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Abstract

CODE COAGULATION IS AN EFFECTIVE COMPILATION TECHNIQUE
FOR THE JVM

Shruthi Padmanabhan

Master of Science, Computer Science

Ryerson University, 2018

Compilers are the interface between programmers and computers. The output of a com-

piler determines the speed of the resulting program as well as its energy footprint – of

increasing importance in this world of climate change and battery-dependent computing.

Code coagulation has the potential to improve that performance, particularly relative to

(JIT) interpreters. Java and related languages are in wide use, so addressing their per-

formance has large potential impact. Optijava is an experimental compiler that applies

code coagulation to Java programs.
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Chapter 1

Introduction

My thesis is that Code Coagulation is an effective compilation technique for the JVM.

The strategy of code coagulation is local optimality. It starts by compiling frequently

executed parts of the code and locally allocates optimal resources to them. Resource

adjustments are done - as required - on the less frequently executed paths through the

code. This produces highly efficient code in terms of instruction selection and register

allocation.

1.1 Problem Background

The Java Virtual Machine (JVM) is the core of Java technology. The JVM is an abstract

machine that executes the Java bytecode. The JVM delivers the pivotal feature of Java;

platform independence. The JVM initially consisted of an interpreter which sequentially

executed the bytecode instructions [36]. However, this negatively affected the perfor-

mance since the interpretation od each instruction would take several CPU instructions

and many cycles. To address this JVMs started to incorporate a Just In Time (JIT)

compiler to improve the performance [4]. During program execution, a JIT compiles a

Java method to native code “on the fly”, and saves the compiled version on the heap. On

future references to the same method, the compiled method is executed directly without

the need for interpretation. The compilation process of JIT includes flow analysis and

register allocation algorithms to generate optimized and higher-quality native code. This

has helped to produce efficient machine code with significant performance improvement.

However, CPU time, speed and performance will always be an issue in long-running

applications such as web servers. Any JIT will consume a lot of CPU time at startup,

and for its optimizations. Since the program execution includes the JIT compilation
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CHAPTER 1. INTRODUCTION

time, it affects the overall speed and CPU time. Hence, it is important that the compiler

generate faster code to reduce the application execution time. The compiler should

also be able to use the resources efficiently by consuming less CPU time and thereby

conserving energy.

JVMs have evolved over the years incorporating optimizating compilation techniques

to improve execution speed. State of the art JVMs use adaptive compilation. The

adaptive compiler helps in identifying performance critical methods or methods that

contains loops or any performance critical paths and optimizes these methods as opposed

to optimizing all the methods as done by conventional JIT. This helps to reduce the

overall compilation time. Nonetheless the startup speed of the compiler remains an issue

[35].

What would be useful is a simple compiler which has less overhead, an effective

optimization technique and which helps in faster execution. The alternative is an upfront

compiler (a compiler that translates the program into native code up front, well before

the program is even run) that does not add overhead to execution. We propose an

optimizing Java compiler, OptiJava; a simple upfront compiler written in Java which

aims at a speedy execution of Java programs. OptiJava uses a code generation approach

called code coagulation. Code coagulation is an optimization technique that aids in

efficient resource utilization [21].

1.2 Objectives and Proposed Methodology

Optijava is an upfront, feedback-directed, compiler. Up front: OptiJava compiles the

Java class files to native code before run-time. Feedback-directed: Optijava improves the

performance of a program based on branch-frequency information gathered at run-time

from previous executions.

The generated native code is run on a typical workload and the class files are recom-

piled using the gathered frequency information (number of times each part of the code

was executed). With this information, it can make context sensitive decisions.

The overview of OptiJava is as shown in Figure 1.1.

OptiJava uses a compile only approach, i.e. , it does not use an interpreter. The class

files are directly fed to OptiJava without any interpretation. A distinguishing feature

of this compiler is that it uses a different approach to code generation namely code

coagulation. This approach is a cost-effective method to utilize resources [26]. In this

approach, the frequently executed code known as hot-spots are compiled with a locally

optimal use of registers and instructions, and then the less frequently executed code is

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of OptiJava compiler
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CHAPTER 1. INTRODUCTION

compiled. This will be explained in more detail in Section 3.5. Code coagulation was

proved to be an optimal solution in C compiler [26]. We propose to use this strategy in

Java compilation.

OptiJava initially loads all the required classes and methods. Methods are then

partitioned into basic blocks and a control-flow graph is generated which is used by the

coagulation phase. Coagulation in itself has two phases: unification and solidification –

explained in detail in Section 3.5.4 and Section 3.6 respectively. After coagulation, the

basic blocks are given a sequence that is optimized for branches and cache references.

Finally, the instructions are converted to assembly instructions.

OptiJava is designed to support multiple architectures (including IA32, PPC, and

ARM), but currently the primary target is AMD64 (colloquially known as x86-64). Our

ultimate goal is to implement this compiler in long-running application servers to produce

faster code thereby assisting in energy saving and carbon reduction.

1.3 Contributions

The main contributions in this dissertation are:

• Implementation of the coagualtion concept in an abstract virtual machine.

• In the past, the coagulation technique has only been implemented in a C compiler.

Through this research, we have implemented the coagulation concept in an object

oriented language for the first time.

• Generally, compilers convert intermediate instructions to be in a Static Single As-

signment (SSA) form. This process of conversion is time consuming. We have

introduced a technique where the intermediate instructions can be of SSA form

implicitly without having to carry any additional conversion process.

1.4 Dissertation Outline

This dissertation is organized as follows:

• Chapter 2 presents some background on the Java Virtual Machine and the execu-

tion techniques used in the JVM. It also includes a basic overview of the structure of

a modern compiler. Related work in Ahead-Of-Time compilation is also discussed.

• Chapter 3 discusses the design of OptiJava in detail.

4



CHAPTER 1. INTRODUCTION

• Chapter 4 analyzes the performance of OptiJava. Analysis is done on the basis of

a program containing few loops. The run-time statistics obtained from OptiJava

and that of a commercial JVM are compared.

• Chapter 5 concludes by presenting conclusions and suggestions for future work.

5



Chapter 2

Related Work

Java’s “write once/run everywhere” concept has contributed to its mainstream success.

This was made possible by the Java Virtual Machine (JVM). Java programs are compiled

into platform independent java byte code (.class files). JVM, an abstract machine,

translates and executes the byte code. Unlike C, Java programs need not be recompiled

for different architectures because the JVM takes care of the final transition to native

code. “All platforms on which a JVM exists can execute Java” [36].

2.1 Java Virtual Machine

“Java Virtual Machine is an abstract machine that executes a Java program and is the

key to many of Java’s features, including its portability, efficiency and security” [36].

An implementation of the JVM should have the features that are specified by the JVM

specification [23].

The JVM dynamically loads, links and initializes classes and interfaces when they

are needed. Loading is the process of locating the binary representation of the class

and creating a class or interface structure from that binary representation. Linking

transforms the loaded class into a runtime representation of the JVM. Once the classes

have been loaded and linked, the classes are ready for execution. The bytecodes of the

class are executed by the execution engine. A simplest form of an execution engine

is a bytecode interpreter which interprets the bytecodes one at a time. Other ways of

execution are Just-In-Time compilation and Ahead-Of-Time compilation. The execution

techniques are explained in detail in Section 2.2.

6



CHAPTER 2. RELATED WORK

2.1.1 Java Virtual Machine Architecture

The JVM can be viewed as a collection of subsystems, run time data areas and execution

engine. A block diagram of the JVM is as shown in Figure 2.1 (from [36]).

Figure 2.1: JVM architecture

Class Loader Subsystem

Class Loader subsystem is responsible for loading the classes and the interfaces dynam-

ically. It loads the class files from both the program and the Java API (set of runtime

libraries). Class files are located, linked and initialized by this sub system.

The process of obtaining the Java class file (binary representation) and placing them

in memory is known as loading. A class is said to be loaded when its binary representation

is loaded. A class file contains vital information such as methods of the class, symbolic

reference to its superclass and constant pool. After loading, the JVM has knowledge

about the name of the class, its hierarchy, the fields and methods of the class. Once

the class has been loaded, the loaded representation is verified for its validity and its

7



CHAPTER 2. RELATED WORK

conformance with the security constraints. Then memory is allocated for class variables

and the variables are initialized to default initial values. Next the symbolic references in

the class are transformed to direct references. Finally, the class variables are initialized

to their actual initial values as described in the program by invoking the static initial-

izer <clinit> containing all the class variable initializers and static initializers of the

class.[36]

Run Time Data Areas

The JVM requires memory to store bytecodes, information extracted from class files,

objects, parameters, return values, local variables and so on. These are stored in runtime

data areas. Run time data areas consist of Method Area, Heap, Java Stack, Program

Counter and Native Method Stacks.

Class data, special methods used in class initialization, method data and constant

pool (an ordered set of constants, literals, symbolic references to types, fields and meth-

ods) are stored in method area. The memory for new objects and arrays are allocated

from the heap. Each object in the heap has an associated class in the method area.

The Java stack holds a method’s state invocation such as method’s local variables,

parameters, return value and partial results. The Java specification supports the use of

native code through the Java Native Interface (JNI) specification, where external libraries

(DLLs or shared objects) are dynamically loaded and then wrapped with Java classes. A

native method stack is used by a native method to store its state. The address of the

current instruction of the method being executed is stored in Program Counter (PC)

register [36].

2.1.2 Java Stack

The JVM is a stack-based machine that continuously fetches and decodes bytecodes.

A method’s data operations, partial results, return values, dynamic linking are done

via a stack. The Java stack holds a method’s state invocation such as local variables,

parameters and return value.

The Java stack consists of a stack frame for each method. A stack frame has an

operand stack, local variables and frame data.

Local Variables

Local variables of an invoked method are stored as an array of variables. The length of

the array is determined at compile time and is provided by the class file. The variables

in the array are accessed by indexing. Indexing starts from 0. If the method is an

8



CHAPTER 2. RELATED WORK

instance method, then index 0 is used for storing the reference to the object containing

the invoked method (this) and the local variables will start at index 1.

Operand Stack

Operand stack is a last-in-first-out stack. Instructions take their operands from the

stack, operate on them and pushes the result on to the stack. The stack is also used to

pass the method arguments and to receive the result.

Consider the following example of an add method in Java source code and then in

Java bytecode format:

public int add(int a,int b){

return a + b;

}

iload_1 // push the int in local variable 1

iload_2 // push the int in local variable 2

iadd // pop two ints, add them, push result

ireturn

In this sequence of bytecodes, the first two instructions, iload_1 and iload_2, push

the integers stored in local variable positions one and two onto the operand stack. The

iadd instruction pops those two int values, adds them, and pushes the int result to

the operand stack. The fourth instruction, ireturn, pops the result off the top of the

operand stack and terminates the method using the result as the return value [36].

Frame Data

Frame data consists of the data that performs dynamic linking, constant pool resolu-

tion, return values for methods, and dispatch exceptions.

2.1.3 Execution Engine

The core of the JVM is its execution engine. It takes a sequence of bytecodes of the loaded

method and executes the instructions that the bytecodes represent. A runtime instance

of an execution engine may execute bytecodes directly by interpreting or indirectly by

compiling and executing the resulting native code.

Instruction Set

The bytecodes of a method are a sequence of instructions. Each instruction consists

9
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of a one-byte opcode followed by zero or more operands. The operation to be performed

is indicated by the opcode. The operands will be the entries from the constant pool

or entries from the operand stack. Execution is done one instruction at a time. Some

opcodes have a prefix which indicates the type they operate upon. For example, an add

instruction has two implementations; iadd indicates that the addition is done on two

integers and fadd indicates that the addition is done on two floats. The prefix informs

the virtual machine whether it has to perform an integer or a floating-point arithmetic.

Some opcodes do not have a prefix, indicating that it can be performed on any type of

data. Opcodes such as pop, dup, invokevirtual are not associated with any specific

type.

The execution engine fetches an opcode and its operands, if any. It then executes

the operation as indicated by the opcode. The next opcode to be executed is usually

the one following the current opcode. However, for instructions such as goto or return,

the opcode might be several instructions away. This process of fetching the opcode and

executing the operations continues until the method has completed i.e. returned.

If an instruction throws an exception, i.e, if during the execution of the instruction

an event occurs that disrupts the normal flow of the program, then the execution engine

handles the exception by determining an appropriate catch clause in the exception table.

If there is no appropriate catch clause, the exception is passed to the calling method for

handling.

If the execution engine comes across a native method invocation, then, the engine

invokes the native method. The invocation instruction is executed by running the native

method and the engine continues with the next instruction when the native method

returns [36].

2.2 Execution Techniques for the JVM

The different ways of executing the bytecodes by the execution engine are : Interpreta-

tion, Just-In-Time compilation and Ahead-Of-Time compilation.

2.2.1 Bytecode Interpreter

A Java bytecode interpreter is the original and the most commonly used execution tech-

nique for a JVM. The JVM interpreter executes the instructions sequentially. The in-

terpretation of a bytecode instruction involves fetching the instruction, decoding it and

performing the operation [13]. A typical bytecode interpreter is structured in a loop

10



CHAPTER 2. RELATED WORK

and is implemented in C. Interpreters are simple and easy to implement and help in the

security and portability of the language. However, it is very slow [11].

Instruction dispatch i.e., fetching the instruction and decoding the instruction con-

sumes most of the interpreter’s runtime. The JVM interpreter must fetch, decode, and

then execute each bytecode one by one. Consider the following expression:

x = y + ( 2 * z )

The bytecode sequences of this instruction would be:

iload_2 //push y (local variable 2)

iconst_2 //push constant 2

iload_3 //push z (local variable 3)

imul //multiply 2 and z

iadd //adds y and the result of the previous computation

istore_1 //store the result to x (local variable 1)

Evaluating this expression involves decoding the six bytecode sequences and perform-

ing the operations specified by the bytecode sequences. Determining the semantics of

each individual bytecode and performing the appropriate computation involves processor

and memory usage. This affects the run time performance of the Java application [11].

Apart from dispatching, the performance of the interpreter is also affected by the

number of memory accesses. Interpreter for the stack based JVM frequently access the

operand stack in memory to push and pop its stack operands. Frequent load and store

operations such as fetching the bytecode from the memory or storing the result to the

memory poses a bottleneck for performance.

