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Abstract 

Video based Human Gait Bilateral Symmetry Analysis and 
its Validity for Functional Assessment 

after an Orthopaedic Surgery 

© Ying Bo Xu 2009 

Master of Applied Science 

Department of Electrical and Computer Engineering 

Ryerson University 

A color marker based computer vision system was proposed to provide spatio-

temporal and kinematic information of human gait. By detecting the markers from video 

sequences, this system provides quantitative gait pattern information for clinicians to 

evaluate the rehabilitation progress of the patients who had undertaken total knee 

replacement (TKR) and/or total hip replacement (THR) surgeries. The leg bilateral 

symmetry as an efficient feature for this evaluation purpose was proposed. To calculate 

this parameter, leg angle curve as a gait signature was introduced to describe the gait 

pattern. The symmetry is denoted by dynamic time warping (DTW) distance of this 

walking signature. Normal and abnormal gait can be distinguished based on the leg 

bilateral symmetry. 

iv 



,,, , 

AcknowledgeDlents 

First of all, I would like to take this opportunity to express my sincere gratitude to my 
supervisor, Professor Ling Guan, who gives me tremendous encouragement and 
inspiration during my graduate study, as well as generous financial aid. I cannot finish 
my study without his academic insights, wisdom and knowledge. It is my honor to work 
with him. 

I would like to thank my colleagues at Ryerson Multimedia Lab for their selfless help and 
suggestions on my research. I would like to thank the Department of Electrical and 
Computer Engineering of Ryerson University for providing an excellent research 
environment at Ryerson Multimedia Research Laboratory (RML) and the financial 
support for my graduate study. 

I would like to thank the assistance from Dr. Zalzal · of Oakville Orthopedic Clinic, Dr. 
Safir, and the nurses of Mt. Sinai Hospital. They offered tremendous help both in data 
collection and data analysis. 

I would like to thank my parents, my son, and especially my wife, Hua, for your 
tremendous understanding and support. That is the power of my graduate study. 

v 

Table of Contents 

Chapter 1 Introduction 

1.1 Human Gait Analysis .................................................... 1 

1.2 Human Gait Cycle ....................................... . ................ 2 

1.3 Total Hip Joint and Total Knee Joint Replacement surgery ........ 4 

1.4 Contributions ................. .. ........ .. ........................ . ........ 5 

1.5 Organization of This Thesis ............................................. 6 

Chapter 2 Vision based gait analysis system 

2.1 Existing Systems ......................................................... 7 

2.2 System Setup ............................................................ 14 

Chapter 3 Methodology 

3 .1 Deinterlacing ............................................................ 17 

3.2 Silhouette Extraction ................................................... 20 

3.3 Otsu's Thresholding Method ............................. . ............. 26 

3.4 K-means Clustering Method .......................................... 31 

3.5 Mixture of Gaussian Model .................... . ................... .... 35 

3.6 CMYK Color Space .................................................... 39 

vi 



3. 7 Hip and Knee Angle Acquisition ...................................... 42 List of Figures 
3.8 Leg Angle Acquisition ................................................. 44 

3.9 Summary ................................................................. 47 1.1 One gait cycle ..................................................................... 3 

2.1 Human body models ............................................................. 9 
Chapter 4 Clinical Gait Analysis 2.2 3D clone body model ........................................................... 10 

4.1 Gait Pattern Database .................................................. 48 
2.3 Vicon Motion Capture system ................................................ 12 

2.4 Proposed system setup ......................................................... 16 
42D . T' W . . ynamic tme arptng ................................................ 49 

3 .1 Deinterlacing methods ......................................................... 19 

4.3 Control Group Gait Patterns and Patients Gait Patterns ............ 53 3.2 Median filter background modeling .......................................... 21 

4.4 Rehabilitation Evaluation .............................................. 58 3 .3 Mean filter background modeling ............................................ 22 

4.5 Summary .................................................................. 63 
3.4 Frame Differencing background modeling ................................. 23 

3.5 Walking people extraction .................................................... 25 

Chapter 5 Conclusions and Future Works 3.6 Otsu's method for markers detection ........................................ 30 

3.7 K-means method for markers detection ..................................... 33 

5.1 Conclusions ............................................................... 65 3.8 GMM method for markers detection ........................................ .39 

5.2 Future Works ............................................................ 66 3.9 Blue markers detection ......................................................... 41 
lh, 3.10 Markers positions ............................................................. 42 

Bibliography ..................................................................... . 68 
3.11 Hip angles and Knee angles ................................................. 45 

Publication ........................................................................ 76 
3.12 Leg angle patterns ........................................................... 46 

4.1 Local constraints ofDTW ..................................................... 51 

4.2 Different warping path from ID-DTW and 2D-DTW methods ....... 53 

4.3 Each subject's median symmetry in hip-knee-leg symmetry space ........ 54 

4.4 Confusion matrix for ROC curve ............................................. 55 

4.5 ROC curve ....................................................................... 57 

vii viii 



II, 

4.6 ROC curve by using median symmetry value of each subject ............ 57 

4.7 Gait patterns change before and after THR surgery ..................... 59 

4.8 Example 1: Bilateral symmetry changes in Leg-DTW distance space ... 60 

4.9 Bilateral symmetry changes in hip-knee-leg DTW distance space ....... 61 

4.10 Example 2: Bilateral symmetry changes in leg-DTW distance space .. 62 

4.11 Example 3: Bilateral symmetry changes in leg-DTW distance space .. 63 

ix 

Chapter 1 

Introduction 

1.1 Human Gait Analysis 

Walking is the natural way of human locomotion. Meanwhile, it's a complex 

behavior which is the result of the cooperating movement of almost whole 

body muscles and the nerve system. The study of human walking styles is called gait 

analysis. In the Longman Dictionary of Contemporary English, gait is defined as the way 

someone walks. As early as B. C. 350, Aristotle has discussed about the movement of 

animal bodies [ 1]. Eadweard J. Muybridge (183 0-1904 ), an English photographer, was 

the first one to employ photography to study human and animal locomotion. Video 

camera systems which profited from the development of computer technology were 

widely used for gait analysis after 1970s. These video-based systems can efficiently 

provide detailed kinematics information of human gait. 

Gait is an intrinsic human behavioral characteristic and is considered as human 

signature. With computer processing speed and memory rapid increase, it is possible to 

process image sequences with reasonable cost. Gait as a biometric was studied from 

digital video sequences after 1990s. It was reported by psychologists that people can 

recognize friends by their walk with or without other cues [2, 3]. Gait can be used for 

human recognition [4], [5], [6], [7], motion tracking [8], gender identification [9], [10], 

and robot design [11]. 
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Gait analysis is also widely used for clinical purposes. Clinical gait analysis is also 

called quantitative gait analysis. Kinematics and kinetics information of gait are 

measured, abnormalities are identified, causes are postulated, and treatments are 

proposed [12]. Normally, kinematics data will be collected by using video based motion 

systems and kinetics information will be produced by using force platforms. Gait patterns 

of pathologically normal people were produced by M. P. Murray eta! in 1964 [13] and 

were used to compare with those of pathological abnormal patients in 1967 [14]. Clinical 

gait analysis are used for rehabilitation program design [15], to evaluate the surgery 

outcomes [16], to study neurological disorders, such as cerebral palsy [17], to name a few. 

1.2 Human Gait Cycle 

Gait as human signature is a complex spatio-temporal biometric. It is a repetitive 

cyclic activity of limb movement, especially lower extremity. The gait cycle is the time 

interval of motions occurring between two consecutive initial contacts with the floor of 

the same foot. One gait cycle has seven major components which can be divided into two 

stages: stance and swing [18], [19], [20]. The stance stage is the period when the one foot 

is in contact with floor and the swing stage is the period when the same foot is off the 

floor moving forward. The stance stage comprises initial contact, opposite toe-off, 

midstance and heel rise, and opposite initial contact. The swing stage has three 

components which are toe-off, feet adjacent and tibia vertical. Walking is a continuous 

activity and any time point of the sequence can be set as the start of one gait cycle. In 

practical application, heel strike is selected as the first component of the gait cycle 

because it can be recognized easily. Figure 1.1 illustrates an entire gait cycle. The gait 

cycle starts when the right heel contacts on the floor. The knee is in a stable position and 

2 

hip flexion at the maximum position. When the whole body weight is transferred onto 

right leg, the opposite toe-off phase happens. It is the start point of midstance and the first 

period of single support. Left heel begins to lift from the floor. Opposite initial contact is 

the left heel contacts on the floor and it is the start point of preswing. Right hip and knee 

begin to flex while the ankle is plantar flexing. Right Toe-off is the end of the stance 

stage and the beginning of the swing stage. The muscles move right leg forward during 

feet adjacent. The tibia vertical is the last component in which period the tibia of the right 

leg becoming vertical. When the right heel strike on the floor, next gait cycle begins. 

