
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2010

A Study On Automatic Software Quality And
Reliability Anlaysis
Ahmad Hosseingholizadeh
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Hosseingholizadeh, Ahmad, "A Study On Automatic Software Quality And Reliability Anlaysis" (2010). Theses and dissertations. Paper
1403.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1403?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1403&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

A STUDY ON AUTOMATIC SOFTWARE

QUALITY AND RELIABILITY

ANALYSIS

by

Ahmad Hosseingholizadeh

Bachelor of Science, Shahid Beheshti University, Iran, 2008

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2010

c⃝Ahmad Hosseingholizadeh 2010

Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

ii

A STUDY ON AUTOMATIC SOFTWARE QUALITY AND

RELIABILITY ANALYSIS

Master of Science 2010

Ahmad Hosseingholizadeh

Computer Science

Ryerson University

Abstract

In this thesis the study over the topic of analytical approaches for software quality and re-

liability assurance is presented. The focus of this research is on a specific set of techniques

used for software reliability assessment called Risk Analysis. Numerous approaches are

explored and different new techniques are proposed to generate the risk model of a soft-

ware product. These techniques are evaluated and using the results of this evaluation

a new risk model (Compound Risk Model) is proposed which is using the advantages

of different classes of risk analysis techniques to generate a more precise and practical

model to identify more risky components of a software product. Also a research on the

topic of Automatic Bug-Fix using Genetic Programming is presented which can fix logical

defects of a buggy code and evolve it to a bug-free code. Finally it is discussed that these

approaches can be used as an automated tool in an integrated development environment

to localize the defective components and debug them.

iii

Acknowledgements

I am deeply thankful to my supervisor, Dr. Abdolreza Abhari, whose guidance, en-

couragement and support enabled me to develop the ideas of this thesis. His assistance

throughout this study was abundantly helpful and made this work possible.

I’m grateful to Dr. Alexander Ferworn for his teachings that enlightened the path of

productive study for me in the Master’s degree.

I wish to thank Dr. Marcus Santos for his teachings which attracted me to the very

interesting field of Genetic Programming.

I’m grateful to Dr. Alireza Sadeghian for his continuous and timely support during

the course of my study.

My warm thanks to Dr. Cherie Ding for her excellent and practical teachings in the

area of Service Oriented Architecture.

I’m thankful to all advisory committee members for their comments and guidances

to edit and improve this work.

Finally, I take this opportunity to express my profound gratitude to my beloved family

and friends for their moral support and patience during my study in Ryerson.

iv

Contents

1 Motivations and Objectives 1

1.1 Rationale . 1

1.2 Nature of the Problem . 2

1.2.1 Software Risk . 3

1.2.2 Test Optimization . 5

1.2.3 Automatic bug-fix . 6

1.3 Scope and Goal . 6

1.4 Contributions . 7

1.5 Thesis Outline . 8

2 Related Works 9

2.1 Risk Analysis Techniques . 9

2.2 Architectural Risk Analysis . 12

2.3 Source-Based Risk Analysis . 14

2.4 Software Test Optimization . 15

2.5 Automatic Bug-Fix . 16

3 Methodology 20

3.1 Risk-Based Test Optimization . 21

v

3.1.1 Components Classification Based on Their Importance 21

3.1.2 Source-Based Risk . 22

3.1.3 Risk-Based Testing . 28

3.2 Compound Risk Model . 28

3.2.1 Riskiness of Components . 29

3.2.2 The elements of the riskiness compound metric 29

3.2.3 Component riskiness based on analysts estimation 30

3.2.4 Component riskiness based on architectural analysis 30

3.2.5 Component riskiness based on source-code analysis 31

3.2.6 Combining the metrics . 32

3.2.7 Risk Damage Analysis . 34

3.2.8 Failure Damage Based on Analysts Estimation 34

3.2.9 Architectural Damage and Metric Aggregation 35

3.2.10 Compound Risk Table . 37

3.3 Genetic Programming Bug-Fix . 39

3.3.1 Genetic Programming Key Concepts 39

3.3.2 GP Operations Scope . 40

3.3.3 Constant Repository . 42

3.3.4 Fitness Evaluation . 42

4 Evaluation and Results 45

4.1 Test Optimization Case-Study . 45

4.2 Compound Risk Model Results . 47

4.3 Automatic Bug-Fix Results . 52

vi

5 Conclusion and Future Work 56

5.1 Conclusion . 56

5.2 Future Work . 58

References 65

vii

List of Tables

3.1 Example of a Compound Risk Table . 39

4.1 Metric Components . 48

4.2 Compound Risk Table . 49

4.3 Comparison of CR and the Cause of Failure Probability 50

viii

List of Figures

2.1 A sample state transition diagram of a robot controller discussed by Che-

ung et al. in [1] . 13

3.1 Depth of each component is determined by the depth its container package 36

4.1 Components Risk Density . 46

4.2 Functions Risk Density . 46

4.3 Functions Risk . 47

4.4 Dependency Diagram . 48

4.5 Compound Risk Diagram . 49

4.6 The fitness of the best individual and the average fitness of the population

of Bug-Fix experiment . 55

ix

Chapter 1

Motivations and Objectives

In this chapter the area of the study will be introduced. The motivation, problem state-

ment and the goal of this study in the area of software reliability will be presented and

a foundation for the detailed discussion of the topic of this thesis will be provided.

1.1 Rationale

Software development is a complicated process. It involves many different factors and

elements which have to be controlled and supervised to assure the quality of the final

product. Many different methodologies and approaches have been proposed to simplify

this process and make it more manageable. Each one of these approaches try to focus on

one or some aspects of software development process; aspects such as:

• Project time estimation

• Required human resources

• Software product structure

1

• Required technologies and tools

• Quality assurance

• Feasibility study

Proper use of these techniques increases the chances of having a well managed and

controlled project which is developed according to the estimated required time and meets

the required quality. Quality of the final product is one of the most important factors

of a software product which has a considerable effect on the success of the project in

the market. From one point of view the quality of the product is a subjective measure,

meaning that different users have different opinions about product’s quality. But from

another point of view the elements of quality can be identified and classified; elements

such as reliability, efficiency, portability, usability, maintainability, testability, etc. (as

Cox discussed in [2]). Out of this list reliability is one of the most important factors. The

importance of reliability could be seen better when we know that according to statistical

study by Tassey [3] only in US every year $20 billions could be saved if a better test is

done before the final release of a new software product .

1.2 Nature of the Problem

This research is based on software reliability and correctness. Out of different techniques

to increase the software reliability the focus of this study is on risk management and

defect identification and correction. Different proposed techniques will be explored and

by identifying their advantage and disadvantages suggestions are made to increase their

precision and applicability. Also the results of using the proposed techniques in test

environments will be presented and the results of these experiments will be discussed.

2

In the following section some key concepts of the area of this research will be defined

and their applications will be explained.

1.2.1 Software Risk

According to NASA Safety Manual [4] risk is defined as the function of the possible

frequency of occurrence of an undesired event, the potential severity of resulting conse-

quences, and the uncertainties associated with this frequency and severity. According

to Tao [5] Risk in the context of software engineering is defined as the probability that

a software development project experiences unexpected and inadmissible events such as

termination, wrong budget and time estimations, poor quality of the software solution,

wrong used technology, etc. The purpose of software risk management as described by

Boehm [6] is to identify, address and eliminate software risks before they become threads

to software operation. Evidence shows that most faults in software applications can be

found in only a few of a system’s components (Moller and Paulish [7]; Kaaniche and

Kanoun [8]; Ohlsson and Alberg [9]; Fenton and Ohlsson [10]). Pressman [11] describes

that experience indicates 80% of all the potential for a software project failure can be

account for by only 20% of the identified risks. Choosing an optimal strategy to rank

risks and identify this 20% will have a deep effect on expenses reduction and product’s

functionality and as mentioned by Emam et al. [12] it allows organizations to take early

mitigating actions to detect the defects of high risk components.

A subset of the software risks is related to the poor quality of the solution and

probability of the operation failure of its components. In [13] Khoshgoftaar et al. discuss

that finding the problematic components which are more probable to fail can guide the

project team to plan an optimal development which minimizes this probability and its

3

effects. Also Larman [14] mentions in his book that risky components should be identified

to be developed and tested in the early stages of the development to minimize risks of the

project. In this study the word Risk is used to refer to this special subset of the software

risks which represent the probability and damage of the failure of the components of the

software product.

As mentioned in [15] by Cortellessa, software risk can be quantified as a combination

of the following two metrics:

• Risk Probability

• Risk Damage

Finding a technique to identify these two metrics for all the components of a software

project can be extremely useful in having a better overall picture of the software project.

These findings can guide the development and project test planning of the software

project.

There are different ways that can be used to classify components of a software product

based on their risk. these techniques can be classified in three main groups:

• Analysts Estimation

• Architectural Analysis

• Source-Based Analysis

In chapter 2 each one of these groups of techniques are described and the details,

advantages and disadvantages of some approaches of each group are presented and dis-

cussed.

4

1.2.2 Test Optimization

Software test is a critical step in a software development process. It is estimated that

software testing can take up to 50% of the total development cost according to Beizer

[16]. Also as mentioned in Section 1.1 another estimation by Tassey [3] shows that in

US every year $20 billion could be saved if a better test could be done before the final

release of new software products; therefore any technique that can help the process of

software testing can have a huge effect on the success of the software project.