2.2.2 Just In Time Compiler

To improve the performance, bytecodes can be compiled into efficient instruction se-

quences for the underlying machine [11]. Compiling at run-time is the essence of a Just

In Time (JIT) compiler. A JIT compiler interacts with the JVM at run time and com-

pile appropriate bytecode sequences into native machine code. The translated code is

cached to eliminate the repeated translation of the same sequence of bytecodes. This

is in contrast to an interpreter, an interpreter must translate a bytecode sequence each

time it is encountered. For example, if a program has a loop or a recursion, the inter-

preter translates the bytecodes repeatedly. However, in the JIT compiler the translation

of bytecodes is done only once and the translated code gets executed each time.

11



CHAPTER 2. RELATED WORK

Traditionally a Java JIT compiler translates the bytecode into native code when a

new method is invoked during run-time. When the method gets invoked for the first time,

the JIT compiler compiles the whole method to native code just before execution. The

compiler first converts the method’s bytecodes to an intermediate representation which

represents the machine code more closely. The intermediate representation is analyzed,

optimized and then translated to native code [11]. Once the method has been compiled,

during the next invocation of the same method, the JVM calls the compiled method

instead of interpreting it.

However, this approach of JIT compilation significantly affected the startup time

of a Java application. When the JVM first starts up, thousands of methods are called.

Compiling these methods at run-time can significantly affect the startup time. Ding et al.

[12] and Radhakrishnan et al. [31] observed from their study that the JIT compiler with

this traditional approach did not provide any significant improvement in the performance.

They observed that the JIT compiler will have better performance than an interpreter

only if the compiled method was used more frequently. To improve the startup time and

performance, the JIT compilers were modified. Instead of compiling method by method,

frequently executed methods or methods containing frequently executed part of code

known as “hot spots” were converted to native code [20] . This technique is used in

Sun’s HotSpot JVM [35] and in the IBM’s J9 JVM [34].

Sun’s (Oracle’s) HotSpot JVM uses a mixed mode of compilation where the inter-

preter first runs the bytecodes and it detects the “hot spots” while it runs. The JIT

compiler gets invoked when it detects frequently executed methods or frequently exe-

cuted parts of the code. The JIT compiler then compiles the frequently executed methods

and the methods that contains the “hot spots”. Future references to the same methods

points to the compiled methods. This avoids unnecessary compilation of infrequently

executed code [28].

Similar to Sun’s HotSpot JVM, in J9, a JVM by IBM [34], the JIT compiler is enabled

by default and is activated when a method is called. Instead of compiling all the methods

at start up, only the “hot spot” methods are compiled. That is, the methods which are

called frequently are compiled first. JVM maintains a call count for each method, the

count gets incremented each time the method gets called. The interpreter executes

the method until the count reaches a certain threshold. When the count reaches the

threshold, the method gets compiled by the JIT compiler. The next call to this method

will now call the compiled method. Thus, frequently used methods get compiled at start

up and the less used methods gets compiled much later or might not get compiled at

all[34].
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Eventhough, the performance of a Java application is significantly improved using

the JIT compilation, but there could be a potential performance penalty caused by the

infrequently-used methods. Since infrequently used methods are not compiled, there will

be repeated interpretation of these methods. Another downside of JIT compilation is

that a Java program’s execution time will now also include the compilation overhead of

the JIT compiler.

2.2.3 Ahead Of Time Compiler

Another approach to execute the Java bytecode is an Ahead-Of-Time (AOT) compila-

tion, also known as upfront compilation. This compilation approach translates all the

Java bytecode sequences to native code before it is run. Since the translation is done

before execution, the run time overhead of the JVM is reduced thereby improving the

start-up time of both small and large Java applications[36].

AOT compilation can be classified as native and non-native. Native compilers directly

produce executable code from the Java bytecode and non-native compilers produce a C

code from the Java bytecode and the C code is translated and executed by an existing

C compiler.

An AOT compiler can be implemented in two ways: either as a standalone executable

that compiles and executes the program by providing the necessary run time services

or by generating native code that is interfaced with the JVM. In either of the imple-

mentations, the source is translated into some intermediate form. Various analysis and

optimizations are performed on this intermediate form. The translation and optimiza-

tion is done offline, before the bytecode is loaded for execution. The advantage is that

the compiler now has time to fully analyze and optimize the bytecode stream. This has

the potential to yield native code with better performance than code produced by a JIT

compiler.

Java’s “Write Once,Run Anywhere” paradigm is supported by providing static Java

compilers targetting all major platforms, just like it is supported right now by providing

a JVM for each of them. The disadvantage of this approach is that it does not support

dynamic loading because Ahead-of-Time compilation requires pre-compilation of all the

classes that the application may use.

2.3 Compiler Structure

The basic structure of a modern compiler is fairly standardized [1]. The stages of scan-

ning, parsing, and semantic analysis are outside the scope of this work, as we are based
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on Java class files which have already been compiled to the JVM. However subsequent

stages exist in the OptiJava compiler.

Usually, a compiler does not translate a program in a high-level language directly to

machine code, but instead first translates it to a program in a slightly smaller, simpler

language. These simpler versions of the original are known as the Intermediate Repre-

sentation (IR) of the program. Types may also be applied to these simpler intermediate

representations further strengthening the implementation. An IR is any data structure

that can represent the program without loss of information so that its execution can be

conducted accurately. Since its use is internal to a compiler, each compiler is free to

define the form and details of its IR.

Code generation, an important phase of a compiler, takes the IR as input and pro-

duces a semantically equivalent target program as its output. The target program gen-

erated must preserve the semantics of the source program and must make effective usage

of the available resources (registers, memory) [1].

Code generation essentially consists of:

• Identification of Basic Blocks

• Dataflow Analysis

• Instruction selection

• Register allocation and assignment

• Instruction ordering

2.3.1 Basic Block and Control Flow Graph

The simplest unit of control flow in a program is a basic block. The IR instructions

are partioned into basic blocks. A basic block is a linear sequence of instructions that

contains no branches except at its very end. A basic block has the following properties:

1. The flow of control can enter a basic block only through its first instruction.

2. Control will leave the block without halting or branching except at the last in-

struction of the block.

Instructions within a basic block are always executed sequentially as a unit.

A control-flow graph models the possible run-time flow paths. It represents the flow

of control between the basic blocks. It is a directed graph, where each node corresponds

to a basic block and each edge corresponds to a possible transfer of control between the

blocks [3].
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2.3.2 Data-flow Analysis

Translating the source code to native code näıvely can introduce substantial run time

overhead. Hence compilers perform optimizations to reduce the run time overhead. The

goal of code optimization is to discover, at compile time, information about the runtime

behavior of the program and to use that information to improve the code generated by

the compiler. The most common goal of optimization is to make the compiled code

run faster [3]. Code optimizations gathers the information at compile time by data-flow

analysis.

Data-flow analysis determines how the data flows throughout the program. It allows

the compiler to evaluate the runtime flow of values in the program at compile time.

It generally uses the control-flow graph, to understand the flow of data. Data-flow

analysis views computation of data through expressions and transition of data through

assignments to variables.

Data-flow analysis are classified as follows:

• Local data-flow analysis : Analysis across statements but confined to a basic block.

• Global(Intra-procedural) data-flow analysis : Analysis across basic blocks but con-

fined to a method.

• Inter-procedural analysis : Analysis across methods.

The information gathered from data-flow analysis, is used by instruction scheduling

and register allocation. Further, various classical optimizations can be performed using

data-flow analysis, such as, common subexpression elimination (eliminating redundant

expressions), constant propagation (substituting the values of known constants in ex-

pressions at compile time), dead code elimination (removal of unreachable code/removal

of code that does not affect the behaviour of the program), etc.[33].

Static Single Assignment

Data-flow analysis finds the uses of each defined variable or definitions of each variable

used in an expression. For instance, in the expression

x = y + 1;

the variable x is being defined/assigned and the variable y is being used.

Data flow analysis is much simpler when the variable is defined only once. This

forms the the crux of the Static Single Assignment (SSA) form. A program is said to be

in SSA form if each variable is assigned exactly once in the program. Naturally, actual
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programs are seldom in SSA form initially because variables tend to be assigned multiple

times. The compiler modifies the intermediate representation of the program to be in

SSA form.

Converting the IR to a SSA form involves renaming of variables that are targets of

more than one definition. That is, every time a variable is defined (assigned) in the code,

a new version of the variable is created. Only one definition reaches every usage and

this makes optimization algorithms simpler, precise and efficient. It has proven useful

in both analysis and transformation and has become a standard representation used in

both research and production compilers [33].

The intermediate instructions in OptiJava are of SSA form. However, unlike other

compilers which convert their instructions to SSA form, the intermediate instructions in

OptiJava are implicitly in SSA. This is explained in detail in Section 3.4.

2.3.3 Instruction Selection

The process of selecting appropriate target machine instructions to implement the IR

statements is known as Instruction selection. Instruction selection maps IR statements

into semantically equivalent instructions of the target processor. It is important to

note that the target machine instructions should have the same semantics as the IR

statements. A näıve translation, that is, translating IR statements one by one may

result in correct result but it would result in a less efficient target code. There may be

redundant load and stores which could have been avoided. Consider an instruction

a = a + 1;

If the target machine supported an increment instruction, then instead of using three

statements; loading the variable a , adding 1 to the variable, storing the result; the

instruction can be implemented more efficiently using one single increment statement

[1].

2.3.4 Instruction Scheduling

Instruction scheduling is the reordering of the instructions to reduce the total number of

processor cycles required to execute an instruction. Instruction scheduling can be done

locally by reordering the instructions within a basic block or it can be done globally by

reordering the instructions across the basic blocks. The reordering of the instructions

must preserve the data dependencies and the semantics of the program. Picking the best

order of instructions is an NP complete problem [1].
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The rationale of instruction selection and instruction scheduling has changed in the

modern architectures. Now the focus of instruction selection and instruction scheduling

is to produce smaller and denser code. In this way more code will fit in the cache and

execution will be faster.

2.3.5 Register Allocation

Instructions involving register operands are invariably shorter and faster than those

involving operands in memory. Registers are the fastest computational unit but unfor-

tunately the target machines will not have enough registers to hold all the values. So,

efficient utilization of registers is important. Register allocation involves determining

how many registers are required and allocating registers symbolically. Assignment in-

volves determining which of the actual hardware registers will be used for each allocated

register. Finding an optimal assignment of registers to variables is an arduous task and

is an NP complete problem [1].

The widely used register allocation algorithms are:

• Graph coloring algorithm

• Linear scan algorithm

Both graph coloring and linear scan allocators use liveness information for register as-

signment. Liveness information determines whether the variable is live at a given point

of the program, i.e. it contains a value that may be used at a later point in the program.

Liveness analysis plays a critical role in register allocation. “The register allocator need

not keep values in registers unless they are live; when a value makes the transition from

being live to being not live, the allocator can reuse its register for another purpose” [3].

The liveness information is gathered using data-flow analysis.

Graph coloring allocators encapsulate the liveness information of the variables as an

interference graph. Each node in the interference graph represents a variable. An edge

connects two nodes if the variables represented by the nodes interfere, i.e., they are live

at the same time and cannot be allocated to the same register. “If the machine has

K number of registers and if it is possible to K color the graph – i.e. color the graph

with K colors – then the coloring is a valid register assignment. For a k-register target

machine, finding a k-coloring of the interference graph is equivalent to assigning the

candidates to registers without conflict” [8]. A traditional graph coloring allocator builds

an interference graph and heuristically attempts to color it. If the heuristic succeeds, the

coloring results in a register assignment. If it fails, some register candidates are spilled

to memory, spill code is inserted for their occurrences, and the whole process repeats [8].
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Linear scan allocators view liveness information as a lifetime interval. The live inter-

val of a variable ‘v’ is the set of ‘m’ to ‘n’ instructions, where ‘m’ is the first instruction at

which ‘v’ is first defined and ‘n’ is the last instruction at which it is last uesd. A variable

is considered as dead at all instructions outside the live interval. The allocator can use

this information to easily determine how these intervals overlap and assign variables with

overlapping intervals to different registers. The linear scan algorithm first arranges all

the instructions of a method in a linear order. Then, lifetime intervals for all the vari-

ables are computed. The linear scan algorithm operates directly on the list of intervals,

sorted by their start positions. The compiler iterates over the list and assigns a physical

register to the interval immediately. If no physical register is available for the whole

lifetime, then some intervals will be spilled to memory. Two lifetime intervals interfere

if their ranges intersect. So, two variables whose lifetime intervals do not intersect, will

be assigned with the same physical register [29].

2.3.6 Code Generation Techniques

Instruction selection, instruction scheduling and register allocation are part of the code

generation phase of a compiler. Every processor uses an instruction pipeline. With

an instruction A common technique used in code generation is to perform instruction

scheduling before register allocation. The order in which the instructions are arranged for

execution has a significant effect on the time it takes to execute a sequence of instructions.

Instruction scheduling gives priority to the number of instructions that can be executed

parallely (instruction-level parallelism) which minimizes the total number of processor

cycles required to execute instructions. The instructions that are not dependent on

each other can be However, executing instructions in parallel creates the need for more

registers to hold the values being computed simultaneously. Scheduling instructions also

may increase the register lifetimes if it increases the time between a write to a register

and last read of that value. Longer lifetimes increase the number of concurrent live

registers thereby increasing the contention for registers and increasing the chances of

register spills (storing and restoring value of a register to/from memory) [3].

The conventional alternative approach is to perform register allocation before instruc-

tion scheduling. This gives priority to utilizing registers over exploiting instruction-level

parallelism. This approach was initially proposed by Hennessy[16]. It was a common

approach used in early compilers when the target machine had only a small number

of available registers. But this approach may affect instruction scheduling, because the

register allocation could inadvertently introduce dependencies by allocating the same

register for unrelated instructions.
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The separation of the register allocation and instruction scheduling phases leads to

significant problems, such as, poor optimization and additional complexities in trying to

adjust one phase to consider cost considerations from the other [1]. Hence, in general

the compiler writer faces the problem of determining which phase should run first to

generate most efficient code. An efficient solution to this problem would be to integrate

register allocation and instruction scheduling [6].

2.3.7 Code Coagulation

Generating an optimal target program is hard. Hence, heuristics plays a major role in

code generation. A carefully designed code generator can produce code that is several

times faster than the code produced by a näıve one [3].