!! 1 !A!! !A! 
RIGHT LEFT lEFT RIGHT RIGHT LEFT 
INITIAL PRE·SWING INITIAL PRE·SWING INITtAl PRE· SWING 

CONTACT CONTACT CONTACT 
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I ~ Time, percent of cycle 1 
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Fig. 1.1 One gait cycle (from [18]) 
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1.3 Total Hip Joint and Total Knee Joint Replacement Surgery 

Total Hip Replacement (THR) and Total Knee Replacement (TKR) surgeries are 

arthroplasties in which the pathological hip joint or knee joint are replaced by artificial 

joint. The flrst THR was introduced in 1938 and the first TKR was performed in 1960s 

[21 ]. These surgeries can effectively reduce pain and restore the mobility of patients. 

Although several reasons cause the surgery, such as traffic accidents and athletic injuries, 

the highly age-related musculoskeletal diseases are the main reasons which cause the 

surgeries. Based on the data provided in [21 ], the major population who take this surgery 

is the people aged from 65 to 84. In France, there are 100,000 THR performed each year. 

In 2003/04, there are 22724 THR and TKR procedures in Ontario and it has a potential 

increasing rate at 5 .1% annually for THR and 11.4% annually for TKR [21]. 

There are several methods in practice which can be used to assess the outcomes of the 

surgery and to design appropriate rehabilitation program which is a key factor for 

recovery. Oxford Hip Score (OHS) and Oxford Knee Score (OKS) are questionnaire 

based tools to assess disability in patients undergoing THR or TKR [22]. The patient will 

answer 12 simple questions about pain and disability for the past four weeks. Each 

question was scored from 1 to 5 with 1 representing best outcome which means least 

symptoms. If the summation of the score is higher, the outcome is worse. This score 

system cannot provide quantitative information. Range of Motion (ROM) is the 

measurement of the achievable distance between the flexed position and extended 

position of hip or knee. A goniometer or inclinometer is used to measure ROM. Some 

hospital data, such as Length of Stay (LOS), blood loss, and analgesia are used to assess 

the surgery outcome. These tools can provide non-quantitative information or limited 
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quantitative data to assess the surgery outcome. Fortunately, quantitative gait analysis 

provides kinematic and kinetic information to assist clinicians in making treatment 

decision and evaluating the postoperative rehabilitation progress. In some scenario, 

electromyography (EMG) signals are also collected to produce diagnose information in 

terms of muscle activity. 

1.4 Contributions 

In this research project, a color marker based computer vision system was proposed to 

provide spatial-temporal and kinematic information of human gait. This system has been 

successfully used to collect the patients gait kinematic information at real clinical 

environment and provide useful information for rehabilitation progress evaluation. This 

video based clinical gait analysis system is low cost, easy to setup, patient friendly, and 

can be a potential effective tool for clinicians for gait related diagnosis and research. 

The bilateral symmetry between left leg and right leg is extracted from the video 

sequences. Rehabilitation progress was evaluated by using this feature. This feature can 

also be used to distinguish control group subjects' gait patterns and patients' gait patterns. 

This feature has been experimentally proved to be a good indicator to assess the 

rehabilitation quality. 

A gait pattern database has been established. The abnormal gait patterns are from 24 

patients who have taken THR or TKR surgeries and 16 patients with lower extremity 

osteoarthritis. The normal gait patterns are from eight people who have no known lower 

extremity diseases. Each person has been filmed twice at each time. One video sequence 

was filmed with markers on and another video sequence was filmed without markers. 
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1.5 Organization of This Thesis 

The remainder of this thesis is organized as follows. 

Chapter 2 examines some existing gait analysis systems. Then, the proposed system 

setup is shown. 

Chapter 3 gives the detailed methodology to obtain the gait data from video 

sequences. Otsu's thresholding algorithm, K-means algorithm and Mixture of Gaussian 

model are implemented in order to choose the suitable method for this research. Hip 

angle and knee angle are extracted from the video sequence. Leg angle as a feature to 

evaluate the rehabilitation progress is constructed. 

Chapter 4 shows the experiment results. By using the bilateral symmetry as a feature, 

different gait patterns are shown. Rehabilitation progress is evaluated by using this 

feature. Gait patterns of control group subjects and gait patterns of patients are 

distinguished based on leg bilateral symmetry. 

Chapter 5 draws the conclusions and possible future research directions. 
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Chapter 2 

Vision based Gait Analysis System 

2.1 Exiting Systems 

Gait analysis can be divided into two classes: biometrics application and clinical 

diagnosis. Researchers focus on deploying different algorithms to g---et gait biometrics 

from video sequences. In this application field, there are two main methods: model based 

systems and motion based systems. Model based systems concentrate more on the 

dynamics and motion based systems extract gait information from silhouette shape. 

Human walking is a periodic behavior and each gait cycle consists of several adjacent 

stances. This property makes Hidden Markov Model (HMM) a good choice for gait based 

human recognition. In [23] [24], human silhouettes are derived from the video sequences. 

Based on the quality of the silhouettes, the silhouette entirety or out contour was selected 

as the feature to train the HMM parameters. Each unique stance is an exemplar. Every 

objects will have a set of exemplars E5 and corresponding HMM parameters 85 • For a 

testing video sequence t, the probability of the given sequence twas produced by the sth 

object in the training database was computed. The testing object was recognized as the 

sthobject when it made the probability have the maximum value. 

In [25], Discrete Cosine Transform analyses (DCT) and Support Vector Machine 

(SVM) method were used to perform automatic gait recognition. The body silhouette was 

produced by using background subtraction and it was divided into three contiguous 
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horizontal segments, R1, R2, and R3, according to the anatomical fact. The width of 

each segment was selected as the gait feature because they contain both structural and 

dynamic information of gait. The thigh angle, front leg knee angle and rear leg knee 

angle were extracted from the sub segment box, R1, R2, and R3. By using a seven-

dimension feature space, a multi-class support vector machine (SVM) with a Gaussian 

kernel was employed to identify the human. 

Hayfron-Acquah et al [26] derived symmetry maps from optical flow images which 

were extracted from two successive silhouettes. The Fourier transform was applied to the 

so-called gait signature which is the average of all symmetry maps from the whole video 

sequence. Other methods include eigengait described in [27] [31 ], and mean silhouette in 

[28]. 

For model based gait recognition, there are three common human models widely used, 

Blob, stick and cylinder. Figure 2.1 gives the examples of these models. The stick model 

is the most often used model to represent the human body. 

In [29], a rigid stick model was used to represent the human body, especially the 

lower extremity. The thigh and the shin are treated as a pendulum and the motion of the 

thigh and the shin is modeled by the forced coupled oscillator model. A set of sinusoid 

functions is used to model the hip vertical displacement, thigh rotation, knee rotation and 

so on. This model provides the estimation of the leg motion which can be used to reduce 

the data from image sequence. Gait signature was represented by the Fourier description 

of the thigh and shin motion measured from one gait cycle. 
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Figure 2.1 Human body models (a) blob, (b) stick, (c) cylinder (from [18]) 

One disadvantage of the above models is that they cannot accurately fit the contour of 

the human body. In [30], Green and Guan proposed a more delicate articulated 

volumetric 3D human model which is called 3D clone-body-model. This model consists 

of 9 body parts (15 segments), head, clavicle, trunk, upper arms, forearms, hands, thighs, 

calves, and feet, which connected by joints. There are total thirty two Degrees of 

Freedom (DOFs). Each body part is considered as a rigid spine with pixels radiating out. 

Each pixel is denoted by a nine dimensional vector which includes this pixel's cylindrical 

coordinates (d, f:J, r), HIS color space values (h, s, i), accuracy of radius ocn accuracy of 

color OCHsh and elasticity of radius er . Figure 2.2 shows this model and the pixel vector 

space. Instead of using a generalized cylinder to mimic each body part, this model derives 

the exact size of each body part. Therefore, this model is robust to somatotype, gender, 

and age. This model is used in [31] for gait based human recognition. By using the 

proposed Continuous Human Movement Recognition (CHMR) system, human motion is 

divided into 35 dynemes which is the smallest contrastive unit of movement. Gait 

dynemes are used to segment motion vectors in order to get the gait signatures. Knee-hip 
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angle-angle relationship and left-right asymmetry of gait were proved to be the most 

significant features for human gait recognition. The recognition rate was reported as 88o/o 

for a database with forty-eight training subjects and ten unknown subjects. 

~d 8.r.h, ,I'"~'""" .I 

Figure 2.2 3D clone body model (from [30]) 

Similar 3D articulated human model is also used in [32] for human motion tracking 

purpose. There are 14 body segments and total 21 DOFs in the model. In general, it is 

difficult to distinguish different parts of body, especially for self-occlusive lower 

extremity, when the subject wears loose fit clothing with uniform color and pattern. By 

using a novel Differential Evolution-Markov Chain (DE-MC) particle filter, authors can 

track human motions, such as walking, jumping, hopping, and running. The proposed 

model was reasonably fitted to the side view of corresponding body parts. 