Risk management is one of the many techniques that can help the software test

and quality assurance which focuses on reduction and prevention of risks in software

projects. As mentioned earlier, risk refers to the probability of failure of a component

and its damage. Identifying risky components which are more likely to fail can guide the

management team to plan the development and testing of the software product in an

optimized way.

One of the many techniques that can be used to guide the test phase of software

development are source-based risk analysis techniques. Source-based risk techniques are

used to classify the components based on metrics which are extracted from the source-

code of each component. There are a number of advantages in use of a source-based

technique for risk assessment. The most important one is the fact that in source-based

analysis techniques some specific features of the technologies or programming languages

can be taken into consideration. As an example the number of statements for a specific

functionality can be different between different programming languages; by using the

number of statements as a metric to calculate the risk the effect of used technology

will be taken into account. Thus it can be seen that the source-based risk analysis can

contain some parts of the technology-based risks as well. In this study in the first step

5

area of source-based risk assessment for test optimization will be explored. In the next

step this approach will be extended to other types of risk assessment techniques and a

more general and precise approach will be designed. These proposed approaches will be

presented in chapter 3 of this thesis.

1.2.3 Automatic bug-fix

Risk assessment can help the development team to plan the test phase of the software

project and find the most damaging defects of the developing application; however fixing

these defects is still a time consuming task which has to be done by developers. One of

the approaches which has recently been studied and can have a promising future to make

the task of debugging automatic is the genetic programming bug-fix technique. In these

approaches genetic programming is used to evolve a buggy code into a bug-free code by

making modifications to the structure of the code using a set of negative and positive

test cases1 to measure the fitness of each individual. As for the last part of this study,

the focus is on the usage of genetic programming for automatic bug-fix. The details of

the current approaches are studied and a new suggestions are made to improve their

performance.

1.3 Scope and Goal

The main goal of this research is to develop a precise model and tool to facilitate the

process of software reliability and risk analysis and provide the development team with

practical approach of dealing with the problem of software reliability. To achieve this goal,

1Positive test cases are those which cause the application to behave as it should, and negative test
cases are those which result in a fault.

6

in the first step different approaches of component classification based on risk analysis will

be explored and advantages and disadvantages of each approach will be identified. The

knowledge which is acquired from this study will be used to create a proposed approach

of software component classification for test optimization.

Following this study on risk-based test optimization the second goal will be set to

increase the precision of the proposed approach and extend it to make it more general

and usable in all stages of software development process. The focus will be on finding an

approach which takes advantage of different aspects of a software project and combine

them to create a complete risk model which can be used to plan the development as well

as test of a software product.

As for the last step of this study, the application of genetic programming for automatic

bug-fix will be explored. The goal is to define an approach which is specialized to fix a

set of common logical defects in the software components. A set of rules will be defined

and a tool will be designed to evolve a C-like code and execute an automatic debug.

1.4 Contributions

As mentioned earlier, the purpose of this study is to facilitate the process of software

quality and reliability assurance using risk analysis techniques and automatic debugging

tools. The contributions of this work can be summarized as follows:

• Providing a more accurate risk model compared to the existing models which can

be used to identify the risky components of the software under development with

a higher precision.

7

• Providing useful and applicable approach to map the results of risk analysis to

software development activities.

• Defining the new model in a way that can be programmed and automated to be

used as a tool.

• Increasing the flexibility and usability of Genetic Programming Bug-Fix approaches.

• Applying Genetic Programming Bug-Fix operations inside statements rather than

looking at statements as atomic elements of the code.

In the following chapters, the proposed techniques will be presented and it will be ex-

plained how the new approaches will satisfy these claims.

1.5 Thesis Outline

The rest of the thesis is organized as follows. In chapter 2 a review of the current studies

in the area of software risk analysis and automatic bug-fix is presented. In chapter

3 proposed approaches for risk-based text optimization, component classification and

genetic programming bug-fix are described and the advantages of proposed techniques

over the existing ones are explained. Chapter 4 is dedicated to present the results of

applying proposed approaches to a set of sample projects and in the last chapter the

results of this research are summarized and the plan for further studies are described.

8

Chapter 2

Related Works

In this chapter the basic concepts of Software Risk analysis will be introduced and dif-

ferent proposed techniques that can be used to generate a risk model will be discussed.

Also the advantages and disadvantages of these techniques will be explained and a basis

for the next chapter will be set to describe the proposed approaches.

2.1 Risk Analysis Techniques

As mentioned in section 1 software risk can be quantified as a combination of the following

two metrics:

• Risk Probability

• Risk Damage

The purpose of a risk model is to classify different components of a software product

in terms of their Relative Risk Probability and Relative Risk Damage; in other words

these two metrics will be used to compare different components of a software product

9

and discover the most risky or damaging components. Identifying these components can

help the project managers to plan the development of the software product in the most

optimized way possible.

Different approaches have been proposed to measure these two metrics. Some of

them are based on business owners and developers opinions about the software under

development. In these approaches developers estimate the riskiness1 of components based

on their knowledge and experience. Component failure damage is estimated by developers

and business owners collaboration. Some of the important factors that affect the result of

this approach are: developers and business owners’ experience in the area of the software

under development, precise insight of the problem domain, etc.

Some other approaches are based on formal and computable techniques which are

possible to be programmed and automated. This means that risk analysis can be done

by means of an analyser application. These techniques can be categorized in two groups:

The first group are those techniques that can process the architectural design and mod-

eling artifacts of a component (e.g. Statecharts or Sequence Diagrams). They calculate

different metrics such as Static or Dynamic Complexity to generate the Risk Model of

each component and estimate its risk and reliability. Some samples of these approaches

are discussed in the research works performed by Bass et al. [17], Cheung et al. [1],

Cortellessa et al. [15], Popstojanova [18] and Yacoub et al. [19]. The second group

are those techniques that process the source-code of a component and estimate the risk

metrics based on the code specifications such as the number of conditional statements,

function calls, etc. These values will be used to determine the risk factor of components

and produce the the Risk Model of the software product. Some studies in this area are

1we use the term riskiness to refer to relative probability of failure of a component in relation to
other components of the same software product. This value doesn’t identify the absolute probability of
failure.

10

done by Deursen et al. [20], Hosseingholizadeh [21] and Wong et al. [22]. This Risk

Model can be a very useful tool to manage the debugging and testing strategies of a

development process.

Each one of these techniques have some advantages and disadvantages. The owners

and analysts opinion is a very important factor to determine the risky components,

because risk discovery is a heuristic process and no two projects are exactly alike. However

this type of analysis cannot be sufficient because many of the risks are not determinable

by analysts due to lack of experience, unexplored areas of new technologies that are

used in every different project, implementation details which are not clear before the

design and coding phases begin, weak points of development team in the area of the

new technologies, etc. In addition to these, there is always the human fault factor which

causes some risks to remain undetermined.

Architectural analysis techniques are not enough either because an application with a

simple architecture can have a very complicated internal logic in the body of the functions

and procedures. These risks can only be determined by code analysis techniques.

On the other hand, just using Code-Based analysis techniques will not generate a

precise Risk Model because the internal structure of the functions and procedures of an

application can be simple, but the relation between its components can be very compli-

cated.

Considering the above and different phases of a development process (design and im-

plementation of each subsystem2) which take place before the test, it can be seen that

a risk analysis approach can produce a reliable model only when it uses the information

obtained from the combination of all the analysis, design (architecture) and implementa-

2A subsystem is a set of closely related components and classes which is a part of a bigger system
and is not intended to be used separately

11

tion (code) phases. In section 3.2 a new approach will be proposed in which the owners

and analysers’ estimation is considered as one of the effective factors and it is combined

with the values that are obtained from Architectural and Source-Code analysis. This

will result in a compound model that takes all three aspects of a risk analysis into con-

sideration. The idea of combining these three aspects can be summarized in the formula

2.1.

RiskMetric = f(AnalystsEstimation,ArchitecturalRisk, SourceBasedRisk) (2.1)

In the following sections of this chapter we go into some details of Architectural and

Source-Based Risk Analysis approaches and their usages.

2.2 Architectural Risk Analysis

Architecture of a software product has a deep effect on its reliability. Proper multi-tier

architecture, proper dependencies between components, right abstraction and encapsula-

tion of objects, etc. are some of the architectural factors that effect the reliability. In [23]

we used these techniques in a specific type of applications (Wireless Sensor Networks) to

show that having a properly structured architecture can facilitate the development and

increase the reliability of the product. Many of the reliability and risk analysis techniques

have focused on the architectural specifications of a software product.

Cheung et al. [1] discovered the reliability factor of each component by finding the

state transition diagrams of the components of a software product and using them as

Markov Models to calculate the probability that a component ends up in a failure state.

A sample of such a state diagram is shown in Figure 2.1. In this figure the failure states

12

are shown in grey.

In another approach Popstojanova [18] calculated the Cyclomatic Complexity3 of the

state transition diagrams of the components of the software under analysis.

Figure 2.1: A sample state transition diagram of a robot controller discussed by Cheung
et al. in [1]

Another approach is proposed in [15] by Cortellessa et al. in which the focus is on

the Performance Risk Analysis by assigning a demand vector to each action/interaction

in the sequence diagrams of different system scenarios and using the resulted execution

model to calculate the service demands (work units for CPUs and KB4 for the disks and

network) and service time of the specific used hardware. These values are later used to

create the System Execution Model based on the workload parameters and estimate the

probability of failure as a violation of the performance objectives.