Karr [21] proposed a code generation design, named code coagulation, which inte-

grated the register allocation and instruction scheduling. In this approach the instruc-

tion selection and register allocation are always done together. Also, it treated the busy

parts of the program first when registers are abundant. This resulted in producing a

native code that was highly efficient. Morris [26] designed a Coagulating Code Generator

(CCG) which used Karr’s[21] approach of code generation. A study conducted by Karr,

Morris, and Rozen (1991) demonstrated that there is substantial speedup by CCG over

GNU C compiler and it was found that CCG generated highly efficient code in terms of

instruction selection, register usage, and procedure calls [22].

The basic idea of code coagulation is to optimize and compile small regions of code

locally in isolation and then merge the compiled parts of the program. But the order in

which the regions are merged together matters. The regions that are of higher importance

are merged first, i.e, the frequently executed regions of code are merged first. “The

merging is done in decreasing order of execution frequency, the idea being that the

instruction selection and register allocation is properly arranged on the expensive paths

through the program. For example, inner loops will be compiled first, registers arranged,

etc. But those pieces inside loop that are seldom used will have no influence on the initial

register assignments.[21].

The procedure followed in coagulation is as follows:

1. A control flow graph is built where each node represents a basic block and each

edge represents the flow of control between the blocks.

2. A profile is used to label each edge of the graph with its expected execution fre-

quency. Initially, all the edges are marked as uncompiled.
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3. Instructions are selected and register allocation is done for each node in isolation

at minimal cost. Now, each node will have its own boundary conditions regarding

the location and the data it uses and supplies.

4. An uncompiled edge with the highest frequency is selected. If the boundary condi-

tions on the edges entry and exit nodes do not agree then a minimal cost repair such

as inserting a copy instruction or revising storage allocation is done. Otherwise,

the edge is marked as ’compiled’ and the nodes are merged.

5. Step 4 is repeated until all the edges are compiled.

Thus, in effect, instead of compiling at method-level, coagulation technique compiles

at basic block level, where register allocation and instruction selection are simultaneously

done to reduce the cost.

OptiJava uses code coagulation as its compilation technique. Karr’s proposal sepa-

rated the isolated compilation of the regions and the selection of edges. That is, Karr

proposed to first compile all the small regions and then coagulate the edges. However,

unlike Karr’s proposal we combine the selection of edge and compilation as a single step.

Highest frequency edge is coagulated and then any uncompiled region at the either end

of the edge is compiled.

2.4 Related work in upfront Java compilation

Over the years, several Java upfront/AOT compilers have been developed. This section

reviews the work done by other researchers in the area of AOT compilation for Java.

Toba [30] is a bytecode to C compiler. It compiles the Java bytecode to C and relies on

a C compiler to translate the C code to native machine code. Toba consists a bytecode-

to-C translator, a garbage collector, a threads package, a run-time library, and native

routines implementing the Java API. Toba translates each Java method into a C function,

and these functions share a global namespace. Overloaded methods are distinguished by

using a suffix, that encodes the class name, the method name, and the method signature

All reference types are translated into a C pointer type. It maps each JVM stack location

to a C variable. The bytecode is converted to an Intermediate Representation (IR). The

IR is then transformed to equivalent C code. For stand-alone applications that do not

rely on dynamic loading, Toba provides large performance benefits. Toba is no longer

maintained or supported [30].

TurboJ [37] is another bytecode to C compiler. It improves upon Toba by providing

support for dynamic loading by having a mixed mode of execution. It converts the java
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bytecode to C before execution and during execution it interfaces with JVM to utilize

the thread management, memory and class and library loading services. Thus, TurboJ

is not a stand-alone Java runtime system. Instead it operates in conjunction with a Java

runtime system and uses the native JDK on a given platform [37].

Bytecode to C compilers focus on optimizing the intermediate representation, be-

cause the final C code will be optimized by the C compilers of the platform. Since C

compilers are available in most of the platforms, the Java’s potability feature is sup-

ported. However, a lot of Java specific information is lost during transformation which

is useful for optimization. Thus the resultant executables still have low performance.

There is also a significant overhead in converting Java methods to C functions and there

is inefficient usage of registers [19].

Harissa [27] is a Java environment that improves upon the drawback of previous

compilers by using a mixed mode execution technique. It includes both a bytecode to C

compiler and an interpreter integrated into the runtime library. It currently has support

for SunOS, Solaris, Linux, and DEC Alpha platforms. “Harissa’s compiler takes as input

a Java class containing a main method and generates as output a makefile, a main.c file,

and a C source file for each class used in the program. To determine the set of classes

that depend on the initial class, an analysis is recursively performed on the byte-code

to search for all the classes referenced by the main class [27]”. The Harissa compiler

reads in the bytecode and converts it into an Intermediate Representation (IR). It then

performs Java specific optimizations on IR such as method inlining, eliminating type

checking and array bound checking on array indices that can be statically detremined.

A complete interpreting JVM has been integrated into the runtime library to allow dy-

namic loading. Since data structures are compatible between the compiled code and the

interpreter, Harissa provides an environment that cleanly allows the mixing of bytecodes

and compiled code [27].

Caffeine [18] is a Java bytecode-to-native code compiler that generates optimized

machine code for the x86 architecture. The compilation process involves several trans-

lation steps. First, it translates the bytecodes into an internal language representation,

called Java IR. Next using stack analysis, class hierarchy analysis and stack to register

mapping the Java IR is then converted to a machine-independent IR, called Lcode. The

Lcode is then optimized by applying optimizations such as inlining, data-dependence and

interclass analysis. Later, peephole optimization, instruction scheduling, and register al-

location are applied to convert Lcode to machine-specific IR. Finally, optimized native

code is generated from this machine-specific IR. Caffeine uses an enhanced memory

model to reduce the overhead due to additional indirections specified in the standard
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Java memory model. It does not support garbage collection, threads, and the use of

graphics libraries [18].

GNU Java Compiler (GCJ) [5] is an AOT compiler which can compile both the Java

source code and the Java bytecode to native code. GCJ requires a runtime library that

needs to be ported for each architecture. An advantage of GCJ is the comparatively

faster startup speed and modest memory usage. The stack based bytecode is translated

to an intermediate level representation by creating a virtual register for each of the Java

local variables or the Java stack values. GCJ later assigns a hardware register or stack

location for each of the virtual registers. GCJ makes use of all the optimizations and

tools already built for the GNU tools. The optimized intermediate representation gets

converted to assembly. The GNU assembler processes the created assembly file and the

resulting object file is linked into an executable [5]. As of GNU Compiler Collection

7(GCC), GCJ is no longer maintained and has been removed from GCC [15].

Marmot [14] is a standalone compiler. Marmot consists of an Ahead-Of-Time com-

piler, run time systems and libraries. Marmot system converts the bytecodes to a SSA

based IR and then converts it into native code. Compiling a Java program begins with

a class file containing the main method. This class file is converted and all the statically

referenced classes in it are queued for processing. The conversion continues from the

work queue until all the reachable classes has been converted. The IR is then subjected

to many optimizations. Later, register allocation is performed on the optimized IR and

finally assembly code is emitted. Marmot does not support dynamic loading [14].

Jalapeno [7], a VM from IBM uses a compile only approach and has three compilers, a

Baseline compiler that performs the initial compilation of a method, a quick compiler that

does low level of code optimization and an optimizing compiler that compiles frequently

executed methods or methods that are computationally intensive. The baseline compiler

quickly transforms the bytecode to native code. It imitates the stack machine behaviour

of the JVM. Baseline compiler neither creates any intermediate representation nor it

does any register allocation. The quick compiler does a low code optimization, primarily

register allocation. The optimizing compiler translate the bytecodes into an intermediate

representation and performs a series of optimizations, linear scan register allocation

and instruction selection. The optimizing compiler produces a high quality code. The

optimizing compiler can be invoked as a static compiler or as a dynamic compiler. It is

invoked as dynamic to compile the dynamically loaded classes [7]. Jalapeno started as an

internal project at IBM and later evolved into a full fledged open source project named

Jikes RVM. “Although Jikes RVM often displayed performance which was competitive

with production Java virtual machines, it could not run arbitrary Java programs due to
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unimplemented features in the VM and the libraries” [2].

JET (Just Enought Time) [25] is another AOT compiler which is part of Excelsior

JET. Excelsior JET is a mixed compilation Java environment where it uses both an

Ahead-Of-Time compiler and a runtime system consisting a JIT compiler. It applies

most powerful, time and memory expensive optimizations to achieve an efficient native

code. It also applies Java specific optimizations such as method inlining, removal of run

time checks, etc. All the classes that were known at compile time gets compiled by the

Ahead-Of-Time compiler and the JIT compiler gets invoked when it comes across any

dynamic class. The JIT compiler performs weaker optimizations on the dynamically

loaded classes due to the time and memory demand of “on the fly” compilation [25].

2.5 OptiJava vs. Related Work

OptiJava is an AOT compiler that compiles the Java class files to native executable

code. Like all AOT compilers, OptiJava loads the classes and methods and compiles

them before run-time. The uniqueness in OptiJava is that it uses coagulation as its

compilation technique, which compiles the code at basic block level instead of compiling

at method-level. Instruction scheduling and register allocation decisions are done locally

for each basic-block. OptiJava also gathers run-time statistics especially the execution

frequency of each part of the code. Using this information, it recompiles the class file

and produce an efficient native code which could potentially improve the performance of

the application.

No previous work has been reported on using code coagulation for object-oriented

languages. OptiJava currently has similar limitations to other AOT compilers - except

for those that include an interpreter or dynamic compiler - in that it doesn’t currently

support dynamic loading. Like Caffeine, OptiJava also does not currently
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Design Of OptiJava

We have developed an Ahead-Of-Time (AOT) compiler that converts Java class files

to native executable code. We attempt to bring the benefits of code coagulation (see

Section 2.3.7) to Java compilation. OptiJava restricts its input to verifiable class files.

OptiJava loads the classes and methods and does all analysis and code generation at

compile time. This will reduce run-time overhead, since at run-time the compiled code

can be executed directly. OptiJava compiles .class files to native executable code using

code coagulation as its compilation technique.

Unlike other traditional AOT compilers, where the compilers compile the bytecode

method by method, OptiJava compiles at the basic block level. OptiJava starts by

compiling the frequently executed parts of the code known as “hot spots” and gradually

expands the compiled code to include the infrequently used parts of the code. OptiJava

uses feedback-profiling to get run-time execution information. The OptiJava compiler is

entirely implemented in Java, so in the future it will be able to bootstrap by compiling

itself. We evaluate the performance of OptiJava using a program that contains frequently

executing parts of code.

3.1 Structure Of OptiJava

The overall flow diagram of OptiJava is as shown in Figure 3.1. In the initial phase, the

classes and methods are loaded. Then, the bytecodes are processed and are converted to

Intermediate Representation (IR). In the process of conversion, it creates basic blocks.

The basic blocks are connected to form the control-flow graph which is used by the

data-flow analysis and code coagulation. The basic blocks are then coagulated using

code coagulation, a code generation technique proposed by Karr [21]. At the end of
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Figure 3.1: Structure of OptiJava

coagulation, instruction ordering and register allocation for each basic block would have

been done. The symbolic registers that were allocated are then mapped to the actual

physical registers and the IR instructions are translated to architecture specific assembly

code in the final phase of OptiJava.

3.2 Running example

As a concrete example of the process that OptiJava uses in the compilation process, we

will use the example program in Figure 3.2

The javac Java compiler produces the java byte code shown in Figure 3.3

3.3 Loading of Classes and Methods

Traditional AOT compilers load all the Java methods of a class and compile them. The

drawback of this approach is the fact that every single method is loaded, even if its not

needed. Since the java libraries contain a lot of methods, loading and compiling all these

methods would result in high memory usage. OptiJava only loads those classes and
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package t e s t ;

public class RunningExample {
stat ic int z = 8 ;
public stat ic int code ( int p) {

int s = 1 ;
int t = s + 3 ;
int a = 20 ;
int v = p − 10 ;
i f ( t>p) {

a = p ;
s = a ∗ 4 ;

}
else

s=p ;
return p + s ;

}
public stat ic void main ( St r ing [ ] a rgs ) {

int b = 3 ;
int c = z + b ;
int y = code ( c ) ;
System . e x i t ( y ) ;

}
}

Figure 3.2: Java source code for running example
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s t a t i c i n t z ;
pub l i c t e s t . RunningExample ( ) ;

0 : a load 0
1 : i n vok e sp e c i a l #1 // Method java / lang /Object .”< i n i t >”:()V
4 : re turn

pub l i c s t a t i c i n t code ( i n t ) ;
0 : i c o n s t 1
1 : i s t o r e 1 // va r i ab l e s
2 : i l o a d 1
3 : i c o n s t 3
4 : iadd
5 : i s t o r e 2 // va r i ab l e t
6 : bipush 20
8 : i s t o r e 3 // va r i ab l e a
9 : i l o a d 0

10 : bipush 10
12 : i sub
13 : i s t o r e 4 // va r i ab l e v
15 : i l o a d 2
16 : i l o a d 0
17 : i f i cmp l e 29
20 : i l o a d 0
21 : i s t o r e 3
22 : i l o a d 3
23 : i c o n s t 4
24 : imul
25 : i s t o r e 1
26 : goto 31
29 : i l o a d 0
30 : i s t o r e 1
31 : i l o a d 0
32 : i l o a d 1
33 : iadd
34 : i r e t u r n

pub l i c s t a t i c void main ( java . lang . S t r ing [ ] ) ;
0 : i c o n s t 3
1 : i s t o r e 1
2 : g e t s t a t i c #2 // F i e ld z : I
5 : i l o a d 1
6 : iadd
7 : i s t o r e 2
8 : i l o a d 2
9 : i n v ok e s t a t i c #3 // Method code : ( I ) I

12 : i s t o r e 3
13 : i l o a d 3
14 : i n v ok e s t a t i c #4 // Method java / lang /System . e x i t : ( I )V
17 : re turn

s t a t i c {} ;
0 : bipush 8
2 : pu t s t a t i c #2 // F i e ld z : I
5 : r e turn

Figure 3.3: Running example JVM instructions
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methods that are reachable during some possible run of the program (i.e., OptiJava, will

not load methods in the source code that are never referenced). However, an exception

to this is while loading virtual methods. While processing a call to a virtual method,

the compiler loads methods having the same method signature (method name, number,

type and order of the parameters) from all of its superclasses and subclasses of the class

type referenced by that instruction.

The three major modules which assist in loading are LoadClass, LoadMethod and

LoadBasicBlock.