Liu and Chellappa [33] tracked human motion by using a similar 3D model. A group 

of 12 articulated ellipsoids are used to represent the human body. Each joint has one to 

three degrees of freedom. A 28 degree-of-freedom feature was structured to illustrate the 

human body. The 3D motion information in the video sequence was projected into 2D 
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optical flow by using the scaled orthographic projection model. The body motion was 

extracted by finding the global optimization for a set of linear equations. The results of 

tracking show the model can be correctly mapped to the front view of corresponding 

body parts. 

For medical research, clinicians need detailed and accurate gait kinematic information 

to support decision making process. Although the above two papers provide potential 

methods for markerless video-based clinical gait analysis, marker-based computer vision 

systems are still the mainstream for clinical gait analysis. There are two types of markers: 

passive makers and active markers. Passive markers are also known as reflective markers. 

Cameras pick up the reflections, infrared or visible light, from the markers and the 

positions of the markers are calculated. Active markers either emit infrared or ultrasound 

themselves. Most current commercial clinical gait analysis (CGA) systems use passive 

markers. 

Vicon Motion System (VMS) is widely used for clinical gait analysis. This system 

provides 3D gait kinematic information by using a set of reflective markers and several 

infrared cameras. It provides kinetic data by force plates and EMG signals are also 

collected. The cameras emit infrared light as well as record the reflection from the 

delicately attached markers. The isolated marker dots were identified and tracked based 

on the anatomy fact and mathematics. 3D data were automatically produced by fusing 2D 

data from different cameras. A typical VMS needs 3 to 7 infrared cameras. Figure 2.3 

gives an example of this system. Other commercial CGA systems include APEC, PEAK. 
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(a) (b) 

(c) 

Figure 2.3 Vicon Motion Capture system (a) infrared camera (b) marker set schedule 

for lower extremity (c) cameras setup schedule ((a) and (b) , from: http:// www. 

Vicon .com, (c), from from: http://www.marrc.co.uk/facilities/facilities.html) 

In [34], authors proposed a system which uses ultrasound ranging to get 3D gait data. 

A transponder was worn by the subject and at least three ultrasound receivers are used. 
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The receivers are mounted evenly apart on a circle with one meter diameter and the 

center of this circle is the base unit. The distance between the receivers and the position 

of the base unit need elaborative measurement. The base unit emits infrared pulses to 

trigger the transponder to emit ultrasound pulses. The distance from the transponder to 

each receiver is calculated. The motion of body center-of-mass (BCOM) was derived 

from these distances to obtain gait information. 

In [35], authors presented a system using a tracksuit to obtain the gait kinematic 

information. The tracksuit was designed to have different colors for different parts of the 

body. Color image segmentation techniques and neural network are used to get the gait 

information which will be used for the diagnosis of neurological disorders. 

In [31], the same tracksuit is used to study the gait of people who has Parkinson's 

disease (PD) which is characterized by a flexed posture, diminishing armswing, and rigid, 

small stepped, shuffling gait. The left-right-leg asymmetry was proved to be the most 

useful feature to distinguish Parkinsonians from healthy people. The proposed system can 

recognize 95% Parkinsonians from a database which consists of 20 Parkinsonians and 15 

healthy people. 

One common disadvantage of above systems is that they are not suitable for daily 

arthroplastic clinical examination. Although VMS can provide accurate gait information, 

the high cost of the device makes it unaffordable for most clinicians. This system is 

sensitive to the position of the markers. The markers must be attached obeying a 

complicated marker set schedule. This is usually accomplished by a professional staff and 

it costs more than 20 minutes to place the markers on the skin of patients. This is 
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unacceptable in daily clinical examination environment. Moreover, this system prefers 

patients wear short pants, such as bike short. This is inconvenient for patients who suffer 

from lower extremity diseases, such as those come to hospital for follow up exam after 

THR and TKR surgeries. It is the same scenario for tracksuit. The ultrasound system is 

difficult to setup and it is not suitable to attach the transponder on the patients, especially 

aged people with lower extremity diseases. 

In this paper, we proposed a new system using color elastic as markers and using 

regular commercial digital video cameras to get gait kinematic information. By using this 

information, the clinicians can evaluate the rehabilitation progress after THR and TKR 

surgeries. 

2.2 System Setup 

This system is composed of two regular digital video cameras, color elastics as the 

markers, analysis software and one computer. Fig. 2.4 shows the system setup. 

Fig. 2.4 (a) illustrates the distribution ofthe two cameras, SONY DCR-DVD105. One 

camera is used to record the side view of the patients and its optical axis is vertical to the 

walking direction. Another camera is used to record the front view of the patients and its 

optical axis is parallel to the walking direction. The distance between the side camera and 

the subject is not specified. A greater distance means more steps can be recorded but it 

also decreases the accuracy of the markers detection. The cameras record the patients at 

29.97 frames per second with 480 X 720 resolutions. The video sequences were stored on 

the re-writeable DVD disk. The front view data is not used for this 2D analysis and can 

be used to obtain 3D model of the gait pattern in the future. 
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Markers schedule is an important issue for data acquisition. Some common marker 

sets include Helen Hayes set, Keith Vaughan set and Kadaba set [36]. The choice of the 

marker set is tricky and the markers need to be carefully calibrated. It needs professional 

trained staff to calibrate the positions of the markers. These marker sets are necessary for 

accurate 3D data acquisition. Meanwhile, the natural complexity of them limits the daily 

clinical usage. Fig. 2.4 (b) shows the markers and the schedule used in this video system. 

Depending on the patients' pants color, white, black or blue elastic are chosen as markers. 

The markers can be quickly and reasonably tight placed outside the pants without 

affecting normal walking manner. For each leg, two markers attached on the thigh and 

two attached on the shank. The patient walks back and forth in his or her normal walking 

pace and manner. There is no noticeable displacement of the markers due to the 

movement of the pants because the elastic markers can change the size with the 

deformation of the muscles. It is reasonable to ignore the deformation of the markers due 

to the muscles movement. 

By connecting the middle of two relevant markers, a stick articulated model of the 

human leg is introduced. This model is shown as Fig. 2.4 (c). Lower extremity 

locomotive information is reserved and all other body movement information is ignored. 

The hip angle is defined as the angle between thigh and vertical axis. The knee angle is 

defined as the angle between shank and vertical axis. This definition is slightly different 

from the defmition in [37] which is a common defmition. In [37], hip angle was defined 

as the angle between thigh and horizontal axis. Knee angle was defined as the auxiliary 

angle ofthe angle between thigh and shank. The advantage ofthe definition in Fig. 2.4 (c) 

is that it distinguishes the movement of thigh and shank. The proposed leg movement is 
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Figure 2.4 Proposed system setup {a) cameras setup schedule (b) markers set 

schedule {c) human stick articulated model 
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Chapter 3 

Methodology 

3.1 Deinterlacing 

T he video sequences were filmed at two clinical locations, Mt. Sinai Hospital 

and Oakville Orthopedic Clinic. The footages were recorded with NTSC 

system which is used by Sony digital camcorders. The video sequence is recorded with 

interlacing technique which provides good picture quality on the CRT TV and saves the 

bandwidth at the same time. There are two fields, even field and odd field, in one frame 

which means the camcorder captures an image by scanning the even horizontal lines and 

the odd horizontal lines respectively. These two fields are recorded separately in time. 

This technique takes advantage of the human eye response time which is 0.1 second and 

benefits the display of traditional CRT by reducing flicker and save bandwidth. When 

this footage is displayed by a LCD monitor working with progressive scan model, the 

situation is changed. Saw teeth phenomenon will appear. If there is one high speed 

moving object in the scene, saw teeth can be seen even on CRT screen. Interlacing also 

makes it is difficult for image based tracking. Figure 3.1 (a) shows the saw teeth 

phenomenon around the white markers. The correct positions of white markers on the 

shank cannot be determined in this situation. Deinterlacing technique is needed to digital 

quantize the interlaced video footage. The techniques of deinterlacing can be divided into 

two categories: motion-compensated deinterlacing and non-motion-compensated 

deinterlacing (38]. For this research project, the purpose of deinterlacing is to eliminate 
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the saw teeth in order to get the sharp boundaries of the markers. For this purpose, the 

simplest technique is discard one field. The result of this method is only half height of the 

original image left. Figure 3.1 (b) shows this effect. In some scenario, the markers may 

be totally disappeared due to the width of the markers and the object-camera distance. So, 

this method is not suitable for this research. Figure 3.1 (c) shows the result of another 

method which is to duplicate one field to reconstruct the whole frame. Due to the time 

interval between even field and odd field, this method will cause intrinsic errors of the 

marker position. When an object is moving quickly, this error can't be ignored. We 

employed the method which is provided by Smart Deinterlacing Filter (Version 2.6) and 

it is available at http://docs.huihoo.com/transcode/0.6.14/smart.html. Figure 3.1 (d) 

shows the result by using this cubic spline interpolation. This filter is used as a plug in 

filter for Virtua1Dub-MPEG2 which is used to split the footage shot into frames. 