The purpose on all architectural risk analysis techniques is to determine the com-

plication of the dependencies between different elements of a software product. Having

unnecessary dependencies between components, wrong abstraction and encapsulation,

3Cyclomatic Complexity is a metric which was first proposed by McCabe [24] to find the number of
linearly independent paths of execution in a program based on its control flow graph and determine its
complexity and later on was adapted to other types of software architectural graphs.

4Kilobytes

13

etc. are some of the reasons that could increase the complexity of the components and

make them more vulnerable to reliability problems and increasing the architectural risk

factor.

2.3 Source-Based Risk Analysis

Source-based risk analysis techniques analyse the source-code of an implemented software

product and detect its risky elements and components. A source-based technique can be

implemented as an automatic tool in an IDE5 to be used by developers and classify the

implemented components.

In [22] Wong et al. based their approach on analysing the source-code by assigning

a weight to members of a set of code-related metrics (such as number of function calls,

variable definitions, etc.). These metrics are calculated (with consideration of their cor-

responding weight) then the result of their multiplication or addition (based on different

schemas proposed in [22]) is used as the risk factor of each element of the software i.e.

block, function or component. In [20] Deursen and Kuipers proposed an approach to

create a risk model based on the information retrieved from the interviews with stake-

holders, and use a source-based technique to verify/modify the risk model. Many of the

risk analysis and classification techniques are based on the idea of Cyclomatic Complexity

introduced by McCabe [24]. Cyclomatic Complexity measures the complexity of a source

code and can be used to identify risky (complex) components.

5Integrated Development Environment

14

2.4 Software Test Optimization

Different approaches have been proposed to assist the software test process: Lei et al. [25]

and Carlos et al. [26] proposed different techniques for test-case generation, Nguyen et al.

[27] and Forrest et al. [28] focused on automatic bug-fix techniques, Khoshgoftaar et al.

[13] proposed a new approach for components classification using genetic programming-

based decision trees, etc.

As mentioned in the previous section, a part of risk assessment techniques are based

on source-code analysis of the target software product. Some studies has been done on

this topic such as researches by Wong et al. [22], Hosseingholizadeh [21] and Deursen

et al. [20]. These techniques can be used to identify the risky components and the

development team can use this information to plan the software testing phase and make

it possible to address maximum number of defects in a limited time.

The problem with these techniques is that they only identify the risky elements of

the software without any observation over the amount of the effort which is required

to test them. Also most of these approaches have a linear relation with the number of

statements inside a component; thus huge components with huge number of functions

and elements are associated with higher risks. These components can take a long time

to be tested and fixed, but due to their high risk they get a higher priority over the small

and testable components with fewer but more critical operations. As it will be presented

in section 3.1 we will show how our risk model takes the factor of effort of fixing an

issue into consideration and increases the performance of the testing phase of software

development process.

15

2.5 Automatic Bug-Fix

To ensure the quality of the final product the debugging process should be organized

and closely managed in all the iterations of the software development and subsystem

release. But still considering the limited human resource and human error factor, there

is a limitation to the quality improvement that can be applied to the product in a limited

period of time. One of the approaches that can assist the development by applying a

precise logical debugging is genetic programming automatic bug-fix.

Genetic Programming has a very special characteristic which is the ability to generate

valid code. This feature makes it a very good candidate for automatic software bug-fix.

The basic idea is to use a GP system to evolve a buggy code into a bug-free code. Different

approaches have been proposed to achieve this goal in the recent years by Forrest et al.

[28], Weimer et al. [29], Nguyen et al. [27], Arcuri et al. [30] [31]. To be able to evolve

the individuals, a set of positive and negative test cases are prepared. These test cases

are used to measure the fitness of individuals. The GP system tries to apply changes to

the original code and find a candidate which passes all the test cases.

One of the challenges in using GP systems in software repair is the huge search space

of different codes that can be generated by evolving the original code. In [27] Nguyen

et al. mentions this makes it very hard for the GP to converge a source code to an

evolved code which retains the functionality of the original code as well as fixing its

bug(s). Crossover operator in GP systems usually applies big structural changes in the

individuals and this can have a negative effect for the bug fixing process. In the context

of software repair big changes disrupt the system from converging toward a bug-free code

without disrupting the original functionality of the source. To prevent this Forrent et al.

[28] and Nguyen et al. [27] use a modified crossover which applies the operation around

16

a part of the code which seems to be the problematic part.

There are different ways to identify pieces of code which are candidate of being the

problematic blocks and statements. In [27] a weight is assigned to each statement which

is a part of a execution path6 that results in a bug. This weight is used to identify

the problematic statements. In [28] Forrent et al. assign 3 types of probabilities to the

statements; first probability is assigned to those which are only a part of execution path

of a negative test case, second probability is assigned to those which are a part of the

execution path of both negative and positive test-cases, and the last one is applied to

the rest of the statements. These probabilities are multiplied by the probability of a GP

operator and the result is used to apply the crossover and mutation operators to the

individuals.

Using these weights the genetic programming system can explore the search space

by modifying the problematic statements and thus it shrinks the search space of the

genetic programming system and increases the chance of converging toward a bug-free

code; however the drawback of this limited search space is excluding some very good fixes

which need bigger code manipulation. To overcome this problem, the proposed approach

in [27] applies two types of crossover; the first one is the limited crossover which swaps

only those statements which are in the execution path of negative test cases, and the

second one is a conventional one point crossover which swaps two statements from two

individuals regardless of their participation in the execution path of test cases. These

two types of cross over are applied to the population with different probabilities.

In both approaches in [28] and [27] the authors use existing statements in the appli-

cation to create a code-bank and they use this bank to apply the mutation operation to

6An execution path is a sequence of statements in one code which are executed in a run. This sequence
can be automatically logged by the interpretor of the code.

17

individuals by swapping a random statement from the buggy module with a statement in

the code-bank; thus a mutation is simply swapping a statement with another statement

from the source-code of the same application. Also crossover is limited to swapping one

or a group of statements of the individuals with one another. During the process of evo-

lution, non-working programs with syntactical problems are eliminated in the selection

phase.

Procedure 1 Microsoft Zune buggy code

void zunebug(int days) {
int year = 1980;
while (days > 365) {

if (isLeapYear(year)){
if (days > 366) {

days -= 366;
year += 1;

}
else {
}

}
else {

days -= 365;
year += 1;

}
}
printf("current year is %d\n", year);

}

Both approaches proposed in [28] and [27] have shown that they are able to fix different

bugs in some sample applications. In sample Procedure 1 a famous buggy code which

was reported in Microsoft Zune players is shown which falls into an infinite loop when

the input days is the last day of a leap year. This buggy code was fixed by the GP

auto-repair system presented in [28] with the modification presented in Procedure 2.

18

Procedure 2 Microsoft Zune bug fixed by GP technique proposed in [28]

void zunebug_repair(int days) {
int year = 1980;
while (days > 365) {

if (isLeapYear(year)){
if (days > 366) {

// days -= 366; // repair deletes
year += 1;

}
else {
}
days -= 366; // repair inserts

} else {
days -= 365;
year += 1;

}
}
printf("current year is %d\n", year);

}

19

Chapter 3

Methodology

In this chapter a description of this study over the topic of Software Risk Analysis will

be provided and the details of the contributions to this field which are published in

[32] and [21] will be presented. The main concern of this research is to develop some

analytical techniques which can be used in real world projects in form of automatic

tools. To accomplish this, after studying different approaches of Software Risk Analysis,

Defect Measurement, Bug Localization and Classification, Software Design Techniques

and Automatic Bug Repair techniques the focus is turned toward studies on source-code

analysis and a new source-based risk analysis technique is developed. This technique

can be used to assist the process of software test and optimize the use of resources

(this approach is represented in section 3.1). Continuing this research, the source-based

technique is extended in a more general form which could be used to analyse the structure

of a software from different points of view (source code, architectural, etc.) and generate

a more precise and reliable risk model of the software components (section 3.2). Moving

on to the next level, intelligent automatic bug-fix techniques are studied and a new

technique based on Genetic Programming is developed which can evolve a defective code

20

into a bug-free code. In the following sections these approaches and the results of using

them in software projects are described.

3.1 Risk-Based Test Optimization

In this section our proposed approach which is published and presented in [21] will

be described. This approach results in a model that can be used to plan an optimal

test for the software project. A code analyser tool is designed based on this proposed

technique. This tool is used to apply this technique to a sample project. The results of

this experiment are presented in the next chapter.

There are two phases in our proposed technique:

• Components Classification

• Source-Based Risk Analysis

The following sections will describe these two phases.

3.1.1 Components Classification Based on Their Importance

In the first step business owners and software developers should classify the components

of the software based on their importance to the business and the functionality of the

software product. In order to do that, since business owners usually don’t have the re-

quired technical knowledge to help the component classification process, they will only

assign a number between 0 and 100 to each use-case based on their importance to the

business (100 would stand for the most important use-case). Considering the operation of

each component in each use-case software developers can use this metric to help them de-

termine the importance of each component and classify them. Developers use this metric

21

to classify the components in 4 classes of Negligible, Marginal, Critical and Catastrophic

which represent the class of damage that can be caused by failure of each component.