• LoadClass: responsible for loading the classes and interfaces.

• LoadMethod: responsible for loading the methods.

• LoadBasicBlock: responsible for processing the instructions of the method and

thereby creating basic blocks.

These three modules work together in loading the classes and methods. The three

modules are interlinked and are mutually dependent on each other.

Initially, the class containing the method main is queued for loading, but before

loading this class, it checks if its superclass has been loaded. If the superclass has not

been loaded, then, it is queued for loading and its superclass is checked. This recursive

checking of the superclasses ends when it comes across loading the superclass which is

the root of the class hierarchy, namely, java.lang.Object. It then starts loading the

classes and interfaces from the root to the bottom of the class hierarchy.

When a class is loaded, its constructors and its class initializer method are loaded by

LoadMethod. LoadMethod is responsible for loading all the methods that are referenced

in the class. In the process of loading a method, it may call LoadClass to load other

referenced classes. It is the responsibility of LoadMethod to identify if the method is a

normal (Java) method or a native method. It also identifies if it is a static or a virtual

method.

After a method has been loaded, LoadBasicBlock gets invoked on the loaded method.

LoadBasicBlock is responsible for processing the instructions of the method and creation

of basic blocks. While processing the instructions, it may call LoadMethod on any new

method that was referenced in the instruction.

To understand the loading of the classes and methods in OptiJava, consider the

example program as shown in Figure 3.2. The steps done in sequence by OptiJava

would be as follows:
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1. Loading process starts with the class RunningExample. Superclasses of this class

are loaded by LoadClass. In this case, RunningExample has only one superclass

which is java.lang.Object. Thus, first java.lang.Object is loaded. Load-

Method loads constructors and class initializer method of java.lang.Object.

2. Next, LoadClass loads the class RunningExample. LoadMethod loads the construc-

tors and the class initializer of the class RunningExample. LoadMethod then loads

the method main. While processing the instructions of main, it sees a static call to

a method named code as well as a static call named exit.

3. LoadMethod is invoked to load these new methods. LoadMethod calls Load-

Class to load the classes that contain these methods. Method code is part of

the class RunningExample. The method exit is part of the library class named

java.lang.System. Since the class RunningExample was already loaded, it pro-

ceeds to load the method code. The instructions of method code is then processed.

Next, the class java.lang.System is loaded. OptiJava does not load native meth-

ods, hence the native method exit is not loaded. OptiJava calls native methods

directly.

4. Since all the classes and methods that are referenced from the main class have been

loaded, the loading phase ends.

Thus, in this manner all the classes and static methods that were needed were loaded.

However, while loading a virtual method, OptiJava loads its superclasses and subclasses

and also loads all the virtual methods from its superclasses and subclasses that have the

same method signature as that of the loaded virtual method. Consider for example the

code in Figure 3.4:

The bytecode for the expression a.add() in the main method is an INVOKEVIRTUAL

instruction, and the processing of this bytecode sequence forces the loading of all the

add methods of its superclasses and subclasses that have the same method signature.

Thus, the add() method of class A as well as the add() methods of classes B and C will

be loaded. Note that the add() method of class D is not loaded because the method

signature of the method add() of class A and the method signature of the method add()

of class D do not match.

Another functionality of LoadMethod is to group all the loaded virtual methods

having the same method signature to a method-group. In the example as shown in

figure Figure 3.4, the add() methods of classes A, B and C would be grouped to a single

method-group. Method-groups help in analysing the inter-procedure flow and register
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package t e s t ;

public class A{
public stat ic void main ( St r ing args [ ] ) {

A a = new A( ) ;
a . add ( ) ;

}
void add ( ) {

System . out . p r i n t l n ( ” In A ’ s add” ) ;
}

}
class B extends A{

void add ( ){
System . out . p r i n t l n ( ” In B ’ s add” ) ;

}
}
class C extends A{

void add ( ){
System . out . p r i n t l n ( ” In C ’ s add” ) ;

}
}
class D extends A{

void add ( int a , int b){
System . out . p r i n t l n ( ” In D’ s add” ) ;

}
}

Figure 3.4: Java code for a virtual call example

30



CHAPTER 3. DESIGN OF OPTIJAVA

convention between the method that made the vitual call and the virtual methods. All

of the methods that could be called from the same place have to have the same register

convention.

3.4 Conversion to IR

In this phase, the stack based JVM bytecode instructions of the loaded methods are

converted to an Intermediate Representation (IR) (see Section 2.3). Within a basic

block, OptiJava’s IR is a strongly typed, register based, Static Single Assignment (see

Section 2.3.2) representation. The IR represents the stack semantics of the original

bytecode in terms of a dataflow graph within the basic block. An instruction in the

IR consists of an operator which encodes the JVM opcode, some number of operands,

and a possible result. The operands are values each of which represents a constant,

value passed from another block, array reference, object reference, result of a previous

operation, or condition codes.

3.4.1 Breaking into Basic Blocks

While processing the bytecode instructions and converting them to IR instructions, a

basic block boundary may arise. A basic block is a sequence of instructions that has one

entry point and one exit point (see Section 2.3.1). A basic block is created initially at the

start of a method. All the instructions get processed in this basic block until we come

across a control-flow instruction (unconditional or conditional branch instruction, return,

or call instruction), a labelled JVM instruction, or a JVM instruction that can throw

an exception. In these situations, a new basic block is created, where the remaining

instructions are processed. Additionally, an instruction that can throw an exception will

create additional basic blocks to handle the exceptional conditions.

Each basic block has a set of entry values and a set of exit values. Entry values are

the values passed in from previous block, with two exceptions:

1. the first block of a method: entry values are the local variables plus the parameters;

2. a return point: entry values are the saved values plus the return value.

Exit values are the values that are live at exit from block, that is, their values may be

used later, in another block in the control flow.

Each basic block is standalone, data is supplied at its entry and the results are

computed according to its IR instructions and these results are provided as its exit
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values. The values can be thought of as register values and constants, where there is no

limit to the number of registers.

Consider the bytecode of the methods main and code as shown in Figure 3.3. The

instructions of method main from 0 to 9 are processed in basic block BB1. At instruction

9, since it is a call instruction, a new basic block (BB6) for the called method to return

to, is created. The instructions from 12 to 14 are processed in this new block. At

instruction 14, since it is a call instruction, a new basic block (BB7) for the called

method to return to, is created. The basic blocks that would be created for the method

main of RunningExample are as shown in Figure 3.5:

Figure 3.5: Basic blocks of the method main

In similar manner, the bytecode instructions of the method code are processed. In-

structions from 0 to 17 are processed in the first block. However, when it comes across

the compare instruction at bytecode 17, two new basic blocks are created. One basic

block for the true case and another basic block for the false case. The processing of

the instructions is continued until all blocks have reached the return (or throw) state-

ment of that method. The basic blocks that would be created for the method code of

RunningExample are as shown in Figure 3.6:

When a new basic block is created, the current state of the stack and local variables

become the exit values of the current block, and placeholders are generated for each of

these values to become the entry values of the new block. For example, supposing a basic

block BB1’s instruction resulted in creation of a new basic block BB2, the live values

passed from the block BB1 are mapped to values of block BB2.

BB1’ s e x i t va lue s : r0bb1 , r1bb1 , r2bb1

These are passed as entry values to BB2 and these values get mapped to values of

BB2.
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Figure 3.6: Basic blocks of the method code

BB2’ s entry va lue s : r0bb2 , r1bb2 , r2bb2

3.4.2 Instruction processing

The bytecode sequence is converted to IR by processing the bytecode instructions se-

quentially. Processing simulates the JVM’s run time stack at compile time. The effects

of instruction execution on the stack and local variables are modeled.

The compile time stack maps temporary values of the run time stack to IR values.

Type safety in the IR instruction is ensured by mapping the operands of the bytecode

instruction to specific IR values, for e.g, if the bytecode operation is an integer operation

then the operands are mapped to integer register values and if it is a floating-point

operation, the operands are mapped to floating-point register values.

Consider a bytecode instruction “iadd”. “iadd” pops the top two elements off the

stack, adds them and pushes the result to the stack. The simulated stack before this

operation:

Stack : [ r0 , r1 ]

The simulated stack after “iadd”:
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Stack : [ r2 ]

The resulting IR instruction would be:

IADD r0 , r1 , r2

The operator of the IR instruction is IADD. r0 and r1 are the register values used

by the iadd instruction which represents the top two integer elements of the stack and

the result is in the integer register value r2. Following are the two terms associated with

an IR instruction:

• from-values : the value(s) that were used by the instruction; r0 and r1 in the above

example.

• to-value : the value that was generated by the instruction; r2 in the above example.

The processing of bytecode sequences results in IR instructions. All the bytecode

sequences are processed. However, some bytecode sequences that load or store a constant

are not converted to IR instructions.

Consider the bytecode sequences of method main in Figure 3.5. The program counter

initially points to the first bytecode instruction. A new basic block (BB1) is created

whose entry values are the parameters passed to the method and the local variables used

in the method. From the program example as shown in Figure 3.2, it can be understood

that the method main has one parameter and three local variables namely b,c and y.

Since the local variables are not initialized at this point, they will be represented as null.

The initial state would be:

Stack : [ ]

Local v a r i a b l e s : [ r0bb1 , nu l l , nu l l , n u l l ]

Here, r0bb1 represents the parameter of the method main and nulls are the uninitialized

local variables. Local variables are accessed by indexing. For e.g., local variable 0

corresponds to r0bb1 and local variables 1,2 and 3 are nulls. The processing starts from

the first bytecode instruction.

0: iconst_3 When this bytecode is processed, it will push constant 3 to the stack,

giving us the modelled stack and local variables:

Stack : [ 3 ]

Local v a r i a b l e s : [ r0bb1 , nu l l , nu l l , n u l l ]

1: istore_1 When this bytecode is processed, it will pop the top of the stack and

stores it into local variable 1, resulting in:
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Stack : [ ]

Local v a r i a b l e s : [ r0bb1 , 3 , nu l l , n u l l ]

2: getstatic When this bytecode is processed, it gets a static field from its corre-

sponding class and the value in the field is pushed to the stack. The static field is

resolved by finding the class that has the field and getting the name of the field.

This is computed by indexing into constant pool. OptiJava creates a new field

constant value (field1) corresponding to the resolved static field and creates a new

integer register value(r5bb1) which corresponds to the value of the field. The IR

instruction would be to load the int at field1 to rbb15

Stack : [ r5bb1 ]

Local v a r i a b l e s : [ r0bb1 , 1 , nu l l , n u l l ]

IR i n s t r u c t i o n : LOAD INT AT FIXED OFFSET f i e l d 1 r5bb1

3: iload_1 When this bytecode is processed, it will push the local variable 1 to the

stack.

Stack : [ 3 , r5bb1 ]

Local v a r i a b l e s : [ r0bb1 , 3 , nu l l , n u l l ]

4: iadd When this bytecode is processed, it will pop the top two elements of the stack

and adds them and the result is pushed to the stack. The result gets mapped to

an integer register value and this resultant integer register value is pushed to the

stack.

Stack : [ r6bb1 ]

Local v a r i a b l e s : [ r0bb1 , 3 , nu l l , n u l l ]

IR i n s t r u c t i o n : IADD 3 , r5bb1 , r6bb1

5: istore_2 When this bytecode is processed, it will pop the top of the stack and

stores it into local variable 2.

Stack : [ ]

Local v a r i a b l e s : [ r0bb1 , 3 , r6bb1 , n u l l ]

6: iload_2 When this bytecode is processed, it will push the local variable 2 to the

stack.

Stack : [ r6bb1 ]

Local v a r i a b l e s : [ r0bb1 , 3 , r6bb1 , n u l l ]
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7: invokestatic When this bytecode is processed, it will invoke a static method.

The method to be invoked is resolved by getting name and signature of the method

as well as the class in which the method can be found. This information of the method

is found by indexing into constant pool.

The elements in the stack are passed as parameters to the called method. If the

bytecode instruction is invokevirtual, then an implicit this is also pushed to the stack

and is sent as the first parameter to the virtual method. The current block of method

main ends at invokestatic. An IR instruction, named call-instruction is created in corre-

spondence to the invokestatic bytecode. The exit values of the block will be the locals

plus the top of the stack. The top of the stack is the parameter to be passed to the

called method.

Stack : [ r6bb1 ]

Local v a r i a b l e s : [ r0bb1 , 3 , r6bb1 , n u l l ]

Exit Values o f b lock BB1 : r0bb1 , 3 , r6bb1 , nu l l , r6bb1

A new register value is created for the return of the called method. Then the parameters

are popped off the stack and the return register value is pushed to the stack.

Stack : [ r7bb1 ] \\ re turn r e g i s t e r va lue

Local v a r i a b l e s : [ r0bb1 , 3 , r6bb1 , n u l l ]

A new basic block is created for the called method to return to. This new block will

have its entry as the locals plus the return value.

Stack : [ r7bb1 ]

Local v a r i a b l e s : [ r0bb1 , 3 , r6bb1 , n u l l ]

Entry Values : r0bb1 , 3 , r6bb1 , nu l l , r7bb1

The IR instructions and the entry and exit values of the first basic block of the

method main is as shown in Figure 3.7. In this way, all the instructions of all the loaded

methods are processed and converted to IR instructions.

Static Single Assignment

In general, a compiler converts the IR to Static Single Assignment (SSA) form - see

Section 2.3.2. However, in OptiJava, SSA is implicit in the IR instructions. This is

because the result of a stack operation is always assigned to a new register value. Thus,

all the register values will have only one definition for it.

Consider the following code:
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Figure 3.7: Structure of the first basic block of the method main

a = b + c ;

d = a /5 ;

a = d + 10 ;

e = a ∗ 6 ;

In OptiJava, the IR corresponding to these statements would be:

IADD R0 , R1 , R2 which corresponds to R2 = R0 + R1

IDIV R2 , 5 , R3 which corresponds to R3 = R2 / 5

IADD R3 , 10 , R4 which corresponds to R4 = R3 + 10

IMUL R4 , 6 , R5 which corresponds to R5 = R4 ∗ 6

The first definition of varaible ’a’ is associated with register value (R2). The redefi-

nition of ’a’ is assigned with a new register value (R4) and this new register value is used

in the further instructions that uses a.

At the end of processing, all the bytecode instructions are converted to IR instructions

that are type safe, register based and SSA form, and each IR instruction is associated

with a basic block.