Vitua1Dub-MPEG2 can be free downloaded from the following website: 

http:/ /home. comcast.net/ -fcchandler/ stable/ index.html . 

. : ! 
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(a) Original (b) Discard field 1 

(c) Duplicate field 1 (d) Cubic interpolate 

Figure 3.1 Deinterlacing methods (a) original image (b) discard field 1 (c) duplicate 

field 1 (d) cubic interpolate 
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3.2 Silhouette Extraction 

The walking patient was extracted from the video sequences in order to narrow the 

searching areas where the markers will be detected and to eliminate the background 

interference on the markers detection process. There are many approaches to fmd moving 

objects from a video sequence, such as blocking matching, optical flow, background 

subtraction and infer-frame differencing. Among these approaches, background 

subtraction is a widely adopted method. The assumption behind this method is that the 

moving objects in current image will significantly change the illumination intensity at 

their pixels. By subtracting the current image from a background model, the deviation 

pixels are considered as moving objects. So, background modeling is the kernel of the 

background subtraction technique. In [39], authors classified the background modeling 

algorithms into two categories: recursive and non-recursive. Recursive methods include 

approximated median filter (MF), Kalman filter, and Gaussian mixture model. Non-

recursive methods include frame differencing, median filter, and linear predictive filter. 

Median filter is a widely used background modeling algorithm [39-41]. This method 

calculates the median value at each pixel for all the frames which are stored in a buffer. It 

assumes that the background pixels are visible for more than half the total stored frames. 

Let X = (X1, X2, .•• , Xt) denotes the illumination intensity values of a particular 

pixel(i0,j0) over timeT, the background pixel value at that point will be recognized as: 

B(i0 ,j0 ) = Median(X), (3 - 1) 

The moving object is considered as those pixels whose intensity values satisfy the 

following criteria: 
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llt(i,j)- B(i,j)l >Threshold, (3 - 2) 

By setting the foreground pixels as 1 and background pixels as 0, binary silhouette 

image is achieved. 

l(i,j) = {~ V l(i,j) E foreground 
others 

(3 - 3) 

Figure 3.2 (a) shows one frame from a video sequence. Fig. 3.2 (b) shows the 

background image extracted from this sequence by using median filter. The walking 

patient in (a) is extracted as foreground in (c). 

(a) 

(b) (c) 

Figure 3.2 Median Filter background modeling (a) original image (b) background 

image (c) foreground image 
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Mean filter uses the mean value at each pixel rather than median values. 

(3- 4) 

The corresponding background and foreground is shown in Figure 3.3 (a) and (b). 

(a) (b) 

Figure 3.3 Mean Filter background modeling (a) background image (b) foreground 

Image 

Compared with Fig. 3.2(a), the white ghost in Fig 3.3 (a) is caused by the white 

markers. The intensity values of the markers are higher than the background and the 

length of the background training video sequence is 60 frames. By using median filter, 

the high intensity values of the white markers are removed by being recognized as 

outlying values. 

The above two methods work on pixel level. As the simplest background modeling 

method, frame differencing works on frame level. This method uses the frame at time 

t- 1 as the background model for the frame at timet. This method is only useful to 

catch slow moving objects in a nearly still background scenario. The fatal weakness of 
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this method is the aperture phenomenon which is caused by a slow moving object which 

has a large uniform color interior area [39]. In [42], the authors extended this method by 

using the intersection of two consecutive differencing images as the foreground. Let It 

, It+b and /t-l represent current frame, previous frame, and future frame respectively. 

The foreground image, G, is identified by 

(3 - 5) 

Figure 3.4(a) shows the ghost and aperture and figure 3.4 (b) shows the walking 

people's silhouette by using (3- 5). 

(a) (b) 

Figure 3.4 Frame Differencing background modeling (a) foreground from two 

consecutive images (b) foreground from two consecutive differencing images 

In this research, the final silhouette image is the combination of the median filter 

result and frame differencing. This method can minimize the gap on the silhouette image 

23 



~: ; 
"'" ! 

which is caused by close intensity values between the markers and background. The 

result is shown in figure 3.5 (a). 

f(x,y) = {~ if (I+ G)~ 1 
others 

(3 - 6) 

After the silhouette extraction, there are maybe some gaps and holes in the silhouette. 

In order to recall the whole pixels of walking people, the gaps of the markers and the 

small holes in the silhouette were filled by usin~ morphological methods: dilation and 

erosion which are described in [43]. The dilation of binary image f by the structuring 

element B is defmed as 

f ®B={zi[(Bz)nt] ~f}, (3 - 7) 

Dilation operation can bridge the gaps and it also "thickening" the original silhouette. 

The background pixels around the edge of the silhouette are converted to foreground. 

When the markers intensity is very close to the background, this effect will cause the 

failure of further processing. So, erosion operation follows the dilation operation with the 

same structuring element. The erosion of binary image f by the structuring element B is 

defined as 

(3 - 8) 

Figure 3.5 (b) shows the result of (a) after dilation and erosion operation. Now, the 

silhouette of the waling people is extracted from the video sequence. By setting the 

background pixels in Fig. 3.2 (a) to zero, the walking people image is extracted and 

shown in Fig. 3.5 (c). This is the areas where the markers will be detected. Fig. 3.5(d) 

shows two common structuring elements. 
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(a) 

(c) 

(b) 

[
1 1 1] 
1 1 1 
1 1 1 

1

0 0 1 0 01 0 1 1 1 0 
1 1 1 1 1 
0 1 1 1 0 
0 0 1 0 0 

(d) 

Figure 3.5 Walking people extraction (a) original silhouette image (b) fmal silhouette 

image after morphological operations (c) walking people (d) 3 X 3 square structure 

element and 5 x 5 diamond structure element 
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3.3 Otsu's Thresholding Method 

To segment the white or black marketers from the image, one assumption is that the 

white markers are the brightest part in the whole image and black markers are the darkest 

part. This is true because the marker's color is chosen based on the pants color and 

illumination condition. At any time, four markers on the leg which is completely exposed 

to the side camera are detected. This means that the white markers only or black markers 

only will be detected for any given frame. This strategy makes sure the accuracy of the 

hip and knee angle data. 

The marker pixels should be classified and clustered from the image. This is the field 

of image segmentation. Image segmentation is very important for computer vision. It 

provides image information for further level image processing, such as object recognition, 

image compression, image editing, and image retrieval. The goal of image segmentation 

is to cluster pixels into different regions based on the visual characteristics. These 

characteristics can be color, texture, intensity, and motion. Thresholding is probably the 

most widely used technique to segment the image into a binary image. It's non-trivial to 

automatically select a threshold to convert an image into binary one. As a good survey, 

paper [ 44] described 40 thresholding methods and classified them into six categories: 

• histogram shape-based methods 

• clustering-based methods 

• entropy-based methods 

• object attribute based methods 

• the spatial methods 

26 

• local adaptive threshold 

In 1979, Nobuyuki Otsu proposed a nonparametric and unsupervised method to 

automatically select the optimal threshold in the paper [ 45]. This method is clustering 

based and the threshold is set by making each cluster as close as possible. This method is 

tested to find the white or black markers in this paper. 

Let N represents the total number of pixels in a given image I. The gray levels are 

represented by L = [0,1,2, ... , L- 1] and ni is the number of pixels at gray level i 

where N = 'Lf:J ni. The probability distribution function of gray level i is calculated by: 

L-1 

where Pi ;?: 0, and I Pi = 1, 
i=O 

(3 -9) 

Now suppose that the pixels in the image belong to two groups, GBand GM . GBdenotes 

the background (pants) pixels with gray intensity levels [0,1,21 ···, T]. GM denotes the 

objects (white markers) pixels with gray intensity levels [T + 1, ··· 1 L - 1] ·Let JlBand aJ 

represent the mean and variance of class G8 , respectively. Let Jl and a 2 represent the 

mean and variance of the whole image. Let llMand al:t represent the mean and variance of 

class G M I respectively. The within-class variance is defined as: 

where: 

T 

w8 (T)= Ipi, 
i=O 
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It is always true that: 

L-1 

wM(T) = I Pi~ 
i=T+1 

T 
~ ipi 

fJ.s(T) = L w (T) I 

i=O B 

L-1 
~ ip · 

f-LM (T) = L w (LT) I 

i=T+1 M 

T ( 2 
rrz(T) = ~ i- fJ.s(T)) Pi 

B L w (T) I 

i=O B 

(3- 12) 

(3- 13) 

(3- 14) 

(3- 15) 

(3- 16) 

(3- 17) 

(3- 18) 

The optimal threshold T* is the value which minimizes the value of within-class 

variance rra,. However, this involves second-order statistics calculation. To simplify the 

calculation, between-class variance aJ is defined as: 

(3- 19) 

(3- 20) 
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(3- 21) 

= (3- 22) 

rrl (T) is based on the first-order statistic parameters and the computation is not as 

heavy as the calculation of within-class variance. Equation (3 - 22) has different 

expression form from the original one in [42]. Equation (3-22) is concise in expression 

and one parameter less than the one used in [42]. 

