations (2-9a) and (2-9b) to find the X component of the triangular 

equilibrium points. Bearing in mind that Z was found to be zero in all cases, we have 

( x- p f = ( x + 1- p )
2 

(2-14) 
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Solving Equation (2-14) yields X = p- _!_. Substituting this result into Equation (2-9a) or 
2 

(2-9b) and solving for Y gives Y = ± J3 . Figure 2.2 shows the equilibrium points in a 
2 

general restricted three body system. 

L4 
y 

A\ 

~~~----~~~--~~ 
L2 L3 X 

L5 

Figure 2.2 Positions of the equilibrium points in a general three body system 

2.5 Motion About The L4 Point 
If the motion of an object in the vicinity of the Lagrange points remain bounded with 

time or tends to come to rest at the points themselves, then these points are stable. Linear 

stability analysis for the stability of each point was developed in [7] and [8], and is 

briefly summarized here. 
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Linearized Equations of Motion 

Equation (2-8) can be linearized using the procedure described in [8]. Consider an object 

in the vicinity of an equilibrium point. The co-ordinates of such an object can be 

expressed as 

Z=z 

(2-15a) 

(2-15b) 

(2-15c) 

where the co-ordinates of the equilibrium point are ( Xe, J: , 0), and x, y, z represent 

small displacements from the equilibrium point. The values ~ -3 and ~-3 appearing in 

Equation (2-8) can be expanded using Equation (2-9). 

3 

r,-3 =[(X, +X- p)2 +(J: + y"f + z 2 r (2-16a) 

3 

r,-3 =[(X, +X+l-p)2 +(J: + y"f +Z2 r (2-16b) 

Expanding out Equations (2-16a) and (2-16b ), 

3 

~ -3 = ( (X e 2 + I: 2 - 2 p X e + p2 ) + 2 ( xX e - p X+ I: Y)) -2 (2-17a) 

3 

~ - 3 
= ( (X e 2 + I:; 2 

- 2 P X e - 2 p + 2X e + p 2 + 1) + 2 { xX e - p X+ X+ J: Y)) -2 (2-17b) 

The first bracketed term of Equations (2-17a) and (2-17b) are constants. The higher 

order terms x2
, y2 and z2 have been neglected. Expressing them in an alternative form, 

3 

~ -
3=((xe-P)

2 
+I:

2
+2((xe-p)x+I::Y)r

2 (2-17c) 
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3 

Tz-3 
=((xe+1-pf +I:

2
+2((xe-p+1)x+J:y)r

2 (2-17d) 

Assuming that x << 'f.2 andy<< 'f.2 , a first order approximation can be made by 

expanding using the binomial theorem and neglecting higher order terms. The binomial 

theorem is given as 

n(n-1) 
(a+ X r ~an +nan-I X+ an-2 x 2 + ... + Xn 

2 
(2-18) 

where a is a constant. Treating ( Xe + 1- p f + J:2 as the a term, 2( ( Xe- p + 1) x + J:y) 

as the x term, applying the binomial theorem to Equation (2-17) and neglecting higher 

order terms yields 

3 

'i -3 ~[(X, -p)2 +J:2 r: 
5 

(2-19a) 

-3{( X, - p )
2 
+ i;:2 r ·((X, - p )x +J:Y) 

3 

r, -3 ~[(X, +1-pf +f,l2 
5 

(2-19b) 

-3{( X, + 1- p f +f.l2 ·((X, - p+ I)x +f.Y) 

I I 

The terms [ (X, + p) 
2 + f,2 ]' and [ (X, + 1- p f + f,2 ]' represent the distances from the 

equilibrium point to each of the larger bodies, which are constant. Let these two terms be 

represented by R1 and R2 , respectively. Substituting into Equation (2-8) and simplifying 

gives Equations (2-20a,b,c). These equations represent a linear approximation of motion 

and are valid only in the vicinity of the equilibrium points. 
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(2-20a) 

[ ( - )- (- )-] .. . X - Y X +1- Y - 2- 3 ( 1 ) e p e 3 e p e -y+ x-y= -p 5 + p 5 x 
RI R2 

[ ( 1 y
2 

J ( 1 y
2 

JJ - (1-p) -3 -3~5 +p - 3 -3 __! 5 y 
RI RI R2 R2 

(2-20b) 

(2-20c) 

Note that linearization has decoupled the motion along the z axis from the motion along 

the x and y axes, implying that actuation along z is required for full 3 axis control. 

Stability Analysis for the Earth-Moon Lagrange Points 

The derivations and equations presented thus far are general in nature, and are valid for 

any three-body system. In this thesis, the focus is on the dynamics about the L4 point of 

the Earth-Moon system, where the value of pis approximately 0.012151, as previously 

noted. The analysis presented henceforth will make use of this mass ratio, with the 

results therefore being specific to the Earth-Moon system. The following linear stability 

analysis of the Earth-Moon Lagrange points is also described in [7]. 

Consider the L4 point of the Earth-Moon system where the co-ordinate of this point was 

previously found to be[p-~. ~J and R1 = R2 =I. Substituting this into Equations (2-

20a,b) and expressing the resultant planar equations of motion in state space, we get the 

linearized equations of motion about the L4 point as 
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0 0 1 

X 0 0 0 

y 3 3~ (p-~J 0 = 
X 4 

y 3~(p-~J 9 
-2 

4 

The characteristic equation for this system is 

This can be solved to find the eigenvalues, 

~-l±Jl-27 p(l- p) 
A-=± 

2 

0 

1 X 

2 
y 

(2-21) 
X 

0 
y 

(2-22a) 

(2-22b) 

Note that the nature of the solutions to Equation (2-22) is dependent only on the mass 

ratio p, which is unique to a given system. So long as the mass ratio for a given system 

results in imaginary roots, motion about the triangular equilibrium points for that 

particular system would be bounded. For the solutions to be purely imaginary, the 

conditions p ~ 0.03852 or p ~ 0.96148 must be true. This condition is satisfied for both 

the Sun-Earth ( p = 3.0155x 10-6
) and Earth-Moon ( p = 0.012151) systems. Therefore, 

the four roots as given by Equation (2-22c) can be expressed as 

A,,2 = 0± is1 

~,4 = 0± is2 

(2-22c) 

where s1 and s2 are the imaginary parts. They also represent the long and short period 

frequencies of the bounded motions. Hence, natural motion about L4 point can be 
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conceptualized as being a superposition of the long and short period motions. In the 

Earth-Moon system, s1 ~ 0.297931 and s2 ~ 0.954587, resulting in a long period of 92 

days and a short period of approximately 28.6 days, respectively. 

The stability of the collinear points can be analyzed in a similar manner. Once again, 

substituting Equation (2-15a) into the non-dimensionalized equations of motion, and 

noting that :t:, and Ze components are zero for the collinear case, after simplification, the 

equations become 

where 

x- 2 y-( 2a + 1) x = 0 

y- + 2:X + (a -1) y- = o 

The characteristic equation in this case can be expressed as 

A 4 
- (a - 2) A 2 

- ( 2a + 1) (a - 1) = 0 

(2-23a) 

(2-23b) 

(2-23c) 

(2-24) 

(2-25) 

Substitution of values of a for the Sun-Earth and Earth-Moon system and . solving 

Equation (2-25) for the eigenvalues shows that there are two real and two imaginary roots 

in each case, indicating instability. 

Closed Form Solutions 

The in-plane Equations (2-21) are a set of linear, homogeneous differential equations. 

The general solution of these equations can be expressed as 
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(2-26a) 

where ci and c; are constants, and t is time. This can be expanded using Euler's 

equation, ei8 =cos B + i sin B. Noting that for the Earth-Moon system the four in-plane 

eigenvalues are purely imaginary, substitution into equation (2-26a) gives [10] 

x = C1 cos(s1t) + E1 sin(s/) + C2 cos(s2t) + E2 sin(s2t) 

y = c; cos(s/) + E; sin(s1t) + c; cos(s2t) + E; sin(s2t) 
(2-26b) 

where Ci, Ei , c;, and E; are constants of the motion. The relation between Ci , Ei , ci', 

, 
Ei as described in [10], is 

where 

c' = K. (2s.E.-3J3 (p-_!_)c.J 
l l l I 2 2 l 

E~ = -K. (2s.C. + 
3J3 (p _ _!_) E.J 

l l l l 2 2 l 

1 
K .=--

1 2 9 
s. +

l 4 

Furthermore, the relation between the initial states and the constants are [ 1 0] 

- c' c' Yo= 1 + 2 

(2-27a) 

(2-27b) 

(2-27c) 

(2-28a) 

(2-28b) 

From these relations, it can be readily seen that by setting the appropriate constants equal 

to zero, the long or short period could be eliminated from Equation (2-26). 

27 



The out-of-plane motion can be readily solved for as well. Substituting a trial solution of 

z = eA.t into Equation (2-29a) and solving for A, we find that A= ±1i. This is a purely 

imaginary number, so the motion along the z axis is stable and, analogous to the in-plane 

motion, its frequency ( s
2

) is equal to 1 in this case. The general form of the solution 

therefore is 

(2-29a) 

where Ji are constants of the motion. Letting the initial conditions in the z axis motion 

be z0 and z0 , solving for the constants and substitution into Equation (2-29a) yields 

z = z0 coss/+~sins/ (2-29b) 
sz 

Two Periods of Motion 

As determined previously, the two frequencies of motion are s1 :::::: 0.297931 and 

s2 :::::: 0.954587. Overall motion about the L4 point can be viewed as a superposition of 

these two frequencies, resulting in a complex trajectory path. The planar trajectory of an 

object about the L4 point is shown in Figure 2.3 and the out-of-plane motion is shown in 

Figure 2.4. Recall that in the derivation of the CR3BP model, the mass of the object is 

assumed to be insignificant compared to the two larger primaries and does not appear in 

the equations of motion. Thus, knowledge of an object's initial position and velocity is 

all that is required to determine its motion in this system. Figures 2.3 and 2.4 were 

generated using zero initial displacements from the L4 point and velocities of 10 rnls in 

all axes. Note that the ratio between the long and short period frequencies is irrational; 

this indicates that motion about the L4 point when both long and short periods are present 

is not closed. Instead, there is a recursion error in the motion as is clearly evidenced in 

Figure 2.3. Motion along the z axis is bounded and oscillatory. Although elegant, these 
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trajectories are too complex for preliminary spacecraft formation control development 

purposes and will not be considered further here. 
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Figure 2.3 Planar trajectory when both the short and long period motions are present 
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Figure 2.4 Out-of-plane motions when both the short and long period motions are present 

Elimination of either the long or short period of motion is described in [ 1 0] and yields a 

more reasonable trajectory. In Equation (2-26a), to eliminate the long period of motion, 

the constants with subscripts '1' are set to zero. Equation (2-27) can then be used to 

solve for the constants in Equation (2-26b) and the initial conditions can be found from 

Equation (2-28). The same procedure can be done to eliminate the short period of 

motion. In that case, constants with subscript '2' are set to zero in Equation (2-26a) and 
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the above procedure is repeated. One only needs to input arbitrary initial states along the 

x axis when using this procedure. The long period is approximately 92 days (3 months) 

whereas the short period is approximately 28.6 days. For the plots of the short and long 

period trajectories shown in Figure 2.5 and Figure 2.6, the initial position and velocity 

along the x axis is set to zero and 10 m/s. 

The trajectory of the leader satellite is assumed to be in a known reference orbit. In 

general, for a given mission, an appropriate closed trajectory for the leader satellite would 

need to be determined numerically based on anticipated initial epoch conditions, as was 

done in [ 40]. In that way, relative control could be achieved through control actuations 

on the follower satellite only. However, the focus of this study is to examine the 

plausibility of using various control strategies to accomplish relative control, and the 

numerical search for such closed trajectories is not within the scope of this present 

research. In this study, to facilitate the design of control laws and to assess the 

plausibility of different control schemes, it is assumed that the leader satellite is in a short 

period orbit about the L4 point. The short period is chosen since the Moon's orbital 

period of about 27.3 days is close to that of the short period. The control algorithms 

developed are general in nature and should be applicable for formations with alternate 

leader satellite trajectories. 
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Figure 2.5 In-plane short period motion trajectory, period of -28.6 days 
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Figure 2.6 In-plane long period motion trajectory, period of -92 days 

2.6 Solar Gravitation Modelling 
To model the Sun's perturbing force, the direction of the Sun needs to be expressed in the 

rotating frame of reference. This problem has been studied extensively by Tapley, 

Lewallen and Schutz [26-28], and by de Vries [21]. The Solar gravitation model 

presented here was first described in [26]. 

The gravitational potential of the Sun expressed in the rotating frame with origins at the 

Earth-Moon barycentre is 

U = GM (_!_- X . X 3 + y . I; + z . z3 ) 
s 3 D 3 

r3 3 

(2-30) 

where subscript '3' denotes values pertaining to the Sun. It can be shown that the Sun's 

perturbing force can be expressed in the rotating frame as 

aus =- GM3 (x-x )- GM3 (x +X) 
ax r/ 3 D/ 3 

e 

(2-31a) 

aus =_GM3 (y-y)-GM3 (y +Y) 
ay r/ 3 D/ 3 e 

(2-31b) 
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aus =- GM3 (z-z )- GM3 z 
az '33 3 D/ 3 

(2-3lc) 

Note here that the transformations specified in Equations (2-15a,b,c) have been applied. 