Basic blocks for native method

Incase of a native method, a single basic block known as a native basic block is created.

This block will be both the first block and the last block of the native method. The entry

values of this basic block will be the parameters used by the native method and the exit

value will be the return value if any. Unlike other basic blocks whose entry and exit

values upon creation are assigned with virtual registers, the entry and exit values of a

native basic block will be assigned with the actual physical registers - explained further

in Section 2.3.5. Since instructions of a native method are not bytcode, these instructions

do not get processed. Instead the native method is called directly.
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3.4.3 Exception handling

OptiJava implements explicit checks for several run-time exceptions such as null-pointer

exception, array index out of bounds exception and arithmetic exception. When an ex-

ception check is performed on an instruction, the basic block that contains the instruction

will end at that instruction and two new basic blocks will be created. The code which

gets executed if there was no exception forms one basic block and another basic block

known as exception basic block contains the exception-throwing code. These two basic

blocks are then set as targets for the previous block which contained the instruction on

which the exception check was performed.

Exceptions within a method is handled by OptiJava. That is, it transfers control to

the potential catch block within the method.

Currently, if the exception is not within a try-catch block, it is not propagated up

the call stack to be handled by the caller method. If there is any exception which was

not caught by the local catch block then it results in a fatal run time error and execution

would be terminated.1

3.5 Code Coagulation

The basic blocks created from the previous phase are then prepped for coagulation.

Coagulation requires the control flow information of the program. Hence, the basic

blocks are organized into control flow graph.

3.5.1 Control Flow Graph

The basic blocks generated in the previous phase are linked to form the control flow

graph. The nodes of the flow graph are the basic blocks and the edges are used to

connect the basic blocks. The flow of control can enter a basic block only through the

first instruction in the block. Control leaves the block at the last instruction of the

block. There is an edge from block A to block B if and only if it is possible for the first

instruction in block B to immediately follow the last instruction in block A.

There are certain basic terms that are used by OptiJava to encapsulate the control

flow graph. To explain those terms, consider an edge from block A to block B as shown

in Figure 3.8. Using this edge as an example, the terms are explained as below:

1. source : source is the block of the edge which supplies data. Block A is known as

the source of the edge.

1See Section 5.1
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Figure 3.8: Edge between block A to block B

2. sink : sink is the block of the edge that receives data. Block B is known as the

sink of the edge.

3. target : Block B is the target of the block A.

4. in-edge : An incoming edge to the block is known as in-edge. Block B is said to

have one in-edge. Block A does not have any in-edge.

5. out-edge : An outgoing edge from the block is known as out-edge. Block A is

said to have one out-edge. Block B does not have any out-edge.

6. edge-id : Edge-id is a unique number assigned for each edge. This edge will have

its edge-id as 1.

Intra-method

Creating edges within a method is straightforward. The basic blocks either ends in

a unconditional branch or a conditional branch. In case of a basic block ending in an

unconditional branch, an edge is created between the basic block containing the branch

instruction and the basic block where it will branch to. If a basic block ends in a

conditional branch instruction, then two edges will be created; one edge from the block

to the basic block which represents the true case and another edge from the block to the

block which represents the false case. In this case, the block is said to have two targets

and two out-edges.

Inter-method

Creating edges between methods is a little trickier. These edges should represent the
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control flow among methods. If a block ends in a call instruction, then edges are created

which represents the flow of control from the caller method to its callee and the control

flow from callee back to its caller. An edge is created between the block that made the

call known as caller block and the first block of the called method. We do not create an

edge from the called method to its return point. That is, we do not create an edge from

the return block of the called method to the caller block’s target block. However, this

edge is implicit. Finally, an edge is created between the caller block and its target block.

The control flow between the methods main and code of the RunningExample program

is as shown in Figure 3.9. The dotted line represents the implicit edge.

If the call instruction was a call to a virtual method, then the called method is

connected to all the methods of a method-group which contains those methods whose

method signature matches to that of the called virtual method. That is, edges are created

between the caller and all of the methods that could be called from the caller. Many

methods will be part of a method-group because of overloading. Edges are created from

the caller block to the first blocks of all the methods of the matched method-group.

In this manner, edges are built for all the basic blocks that were generated by the

previous phase. Figure 3.10 shows the control flow graph of the RunningExample pro-

gram. In the graph, the basic block NBB1 represents the native basic block generated

for the native method System.exit(y).

3.5.2 Data-flow Analysis

Data-flow analysis (Section 2.3.2) in OptiJava is both local and inter-procedural analysis.

Using the control-flow graph, data-flow analysis (Section 2.3.2) is performed to get the

data-flow information. Since, the procedure calls are represented by edges in the control-

flow graph, data-flow analysis is implicitly inter-procedural. In addition to this, data-

flow within a block is also analysed, this information is used for ordering the instructions

within a basic block (explained further in Section 3.6.1).

Removal of unused values

Sometimes, there may be values which are defined, but, are never used throughout the

program. Such values are called unused values. OptiJava does not produce any code for

such values. This will reduce the register pressure and will also result in shrinking the

size of the native code.

The elimination of unused values is done by traversing the control flow graph in the

reverse direction. The process starts from the basic block at the end of the graph that

contains the return instruction. If there are any entry values that are not used in the
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Figure 3.9: Control flow graph between methods main and code
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Figure 3.10: Control flow graph of the RunningExample program
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instructions of the last basic block, then, that entry value is set to null. The instruction

that supplied this entry value is told that it is no longer required in the basic block. And

this information is propogated upwards in the control-flow. At the end, the instructions

that defined these values gets removed from the instruction sequence.

Consider for example the method code of the RunningExample program as shown

in Figure 3.2. The variables a and p are not used throughout the program and hence it

is safe to remove the instructions that created these values. Bytecode sequences from 6

to 13 in the Figure 3.3 represents the instructions that created these values. Figure 3.11

shows the control flow graph of method code of the RunningExample program before

removing the unused values. Figure 3.12 shows the control flow of the method code after

Figure 3.11: Control flow graph of method code

removing the unused values.

3.5.3 Frequency Calculation

Optimizations can be more efficient if the compiler knows the execution path at compile

time. Profile-directed feedback or Profile-Guided Optimization (PGO) is a two-stage

compilation process that provides the compiler with the execution path characteristic

of the application’s typical behavior after a sample execution. [9] Profiling uses prior

annotated runs of the program to generate profile data. A later compilation can then

use this profile to guide code optimization decisions in favor of code that executes more
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Figure 3.12: Control flow graph of method code after removing unused values

frequently. PGO improves application performance by reorganizing code layout to reduce

instruction-cache problems, shrinking code size, and reducing branch mispredictions.

PGO provides information to the compiler about areas of an application that are most

frequently executed. By knowing these areas, the compiler can be more selective and

specific in optimizing the application.

OptiJava collects the execution frequencies (or counts) of the edges as its profile

information. The frequency information is used in the coagulation process where the

order in which the edges are coagulated depends on its frequency.

OptiJava gathers the execution frequency information of the edges by producing

additional native instructions to calculate the execution frequency (count) of the edges.

The purpose of these instructions is to record information regarding the control flow

of the program. While executing the native code, these extra instructions produce the

frequency information. This is done by adding a new intermediate instruction which will

increment the frequency count of an edge. An IR instruction to increment the frequency

is created for all basic block edges.

The IR instruction to calculate the frequency of an edge is known as “frequency

instruction”. Frequency instruction is added to either the source block or the sink block

of the edge whose frequency has to be incremented. The frequency instruction will be
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added to either of the blocks of the edge depending on the following factors:

1. If the edge’s source block has just this edge as its out-edge and the edge’s sink

block has just this edge as its in-edge, then the frequency instruction is added to

the source block.

2. If the edge’s source block has just this edge as its out-edge and the edge’s sink

block has many in-edges, then the frequency instruction is added to the source

block.

3. If the edge’s source block has many out-edges and the edge’s sink block has just

this edge as its in-edge, then the frequency instruction is added to the sink block.

4. If the edge’s source block has many edges as its out-edges and the edge’s sink block

has many edges as its in-edges, then the following check is done to evaluate the

block that can contain the frequency instruction.

(a) If the source block has a virtual call instruction that has several possible

targets due to virtual dispatch, then a load instruction is added to the source

block which will load the caller methods offset to a fixed register namely,

%r15. The sink block (the called method’s first block) will increment the

frequency count for the block of sources (because this could have been called

from multiple locations), offset by the value passed in %r15.

(b) Else, a new block is created and inserted in between the source block and the

sink block, and the frequency instruction is then added to this new block.

In this manner, the frequency instructions for each edge is added to its respective

basic block.

OptiJava uses a default profile information which has the execution frequency of the

edges as 1 for its first compilation. At the end of compilation, OptiJava produces a

native code that has these frequency instructions. When the native code is run, the

frequency instructions also gets executed. At the end of execution of the native code,

we get a profile information that contains the number of times each edge was executed.

OptiJava uses this new profile information to recompile the class file and produce an

efficient native code which could potentially improve the performance of the application.

3.5.4 Coagulation

Coagulation is the core of OptiJava. The main idea behind coagulation is to optimize

and compile small regions of code locally in isolation and then merge the compiled parts
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of the program. The basic blocks generated by the previous phase are small regions of

the program. These blocks are solidified, and the solidified blocks are merged together

(see Section 2.3.7).

Solidification of a block is a process where the instructions of the block are placed in

an efficient order of execution and the operands of the register values which would to this

point have been virtual registers are mapped to generic/fixed registers (explained in detail

in Section 3.6). This is different from traditional compilers, where instruction selection,

instruction scheduling and register allocation is done on method level. Conventional

compilers use heuristics of the edge frequency to determine the program’s structure in

advance and perform optimizations based on these heuristics. Coagulation technique

has more information about the runtime behaviour of the code and can perform more

optimal local optimizations.

Following are the steps of the coagulation phase:

1. All the edges are queued for coagulation.

2. The highest (remaining) frequency edge is removed from the queue and used for

coagulation.

3. If the edge has no solidified blocks at either end then one of the blocks must be

solidified first. The sink of the edge is solidified first, unless the source has many

targets or the source ends in a call.

4. The exit values of the source block and the entry values of the sink block of the

edge are unified. If these values can be unified the blocks are merged. If both

blocks were already solidified this usually isn’t possible, so a minimal cost repair

such as inserting a copy instruction is done to align the values.

5. The other uncompiled block of the edge is solidified if it wasn’t already.

6. Steps 2 to 5 are repeated until all the edges in the queues are coagulated.

3.5.5 Unification

Unification is a common compiler technique. The goal of unification of two terms is to

find a most general substitution of the variables occuring within the terms such that the

two terms become equal.[1]. Unification is done as part of coagulation where the exit

values of the source block and the entry values of the sink block of an edge are unified.

We use “union-find algorithm” to unify the values.[1].
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Union-find algorithm involves two operations: union() and find(). union() merges

two values and makes one of the values as the representative of the two values. find()

returns the representative value.

To explain unification in detail, a few specific terms used in OptiJava are useful to

understand:

As an implementation detail, “operands” are assigned to the values. Operands repre-

sents the registers or constants that are assigned to the values. A constant value will be

assigned with a constant operand that represents the actual constant. A register value

will be assigned with a register operand. The register operands are of four types:

• Virtual registers

During creation of an IR instruction, compiler ignores the fact that the target

machine has a limited set of architectures, instead, it assigns an unlimited set of

virtual registers to the register values used in the IR instructions and assumes that

enough registers existed. These registers are not related to any physical storage

location and therefore they are merely tags.

• Generic registers

Generic registers are fixed number of virtual registers. This number depends on

the number of general purpose registers of the underlying architecture. A x86-64

architecture has 16 general purpose registers and hence the generic registers will be

16 for a x86-64 architecture. The virtual registers are mapped to generic registers

by register allocator.

• Spill registers

Spill registers represent the memory location of the value. During register alloca-

tion, there may be scenarios where a register value was not assigned with a generic

register because there were not enough registers. In such a scenario, the register

value is stored in memory.

• Fixed registers

Fixed registers are the actual physical registers/general purpose registers of the

underlying architecture. The generic registers are converted to fixed registers in

assembly phase.

The goal of coagulation is to have code flow as seamlessly as possible. Unification

makes this happen. Basic blocks have unassigned registers. The registers output from a

basic block must allign with the registers input to a subsequent basic block. Unification

tries to unify the register output of a block to register input of another block. This
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would result in continous flow of data in the same registers thereby reducing register

pressure. If the register values cannot be unified then they have to be adjusted. By

design, these adjustments happen at the less frequently executed parts of the code. The

actual hardware register assignment happens later, see Section 3.7.

To perform union() of two values, we first evaluate find() of each of the values and

then check to see if the operands that were assigned to find() of these values satisy the

unification rules. The unification rules are:

1. Unification between two constants: Unification succeeds if the two constants

are equal and fails otherwise.

2. Unification between a constant and a virtual register: Unification succeeds.

3. Unification between a constant and a generic/fixed register: Unification

fails.

4. Unification between two virtual registers: Unification succeeds irrespective

of whether the virtual registers are equal or different.

5. Unification between a virtual register and a generic register: Unification

succeeds.

6. Unification between a virtual register and a fixed register: Unification

succeeds.

7. Unification between a virtual register and a spill register: Unification

succeeds

8. Unification between two generic registers: Unification succeeds if the two

generic registers are equal and fails otherwise.

9. Unification between a generic register and a fixed register: Unification

succeeds on two conditions:

• If the generic register was mapped to the same fixed register.

• If the generic register is previously not mapped to any fixed registers and the

fixed register was not mapped to any other generic registers.

Unification fails otherwise.

10. Unification between two fixed registers: Unification succeeds if the two fixed

registers are equal and fails otherwise.
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11. Unification between a generic/fixed register and a spill register: Unifica-

tion fails.

If the unification succeeds based on the above rules, then the union() on the values

are performed and the find() will now return the new representative value of the uni-

fication. On successfull unification, the values and constants gets propagated down the

control flow.

If the unification fails, then the values cannot be merged. The exit value of the source

will be copied/spilled/unspilled to the entry value of the sink value.

• Copy: If the operand of either the exit value of source or the entry value of sink

is not a spill register and the unification rules were not satisfied then the soure’s

exit value is copied to the sink’s entry value.

• Spill: If the operand of the exit value of source is a generic/fixed register and the

operand of the entry value of sink is a spill register, then the source’s exit value is

spilled to the sink’s entry value.

