
EFFECT OF THE HORIZONTAL COMPONENT OF EARTHQUAKE ON THE 

BUCKLING OF CONCRETE SPHERICAL SHELLS 

 

by 

Nathalie Elena Moreno Madueño 

B. ENG. University of Zulia, Maracaibo, Venezuela, 2016 

 

 

A thesis 

presented to Ryerson University 

in partial fulfillment of the 

requirement for the degree of 

Master of Applied Science 

in the program of 

Civil Engineering 

 

 

 

Toronto, Ontario, Canada, 2019 

© Nathalie Elena Moreno Madueño, 2019 



ii 

 

AUTHOR’S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I authorise Ryerson University to lend this thesis to other institutions or individuals for the 

purpose of scholarly research.  

I further authorize Ryerson University to reproduce this thesis by photocopying or by other 

means, in total or in part, at the request of other institutions or individuals for the purpose of 

scholarly research. 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 



iii 

 

EFFECT OF THE HORIZONTAL COMPONENT OF EARTHQUAKE ON THE 

BUCKLING OF CONCRETE SPHERICAL SHELLS 

 

Nathalie Elena Moreno Madueño 

Master of Applied Science, 2019 

Department of Civil Engineering 

Ryerson University 

 

ABSTRACT 

The buckling failure of reinforced concrete spherical shell structures under the effect of the 

horizontal component of earthquake is investigated using a finite element method over a wide 

range of shell configurations. For this effect, two different loading case scenarios are considered; 

first, the shell is analyzed under the effects of the vertical seismic component alone. Then, the 

model is reanalyzed under the same loading conditions plus the horizontal earthquake component, 

taking into account two different horizontal-to-vertical earthquake spectral ratios. It is concluded 

that including the horizontal component of earthquake can result in a reduction in the buckling 

capacity of this type of structure; the impact of which is highly influenced by the horizontal-to-

vertical earthquake spectral ratio and the shell geometry. It is also observed that the formulation 

adopted by ACI slightly overestimates the buckling capacity of spherical shells especially when 

horizontal seismic effects are included. 
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CHAPTER 1    

INTRODUCTION 

1.1   Background 

Spherical shells, commonly known as domes, have been used around the world for 

more than two thousand years. From the Middle East to the Roman Empire, passing through 

many other cultures, these structures were used as roofs of their most important buildings, 

making them an iconic symbol of the ancient world. 

A proof of this is provided by “the Pantheon”, one of the oldest existing structures 

which dates back to 126AD. This marvelous structure count with a diameter of 43 meters 

and a rise of 22 meters above its base, supported by a series of arches that rested at the same 

time on eight piers; the majesty and engineering of this building served as inspiration for the 

development of future dome structures. One other good example of the widespread use of 

these structures is the “Dome of the Rock” located in Jerusalem, this one originally dates 

from 691AD; however, due to the impact of three earthquakes in 808AD, 846AD and 

1015AD; the structure finally collapsed during the last one, being later rebuilt in 1027-1028. 

The history of this particular dome shows how durable these structures could be; however, 

even if they can provide great resistance; earthquakes always represent an outstanding hazard 

that needs to be considered.  

As noted, in the beginning the use of this type of structure was mainly oriented to 

religious purposes; as they were always associated with some kind of spiritual symbolism. 

Nonetheless, later in history, its use was extended to other purposes, since it was 

demonstrated that they not only offer mighty architectural configurations, but they were also 

highly resistant structures, capable of providing long spans with no intermediate elements, 

and a minimum of material. 

The resistance of these structures has its origin in their geometry; since, thanks to 
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their configuration, the internal forces of compression and tension are organized in such a 

way that they allow the structure to withstand large loads with an optimum performance. 

However, like any structure, they do not have an infinite resistance, and once again it is their 

geometry, more specifically their thickness, that is the source of their failure. This complexity 

in their behavior has led numerous scientists and engineers to perform in-depth analyses in 

this area. 

Even though these structures have been used for so many years, it was not until during 

the last two centuries that formal investigations about their behavior have been developed 

and documented, leading to formulations that provide a very close solution to the problem.  

As may be seen, it has been a work of almost 200 years that has driven to precise 

formulations; however, at the beginning, as in any unknown area, the problem was not 

addressed in the correct angle; since the main criteria at the time of designing were based on 

the resistance of membrane stresses. Nevertheless, later, the results obtained from 

experimental investigations showed that this was not the right approach to analyze these 

elements, since the shells were failing under much lower stresses. But, it was not until the 

development of the theory of instability, when it was discovered that the failure of these 

structures was not related to a material failure, but to an instability problem, which is closely 

associated with the stiffness of the structure. 

This type of failure that the structures were experiencing according to the theory of 

instability, received the name of buckling. Timoshenko (1936), the main author of this 

theory, developed along with it, a series of formulations that predicted the buckling failure 

of different structures, including that of spherical shells, which is commonly known as the 

“classical buckling pressure”.  

However, later on, this formulation faced significant criticisms due to the many 

simplifying assumptions made in the approach and significant discrepancies with 

experimental results; leading later to the development of new formulations proposed by the 
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same author, and also by many other researchers (Karman and Tsien (1939), Krenzke and 

Kiernan (1965), Bushnell (1981), Zarghamee and Heger (1983), among many others)  

Since then, a large number of investigations have been carried out in order to redefine 

the proposed formulation; one of these many attempts is the formulation proposed by 

Zarghamee and Heger (1983). Based on the results of previous investigations along with a 

great deal of analytical work of their own, they finally proposed a formulation that could 

predict the critical buckling pressure of a spherical cap in good agreement with experimental 

results.  

As the results obtained were found quite accurate, the American Concrete Institute 

(ACI) decided to adopt the same formulation in its ACI-372 (2013) code for the design of 

the roof of circular prestressed concrete structures. However, in the estimation of the critical 

buckling pressure only the effects of dead load, live load, and vertical component of 

earthquake were accounted for and the effect of the horizontal component of earthquake was 

totally neglected. On one hand, this could be taken as an appropriate and logical decision; 

since, after studying the behavior of this type of structure, it is observed that the main type 

of load influencing their behavior is the one perpendicular to the surface; which in this case, 

comes from gravitational loads. However, on the other hand, it is known that when an 

earthquake strikes a structure, the horizontal component shows large magnitudes, usually 

becoming the main perturbation affecting the behavior of the entire structure. 

Therefore, as mentioned before, a more detailed analysis of these structures under 

the effect of seismic action seems essential; as an overestimation of the structural capacity 

could be catastrophic from the design perspective. However, among the many different 

investigations performed in the area, little or no information is provided about this particular 

issue. For this reason, it is necessary to provide a quantitative answer to this problem in an 

effort to verify the assumptions made by ACI and/or provide results that could lead to some 

improvements in the proposed formulations. 
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In this investigation, the finite element technique is used to predict the response of 

spherical shells under the influence of the horizontal component of earthquake; in order to 

provide some useful information for the development of design guide for dome structures, 

and improvement of the current code. 

1.2   Objectives and scope 

As previously mentioned, there is little information available about the buckling 

response of spherical shells under the action of seismic loading; therefore, the general 

purpose is to contribute and produce new information that can provide a better understanding 

of such an effect.  

In the same vein, driven by the lack of information and the assumption of ACI to 

neglect the effect of the horizontal excitation of earthquake; the main objective of this study 

is then to evaluate the response of these structures under the effect of the horizontal 

component of earthquake and determine the accuracy of the design procedure proposed by 

ACI.  

In order to achieve this main objective, additional steps are also necessary throughout 

the process. Prior to the analysis, a proper understanding of the problem is needed along 

with a deep comprehension of all the theories that have been developed to evaluate this type 

of failure. Once the basis for ensuring a correct analysis has been established, then a finite 

element technique must be developed to ensure an adequate idealization of the problem and 

consequently accurate results.  

In summary, the main objectives of this research are as follows: 

1) Propose a rigorous finite element (FE) technique capable of accurately predicting 

the buckling failure of spherical shells.  

2) Verify the proposed FE technique by comparing the numerical results with those 
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obtained from the analytical solution under both linear and nonlinear buckling 

failure conditions.   

3) Understand the effect of a wide range of parameters on the buckling response of 

spherical shells, such as: radius-to-thickness ratio, span-to-rise ratio, boundary 

conditions, geometric imperfections and rebar arrangement in member’s cross-

section.  

4) Examine the effect of the inclusion of the horizontal component of earthquake on 

the buckling behavior of spherical shells with different geometric configurations.  

5) Investigate the validity of ACI approach in estimating the buckling capacity of 

concrete spherical shells for design or evaluation purposes by comparing the 

results from FE method with those recommended by the code. 

On the other hand, the scope of this study is summarized as follows: 

1) The spherical shells are assumed to have either hinged or fixed boundary 

condition at their base. The effect of other possible base fixities is not studied 

here.  