3.1.2 Source-Based Risk

After classifying the components, a source-based approach is used to determine the riski-

ness of each component and its elements. As mentioned in the previous chapter, different

metrics can be used to determine the riskiness of components. For example number of

lines of code, number of data access, cyclomatic complexity (based on control flow) are

some of different approaches which are developed and used byMcCabe [24], Popstojanova

[18], etc. Our proposed approach is based on the idea presented by Wong et al. in [22]

which analyses the source-code to determine the risk of an element of the application. To

accomplish a better result, this idea is improved by adding more structural observations

to the analysis process which results in a better estimation of the risk of the component-

under-analysis. In [22] Static Risk Model based on summation scheme is described as

following:

V ∗ α+ F ∗ β +D ∗ γ + C ∗ ϵ+ P ∗ ρ (3.1)

In this formula V, F,D,C and P are metrics extracted from the code. V stands for

number of variable definitions, F number of function calls, D number of decisions, C

number of c-uses1 and P number of p-uses2. α, β, γ, ϵ , and ρ are the weighting factors

which are used to give either more or less emphasis to the metric components.

1c-use(computational use) is defined for each block of code as the number of variable usages in the
right hand side of each assignment statement, plus the number of variable usages in output commands.

2p-use(predicate use) is defined for each block of code as the total number of variable usages in
conditional statements.

22

Our proposed technique is an improved version of the former logic. This technique

can be explained using the following two sample procedures shown as Procedure 3 and

Procedure 4.

Using the formula 3.1 these two procedures will have the same value for risk; however

Procedure 3 - A procedure with one statement in the if body

Procedure foo()
{

if (condition 1)
{

statement 1;
}
statement 2;
statement 3;
statement 4;

}

Procedure 4 - A procedure with 3 statements in the if body

Procedure bar()
{

if (condition 1)
{

statement 1;
statement 2;
statement 3;

}
statement 4;

}

by further analysis it can be seen that Procedure 4 is more risky than Procedure 3. The

reason for this is that if in Procedure 3 as an example the condition 1 fails to operate

properly, more statements will be executed which are not supposed to be executed; thus

it can be said that condition 1 in Procedure 4 is more damaging than condition 1 in

Procedure 3. This concept can be interpreted by saying that the riskiness of condition 1

is added to the riskiness of statements 1, 2 and 3 in Procedure 4 and made them more

risky (As an example, it can be said that the riskiness of statement 2 in Procedure 4 is

based on two factors, first the risk of failure of statement 2 itself and second the risk of

23

failure of proper execution of condition 1). With this approach the effect of the risk of

condition 1 can be interpreted as an increase in the riskiness of its corresponding block

of statements.

The former point is valid for all the statements in conditional/loop blocks (such as

for, while, etc.). Having a bug in the condition of a loop will effect its whole body

by the measure of the number of its wrong executions; thus the risk factor affects the

body of the loop in a more severe form. It is more complicated to measure this effect

in loop statements because in some cases the number of executions of their body is not

determinable prior to the application’s execution. To make this measurement simpler we

consider a constant weight to be assigned to all the loops which should be determined

by the developers and project analysts.

Considering the former points, the formula 3.1 in our approach is changed into the

following equation:

BR(n) = V ′ ∗ α+ F ′ ∗ β +D′ ∗ γ + C ′ ∗ ϵ+ P ′ ∗ ρ+
∑

BR (3.2)

In this equation BR(n)3 stands for riskiness of block n, and
∑

BR stands for the sum

of all BRs of the internal blocks of block n. If we represent all the metrics V, F, D, C

and P with X, all X ′s in (3.2) are defined as follows:

X ′ = X ∗BRF (n) (3.3)

In this formula BRF (n) represents the Block Risk Factor of the block n. BRF (n) in

our proposed approach is defined as following: In the first level of each procedure (or

3Block Risk

24

function) BRF is 1; by entering each if statement block, BRF would be equal to the

BRF of if statement’s parent block incremented by 1. BRF of each loop block is equal

to BRF of loop’s containing block plus 5 (this is our proposed value and our approach

can be applied with other values for different projects based on their implementation

specifications). To explain this technique the example shown in Procedure 5 is provided.

Procedure 5 - A sample procedure

Procedure example()
{

int a, b;
int max;
cin >> a >> b;
if (a > b)
{

max = a;
cout << max;
Proc2();
for (int i = 1; i <= max; i++)

Proc3();
}
else
{

cout << b;
}
cout << a * b;

}

In Procedure 5 for the outer most procedure, BRF is 1. For if and else blocks BRF

is equal to 2 (BRF of the parent block + 1) and for the level 3 block which is inside the

for loop BRF is equal to 7 (BRF of the containing block + 5). In the inner most block

(for loop) which is considered as block number 4 there are 2 p-uses (i <= max), a c-use

25

(i++), a decision and a function call (Proc3()). By assuming that all the weights are 1:

BR(4) = V ∗BRF (4) + F ∗BRF (4)

+D ∗BRF (4) + C ∗BRF (4) + P ∗BRF (4) +
∑

BR

= 0 ∗ 7 + 1 ∗ 7 + 1 ∗ 7 + 1 ∗ 7 + 2 ∗ 7 + 0

in the if block there is a variable definition (since int i is executed only once it is

considered outside the for loop body), 2 c-uses (cout << max and max = a), a function

call (Proc2()) and a nested block (BR(4)):

BR(3) = V ∗BRF (3) + F ∗BRF (3)

+D ∗BRF (3) + C ∗BRF (3) + P ∗BRF (3) +
∑

BR

= 1 ∗ 2 + 1 ∗ 2 + 0 ∗ 2 + 2 ∗ 2 + 0 ∗ 2 +BR(4)

With the same approach, BR(2) for the else block and BR(1) for the procedure’s block

are calculated as follows:

BR(2) = 0 ∗ 2 + 0 ∗ 2 + 0 ∗ 2 + 1 ∗ 2 + 0 ∗ 2 + 0

BR(1) = 3 ∗ 1 + 0 ∗ 1 + 1 ∗ 2 + 2 ∗ 1 + 2 ∗ 1 +BR(2) +BR(3)

Finally the risk of the outer most block which is the example procedure (BR(1)) is equal

to 54.

Also another new metric called Function Risk Density is defined in our approach as

following:

FRD =
FR

LOC
(3.4)

26

In equation 3.4 FRD stands for Function Risk Density that is obtained by calculating BR

of a function (which is called FR4) and divide it by LOC which stands for the Lines of

Code of the code under analysis. Higher values of FRD show that the function has more

nested statements; higher values also show that regardless of the size of the function,

each single statement in the function has a high risk. Giving higher test-priority to the

functions with higher FRD will result in eliminating more risks by testing each line of

code. The risk of a component can be calculated by adding the risks of all the functions

in it:

CR =
∑

FR(i) (3.5)

This metric is a relative metric which can only be interpreted in relation to other com-

ponents’ risks and it represents the overall relative risk of a component. Also Component

Risk Density can be calculated with the following formula:

CRD =

∑
FRD(i)

N
(3.6)

In this equation N stands for the number of functions of the component. This value can

be used as the estimated average risk of statements in the component. In another word if

a component has a higher CRD, by testing each of its statements (or functions) a higher

risk can be eliminated. Thus testing those components which have higher CRD would

result in a more optimal test.

4Function Risk

27

3.1.3 Risk-Based Testing

After classification of components and obtaining CRD, FRD the test phase can be

planned. In the first step, critical components based on the classification in section

3.1.1 should be chosen to be tested. The test phase should start with a component from

the Catastrophic class which has the highest CRD. The test of each component should

be conducted by starting with the functions with higher FRD. A threshold T will be

chosen for each component which will be used to select the functions to be tested; only

the functions with a FRD above this threshold should be tested. This is used to eliminate

very simple functions from being included in the test plan. The value of this threshold

should be chosen based on the size of the project and available test time. After the test

of all catastrophic components, the remainder testing time can be used to continue the

test on Critical, Marginal and Negligible components respectively. Using this approach it

is possible to optimize the software test process and verify and fix the maximum possible

amount of the components in a given time. A case-study of applying this approach to a

sample project is provided in section 4.1.

3.2 Compound Risk Model

In this section the proposed approach of this study for software risk model is presented.

This approach is published in [32]. Following the study on Source-Based Risk Analysis,

in this section the goal is to increase the precision of risk analysis by considering more

risk related factors in the calculations. This improvement resulted in a new approach

which is called the Compound Risk Model. This approach is based on a combination of

different risk factors which take different viewpoints of the software project into account

28

to generate the risk model. Each one of the source-based, architectural based and an-

alysts estimation techniques of risk model generation reflects the reliability measure of

a software project from a specific angle. By using all the available techniques and com-

bining the results a more precise model can be generated. In the following sections, first

our proposed approach of generating and combining the riskiness (relative probability

of failure) of all the components is described, then the proposed method of risk damage

estimation and aggregation of these information will be presented which will be used to

generate the risk model.

3.2.1 Riskiness of Components

In the first step the proposed approach to determine the riskiness of a component of

an application will be introduced. The goal is to define a technique to compare the

risk of different components of a software product. As discussed in the previous section

our approach is based on a compound metric which takes all aspects of a project into

consideration. First the elements of this compound metric and their calculation method

will be presented, and after that the method of aggregating these elements and calculating

the compound metric will be described.