The optimal threshold T * is the one which maximizes the value of between-class 

variance rrl (T). 

(3- 23) 

Figure 3.6 shows the examples of white markers detection and black markers 

detection by using this method. Fig. 3.6 (a) is the original image. (b) is the grayscale 

intensity image with all background pixels have been set to zero. (c) is the binary image 

where all bright pixels denotes those in the white markers class. In this case, the threshold 

is T* = 105. The pixels are classified as white markers if their intensity values are 

greater than T *. It is very clear that all four white markers are extracted from the original 

frame. However, the fault detection is also clear. Some pixels which belong to the edge of 

pants are treated as white markers. However, the gray intensity levels between these 

pixels and white markers pixels are significant. This phenomenon is conspicuous under 

some illumination conditions and the whole leg is recognized as the marker. Fig. 3.6 (d)-
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(f) show the result of black markers detection. The threshold is T* = 136. The pixels 

belonging to shank skin are classified as black markers due to two reasons. One is 

because of the close intensity values between these two objects and another reason is that 

the threshold derived from Otsu's method is loose. To solve this problem, Otsu proposed 

to use multi-thresholds to segment the image. 

(a) (b) (c) 

(d) (e) (f) 

Figure 3.6 Otsu's method for markers detection (a) original image (b) foreground 

image (c) white markers (d) original image (e) foreground image (f) black markers 
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The more general expression of equation (3-19) gives the formula: 

M+l 

at(Tv T2 ~··· T M) = I wi(TJ((Jli(TJ- Jl)) 2 
I 

(3- 24) 

i=l 

And the optimal thresholds are set by: 

(3- 25) 

where M is the number of thresholds. 

This method provides a possible solution for the above false segmentation. When M 

increases, this method is highly intensive in terms of computation. In this particular 

research project, there are roughly four classes in a given image: two sets of color 

markers (white, black, or blue), clothes (pants), and background (can be set as zero or 

one). So, K-means clustering method is tested for markers detection. 

3.4 K -means Clustering Method 

K-means clustering method was frrst proposed by MacQueen in 1967 in [46]. As one 

simple unsupervised clustering method, it has been widely adopted for data compression 

and data classification. Suppose the dataset X has n vectors, X = {X11 X2 ~ ···I Xnl~ where 

each vector is d-dimensional. The goal of K -means method is to divide the n vectors into 

K groups, G = {G1,G2 1 ••• Gk}, and to minimize the following objective function: 

(3- 26) 
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where Ci is the centroid of group Gi . ~(i) is the jth vector which belongs to Gi. This 

formula shows that the idea behind K -means clustering method is to minimize the sum of 

within-cluster square error of group Gi. 

The traditional K -means clustering method is composed by the following steps: 

1. K points from the dataset are randomly selected as the initial centers for 

each group. 

2. Calculate the distance between the vector in X and each centers, the vector 

is assigned to the group whose center has the smallest distance to this 

vector. 

3. Compute the new centroid of each group, replace the corresponding 

centroid from last iteration. 

4. Repeat step 2 and step 3 until the change of objective function is less than 

a preset threshold or a maximum number of iteration is reached. 

It should be noticed that K -means clustering method does not guarantee a global 

minimum ofthe objective function, especially for high dimensional data. Different initial 

centers may give different clustering results. A tricky way is to select the initial points as 

much as possible far away from each other or use some a priori knowledge about the 

groups' distribution. Another non trivial thing is to determine the number of k. To 

segment the markers out in this research, four clusters are assumed. Based on the 

presumption that black markers have the lowest grayscale and the white markers have the 

highest grayscale among the testing areas, the initial centers are set as 

C = {20, 90, 160, 220}. The fmal centers are considered as the threshold for different 
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groups. The smallest value is set as the threshold for black markers and the maximum 

value is considered as the threshold for white markers. Figure 3.7 shows some examples 

of k-means clustering method. Fig. 3.7 (a) is the k-means result of Fig. 3.6 (a). In this 

case, the final center is: C ={54, 90,118, 171}. All pixels in Fig. 3.6 (b) whose 

grayscale intensity is greater than 171 are set as 255. Other pixels are set as zero. 

Compared with Fig. 3.6 (c) where the threshold is 103, Fig. 3.7 (a) has much better 

segmentation result with less noise for the white markers. However, the lowest marker is 

not clustered correctly. The right part of this marker is missing because the pixels at these 

points have lower grayscale intensity. The same phenomena happened at the right part of 

second marker from top. The gap between the two part pixels will introduce errors for 

angle calculation. Fig. 3.7 (b) shows the k-means result of Fig. 3.6 (d). In this case, the 

final center is: C = {60, 104, 153, 192}. All pixels in Fig. 3.6 (e) whose grayscale 

intensities are less than 60 are set as 255. Other pixels are set as zero. The third marker is 

broken by this method. 

(a) (b) 

Figure 3.7 K-means method for markers detection (a) white markers (b) black 

markers 
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The reason is that traditional K -means method only takes into account the grayscale 

intensity values from the whole image. The spatial relationship information of the pixels 

is ignored. Thus, the algorithm of K -means with connectivity constraint (KMC) was 

proposed by Kompatsiaris eta/ in [47]. Here is the brief expression ofthis method: 

1. The dataset was divided into K regions by performing original k-means 

method with a small number of iterations. Each region Gk, k = 1,2, ···, K, 

has the center intensity cb spatial center sk = (Sk,XI sk,y) and area Ak . The 

mean area of all regions is A. 

2. For every pixel p the intensity differences are evaluated between center and 

pixel as well as the distances between this pixel and each region's spatial 

center. The distance between p and Sk is generalized as follows: 

(3- 27) 

where 11•11 is the Euclidean distance, ol and (Jf are the standard deviations 

of grayscale intensity and spatial distance, respectively. A.1 and A.2 are 

regularization parameters. Pixels with similar intensity and motion values 

with those of large object would be assigned to neighboring smaller regions. 

3. Eight connectivity component labeling method is applied to these 

subdivision. All connected components are found and a unique value is 

assigned to all pixels in the same component. If a region's area is less than 

a predefined threshold, this region will not be labeled as a subdivision. The 

intensity center and spatial center are recalculated for each connected 

region which is labeled by this component labeling algorithm. 
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4. The iteration will stop when the difference between the new and the old 

centers is below a threshold or maximum iteration number is reached. The 

number of connected regions is considered ask. This method provides a 

way to select the number of cluster which is the shortcoming of the 

traditional k-means algorithm. 

3.5 Gaussian Mixture Model 

The K -means algorithm is a nonparametric and unsupervised data clustering method. 

While, Gussians Mixture Model (GMM) is a popular recursive, model based technique 

for data clustering. It was first proposed for background modeling in [ 48]. The idea of 

this method is that the distribution of a single pixel's values over time can be modeled by 

a mixture of K Gaussian distributions. Based on the weight and variance of each 

Gaussian component, it is not difficult to determine which Gaussian may correspond to 

the background model. GMM has been successfully used for background modeling [49-

51]. 

In this research, GMM is implemented to find threshold for marker detection. A 

mixture of K Gaussian components is used to model the histogram distribution of 

illumination intensity values,X = {X11 X2, ••• ,XN}, for a given image. The probability of 

observing a particular pixel value is 

K 

P(XIe) =I wi * Pi(XIBi), (3- 28) 

i=l 

where K is the number of Gaussian distributions, wi is the weight of the ith Gaussian in 

the mixture model and l:f=t wi = 1. e = ( w1, ... , wK, 81, ... , 8K) and Pi is a Gaussian 
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density function parameterized by (}i = (JLi, Li). In this project, Li = al because the 

grayscale intensity is used to find the markers. 

(3- 29) 

In order to estimate the parameters for each ith Gaussian distribution in the mixture 
' 

model, EM algorithm is a standard choice. In [ 49], the author defmed the likelihood 

function L(BIX) as: 

K 

P(XIL(BIX)) = n P(xdB) = L(BIX), 
i=1 

To fmd the B*where 

B* = argmax L(BlX), 
e 

The incomplete-data log-likelihood expression provided in [46] is: 

Iog(L(eiX)) = t log(~ wj * Pj (xj Ill;)), 

(3- 30) 

(3- 31) 

(3- 32) 

By introduce a new unknown, random variable Y which governed by an underlying 

distribution f(yiX, eCi-1)), the complete-data likelihood function is defmed as: 

N 

log(L(BIX, Y)) = log(P((X, YIB)) = L logE(wyi * Pyi (xj l8yi)Ejl (3- 33) 
i=1 

36 

The E-step is to fmd the expected value of the complete-data log-likelihood 

log(P((X, YIB)) with respect to the unknown data Ygiven X and the current parameters 

estimates. The author provides this formula: 

Q ( e, eCi-1)) = E(log P(X, Yl e) lx, eCi-1)), (3- 34) 

eCi-1) is the current parameter and e is the new optimized parameters to increase Q. 