2) All the loads, including seismic are applied as equivalent static load on the 

structure.  

3) The material used is reinforced concrete, defined in accordance with ACI 

specifications.  

4) In the FE modeling of the structure, all the materials are assumed as linear static. 

Yielding of rebar, cracking/crushing of concrete, and creep effects are not 

accounted for. 
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1.3   Research significance 

In this investigation, a FE method is developed to analyze the buckling behavior of 

spherical shell structures. The proposed model is verified by observing a strong correlation 

with analytical results available in the literature. The resulting numerical model can be used 

to analyze not only simple cases but also complex shell problems with a high degree of 

precision. 

As mentioned before, the buckling failure analysis of concrete spherical shells with 

different geometric configurations, boundary conditions and under different load cases is 

made possible; as a result of which important conclusions about the buckling behavior of 

these structures can be obtained.  

One of the parameters that has never been addressed in previous investigations is the 

effect of having multiple instead of a single layer of reinforcement on the buckling behavior 

of spherical shells; probably because it has not been expected to have considerable effect. 

However, since there is little information available regarding this aspect, it is relevant to 

address and provide conclusions to it. 

The same situation is noticed regarding the effect of base boundary condition in 

spherical shells with imperfections. A lot is known about the role having different base 

fixities can play in buckling failure of a perfect dome; however, when an imperfection is 

included in the geometry, there is not a conclusive theory with respect to the edge conditions. 

Therefore, this investigation intends to provide more information in regards to this particular 

problem and perhaps a response for future studies.  

At the same time, for each case study, both linear and nonlinear analyses are 

performed using the developed FE technique, and as previously mentioned, the results are 

compared with the current analytical formulations. This not only seeks to verify the 

technique used, but also to support the assumptions and conclusions made by the analytical 
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formulations related to each case.  

However, the most important aspect studied in this research is the effect of inclusion 

of the horizontal component of earthquake on the buckling behavior of spherical shells. 

Given the fact that there is little information on this matter and that the impact this could 

have on design is unknown, it is necessary to provide more data on this point.  

Additionally, the common practices and current codes, such as ACI 372-13, neglect 

the effect of horizontal component of earthquake in the design method of spherical shell 

structures. Since this assumption does not have any rationale, it is necessary to provide 

further clarifications, in order to verify the accuracy of the current approach to ensure an 

accurate and a safe design procedures for these types of structures. 

1.4   Thesis layout 

This thesis is divided into six chapters, in accordance with the objectives and scope 

previously explained. The first chapter presents and gives a general introduction to the 

problem, specifying at the same time the objectives and scope of the investigation as well as 

a brief explanation of the importance of this research, ending with a description of its outline.  

The second chapter, presents a summary of the most important investigations that 

have been used for the development of this thesis, as well as an explanation of the most 

relevant theories that have also been essential for the understanding of the problem, such as 

the theory of thin shells, theory of elastic stability and the classical buckling theory. 

Additionally, a summary of the design method proposed by ACI is also described in this 

chapter.  

Subsequently, Chapter 3 discusses all the aspects of the idealization of the problem, 

from a description of the Finite Element Method to the definition of the mesh size for each 

one of the models, describing as well, the software and elements used throughout the 

investigation.  
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Chapter 4, initially presents the properties of the models, describing also the 

characteristics and conditions under which each case is analyzed. This is followed by an 

explanation of the finite element technique used in this specific chapter for the analysis of 

the linear and nonlinear buckling failure of the spherical shells, comparing each case with 

the classical buckling equation and ACI formulation, respectively. 

In Chapter 5, a detailed nonlinear finite element analysis is carried out; starting with 

a frequency extraction analysis in order to determine the free vibration dynamics of the 

models. After defining the earthquake excitations to be used, finite element analysis is 

performed to determine the buckling failure response under two different loading conditions: 

1) Pure vertical and 2) Combined vertical and horizontal seismic action. Once the results are 

obtained, a comparative study is carried out between them and that of ACI approximation.  

To conclude, in Chapter 6, a summary of the entire investigation is presented, 

followed by a description of the main conclusions obtained from this study, and lastly some 

recommendations for future studies are proposed as well. 

 

 

 

 

 

 

 

  



9 

 

CHAPTER 2    

LITERATURE REVIEW 

2.1   Introduction  

In this chapter, a summary of the previously developed theories and investigations 

related to this research is presented.  

During the first part of this chapter and before delving into the problem, it is necessary 

to provide a description of the general behavior of shell elements. Once the basis has been 

established, a summary of the theories proposed to predict the behavior is presented, such as 

the theory of thin shells and the theory of instability.  

Subsequently, the problem is focused on the specific case of spherical shells; 

providing first a definition of the behavior of these elements, followed by an explanation of 

the evolution of their design. Additionally, the improvements and discoveries that have been 

developed over the years to provide a good correlation between the analytical, numerical and 

experimental results are also described throughout this chapter. 

Finally, the requirements and specifications provided by ACI for the design of these 

structures are introduced in the last part of this chapter, together with the assumptions made 

for this formulation.  

2.2   Classical shell theory 

Shells are three-dimensional elements characterized by having one dimension much 

smaller than the other two. The main characteristic of this type of element is that it is able to 

sustain applied loads by developing membrane in-plane stresses and bending moments at the 

same time. However, the formulations to accurately represent this behavior have always 

been a complex problem in the mechanics of materials that numerous researchers have 

attempted to study for many years. 
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One of the methods that the researchers have found useful to study these complex 

elements is by reducing the general problem to simpler particular cases. In this respect, the 

general shell problem is divided according to their thickness, into two categories of shell 

elements: thick shells and thin shells.  

However, when the formulations for these elements were being developed, in the 

beginning, the dividing line between them was not precisely established and therefore, thin 

elements were just defined as elements with a thickness-to-length ratio much smaller than 

the unity (z/r<<1). This assumption not only represented the divisive parameter, but also the 

most important postulate of the theories. 

The first theory of thin shells was proposed by Love (1888), based on the principles 

proposed some years earlier by Poisson (1827) and Kirchhoff (1859) concerning shells and 

elasticity. The main assumption of this theory, as previously stated, is that the thickness is 

much smaller in comparison to other dimensions; as a result of which the higher powers of 

z/r are immediately neglected, and therefore, the formulation is transformed from a three-

dimensional to a two-dimensional problem that focuses on analyzing the middle surface of 

the shell. 

The second postulate assumes small strains and displacements, and together with 

Hooke’s law (Hooke, 1678) neglects the higher order terms in the formulation, resulting then 

in a system described by a set of geometrical linear equations, as follows: 

εx =
𝜎x

𝐸x
−

𝑣xy

𝐸y
𝜎y −

𝑣xz

𝐸z
𝜎z, 

εy =
𝜎y

𝐸y
−

𝑣yx

𝐸x
𝜎x −

𝑣yz

𝐸z
𝜎z 

(1) 
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εz =
𝜎z

𝐸z
−

𝑣zx

𝐸z
𝜎x −

𝑣zy

𝐸z
𝜎y 

𝛾xy =
𝜏xy

𝐺xy
, 𝛾xz =

𝜏xz

𝐺xz
,     𝛾yz =

𝜏yz

𝐺yz
,     

According to Figure 1 and the coordinate system described by Billington (1965), ε𝑥, 

ε𝑦 and ε𝑧 represent the normal strains in X, Y and Z direction; 𝜎x, 𝜎y and 𝜎z are the respective 

stresses; Ex, Ey and Ez describe the tendency of the element to deform along the 

corresponding axis known as modulus of elasticity; Gxy, Gxy and Gyz represent the shear 

modulus or modulus of rigidity, while 𝛾xy, 𝛾xz, 𝛾yz and 𝜏xz, 𝜏yz, 𝜏xy are the corresponding 

shear strains and stresses. 

 

 

Figure 1. Stresses in a shell differential element (Adapted from Billington, 1965) 

The third postulate of Love’s theory is an extension of the Kirchhoff’s beam theory. 

In this case it similarly states that straight lines that are normal to the middle surface remain 
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normal during the deformation, to this effect, the in-plane displacements should only vary 

linearly through the thickness, and therefore, the normal strain components should be 

neglected in the formulation. To comply with this assumption in the formulation, the 

following relation should be satisfied: 

ε𝑧 = 𝛾xz = 𝛾yz = 0 (2) 

Finally, consistent with the first assumption, the forth postulate proposes that the 

transverse normal stress is negligible as well: 

𝜎z = 0 (3) 

The resulting constitutive equations proposed by Love’s theory, are summarized as 

follows: 

εx =
𝜎x

𝐸x
−

𝑣xy

𝐸y
𝜎y 

εy =
𝜎y

𝐸y
−

𝑣yx

𝐸x
𝜎x 

𝛾xy =
𝜏xy

𝐺xy
, ε𝑧 = 𝛾xz =  𝛾yz = 𝜎z = 0 

(4) 

In order to use this theory, as mentioned before, the shell should be classified as a 

thin shell. Since the author did not specify the definition of a thin shell, numerous limitations 

were later established by different other researchers which were not in most cases quite in 

line with each other. However, in the absence of a precise definition, Kraus (1967) 

recommended as a general rule, to apply this theory only to shells with a thickness smaller 

than 1/10 of the main radius of curvature. 
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Later, after its publication, the theory received numerous critiques since multiple 

assumptions were made to simplify the formulation and some inconsistencies were also 

found in the postulates. Therefore, further investigations were later developed to create more 

accurate formulations; however, most of them were also based on similar postulates, 

differing from each other in the kind of assumptions made.  