3.2.2 The elements of the riskiness compound metric

To determine the relative probability of failure of each component (in relation to other

components of a software product) its riskiness factor is calculated by considering the

following viewpoints:

• Project Analysts and Managers’ estimation about the probability of failure of each

component

29

• Architectural Analysis of each component

• Source-Code analysis of each component

3.2.3 Component riskiness based on analysts estimation

Project managers and analysts can use their experience to determine the relative riskiness

of each component. In order to do this, after each design session analysts and project

managers will discuss each component of the designed subsystem and associate a number

between 0 to 100 to each component which identifies its riskiness (The higher the number

is, the more probable is the failure of the component). This value is shown by CR1.

In short term: CR1(k) =The riskiness factor of the component k which is determined

by the project analysts and managers.

3.2.4 Component riskiness based on architectural analysis

In 1976 McCabe proposed a technique to determine the complexity of an application

[24]. In his method a new metric called Cyclomatic Complexity was introduced which

determined the complexity of an element of an application by evaluating V (G) = E−N+2

using the element’s Control Flow Diagram. In this equation V (G), E and N stand for

Cyclomatic Complexity, number of Edges and number of Nodes respectively. In [18]

Popstojanova extended this definition of complexity to the software architecture level.

In his proposed approach a Statechart is designed for each component which is used

instead of the Control Flow Diagram to make it possible to calculate the complexity in

the Architectural level. This complexity has been used as the architectural risk factor of

a component. In our study the architectural riskiness for the Compound Risk Model is

calculated based on the idea of [18].

30

In the approached proposed in [18], in order to determine the Architectural Risk,

the statechart of each component is designed based on each use case; then cyclomatic

complexity is calculated based on this diagram (using the number of edges and nodes).

In our study each component is considered from a general point of view, thus separate

statecharts will not be designed for different use-cases; instead the proposed approach

is to design only one statechart which contains one default or idle state and all the

other possible states of a component based on all use-cases. The Complexity Factor of

component k will be calculated using the following equation:

CR2(k) = E(k)−N(k) + 2 (3.7)

In this equation E(k) and N(k) represent the number of edges and nodes for the state-

chart of component k, and CR2(k) stands for the Cyclomatic Complexity of component

k which represents its riskiness and subsequently its relative failure probability factor. In

section 3.2.6 this value will be combined with other metrics and normalized to produce

a compound metric that can be used to determine the riskiness of a component.

3.2.5 Component riskiness based on source-code analysis

In this section an approach to determine the riskiness of a component by source-code

analysis will be proposed. As mentioned earlier there are different approaches which use

different factors to calculate the source-code’s riskiness: number of lines of code, number

of data accesses, cyclomatic complexity (based on control flow), etc. For the purpose

of our study, the same approach which was proposed in section 3.1.2 is used. Using

this approach, a better estimation of the riskiness of blocks of code can be obtained.

This estimation takes the structural specifications of the source-code into account as well

31

as types of statements. By considering formula 3.2 the source-based riskiness will be

calculated. First all BR(i)s of all the blocks of code and procedures in a component will

be obtained. Then the riskiness of a component can be obtained by calculating the sum

of the riskiness of all the procedures inside it:

CR3(k) =
∑

BR(i) (3.8)

Again it should be mentioned that this metric is a relative metric which can only be

interpreted in relation to the riskiness of other components. Also another metric is

defined which is called CAR and stands for Component Average Risk:

CAR3(k) =

∑
BR(i)

N
(3.9)

CAR3 stands for the average of riskiness of all the methods inside the component k; N

is the number of methods inside a component (The index 3 in CR3 and CAR3 is used

to distinguish these metrics from other metrics which were introduced in the previous

sections). If a component has a relatively bigger CR3 then it can be said that this

component is riskier than others; having a component with a relatively bigger CAR3

means that the density of risk in this component is higher.

3.2.6 Combining the metrics

In this section the purpose is to combine the acquired metrics from the previous sections

to generate the new compound metric. CR1, CR2 and CR3 will be combined and a new

metric CR will be created which will determine the Component’s Risk. By comparing

CRs of different components in a project, one can identify the most risky components.

32

In the first step the values of CRis should be normalized using the following formula:

NCRi(k) =
CRi(k)∑
k CRi(k)

(3.10)

In (3.10) NCRi(k) stands for the normalized riskiness of component k. The parameter

i identifies each one of the 3 metrics which where calculated in the last three sections.∑
k CRi(k) represents the sum of CRis of all the components. Using (3.10) we will nor-

malize all the calculated values for all three metrics and the result will be three values of

NCR1(k) ∼ NCR3(k) for each component of the developing application. NCR1 stands

for normalized riskiness estimated by project managers and analysts, NCR2 stands for

normalized riskiness calculated by Architectural Analysis and NCR3 stands for normal-

ized riskiness calculated by Source-Based Analysis. After normalization, the compound

metric CR (Component Risk) is calculated using the following formula:

CR(k) = θ ∗NCR1(k) + ω ∗NCR2(k) + σ ∗NCR3(k) (3.11)

In this formula CR(k) stands for the riskiness of component k, NCRi(k) stands for the

normalized riskiness of the three mentioned approaches and θ, ω and σ are the weighting

factors which are used to give more or less emphasis to each of the metric elements.

Considering that this formula uses all the aspect of a software project, it can be seen that

the classification of components based on CR(k) is much less faulty than other methods.

This method can be used in any stage of a software development. If the risk analysis is

performed at the early stages of development (before any implementation) CR(k) can be

calculated by putting 0 as the value of NCR3, thus CR(k) can be calculated without any

implementation. Considering that the value of CR for one component is a relative value

33

and it is eventually used by being compared to CR of other components, the obtained

values can be used without any change in the original algorithm.

3.2.7 Risk Damage Analysis

In this section our proposed approach to determine the damage that each risk can cause

in a software product will be described. Using this proposed approach, components

can be classified based on their potential damage. Components’ failure damage will be

determined based on the project’s Analysts and Managers estimation of the damage of

each component and Architectural Analysis of the software structure.

3.2.8 Failure Damage Based on Analysts Estimation

The logic of the application is a very important factor in a component failure damage.

The damage caused by a failure is defined by the damage of the failed tasks of the

application to the business operation; thus it can be seen that analysts and managers

estimation of the wrong execution of a component is very important. The most important

resources that analysts can use to clarify the business logic of the developing application

are the business owners; but the problem of this strategy is that usually owners don’t have

enough understanding of the internal structure of a software and a middle step should

be taken to map owners’ view of the system to the actual structure of the application.

In the context of Risk Analysis, the operations which are important to the business and

their responsible components should be identified. The proposed method of this study

for this mapping is as follows:

In the early sessions of analysing the new software project which take place between

business owners, analysis and developers, use-cases of the developing application should

34

be discovered and identified. After this identification business owners should assign a

value between 0 to 100 to each use-case which determines the importance of that use-

case. A use-case with the value of 100 would be the most important use-case. Considering

this value, analysts and developers can discover the participating components in each use-

case and identify the most important components of the software. They would assign a

value between 0 and 100 to each component based on their knowledge about the degree

of participation of components in the use-cases. Knowing that it is not possible to

involve business owners in the structural design of the application, this approach helps

the developers and analysts to map owners’ view to their design. In this approach the

importance of each component will be shown by imp(k) which stands for the importance

of component k extracted by analysts and developers from importance of use-cases. Since

imp(k) is determined in the first steps of the development, as the application is being

developed its architecture will be modified, thus developers might need to re-assign or

modify the values of imp(k) for different components.

The new metric Internal Operation Failure Damage (IOFD) of component k is defined

as follows:

IOFD(k) =
imp(k)

100
(3.12)

In this equation IOFD would have a value between 0 and 1; higher values represent

more damaging components.

3.2.9 Architectural Damage and Metric Aggregation

In this section a new factor regarding the failure damage of software components is in-

troduced. In this proposed method the failure damage depends on the Dependencies

between components. To clarify this first the Depth concept should be introduced. Hav-

35

ing the package diagram of an application, the Depth of a package is defined by assigning

numbers to the packages of the application starting from 1 which is assigned to the upper

(outer) most package and moving down assigning 2, 3, ... to the packages in the lower

tiers, and the Depth of a component is defined as the number assigned to its containing

package (Figure 3.1).

Figure 3.1: Depth of each component is determined by the depth its container package

Since in a package diagram the functions of the higher components depend on the

correct execution of the lower components, therefore in case of a failure if a component

has a higher value of depth it will cause more damage. As an example if there are multiple

components in the second tier of the package diagram (depth : 2) which are all dependent

on one component in the 3rd tier, a failure in the operation of the lower component can

potentially cause the failure of operation of all the higher components. This dependency

can be between components of the same package as well. Dobrica mentions this point

in [33] that high interaction between unrelated scenarios indicate a poor separation of

functionality which is correlated with the number of defects in the final product.

36

Considering the former points it can be said that those components which have more

dependent elements cause more damage. Considering this dependency factor, the failure

damage of a component is defined as following:

CFD(k) = IOFD(k) + τ ∗DCFD(k); (3.13)

In this equation CFD(k) stands for Component Fail Damage, IOFD(k) stands for In-

ternal Operation Fail Damage and DCFD(k) stands for Dependent Components Fail

Damage of component k. τ is the weighting factor. Using equation (3.13) the effect of

the architectural design of the components of an application is also considered in the

failure-damage estimation. DCFD of a component is obtained by calculating the sum of

CFDs of all its dependent components. This process should start from the upper-most

tier (depth 1). DCFD for the components in the upper-most tier which have no depen-

dent elements is 0, thus in this case all CFDs are equal to IOFDs which are extracted

from analysers and owners estimation of the failure damage and have a value between 0

and 1. In this step 0 means not damaging and 1 means very damaging. After the first

tier CFDs of the second tier can be calculated by adding IOFD of each component with

sum of CFDs of its dependent components (DCFD).