The values of x3 , y3 , z3 were found from a series of frame of reference rotations deduced 

from Figure 2. 7, and can be expressed as 

x3 = D3 (cos lf/ cos B + cos i sin lf/ sin B) - X e 

y3 = - D3 (cos lf/ sin B- cos i sin lf/ sin B) - ~ 

(2-32a) 

(2-32b) 

(2-32c) 

where the inclination of the Earth-Moon orbit plane relative to the ecliptic is expressed as 

i here. The angle lj/ is measured in the ecliptic and is the angular position of the Sun-

Earth/Moon barycentre line. The angle B is measured in the Earth-Moon orbit plane and 

represents the position of the Earth-Moon line. Both lj/ and B are measured relative to 

the Earth-Moon line of nodes and are functions of time, and are defined by 

(2-33a) 

(2-33b) 

Here, ne is the mean motion of the Earth-Moon barycentre about the Sun, which is 

equivalent to the angular rate of change of the Sun vector in the inertial frame. The 

angles lj/0 and 80 are the initial angles. Equation (2-7) can be transformed into the L4 

point centred frame of reference using Equation (2-15). Equation (2-31) can then be 

added to this result to form the solar-gravitationally-perturbed equations of motion. 
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~(x-x3 ) { ) 2 - - x +X n 3 3 e e 
'3 

(2-34a) 

(2-34b) 

(2-34c) 

where the relations n, = ~GM,' and J.1, = GM3 have been substituted. It should be noted 
D3 

that the problem is now more accurately described as a restricted four-body problem. 

z 

SPACECRAFT 

Figure 2.7 Dlustration of the frames of references used to determine the Sun's direction vector [26] 
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Figure 2.8 and Figure 2. 9 shows the effect of solar gravity on the motion of an object 

initially at rest at the L4 point over the course of 700 days. These results match those 

presented in [26-28]. It can be seen that the in-plane motion grows dramatically over this 

period, with the widest part of its trajectory being over 500,000 km. The motion also 

appears to begin contracting, as evidenced by the plots of the axial motions. However, 

practical applications that require or can tolerate such large deviations from the 

equilibrium point are rarely discussed. As such, even if the motion of the object is 

theoretically bounded, it is not considered stable enough for practical applications and 

control would still be necessary in order to restrict the object's motion to stay within 

useful regions only. The Sun's direction vector has a component in the out of plane 

direction as a result of the inclination of the Earth-Moon orbital plane relative to the 

ecliptic, which in tum perturbs motion along the z axis. 

X 10
6 

2.5 

2 

1.5 

1 ,....--, 

~ 
0.5 ~ 

L....--...J 

~ 
0 

-0.5 

-1 

-1.5 

-2 
-5 -4 -3 -2 -1 0 

x [km] 
Figure 2.8 Trajectory of an object initially at rest at the L4 point under the influence of the Sun over 
the course of 700 days. 
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Figure 2.9 Motion along each axis of an object initially at rest at the L4 point, perturbed by the Sun 
over a period of 700 days 

Solar Gravitation Model Limitations 

The simplified model of Solar gravitation discussed previously requires some cautionary 

notes. In this restricted four-body system, only the motion of the satellite is assumed to 

be perturbed by the Sun's gravity. However, it is well known that that Sun also perturbs 

the motion of the Moon, which is unaccounted for in this model. 

Limitations must also be placed on simulation time frames. Aside from cumulative 

numerical integration errors, this model assumes that the primary bodies are point masses 

and also does not accurately account for an object's motion when it is very close to either 

the Earth or the Moon. As a result, long term simulation results are rendered 

meaningless. To demonstrate this, suppose the simulations shown in Figures 2.8 and 2.9 

are repeated with a time frame of 1000 months. These results are shown in Figure 2.1 0. 

The immediate assumption would be that the motion of an object placed into this system 

would remain bounded, with continual expanding and contracting trends. However, 

35 



numerical studies done in [37] and [38] show that the object would cross paths with 

either the Earth or Moon or experience close lunar encounters within several months, 

which leads to its ejection from the Earth-Moon system. Thus, long term analytical 

simulations using this model should be viewed critically in light of the results of these 

numerical studies. 
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Figure 2.10 Long term simulation results showing bounded motions under Solar gravitational 
perturbations 

2. 7 Solar Radiation Influence 

4 

In addition to solar gravitation, solar radiation pressure (SRP) is also a source of 

disturbance. The magnitude of acceleration caused by SRP is typically small; often 

times, on the order of -10-6 Nor less. However, the degree to which this acceleration can 
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affect the motion of a system is also largely dependent on the ratio of surface area 

exposed to the Sun to the mass of the object. In this study, an attempt to exploit SRP in 

order to control the relative motion of two satellites is made. Recently, the study of 

reconfiguration at one of the collinear libration points was completed in [ 49]. Modelling 

of SRP can be found in more detail in [51] and [52- 54]. This section provides a brief 

overview of the SRP model used in this study, which is similar to that used in [49]. 

Solar radiation pressure force can be expressed as the sum of three components: force 

due to specular reflection, Frs , diffuse reflection, Frd , and absorption, Fa . These three 

components can be expressed by the following set of equations. 

Frs = 2PrsPAsCN ·L)2N 

Frd = PrdPAs(N ·L)(L+2N /3) 

Fa= PaPAs(N ·L)L 

(2-35a) 

(2-35b) 

(2-35c) 

where Prs, Prd and Pa above are the solar specular, diffuse and absorption coefficients, 

the sum of which is equal to 1. N is the unit vector normal to the illuminated surface, 

L is the unit vector in the direction of incoming solar radiation, As is the exposed 

effective area and Pis the mean flux, which is approximately equal to 4.5 x 1 o-6 N/m2 in 

the region this study concerns. If it is assumed that an ideal reflective surface is used, 

then Prd and pd would be equal to zero, leaving only Equation (2-35a). Noting that 

Frs = masrp, then the acceleration due to SRP can be expressed as 

2 A 2 A 

asrp = 2P(As I m) cos yN = amax cos yN (2-36) 

where r is the angle between Nand Land amax = 2P(A/ m) is the maxtmum 

acceleration due to SRP. 
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Figure 2.11 Frame of reference used to determine a srp expressions 

Referring to Figure 2.11, the a srp vector can be expressed as a function of two angles a 

and 8, which are the angles between a srp and the x- y plane and it's projection a 'srp and 

the x axis. Note that a and r are not necessarily equal since Lis not restricted to act 

only in the x- y plane. The projection a 'srp can be expressed as 

a 'srp = a srp cos a (2-37) 

38 



where asrp is the magnitude of vector asrp. The asrp vector can then be described as 

follows after substitution 

asrp = asrp cos a cos 8x + asrp cos a sin 8y + asrp sin az (2-38) 

From Equation (2-36), it can be seen thatasrp = 2P(As I m)cos 2 y. Substitution of this 

into (2-38) gives 

ax = amax cos2 ycos a cos g (2-39a) 

2 • s: 
ay = amax cos ycos astn u (2-39b) 

2 . 
az = amax cos ystn a (2-39c) 

from which N = [cos a cos 8 cos a sin 8 sin a f can be deduced. 

2.8 Formation-Flying Pair of Spacecraft 
The equations of motion developed thus far represent the motion of an object in the 

vicinity of the L4 point. For formation flying studies, it is convenient to work with the 

relative equations of motion between two satellites. In this section, the relative equations 

will be developed. 

Relative Equations of Motion 

The nonlinear relative equations of motion can be determined by differencing the 

equations of motion for each satellite in a formation relative to the leader. In this study, a 

formation-flying pair of spacecraft will be considered. This technique can be extended to 

a formation with an arbitrary number of spacecraft in different configurations. Equations 

(2-34a,b,c) are rewritten here for each satellite. 
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(2-40a) 

(2-40b) 

(2-40c) 

Subscript i = F, L here, and represents the follower and leader satellite, respectively. 

Subtracting the leader satellite's motion from the follower gives 

(2-41a) 

where the relations ~ = -( X e- D1 ), x2 = -( X e + D2 ) and y1 = y2 = -~ have been 

substituted to simplify the equations and subscript 'r' refers to relative motion. 

The motion of the follower satellite relative to the leader is given in Equations (2-

4la,b,c), which are functions of the leader, follower and relative states. The relations 

XF =XL+ xr' YF = YL + Yr and ZF = ZL + zr can be substituted in order to express the 
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relative motiqn as functions of the relative and leader satellite's states only. When this 

substitution is made, Equation (2-41) can be expressed as follows after some 

simplification: 

where the distances from the leader and follower to the primary bodies are 

ljL =~(XL -x1)
2 

+(yL -y1)
2 

+(zL)
2 

r2L = ~ (XL - X2 ) 2 + ( y L - y 2 ) 2 + z L 2 

r3L =~(xL -x3)
2 
+(yL- Y3)

2 
+(zL -z3)

2 

'iF =~((xL +xJ-xt)
2 

+((yL + Yr)- Y1)
2 

+(zL +zr)
2 

r2F =~((xL +xr)-x2)
2

+((yL +yr)-y2)
2

+(zL +zr)
2 

(2-42a) 

(2-42b) 

(2-42c) 

(2-43a) 

(2-43b) 

(2-43c) 

(2-43d) 

(2-43e) 
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(2-43f) 

Figure 2.12 illustrates the various vector quantities in the relative equations of motion. 

Moon Earth 

Figure 2.12 Schematic showing the vector quantities required in the relative equations of motion 

Linearized Relative Equations 

The linearized equations of relative motion are derived in much the same way as 

Equations (2-42a,b,c) were derived. Rewriting Equation (2-21) for the follower and 

leader satellites and differencing, we find the linearized relative equations of motion to be 

.!..!. 2~ 3 - 3J3 ( 1 ) -x = y +-x +-- p-- y r r 
4

r 
2 2 

r (2-44~) 

.!..!. 2~ 3J3 ( 1 ) - 9 -
Y =- X +-- p-- X +-y r r 

2 2 
r 

4
r (2-44b) 

(2-44c) 

These equations are of the same form as the linearized equations for a single satellite's 

motion without the Sun's gravitational influence. Since the Sun's gravity will be treated 
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as a disturbance to the system, it is not necessary to linearize its effects. The relative 

Solar gravitational effect can be extracted from Equation (2-42), expressed in non

dimensional form and added to Equation (2-44) to form 

(2-45a) 

(2-45b) 

..:..:.. - 1 ( Zr {- - ) ( 1 1 JJ z =-z +pp --- z -z ---
r r -3 L 3-3-3 

~F ~F ~L 
(2-45c) 

where p' = 2.7066x107 is the Sun-Moon mass ratio. 

Relative Reference Trajectory 

The unperturbed linearized equations of relative motion have the same form as that for a 

single satellite. Its closed form solution can be shown as 

xr = (elF -elL) cos(s/) + (ElF -ElL) sin( sit) 

+ ( e2F - e2L) cos(s2t) + ( E2F- E2L) sin(s2t) 
(2-46a) 

Yr = ce;F -e;L)cos(s/)+(E;F -E;L)sin(slt) 

+(e;F -e;L)cos(s2t)+(E;F -E;L)sio(s2t) 
(2-46b) 

(- - ) z -z 
- (- - ) OF OL • 
Zr = ZoF- ZoL COS S/ + SillS/ (2-46c) 

sz 

The leader satellite reference motion's period was selected be equal to that of the short 

period. Extending this requirement to that of the relative reference trajectory would 
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imply that the constants elF = CIL = EIF = EIL = 0 and c;F = c;L = E;F = E;L = 0. For a 

planar reference trajectory, the relative z axis positions and velocities are set equal to zero 

as well. With these requirements, the reference relative motion can be expressed as 

:xr = Xor cos(s2t) + Xor sin(s2t) 
s2 

(2-47a) 

(2-47b) 

(2-47c) 

where Equation (2-28) was substituted to express the equations as functions of the initial 

relative conditions. 
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Chapter 3 

Design of Control Algorithms 

3.1 Introduction 

In this study, attempts are made to achieve formation-keeping control in the fully 

actuated and underactuated system configurations. A fully actuated system is one in 

which the number of control inputs is equal to the degrees of freedom (DoF) of the 

system. An underactuated system will have fewer control inputs than its DoF. In this 

chapter, the design of controllers for the fully actuated system and the underactuated 

system is presented. Controllers are developed for the system controlled by thrusters, 

solar sails and a combination of those two referred to as a hybrid system. It is assumed 

that all states are measureable, no sensor noise is present and that the leader satellite is in 

the reference orbit described in Chapter 2 so that relative control is applied only to the 

follower. First, a linear controller using Linear Quadratic Regulator (LQR) control is 

developed for a linear, time invariant system (LTI). This is followed by an overview of 

sliding mode control (SMC), and the development of sliding mode controllers for the 

fully actuated and underactuated systems. Finally, a bang-bang controller will be 

developed for the underactuated system. 
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3.2 Linear Control Method (LQR) 
LQR control method was applied to every scenario investigated in this thesis. A brief 

summary of the LQR control scheme is provided in [55] and summarized here, followed 

by the development of linear control laws for the fully actuated and underactuated 

spacecraft-formation system. 