2.3   Governing equations of general linear shell theory 

According to Billington (1965), to define the general formulation of shells, it is 

necessary to follow the following five steps:  

 

As stated by Billington, in accordance with the differential element in Figure 2, the 

equilibrium forces should be established with the following equations: 

 

ΣX = 0 

ΣY = 0 

ΣZ = 0 

ΣMx = 0 

ΣMy = 0 

ΣMz = 0 

(5) 

Determine the 
equilibrium 
equations

Establish the 
strain-

displacement 
relationship

Establish the 
stress-strain 
relationship

Transform the 
force-strain 
relationship 
into force-

displacement

Obtain the 
complete 

formulation 
by combining 

the force-
displacement 

equations 
with the 

equilibrium 
equations
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Figure 2. Differential Shell element (Adapted from Billington, 1965) 

  

Figure 3. Stress resultants (Adapted from Billington, 1965) 
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Forces and moments acting on the differential element are described as resultant 

stresses (𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦, 𝑁𝑦𝑥, 𝑄𝑥 and 𝑄𝑦) and stress couples (𝑀𝑥, 𝑀𝑦, 𝑀𝑦𝑥 𝑎𝑛𝑑 𝑀𝑥𝑦) acting in 

the middle surface (Figure 3), as integrals of stress over the shell thickness (h): 

 

𝑁𝑥 = ∫ 𝜎𝑥 (1 −
𝑧

𝑟𝑦
) 𝑑𝑧

ℎ/2

−ℎ/2

 

𝑁𝑥𝑦 = ∫ 𝜏𝑥𝑦 (1 −
𝑧

𝑟𝑦
) 𝑑𝑧

ℎ/2

−ℎ/2

 

𝑄𝑥 = ∫ 𝜏𝑥𝑧 (1 −
𝑧

𝑟𝑦
) 𝑑𝑧

ℎ/2

−ℎ/2

 

𝑁𝑦 = ∫ 𝜎𝑦 (1 −
𝑧

𝑟𝑥
) 𝑑𝑧

ℎ/2

−ℎ/2

 

𝑁𝑦𝑥 = ∫ 𝜏𝑦𝑥 (1 −
𝑧

𝑟𝑥
) 𝑑𝑧

ℎ/2

−ℎ/2

 

𝑄𝑦 = ∫ 𝜏𝑦𝑧 (1 −
𝑧

𝑟𝑥
) 𝑑𝑧

ℎ/2

−ℎ/2

 

(6) 

 

𝑀𝑥 = ∫ 𝜎𝑥 (1 −
𝑧

𝑟𝑦
) 𝑑𝑧

ℎ/2

−ℎ/2

 

𝑀𝑥𝑦 = − ∫ 𝜏𝑥𝑦 (1 −
𝑧

𝑟𝑦
) 𝑑𝑧

ℎ/2

−ℎ/2

 

𝑀𝑦 = ∫ 𝜎𝑦 (1 −
𝑧

𝑟𝑥
) 𝑑𝑧

ℎ/2

−ℎ/2

 

𝑀𝑦𝑥 = ∫ 𝜏𝑦𝑥 (1 −
𝑧

𝑟𝑥
) 𝑑𝑧

ℎ/2

−ℎ/2

 

(7) 

Since the shell thickness is assumed to be small in comparison with the other 

dimensions, the terms  
𝑧

𝑟𝑦
 and 

𝑧

𝑟𝑥
 are neglected from the formulations when they appear with 

unity. In the same way, due to the simplifications stated above for thin shells, 𝜏𝑥𝑦 is expected 

to be equal to 𝜏𝑦𝑥; therefore: 

 

𝑁𝑥𝑦 = 𝑁𝑦𝑥 

𝑀𝑥𝑦 = −𝑀𝑦𝑥 

(8) 

As a result of the above mentioned assumptions and considering the equilibrium 
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conditions, the equation ΣMz ≠ 0 can be therefore dropped from the system. The complete 

formulation is derived by Billington (1965) which results in a system with five equations 

and eight unknowns, as follows: 

∂

∂α𝑥
(𝑁𝑥𝑎𝑦) − 𝑁𝑦

∂𝑎𝑦

∂α𝑥
+ 𝑁𝑥𝑦

∂𝑎𝑥

∂α𝑦
+

∂

∂α𝑦
(𝑁𝑦𝑥𝑎𝑥) − 𝑄𝑦

𝑎𝑥𝑎𝑦

r𝑥𝑦
− 𝑄𝑥

𝑎𝑥𝑎𝑦

r𝑥
+ 𝑝𝑥𝑎𝑥𝑎𝑦 = 0 

∂

∂α𝑦
(𝑁𝑦𝑎𝑥) − 𝑁𝑥

∂𝑎𝑥

∂α𝑦
+ 𝑁𝑦𝑥

∂𝑎𝑦

∂α𝑥
+

∂

∂α𝑥
(𝑁𝑥𝑦𝑎𝑦) − 𝑄𝑥

𝑎𝑥𝑎𝑦

r𝑥𝑦
− 𝑄𝑦

𝑎𝑥𝑎𝑦

r𝑦
+ 𝑝𝑦𝑎𝑥𝑎𝑦 = 0 

∂

∂α𝑥
(𝑄𝑥𝑎𝑦) +

∂

∂α𝑥
(𝑄𝑦𝑎𝑥) + 𝑁𝑥

𝑎𝑥𝑎𝑦

r𝑥
+ 𝑁𝑥𝑦

𝑎𝑥𝑎𝑦

r𝑥𝑦
+ 𝑁𝑦𝑥

𝑎𝑥𝑎𝑦

r𝑥𝑦
+ 𝑁𝑦

𝑎𝑥𝑎𝑦

r𝑦
+ 𝑝𝑧𝑎𝑥𝑎𝑦 = 0 

−
∂

∂α𝑦
(𝑀𝑦𝑎𝑥) + 𝑀𝑥

∂𝑎𝑥

∂α𝑦
− 𝑀𝑦𝑥

∂𝑎𝑦

∂α𝑥
+

∂

∂α𝑥
(𝑀𝑥𝑦𝑎𝑦) + 𝑄𝑦𝑎𝑥𝑎𝑦 = 0 

−
∂

∂α𝑥
(𝑀𝑥𝑎𝑦) + 𝑀𝑦

∂𝑎𝑦

∂α𝑥
+ 𝑀𝑥𝑦

∂𝑎𝑥

∂α𝑦
−

∂

∂α𝑦
(𝑀𝑦𝑥𝑎𝑥) + 𝑄𝑥𝑎𝑥𝑎𝑦 = 0 

(9) 

Where, 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧 represent the external loads applied on the shell, 𝛼𝑥 and 𝛼𝑦 

are curvilinear coordinates along the respective sides, 𝑎𝑥 𝑎𝑛𝑑 𝑎𝑦 are the Lamé parameters 

representing the changes in the arc length of the surface and r𝑥 and r𝑦 are the principal radius 

of curvature as shown in Figure 2. 

The next step establishes the strain – displacement relationships. Based on Figure 4, 

the displacements are proposed as follows: 
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Figure 4. Shell element after deformation (Adapted from Billington, 1965) 

ɛx0 =
1

𝑎x

∂u

∂α𝑥

+
𝑣

𝑎x𝑎y

∂𝑎x

∂α𝑦

−
𝑤

𝑟x
 

ɛy0 =
1

𝑎y

∂v

∂α𝑦

+
𝑢

𝑎x𝑎y

∂𝑎y

∂α𝑥

−
𝑤

𝑟y
 

𝛾xy0 =
1

𝑎x

∂v

∂α𝑥

+
1

𝑎y

∂u

∂α𝑦

−
𝑢

𝑎x𝑎y

∂𝑎x

∂α𝑦

−
𝑣

𝑎x𝑎y

∂𝑎y

∂α𝑥

−
2𝑤

𝑟xy
 

(10) 

Xx =
1

𝑎x

∂∅𝑥

∂α𝑥

+
∅𝑦

𝑎x𝑎y

∂𝑎x

∂α𝑦

 

Xy =
1

𝑎y

∂∅𝑦

∂α𝑦

+
∅𝑥

𝑎x𝑎y

∂𝑎y

∂α𝑥

 

2Xxy =
1

𝑎y

∂∅𝑥

∂α𝑦

+
1

𝑎x

∂∅𝑦

∂α𝑥

−
∅𝑥

𝑎x𝑎y

∂𝑎x

∂α𝑦

−
∅𝑦

𝑎x𝑎y

∂𝑎y

∂α𝑥

 

(11) 

Where, the components of displacement in the x, y and z direction are taken as u, v 

and w, respectively; ∅𝑥 and ∅𝑦 represent the rotation of the middle surface,  ɛx0 and ɛy0 are 
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the strains in the corresponding direction and 𝛾xy0 is the angular shear strain. Finally, the 

last three formulations (Xx, Xy and 2Xxy) represent the strains due to bending, defined as 

changes in the curvature of the element.  