By comparing the value of CFD for different components the most damaging com-

ponents can be identified.

3.2.10 Compound Risk Table

In this section the values of CR and CFD will be used to create a table called the Com-

pound Risk Table. The rows of this table can be sorted based on the Failure Damage and

Riskiness (probability of failure) to determine the most harmful and risky components.

37

This table can be used to identify the most damaging and risky components and as a

guide for development scheduling and software test and debug management.

The value of CR is obtained by adding up three NCRis and since each NCRi has a

value between 0 and 1, therefore the value of CR is a number between 0 and 3. According

to this, the risky components are those with a CR closer to 3 than other components.

Since the number of tiers of a software product is different among different applica-

tions, the boundaries of CFD can not be pre-identified. If different components have so

many dependent elements in the higher tiers the value of DCFD will increase very fast

and as a result the value of CFD can raise up to big numbers. The value of CFD will be

used to categorize the components of an application in four classes:

• Negligible

• Marginal

• Critical

• Catastrophic

To find the membership of different components in these classes the highest value of

CFD will be identified and divided into 4 equal number ranges corresponding to the

four classes of damage (the range with lowest CFDs identify the category Negligible and

higher CFDs identify the Marginal, Critical and Catastrophic classes respectively). The

class of the components can be determined by identifying the membership of each of the

components to these groups. Having CR, CFD and Damage Class of all the components,

the Compound risk table will be created as shown in table 3.1.

38

CR CFD Damage Class
Component 1 CR(1) CFD(1) [DamageClass]
Component 2 CR(2) CFD(2) [DamageClass]

...
Component N CR(N) CFD(N) [DamageClass]

Table 3.1: Example of a Compound Risk Table

3.3 Genetic Programming Bug-Fix

In this section the proposed approach of this study for automatic software repair will be

described. The basic idea of this approach is to specialize the operation of the GP system

to apply more intelligent modifications which lead the process toward the optimal fix of

the buggy program.

3.3.1 Genetic Programming Key Concepts

Genetic Programming is an approach inspired by Biological Evolution which is used to

explore and find computer programs to solve a problem. This process is done by creating

and manipulating a group of programs (called individuals) which are candidates to solve

the problem. This group is called a population. Each candidate is evaluated by receiving a

number of inputs and generating outputs which are compared to a list of desired outputs

that determine the correctness of the individual. The error between the desired output

and the individual’s output is called Fitness. Each pair of input and output in the list of

inputs and desired outputs is called a Fitness Case. The manipulation process is done

by means of Genetic Programming Operators. There are two main operators in GP:

• Crossover

• Mutation

39

Crossover is an operator which works by switching two parts of two individuals (parents)

with one another which results in two child individuals. Mutation is an operator which

applies a change to one part of an individual. This change is fail-safe to guarantee that

the resulted individual will have a valid logical structure. The resulted individuals from

these two operations will be used to create a new population called the new generation.

In addition to the former two operators there is the operator of Reproduction which

copies a portion of the best candidates (determined by their fitnesses) of the previous

generation to the new generation. The process of evolution continues until an individual

is found which passes all the fitness cases.

In the next section the proposed approach of this study is described which uses a GP

system to apply logical fixes to a buggy code.

3.3.2 GP Operations Scope

In the proposed GP approaches by Forrest et al. [28], Nguyen et al. [27] and Arcuri et

al. [30] the criteria of applying GP operators are set to statement level, meaning that the

GP system does not change anything inside the statements. This assumption has many

benefits as well as some drawbacks. In many cases a bug in a system could be caused by

simply a human error which as an example can be caused by using the + sign instead of

-, or > instead of <. Since the mentioned techniques can not manipulate the contents

of the statements, the proposed techniques fix these issues by creating new execution

paths and eliminating faulty statements. However these changes are very complicated

compared to the ideal fix which is basically a simple symbol replacement.

To fix this issue our proposed approach is to define two sets of GP operators which

are Inner Statement Level and Outer Statement Level operators. The outer statement

40

level of operators would follow the basic idea of the previously proposed techniques; but

the inner statement level of operators apply changes to the statement elements by using

a specific set of predefined bug types. In this sense a + can be swapped by or mutated

to a -, * or /. Also conditional statements would have a set of templates to be used for

genetic operations.

Crossover operator is a relatively disrupting operator and if it is not controlled it can

move the population out of the domain of the solution. To handle this the crossover will

always be applied in the outer statement level and choose one parent from a randomly

chosen individual from the population and another parent from a copy of the original tree

of the code to be debugged; this helps the GP system to do the search over individuals

which are close to the original code in the search space. Mutation is applied to both

outer and inner statement levels. Mutation in the outer statement level is applied to

one statement of an individual which adds a randomly chosen statement from another

individual after or before the selected statement. Mutation in the inner statement level is

applied to binary and comparison operators (+,−, ∗, /, >,<,>=, <=,== and ! =) and

the constant values in the statements.

The probability of applying each GP operation effects the disruption of individuals.

The proposed values in the Bug-Fix approach of this study are as follows: To reduce

the amount of disruption of structure of individuals mutation (which is a minor change)

should be applied with a higher probability of 0.5 compared to other operators. Crossover

should be applied with the low probability of 0.2 and reproduction should be applied with

the probability of 0.3 to maintain the similarity between generations.

41

3.3.3 Constant Repository

Many of the bugs are caused by the boundary values of the operations and statements of

the programs’s functions. As an example in many cases the termination condition of a for

loop is mistakenly implemented as (i < Length) instead of (i < Length + 1). Also in

many cases the same mistake happens for initial values, length of data collections, etc.

Considering the high frequency of these types of bugs, our proposed approach creates a

bank of all the constant values that can be found in the method under repair. This bank

is called The Constant Repository. For each integer C which is chosen to be included in

the constant repository, we also include C + 1 and C - 1 to cover the boundary values.

Whenever a mutation operator wants to choose a constant value to be replaced, it will

choose a member from the constant repository (with the probability of Pc). Using this

approach, the GP system would be able to modify the boundary values and cover a big

portion of this common type of bugs.

3.3.4 Fitness Evaluation

The primary factor of the fitness is the number of passed test cases. If an individual

returns the wrong output, falls into an infinite loop or throws a runtime exception for an

input, it will be considered as a failed test case.

In [31] Arcuri mentions that the assumption in an automatic bug-fix application is

that the buggy program is structurally close to the optimal solution. This assumption

comes from the fact that the program has been written with the intention to provide a

specific functionality and usually the bug is the result of a human error in some elements

of the written program, or a very special set of inputs (like the Microsoft Zune bug) which

need to be handled by a small modification. Thus in the context of software repair, the

42

diversity of the population of individuals is not as contributing as other applications

of GP. To handle this the fitness should be evaluated by considering the following two

factors:

• number of passed test cases

• similarity to the original code

However it is possible that the optimal solution could be relatively different from the

original code, and if equal weights are assumed for these two factors then a very good

individual which is very different from the original program would be associated with

a low fitness. To handle this issue this study proposes a new approach of using two

fitness values. These two fitnesses should be calculated for each individual. The first one

represents the number of passed test cases and the second one indicates the similarity of

the individual to the original program. The number of passed test cases should be used

as the primary fitness and in the situations where the passed fitness cases are equal, the

selected individual will be chosen based on its similarity to the original program. Using

this method, finding an individual which passes all the test cases would not be the end

of GP evolution, but the individuals can continue to evolve to find candidates with less

structural difference compared to the original program.

In [31] Arcuri discussed that in the context of Automatic Software Repair, using the

number of passed test cases (fitness cases) for the unit under test might not give enough

gradient for the GP evolution. He proposed to use the sum of all the output errors as

the fitness value of each individual. However in our study this idea is not considered a

contributing idea; and the reason to this is that the operation of software fix is quite

different from other types of GP usages such as Symbol Regression which deal with

numeric values; but in software repair the variable types, operators and behaviour of

43

elements of methods have great diversity, and also the nature of software methods is

usually very different from a simple numeric calculation. Therefore in the new proposed

approach of this study the traditional number of passed test cases is used as the primary

fitness measure.

Based on the proposed approach, a tool is developed to evolve codes written in C

language. This tool is used to evolve a buggy code to a bug-free code and the results of

this experiment are shown in section 4.3.

44

Chapter 4

Evaluation and Results

In this chapter the results of using the proposed methods in a number of sample projects

will be presented. Each of the methods described in the previous chapter are implemented

and applied to some sample problems and their results are represented in details in the

following sections.

4.1 Test Optimization Case-Study

In this section the results of applying the proposed source-based test optimization ap-

proach (discussed in section 3.1) to a sample project will be presented. As for this level

of the study only a high-level view of this experiment will be presented to illustrate the

approach of applying the source-based technique to a sample project. A more detailed

sample of source-based application will be presented in the next section as a part of com-

pound risk model. A code analyser is developed based on our proposed technique. In the

first step this tool is used to calculate FR, FRD, CR and CRD of all the components in

the sample project. Figure 4.1 shows the Component Risk Density diagram of the sample

45

project. In figure 4.1 it can be seen that Comp1 has a relatively higher Risk Density

Figure 4.1: Components Risk Density

which implicates that it is more optimal to plan the test on this component. Figure 4.2

shows the Function Risk Density of the functions of Comp1.