• UnSpill: If the operand of the exit value of source is a spill register and the

operand of the entry value of the sink is a generic/fixed register, then the source’s

exit value is unspilled to the sink’s entry value.

Apart from the operand rules, the source value will be copied to the sink value based

on the following conditions:

1. If the exit values of the source contains duplicate values (more than one occurance

of the same value).

2. If the operand of any of the exit values matches to any of the operands of entry

values of the sink.

The copy, spill and unspill from a source’s exit value to a sink’s entry value is done

by creating a new IR instruction known as copy instruction, spill instruction and unspill

instruction respectively. These instructions are either added to the source block or the

sink block depending on the following factors:

1. Solidified source block and unsolidified sink block: In this case, since the

instruction ordering and the register convention of the source block has already

been decided, the copy, spill and unspill instructions cannot be added to the source,

hence these instructions will be added to the sink block.
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2. Solidified sink block and unsolidified source block: In this case, since the

instruction ordering and the register convention of the sink block has already been

decided, the copy, spill and unspill instructions cannot be added to the sink, hence

these instructions will be added to the source block.

3. Both source and sink are solidified: In this case, since the instruction ordering

and the register convention of both the blocks has already been decided, the copy,

spill and instructions cannot be added to either of the blocks. In this case, a new

basic block known as copy block is created between the source block and the sink

block.

3.5.6 Coagulation with example

The entire process of coagulation is explained below using the edges from the control

flow graph of the RunningExample program as shown in Figure 3.10. In the initial

compilation of the program by OptiJava, it considers all the edges to have the same fre-

quencies. Hence, the edges from the queue will be taken in random order for coagulation.

Supposing the edges taken from the queue were in order of :

• Edge BB2→BB4

• Edge BB2→BB3

• Edge BB4→BB5

• Edge BB3→BB5

• Edge BB1→BB2

• Edge BB1→BB6

• Edge BB6→NBB1

• Edge BB6→BB7

First, the edge BB2→BB4 is coagulated.

• The edge BB2→BB4 has both its source block and sink block as unsolidified blocks.

• Block BB2 is solidified first because BB2 has two outEdges.
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Figure 3.13: Unification of exit values of block BB2 and entry values of block BB4

• The exit values of BB2 are then unified with the entry values of BB4. The exit

values of the block BB2 and the entry values of the block BB4 are as shown in

Figure 3.13. The find() of the values are shown in parenthesis. Operands assigned

to the find() of the values are shown in square brackets.

Unification of source’s exit values and sink’s entry values is performed in the fol-

lowing way:

– At position 0, since the operand of the source’s entry value is a generic register

(G1) and the operand of sink’s entry value is a virtual register (V1), unification

succeeds, hence, the union() of values r0bb2 and r0bb4 is performed. The

find() of r0bb4 is now r0bb2.

– At positions 1 to 2, since the entry values of the block BB4 are null, unification

is not performed.

– At positions 3 to 4, since both the entry values and exit values are null,

unification is not performed. The state of the values after unification is as

shown in Figure 3.14.

Figure 3.14: The exit values of block BB2 and entry values of block BB4 after unification

• After unification, the block BB4 is solidified.
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Next edge from the queue is BB2→BB3.

• The edge BB2→BB3 has both its source block BB2 as solidified and sink block

BB3 as unsolidified block.

• The exit values of BB2 are unified with the entry values of BB3. The state of the

values after unification is as shown in Figure 3.15

Figure 3.15: The exit values of block BB2 and entry values of block BB3 after unification

• After unification, the block BB3 is solidified.

Next edge from the queue is BB4→BB5.

• The edge BB4→BB5 has its source block BB4 as solidified and sink block BB5 as

unsolidified block.

• The exit values of BB4 are unified with the entry values of BB5. The state of the

values after unification is as shown in Figure 3.16

Figure 3.16: The exit values of block BB4 and entry values of block BB5 after unification

• After unification, the block BB5 is solidified.

Next edge from the queue is BB3→BB5.
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• The edge BB3→BB5 has both the source block BB3 and sink block BB5 as solidified

blocks.

• The exit values of BB3 are unified with the entry values of BB5. The state of

the values after unification is as shown in Figure 3.17 Since the exit value r0bb3

Figure 3.17: The exit values of block BB3 and entry values of block BB5 after unification

occured both at position 0 and at position 1, a copy instruction had to be created

from the exit value r0bb3 at position 1 to the entry value r1bb5 at position 1. But

since both the blocks are solidified, the copy instruction cannot be added to BB3

or BB5, hence, a new block known as copy block (CBB1) will be created. The

copy instruction is then added to this copy block. The target of BB3 is changed

from BB5 to CBB1. And target of CBB1 will be BB5.

Next edge from the queue is BB1→BB2

Coagulation of this edge is slightly different from the other edges due to the fact that the

basic block BB1 ends in a call instruction INVOKESTATIC. BB1 belongs to the method

main which makes the call to the method code. BB2 belongs to the method code which

was being called. This edge is a call-edge , i.e. this is the edge between a block that ends

in a call instruction, and the called methods first block.

To preserve the inter-procedure flow information among the methods main and code,

three edges are considered together for coagulation; the call-edge, the implicit return

edge, and the caller’s target edge. The return-edge is an implicit edge between the called

methods return block and the target of the caller block. The target-edge is the edge

between the caller block and its target.

The control flow graph among the method main and code along is as shown in

Figure 3.18. The edges of importance are:

• Call-edge : BB1→BB2

• Return-edge : BB5→BB6
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Figure 3.18: Control flow graph representing the control flow among methods main and
code.
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• Target-edge : BB1→BB6

The order of coagulation among these edges would be : first the edge BB1→BB2

followed by the edge BB5→BB6 and finally the edge BB1→BB6. Unification of these

blocks differs slightly.

1. BB1→BB2 : While unifying the blocks BB1 and BB2, the parameters that are

passed from BB1 to the block BB2 is unified with the parameters of block BB2.As

shown in Figure 3.18, the parameter passed from BB1 is r6bb1 and the parameter

of the method code is the first entry value of the block BB2. Thus, r6bb1 is unified

with r0bb2.

2. BB5→BB6 : While unifying the blocks BB5 with BB6, the exit value of BB5,

which is the return value of the method code, is unified with the return point of

block BB6.As shown in Figure 3.18, the return value of the method code is the

exit value from the block BB5 and the return point is the last entry value of the

block BB6. Thus, r5bb5 is unified with r5bb6.

3. BB1→BB6 : While unifying the blocks BB1 with BB6, the live values from BB1

are unified with the corresponding entry values of the block BB6.

After these edges has been coagulated, the next edge from the queue is taken for coag-

ulation. In this manner, all the edges are coagulated in the order in which they were

taken from the queue.

When the class file is compiled for the second time, it has the actual execution

frequency information of the edges and hence the edges will be taken from the queue

according to their priority. The highest frequency edge is given higher priority for co-

agulation. Thus, the order of coagulation will start from the highest frequency edge to

the lowest frequency edge. Supposing after the program was run, if the code in the true

case of the conditional was executed, then the frequency of the edge BB2→BB4 would

have the highest frequency, followed by the edge BB4→BB5. The new coagulation order

would then be:

• Edge BB2→BB4

• Edge BB4→BB5

• Edge BB2→BB3

• Edge BB3→BB5
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• Edge BB1→BB2

• Edge BB1→BB6

• Edge BB6→NBB1

• Edge BB6→BB7

Coagulation starts by compiling the most frequently executed parts of a program, for

example, loops and recursive calls, and locally allocates optimal resources to them. When

two already-compiled parts of the program are merged, adjustments may have to be made

to ensure the availability of resources previously assumed to be available. However, these

adjustments typically occur at less frequently executed parts of the program.[26]

At the end of coagulation phase, each basic block has been solidified, which means

that register allocation and instruction selection has been done. All that remains is to

assign physical registers to the symbolic registers and translate the IR instructions to

assembly - all of which is architecture specific.

3.6 Solidification

Solidification is the process of ordering the instructions and allocating registers for the

register values used in those instructions. Solidification is done locally, that is, it is done

on each basic block. The IR instructions of the basic block are ordered in such a manner

that it preserves the semantics of the basic block as well as addreses the dependencies

between each instruction. Once the instructions have been ordered, the basic block is

then passed on to the register allocation phase where the entry register values, exit

register values of the block, and the register values used in the IR instructions of the

block are allocated with generic registers. The register allocation used by OptiJava is a

graph coloring algorithm. The goal of instruction ordering and register allocation is to

reduce the demand of the registers.

“At any point a solidified block, is essentially a self-contained program in the sense

that, data was supplied at its entry according to its demanded boundary conditions, it

would compute according to its intermediate code semantics and provide results on its

exit consistent with its supply boundary conditions.”[26]

3.6.1 Order Instructions

Ordering the instructions is the arrangement of instructions of a basic block in an efficient

order while ensuring that the semantics of the basic block are maintained. While ordering
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the instructions, data dependency and side effects among the instructions have to be

considered. An instruction j is said to be data dependent on instruction i if instruction i

produces a result that may be used by instruction j. In this case, instruction i has to be

exceuted before instruction j [17]. Since data-flow in IR instructions occurs in registers,

detecting the dependencies is straightforward. Additionally there are instructions that

are side effects. A side effect represents an instruction that either does not depend

on result from a previous instruction or does not produce a result for a subsequent

instruction. Rather, a side effect depends on a value in memory or stores a value in

memory. The side-effect instructions must maintain their source-code relative order

while fitting in with the dependencies of the other instructions.

Within a basic block, the data-flow analysis to analyse the dependency among the

instructions can be evaluated by creating a data dependency graph [16]. The depen-

dency graph is created by tracing all the instructions that resulted in producing the

corresponding exit value.

Consider the basic block BB2 of method code as shown in Figure 3.12. The exit

values and the side effect value of BB2 are as shown below:

Exit va lue s : r0bb2 , r20bb2 , r5bb2 , nu l l , n u l l

S ide e f f e c t va lue : sebb2 ( s i d e e f f e c t o f the compare i n s t r u c t i o n )

The dependency is evaluated by tracing in reverse order of all the instructions that

resulted in producing each exit value and side effect.

1. Evaluate the instruction that produced the exit value.

2. Get the from values of this instructions or in other words, get the values that are

used by this instruction.

3. Evaluate the instruction that produced the value got in step 2.

4. Repeat steps 2 and 3 until all the values have been traversed.

Figure 3.19 shows the Directed Acyclic Graph(DAG) representation of the data de-

pendency between the instructions of the block BB2. Each circular node represents

the IR instruction, rectangular nodes represents the values used by the instruction and

each arc represents the dependency between the values. Figure 3.20 shows the Directed

Acyclic Graph(DAG) representation of the data dependency between the instructions

that resulted in the side effect value.

Consider the exit value r5bb2 of block BB2. From the DAG representation shown in

Figure 3.19, it can be deduced that the instructions that resulted in producing the value

r5bb2 are in the order :
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Figure 3.19: DAG representing the operations of the instructions of the block BB2
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Figure 3.20: DAG representing the operations of the instructions of the side effect in
BB2

ILOAD 1 , r7bb2

ILOAD 3 , r9bb2

IADD r7bb2 , r9bb2 , r5bb2

In this manner the instructions within the block are ordered by calculating the depen-

dency of all the exit values and the side effects of the block. The instructions of the

block BB2 in order is as shown in Figure 3.21. Once the instructions have been ordered,

register allocation is performed for this block.

3.6.2 Register Allocation

Register allocation is the phase where the virtual registers are mapped to a finite number

of machine (or, physical) registers while taking care to maintain the semantic of the

program (see Section 2.3.5).

Graph coloring does register allocation by building an interference graph that models

when two live ranges cannot reside in the same register. It then heuristically attempts to

color the graph with the number of colors being equal to the number of physical registers

available in the target architecture.. If the heuristic succeeds, the coloring results in a

register assignment. If it fails, some register candidates are spilled to memory, spill code
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Figure 3.21: IR instructions of the block BB2 after Instruction Ordering

is inserted for their occurrences, and the whole process repeats.

Chaitin et M. [8] first used graph coloring as a paradigm for register allocation and

assignment in a compiler. Chaitin’s allocator used to spill the chosen value everywhere.

That is, it placed a STORE instruction after each definition of the value and a LOAD

instruction before each use of the value. Over the years many modifications to this basic

algorithm has been proposed. One such modification was to reduce the spill code by live

range splitting.

We use a register allocation algorithm that is similar to Cooper’s live range splitting

algorithm.[10] However, instead of global allocation, register allocation in OptiJava is

done locally. That is, the allocation is done within each basic block. Register allocation

in OptiJava maps the virtual registers to generic registers instead of mapping to physical

registers. The mapping of generic registers to fixed registers is delayed as much as possible

to give a greater flexibility for register allocation, hence, it is done in assembly phase.

The flow of register allocation algorithm is as follows:

Liveness analysis

Liveness analysis calculates the live range of all the register values used in the basic

block including the entry and exit register values of the block. Live range is generated

by calculating the definition and the last use of each value. Once the liveness analysis is

complete, this information is used to build the interference graph.

Build

Interference graph is then built using the liveness analysis information. The interfer-
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ence graph contains a node for each register value and an edge between each pair of

register values that are simultaneously live. That is, an edge exists between two register

values if the live range of the register values interfere with each other.

Color

Coloring is a two step process. During the first phase, we repeatedly try to assign a

color to a node different from those of its neighbors. If no color is available, a register

value is chosen whose live range will be splitted. If we are able to assign a color to every

live range, this corresponds to a valid allocation, and the algorithm terminates.

If the coloring is not a success, then a register value is chosen for spilling based on

heuristics. Then the live range of the chosen register value is split into smaller ranges.

A new register value is created which corresponds to the splitted live range. The code

is updated to keep the chosen register value in memory. The instructions are traversed,

inserting LOADs and STOREs for the chosen register value.

Next, liveness analysis is again performed and the interference graph is re-built using

the new liveness information and the register values are colored. If the coloring fails, the

entire process is repeated until all the register values gets assigned with a color.