3.2.1 The Linear Quadratic Regulator 
For a linear time invariant system expressed as 

x=Ax+Bu (3-1) 

where x represents the system states, A is the state matrix and B the control input 

matrix, LQR can be used to find an optimal control law for this system. The goal is to 

find control inputs that will minimize the cost function, 1 over some time interval 

t0 :::; t:::; t1 • 

tl 

1 = Jcxr Qx+ur Ru)dt (3-2) 
to 

Here, Q and Rare square and symmetric weighting matrices; Q and R respectively 

weigh the tracking error and the magnitude of the control input. The control input, u , can 

be found as 

u=-Kx (3-3) 

where 

(3-4) 

and matrix His found by solving the matrix Riccati Equations, 

(3-5) 
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If the time t1 approaches infinity or is sufficiently far removed from time t0 , it can be 

shown that Equation (3-5) reduces to 

(3-6) 

and H becomes constant. 

3.2.2 LQ R Control of the Thruster-Controlled System 
Linear control methods can be developed provided the linearized formation system is 

controllable. The controllability matrix of the linearized, unperturbed system described 

in Chapter 2 is first confirmed to be of full rank. LQR control can then be applied to the 

linear system to find the constant control parameters. 

Controllability of the System 

A linear time invariant system is said to be controllable if a control input u is able to 

bring a system from an initial state x(t0)to some defined desired state x(td )within a 

finite amount of time. It is well known that for the n x n state matrix A , the matrix 

formed by 

M = [ B : AB : ... : An-! B ]T (3-7) 

is known as the controllability matrix. If M is of full rank (rank n ), then the system is 

said to be controllable. Checking the controllability of the unperturbed system, it can be 

confirmed that the system is of full rank and therefore controllable. 

LOR Control using Thrusters 

From the overview of the LQR method, it is seen that the state and control weighting 

matrices Q and R are selected based on the state and control input responses. From these, 

the gain matrix K is determined through solving the Ricatti Equation. In the case of 

using thrusters for the control input, the control matrix B is constant and the control input 
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u represent relative accelerations along the corresponding axes. As will be shown in 

Chapter 4, it appears that only an electric propulsion system is currently capable of 

imparting the minute accelerations required for formation control. For the fully actuated 

system, letting I represent the identity matrix, the matrices' dimensions are Q E IR 
6
x

6 
, 

R E IR3x3 and B = [ 03x3 J3x3r. 

For the case of the underactuated scenario, the dimensions were Q E IR 
6
x

6 
, R E IR 

2
x

2 and 

B = [ o4x2 I2x2r · 

Solving for the gain matrix, the control input can then be specified by 

u=-Kx (3-8) 

where xis the state error vector. Note that K is determined using linear plant dynamics 

while u is the control input for the nonlinear plant model. Q and R are determined 

through trial and error until reasonable system responses are obtained. 

3.2.3 LQR Control of the Solar Sail Controlled System 
In many cases, linearized system models provide good approximations of a nonlinear 

system's motion, provided system states remain within the realm where linear 

approximations are valid. It is therefore reasonable to hypothesize that a linear controller 

may be able to stabilize a nonlinear system to within tolerable error ranges. However, 

since the SRP control input function is nonaffine in the input u, and the LQR method 

requires the system dynamics to be expressible in the form of Equation (3-1), some 

simplifications to the SRP model will be necessary. Using small angle approximations 

the expressions for SRP can be simplified. These approximations will allow the system 

to be expressed in the appropriate form so that the LQR control development scheme 

outlined previously can be followed. 
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Angle Approximations 

The SRP model used in this study for a single satellite was previously given in Chapter 2 

and is reproduced here for convenience. 

2 . s: 
a y = amax cos ycos a sin u (3-9) 

2 • 
a z = amax cos ysin a 

By differencing the SRP acceleration effect on each satellite, the relative SRP 

acceleration can be found as 

(3-10) 

where subscripts F, L denote the leader and follower satellites, r represents relative 

motion. H it is assumed that the solar sails on the follower and leader satellite are 

Oriented in a symmetric fashion, then rF :::::: rL . It can then be seen that 

cos2 rF =cos2 rL =cos2 y. Equation (3-10) can then be expressed as 

axr = amax COS2 r( COS aF COS gF- COS aL COS gL) 

a yr = amax COS 2 r( COS aF Sin gF- COS aL Sin gL) 

Qzr = Qmax COS
2 r( Sin aF- SinaL) 

(3-11) 

H 8F,L and aF,L are restricted to be small angles, then cos aF,L :::::: 1, cos 8F,L :::::: 1, 

sin 8F,L:::::: 8F,L and sin aF,L:::::: aF,L. With these simplifications, the SRP model can be 

expressed as 
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a ~o xr 

(3-12) 

From these simplified expressions, it can be clearly seen that the relative input angles 

8r and ar are now simply products of the control matrix, and hence easily extractible to 

form the linear system described by Equation (3-1). For the formation system described 

in this thesis, the A , B , x and u matrix are expressed as 

0 0 0 1 0 0 

0 0 0 0 1 0 xr 

0 0 0 0 0 1 Yr 

A= 3 Zr 
c 0 0 2 Q, x= 

4 xr 
(3-13) 

c 9 
0 -2 0 0 Yr 

4 zr 
0 0 -1 0 0 0 

2 [0 0 0 0 1 

~J u=[~] B = a max cos y · O 
0 0 0 0 

The constant C equals 
3.J3 (p- _!_J here. The relation between 8F L and a F L can be 

2 2 ' ' 

expressed as 

(3-14) 

where 80 and a0 are the initial reference angles. 
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LOR Control Using Solar Sails 

For the formation system, the differential accelerations imparted by SRP can be 

approximated by Equation (3-12) assuming the angles defining sail orientations remain 

small. From this, it can be seen that the relative angles, or and ar determines the effect 

SRP has on the formation system. The simplifications presented above are applied to 

approximate the system as an affine system with the control inputs u being the relative 

angles or and ar . As there are only two control inputs for a system with three degrees of 

freedom, the solar sail controlled system is underactuated. In a similar approach as to 

how the Q and R matrices were selected for the underactuated thrusters controlled 

scenario, reasonable responses were observed when the Q and R matrices for the SRP 

control scenario were selected as 

1 0 0 0 0 0 

0 1 o · o 0 0 

Q =106 0 0 1 0 0 0 R=[~ ~] 0 0 0 1 0 0 
(3-15) 

0 0 0 0 1 0 

0 0 0 0 0 1 

In this case, B was assumed to be constant evaluated at r = 0, we find it would only be 

the optimal values for the instant in which its values were determined. 

0 0 

0 0 

0 0 
B= (3-16) 

0 0 

a max 0 

0 a max 
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The gain matrix K is solved from Equation (3-4), and the relative control angles can be 

described by 

(3-17) 

where i is the state error vector. This can then be substituted into the Equations (3-14) 

and (3-11) to yield more accurate simulation results. It should be noted that the 

assumption of a constant B matrix was only necessary to determine the constant 

K matrix. The time varying nature of B is accounted for in the simulation of the 

linearized system's response. 

3.2.4 LQR Control of the Hybrid Propulsion System 
There are benefits and shortcomings associated with the use of thrusters or solar sails for 

control. A thruster-controlled system can have much shorter settling times. However, 

solar-sail control negates the need for fuel expenditure. It is proposed that a hybrid 

system, with thrusters augmenting the control efforts from SRP, could attain desired 

system dynamics with comparatively low fuel requirements and reasonable settling times. 

Relative motion along the x axis is least influenced by SRP if small relative angles are to 

be assumed; thus, it is sensible to place thrusters to support control efforts along this axis. 

The state and control weighting matrices are of a similar form to those used for the fully 

actuated thruster-controlled scenario. The B matrix can be modified and expressed as 

0 0 0 

0 0 0 

0 0 0 
B= (3-18) 

1 0 0 

0 a max 0 

0 0 a max 

where amax is evaluated at y = 0. The relative acceleration and angles derived using this 

method will be of the form 
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u = - Kx = [ u xthr gr ar ]T (3-19) 

where uxthr is the required relative thruster control acceleration along the x axis. The 

control acceleration input can then be expressed as 

U = Usrp +Uthr (3-20) 

where Usrp and Uthr are the required SRP and thrusters accelerations. Usrp is given by 

Equation (3-11) and Uthr for this hybrid control scenario can be expressed as 

[

Uxthrl 
Um,= ~ (3-21) 

3.3 Nonlinear Control Methods 

For highly nonlinear systems, a linear control method may not be able to perform 

adequately, especially if a high degree of precision is required. This is as a direct result 

of the linear approximations made in developing the controller. Variable structure 

control (VSC) techniques are robust (can handle parametric uncertainties) and thus 

should be able to perform better than a linear control scheme when applied to the 

nonlinear system. 

The basic premise of VSC is to bring the system states to defined surfaces (reaching 

phase) and then constraining them to the surfaces, forcing the states to converge to the 

desired states (sliding phase). The surfaces, called sliding surfaces, are chosen such that 

state trajectories are assured asymptotic stability when their motion is confined to them. 

This requires the control law to constantly vary or switch depending on what side of the 

sliding surface the trajectories are on, thereby forcing the system states to move toward it. 

This is shown graphically in Figure 3.1. 
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One subset of VSC is sliding mode control (SMC). The design of a sliding mode 

controller for a given nth order system involves a methodical approach to defining the 

sliding surfaces and designing the reaching laws while maintaining stable trajectories. 

SMC will be the main focus of the following discussions. 

State Trajectories 

Figure 3.1 State trajectories reaching the sliding surface and sliding condition [56] 

3.3.1 Conventional Sliding Mode Control 
SMC provides an approach to designing the sliding surfaces. From this, the reaching 

laws can be derived. However, this method requires high frequency switching of the 

control input, causing a chattering response to be observed after states reach the sliding 

plane. These will be discussed here briefly for a general system, with more detailed 

derivations available in [56] and [57]. The design of the sliding surface and reaching 

laws are discussed first. A general approach to designing the control law will then be 

presented, followed by a brief discussion regarding strategies to reduce chattering in the 

control input. 
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Sliding Surface 

Consider an nth order system. The sliding mode surface is defined via the relation 

(3-22) 

where x = x- xd are the state errors. The symbols x and xd denote the states and the 

desired states here. The coefficients ~ must be selected such that the characteristic roots 

of the sliding surfaces are stable. A general approach to accomplishing this is given as 

{n-1)! A i 
pn-i = (n-i-1)!·i! a 

(3-23) 

where index i = 1, 2, 3 ... n- 2, n -1, and symbol Ad is the absolute value of the desired 

closed loop pole. Note that the sliding surface Sis a function of the state errors and that 

S = 0 when x = 0. Therefore, elimination of state errors can be attained by driving 

S towards zero. 

Lyapunov stability theory is used to evaluate the stability of a nonlinear system. 

Assuming a positive definite Lyapunov candidate function can be found, and its time 

derivative can be shown to be negative definite, then the sliding surface can be 

considered stable in the Lyapunov sense. For the sliding surface described by Equation 

(3-22), one can choose the Lyapunov candidate function as 

(3-24) 

Taking the derivative with respect to time, if 
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(3-25) 

then the sliding surface Swill be asymptotically stable by the Lyapunov analysis. For 

this condition to be met, it is evident that 

Reaching Laws 

1
<0 

s =0 

>0 

if ST > 0 

if ST = 0 

if ST < 0 

(3-26) 

Reaching laws are conditions that will bring state trajectories to the sliding surface and 

then confine them to it so that state errors will converge to zero. A constant rate reaching 

law can be found to be 

S = -17sgn(S) (3-27) 

where 17 is a positive diagonal gain matrix and sgn ( S) is the signum function of the 

column matrix S . This can be written for each element of matrix S as 

1
1 if si > o 

sgn(S) = 0 if Si = 0 

-1 if si < o 
(3-28) 

where subscript i = 1, 2, 3 ... denotes the irh term of the column matrix S . If we substitute 

Equation (3-27) into Equation (3-25), we find 

(3-29) 
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which is a negative semi-definite function. Asymptotic stability can only be ascertained 

if the Lyapunov candidate function has a negative definite derivative. Making use of 

Barbalat's lemma, however, we can still draw conclusions regarding the system's 

stability. Barbalat's lemma states that: 

If a scalar function V (x, t) satisfies the following conditions 

• V(x,t)is lower bounded 

• V(x,t) is negative semi-definite 

• V(x,t) is uniformly continuous in time 

Then V(x,t) ---7 0 as t ---7 0 

Letting W(t) = 1]jSJ, we have from Equation (3-29) 

w (t) ::; -v ( s ( t)) (3-30) 

Integrating, 

I f w ( t )dt ::; v ( s ( 0)) - v ( s ( t)) (3-31) 
0 

From this, it can readily be seen that V { S ( 0)) is bounded. Since V { S ( t)) is negative 

semi-definite and V { S ( t)) is positive definite, V { S ( t)) is always less than V { S ( 0)) and 

is bounded as well. Taking the limit as t ---7 oo , we have 

t 

lim f w ( t) < 00 (3-32) 
t-?oo 0 
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W ( t) is bounded, and by Barbalat' s lemma S ( t) ~ 0 as t ~ oo , showing that the sliding 

surface is stable. 