On the other hand, the deformation of the shell neglecting the small terms is 

expressed according to the following equations: 

ɛx = ɛx0 − 𝑧𝑋x 

ɛy = ɛy0 − 𝑧𝑋y 

𝛾xy = 𝛾xy0 − 2𝑧𝑋xy 

(12) 

This deformation is constituted by the strain due to the change in curvature and the 

strain caused by the extension of the middle surface.  

Assuming a linear elastic, isotropic and homogenous material; and adopting Hooke’s 

law; the stress-strain relationship could be defined as follows: 

𝜎x =
E

1 − 𝑣2
(ε𝑥 + 𝑣ε𝑦) 

𝜎y =
E

1 − 𝑣2
(ε𝑦 + 𝑣ε𝑥) 

𝜏xy =
E

2(1 + 𝑣)
𝛾xy 

(13) 

From the above equation and the forces described in equation 6 and 7, the resulting 

forces could be rewritten as: 
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𝑁𝑥 = 𝐾(ε1 + 𝑣ε2) 

𝑀𝑥 = −𝐷(X𝑥 + 𝑣X𝑦) 

𝑁𝑥𝑦 = 𝑁𝑦𝑥 = γGh 

𝑁𝑦 = 𝐾(ε2 + 𝑣ε1) 

𝑀𝑦 = −𝐷(X𝑦 + 𝑣X𝑥) 

𝑀𝑥𝑦 = −𝑀𝑦𝑥 = 𝐷(1 − 𝑣)X𝑥𝑦 

(14) 

Where: 

𝐾 =
E

1 − 𝑣2
 

𝐺 =
E

2(1 + 𝑣)
 

𝐷 =
Eh3

12(1 − 𝑣2)
 

(15) 

In the above formulations, E is the modulus of elasticity, K is the extensional rigidity, 

G is the shear modulus and D is the bending rigidity of the shell. 

Finally, the force-displacement relationship is obtained from the strain-displacement 

equations and the resulting forces described above, as:  

𝑁𝑥 = 𝐾 [
1

𝑎x

∂u

∂α𝑥

+
𝑣

𝑎x𝑎y

∂𝑎x

∂α𝑦

−
𝑤

𝑟x
+ 𝑣 (

1

𝑎y

∂v

∂α𝑦

+
𝑢

𝑎x𝑎y

∂𝑎y

∂α𝑥

−
𝑤

𝑟y
)] 

𝑁𝑦 = 𝐾 [
1

𝑎y

∂v

∂α𝑦

+
𝑢

𝑎x𝑎y

∂𝑎y

∂α𝑥

−
𝑤

𝑟y
+ 𝑣 (

1

𝑎x

∂u

∂α𝑥

+
𝑣

𝑎x𝑎y

∂𝑎x

∂α𝑦

−
𝑤

𝑟x
)] 

(16) 
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𝑁𝑥𝑦 = 𝑁𝑦𝑥 = Gh (
1

𝑎x

∂v

∂α𝑥

+
1

𝑎y

∂u

∂α𝑦

−
𝑢

𝑎x𝑎y

∂𝑎x

∂α𝑦

−
𝑣

𝑎x𝑎y

∂𝑎y

∂α𝑥

−
2𝑤

𝑟xy
) 

𝑀𝑥 = −𝐷 [
1

𝑎x

∂∅𝑥

∂α𝑥

+
∅𝑦

𝑎x𝑎y

∂𝑎x

∂α𝑦

+ 𝑣 (
1

𝑎y

∂∅𝑦

∂α𝑦

+
∅𝑥

𝑎x𝑎y

∂𝑎y

∂α𝑥

)] 

𝑀𝑦 = −𝐷 [
1

𝑎y

∂∅𝑦

∂α𝑦

+
∅𝑥

𝑎x𝑎y

∂𝑎y

∂α𝑥

+ 𝑣 (
1

𝑎x

∂∅𝑥

∂α𝑥

+
∅𝑦

𝑎x𝑎y

∂𝑎x

∂α𝑦

)] 

𝑀𝑥𝑦 = −𝑀𝑦𝑥 =
𝐷(1 − 𝑣)

2
(

1

𝑎y

∂∅𝑥

∂α𝑦

+
1

𝑎x

∂∅𝑦

∂α𝑥

−
∅𝑥

𝑎x𝑎y

∂𝑎x

∂α𝑦

−
∅𝑦

𝑎x𝑎y

∂𝑎y

∂α𝑥

) 

These six equations along with the five equations obtained from the equilibrium 

condition provide a system of eleven equations and eleven unknowns. Since the number of 

equations is equal to the number of unknowns, the system has a unique solution. However, 

the large number of unknowns makes the problem difficult to solve that is usually addressed 

by making even further assumptions to simplify the formulation. 

2.4   Definition of spherical shells 

Shell structures can be found in many different geometric configurations. To this 

effect, they could be classified according to the shape of its middle surface as: cylindrical 

shells, spherical shells, barrel shells, folded plates, hyperbolic paraboloids, elliptic 

paraboloids and non-geometric shapes. 

Along with the evolution of different shell configurations, some specialized theories 

were also proposed for each particular case. Although all these elements represent shell 

structures, each one has a particular behavior derived from its specific geometry. Therefore, 

this investigation focuses its attention on the particular case of spherical shells, also known 

as dome structures. 

Domes are structures in the form of surfaces of revolution that have circular plans; 
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they are usually constructed of a continuous rigid material such as reinforced concrete, steel 

or short linear elements, as in the case of geodesic domes. As a surface of revolution, its 

shape is created by rotating a curve name “meridian” about an axis of rotation called “shell 

axis”. As shown in Figure 5, the curves created by the intersection of a horizontal plane with 

the surface are called “Parallels”. 

 

Figure 5. Surface of revolution (Adapted from Farnsworth Jr., 1998) 

As any other shell structures, domes are able to carry the applied loads by developing 

a combination of membrane stresses and bending moments. However, thanks to the 

geometrical configuration of these structures, the membrane stresses are the main source of 

resistance and in most cases shear stresses and bending moments are negligible. 

Ideally, the behavior of spherical shells could be represented by a uniform load 

applied throughout the surface. In this case the shell balances the forces by means of in-

plane tensile and compressive stresses without any bending moments; this defines a stress 

condition commonly known as membrane state of stresses.  

Under this condition, according to Farnsworth Jr. (1998), the performance of the 

structure is ruled by two main types of stress: Meridional and Hoop. The first one similar to 

the case of an arch (Figure 6), experiences compression along the length with no bending 

moments developed as the applied force is assumed uniform; while the second one 

represents the stress acting on the horizontal plane. Even if they cannot resist vertical 
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loading, they are able to restrain the out of plane movement of the meridians, contributing 

further to the resistance of the dome to bending moments.  

 

Figure 6. Dome vs arch (Adapted from Farnsworth Jr., 1998) 

This will ideally result in an efficient and economical design providing a designer 

with a perfect platform to accomplish a safe and satisfactory structural performance when 

dealing with spherical shell structures. However, even if this state is ideal sometimes the 

edge and load circumstances do not always perform as desired and hence bending moments 

are inevitable in the structure. 

This behavior usually takes place near the edges due to the supporting conditions, 

since at this point the structure is restricted to expand bending moments have to be 

developed. However, these are only formed in the surroundings of the disturbance region 

and as one moves away from it, the shell resumes its membrane action. Therefore, the major 

part of the structure is expected to behave as a membrane with no moment acting.  

2.5   Theory of elastic stability 

As stated earlier, shell structures present a particular behavior that makes them one 

of the most resistant structures; however, ironically, the more efficient the structure is with 

regards to its shape, the worse its mode of failure is expected to be, since, the type of failure 
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they experience no longer represents a material resistance problem but an instability problem 

instead that is primarily influenced by their stiffness. Therefore, when designing these 

structures, special attention should be given to this matter, since this is not a progressive but 

a sudden failure usually leading to a total collapse. 