Consider the block BB2 as show in Figure 3.21. The IR instructions of block BB2

are:

0 : ILOAD 1 , r7bb2

1 : ILOAD 3 , r9bb2

2 : IADD r7bb2 , r9bb2 , r5bb2

3 : COMPARE r5bb2 , r0bb2 , cc1bb2

4 : IF ICMPLE cc1bb2

The register values used in this block are:

r0bb2

r7bb2

r9bb2

r5bb2

cc1bb2

Live range is calculated for each of these register values. The start range of entry

values of the block is marked as -1. The start range of other register values is the

instruction number where the value got defined. The end range of exit values of the

block is the total number of instructions plus 1. The end range of other register values

is the instruction number where it was used last.

61



CHAPTER 3. DESIGN OF OPTIJAVA

Following is the live range for the register values used in block BB2.

r0bb2 = [−1 ,5 ]

r7bb2 = [ 0 , 5 ]

r9bb2 = [ 1 , 2 ]

r5bb2 = [ 2 , 5 ]

cc1bb2 = [ 3 , 4 ]

The interference graph is then built using this live range information. The interfernce

graph of block BB2 is as shown in Figure 3.22. The nodes of the graph represent all

Figure 3.22: Interference graph of register values used in block BB2

the register values used in the block and the edges represent the conflicts between them.

That is, if there is an edge between two register values it indicates that the register values

are live at the same time and hence cannot be allocated with the same generic register.

Next, it tries to allocate color for each of the register value. Allocator tries to allocate

as few colors as possible, but the nodes which are connected cannot be allocated with

the same color. Consider the number of colors available were 5.
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1. r0bb2

Initially, color 1 is allocated for this register value.

2. r7bb2

While allocating color for r7bb2, the same color cannot be allocated since it conflicts

with r0bb2. Hence, r7bb2 gets a new color, namely, color 2.

3. r9bb2

r9bb2 conflicts with both r0bb2 and r7bb2 and hence r9bb2 gets a new color which

is different from both r0bb2 and r7bb2. Thus, color 3 is allocated for this register

value.

4. r5bb2

r5bb2 conflicts with both r0bb2 and r7bb2 but does not conflict with r9bb2. Hence,

a color which is different from r0bb2 and r20bb2 but can be similar to r9bb2 is

chosen. Thus, color 3 is allocated for this register value.

5. cc1bb2

cc1bb2 conflicts with r0bb2,r7bb2 and r5bb2. Hence, a color which is different from

these register values has to be chosen. Thus, color 4 is allocated for this register

value.

This resulted in a successful coloring.

However, consider a scenario where there were not enough colors available. In such

a scenario, a register value will be chosen for live range splitting. Then, the live range is

split and spill code is inserted. The instruction for storing a register value to memory is

known as spilling, an IR instruction known as spill instruction is created to represent this

operation. The instruction for loading the value from memory to register value is known

as unspilling, an IR instruction known as unspill instruction is created to represent this

operation.

Consider a hypothetical situation where the number of available colors are 3. Con-

sider for example, the same block BB2 which was used above. Since four colors are

required for a successful allocation and there are only three colors available, the register

allocation for the block BB2 will now fail. Hence, a value is chosen for spilling. Consider

r7bb2 was chosen for spilling. The live range of r7bb2 is split into two smaller live ranges.

Spill code is then added. The new instructions after inserting the spill code would be as

shown below:

0 : ILOAD 1 , r7bb2
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1 : SPILL r7bb2 , s p i l l 1

2 : ILOAD 3 , r9bb2

3 : UNSPILL s p i l l 1 , r7bb2 ‘

4 : IADD r7bb2 ‘ , r9bb2 , r5bb2

5 : COMPARE r5bb2 , r0bb2 , cc1bb2

6 : IF ICMPLE cc1bb2

Note that the live range of r7bb2 is now from instruction 0 to instruction 1. The new

live range of r7bb2‘ is from instruction 3 to 4. Interference graph is then rebuilt using

the new liveness information. Next, the graph is attempted to color. If it succeeds, the

algorithm is terminated , else the process continues until the graph can be colored with

the available number of colors.

The number of colors available for allocation depends on the actual number of physical

registers available in the architecture and reserved registers used by OptiJava. OptiJava

reserves two registers; one for the stack pointer and another for frequency calculation.

These registers are not used for register allocation. In the initial compilation of the class

files, OptiJava reserves a register for frequency calculation and once it has the frequency

information the reserved register is marked free and can be used for allocation when

the class files are compiled for the second time. In x86-64 architecture, the number of

physical registers are 16, OptiJava reserves two registers, so the total number of colors

available for allocation will be 14.

Once all the register values have been allocated with a color, the actual register

assignment takes place, where, each register value is assigned with a generic register.

This is done by mapping the colors with unique generic registers. The register values

after register allocation is as shown below; The generic register assigned for each of the

register values is shown in square brackets.

• r0bb2←[G1]

• r7bb2←[G2]

• r9bb2←[G3]

• r5bb2←[G3]

• cc1bb2←[G4]

Pre-colored nodes

There may be scenarios where the nodes were already assigned with generic/fixed
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registers. In such a scenario, the colors of the nodes will be mapped to the assigned

generic registers instead of mapping to new generic registers.

Calling convention

Calling convention is a set of rules that determine how a method will recieve its

parameters and how it will pass the result. It defines the Application Binary Interface

(ABI) for the program control flow to transfer into and out of a method, that is, how to

pass arguments and return values, and how to save and restore the registers that are used

across calls. In a method call, we refer to the method that is invoked as the callee and

the calling method as the caller. Calling convention also defines how the registers are

preserved across calls. For this reason, it divides the registers into caller-saved registers

and callee saved registers. [3]

Caller-save registers

The registers designated for the caller to save are caller-saves registers. In general, the

caller-save registers are used to hold temporary quantities that need not be preserved

across calls. For that reason, it is the caller’s responsibility to push these registers onto

the stack if it wants to restore this value after a procedure call.[3]

Callee-save registers

The registers designated for the callee to save are callee-save registers. In general, the

callee save registers are used to store values that should be preserved across calls. When

the caller makes a procedure call, it can expect that those registers will hold the same

value after the callee returns, making it the responsibility of the callee to save them and

restore them before returning to the caller.[3]

According to x86-64 ABI [24], the first 6 arguments are passed via registers and the

rest are passed on stack. The integer arguments are passed in order:

%rdi , %r s i , %rdx , %rcx , %r8 , %r9

The result is stored in %rax register.

The designated caller-save registers are:

%rax , %rcx , %rdx , %r s i , %rdi , %r8 , %r9 , %r10 , %r11 .

The designated callee-save registers are:

%rbx , %rbp , %r12 , %r13 , %r14 , %r15 .

OptiJava uses its own calling convention mechanism for Java methods. It allows

flexibility in the allocation of registers to a method’s parameters as well as caller-save
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and callee-save registers. The convention is applied over a method group, hence, the

registers used for passing the parameters, caller-save registers and callee-save registers

are common to all the methods within that method group.

For native methods, OptiJava uses the standard calling convention. In a method

group that has any native methods, the register convention used is according to the

convention stated by the ABI of the underlying architecture and all the methods in that

method group will follow the standard convention. If the called method wants to interact

with the native code, it should follow the native code’s calling convention. The registers

used for passing the parameters to the native method, the register used for passing the

result of the method, the caller-save and the callee-save registers will be as specified in

the ABI. To reflect the registers used for parameters and the register used for return, the

basic block created for native method known as native basic block will have the operands

of the entry values and exit values as fixed registers. The fixed registers assigned will be

in accordance with the ABI specification.

For example, consider a C code that takes in 3 integer parameters and returns an

integer result, then the native basic block created for this C code will have its operands

of the entry and exit values as :

Operands o f entry va lue s : %r d i %r s i %rdx

Operands o f e x i t va lue : %rax

3.7 Conversion to Assembly

The final phase of OptiJava is the assembly phase that emits the assembly code (native

machine code). An assembly instruction includes an operation on source registers and

an assignment of the result to a destination register. Assembly instructions in general is

of two types: 2-register instructions 3-register instructions

In 2-register instructions, the maximum number of registers that can be in the in-

struction is limited to two. Here, one of the source registers acts as the destination

register as well. For example:

add r1, r2

Here, the value in register r1 is added with the value in register r2 and the result is

stored in register r2.

In 3-register instructions, there can be three registers in the instruction, operator

operates upon two source registers and the result is assigned to a destination register.

For example;
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add r1, r2, r3

Here, the value in register r1 is added with the value in register r2 and the result is

stored in register r3.

The instruction format depends on the underlying architecture. Thus, OptiJava

produces 3-register instructions if the target machine supports 3-register instructions

and 2-register instructions otherwise.

Conversion to assembly is a two-step process; linearization of basic blocks and con-

version of the IR instructions to assembly instructions. Linearization and conversion are

done in parallel.

3.7.1 Linearization of blocks

When a program is run, the processor always checks the cache to fetch the next in-

struction. Caches are fast on-chip memories that are used to store frequently accessed

instructions and data from main memory. If the needed information has to be fetched

from main memory, many CPU cycles are lost where no computation can occur. A cache

miss is a failed attempt to fetch the instruction from the cache and can generally cause

the largest delay because the processor has to wait (stall) until the instruction is fetched

from main memory. [33]

Linearizing the blocks attempts to avoid cache misses of frequently executed code.

The assembly code layout is arranged in a manner where related pieces of code are placed

close to each other, branches to highly likely exectued code is placed immediately after

the block. Lineraization arranges the blocks so that a basic block is followed by the most

likely block. That is, the fall through code or in other words the next sequential line of

code where execution would continue is always placed next to each other.

In case of a basic block ending in a conditional branch instruction, the basic block

has two successor blocks. ”Many processors have asymmetric branch costs; the cost of a

fall-through branch is less than the cost of a taken branch”.[3] If it is possible to predict

the direction that a branch instruction might take, compiler can choose which block to

lie on the fall-through path and which block to place in the taken path.[32] The goal of

OptiJava is to work along with the hardware’s branch prediction capability.

Profile information helps in accurate branch prediction. The profile information will

have the information of the frequently executed paths. Using such information, it can

predict the probable outcome of conditionals.[9] Thus, OptiJava will place the highly

likely executed branch path to be the fall through branch.

The steps for linearization is as follows:
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1. First block of the method is placed in a queue.

2. The first block is removed from the queue and becomes the current block for

linearization. The IR instructions of the current block is converted to assembly

instructions.

3. Next, the first target block of the current block gets added to the front of the queue

and any additional target blocks are added to the end of the queue.

4. Steps 2 and 3 are repeated until the queue is empty.

The above process is repeated for all the referenced methods.

Consider for example the control flow graph of method code as shown in Figure 3.11.

The linearized order of the basic blocks of the method code is as shown in Figure 3.23.

Figure 3.23: Linearized order of the basic blocks of method code

The IR instructions of the basic block are converted to assembly instructions in

sequence. The assembly instruction is generated by emitting the assembly opcode of the

IR instruction’s opcode and computing the fixed register operands of the IR instruction’s

from-values and to-value.
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The instructions are converted to assembly in sequential order. This is a three step

process:

1. Evaluate the register operands that were assigned to the find() of the values.

2. Evaluate the fixed register mapping of the register operands. If the operand as-

signed was a generic register and if this generic register did not have any mapping

to any fixed register after coagulation then any unmapped fixed register is mapped

to this generic register.

3. Select an efficient translation of the IR instruction to assembly instruction.

For example, the IR instructions of the basic block BB2 of the method code is as

shown in Figure 3.21 are:

0: ILOAD 1,r7bb2

1: ILOAD 3,r9bb2

2: IADD r7bb2,r9bb2,r5bb2

3: COMPARE r5bb2,r0bb2,cc1bb2

4: IF_ICMPLE cc1bb2

The conversion of these IR instructions to assembly would be as follows:

0: ILOAD 1,r7bb2

Find ( ) o f r7bb2 : r7bb2

Operand as s i gned : G2

Fixed r e g i s t e r mapping o f G2 : n u l l

New f i x e d r e g i s t e r mapping f o r G2 : %rax

Assembly mnemonic : mov

Assembly i n s t r u c t i o n : mov $1 , %rbx

Assembly i n s t r u c t i o n s e l e c t e d : xor %ebx ,%ebx and inc %ebx

The actual conversion of the load instruction would be “mov $1, %rbx”. However,

we select assembly instruction (“inc”), which would result in reduced cache line

for the load instruction. The xor intruction clears the register ebx(four bytes of

register rbx) which results in %ebx having the value 0. inc increments the value

stored in %ebx.
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1: ILOAD 3,r9bb2

Find ( ) o f r9bb2 : r9bb2

Operand as s i gned : G3

Fixed r e g i s t e r mapping o f G3 : n u l l

New f i x e d r e g i s t e r mapping f o r G3 : %rcx

Assembly mnemonic : mov

Fina l assembly i n s t r u c t i o n : mov $3 , %rcx

2: IADD r7bb2,r9bb2,r5bb2

Find ( ) o f r20bb2 : r7bb2

Operand as s i gned f o r r7bb2 : G2

Fixed r e g i s t e r mapping o f G2 : %rbx

Find ( ) o f r9bb2 : r9bb2

Operand as s i gned f o r r9bb2 : G3

Fixed r e g i s t e r mapping o f G3 : %rcx

Find ( ) o f r5bb2 : r5bb2

Operand as s i gned f o r r5bb2 : G3

Fixed r e g i s t e r mapping o f G3 : %rcx

Assembly mnemonic : %rcx

Assembly i n s t r u c t i o n : add %rbx ,%rcx ,%rcx

Two r e g i s t e r assembly i n s t r u c t i o n : add %rbx ,% rcx

3: COMPARE r5bb2,r0bb2,cc1bb2

Find ( ) o f r5bb2 : r5bb2

Operand as s i gned f o r r5bb2 : G3

Fixed r e g i s t e r mapping o f G3 : %rcx

Find ( ) o f r0bb2 : r0bb2

Operand as s i gned f o r r0bb2 : G1

Fixed r e g i s t e r mapping o f G1 : %r d i

Find ( ) o f cc1bb2 : cc1bb2

Operand as s i gned f o r r0bb2 : G4

Fixed r e g i s t e r mapping o f G4 : %rdx

Assembly mnemonic : cmp

Assembly i n s t r u c t i o n : cmp %rdi ,% rcx

4: IF_ICMPLE cc1bb2
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Find ( ) o f cc1bb2 : cc1bb2

Operand as s i gned f o r r0bb2 : G4

Fixed r e g i s t e r mapping o f G4 : %rdx

Assembly mnemonic : j l e

F ina l assembly i n s t r u c t i o n : j l e bb4

All the branch instructions are converted to jump to second target of the basic

block. This branch instruction would be ”jle bb4” (basic block BB4 is the second

target of the block BB2).