Control Law Design 

For a general nonlinear system with control input u , 

(:J x=f(x)+g(x)u (3-33) 

substitution into the time derivative of Equation (3-22) for ( :t J X yields 

. () d .. . ( J
n- I 

S=f(x)+g(x)u-xdn +~-I dt i+ ... +~i+~i (3-34) 

where xd denotes the desired state derivatives. Comparing Equation (3-34) with Equation 

(3-26), it can be shown that u can be expressed as 

where 

1
</3 

u = f3 
>/3 

if ST > 0 

if ST = 0 

if ST < 0 

-1 () d .. . 
[ ( Jn~ ] 

fJ= g(x) f(x)-xdn +~-I dt i+ ... +~i+~i 

(3-35) 

(3-36) 

Now if Equation (3-34) is substituted into Equation (3-27), the control law can be found 

as 
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1 
u = f3 - g ( x) 1J s gn ( S ) (3-37) 

Chattering 

The switching control input described in Equation (3-37) constrains state trajectories to 

constantly be pointed towards the sliding surface. The strategy is effective since state 

trajectories moving along the sliding surface are guaranteed to reach a zero error state. 

However, the high frequency control switching results in a great degree of control 

activity to maintain state trajectories on the sliding surface. This results in the chattering 

phenomenon which is shown in Figure 3.2. Chattering is undesirable because it is fuel 

inefficient and rapidly wears down actuation devices. 

Figure 3.2 Chattering effect due to constant control switching [56] 

In practice, a trade-off must be made between attaining ideal sliding mode performance 

and reducing input activity to more realistically attainable profiles. As such, modification 

of the control law shown in Equation (3-37) is necessary. One method of doing so is to 

implement a boundary layer region in the immediate vicinity of the sliding surfaces. 

Then, by modifying the control inputs when state trajectories are in this region, the 

chattering effect can be reduced. 
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Letting <l> represent the boundary layer thickness, replacing the sign function in Equation 

(3-27) with a saturation function, defined as [56] 

s 

sgn( S) =sat(!__)= <I> 

<P sgn(! J 

will result in the modified control law 

(3-38) 

otherwise 

(3-39) 

Alternatively, a smoother control input profile can be achieved through us1ng a 

hyperbolic tangent function instead of the saturation function. In that case, the control 

law could be expressed as 

u = P--1-1Jtanh(§_) 
g(x) <l> 

(3-40) 

3.3.2 Integral Augmented Sliding Mode Control 
In conventional SMC, the sliding surface is defined as a function of the state errors .X and 

its derivatives, yet this does not necessarily prevent the occurrence of steady state errors. 

To eliminate steady state errors, an integral augmented sliding mode controller can be 

used, as described in [58]. 

Consider the sliding surface described by Equation (3-22). We now modify this 

definition with the addition of integral control action. The sliding surface and its 

derivative now becomes 
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s = !!:____ x+ ~-~ !!:____ x+ ... + ~i+ ~x+ K . f.x ( J
n-1 ( Jn-2 t 

& & 10 
(3-41) 

. ( d Jn _ ( d Jn-I _ 
S= dt x+~_1 dt x+ ... +~i+~i+Kix (3-42) 

where Ki represents the integral gain. 

3.3.3 Sliding Mode Control for the U nderactuated System 
The sliding surface definitions discussed thus far are applicable to fully actuated cases. 

In underactuated circumstances, such as in the event of the failure of control actuation 

along one of the axes, the inability of the conventional SMC method to overcome 

mismatched disturbances and uncertainties becomes evident, as will be shown in Chapter 

4. Due to the coupled nature of the formation system in this study, it may be possible to 

exploit this aspect to gain control of in-plane motions using actuators along one of it's 

axis of motion only. Modifications to the conventional SMC scheme are necessary to 

accomplish this task. 

A method for dealing with the underactuated scenario through modifications to the 

conventional SMC design methodology was proposed by Godard and Kumar [59]. The 

sliding surface for the in-plane motion is redefined as a linear combination of the in-plane 

state errors. This method is applied to the underactuated system of this study as follows. 

Consider the error dynamics of the linearized in-plane formation system expressed as 

0 0 1 0 
X 0 0 0 1 X 0 0 

y 3 y 0 0 [ ux,] c 0 2 + (3-43) 
X 4 X b! 0 u yr 

y c 9 
-2 0 

y 0 b2 

4 
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which is of the form 

(3-44) 

where the constant C = 
3~ (v-~). fu this study, the system will be assumed to be 

underactuated in x . This is modeled by setting b1 = 0 in the control matrix. Motions 

along the x axis will now be indirectly controlled through control efforts along y only. 

Partitioning the system into the actuated and underactuated parts, one has 

[ ~']=l~I AI2JI~~l+lOJur 
X ~~ ~2 l X2 B2 

2 

(3-45) 

where 

0 0 1 

A2=m Au= 0 0 0 B2 = [o b2] 
3 c 0 
4 

(3-46) 

A,,=[ c ~ -2] ~2 = [o] X, =[i:J X2=[Yr] 

The sliding surface for the in-plane motion is defined here as 

(3-47) 

Where A1 E ffi. 1
x

3 and A2 E ffi. 1
x

1 are the state weighting matrices. If errors are to remain 

on the sliding surface, the conditionS = 0 after the system reaches it must be true. 
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Imposing this condition on the sliding surface and isolating the error states that can be 

directly compensated for with actuation, one has 

- - 1 -
x 2 =-A2 Alxl (3-48) 

Substitution of this expression into the partitioned matrix of Equation (3-45), one obtains 

(3-49) 

where the constant design gain matrix K dictates the behaviour of the system and is 

defined by 

(3-50) 

Since the system is coupled and underactuated in x , X 2 = [ y r J may be viewed as the 

control effort that drives the underactuated state to the desired trajectory. Setting A2 = 1, 

the sliding surface for the in-plane motions can be expressed as follows after substitution 

(3-51) 

The sliding surface definition pertaining to the out of plane motion is determined through 

the conventional approach. 
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3.3.4 Sliding Mode Control of the Thruster-Controlled System 

SMC Using Thrusters in a Fully Actuated Configuration 

Recall that the general nonlinear system is of the form 

(:J x=J(x)+g(x)u (3-52) 

The function f(x) represents the equations of motion previously defined in Chapter 2 and 

g(x) is equal to the 3x3 identity matrix for a fully actuated thruster-controlled system. 

Stability of the general fully actuated system was shown using the conventional SMC 

method. Applying conventional SMC to the fully actuated thruster-controlled system, the 

sliding surfaces can be found to be 

The constant rate reaching laws are equated to the derivative of the sliding surface 

definitions, 

(3-53) 

(3-54) 

where the constant rate reaching matrix 1J is selected as a 3x3 positive diagonal matrix 

expressed as 

(3-55) 
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By rearranging, the SMC law for the fully actuated thrusters-controlled system can be 

expressed as 

ux =-( xr- xd)- Kl ( ir- id) -1]1 sgn ( s X) 

U y = - ( Y r - Y d ) - K 2 ( Y r - Y d ) -1]2 S gn ( S y ) 

uz =-( zr - zd)- K3 ( ir - id) -7]3 sgn ( S z) 

SMC Using Thrusters in an Underactuated Configuration 

(3-56) 

With thruster acceleration being the control input for the underactuated scenario, g(x) is 

equal to the 2x2 identity matrix. For the underactuated scenarios of this study, it is 

assumed the system has control inputs along the relative y and z axes only. The integral 

augmented sliding surfaces can be defined as 

(3-57) 

where Ki are the gains, .X, y, z are the state errors and S xy and S z are the sliding surfaces for 

the in-plane and out-of-plane motions, respectively. Equating S to the constant rate 

reaching law described by Equation (3-27), 

where subscript 'd' denotes the desired states; subscript 'r' denotes the relative states 

determined through integration of the relative equations of motion shown in Chapter 2; 

uY and uz are the control accelerations, and 1J is the positive constant rate reaching matrix 
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Solving for the control inputs, the control law can be expressed as 

uy = -(y,- yd )- K 1 (x, -xd )- K2 (x, -xd) 

- K 3 ( Y r - Y d ) - K 4 ( Y r - Y d ) - TJ1 S gn { S xy ) 

uz = -( ( z,- zd) + Kz ( i,- id))- TJ2 sgn ( SJ 

To reduce the chattering effect, the control laws are modified to be 

uy =-(y,- yd )-K1 (x, -xd )-K2 (x, -xd) 

- K 3 ( Y r - Y d ) - K 4 ( Y r - Y d ) - TJ1 tanh { S xy ) 

uz =-((z,-zd)+Kz(i,-id))-TJ2 tanh(Sz) 

(3-59) 

(3-60) 

(3-61) 

Stability for this underactuated sliding mode controlled system can be analyzed in the 

same way that stability is assessed in conventional SMC. Consider the Lyapunov 

candidate function given by Equation (3-24 ). Taking its derivative and substituting in for 

S , it can be written as 

If the control law given by Equation (3-60) is substituted into this, it can be shown that 

Equation (3-62) reduces to be of the same form as Equation (3-29). Since the conditions 

necessary for Barbalat' s Lemma to hold are met, the underactuated sliding mode 

controlled system developed here can be considered stable in the Lyapunov sense. 
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3.3.5 Bang-Bang Control of the Underactuated System 
Continuous control methods are suitable for preliminary analysis and may also be 

applicable in practice provided the motion is slow enough. Bang-bang controllers are 

also developed and applied to the formation system and, as will be shown in Chapter 4 

and Chapter 5, this control scheme is applicable to both the thrusters and solar sail 

controlled scenarios. 

In bang-bang control, the goal is to design the appropriate switching laws; that is, the 

conditions upon which the control input will switch from its minimum to maximum 

values and vice versa. In this study, it is assumed that a switching law can be found as a 

function of the sliding plane definitions. A viable control law can then be expressed as 

uY =-o-1 sgn(Sxy) 

uz =-o-2 sgn(SJ 
(3-63) 

where ai represents the magnitude of the control input. If this control law is substituted 

into the Lyapunov candidate function given by Equation (3-62), it is easily seen that 

careful selection of o-1,2 can ensure that Vis negative semi-definite. From this, stability 

in the Lyapunov sense of the bang-bang controlled system can be deduced from 

Barbalat's lemma. 

3.4 Developed Controllers Summary 

Linear and nonlinear controllers for various scenarios were developed in this chapter. 

The particular scenarios for which they were developed for is summarized in Figures 3.3 

and 3.4. 
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Figure 3.3 Scenarios linear controllers are developed for 

SMC Bang-Bang 

I I 
Full Actuation Underactuated Underactuated 

I I I 
Thruster- Thruster- Thruster- Solar-Sail 

Controlled Controlled Controlled Controlled 

Figure 3.4 Scenarios nonlinear controllers are developed for 

3.5 Numerical Solvers 

Simulated results of applying the controllers developed in this chapter to the formation 

system are presented in the following chapters. Since simulation results can vary 

depending on the accuracy of the chosen solver and set tolerances, a discussion regarding 

the simulation set up is warranted. 

68 



The results presented in this thesis were computed using the solvers included in the 

MATLAB I Simulink software package. In general, an appropriately configured ODE45 

solver provided reasonably accurate results using a fourth order Runge-Kutta method to 

solve for the relative motions [60]. However, simulation durations were lengthy when 

using this variable step solver. It was found that simulation times were substantially 

reduced using the ODE3 fixed step solver. The ODE3 solver uses a third order Runge

Kutta method [61], but when sufficiently small time step sizes were used, it's 

performance was comparable to that of the ODE45 solver. It was observed that using 

time step sizes of 5 hours or less produced results similar to those obtained using the 

ODE45 solver in a much shorter time frame. For this reason, ODE3 was the solver used 

in the majority of the simulations conducted for this study. 
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Chapter 4 

Trajectory Tracking Using Thrusters 

4.1 Introduction 

In this chapter, the control methods developed in Chapter 3 for the thruster-controlled 

system are applied to the spacecraft-formation model described in Chapter 2. The results 

are presented and discussed regarding their efficacy in tracking the formation reference 

trajectory. First, simulations of the spacecraft formation system's dynamics without 

control are presented in order to firmly establish the need for system control. Elliptical 

trajectory tracking control scenarios using thrusters in fully actuated and underactuated 

configurations are then presented. This is followed by attempts to track an in-plane 

circular trajectory using thrusters. 

4.2 Desired Trajectory and Natural Motions 

The desired trajectory is shown in Figure 4.1 and has semi-major and semi-minor axes 

lengths of approximately 14 km and 7 km, respectively. The initial conditions for this 

trajectory are shown in Table 4.1. The reference was chosen to have similar initial 

conditions used by Catlin and McLaughlin [5] for the short period formation case, but 

with larger initial velocities to generate a bigger reference trajectory. Since the reference 

trajectory was derived using equations linearized about the L4 point, nonlinearity effects 
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would become more pronounced with the larger reference trajectory size. The efficacy of 

the developed controllers in countering these nonlinerities can therefore be more readily 

observed. 