This stability problem was compared with a simple case of equilibrium of a ball by 

S. Timoshenko and Gere (1961), yielding to the definition of three types of equilibrium 

states: the first one (Figure 7.a) is called “stable equilibrium”, which occurs when an external 

perturbation is applied to the structure, in this case the ball, and after some oscillations it is 

able to return to its original position. Timoshenko, deduces with this, that if a structure is 

under the action of loads smaller than the critical one, it is considered as a stable structure. 

 The second proposed condition is represented by Figure 7.b. In this case if any small 

perturbation is applied to the structure, it will cause a permanent displacement. This situation 

represents a limit point for instability known as the critical load which once exceeded the 

structure becomes unstable experiencing large deflections and a subsequent failure. This 

condition receives the name of “unstable equilibrium”. The third one represents a limit 

between the last two, called “indifferent or neutral equilibrium” (Figure 7.c).  

 

Figure 7. Equilibrium of a system 

The kind of failure described above during the unstable equilibrium condition is 

commonly known as buckling and is the main cause of failure of spherical shell structures. 

However, in reality the instability problem of spherical shells faces much deeper difficulties 

due to the wide variety of parameters that influence this type of failure as well as the 

mathematical challenges involved in their formulation. 
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Therefore, in order to provide a better understanding of this problem, the buckling 

problem of spherical shells is further described by Ventsel (2001), using Figure 8. 

 

Figure 8. Buckling failure of shell structures (Adapted from Ventsel et al., 2001) 

In Figure 8, OABD represents a perfect shell with no material or geometric 

nonlinearities. The first branch (OA) shows that when perturbations (P) below the critical 

load are applied to the structure, it behaves in a membrane state of stresses. Therefore, no 

deflections (f) are found at this stage. However, once it reaches the critical point (A) the 

structure loses its equilibrium state until point F where it retakes its stability. This type of 

instability is known as bifurcation buckling. 

However, in reality structures are not perfect and no matter how meticulous the 

construction process is, they will always have some imperfections in their geometry that will 

cause imposed pre-buckling deformations and consequently a decrease in the capacity, in 

addition to material nonlinearity effects that can also cause a dramatic decrease in the 

capacity of this type of structure. Therefore, the real critical load is in fact much lower than 

the one specified for a perfect structure. 

Considering this imperfect state in shells, a modified curve indicated as OA'BD in 

Figure 8 is suggested. As can be noticed, from the beginning the structure experiences some 

deviation from the original shape but still performing under the stable equilibrium state along 

the first branch (OA'). However, this time the critical load is reached at a lower value (A'), 
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from this point the structure experience an unstable state of equilibrium until it reach a new 

stable configuration at the level of A' on the branch BD. This type of failure is known as 

Snap-through buckling behavior. 

According to the above graph, two limits for critical loads can be identified. First, is 

the load obtained from the bifurcation buckling analysis and could be defined as the “upper” 

limit critical load since it is the largest load that could be achieved from an instability 

analysis considering a perfect structure. Second, is the real buckling load denoted by point 

A' on the graph which represents the point where an imperfect shell loses its equilibrium 

state.  

This nonlinear buckling behavior is represented for spherical shells in Figure 9, 

where an excessive deformation is observed in the center of the structure; however, the 

failure shape that each structure experiences will be controlled by the type of loading applied, 

boundary conditions, size of imperfection, material nonlinearities, as well as its geometrical 

configuration. 

 

Figure 9. Buckling failure of a dome structure (Adapted from Hamed, 2010) 

A deeper analysis into the factors influencing these two critical load values will be 

made later in this chapter. 
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2.6   History of buckling theories of thin spherical shells 

With the development of the theory of elastic stability came the definition of many 

formulations to analyze the buckling failure of different types of shells. The first one, is 

commonly known as the Classical buckling equation and is an elastic linear formulation that 

predicts the bifurcation buckling of a structure. This well-known theory was also proposed 

by Timoshenko (1936). This equation is based on the small deflection theory initially 

introduced by Love (1888) for thin shells in which, as explained before, all terms higher than 

quadratic were neglected in the energy equations resulting in a linear expression of the 

equilibrium state. This assumption along with the elastic stability theory result in the 

following equation for the buckling pressure (𝑞𝑐𝑟) of axisymmetric spherical shells: 

 𝑞𝑐𝑟 =
2𝐸ℎ2

𝑎2√3(1 − 𝑣2)
 

 

(17) 

Where 𝐸 and 𝑣 represents the corresponding modulus of elastic and Poisson’s ratio 

of the material, ℎ the thickness of the spherical shell and 𝑎 corresponds to the main radius 

of curvature. 

 

Figure 10. Geometry of spherical shell (Adapted from Timoshenko and Gere, 1961) 
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While the magnitudes of the uniform compressive stress (𝜎) and the critical stress 

(𝜎𝑐𝑟) for a spherical shell subjected to uniform external pressures were established as 

follows: 

 𝜎 =
𝑞𝑎

2ℎ
 (18) 

 𝜎𝑐𝑟 =
𝐸ℎ

𝑎√3(1 − 𝑣2)
 (19) 

As per this equation and assuming a Poisson’s ratio (𝑣) of 0.17 for concrete, the 

critical buckling pressure was defined as follows: 

 𝑞𝑐𝑟 = 1.17𝐸
ℎ2

𝑅2
 (20) 

Even though this equation was known as the classical formulation, for many years 

numerous experiments related to the buckling of shells showed a significant discrepancy 

between the experimental results and the ones obtained by this analytical approach.  

One good example of this discrepancy was shown through an empirical research by 

Donnell (1934). In his investigation, he tested samples of cylindrical shells with different 

types of materials. It was observed that buckling occurred in values significantly lower than 

the ones found with this theoretical equation. He concluded that the deviation was highly 

influenced by the radius-to-thickness ratio; since, higher ratios were leading to higher errors.  

According to Donnel, the formulation proposed by Timoshenko was analytically 

correct; however, the assumption of no initial imperfections was found to have considerable 

effect on the final results as a result of which good correlation with experimental results was 

rarely achieved.  
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Some years later, Sechler and Bollay (1939) performed a similar experimental study 

but this time with spherical shells and observed that for this type of shells the buckling failure 

was taking place at values around ¼ of the theoretical values. 

Another example of this discrepancy was indicated by Carlson et al. (1967), where 

32 complete spherical shells were tested. In this investigation the results obtained from 

experiment were normalized with respect to those from the classical buckling equation and 

were plotted as a graph (Figure 11). As shown, most of the results were far from the classical 

buckling values; claiming again that this unexpected difference was the consequence of the 

imperfection in the tested models.  

 

Figure 11. Summary of sphere-test performance (Adapted from Carlson et al., 1967) 

Due to these discrepancies, Timoshenko and Gere (1961) later developed an 

empirical equation that according to them would result in satisfactory results for spherical 

shells having the following configurations: 

400 ≤ 𝑎
ℎ⁄ ≤ 2000  

20° ≤ 𝜃 ≤ 60°. 
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 𝑞𝑐𝑟 = (1 − 0.175
𝜃 − 20°

20°
) (1 − 0.175

0.07 𝑎
ℎ⁄

400
) (0.3𝐸) (

ℎ

𝑎
)

2

 
 

(21) 

However, this formulation did not yet represent a general formulation for an accurate 

determination of the buckling capacity of this type of structures. As explained, only simple 

linear analytical and empirical formulations had been developed for many years for the 

purpose of analysis of this stability problem. It was not until Von Karman and Tsien (1939) 

proposed a solution to this problem using a different approach, this time by including the 

nonlinear terms in the equations of equilibrium. However, once again due to the complexity 

of the problem, they had to make some assumptions to simplify the formulation, which are 

summarized as follows:  

- The buckled length is small.  

- The deflection is rotationally symmetric.  

- The deflection of any element of the shell is parallel to the axis of rotational symmetry.   

- The effect of lateral contraction is neglected due to the assumption of Poisson’s ratio 

equal to 0.  

 𝜎𝑐𝑟 = 0.183
𝐸ℎ

𝑅
 (22) 

 𝑞𝑐𝑟 = 0.366𝐸
ℎ2

𝑅2
 (23) 

As a result, the above equations were finally proposed. From this equation, it can be 

clearly noticed that the buckling pressure is remarkably lower than the one obtained by the 

classical equation. It is important to note that the values obtained from this formulation fit 

the previously mentioned experimental data very closely.  
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According to Karman and Tsien (1939), the classical buckling theory could represent 

an upper limit to the buckling load that can be reached experimentally only if the structure 

is built with extreme precision and with no imperfections. However, since in reality 

achieving such level of perfection is considered impossible, the values are always expected 

to be close to the lower buckling load determined by their approach.  

On the other hand, Huang (1963) compared the effects of having different types of 

boundary conditions in spherical caps. As observed in Figure 12, generally a simply 

supported shallow cap results in lower buckling pressures as compared to those with 

boundaries free to displace radially or clamped on the edge. However, one can note an 

exception, for the case of spherical caps with a shallowness parameter of 4, as in this case 

the critical pressure is caused by the clamped base condition and not the other two.  