Figure 4.2: Functions Risk Density

Considering Figure 4.2 it can be seen that Func11, Func10, Func1 and Func9 have

higher FRDs which indicates that they have a higher test priority.

Figure 4.3 shows the functions risk of Comp1. Comparing this figure with Figure 4.2

it can be seen that a function with lower Function Risk may have a higher FRD, and

46

thus in a situation where the time is limited it is be a better choice for testing.

Figure 4.3: Functions Risk

4.2 Compound Risk Model Results

In this section the results of applying our compound risk model to a sample project will

be presented. The sample project used in this study is a regression analysis system based

on Genetic Programming. Figure 4.4 shows the components of this sample project and

their dependencies1.

The obtained values for CR1, CR2, CR3, IOFD and CFD are shown in Table 4.1. In

this example all the weighting factors (except τ which is associated with the value 0.2)

are given the same value of 1. The reason for choosing 0.2 for τ is that the dependencies

between components are not total, meaning that only a fraction of the operations of the

component under analysis are dependent on other components. In our study τ = 0.2

is chosen which is based on the estimation of the average role of dependencies in the

operation of the components.

1A more detailed view of the architecture of this project can be seen in Appendix A

47

Figure 4.4: Dependency Diagram

Considering the values in Table 4.1 the Compound Risk Table for this example is

shown in Table 4.2 and the compound risk diagram which is generated based on the

compound risk table is shown in Figure 4.5.

By looking at Table 4.2 it can be seen that the component which is more probable

to fail is the GP Engine. Considering that from the damage point of view GP Engine is

CR1 CR2 CR3 IOFD CFD
(Analysts (Architectural (Source-Code

Estimation) Analysis) Analysis)
Logger 20 2 41 0.1 0.32
UI 50 3 373 0.5 0.5

Cartesian Converter 60 10 231 0.4 0.5
Graphic Engine 40 6 45 0.5 0.6

Regression Analyser 60 8 362 1 1.1
GP Engine 80 10 1068 1 1.22

Tree 20 4 64 1 1.46
Node 10 4 28 1 1.76

Table 4.1: Metric Components

48

CR CFD Damage Class
Logger 0.12 0.32 Negligible
UI 0.38 0.5 Marginal

Cartesian Converter 0.49 0.5 Marginal
Graphic Engine 0.27 0.6 Marginal

Regression Analyser 0.51 1.1 Critical
GP Engine 0.93 1.22 Critical

Tree 0.17 1.46 Catastrophic
Node 0.12 1.76 Catastrophic

Table 4.2: Compound Risk Table

classified as Critical, a good test plan should start by testing this component. Compo-

nents Tree and Node are from the class Catastrophic but they have a very low relative

probability of failure, thus in the test plan they are not considered as the highest priority.

By looking at this table project manager can have a precise understanding of the risk

specifications of different components and plan an optimal test and development.

Figure 4.5: Compound Risk Diagram

To verify the results of proposed approach of this study, after the initial implemen-

tation the application is put under test and the number of failures which were caused

49

by each component is measured. There are 60 different test-cases defined for this test

with valid and invalid inputs. The result of the execution of each test-case and the failed

component is shown in Appendix B. The record of each failure that caused the main

operation of the application to stop is kept and its source is tracked. The result of this

test provided the probability of each component to be the cause of a failure. This result

can be seen in Table 4.3.

As it can be seen in Table 4.3 the highest failures were caused by the GP Engine which

is also the most risky component (highest CR). The result of the test also matches with

the obtained value for the second most risky component which is the Regression Analyser.

This probability for Cartesian Converter is slightly different from the result of the risk

analysis. The reason for that is because of the fact that this component is from a type

which is more commonly developed and known by the developers of the application. In

large projects the components of the subsystem under analysis would most likely be of

the same type, thus the effect of this issue would be much less and almost negligible. Also

by going back to table 4.1 it can be seen that using only one of the risk analysis methods

can not provide enough precision. As an example by looking at CR3 the component

Regression Analyser has less chance of failure compared to Cartesian Converter, however

CR Cause of Failure Probability
Logger 0.12 0.017
UI 0.38 0.033

Cartesian Converter 0.49 0.017
Graphic Engine 0.27 0.033

Regression Analyser 0.51 0.083
GP Engine 0.93 0.100

Tree 0.17 0.000
Node 0.12 0.000

Table 4.3: Comparison of CR and the Cause of Failure Probability

50

the results of the tests in table 4.3 shows a different conclusion. This illustrates the idea

that only one type of risk analysis can not be complete and it has to be combined with

other risk analysis methods.

The proposed approach of this study can be used at any stage of the development of

the software. In the early stages risk analysis can be done by excluding NCR3 from the

calculations; thus the risk metric will be calculated without considering code-dependent

parameters. This risk metric can be used for basic planning and task association in the

early stages of the development. After each subsystem development in each development

cycle, code-dependent metrics (NCR3) can be included in the Risk Analysis and as a

result by identifying risky components, subsystem test and debug can be performed more

precisely and more effectively. The high flexibility of our proposed approach (which is a

result of using the weighting factors in calculating the metrics) makes it adjustable for

different development teams with different experiences and skills.

Most of the proposed metrics in the proposed approach of this study are analytical

metrics, meaning that there is a specific calculative approach to obtain them. This

makes it possible to create an analysing tool which can be used to analyse a software and

generate the metrics. This analyser tool can be designed to get the developed code and

architectural diagrams as inputs and produce their corresponding risk factors (NCR2

and NCR3) and combine these values with the analysers’ estimated metrics (NCR1) to

generate the Risk Model of the developing software. This will cause the risk analysis

task to be very applicable and easy which results in a practical and precise approach to

assist the creation of the development plan. Having this analyser tool as a part of the

development environment will encourage the development team to provide the proper

set of inputs and generate the risk model. This risk model will be completed upon each

iteration of the development and can be used by test and development team to have the

51

most optimized quality assurance process.

4.3 Automatic Bug-Fix Results

In this section the results of applying the proposed Genetic Programming Automatic

Bug-Fix system to a sample problem will be presented. A GP evolutionary system is

designed to evolve codes written in C language. In this system the process of evolution

is executed as follows:

First a parser reads the original code and generates its parse tree. Then this parse

tree is converted to a tree structure suitable for genetic programming operations. This

individual is copied several times to create the population of the first generation. After

applying the genetic programming operations and generating a new population each

individual which is created in the form of genetic programming tree is converted back to

a parse tree and then compiled and executed for each fitness case in a single thread. A

time-out value is considered which is the limitation of the thread execution time and if

the result of one execution does not come back in this time-out limit the thread is killed

and the fitness evaluation will be considered as a failure for that fitness case. In case an

individual is not compilable or it throws an exception such as division by zero, invalid

memory reference, etc. the individual will be given the worst possible fitness and it will

be eliminated upon next generation.

Using a C evolutionary system designed based on the proposed approach, an exper-

iment is conducted with a sample code. In this experiment a buggy code is used which

shown in Procedure 6. This code is written to return the quotient of dividing the input

value by 5. The code shown in procedure 6 returns the wrong value over the cases where

the result of dividing the input by 5 is an integer. A set of 25 fitness cases is used which

52

Procedure 6 Buggy code of finding the quotient of dividing a number by 5

int quotient() {
int count;
int i;
int number;
count = 0;
scanf ("%d", &number);
for (i = 1; i < number; i = i + 1) {

if (i % 5 == 0) {
count = count + 1;

}
}
printf("Output: %d\n", count);
return 0;

}

consists the numbers 1 to 25 and their proper output. Upon generation 83, by insering

a mutated for loop, the evolutionary system manages to find an individual which could

pass all the test cases. This individual is shown in procedure 7.

As it can be seen procedure 7 contains some redundant statements. Having an in-

dividual that can pass all the test cases, now the GP system uses the second level of

fitness which is to make the candidate individual’s structure as similar as possible to the

original code. As the GP system continues to work, upon generation 97 it finds the ideal

candidate which has a structure that is very close to the original code and passes all the

test cases. This result is shown in procedure 8.

Figure 4.6 shows the change of fitness in the process of evolution. This figure only

represents the fitness based on the number of passed fitness cases. It can be seen upon

generation 83 an individual was found which passes all the test cases.

As it can be seen in procedure 8, the fix is a substitution of a < with a <=. Since

this change is modification inside the statements of the code other GP bug-fix technique

mentioned in section 2.5 are not able to find this.

Using the approaches presented in section 2.5 the solution would show itself in form

53

Procedure 7 First fixed candidate of quotient method

int quotient() {
int count;
int i;
int number;
count = 0;
scanf ("%d", &number);
for (i = 1 ;i < number; i = i + 1) {

for (i = 1 ;i <= number; i = i + 1) { //mutated ’for’ inserted
if (i % 5 == 0) {

count = count + 1;
}

}
}
printf("Output: %d\n", count);
return 0;

}

Procedure 8 Final fixed code of quotient method

int quotient() {
int count;
int i;
int number;
count = 0;
scanf ("%d", &number);
for (i = 1; i <= number; i = i + 1) { //’<’ is mutated to ’<=’

if (i % 5 == 0) {
count = count + 1;

}
}
printf("Output: %d\n", count);
return 0;

}

54

Figure 4.6: The fitness of the best individual and the average fitness of the population
of Bug-Fix experiment

of adding a number of statements which can not achieve the simplicity of the fix applied

by our proposed approach.