Table 4.1: Ideal Initial Conditions for Reference In-Plane Elliptical Relative Motion 

x0 (km) Yo (km) z0 (km) x0 (rnls) Yo (rn/s) z0 (rn/s) 

Leader 1500 2975 0 10 1.70 0 

Follower 1505 2984 0 10.03 1.71 0 

Relative 5 9.13 0 0.03 0.0043 0 
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Orbits (1 orbital period = 28.6 days) 

Figure 4.1 Reference in-plane elliptical relative trajectory 

It is important to establish the need for control. Plots of the linearized relative motion 

under nonideal conditions and without control efforts are shown in Figure 4.2. It can be 

seen that an initial offset error of 1 km in the relative x direction has significant effects on 

the motion's trajectory. An offset of just 1 km in the relative x direction causes the 

amplitude of the bounded motion to increase from less than 1 km to several kilometers in 

the relative x and y directions. This is in contrast to out of plane motions, which can be 

described as simple harmonic. Although not shown, out of plane motion is bounded with 

amplitudes equal to the initial relative offset error in the z direction. Although the 
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motion ts bounded, its trajectory ts complicated and is of little use in practical 

applications [5]. 
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Figure 4.2 Relative motion and errors in the linearized system when initial offset error is 1 km in xr 

Effect of Nonlinearities 

To examine the nonlinearity effects, motion of the nonlinear system is simulated using 

the ideal initial conditions (see Table 4.1) and offset initial conditions, the results of 

which are shown in Figures 4.3 and 4.4. The errors in the relative motion appear to 

oscillate over the course of the simulation time span of 20 orbital periods. However, the 

errors appear to remain bounded, with the slight increases over the long simulation time 

span attributable to accumulated numerical errors. Since the leader satellite was assumed 

to be in a reference orbit and the relative errors appear to remain bounded, it can 

therefore be reasoned that the follower satellite's motion is bounded as well. 

The result of initial offset errors applied to the nonlinear system were similar to that of 

the linear case, further underscoring that system nonlinearities do not cause the relative 

motion to diverge. 
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Figure 4.3 Effect of nonlinearities when ideal initial conditions are applied 
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Figure 4.4 Effect of initial offset errors on the relative motion in the nonlinear system. Initial offset 

error is 1 km in Xr 

Effect of the Sun's Gravity 

From Figures 4.3 and 4.4, it is apparent that the motion remained bounded in the presence 

of initial offset errors and nonlinearities. This would imply that an active control scheme 

would only be necessary if precision tracking of the desired relative trajectory is required. 

However, these simulations do not consider the effect of the Sun. H the perturbing effect 

of the Sun's gravity is accounted for, the relative motion is no longer bounded. The 

effect of this perturbing force on the system is shown in Figure 4.5. From this plot, it can 

be observed that the tracking error increases if the spacecraft formation is left 

uncontrolled. This result shows the need for an active control system that can counter the 
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perturbing effect of the Sun. In the next section, the results of using an LQR control 

scheme for both the linear and nonlinear formation system are discussed. 
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Figure 4.5 Effect of Sun's gravity on relative motion given ideal initial conditions 

4.3 Results and Discussion: Elliptic Trajectory Tracking 

4.3.1 Fully Actuated System 
A fully actuated system using thrusters can In principle control any space system 

provided that the required control efforts are not unattainably large. It is reasonable to 

presume that control efforts along each axis in the underactuated scenario will be greater 

than that of the fully actuated case as a result of fewer thrusters compensating for control 

efforts in the unactuated axis. If trajectory tracking using a fully actuated system could 

only be achieved with unreasonably large control accelerations, then further studies into 

underactuated controls would be baseless. Therefore, before proceeding with the analysis 

of the underactuated system, it is sensible to examine the control efforts required in a 

fully actuated system first. 

The results of applying the SMC controller developed in Chapter 3 on this system are 

now presented. Gains for the sliding planes were determined by applying LQR to the 

nondimensionalized equations of motion. The state and control weighting matrices used 

in this analysis that yielded reasonable responses were found through trial and error as 
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Q = 10/6x6 R = /3x3 

where I is the identity matrix and the overbar signifies that these matrices are only 

applicable to the nondimensionalized analysis. The system is given an initial offset error 

of 1 km along each axis and the perturbing force of the Sun's gravity on the formation 

system is accounted for. As noted in Chapter 3, it is assumed all states are measurable 

and that no sensor noise is present. The simulation results are shown in Figure 4.6 . 

. : ~~~ . . : : I 
-~0~--~1----~2----~3~---4~--~5 

.!·~~ . . . : I 
-~0~--~1----~2-----3~--~4-----5 

.~ ::l : : . . I 
00~--~1----~2-----3~--~4--~5 

~:C ; ; ; ; I 
~ -50~--~1----~2----~3-----4~---5 

Orbits (1 orbital period= 28.6 days) Orbits (1 orbital period = 28.6 days) 

Figure 4.6 System response with full actuation in Sun gravity perturbed environment using sliding 
mode control 

The error plots shows the settling time to be less than half an orbital period in each axis 

with negligible steady state errors. Control efforts are continually required to counteract 

the perturbing effects of the Sun. The scale of the required control input accelerations are 

extremely small; on the order of 10-9 m/s2 during steady state. For a large satellite with a 

mass of a thousand kilograms or more, such small accelerations are achievable using 

electric propulsion systems. Since control efforts in this case are small and realizable for 

large satellites or spacecraft, further research into formation control in an underactuated 

scenario is merited. 
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4.3.2 Underactuated System 
Analysis of the underactuated system will begin with linear analysis of the unperturbed 

system to help simplify the problem. This will be followed by more complex analysis of 

the nonlinear system in perturbed and unperturbed states controlled using linear and 

nonlinear techniques. Finally, a bang-bang controller is applied to the system to 

demonstrate that on/off control of the underactuated system is possible. 

Control of the Linearized System 

The unperturbed, linearized system provides a starting point for understanding the 

dynamics of this formation system. A LQR control scheme is applied to the 

dimensionalized system with offset errors of 1 km in all axes. Control efforts are limited 

to act along the relative y and z axes only. Reasonable responses were observed when 

state and control weighting matrices used to determine the LQR gains were selected to be 

Q = 10-21 I 
6x6 R = /2x2 

The efficacy of such a control scheme is shown in Figure 4. 7. 
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Figure 4. 7 Response of the unperturbed linearized system using a linear controller 
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Large increases in the errors of the in-plane axes are initially observed in the error plots. 

This increase is attributable to the controller's inability to directly influence relative 

motions in the x direction, hindering its efforts to alter initial velocities that perpetuate 

errors. Settling times are adjusted to be similar to that of the fully actuated case. 

The linear system does not exhibit steady state errors since it is tracking a natural 

formation trajectory derived using the linear system equations. Control efforts are 

greatest initially and decrease to zero as the system reaches steady state. 

Application of Linear Control to the Nonlinear System 

In many control problems, a linear controller is sufficient for practical applications. 

However, these controllers only perform well locally, in regions where linear 

approximations are valid. To assess how well the linear controller can perform in the 

nonlinear model, a linear control scheme is applied to the nonlinear system here with 

identical initial conditions as the linear case. The results are presented in Figure 4.8. It 

can be clearly seen that in this underactuated system, oscillations in the motion during 

steady state exist are caused by the controller attempting to counter the nonlinearities of 

the system. Further gain adjustments did not result in smaller oscillation amplitudes at 

steady state. However, the bounded motion amplitudes remained within several hundred 

metres, which is tolerable for a variety of potential formation flight missions. For 

instance, a mission involving an automated service and repair satellite that is required to 

remain in an orbit close to the leader satellite until servicing is required. It could also be 

suitable for a visual survey mission, such as a satellite orbiting a space station or 

spacecraft searching for signs of damage. Separation distances between spacecrafts in 

such missions could be on the order of a few kilometres. As such, oscillatory motions at 

steady state with amplitudes significantly smaller than these separation distances can still 

be acceptable. 

77 



a) Error Response 
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Figure 4.8 Response of the unperturbed nonlinear system using a linear controller 

Unlike the linear system case, in-plane control inputs during steady state are non zero, 

although they are extremely small. Average steady state error in xr direction is 

approximately 500 m, whereas in y r it is about 300 m. This offset can be eliminated 

using an integral term in the control law as shown in Figure 4.9. 
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Figure 4.9 Underactuated system response using a linear controller with integral control 

7 

It is clearly seen that the average steady state error has been reduced to zero using an 

integral term. Oscillations during steady state remained bounded between -500 to 500 m 

in xr and Yr . Since steady state offset errors only exist for in-plane motion, as seen in 

Figure 4.8, integral control action was only necessary for in-plane control. An 

appropriate gain matrix for the integral component that eliminated steady state error was 

found through trial and error to be 

K. = -1 o-17 [ 1 1 oo] 
mt 0 0 
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Nonlinear Control of the Formation System 

In previous sections, linear control was applied to the unperturbed nonlinear system and 

was shown to keep the relative motion within tolerable ranges. In the following sections, 

nonlinear control techniques, namely sliding mode control, will be used. Sliding mode 

control is robust against external disturbances as well as parametric uncertainties [56]. 

As such, it is advantageous to employ a sliding mode control scheme over the linear 

control methods discussed thus far. In this section, the nonlinear control strategies 

introduced in Chapter 3 will be applied to the formation system and the resulting 

performance will be compared to that of the linear controllers. Differences will be 

discussed along with the advantages and disadvantages of using nonlinear control 

strategies. 

Applying the sliding mode control law developed in Chapter 3 to the formation system, a 

bounded response with steady state offset errors is observed, as seen in Figure 4.1 0. 

Gains for the sliding surfaces were determined using LQR on the partitioned system 

matrix. State and control weighting matrices used were 

Q' = 3x10-6 xl4x4 

R' = J 2x2 

The reaching laws and bandwidth value used were 

T/xy = 5x10-3 

1lz = 5x10-3 

£ = 10-2 
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Figure 4.10 Underactuated system response using SMC 

The steady state errors observed here are direct results of mismatched disturbances acting 

on the unactuated relative x direction. It is well known that SMC is not directly able to 
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handle mismatched disturbances, leading to the sliding surface values being an 

inadequate reflection of the state errors. The result is that the sliding surfaces are reached 

even though significant steady state errors exist. 

It can be conceptualized that the observed errors are caused by two factors: 1) the 

unmatched disturbances manifesting themselves as errors to the sliding surface values, 

and 2) the sliding surface definitions are unable to account for errors accumulated over 

time. In linear control techniques, integral action can effectively eliminate steady state 

offset errors, although at the cost of slower system response. Eker and Akmal [58] 

proposed the addition of an integral term to the sliding surface definitions to improve 

steady state accuracy. Analogous to this, it is proposed here that an integral term be 

added to the underactuated sliding surface definitions in this study. As shown in Chapter 

3, the sliding surfaces are redefined to be 

t+!':.t 

Sxy = ey + K1ex + K2ey + K3ex + K4 fe y dy 

Note that integral control action was added only to the in-plane sliding surface definition. 

From Figure 4.1 0, it can be seen that there is no steady state error along the relative 

z axis of motion, and so integral control action is not required for the out of plane 

motion. K 4 here is a control design parameter. Errors in motion along the y r rather than 

the xr were integrated since actuation is along y r . Weighting matrices and reaching laws 

are kept the same as that of the non integral augmented SMC scenario. With this new 

sliding surface definition, the in-plane control law becomes 

uy = -(yr- Yd)- K1 ( ir- id)- K2 ( xr- xd) 

- K 3 ( Y r - Y d ) - K 4 ( Y r - Y d ) -171 tanh { S xy ) 

Uz =-{ ( Zr - Zd) + Kz ( Zr - Zd)) -172 tanh ( S z) 

Results for this scenario are shown in Figure 4.11. 
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Figure 4.11: Underactuated system response using SMC with integral augmented sliding surface 
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The steady state behaviour is similar to that which was observed using linear controllers. 

Differences in system response times are due to gain selections. However, plots of the 

required control efforts exhibit marked differences that cannot be explained through gain 

selections alone. Comparing Figures 4.11 to 4.9, control inputs deduced using the linear 

controller appears to have the form of a smooth, continuous function, whereas with the 

nonlinear controller, distinct discontinuous 'peaks' are observed. This can be explained 

by observing the phase plots for the out of plane motion shown in Figure 4.12. The 

sliding surface is represented as a straight line driving the system to equilibrium state. As 

the system reaches the sliding surface, the controller forces the states to remain on it, 

resulting in the discontinuous nature of the control inputs. An analogous situation occurs 

for the in-plane motion. However, the coupled nature of the sliding surface definition for 

the in-plane motion requires a four dimensional phase plot to demonstrate the 

discontinuous phenomenon for in-plane control efforts; an unrealizable task. 
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Figure 4.12 Phase plot of relative states along z axis 

Continuous input is observed even after steady state was achieved. From the no control 

scenario described by Figure 4.3, it is readily seen that control efforts are not necessary 

for bounded steady state behaviour given ideal initial conditions. Hence, if the controller 
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is able to bring the system to a state with zero errors at some point in time, control efforts 

can be discontinued and bounded behaviour would still be attained. The small steady 

state inputs shown in Figure 4.11 serves to reduce the amplitude of the bounded motions 

by approximately 500 m, a small distance relative to the scale of the reference formation 

size. It should be restated here though that such bounded behaviour is only observed in 

the absence of solar gravitational disturbances. 