 

Figure 12. Comparison between different boundary conditions (Adapted from Huang, 1963) 

As previously mentioned, the classical buckling equation is a general formulation that 

was originally developed for a complete spherical shell; however, in order to simplify the 

analysis of these elements, the problem was usually idealized as a spherical cap with clamped 
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edges. Even if this seemed an adequate approach to represent the problem, the analysis of a 

spherical cap introduced a new parameter that was not considered in a complete sphere 

problem, the presence of edges. Driven by this and with the intention of analyzing the 

influence of the shallowness of the structure on the buckling failure, Bushnell (1981) 

proposed a new approach. He obtained the buckling pressure of spherical caps with different 

shallowness parameters (λ) and compared it with the bifurcation buckling of complete 

spherical shells as shown in Figure 13. He concluded that the critical pressure of a spherical 

cap with λ value lower than 7 was far from that of a complete shell. He observed that where 

λ<3.5 the structure does not show an instability failure and that for λ about 4, there is no 

bifurcation condition but a snap-through buckling instead. While for λ greater than 7, the pre-

buckling behavior is more linear resulting in values more similar to bifurcation buckling. 

However, even in deep spherical shells, the presence of edges always leads to values lower 

than those of the classical pressure equation. 

From the previous investigations, it was concluded that the most critical buckling 

pressure was the one found for the case of a clamped boundary condition and a shallowness 

parameter of 4.  

Krenzke and Kiernan (1965) studied the effect of initial imperfections on the collapse 

of spherical shells. They developed an empirical equation based on the classical pressure and 

the results obtained during their testing program, and concluded that the collapse should 

occur at around 0.7 times the classical pressure.  

They further concluded that the collapse of spherical shells was primarily a local 

phenomenon and was therefore highly dependent on the local geometry, emphasizing with 

this the importance of the initial imperfections (unevenness factor). As per the proposed 

formulation, the sphere radius is expressed to the power of two and so any small change can 

lead to an important impact on the buckling capacity of the structure. 
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Figure 13. Load-deflection curves and bifurcation buckling of spherical caps with various values of 

the shallowness parameter (Adapted from Bushnell, 1981) 

 

They summarized the effect of the initial imperfections as given in Figure 14. As 

shown, a perfect geometry leads to results close to that of the classical formulation; however, 

as the imperfection increases, the critical pressure decreases. 
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Figure 14. Effect of initial imperfections for 𝞶=0.3 (Adapted from Krenzke and Kiernan, 1965) 

In 1967, Bushnell determined the external pressures under which imperfect spherical 

shells would collapse. He noticed that buckling always took place in the shell zones with 

imperfection, concluding that the maximum load carrying capability of the structure 

corresponds to the maximum load that the imperfection can support.  

However, it was not until 1983, when Zarghamee and Heger finally summarized the 

results of all the previous investigations into one simple formulation; adopting mainly the 

postulates proposed by Huang (1963), Krenzke and Kiernan (1965) and Bushnell (1967). In 

line with the results of previous research on concrete spherical shells, they stated that the 

main factor causing the discrepancy between the empirical and classic buckling equation 

results was the imperfection of the structure caused by instantaneous deformations, creep 

deformations and manufacturing tolerances. Based on this assumption, they determined the 

buckling strength of a concrete spherical shell by separately analyzing its imperfection; 

considering that the buckling strength of the entire structure was governed by the lowest 

value estimated for the buckling capacity of the imperfect region (Bushnell, 1967). To this 

effect, they picked for the size of the imperfection the least resistant configuration 
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corresponding to a shallowness parameter of 4 clamped along the edge.  

The results showed that such imperfection could reduce the buckling load to at least 

fifty percent of the buckling load of a perfect shell. As a result, a new reduction factor had 

to be included in the formulation, in order to take into account this important effect, as 

follows:  

 𝛽𝑖𝑚𝑝 = (𝑅
𝑅𝑖𝑚𝑝

⁄ )
2

 (24) 

Where R represents the nominal radius of the perfect shell, while Rimp describes the 

main radius of the imperfection area.  

Zarghamee and Heger (1983) also studied the effect of material nonlinearities: 

cracking, stress-strain nonlinearity, and creep. The results showed that stress-strain 

nonlinearity did not have an important influence on the results, since the buckling usually 

occurs at nominal stresses far below yielding. In the same way, they concluded that flexural 

cracking was not expected to have a significant impact on the buckling of spherical shells 

either, as this is a localized phenomenon that does not produce significant reductions in the 

stiffness of the structure as a whole. In contrast, they concluded that creep could cause a 

drastic reduction in buckling capacity, since domes may undergo considerable creep 

deformation under sustained loads such as snow or other types of live load.   

The importance of this effect lies in the fact that it changes the geometry of the 

structure and as previously mentioned, a small change in the radius of the dome can result 

in a significant reduction in its buckling capacity. For this reason, in order to take into 

account the creep effect, another parameter was also added to the formulation resulting in 

the following final equation:  
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 𝑃𝑜 = 0.66∅𝛽𝑐𝛽𝑖𝑚𝑝𝐸
𝑡2

𝑅2
 (25) 

 

𝛽𝑖𝑚𝑝 = {
0.5

(𝑅
𝑅𝑖𝑚𝑝

⁄ )
2    

𝑖𝑓 𝑅𝑖𝑚𝑝 < 1.4𝑅

𝑓 𝑅𝑖𝑚𝑝 ≥ 1.4𝑅
 

𝛽𝑐 = {
0.476 + (0.005𝑡 − 0.046) (1 −

𝐿𝐿

12
)

0.44 + 0.003 (LL)
0.53

    

𝑓𝑜𝑟 𝐿𝐿 < 12psf
𝑓𝑜𝑟 12𝑝𝑠𝑓 ≤ LL < 30psf

𝑓𝑜𝑟 𝐿𝐿 > 30psf
 

(26) 

Where 𝑃𝑜 is described as the buckling load of the dome incorporating the effects of 

geometric imperfections (𝛽𝑖𝑚𝑝) and creep, material nonlinearity and cracking (𝛽𝑐) as a 

function of the thickness (t) and live load (LL).  

These previous formulations were verified by comparing the analytical results with 

Vandepitte and Rathe (1980) experimental results on microconcrete specimens, proving a 

general agreement with the test results.  

Subsequently, this hypothesis was later supported by the work done by Hamed et al. 

(2011), who carried out experimental and theoretical analysis under short and long term 

conditions. Based on the results obtained, they concluded that in the cases where the 

structure was gradually loaded, the structure failed under the action of large forces and 

moderate displacements; however, when sustained loading was applied, this time the 

structures lost its stability by the combined effect of moderate loading and large deflections 

resulted from creep; affirming with this the relevance of creep on the buckling resistance of 

concrete spherical shells as stated by Zarghamee.  

However, even if Zarghamee’s theory provided accurate results; Strohman and 

Liepins (2009), as result of their research, claimed that any other structure not contemplated 
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in the geometrical range studied by Zarghamee and Heger should be analyzed by a different 

approach, since unconservative results could be obtained otherwise. 

Therefore, to summarize the results of all the previous investigations, in order to 

accurately predict the ultimate buckling failure of these structures, the combined effect of 

different sources of nonlinearities should be included in the analysis, since these structures 

are highly sensitive to any deviation of their ideal conditions (Mekjavić, 2011). 

2.7   ACI 372R-13 design method 

ACI372R-13 provides recommendations for the design and construction of wrapped, 

circular, prestressed concrete structures. Since these elements are commonly used for liquid 

or bulk storage, the design of a roof is usually required. To this effect, ACI recommends the 

use of concrete domes as a suitable roofing structure. 

According to ACI, buckling is the dominant failure mode of this type of structures 

and thus their design should be based on a rational analysis of their buckling capacity leading 

to the minimum thickness required to resist such effect. The latest version of the code has 

adopted the equation by Zarghamee and Heger (1983) for the design of these structures, the 

only difference being the definition of the applied pressure. Zarghamee defined this pressure 

as a simple critical load (𝑃𝑜) that only included the dead and live load effects which was 

compared with the total factored load, as follows: 

1.4DL + 1.7LL ≤ 𝑃𝑜  (27) 

While ACI replaces 𝑃𝑜 with two components: Pu and Ev. The first parameter, similar 

to Zarghamee’s study represents the factored dead and live loads; while, the second one is a 

new parameter representing the inclusion of the vertical component of earthquake. In this 

manner, ACI specifies the following load combinations to be used for the design of this type 

of structures: 
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Table 1. Load combinations for design of spherical shells as per ACI372-13 

Load condition 1:U1 = 1.4D 

Where: 

Pu=1.4D, lb/ft2 (kPa) 

βc=0.44 

Ev=0 

Load condition 2: U2 = 1.2D + 1.6L 

Where: 

Pu=1.2D + 1.6L, lb/ft2 (kPa) 

βc=0.44 + 0.003L but not greater than 0.53 

βc=0.44 + 0.063L but not greater than 0.53 when units are in kPa 

Ev=0 

Load condition 3: U3 = 1.2D + 0.2S +Ev 

Where: 

Pu=1.2D + 0.2S , lb/ft2 (kPa) 

Bc=0.44 + 0.000375S  

Bc=0.44 + 0.00783S when units are in kPa 

S: Uniformly distributed snow load in accordance with ASCE 7 (2010), lb/ft2 (kPa) 

Ev: Vertical earthquake component to be calculated assuming an importance factor of 1.0, 

a modification factor of 1.0 and a vertical acceleration equal to 2/3SDS of the lateral 

mapped acceleration from ASCE 7 (2010) or Av if site specific vertical acceleration is to 

be used. 