TheM-step is to maximize the expectation e in the E-step. 

eCO = argmax Q( e, eCi-1)), 

e 
(3- 35) 

For GMM parameters estimation, the author provides the fmal computational formula 

as follows: 

(3- 36) 

(3- 37) 

(3- 38) 

where i = 1,2, ... , K. 

The above formulae (3 - 36) -(3 - 38) do the E-step and M-step simultaneously. 

However, EM algorithm is only guaranteed to converge to a local maximum of the 
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likelihood function and we cannot prove whether this local maximum is also the global 

maximum or not. When le- eCt-1)1 < E, the iteration will stop. 

The steps for GMM parameters estimation are summarized as follows [52]: 

1. Randomly chose original parameter e0 , where 

2. Using e to compute Pi(x1), i = 1,2, ... ,K,j = 1,2, ... , N; 

4. If le - eCt-1)1 < E,or maximum iteration number is reached, stop, else go to 

next iteration. 

So far, the parameters of each component's mean, variance and weight in the model 

have been achieved. With the assumption that white markers possess the brightest pixels 

and black markers have the darkest pixels, the white markers are those pixels whose 

intensity values satisfy this formula: 

f(x, y) = {~: if f(x,y) > max(/lk) +A* ak 
others 

(3- 39) 

The black markers are those pixels whose intensity values satisfy this formula: 

f(x,y) = {~: if f(x,y) < min(/lk) +A* ak 
others 

(3- 40) 

A is a constant coefficient whose value can be any number in [ -3,3]. Figure 3.8 

shows the GMM results for markers detection. Fig. 3.8 (a) shows the GMM result for Fig. 
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3.6 (a). The GMM parameters are: 11 = {70,93, 102,143}, a= {22,9,22,35}, and 

w = {0.23,0.40, 0.22,0.15}.The threshold used here is 143. Fig. 3.8 (b) shows the GMM 

result for Fig. 3.6 (d). The GMM parameters are: 11 = {85, 128, 166,184}, a= 

{27,43,27,16}, and w = {0.12,0.18, 0.33,0.37}.The threshold used here is 85. The noise 

pixels can be removed by using morphological operations. Compared with Otsu' s 

thresholding and K -means method, GMM method provides the tradeoff between recall 

and precision for markers detections. Therefore, GMM algorithm is employed for 

markers detection in this research. 

(a) (b) 
Figure 3.8 GMM method for markers detection (a) white markers (b) black markers 

3.6 CMYK Color Space 

The selection of color markers is based on the cloth color. Sometimes, black or white 

markers are not suitable for certain pants color. For example, it will be very difficult or 

even impossible to find white markers on the light color pants under some illumination 

conditions. Meanwhile, the grayscale intensity values of black markers are very close to 
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some jeans color. To solve this problem, blue markers are used and detected in CMYK 

domain. CMYK color system is used for color printing, where C, M, Y, K represents 

cyan, magenta, yellow and black, respectively [43]. The simplest operator of conversion 

from RGB to CMYK is described in [43] as: 

r~J = m -rn 
Another conversion algorithm is defined by PostScript language as: 

Ctemp = 1- R 
Mtemp = 1- G 
Ytemp = 1- B 
Ktemp = min(Ctemp,Mtemp, Ytemp) 
C = min(1, max(O, Ctemp- Ktemp)) · 
M = min(1,max(O,Mtemp- Ktemp)) 
Y = min(1, max(O, Ytemp- Ktemp)) 
K = min(1, max(O,Ktemp)) 

(3- 41) 

(3- 42) 

By experimental observations, the use of blue as a color cue cannot benefit from these 

two algorithms. By using the makecform function which is provided by MATLAB, the 

RGB color image is converted to CMYK domain by: 

cform 

CMYK 

makecform( 'srgb2cmyk' ); 

applycform(RGB,cform); 

In each CMYK channel, the pixels of blue markers possess significant difference 

from other pixels. By taking advantage of this property, a new synthetic image is 

proposed as: 

( ) 
C + M + ( 1 - Y) + ( 1 - K) 

lsyn x,y = 4 I (3- 43) 
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The pixels of four blue markers in this synthetic image are clustered by using GMM 

algorithm which is similar to white markers clustering. Figure 3.9 shows this process. Fig. 

3.9 (a) is an original image where blue markers are used. Fig. 3.9 (b)-(e) is CMYK 

channel, respectively. Fig. 3.9 (f) is the synthetic image after (3-43). Fig. 3.5 (g) shows 

the result of clustering. 

(a) (b) (c) 

(d) (e) (f) (g) 

Figure 3.9 Blue markers detection (a) original image (b) C channel image (c) M 

channel image (d) Y channel image (e) K channel image (f) synthetic image (g) blue 

markers positions 
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3. 7 Hip and Knee Angle Acquisition 

The binary image derived from GMM method may contains some noise pixels from 

the edge of pants or other parts. Morphological operations are needed to remove these 

noise pixels. Then the four biggest areas in the binary image are considered as the 

markers. The centroid point is denoted as the maker's center. Figure 3.10 (a)-( c) show the 

markers positions in Fig. 3.6 (a), (d), and Fig. 3.9 (a), respectively. 

(a) (b) (c) 

Figure 3.10 Markers positions (a) white markers (b) black markers (c) blue markers 

Let M1 ,M2, M3, M4 represents the markers from top down, respectively. Let (xi, yJ 

denote the ith marker's centroid pixel position. The hip and knee angles are calculated by: 

_ -1 Y2- Y1 
ahip -tan , 

x2- x1 

aknee = tan-1 Y4- Y3 
x4- x3' 
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(3- 44) 

(3- 45) 

The obtained angle signals as a function oftime contains lots of noise. The noise may 

be introduced by illumination changes, measurement errors, quantization errors, etc. A 

low-pass filter is suitable to remove high frequency noise because low frequency 

components have the most important signal information. In [53], the authors proved that 

99.7% of the signal power lies below the gth harmonic. A cutoff frequency at 4.8HZ can 

efficiently remove the high frequency noise. The study of [54] indicates that the 

frequency content of kinematic data is determined by the body segment dynamics, 

activity, marker set, and the acquisition system. There are no general rules of thumb to 

determine the optimal cutoff frequency. The cutoff frequency is selected based on the 

actual signal data and it is different case by case. To obtain kinematic parameters in this 

research, the cutoff frequency for hip signal and knee signal was experimentally selected 

as whc = 0.3rr and wkc = 0.3rr, respectively. The video sequences were filmed at 30 fps. 

Each frame is one input signal. So, the cutoff frequency at 0.3rr is corresponding to 

signal frequency about 4.5 HZ. 

Figure 3.11 shows an example of the hip angle signal and knee angle signal. The 

original knee angles signal is denoted with green dash line in Fig. 3.11 (a) and the filtered 

signal is denoted with red solid line in the same figure. Fig. 3.11(c) is the hip angles case. 

The start point of each step is defmed as the time point of 'initial contact' which is the 

time that the heel initially contacts the ground. It is a suitable assumption that the knee 

angle reaches the maximum value or minimum value depending on the walking direction. 

Based on the peak points or valley points of the knee signal, single step is extracted from 

the continuous signal sequence. The segment points for hip angle are the same time 

points of the knee angle. These segment points are denoted by red points in Fig. 3.11 (a) 
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and Fig. 3.11 (c). The knee angle of one step extracted from the sequence in (a) is shown 

in Fig. 3.11 (b). Fig. 3.11 (d) is the hip angle of this single step. 

3.8 Leg Angle Acquisition 

Hip angle or knee angle as a gait pattern is a function of time. From these patterns, 

gait kinematic parameters, such as duration of swing, duration of stance, step length, and 

stride length, are calculated [16]. Meanwhile, walking is the result of continuously 

cooperative movement of different muscles and it involves almost whole body muscles. 

In order to reflect the complexity of this characteristic, the leg integrity can provide more 

information in terms of walking gait pattern. The leg-angle is defined as the combination 

of the hip angle and knee angle which is similar to the one in [31]. By defining hip angle 

as X -axis and knee angle as Y -axis, the curve of leg angle is obtained. This new curve 

serving as a feature of gait pattern can give more information than single hip or knee 

pattern. Figure 3.12 shows four people's single step leg angle patterns. Red solid line 

denotes left leg angle pattern and green dash line denotes right angle pattern. Control 

group #1 and control group #2 are healthy young males and they do not have any lower 

extremity disease. The leg angle pattern of patient #1 was obtained before THR surgery. 

The leg angle pattern of patient #2 was obtained before TKR surgery. Figure 3.12 shows 

that different people will have different leg angle patterns and the differences between 

control group's gait patterns and patients' gait patterns are noticeable. The control group 

has higher symmetry between left leg pattern and right leg pattern. The differences 

between control group and patients suggest that leg bilateral symmetry has the potential 

value for rehabilitation progress assessment. 
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3.9 Summary 

This chapter described the image processing techniques used in this research. Image 

preprocessing and segmentation are fundamental for any computer vision system. In 

general, supervised methods, such as random walking or graph cut, provide better 

segmentation results than unsupervised method. However, it is hard to select the seeds for 

these methods from video sequences used in this research application. So, three 

unsupervised methods are implemented and compared in this chapter to find the markers. 