Nonlinear Control of the Sun-Perturbed System 

Thus far, control of the Sun-perturbed system has only been demonstrated using the fully 

actuated configuration. We now add the Sun's gravitational disturbance to the 

underactuated nonlinear system. The SMC with integral method was able to attain the 

same performance as that of a linear controller and it is assumed that it could achieve 

similar or better performance than a linear controller in the Sun perturbed system. Such a 

presumption stems from the robust properties of the SMC method which can more 

readily reject external disturbances. 

The in-plane sliding surface definitions are augmented with integral control action to 

eliminate the average steady state offset error, as previously described. Initial errors are 

increased to 5 km along each axis so that the initial effect of the controller can be more 

easily distinguishable from the bounded behaviour of the system after steady state is 

reached. A longer simulation time period was required to illustrate the efficacy of the 

controller in this perturbed system. Gains are maintained to be the same values as in the 

unperturbed scenario. The results are shown in Figure 4.13. 
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a) Error response 
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Figure 4.13 Underactuated system response in the Sun perturbed environment using SMC 
integral augmented sliding surface definition 

with 

Examining the results, it can be seen that the amplitude of the bounded oscillatory 

motions at steady state in xr and Yr has increased substantially under the addition of 
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solar gravitational disturbance. This also indicates that there may be some limitations to 

the ability of the sliding mode controller to rejecting unmodelled disturbances for 

underactuated systems. This was due to its inability to handle mismatched disturbances, 

as previously discussed. Solar gravity disturbance introduces additional mismatched 

disturbances to the system, thereby increasing the amplitude of the bounded motions. 

Despite this increase, the bounded nature of the motions within the ranges shown in this 

study can still be acceptable depending upon mission specific tolerances. 

Steady state control accelerations have increased in magnitude to deal with the solar 

gravitational effects continually acting on the system. Due to the inclination of the Earth

Moon orbital plane relative to the ecliptic plane, the Sun's disturbing force has a 

component that acts in the out plane direction. However, the forces required to counter 

the out of plane disturbance is extremely small; accelerations on the order of 10-10 rn/s2
. 

Such minute accelerations are not feasible with current propulsion technologies. 

Referring to Figure 4.5, it is readily seen that the Sun's perturbing force has a very minor 

effect on the out of plane motion; perturbing its motion by a couple hundred metres over 

the course of 20 orbits. As such, for station-keeping purposes, an approximate in-plane 

trajectory can still be achieved without relative control efforts in the out-of-plane 

direction. 

Unlike the unperturbed case, bounded behaviour is not observed without active control 

since the Sun's gravity causes the system to diverge. Hence, in contrast to the 

unperturbed scenario, even if the controller is able to bring the system to a state of zero 

errors at some point in time, control is still necessary after that time to prevent the 

relative motion from diverging. The small scale of the control inputs required for station

keeping conflicts with the relatively larger control efforts required for formation orbit 

corrections. Since current propulsion technology does not permit such a diverse range of 

thrust outputs from one type of propulsion system, the system performance outlined in 

this study would necessitate a separate propulsion system to deal with formation keeping 

requirements. 
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On/Off Control of the Sun perturbed System 

The control methods applied in previous sections are appropriate tools for preliminary 

analysis, especially since relative dynamics are generally slow. In practice, however, 

discontinuous control methods with tighter ranges in thruster output magnitudes could be 

used. To demonstrate the viability of controlling an underactuated system using 

discontinuous control methods, a bang-bang controller is developed and applied to the 

system. Bang-bang control is known to be a high frequency, discontinuous control 

method that is not always practical to implement. It is, however, a starting point for 

discontinuous control analysis and provides justification for the further development of a 

discrete controller for this system. 

A bang-bang control law for this system is proposed as 

uy = -171 sgn ( sxy ) 
uz = -172 sgn { SJ 

where the definition of the sliding surfaces previously defined are utilized here as the 

variable that determines the on/off nature of the controller and 17i represents the 

magnitude of the control acceleration. Unlike the continuous control cases, the 

magnitude of the control input for a bang-bang controller varies between two values only; 

zero and 17i for both orbital correction and formation keeping tasks. Therefore, using a 

bang-bang control scheme, the propulsion system used for formation keeping could also 

be used larger relative orbit corrections. 

Figure 4.14 shows the system response using a bang-bang control scheme with 171 = 1 o-7 

and 172 = 1 o-s . As with the case where a sliding mode controller was directly applied to 

the system, the controller's efficacy could not be immediately discerned from simulations 

with short simulation time spans. Although long time span simulations do not accurately 

represent the system's dynamics, they can serve to illustrate the controller's ability to 
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bring about bounded motions. Simulations are repeated with a time span of 50 orbits for 

this purpose and are shown in Figure 4.15. 
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Figure 4.14 Performance of a bang-bang controller applied to the underactuated and Sun perturbed 
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Figure 4.15 Long term simulation of the bang-bang controlled underactuated system demonstrating 
controller efficacy 

The high frequency nature of the controller is clearly evident in the control accelerations 

plots. The frequency can be reduced by introducing dead zones; regions where the error 

state is within a specified tolerance and hence no control efforts are required. Generally, 

a larger dead zone results in less chattering in the control input but can increase the 

steady state errors. In cases where the dead zone values were too large, the controller 
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was unable to control the system. It was observed that using dead zone values greater 

than 200m for the in-plane motions resulted in noticeable degradations in performance. 

Hence, the simulations here were conducted using this value for the dead zone. 

The control magnitude also greatly influences the response of the system. Clearly, from 

previous simulations using continuous control schemes, station keeping requires much 

less control effort than orbital corrections. In this bang-bang control scheme, the 

magnitude of the control accelerations does not change, except where no control is 

required in which case it is zero. Large values of 17i makes station keeping difficult and 

also increases the amplitude of oscillatory motions at steady state. 

4.4 Results and Discussion: Circular Trajectory Tracking 

The elliptical relative in-plane trajectory can be considered a natural formation trajectory 

of the linearized three body system. The natural in-plane circular trajectory was shown 

by Catlin and Mclaughlin [50] to not exist. A projected circular orbit trajectory was more 

feasible according to their analysis, but it required the short period frequency being 

approximated as equal to the out of plane frequency. The control of the formation system 

tracking an unnatural, in-plane circular trajectory will be analyzed here. 

4.4.1 Fully Actuated System 
A sliding mode controller was applied to the fully actuated system tracking the relative 

circular trajectory. Trajectory radius was chosen to be 10 km, forming a trajectory that is 

comparable in size to the reference trajectory used in the elliptical cases. The simulation 

results are shown in Figure 4.16, from which it can be seen that station keeping control 

efforts have increased by 2 orders of magnitude to maintain a circular trajectory rather 

than an elliptical one. 
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Figure 4.16 Performance of SMC applied to the fully actuated, Sun gravity perturbed system 
tracking a circular reference trajectory 
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4.4.2 U nderactuated System 
Applying the circular restriction to the underactuated case, it was found that an 

underactuated system was unable to track the circular trajectory. In Figure 4.17, it can be 

seen that, despite the spacecraft's best efforts to track the circular trajectory, the system is 

unable to do so and instead moves in an elliptical trajectory. It is reasonable to presume 

that tracking unnatural trajectories requires greater control efforts as its motion will be 

counter to the natural tendencies of the system. It may be that the circular trajectory 

demands a large degree of control to counter the system's natural motions. Such taxing 

control might only be achievable with actuation available along both in-plane axes. 

From Figure 4.17, it's evident that the orbit trajectory not only becomes elliptical, but 

also that its size has increased dramatically. This is a result of the increased controller 

demands in tracking the circular trajectory acting in a low gravity, dynamically sensitive 

environment. In such an environment, even small increments to control efforts will have 

dramatic effects on the system's motion. This is exacerbated by the lack of actuation 

along xr , which forces motion along xr to be accomplished through indirect routes, 

further increasing the size of the orbit. 

It is interesting to note that the resulting trajectory, regardless of the initial positions, 

consistently resembles an ellipse as it attempts to track a circular reference. The period 

of the ellipse is equal to that of the short period in this case, which at first glance would 

imply that forcing the underactuated system to track a circular trajectory would inherently 

cause the system to track a natural trajectory. However, a closer analysis reveals that the 

period of the observed elliptical path is independent of the natural periods of motion. 

Rather, the elliptical trajectory has a period equal to that of the reference circular 

trajectory. This is illustrated in Figure 4.18, where the reference circular trajectory's 

period is set to be half of one natural short period. The resulting motion appears to orbit 

with a period equal to that of the reference circular trajectory, and not of the natural short 

period motion. 
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Figure 4.17 Trajectory of an underactuated system attempting to track a circular orbit 
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Figure 4.18 Trajectory of underactuated system attempting to track a circular orbit with a period 
equal to half of one natural short period 

4.5 Fuel Consumption 

A major criterion in the evaluation of a control strategy's effectiveness is the fuel 

consumption, which is directly related to the required change in velocity magnitudes. It 

is well known that the greater the velocity change in any maneuver, the more fuel is 

required. Hence, without knowledge of a system's mass, one can still gain a sense of 
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which control strategies are more fuel efficient simply by looking at the total velocity 

changes. Velocity changes for orbital correction maneuvers can vary depending on the 

desired response times, while gain selections could influence the control requirements for 

formation keeping during steady state. Since controller performance for formation 

keeping in each of the pertinent scenarios did not vary significantly, required fuel 

consumption will be analyzed for formation keeping tasks only. Table 4.2 summarizes 

the velocity change requirements demanded by the control methods for some pertinent 

scenarios. L1 V /week values are averaged values over the course of several orbits. 

Table 4.2 Formation Keeping A V Requirements in Different Scenarios 

Actuation Control Method Reference Perturbations ~V/week 

Status Trajectory (mm/s/week) 

Full Under LQR SMC Bang- Elliptical Circular Sun No 

wllntegral bang Pert. Pert. 

s ./ ./ ./ ./ 1.85 

c ./ ./ ./ ./ 1.79 

E ./ ./ ./ ./ 1.95 

N ./ ./ ./ ./ 1.86 

A ./ ./ ./ ./ 4.02 

R ./ ./ ./ ./ 3.63 

I ./ ./ ./ ./ 55.43 

0 ./ ./ ./ ./ 246.60 

Given that the plots of control accelerations showed that steady state control inputs were 

often on the scale of 1 o-8
, it is not surprising to find that formation keeping L1 V 

requirements would be small in most cases. This highlights the sensitivities of the 

dynamics in this low gravity environment. Further exemplifying the dynamic 

sensitivities are the additional L1 V requirements to counter the Sun's perturbing effect. 

From Figure 4.5, the influence of the Sun's gravity on the relative motion is shown to be 

substantial. Yet, the L1 V difference between the perturbed and unperturbed case is small, 

demonstrating that even slight changes to the states in this system can have dramatic 

effects on its motion. 
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Since controller performance is dependent on the designed control parameters, one 

cannot be certain that the nonlinear controller will always outperform the linear 

controller. Still, in this study, the designed sliding mode control schemes consistently 

appeared to be more efficient at handling formation keeping tasks compared to LQR 

control, as can be observed by comparing the respective 1l V requirements. The bang

bang controller required the largest 1l V change to maintain a natural formation trajectory. 

The scale of the change is dependent upon factors such as the chosen control acceleration 

magnitude and trade offs between dead zone size and error tolerances. Nevertheless, of 

the control methods applied to the underactuated system tracking an elliptical trajectory, 

bang-bang control used the greatest 1l V change for station keeping tasks. Since the bang

bang controller required the most fuel for this task, this indicates that if discontinuous 

control methods are used, it would require far greater control efforts than those predicted 

by continuous controllers. 

It is of no surprise that maintaining the circular formation would require the largest 1l V 

change of all cases. The scale of this change is more appropriately measured in 1 0' s of 

centimetres per second each week, showing that tracking an unnatural formation in the 

three body system would place huge demands on fuel and propulsion systems. 
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Chapter 5 

Trajectory Tracking Using Solar Sails 

5.1 Introduction 

In Chapter 4, relative elliptical trajectory tracking was shown to be achievable using 

thrusters in both fully actuated and underactuated configurations. The simulations 

showed that the control efforts required for orbit corrections were small, but was still on 

the order of 105 times larger than that required for station-keeping. Since most current 

propulsion systems do not have such a diverse range in their output magnitudes, this 

implied the need for a separate propulsion system to handle station-keeping tasks. A 

bang-bang control scheme allowed the use of station-keeping propulsion systems for 

reconfiguration tasks as well, but the high frequency of control input is not fuel efficient. 

In the presence of solar gravitation, station keeping control efforts were continually 

needed to keep errors bounded to within a nominal tolerable range of a couple of 

kilometres. Both long bum times and sustained control efforts would rapidly consume 

onboard propellant reserves, reducing a mission's lifespan. Clearly, there are severe 

drawbacks to relying on an underactuated thruster system for formation control. 

A novel method for circumventing fuel constraints would be to use solar sails. 

Accelerations imparted by solar radiation forces can be manipulated through adjustments 
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to the relative yaw and pitch angles of the solar sails. Appropriate angle adjustments can 

provide the necessary differential SRP forces for control purposes. 