In case of instructions which require their values to access the stack or memory,

such as spill instruction, unspill instruction and virtual call instruction, the offsets are

computed and assembly instruction is generated accordingly. While converting a spill

instruction, the offset of spill location on the stack with respect to the stack pointer is

calculated. While converting a call instruction to a virtual method, the method offset is

calculated from the virtual dispatch table. The process of conversion is repeated until

all the IR instructions of the basic block is converted to assembly instruction.

The assembly process ends once all the instructions of all the generated basic blocks

are converted to assembly instructions. The assembly output is printed out to a file

which has the same name as the class file which was used as the input to the compiler.

Labels for each method are added in the assembly output. A method lable consists of

the name of the package , method name, parameter signature and the return signature.

Method labels are of the format :

_package-name_method-name__parameter-signature"r"return-signature. This marks

the end of compilation. The final assembly code of the RunningExample program is as

shown in Figure 3.24.2

3.7.2 Compiler/Run-Time data structures

The data structures, data layout for objects and arrays, initialization and support rou-

tines are described in this section.

Frequency table

OptiJava uses profiling to gather information about frequently executed paths of the

code. OptiJava uses this frequency information to recompile the class files to produce

efficient native code. Frequency table is a data structure used by OptiJava to cache

2the assembly code shown here does not include the code for class initializer and constructors
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te s t RunningExample main aLjava lang Str ing rV :
# Parameters : (%rax )
bb1 : movq $3 ,%rax

movq te s t L000B z(%r i p ) , %r d i
add %rax ,% r d i
mov %rdi , s p i l l 1 (%rsp )
c a l l t e s t Runn ingExample code I r I

bb6 : mov %rdi , s p i l l 2 (%rsp )
c a l l j a v a l a n g S y s t e m e x i t I r V

bb7 : r e t
t e s t L 0 0 0 B c o d e I r I :

# Parameters : (%r d i )
bb2 : xor %ebx ,%ebx

inc %ebx
movq $3 ,% rcx
add %rbx ,% rcx
cmp %rdi ,% rcx
j l e bb3

bb4 : movq $4 ,%rbx
mullw %rdi ,%rbx

bb5 : add %rbx ,% r d i
r e t

bb3 :
cbb1 : mov %rdi ,%rbx

jmp bb5

Figure 3.24: Assembly code of the the RunningExample program
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the profile information. The execution frequency information of the edges are stored in

this frequency table. That is, the count of the number of times the edge was executed

is stored in this table. To increment the count of a particular edge, the count of the

edge is first accessed by offsetting to the table and the value stored at that offset is

incremented by 1. Each entry in the frequency table occupies 8 bytes. The edge-id gives

the offset to the table. The frequency information of the edge whose id is 1 is accessed by

offsetting 8(1*8) bytes from the base of the frequency table. Frequency information of the

edge whose id is 5 is accessed by offseting 40(5*8) bytes from the base of the frequency

table. The frequency information of call-edges of a block are grouped together. That

is, consider a method which was called by two different methods. The first block of the

called method will have two in-edges each representing the call-edge from its respective

caller. In such a scenario, the frequency information of both the in-edges are placed

together. This grouping of the in-edges is to assist in updating the call-edges properly.

Each of the caller will load an offset which is specific to that caller to a reserved register.

The called method will take the offset from the reserved register to additionally offset in

the group of edges to update the information.

Objects, Class objects and Arrays

Every object has a pointer to its class as its first field. The remaining fields contain

the object’s instance variables.

The class pointer points to an instance of the java.lang.Class class. As this is an

object it starts with a pointer to its class: java.lang.Class. This is followed by heap size

of an instanceof the class, a pointer to the field descriptor for instances, a pointer to

its super class, and a String containing the name of the class. Finally there is a virtual

function table – a series of pointers to the code for each non-static method.

Data layout of an array consists of the type of the array as its first field. The second

field is the length of the array. The rest of the object is the sequence of the elements of

the array, starting at element 0.

3.7.3 Initialization and Setup

Initialization

• A C code called main.c is called from the operating system.

• main.c produces the parameter for the main of the designated class.

• It saves and clears all the physical registers of the underlying architecture.
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• It then calls the method ”optiJava_main”.

• optiJava_main is a wrapper function to the main method of the designated class.

The argument to this method is a reference to an instance of java.lang.String.

• optiJava_main calls the class initializers to initialize the classes.

• optiJava_main then calls the main of the designated class.

Support routines

A Java compiler must have an implementation of the standard java class libraries. The

Java Class Library is a set of dynamically loadable libraries that Java applications can

call at run time. The goal of OptiJava is to connect directly to existing class libraries.

We implicitly use the class library that is implemented in the system. At this stage,

OptiJava implements few classes of the library that overrides the existing classes. The

logic of the overriden classes has been implemented in Java; native code is used only to

call the necessary system functions. OptiJava implements the following classes:

• java.io.PrintStream

• java.lang.Integer

• java.lang.Object

• java.lang.String

• java.lang.System

• java.lang.Throwable

3.8 Benchmarks

In this section, the benchmark used in evaluating the performance of OptiJava is ex-

plained. The program as shown in Figure 3.25 was chosen as the benchmark. This

benchmark was chosen because it enabled to compare the performance of compilers on

core features of Java such as objects, method dispatch, and basic operations as well as

to show the performance of compilers compiling programs having frequently executed

parts of code.

This program has four loops,a simple loop which does an arithematic operation, a

static loop which calls a static method, a virtual loop which calls a virtual method and

a double loop which creates two objects and calls the virtual method twice. The number
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public class Loops {
stat ic int timestamp=( int ) System . nanoTime ( ) ;
stat ic f ina l int i t e r a t i o n s = 5000000;
private stat ic void t iming ( St r ing t e s t ) {

System . e r r . p r i n t ( ”Run f o r ” ) ;
System . e r r . p r i n t ( t e s t ) ;
System . e r r . p r i n t ( ( int ) System . nanoTime()− timestamp ) ;
System . e r r . p r i n t l n ( ”ns” ) ;
timestamp=( int ) System . nanoTime ( ) ;

}
private stat ic int a ( int p) {

return p&1;
}
private stat ic int c ( Loops l , int p) {

return l . b (p ) ;
}
private int b( int p) {

return p&1;
}
public stat ic void main ( St r ing [ ] a rgs ) {

int r e s u l t =0, r e s = 0 ;
for ( int i =0; i<i t e r a t i o n s ;++ i )

r e s u l t = r e s u l t + 1 ;
t iming ( ” Simple loop ” ) ;
r e s u l t =0;
for ( int i =0; i<i t e r a t i o n s ;++ i )

r e s u l t = r e s u l t + a ( i ) + a ( r e s u l t ) ;
t iming ( ” S t a t i c c a l l loop ” ) ;
r e s u l t =0;
Loops l = new Loops ( ) ;
for ( int i =0; i<i t e r a t i o n s ;++ i )

r e s u l t = r e s u l t + l . b ( i ) + l . b ( r e s u l t ) ;
t iming ( ” Vi r tua l c a l l loop ” ) ;
r e s u l t =0;
Loops l 2 = new Loops ( ) ;
for ( int i =0; i<i t e r a t i o n s ;++ i )

r e s u l t = r e s u l t + c ( l , i ) + c ( l2 , r e s u l t ) ;
t iming ( ”Double c a l l loop ” ) ;

}
}

Figure 3.25: Java source code for benchmark
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of iterations for each loop is 10000000. The benchmark program was run 10 times. This

was done to allow adaptice compilers to reach a steady state.

For this benchmark, OptiJava compiled the class file and the generated native code

was executed to evaluate its execution time. The frequency information generated after

executing the native code was then used by OptiJava to recompile the class file. This

newly generated native is then executed to evaluate the execution time. Hence, we

have two execution times of OptiJava, one without frequency and one with frequency

information. The overall run times were measured with the timestamp system utility.

3.8.1 Comparator environments

The compilers that have been used for comparison are:

1. Excelsior JET

2. GCJ

3. HotSpot JVM (64-Bit Server VM (build 25.151-b12, mixed mode)

The environment used is a Linux operating system with 64-bit architecture.

3.8.2 Test reporting

The results have been reported by comparing performance of OptiJava with respect to

other compilers and comparing performance of OptiJava with profiling with respect to

othjer compilers.

3.9 Limitations and Risks to Experimental Validity

• OptiJava supports only single threaded applications.

• Garbage collection has not been integrated.

• Does not support dynamic loading.
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Results

In this chapter, we discuss the performance of OptiJava. We also compare the perfor-

mance of OptiJava with respect to other Java systems. The performance was evaluated

using execution time as the criteria. The measurements were taken by executing the

benchmark program by each of the comparator Java systems.

4.1 Performance of OptiJava and other Java Systems

The performances of OptiJava with and without frequency information, HotSpot JVM,

Excelsior JET and GCJ compilers are examined in this section. We analyze the execution

time taken by a compiler for each of the loops of the chosen benchmark program as

shown in Figure 3.25. OptiJava with frequency information is shown as OptiJavaPGO.

The execution time taken by OptiJava, OptiJavaPGO, HotSpot JVM, Excelsior JET

and GCJ for each of the loops of the program mentioned in Figure 3.25 is as shown in

4.1. The time taken is shown in nanoseconds.

Java System Simple Loop Static Loop Virtual Loop Double Loop

Excelsior JET 10,859,406 80,017,237 70,517,584 133,340,723
GCJ 6,480,227 77,998,135 86,373,260 173,104,054
HotSpot JVM 3,530,851 13,545,983 13,932,022 15,208,217
OptiJava 5,686,204 47,926,494 58,845,157 83,507,569
OptiJavaPGO 7,802,540 55,135,895 59,407,229 84,943,360

Table 4.1: Execution time taken by the Java systems
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4.2 Comparisons

The comparison results are examined in this section. To compare the results, the exe-

cution time taken by OptiJava is taken as the standard. The execution time of Opti-

JavaPGO, HotSpot JVM, Excelsior JET and GCJ are shown as percentage relative to

OptiJava as shown in 4.2 . From the table we can see that OptiJava performed better

Java System Simple Loop Static Loop Virtual Loop Double Loop

Excelsior JET 190% 167% 120% 160%
GCJ 114% 163% 147% 207%
HotSpot JVM 62% 28% 24% 18%
OptiJava 100% 100% 100% 100%
OptiJavaPGO 137% 115% 101% 102%

Table 4.2: Execution time relative to OptiJava (smaller is better)

than the AOT compilers Excelsior JET and GCJ. However, its performance was not

satisfactory compared to HotSpot JVM.

4.3 Analysis

These results indicate that both OptiJava and OptiJava with profiling produced an exe-

cutable whose performance was superior to other commercial AOT compilers. However,

OptiJava is slower than Oracle’s reference Just-In-Time compiler.

A surprising factor was regarding the performance of OptiJava with profiling. The

time taken to execute the benchmark program by OptiJava with frequency information

was slower than the time taken to execute using OptiJava without the frequency infor-

mation. We expected that OptiJava with profiling would perform better because it had

information of the frequently executed parts of the code. However, to our disappoint-

ment it fared worse than without profiling. We believe that this could be because of

excessive register shuffling happening at the lower frequent edges, and will be looking at

resolving this in the very near future!
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Conclusions

We have presented the design and implementation of OptiJava; a native-code Ahead-Of-

Time compiler that converts .class files to exeutable code. OptiJava is implemented

completely in Java. We have focussed more on providing an efficient code which would

reduce the execution time rather than on the compilation speed. The discussion in

this dissertation has been focussed on x86-64 architecture with Linux operating system.

However, the techniques are common to other platforms as well.

The Intermediate Representation (IR) used in OptiJava is a strongly typed, register

based and Static Single Assignment (SSA) representation. Generally, compilers that use

SSA based IR, use a time consuming technique to convert the IR to SSA based IR.

However such a transforamtion is not necessary in OptiJava because SSA form is implict

in the OptiJava’s IR instructions.

Unlike traditional compilers which focuss their optimizations on method level, Opti-

Java concentrates on optimizing the busiest/hot parts of the code. This stems from the

fact that the most of the execution time spent by an application is on loops or recursive

calls. OptiJava gives importance to these parts of the program by allocating enough reg-

isters for its usage thereby aiming to reduce the execution time. This is done by using

the concept of “code coagulation” as its compilation technique. Coagulation ensures that

the first regions compiled will be a program’s busy loops. Coagulation uses a run-time

profile for the program being compiled for code generation. By treating busy parts of a

program first and using the strategy of local optimiality, OptiJava maximises the ben-

efit of careful instruction selection, register allocation and interprocedural optimization

while avoiding unnecessary data movement in busy sections.

The main contributions in this dissertation are:

• Implementation of the coagualtion concept in an abstract virtual machine.
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• In the past, the coagulation technique has only been implemented in a C compiler.

Through this research, we have implemented the coagulation concept in an object

oriented language for the first time.

• Generally, compilers convert intermediate instructions to be in a Static Single As-

signment (SSA) form. This process of conversion is time consuming. We have

introduced a technique where the intermediate instructions can be of SSA form

implicitly without having to carry any additional conversion process.

In our limited tests, the results prove that OptiJava achieved superior performance

to existing AOT Java compilers. Although OptiJava is slower than the HotSpot Just-

In-Time JVM, we believe that there is considerable scope for improvement in OptiJava.

5.1 Future Work

We are working to bring the OptiJava to a production state and improve its performance.

This includes:

• Preliminary assessment indicates that reshuffling of registers can be better handled.

• Register spills can be reduced by improving the register allocation algorithm.

• Native code can be optimized by using object-oriented optimizations for handling

the array out-of-bound checks, null pointer exeception checks and method inling.

• Improve the exception handling mechanism by finding the matching catch block

in the entire program rather than confining the search within the current method

and also by integrating runtime environment handle.

• Integrate garbage collection and multi-threading.

• Evaluate the performance of OptiJava using standard benchmarks.

More general future work includes:

• Another challenging research would be to support dynamic loading. Our thought

is to include an interpreter in the code, which would benefit from the coagulation.

• Currently OptiJava supports only the x86-64 architecture with Linux and Mac-OS-

X operating systems and we want to port it to different architectures and different

operating systems. The code for this is already in place and all that is left to be

done is to integrate it to the register allocation and assembly phase of OptiJava.
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