GMM method gives the best results over Otsu's method and K-means method. By taking 

advantage of the marker's color as thresholding clue, white and black markers are 

segmented in grayscale domain and blue markers are segmented in CMYK color domain. 

Hip and knee angle as the basic gait parameters are extracted from the video sequences 

based on the markers' positions. Leg angle is derived from the combination of hip angle 

and knee angle. As mentioned in [31 ], the shape of leg angle itself and the symmetry 

between left leg shape and right leg shape have the most important gait biometric 

information. So, they should provide useful information for clinicians to evaluate the 

rehabilitation progress after THR or TKR surgeries. 
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Chapter 4 

Clinical Gait Analysis 

Everything in the world shows some levels of symmetry. Symmetry acts a 

fundamental non-accidental property in computer vision field. It is used for 

shape representation, shape simplification, characterization, or approximation. In terms 

of gait based human recognition, symmetry is crucial for model free analysis, especially 

for silhouette-based approaches. In [26] [55], the authors used the gait symmetry maps 

extracted from silhouette images to recognize human beings or animals. Instead of using 

the gait symmetry maps from the video sequences, the bilateral symmetry between left 

leg and right leg is used in this thesis as an indicator to evaluate the rehabilitation 

progress after THR or TKR surgeries. The bilateral symmetry itself is also proved to be 

useful for distinguishing control group subjects' gait patterns and patients' gait patterns. 

4.1 Gait Pattern Database 

The database is composed with videos from forty patients and eight people in control 

group. The patients are asked to walk in a straight line for a few steps with their ordinary 

walking styles. The front view camera and side view camera filmed the subjects with and 

without markers attached. To evaluate the rehabilitation progress, a patient will be filmed 

at five scheduled times for this study. One is at the time of pre-admission and four at the 

time of designated follow up exams which are one month, three months, six months and 

one year after the surgery. All subjects volunteered to take part in this research. Mt. Sinai 

Hospital has issued the ethics clearance for this research. All subjects in this research 
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have been fully informed about this research and they have signed the consent forms 

before the first time recording. All subjects will be required to fill out a brief one page 

questionnaire regarding any past history that could have had an effect on current gait 

pattern. The eligible subject should have no neural disease which has effect on gait 

pattern, such as Parkinson's disease. 

The database has 24 patients who had taken THR or TKR surgeries, 16 patients with 

lower extremity osteoarthritis and eight people as control group who have no known 

lower extremity diseases. The gait patterns of those patients are treated as abnormal gait 

patterns. The control group's gait patterns are considered as normal gait patterns. The 

total abnormal steps are 231. The age of the patients is from 22 to 85, with average age 

58.35. The total normal steps are 99. The age span of the control group is 14, from 20 to 

34, with average age 27.75. 

4.2 Dynamic Time Warping 

Dynamic Time Warping (DTW) is an efficient recursive technique to calculate the 

similarity between two time series. Linear time alignment calculates the similarity 

between two time series by using the summation of the difference between two 

corresponding sample points with the same time instant. However, DTW aligns two 

variable length time sequences with a non-linear warping function. It has been 

successfully used for gesture recognition [56], signature verification [57] [58] and human 

gait recognition [59]. 

To align Pand Qusing DTW, an x mmatrix Dis defined as: 
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(4- 1) 

where 11•11 is the distance between Pi and qj . This distance can be any p-norm. In this 

study, Euclidean distance is used which is p = 2 . A warping path W , 

W = [wl, Wz, ··· wK ], is a contiguous set of matrix elements that define a mapping 

between P and Q. The kth element ofW is wk = (i,j)k. K is the length of warping path 

and it satisfies max(n, m) ~ K ~ (n + m- 1). There are some constraints for W. 

1. Boundary condition: The start point and endpoint are fixed at w1 = ( 1,1) and 

wK = (n, m) . This makes sure the warping path starts and finishes in 

diagonally opposite corner cells ofthe matrix. 

2. Monotonicity condition: The warping path should increase monotonically. 

3. Continuity condition: The allowable steps in the warping path are restricted to 

and U 2 -h) ~ 1. 

The optimal warping W *path is the one which minimizes the warping cost: 

DTW(P, Q) = min{JLf~ wk}. (4- 2) 

To efficiently find this optimal warping path, a cumulative cost matrix Cis defined as: 

C(i,j) = D(i,j) + min[C(i- 1,j- 1), C(i- l,j), C(i,j- 1)]. (4- 3) 

so 

where C(1,1) = D(1,1). By using recursive dynamic programmmg, the minimum 

optically aligned path between two sequence is obtained as well as the quantized 

dissimilarity between them. 

This is the classical DTW algorithm. There are still some extended versions of it. One 

is to change the continuity constraints. The continuity constraints are all called local 

constraints. The continuity constraint described above is illustrated in Figure 4.l(a). 

Another possible version is illustrated in (b). It also is known as diagonal continuity. 

With this local constraint, definition in ( 4-3) will have this expression: 

C(i,j) = D(i,j) + min[C(i- l,j- 1), C(i- 2,j- 1), C(i- 1,j- 2)]. (4- 4) 

( i, j ) 

(i-1, j) ( i, j) • • _../"7 • 

~/ • __.,..-/ 

/ i 
./ . . 

(i-2, j -1) (i -1,j-1) 

• • • • 
(i-1, j-1) (i, j-1) (i-1, j -2) 

(a) (b) 

Figure 4.1 Local constraints ofDTW (a) adjacent cells continuity (b) diagonal cells 

continuity 

The authors in [57] proposed an extended versiOn which is called Continuous 

Dynamic Time Warping (CDTW). In this method, a sample point in one sequence is 

allowed to match a point in between two samples in the other sequence. The value of this 

in-between point is generated by a linear interpolation model. However, this method does 
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not show many advantages over the normal DTW method. The authors drew the 

conclusions that this method has similar results compared with the traditional DTW 

method for signature verification, but it is computationally intensive and it is three orders 

of magnitude slower than normal DTW. 

Another extended version, multi-dimensional dynamic time warping (MD _DTW) 

was proposed in [60] [61]. In this method, the distance matrix D was calculated by: 

s 

D(i1 j) =I d(P1 Q)1 (4- 5) 
s=l 

where S is the dimension of the data. When calculating the leg bilateral symmetry in this 
paper, S = 2 is used. The equation of ( 4 - 5) will be: 

s 

D(Cj) = IIIP(i1s)- Q(Ls)ll 21 (4- 6) 
s=l 

where II • II 2 is the Euclidean distance. The warping path will change by using this 

strategy. Figure 4.2 shows an example for the difference of the warping path. The top 

figure shows the warping paths between left knee angle and right knee angle. These 

warping paths are achieved by using the classical 1 D-DTW algorithm for left knee angle 

and right knee angle. The bottom figure shows the warping paths between the same knee 

sequences but the warping paths are achieved from 2D-DTW algorithm for the left leg 

angle and right leg angle. 
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Figure 4.2 Different warping paths from 1D-DTW and 2D-DTW methods 

4.3 Control Group Gait Patterns and Patients Gait Patterns 

To evaluate the rehabilitation progress, the control group subjects' gait bilateral 

symmetry patterns should be achieved. A three-dimension DTW distance space R = 

(HiPsym 1 Kneesym 1 LeBsym) is defmed in which HiPsym 1 Knee5ym and LeBsym denotes 

the DTW distance between left leg and right leg for hip angle, knee angle, and leg angle, 

respectively. The median values for each patient on R were calculated and shown in 

Figure 4.3 as red stars. The bilateral symmetry data from eight control group subjects are 

used as normal pattern models and they are shown in Figure 4.3 as green circles. The 

reason of using median values rather than mean values is that it minimize the outlier data 

which may be noise caused by measurement errors. The control group's gait patterns 

concentrating on the left lower corner of this figure indicate higher level symmetry. 
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Receiver Operating Characteristic (ROC) curve is used to distinguish control group and 

patients gait patterns based on leg bilateral symmetry. 
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Figure 4.3 Each subject's median symmetry in hip-knee-leg symmetry space 

ROC curve is widely used in medical research where it can divide data into two 

classes to provide information for decision making [62]. It can not only evaluate the 

performance of a classifier but also select a threshold which can balance the true positive 

rate and false positive rate. There are four possible outcomes for a classifier: true positive, 

false negative, true negative and false positive. A confusion matrix in Figure 4.4 IS 

constructed to depict this situation. True Positive Rate (TPR), also called recall, is 

defmedas: 

TP TP 
True Positive Rate = - = , 

P TP + FN 
(4- 7) 

False Positive Rate (FPR) is defined as: 
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FP FP 
False Positive Rate = N = FP +TN' (4- 8) 

A ROC curve is obtained by setting FPR as X-axis and TPR as Y -axis. The trade-off 

point of the curve is also called cutoff point. This point has the largest area under the 

ROC curve. Fig. 4.5 (a) shows the regions of interest of ROC curve. The solid diagonal 

line represents random classifier performance. A good classifier's cutoff point is desired 

to lie in the liberal performance area. The classifier has better performance if the cutoff 

point closer to the perfect point which is denoted as the red dot in Fig. 4.5 (a). The perfect 

point has 100% true positive rate and 0% false positive rate. In general, if one ROC curve 

C1 is above and to the left of another ROC curve C2 , the classifier of C1 has better 

performance than the one of C2 . Other regions of interest are conservative performance 

area and worse than random performance area. This is a brief description of ROC method. 