Using solar sails for control can overcome some of the aforementioned challenges faced 

by a thruster control system. Firstly, control using solar sails does not consume onboard 

fuel. Used as a failure mode control system to be activated in the event of a primary 

propulsion system fault, this would conserve onboard fuel to be used for mission critical 

maneuvers, thereby helping to salvage a mission. It could also extend the life of an 

otherwise shortened mission caused by such failures. Secondly, SRP is continually 

acting on the system, but the force it imparts is adjustable through changes to the sail 

orientation. This means that continuous control profiles with larger ranges in control 

accelerations are realistically attainable. Hence, orbit correction maneuvers, which 

require larger control accelerations, and station keeping tasks can be accomplished using 

solar sails alone. 

In this chapter, the use of solar sails for elliptical trajectory tracking is explored. Since 

there are only two input angles dictating the motion of this three degrees of freedom 

system, the system is underactuated. A further constraint is introduced with using SRP; 

resulting control accelerations can only act in directions away from the Sun. This differs 

from the thruster scenario where this limitation did not exist. As is usually the case, 

additional constraints will likely hinder the performance of the controller. Therefore, it is 

reasonable to expect that the response of a system controlled using solar sails will be 

inferior to those attained by thruster control. Furthermore, since an underactuated 

thruster system was unable to achieve unnatural in-plane circular formations, an 

underactuated system using solar sails for control will not be able to accomplish this task 

either. Hence, all results presented in this chapter will pertain to the relative elliptical 

formation case. A linear controller is first applied to both the linear and nonlinear 

system. Comparisons will be made between the system responses observed here and the 

thruster-controlled cases. A bang-bang controller is then introduced as a possible 

nonlinear control strategy using SRP. 
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5.2 Control of the Linear System Using Linear Control 

As with the thruster control scenarios, a linear controller is first applied to the linear 

system to gain a better understanding of the dynamics of the system. Recall that in the 

development of the linear controller shown in Chapter 3, small angle restrictions were 

imposed in order to simplify the relative SRP model. If the simplified representation of 

the SRP effect given by Equation (3-40) is to be used directly in the plant model, then the 

control angles must adhere to the small angle criterion. This restriction is in addition to 

the directional constraint on control accelerations mentioned in the introduction. Figure 

5.1 shows the simulated response of the dimensionalized, unperturbed linear system 

controlled using a LQR control scheme with SRP providing the control accelerations. 

The state and control weighting matrix values used for this simulation were 

1 0 0 0 0 0 

0 1 0 0 0 0 

Q = 3x10-10 0 0 200 0 0 0 R=[~ ~] 0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

The area to mass ratio used for this simulation was 0.01 m2/kg. The relative input angles 

are limited to being less than 15 degrees. Relative initial offset errors of 1 km in each 

axis are included to assess the controller's ability to perform orbit correction tasks. 

Figure 5.1 clearly shows that the errors tend to zero with time, indicating that SRP can be 

used to control the formation system of interest in this study. Comparing the results to 

those of the thruster-controlled linear system of Chapter 4, it is evident that the settling 

time has increased substantially, requiring that the simulation time be lengthened. The 

errors were reduced to within hundreds of metres within a few orbits; sufficiently 

accurate enough for many mission scenarios. However, such long settling times may be 

too lengthy depending on mission requirements. 
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Figure 5.1 Performance of LQR control scheme on the linearized system using small relative sail 
angles 

In the thruster-controlled setting, gmns could be adjusted to induce better controller 

performance, so long as the control accelerations remained reasonably attainable using 

thrusters. In the solar-sail-controlled system, gain adjustments altered the relative control 

angles to ranges outside of that valid for small angle approximations, which are required 

for simulations involving the linearized system using the simplified SRP model. The 

plots shown here represent the best efforts of the designer to attain control while adhering 

to the small angle restrictions. 
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5.3 Control of the Nonlinear System Using Linear Control 

As was done for the thruster control case, the linear controller using SRP is applied to the 

nonlinear system to assess how effectively it could handle the nonlinearities. Bounded 

system errors could not be demonstrated with a simulation time frame of 15 orbits. The 

results shown in Figure 5.2 were obtained using a simulation time of 50 orbits. 

a) Error response 
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Figure 5.2 Performance of a LQR controller applied to the nonlinear system using solar sails for 
control actuation 

Long simulation time periods undoubtedly produces results with a higher degree of 

numerical errors. As such, the results presented here should be viewed as very crude 

approximations of the system behaviour at best. In spite of this, Figure 5.2 shows 
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bounded performance with long time periods of oscillation, demonstrating the 

effectiveness of the controller. Such oscillations are caused by the nonlinearities, yet 

they are not seen in the results of the thruster controlled cases. Fine tuning of the gains 

did not appear to significantly improve the performance and observed behaviour. 

The long periods of oscillation can be explained by the directional constraint on the 

control acceleration. When nonlinearities cause the relative motion to drift in directions 

away from the Sun, the ideal control acceleration would be in the sunward direction to 

counter the undesired motion. This is more readily achievable using thrusters, causing 

higher frequencies of oscillations to be observed in the thruster controlled case as 

changes in thrust direction causes accelerations in the opposite direction. Solar sails, 

however, are not able to generate thrusts in directions towards the Sun. Motion sunward 

is achieved by reducing orbital velocity over extended periods of time and dropping to 

lower orbits about the Sun. This is a more time consuming and much less direct method 

than using thrusters to accomplish the same task. Since the solar sails are unable to 

compensate for these nonlinear disturbances in a timely manner, long periods of 

oscillations are observed. 

It appears that the in-plane steady state relative motions are bounded to about 500 m in 

xr and y r . These bounds are similar to that of the thruster controlled case shown in 

Chapter 4, implying that a solar sail controlled system could attain comparable 

performance to that of a thruster-based system. 

Although not illustrated here, it should be noted that small angle restrictions are only 

necessary for simulations involving the linearized plant model using the simplified SRP 

model given by Equation (3-30). In simulations employing the full nonlinear plant 

model, small angle considerations are not necessary. In the nonlinear model, relative 

control angles are substituted back into the full expressions for relative SRP accelerations 

given by Equation (3-39). These nonlinear expressions are valid regardless of the 

magnitudes of the angles. Hence, even though the control laws were derived using small 
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angle approximations, controller outputs could still be large and would remain valid in 

the nonlinear system simulations. 

5.4 Control of the Nonlinear System Using Nonlinear Control 

In previous chapters, sliding mode control was effectively applied to the underactuated, 

thruster-controlled system. However, singularity issues make the development and 

application of the SMC method to the solar-sail-controlled system difficult. This implied 

the need for an alternative nonlinear control scheme if solar sails are to be used. 

From plots of the relative control angles in Figure 5.2, it can be seen that bounded 

performance can be achieved using small relative angles, although this condition was not 

necessary for simulations pertaining to the nonlinear model. What is also readily seen is 

the control effort continually alternating between positive and negative values at a 

relatively high frequency, resembling that of a bang-bang controlled system. Hence, it is 

conceivable that the bang-bang control method could provide tolerable system 

performance. 

The bang-bang controller developed in Chapter 3 is applied to the nonlinear system here. 

The control laws can be expressed in an identical form to those of the thruster-controlled 

case, 

u Y =-171 sgn(Sxy ) 

uz = -172 sgn ( SJ 

Here, 171,2 represent the magnitudes of Jr and ar . The definitions of the sliding surfaces 

remain the same as previously defined and are used as the switching control variable. To 

prevent excessive control efforts which would result in chattering, a dead zone of 10 m in 

the motion along y and z were imposed. Simulation results are shown in Figure 5.3. As 

with the linear controller case, long simulation time periods were necessary to highlight 
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the bounded nature of long period disturbance oscillations. However, due to the high 

frequency switching nature of bang-bang controllers, relative angle plots are not very 

illuminating when generated over such long simulation time periods. Therefore, Figure 

5.3 will demonstrate the efficacy of the controller, but plots of the relative control angles 

will only be shown for simulations with shorter time spans. 

a) Error response b) Steady state response 
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Figure 5.4 Performance of the bang-bang controller over 5 periods 

The bang-bang controller appears to be able to bound in-plane motions to within 1 km. 

This is larger than what was achieved using the linear controller. However, there are 

some distinct advantages to using a bang-bang control scheme. Continuous controllers 

demand nonstop motor actuations and fine increments in angle adjustments once steady 
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state is reached. Such fine adjustments are difficult to achieve and complicate system 

designs. A bang-bang controller outputs angles that are more readily achievable, and its 

on/off nature allows for intermittent usage of actuation devices, conserving power. 

In comparison to the corresponding thruster-controlled scenario, similar performances 

were attained using solar sails with less control switches overall. As with the thrusters 

controlled cases, bounded oscillations were observed. These were due to nonlinearities 

that could not be directly countered in a timely manner by the underactuated system. In 

time spans where high frequency switching is observed, such as between 4 - 5 orbits, 

such inputs may not seem to be practically realizable owing to limitations in the slew 

rate. This, however, proves to be a mute point owing to the size of the simulation time 

step. 

The simulation was conducted with a time step of about 5 hours. Improvements in 

numerical accuracies and controller performance were observed to be marginal with 

smaller step sizes. Relative control accelerations are treated by the simulation as being 

constant during a time step interval and integrated. In general, maintaining a constant 

relative control angle does not result in constant control accelerations since the direction 

of the Sun vector will change. However, over time intervals that are relatively small 

compared with the orbital period, the formation system's position does not change greatly 

from its previous time step position. Since the Sun's direction vector is largely 

determined by the system's position, it follows then that the Sun's direction vector does 

not vary significantly either. Therefore, over that short time interval, approximately 

constant control accelerations are obtained by maintaining a constant relative angle. 

With this in mind, a nominal slew rate parameter of 0.05 deg/s would allow the transition 

time between control angle changes to be less than 15 minutes in this case; an 

insignificant amount of time relative to the time step size and therefore making the use of 

a bang-bang controller on a solar-sail-controlled system plausible. 
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5.5 Control of Sun Perturbed System 

In the unperturbed, thruster-controlled scenario, the sliding mode controller was able to 

attain similar performance results as the linear controller. Since SMC is a robust 

nonlinear control method, it was reasonable to presume that the sliding mode controller 

would outperform the linear controller in a perturbed dynamic system. The same line of 

reasoning cannot be extended here to the solar sail controlled system, however. 

The simulation results thus far in this chapter show that both a linear and nonlinear 

controller can effectively bound system errors. The linear controller provided better 

performance than the bang-bang controller but required constant motor actuations and 

fine angle adjustments. Since the linear controller outperformed the nonlinear controller, 

it was necessary to analyze the performance of both controllers in the Sun perturbed 

scenano. 

5.5.1 Linear Control of the Sun Perturbed System 
The performance of the linear controller is shown in Figure 5.5. Although clearly able to 

bound steady state motions, the maximum amplitude of the oscillations was almost 4 

times that of the unperturbed case; despite best efforts to reduce this through tuning. The 

long expanding and contracting trends are similar to that which was observed in the 

Chapter 2 in dynamical simulations of an uncontrolled mass. Such trends are caused by 

the changing direction of the Sun vector as the Earth-Moon system and the satellite 

formation system orbits the Sun, causing an oscillating disturbance along each axis. Out

of-plane motions are small and negligible, but are maintained using unattainably small 

relative angles. Larger out-of-plane motions would be observed in a true model where 

the accuracy and scale of the relative pitch angles are limited by the precision of 

actuation devices. 
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Figure 5.5 Performance of LQR control scheme applied to the Sun gravitationally perturbed system 
using solar sails 

5.5.2 Nonlinear Control of the Sun Perturbed System 
The bang-bang controller is now applied to the solar gravitationally-perturbed system. 

As was done for the unperturbed case, the system response during lengthy simulation 

time frames are presented first in Figure 5.6 to highlight the controller's ability to induce 

bounded motion in the presence of long period disturbances. More accurate shorter time 

frame simulations are then presented with the relative control angles in Figure 5.7. 
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a) Error response b) Steady state response 
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Figure 5.7 Performance of the bang-bang controller in the Sun gravity perturbed environment 

From Figure 5.6, it can be seen that the Sun introduces both long and short perturbation 

cycles to the system. Steady state motion amplitudes increased slightly from the 

unperturbed case but were still around 1 km. A considerable increase in the frequency of 

the control effort is observed. In particular, relative pitch angle adjustments were 

intermittently required during the simulation. This is in contrast to the unperturbed case 

where the required relative pitch angle remained at 0 degrees after steady state was 

attained. The need for continual relative pitch angle adjustments stems from the 
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inclination of the reference orbital plane relative to the ecliptic. The Sun's disturbance 

will have an out-of-plane component in this case, which requires regular adjustments 

from the sail's pitch angle to counter. 

Comparing the performance of the linear and nonlinear controllers, the bang-bang control 

scheme appears to perform better. The improved performance over the linear control 

scheme in a perturbed environment could be due to the robustness properties of the 

nonlinear controller. Its effectiveness in rejecting external disturbances can be seen by 

comparing the results of the perturbed to unperturbed scenarios, where the amplitude of 

the motions during steady state did not increase greatly. However, due to uncertainty in 

the tuning controllers, one cannot generalize that the nonlinear controller developed here 

will always outperform linear controllers. 