As can be noticed in Table 1, the code only considers the effect of gravity loads and 

the vertical component of earthquake and no mention whatsoever is made of lateral loads or 

the horizontal component of earthquake.  

The ACI equations, as well as the formulation suggested by Zarghamee (1983) are 

based on the elastic theory of dome shell stability, including some adjustments to the 

formulation to take into account the nonlinearities of a reinforced concreted shallow 

spherical cap, resulting in the following equation for the required minimum thickness: 

 ℎ𝑑 = 𝑟𝑑√
1.5

∅𝐵𝑖𝐸𝑐
(

𝑃𝑢

𝐵𝑐
+ 𝐸𝑣)   in (28) 
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 ℎ𝑑 = 𝑟𝑑√
1.5𝑥10−3

∅𝐵𝑖𝐸𝑐
(

𝑃𝑢

𝐵𝑐
+ 𝐸𝑣)   mm (29) 

Where, the terms of the formulation, can be determined by the following equations: 

 𝜙 = 0.6 (30) 

 𝐵𝑖 = (
𝑟𝑑

𝑟𝑖
)

2

 (31) 

 
𝐸𝑐 = 57000√𝑓′𝑐

𝐸𝑐 = 4730√𝑓′𝑐

𝑝𝑠𝑖
𝑀𝑃𝑎

 (32) 

The Code also specifies the following criteria to be met: 

- The minimum shell thickness is 3in (75mm).  

- The minimum 28-day compressive strength of concrete (f'c) is 4000 psi (28MPa).   

- Normal-weight aggregates are to be used.   

The Code does not limit the geometry of the dome, however it provides the following 

recommendations for design: 

- The ideal rise-to-span ratio is considered as 1:10, however a range between 1:12 and 1:8 

is commonly accepted in the industry. 

- The thickness of domes should not be less than 3 in (75mm) for monolithic concrete and 

shotcrete, 4in. (100mm) for precast concrete, and 2 ½ in. (65mm) for the other shell of a 

ribbed dome. 

- In edge regions of thin domes and throughout domes over 5in. (130mm) thick, non-

prestressed reinforcement should be placed in two layers. 

- The minimum ratio of non-prestressed reinforcement area to concrete area in the dome 
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ring should be 0.0025 for cast-in-place dome rings. 

The design should meet the requirements indicated in this Code, as well as the 

specifications of ACI 318 and ACI 350.  
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CHAPTER 3    

FINITE ELEMENT MODELING 

3.1   Introduction 

As mentioned in previous chapters, different analytical formulations have been 

proposed over several years to analyze the behavior of spherical shells; however, in all 

instances, some assumptions had to be made to simplify the formulation, due to the 

complexity of the subject.  

Therefore, even if these formulations provide a solution for the buckling problem, 

they only represent general scenarios; for instance, the classical buckling formulation 

provides a linear elastic solution to a bifurcation buckling problem when the structure is 

under the effect of uniform pressure; while, in the other case, the equation proposed by 

Zhargamee (1983) also provides a solution when the structure is subjected to uniform 

pressure but this time yielding the nonlinear snap-through buckling solution of the problem. 

As seen and mentioned before, both equations provide a general solution; however, 

when both the vertical and horizontal load components are applied simultaneously, as is 

usually the case during any seismic event, such condition is not clearly contemplated in 

neither of the formulations. Therefore, in this case it is more practical to use a numerical 

technique such as Finite Element Method (FEM), which is able to provide accurate solutions 

to complex problems in little time; allowing at the same time multiple types of analysis, the 

inclusion of different parameters; and consequently a deeper understanding of the nature of 

this challenging problem. 

However, the effectiveness of FEM will rely on a thorough understanding of the 

theories proposed for this type of structures as well as the procedures followed by the 

method; therefore, initially in this chapter a brief discussion of the basic equations that led 

to the development of the classical formulation is presented, including also the adjustments 
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made for the development of the nonlinear analysis.   

Finally, the chapter provides a brief discussion on the considerations made 

throughout the analysis to ensure accurate results; such as the program selection, type of 

elements, mesh size and tools used. Moreover, additional and specific information is also 

given in the next chapters.  

3.2   Finite element method 

The Finite Element Methods are numerical procedures developed in the early 1960s 

in order to give an approximate solution to complex mathematical problems. However, it has 

only been in the last few decades that with the development of the Finite Element Analysis 

(FEA), the method has started to reach its potential. 

This innovation was followed by the development of engineering software coded with 

FE algorithms; offering the possibility of giving solutions to problems of different natures, 

such as linear and/or nonlinear structural, mechanical, electrical, thermal, etc. by solving 

partial differential equations in a relatively short amount of time. 

The technique consists of dividing the model into smaller and simpler elements and 

connecting them by their nodes. Based on the type of element, an algebraic equation known 

as the shape function will be assigned to it in order to interpolate the solution between its 

nodes. After some mathematical procedures elements are assembled together into one large 

system of equations that represents the entire structure. This is the point where the use of 

FEA software is necessary, since the solution of the system cannot be achieved manually.  

Gupta (2008), performed an experimental analysis in order to verify the proposed 

FEA. Based to the results obtained from the load-compression curves and the deformed 

shape observed in Figure 15, the FEA showed a good agreement with the experimental 

results, allowing with this to carry out further analysis on more challenging problems.  
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Figure 15. Comparison of actual and FEA predicted failure of spherical shell  

 

Therefore, as can be observed, this method offers numerous advantages; however, it 

should be clarified that the generated solutions are not exact, but approximate; and that the 

effectiveness of this tool will only depend on the user and the decisions made throughout the 

process. 

In this research the FEA software ABAQUS was selected to perform the numerical 

analysis. This is a computer-aided engineering tool developed and supported by SIMULIA® 

that has proven over the years to be versatile and reliable in idealizing the problems of 

different disciplines in a clear and concrete way. The software has become one of the leading 

FEA programs not only in the Civil Engineering field but in the entire engineering industry.  

For the analysis, two core products of the software will be used: ABAQUS/CAE and 

ABAQUS/Standard; the first one is the modeling environment for all the pre and post 

processing needs, from the definition of the material to the visualization of the results; while 

the second one, corresponds to the analysis and solution of the problem. For the purpose of 

this study, ABAQUS/standard was selected instead of ABAQUS/explicit, since this offers 

an ideal tool to solve general problems where no dynamic circumstances are considered. 

For the purpose of analysis of this specific problem, several analysis steps need to be 

defined; the first one called the initial step corresponds to the initial conditions that need to 

be assigned at the very beginning of the analysis, such as boundary conditions and 

interactions.  

Subsequently, more steps should be added in accordance to what is to be determined, 
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these are called analysis steps, and could be divided into two types: general analysis and 

linear perturbation steps. A general step, Standard or Explicit, will depend on the type of 

analysis chosen; however, despite the procedure, it is in this step that the effects of the 

nonlinearities should be included. While, on the other hand, the linear perturbation is a sub-

step that analyzes the linear response of the structure based on the final state of the last 

general step performed. 

In this investigation, two types of general steps namely General Static and Static Riks 

and two types of linear perturbations namely Buckle and Frequency sub-steps are used. In 

the following chapters, a more detailed explanation of each of these will be provided. 

3.3   Element selection 

In order to initiate the model and in accordance with the requirements of performing 

a FE analysis, ABAQUS requires the selection of element types to be made during the first 

step. A careful selection of the type of elements is highly important in achieving a precise 

prediction of the behavior of the structure under consideration.  