55

Chapter 5

Conclusion and Future Work

In this section a summary of the study in this thesis is presented and the plan for future

work is discussed.

5.1 Conclusion

In this report we presented the details of our study on the subject of Automatic Tools

for Software Quality Assurance. We started our study by analysing the risk factors of

software components based on a source-based approach. After that by extending our

research, we discussed that software project risks can be analysed from different points

of view. We argued that each of these points of view identify the risk of a component

by considering a subset of the factors that affect the quality and reliability of each com-

ponent, and in order to have a more precise and reliable risk model we have to take all

these factors into account which resulted in our compound risk model.

Using the compound risk model we could observe the effect of code and architectural

structure of the application on its reliability. According to our source analysis approach

56

having highly nested blocks of codes and high number of variable usages, function calls,

etc. in different types of statements determine how complicated a source-code is. So

it can be seen that by breaking big functions down to logical sets of functions decrease

the level of riskiness of source-code. This result confirms the software design rules of

modularizing the logic of application to increase the manageability and reliability of the

code.

From the architectural point of view, according to our model having high number of

dependencies between components results in propagation of risk damage. This result also

confirms the current software design practices. Having a right abstraction, encapsulation

and task association reduces the number of dependencies between objects and as a result

reduces the chances of propagation of a failure in between the objects. Also having a

wrong task association which causes an object to perform a highly complicated process

increases the number of states of that object and creates complicated transitions between

objects which increases the chance of failure of that component.

In small-scale projects the risk related specifications of each component can be esti-

mated by an experienced project analyst, however in large projects the following factors

make this estimation more complicated:

• numerous sub systems of the project

• different development teams working on different parts of the project

• out-sourcing

• multiple releases of the software product

• multiple platforms and development tools used in one project

• ...

57

Considering these factors that cause the project to be more complicated the project

analysis team has to use some tools to aid them in their estimations about the different

aspects of the components. We showed that our new technique can assist the project

managers to plan the development by considering the risk factor of different components

of the application which can be obtained by analysing the software project from different

aspects.

In the genetic programming bug-fix experiment it could be seen that by defining

specialized GP operators which are designed to reduce the amount of disruption in the

individuals the optimal modification to fix bugs in a code can be achieved. It could also

be seen that considering all the factors to keep the search space around the original code

can assist the system to find the simplest and best solution.

5.2 Future Work

For future research the plan is to complete the code-analysis approach by including the

logics of the application into the calculations. Intelligent techniques are also in the plan

to be used in the code analyser. A training strategy can be applied which makes it

possible to identify those kinds of risks associated with the development characteristics

of each specific development team. Additionally a bug classification knowledge-base will

be used to be attached to the genetic programming automatic bug-fix technique to make

it possible to apply more intelligent fixes to more complicated set of defects. The long

term goal is to design an approach to assist identifying the design problems of a given

software and propose an alternative better design. To do that, software design patterns

will be studied and their potentials will be examined to provide risk information about

each component.

58

Appendix A

Detailed Class Diagram of The Regression Analyser Project

59

Appendix B

Test results for Regression Analyser Project

60

References

[1] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early prediction of

software component reliability,” in Proceedings of the 30th international conference

on Software engineering, pp. 111–120, 2008.

[2] P. R. Cox, “Elements of a software quality control program,” in Proceedings of the

ACM ’82 annual conference, pp. 2–4, 1982.

[3] G. Tassey, “The economic impacts of inadequate infrastructure for software testing,

final report.,” tech. rep., National Institute of Standards and Technology, 2002.

[4] NASA Safety Manual NPG 8719.13A.

[5] Y. Tao, “A study of software development project risk management,” in Proceedings

of the 2008 International Seminar on Future Information Technology and Manage-

ment Engineering, pp. 309–312, IEEE, 2008.

[6] B. W. Boehm, “Software risk management,” in Proceedings of 2nd European Software

Engineering Conference, ESEC 89, pp. 1–19, Springer, 1989.

[7] K.-H. Moller and D. Paulish, “An empirical investigation of software fault distribu-

tion,” in Proceedings of the First International Software Metrics Symposium, pp. 82–

90, 1993.

61

[8] M. Kaaniche and K. Kanoun, “Reliability of a commercial telecommunications sys-

tem,” in Proceedings of the International Symposium on Software Reliability Engi-

neering, pp. 207–212, IEEE, 1996.

[9] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules in telephone

switches,” IEEE Transactions on Software Engineering, vol. 22, no. 12, pp. 886–894,

1996.

[10] N. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a com-

plex software system,” IEEE Transactions on Software Engineering, vol. 26, no. 8,

pp. 797–814, 2000.

[11] R. S. Pressman, Software Engineering: A Practitioner’s Approach. McGraw-Hil,

fifth ed., 2001.

[12] K. E. Emam and W. Melo, “The prediction of faulty classes using object-oriented de-

sign metrics, technical report nrc 43609,” tech. rep., Nat’l Research Council Canada,

Inst. For Information Technology, 2000.

[13] T. Khoshgoftaar, N. Seliya, and Y. Liu, “Genetic programming-based decision trees

for software quality classification,” in Proceedings of 15th IEEE International Con-

ference on Tools with Artificial Intelligence, pp. 374–383, 2003.

[14] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Anal-

ysis and Design and Iterative Development. Addison Wesly, third ed., 2004.

[15] V. Cortellessa, K. G. Popstojanova, K. Appukkutty, A. Guedem, A. Hassan, R. El-

naggar, W. Abdelmoez, and H. H. Ammar, “Model-based performance risk analy-

sis,” IEEE Transactions on Software Engineering, vol. 31, no. 1, pp. 3–20, 2005.

62

[16] B. Beizer, Software Testing Techniques. International Thomson Computer Press,

second ed., 1990.

[17] L. Bass, R. Nord, W. Wood, and D. Zubrow, “Risk themes discovered through

architecture evaluations,” in Proceedings of the Working IEEE/IFIP Conference on

Software Architecture, pp. 1–10, 2007.

[18] K. G. Popstojanova, “Architectural-level risk analysis using uml,” IEEE Transac-

tions on Software Engineering, vol. 29, no. 10, pp. 946–960, 2003.

[19] S. Yacoub and H. Ammar, “A methodology for architecture-level reliability risk

analysis,” IEEE Transactions on Software Engineering, vol. 28, no. 6, pp. 529–547,

2002.

[20] A. Deursen and T. Kuipers, “Source-based software risk assessment,” in Proceedings

of the International Conference on Software Maintenance, p. 385, 2003.

[21] A. Hosseingholizadeh, “A source-based risk analysis approach for software test op-

timization,” in Proceedings of the The 2nd International Conference on Computer

Engineering and Technology (ICCET 2010), vol. 2, pp. 601–604, IEEE, 2010.

[22] W. E. Wong, Y. Qi, and K. Cooper, “Source code-based software risk assessing,”

in Proceedings of the 2005 ACM symposium on Applied computing, pp. 1485–1490,

2005.

[23] A. Hosseingholizadeh and A. Abhari, “A new agent-based solution for wireless sensor

networks management,” in Proceedings of the 2009 Spring Simulation Multiconfer-

ence, 12th Communications and Networking Simulation Symposium (CNS), ACM,

2009.

63

[24] T. J. McCabe, “A complexity metrics,” IEEE Transactions On Software Engineer-

ing, vol. 2, no. 4, pp. 308–320, 1976.

[25] Y. Lei and J. H. Andrews, “Minimization of randomized unit test cases,” in Proceed-

ings of the 16th IEEE International Symposium on Software Reliability Engineering,

pp. 267–276, 2005.

[26] J. Carlos and B. Ribeiro, “Search-based test case generation for object-oriented java

software using strongly-typed genetic programming,” in Proceedings of the 10th an-

nual conference on Genetic and evolutionary computation (GECCO ’08), pp. 1819–

1822, 2008.

[27] T. Nguyen, W. Weimer, C. L. Goues, and S. Forrest, “Using execution paths to

evolve software patches,” in Proceedings of the IEEE International Conference on

Software Testing, Verification, and Validation Workshops, pp. 152–153, IEEE, 2009.

[28] S. Forrest, T. V. Nguyen, W. Weimer, and C. L. Goues, “A genetic programming ap-

proach to automated software repair,” in Proceedings of the 11th Annual conference

on Genetic and evolutionary computation, pp. 947–954, 2009.

[29] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest, “Automatically finding patches

using genetic programming,” in Proceedings of the IEEE 31st International Confer-

ence on Software Engineering (ICSE 2009), pp. 364–374, IEEE, 2009.

[30] A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic software bug

fixing,” in IEEE World Congress on Evolutionary Computation, IEEE, 2008.

[31] A. Arcuri, “On the automation of fixing software bugs,” in Companion of the 30th

International Conference on Software Engineering, pp. 1003–1006, 2008.

64

[32] A. Hosseingholizadeh and A. Abhari, Studies in Computational Intelligence Book Se-

ries: Software Engineering Research, Management and Applications 2010, vol. 296,

ch. eight: A New Compound Metric for Software Risk Assessment, pp. 115–131.

Springer, 2010.

[33] L. Dobrica and E. Niemel, “A survey on software architecture analysis methods,”

IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 638–653, 2002.

65

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2010

	A Study On Automatic Software Quality And Reliability Anlaysis
	Ahmad Hosseingholizadeh
	Recommended Citation