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Chapter 6 

Control Using a Hybrid Propulsion 
System 

6.1 Introduction 

Previous chapters discussed the application of using thrusters or solar sails for relative 

control of an underactuated formation system. It was shown that the nonlinear controllers 

developed in this study performed better than the linear controllers in the Sun perturbed 

environment. In-plane motions were bounded within acceptable ranges for many 

prospective formation missions while out of plane motions were negligible. Due to the 

sensitivities of the dynamics, modelling uncertainties and numerical errors, emphasis 

should not be placed on the bounded values determined using long simulation time spans, 

but rather on the overall qualitative performance of the controllers. What was clearly 

evidenced in the results presented in previous chapters was the efficacy of an 

underactuated system in bringing about tolerable system behaviour. This would be useful 

in the event of faults in the primary propulsion system. 

It was shown in Chapter 4 that a fully actuated thruster-controlled system using a sliding 

mode control scheme could perform extremely well in the Sun-perturbed environment. 

Unfortunately, the same cannot be said about a solar-sail-controlled system, which is 

inherently underactuated and constrained by its inability to directly influence motion 
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toward the Sun. Since the underactuated thruster-controlled system is less constrained 

than the solar sail controlled system, its performance represents the upper limit of that 

achievable by solar sails. In spite of this, Chapter 5 showed that using a nonlinear 

controller, a solar sail controlled system could still enforce bounded steady state 

behaviour in ranges similar to that achieved by an underactuated thruster system. 

However, neither the underactuated thrusters nor solar sail controlled systems were able 

to maintain the unnatural in-plane circular formation configuration. Since a fully 

actuated thruster-controlled system was able to track a circular formation trajectory, it 

was conceivable that a hybrid propulsion system, using a combination of thrusters and 

solar sails, could provide the full actuation needed for formation-keeping of unnatural 

orbits. Such a system would still reap the benefits of using solar sails; namely, the 

propellantless nature of solar sail propulsion systems. The hybrid system in this study 

will make use of thruster control along xr while motion along y r and out of plane 

motions are controlled by solar sails. 

A preliminary analysis on the feasibility of a hybrid propulsion controlled system will be 

presented in this chapter. Linear control will be applied to the unperturbed spacecraft 

formation system first, to assess its ability to handle system nonlinearities. It will then be 

applied to the solar gravitationally perturbed system. Finally, an attempt is made to use a 

linear controller to track a relative circular trajectory. Once again, long simulation time 

periods are conducted and serve only to illustrate the effectiveness of the controller. 

6.2 Elliptic Trajectory Tracking 

6.2.1 Control of the Unperturbed System 
To assess the ability of a hybrid propulsion system in countering the undesired motions 

caused by nonlinearities, it was necessary to conduct analysis on the unperturbed system. 

A LQR control scheme with integral control was used to track the elliptical short period 

trajectory. The results are shown in Figure 6.1. Bounded behaviour is clearly observed 
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in all axes but the steady state error in motion along the y axis never reached zero. This 

was due to the coupling of the in-plane motion equations as well as the inability for solar 

sails to dictate the magnitude of the control accelerations directly. Accelerations 

imparted by the thrusters not only influences motion along xr but also along Yr. Since 

solar sails are not able to provide the ideal accelerations necessary to complement the 

effects of the thrusters for precise in-plane control, some degree of error will persist, 

resulting in the steady state errors observed in Yr. The oscillating trends along x,is due 

to the linear controller being unable to completely compensate for the nonlinearities of 

the system. 

In comparison to the fully actuated thruster-controlled scenario, steady state motions 

were bounded to larger regions. This was also due to the aforementioned limitations of 

solar sails and linear control methods. Compared to the underactuated cases though, it 

was able to drastically decrease the bounded motion amplitudes from a scale of several 

hundred metres to tens of metres. Thrusters accelerations during steady state were on a 

scale similar to that of the fully actuated case, while relative control angles remained 

small. The simulation results presented here were obtained using the nondimensionalized 

model, with the state and control weighting matrices used in the LQR control set as 

5x103 0 0 0 0 0 

0 1 0 0 0 0 

R=[i 
0 

:] Q=106 0 0 1 0 0 0 
5x1o-s 

1 
0 0 0 0 0 

0 
0 0 0 0 1 0 

0 0 0 0 0 3x104 

As was done in previous cases where control was achieved using solar sails, small angle 

approximations were used to facilitate the determination of the relative control angles. 

These angles were then substituted into the nonlinear expression of the SRP effects. The 

control effort along xr was a sum of the SRP component acting along that axis and the 

thruster acceleration. 
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Figure 6.1 Performance of linear controller on the unperturbed nonlinear system 

6.2.2 Control of the Sun Perturbed System 
Simulation results for the Sun-perturbed hybrid system are shown in Figure 6.2. As with 

the solar sail controlled cases, long simulation periods are used to illustrate the efficacy 

of the controller. 

Although the numerical accuracy of long term simulations is crude at best for this system, 

some general observations of the controller's performance can still be drawn. Bounded 
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steady state motions are still observed, but the amplitude of the oscillations has increased. 

This increase results from the linear controller being unable to fully compensate for the 

Sun's disturbance. This is analogous to what was observed in the solar sail controlled 

scenarios, where a nonlinear controller provided superior performance to the linear 

controller in the presence of the Sun's perturbation. Nevertheless, the steady state 

motion's amplitude was a couple of hundred metres, which is approx,imately 4-5 times 

smaller than what could be achieved in the underactuated configurations. 
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Figure 6.2 Long term simulations showing efficacy of LQR control of hybrid system 
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Figure 6.3 Performance of LQR controller on the Sun perturbed hybrid system over 5 periods 

Observing the demanded control efforts, it can be seen that control accelerations along 

xr remain small; on a scale of 10-9 m/s2
. This low level of acceleration is on the same 

scale as that demanded in the fully actuated thrusters controlled system. However, since 

control along y r and out of plane motions are controlled using solar sails, fuel 

consumption is significantly smaller. The relative Ll V requirement was computed for 

motions along the x direction only and found to be approximately 0.631 mm/s/week, or 

one-third of that required by a purely thruster-controlled system. 
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The relative control angles were extremely small, particularly for control of the out-of

plane motions. Such small and precise relative angle requirements may not be attainable 

in practice. However, as noted in previous chapters, the Sun's perturbing effect on 

motion out of the orbital plane is small and out-of-plane errors only grow large after long 

periods of time. Approximate planar motion can still be achieved by neglecting out of 

plane control efforts. 

6.3 Circular Trajectory Tracking 

The underactuated thruster configuration was shown in Chapter 4 to be unable to track a 

circular reference trajectory. In that case, it was shown that unnatural spacecraft 

formations required large amounts of control efforts in directions that were unachievable 

by the underactuated system within an appropriate time frame. It was hypothesized that a 

fully actuated system could accomplish this task. However, as the results of Figure 6.4 

show, it appears that the limitations of the solar sails also prove to be too limiting for a 

linear controller to track a circular formation. 
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Figure 6.4 Trajectory of a hybrid system attempting to track a circular orbit 
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In assessing the controller performance, it is readily seen that the largest errors occured in 

the xr direction. This was also the case for the underactuated thrusters system tracking 

the circular orbit. However, the orbit size has decreased drastically, with in-plane errors 

reduced by one to two orders of magnitude as compared to the underactuated thruster 

control scenario. Although the linear controller was not able to bring system errors to 

within acceptable ranges, its performance in this case highlights the challenges of 

maintaining unnatural formation trajectories in the event of actuation failures. 
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Chapter 7 

Conclusions 

7.1 Concluding Remarks 

This thesis represents a preliminary study into the formation keeping control of a Sun 

perturbed spacecraft formation system orbiting the Earth-Moon L4 point. As this is a 

preliminary study, it should be noted that several technological advancements in solar sail 

and propulsion technologies would be required before the proposed control strategies in 

this study could be implemented. Still, this study showed that once these enabling 

technologies are developed, tracking of the elliptical formation trajectory could be 

achievable in both fully and underactuated configurations with bounded behaviour. 

Tracking of an in-plane circular trajectory, however, appears to only be attainable using 

thrusters in a fully actuated state. The use of thrusters, solar sails and a hybrid propulsion 

system for control actuation were examined in this thesis, and comparisons were drawn 

between these different methods. The main conclusions that could be drawn from the use 

of each of these three methods are summarized briefly here. 

7.1.1 Formation Keeping Using Thrusters 
The analysis of the thruster-controlled system showed that the integral augmented sliding 

mode controller could perform just as well or better than linear control methods. Fuel 

consumption was also lower when using SMC; however, one cannot definitively state 

that fuel consumption in general will be lower using nonlinear control methods due to 

uncertainty in the tuning of control parameters. Still, the use a sliding mode controller to 
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control the underactuated, Sun-perturbed system resulted in a lower fuel consumption 

than what was achieved using a LQR control scheme. The results here would favour the 

use of nonlinear control techniques for control of the underactuated system. 

It was shown that extremely low relative control accelerations, on the order of 10-8 for the 

underactuated configurations, were sufficient to attain bounded in-plane behaviour. The 

periodic oscillations observed during steady state were caused by nonlinearities in the 

system dynamics that could not be compensated for using an underactuated thruster 

configuration. Short and long period oscillations were also observed when the Sun's 

gravity was included in the model as a perturbing force, further reflecting the limitations 

of the underactuated system in countering system nonlinearities. 

A bang-bang controller was also developed and applied to the formation system. This 

was done to assess whether or not desired system performance could be attained using 

discontinuous control methods. It was shown that the system was controlled, but at a 

much higher fuel cost than with continuous methods. Nevertheless, the controller was 

able to bring about bounded behaviour, and thus further research into the discretized 

control of this system is justified. 

The bulk of the cases examined in this thesis pertained to the tracking of a natural 

spacecraft formation trajectory in the CR3BP. In the analysis of the thruster controlled 

system, it was found that in-plane circular trajectories were only attained using a fully 

actuated configuration. The ~ V requirement for achieving this was significantly higher 

than that required to track the natural elliptical trajectory; in fact, more than 100 times 

higher. Thus, from this analysis, it would appear that reference orbit selection plays a 

key role in extending a mission's life. For increased reliability, it would also be wise to 

select a reference trajectory that could be satisfactorily tracked by an underactuated 

system in the event of a propulsion system fault. 
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7.1.2 Formation Keeping Using Solar Sails 
The results shown in Chapter 5 bring to light the prospect of using solar sails for 

formation-keeping control. A solar-sail-controlled system is inherently underactuated, 

and the resulting control acceleration's direction vector is restricted in the sense that it 

could never point sunward. In spite of these limitations, the solar sail controlled system 

was still able to keep steady state motions to within ranges similar to that of the 

underactuated thruster-controlled system. Given that the use of solar sails requires no 

fuel, significant mass savings can result from the use of solar sails for formation control. 

Bang-bang control was compared to the LQR control scheme and was shown to greatly 

outperform the latter in the Sun perturbed setting. For reasons outlined in Chapter 5, 

bang-bang control can be more realistically implemented for the solar sail controlled 

system. Furthermore, using a bang-bang control scheme can circumvent the problem of 

attaining small, precise relative angles required by continuous controllers. 

It should be emphasized that long simulation time spans do not accurately depict the 

dynamics of the system, but were included only to illustrate the efficacy of the controllers 

and to show the expanding and contracting nature of the motions. 

7.1.3 Formation Keeping Using a Hybrid Propulsion System 
The hybrid system represented a fully actuated system that could take advantage of solar 

sails to influence motions along y r and out of plane motions, thereby saving fuel. A 

linear controller was shown to adequately bound errors in the Sun gravity perturbed 

system to within a couple hundred metres, a much tighter tolerance than what was 

achieved using thrusters or solar sails alone. 

As expected, fuel consumption was only one-third of that required in the fully actuated 

thruster-controlled system. In the event where thruster actuation along Yr fails, the 

hybrid control approach can be a viable secondary control method. It can even be argued 

that, since the hybrid system requires less fuel than that of a fully configured thruster 
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system, this method should become the primary control method. In which case, thrusters 

would form the backup control system, to be used only if actuating drives controlling the 

orientation of the solar sails fails, or are needed for precision maneuvers. 

7.2 Future Work 

This current study touched on several subjects, and can serve as a springboard for future 

research work. Improvements to the current dynamic model can be achieved through 

dynamic formulations using the elliptic restricted three body model, which would account 

for the eccentricity of the Earth-Moon motion. Different initial epoch conditions can also 

be studied to find other classes of natural spacecraft formation trajectories. Controllers 

developed using the elliptic model to track other natural trajectories could also be applied 

to ephemeris models for comparison. 

A companion to spacecraft formation keeping would be attitude control. Attitude control 

at the Earth-Moon Lagrange points was not addressed in this study. A future study into 

the potential of controlling satellite orientations at these points using solar sails or 

thrusters in underactuated configurations would be of interest to mission designers. 

A common maneuver for low Earth orbiting systems is the rendezvous maneuver, in 

which one spacecraft meets and joins with another, such as when a spacecraft docks with 

a space station. Given the risks involved with sending humans to repair a spacecraft as 

far away as the Lagrange point, an automated, unmanned approach to repairing systems 

would be more preferable. It might be possible for a repair satellite to use a hybrid 

propulsion system or solar sails alone to approach to within predefined ranges of the 

spacecraft to be repaired. A further investigation of these and other approaches may be 

warranted at some point. 
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