More details are provided in [63] [64]. 
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Figure 4.4 Confusion matrix for ROC curve 
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Figure 4.5(b) shows the result by using ROC curve to distinguish control group's gait 

patterns and patients' gait patterns. In this figure, each data point is the DTW distance of 

a single step's symmetry from the database. The box on each curve indicates the trade-off 

point. Figure 4.6 shows the same ROC curve where each data point represents the median 

value of each subject's symmetry. The ROC curve shows that leg bilateral symmetry as a 

classifier has better performance than hip or knee only. Compared to leg bilateral 

symmetry, knee bilateral symmetry itself is a poor indicator to evaluate the rehabilitation 

progress and this also means THR or TKR surgery has less effect on the knee symmetry 

than it does on the hip symmetry. The cutoff point of the leg symmetry is 7.46 in this 

database. By using this value as the threshold to distinguish control group gait patterns 

and patients gait patterns, 87.5% control group subjects and 77.2% patients are correctly 

reported. 
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4.4 Rehabilitation Evaluation 

The purpose of the THR or TKR surgery is to relieve the pain and to restore the 

mobility of patients. It is assumed that the bilateral symmetry should rise with the 

increase ofrehabilitation time. 

Patient A, male, 42 years old, the first video was filmed 23 days before right leg THR 

surgery and the median leg bilateral symmetry is 7.75. The second video was filmed 40 

days after the surgery and the median leg bilateral symmetry is 6.92. The third video was 

recorded four months after the surgery and the median leg bilateral symmetry is 6.36. 

Figure 4.7 shows the details about the change of his leg angle patterns. It shows that both 

the angle flexion and gait patterns changed dramatically. For right leg, the range of hip 

angles changes from 43.1° at the first time to 21.8° at the second time and to 28.3° at the 

third time. The range of right knee angles changes from 82.5° at the first time to 52.0° at 

the second time and to 67.4 ° at the third time. Although the angle flexion increased at the 

third time, it still less than the one before surgery. The pain due to short recovery time is 

the main reason which causes angle flexion decrease. The gait pattern curves of right leg 

become smooth at the third time. 
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Figure 4.8 shows the changes of his leg bilateral symmetry at each filming time. It 

has been shown that the threshold to distinguish control group gait patterns and patients 

gait patterns is 7.46. The leg bilateral symmetry at the second filming time and third 

filming time are in the scope of control group gait patterns. The leg bilateral symmetry 

level increases with time for this case. 
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Figure 4.8 Example 1: Bilateral symmetry changes in leg-DTW distance space 

Patient B, female, 44 years old, the first video was filmed 12 days before left leg THR 

surgery and the median leg bilateral symmetry is 6.96. The second video was filmed 

three months after the surgery and the median leg bilateral symmetry is 8. 79. The third 

video was recorded eight months after the surgery and the median leg bilateral symmetry 
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is 6.16. Figure 4.9 shows the leg bilateral symmetry change in DTW distance spaceR. 

The bilateral symmetry became worse at the second time. At the third time which is eight 

months after the surgery, the bilateral symmetry became better than it before the surgery. 

At this time, the symmetry level is in the control group gait patterns scope. Figure 4.10 

shows the changes of leg bilateral symmetry for each filming time. 
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Figure 4.9 Bilateral symmetry changes in hip-knee-leg DTW distance space 
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Figure 4.10 Example 2: Bilateral symmetry changes in leg-DTW distance space 

Figure 4.11 gives another example from the database. In this case, the leg bilateral 

symmetry at the time of six months after the surgery is still worse than it before surgery. 

The median value of leg bilateral symmetry at the second time filming is 8 .26. The data 

for the first follow up exam was missing because the patient was not available for filming 

at that time due to walking aid used. The using of walking aids, such as cane or walker, is 

the main reason that most patients cannot be filmed at their first follow up exam which is 

one month after the surgeries. 

From above examples, the leg bilateral symmetry changes dramatically before and 

after surgeries. These examples show the effectiveness of leg bilateral symmetry as an 

indicator for rehabilitation progress evaluation. 
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4.5 Summary 

A gait pattern database was built which has 24 subjects who have taken THR or TKR 

surgeries, 16 subjects with lower extremity arthritis, and eight control group subjects who 

have no known gait related diseases. In terms of the scheduled follow up examination 

time, the setup of database is a long term project and the uncertain appointment time 

makes it difficult to record the patients at each follow up examination time. This is the 

main reason that there are only six datasets which can be used for rehabilitation 

evaluation in current database. 

For rehabilitation progress evaluation, the leg bilateral symmetry is represented by the 

MD _DTW distance between left leg angle shape and right leg angle shape. A smaller 
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MD_ DTW distance means the higher level symmetry. Bilateral symmetry information 

from eight healthy people was used as the criteria to evaluate the rehabilitation progress. 

The case studies show that the patients' leg bilateral symmetry level will rise with a long 

term recovery period. To study the relationship between the recovery period and medical 

conditions, such as the surgery types, age, weight, and so on, a database with large 

population is needed. In current experiments, we were able to collect useful statistics to 

evaluate the performance of the system in terms of distinguishing gait patterns of control 

group subjects and gait patterns of patients. But due to the population limitation, only 

individual cases were studied for rehabilitation evaluation purpose. 
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Chapter 5 

Conclusions and Future Works 

5.1 Conclusions 

In this thesis, a color marker based video system for clinical gait analysis has been 

investigated. Leg bilateral symmetry was proposed as an indicator to evaluate 

rehabilitation progress after THR or TKR surgeries. A gait pattern database has been 

established which includes the gait patterns from 24 patients with THR or TKR surgeries, 

16 patients with lower extremity osteoarthritis, and eight control group subjects. The 

experimental results show that the proposed color markers based video system can 

provide quantitative information of gait patterns for clinicians to evaluate the 

rehabilitation progress. 

Background subtraction methods and thresholding techniques for image segmentation 

were reviewed. In this study, the video recording was performed in the indoor clinical 

environment and it is relatively static. Median filter algorithm provides good results for 

background extraction from the video sequences. Three methods, Otsu's method, K

means clustering method, and mixture of Gaussian model, have been compared and 

discussed in detail. In this particular application environment, GMM model gives the best 

results for color marker detection. 

The symmetry between left leg and right leg in terms of hip, knee and leg were 

studied. The locomotion of hip and knee was extracted from the video sequences. The 
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locomotion of leg was derived from the movement of hip and knee. To quantitatively 

describe the symmetry level, DTW algorithm was reviewed and implemented to calculate 

the bilateral symmetry. The changes of leg bilateral symmetry have been proved to be a 

good indicator for rehabilitation progress evaluation. Normal gait bilateral symmetry 

patterns were established from the control group subjects. The rehabilitation case studies 

show significant changes of the leg bilateral symmetry before and after THR or TKR 

surgeries. The bilateral symmetry level rises with time. Moreover, the gait patterns of 

control group and gait patterns of patients can be distinguished by using the proposed 

bilateral symmetry feature. By using cutoff point of leg bilateral symmetry ROC curve as 

a threshold, 87.5% control group subjects and 77.2% patients can be correctly 

distinguished. 

5.2 Future Works 

The most likely following research by using this proposed system is to evaluate 

functional improvement in patients following different types of joint replacement 

surgeries. There are two types of joint replacement surgeries: conventional joint 

arthroplasty and minimally invasive surgery (MIS). By using this video clinical gait 

analysis system, gait kinematic information and rehabilitation progress can be used to 

quantitatively assess this two types of surgeries. 

So far, there is no markerless video system available for clinical gait analysis. One 

reason is that clinical gait analysis needs accurate gait information which cannot be 

provide by most silhouette based video system. Current silhouette based video systems 

are more likely to be used for human recognition or tracking. However, clinical gait 

analysis is taking place in a well arranged environment where all necessary elements for 
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human model construction are known. By taking this advantage, model based video gait 

analysis system has the potential to be used for clinical gait analysis, especially for 

rehabilitation evaluation. 

As mentioned at the beginning of this thesis, gait as a biometrics can be used for 

human recognition. This thesis also shows that gait symmetry can be used to distinguish 

walking patterns of control group subjects and walking patterns of patients. This 

character has the potential to be used for health care purpose. In depth study is need to 

find the relation between gait patterns and certain diseases. Another possible further 

study about the relationship between gait patterns and emotions can provide valuable 

information for surveillance system, especially with 3D gait patterns. 
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