This program in particular offers a long list of different elements to select from, as 

shown in Figure 16; however, the selection will always depend on the type of structure to be 

modelled and its expected behavior. In this case, among all the options, the element type S4R 

is selected, since it is considered to be the most convenient one for representing the behavior 

of a typical dome structure. This is a quadrilateral four-node element with six degrees of 

freedom per node (translation in the nodal x, y and z directions and rotations about the nodal 

x, y and z axes), and with reduced integration and large-strain formulation capabilities.  
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Figure 16. ABAQUS element families 

The classical theory of buckling proposes the use of thin elements and therefore 

neglects the contribution of second order transverse normal shear strain and stress terms. As 

mentioned before, such assumption does not yield accurate results. It was further discussed 

that one of the reasons for the large discrepancy between measured and predicted results was 

this and other simplifying assumptions made in deriving the final formulation. Nowadays, 

with the development of powerful FE computer programs, such as ABAQUS, those 

simplifications are not needed anymore, opening a possibility for obtaining more precise 

results in little time.  

Therefore, the selection of this type of element is also encouraged by the fact that it 

considers the thick shell theory, accounting then for the effects of transverse shear, large-

strains, and changes in element thickness with deformation.  

Another main reason promoting the selection of this type of element was the need for 

using an element allowing the embedment of rebar. ABAQUS emphasizes that rebars cannot 

be used with triangular shells or membranes; therefore, a quadrilateral shell element had to 

be used.  

As for the case of the type of integration to be used for the calculation of the stiffness 
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matrix, the analysis is simplified to a reduced integration problem with a single integration 

point per element, in contrast to a typical full integration of four points. Clearly, the more 

points are used, the more accurate the calculation will be; however, when weighting the cost 

of computational time involved and the minor effects that the simplification has in the 

accuracy of the results, the reduced integration is found suitable for the analysis. The 

geometry and characteristics of this element are shown in Figure 17. 

 

( a) 

 

( b) 

Figure 17. Finite element geometry; (a) Node ordering, (b) Number of integration points  

(Adapted from ABAQUS manual) 

3.4   Mesh size 

Generally, a smaller mesh size or equally an increase in the number of elements, leads 

to more accurate results. However, this usually increases the running time of the model. In 

addition, the use of many degrees of freedom, may not necessarily lead to a considerable 

change in final results, where there is no justifiable reason for doing so. Therefore, a 

convergence analysis should be carried out, in order to find a suitable mesh size for each 

model and guarantee accurate results in a convenient amount of time.  

The convergence study is performed by the determination of the buckling pressure 

of the structure using four different mesh sizes per model and comparing the FE results with 

the analytical solution. The percentage of error is then estimated as: 
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 E(%) =
(𝑝𝐸𝑋) − (𝑝𝐹𝐸)

(𝑝𝐸𝑋)
× 100 (33) 

Where, P FE represents the buckling pressure obtained through FE analysis and PEX 

is the exact analytical solution based on the formulation proposed by Zhargamee and Heger 

(1983) currently adopted by ACI. The optimum mesh size is then introduced when the 

difference between the two consecutive error values could be considered negligible. Figure 

18(a-n) is a plot of the resulting percentage error versus the corresponding mesh size 

obtained for each of the 14 models used in this research. The model properties will be later 

defined in chapter 4.  

 
(a) 

Figure 18. Inaccuracy of FE solution as a function of mesh size 
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(b) 

 
(c) 

 
(d) 

Figure 18. Inaccuracy of FE solution as a function of mesh size, Continued 
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(e) 

 
(f) 

 
(g) 

Figure 18. Inaccuracy of FE solution as a function of mesh size, Continued 
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(h) 

 
(i) 

 
(j) 

Figure 18. Inaccuracy of FE solution as a function of mesh size, Continued 
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(k) 

 
(l) 

 
(m) 

Figure 18. Inaccuracy of FE solution as a function of mesh size, Continued 
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(n) 

Figure 18. Inaccuracy of FE solution as a function of mesh size, Continued 

From the above study and taking into account the running time of each model, the 

following mesh schemes are adopted for the analysis as optimum mesh sizes returning 

precise results in a reasonable time frame: 

Table 2. Mesh size selection for each model 

Model 
Area of the spherical cap 

(m2) 
Seed size (m) 

Error 

(%) 

1 188 0.30 0.47% 

2 750 0.40 0.06% 

3 187 0.30 0.40% 

4 747 0.40 0.44% 

5 1690 0.80 0.07% 

6 2295 0.80 0.24% 

7 762 0.40 0.00% 

8 1710 0.80 0.41% 

9 2327 1.00 0.69% 

10 3109 1.40 0.67% 

11 4863 1.80 0.07% 

12 6995 2.00 6.38% 

13 9528 2.00 10.65% 

14 12433 2.00 10.60% 
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In most of the cases the selected mesh produces an error below 1%; however, it is 

noted that for the last three models an error percentage of 6% to 10% is obtained. This is to 

be expected as the last three models have two layers of rebar resulting in a substantial increase 

in the buckling capacity from FE analysis whereas such consideration is not taken into 

account in the analytical formulation.  

3.5   Summary 

Through this chapter, some fundamental information needed to perform an accurate 

finite element analysis was discussed; from method definition to mesh size selection.  

Initially, the finite element software to perform the analysis was selected, adopting 

ABAQUS as the most suitable program for this investigation; considering that this is a 

trustworthy software and a leader in the area that provides necessary engineering tools to 

carry out an effective analysis of this kind of problem. 

Subsequently, regarding the type of element, a quadrilateral four-node element; S4R 

with six degrees of freedom per node and a reduced integration rule was chosen. The element 

is deemed suitable for the idealization of the problem as it is a general purpose shell element 

capable of incorporating into the formulation the transverse shear deformation. 

With respect to the size of the mesh, the optimum size was reached for each model 

after several attempts and through a trial and error approach in which the goal was to achieve 

accurate results in a short period of time. However, since each model had a different 

geometric configuration, a particular mesh size was assigned to each; which is then to be 

used for both linear and nonlinear types of analysis.  

In addition, a summary of different types of analysis to be employed during the 

present research was mentioned which will be further explained in the following chapters, 

as they are applied.   
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CHAPTER 4    

BUCKLING OF SPHERICAL SHELLS 

4.1   Introduction 

In this chapter, there are two objectives to be achieved. First is the verification of the 

proposed finite element technique which will be carried out by comparing the results 

obtained from this method with the corresponding analytical formulation. While, the second 

objective aims at analyzing the buckling failure of spherical shells under the influence of 

different parameters, such as geometric configuration, imperfection, base fixity, and rebar 

arrangement. To provide a response to this effect, different variations of these parameters are 

used with the intention of later contrasting the results obtained. 

However, before directly addressing these two objectives, it is essential to first define 

the models that will be considered throughout this chapter. Model properties including the 

geometric configurations, material properties and details of reinforcement are described in 

detail in the following sections. 

Once the basis is set, the chapter is divided into two phases: first, being the linear 

analysis step, which deals with the bifurcation buckling of the structure. Through this phase, 

the obtained FE results are compared with those calculated from the classical buckling 

equation. Once the modeling accuracy is verified under linear conditions, the analysis 

proceeds to the second phase, being buckling response under nonlinear conditions, where 

the purpose is to determine the snap-through buckling capacity considering imperfection 

effects both numerically and analytically. This is followed by a comparison of results to 

verify the accuracy of the proposed nonlinear model. 

Additionally, in this chapter, further description of the procedures used to determine 

linear and nonlinear buckling phenomena is provided.  
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4.2   Models properties 

In this study, a wide range of spherical shell configurations is considered with the 

intention of analyzing the influence of geometry on the buckling behavior. To this effect, 14 

different geometric arrangements are used, obtained by varying the angle, thickness and 

radius of the structure.  

According to a survey conducted by Zhargamee and Heger (1983), most common 

Span-to-Rise ratios used for the roof of concrete water tanks ranged from 8 to 14; while, with 

respect to thickness, most of the structures were quite thin with their thickness being in most 

cases about 3″ (76 mm) which is the minimum specified by ACI.  

Therefore, in an effort to select practical and close to reality modeling case scenarios, 

the above mentioned values are taken into consideration, but also expanded to a larger range; 

as was also carried out in the study by Zolqadr, E (2017). 

The summary of different geometric configurations employed is described in 

accordance with Figure 19, in Table 3: 

 

 

Figure 19. Geometry of spherical shell 
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Table 3. Geometry of the models 

Model 
R Rise Span 𝜃 h 

R/h Span to rise 
(m) (m) (m) (o) (mm) 

1 27.22 1.09 15.3 16 76 358 14 

2 54.43 2.18 30.6 16 76 716 14 

3 25.35 1.17 15.2 17 76 334 13 

4 50.7 2.34 30.5 17 76 667 13 

5 76.05 3.52 45.8 17 102 746 13 

6 88.73 4.1 53.4 17 102 870 13 

7 39.62 3.05 30.5 23 102 388 10 

8 59.44 4.57 45.8 23 89 668 10 

9 69.34 5.33 53.4 23 95 730 10 

10 64.77 7.62 61.0 28 95 682 8 

11 80.96 9.53 76.3 28 114 710 8 

12 97.16 11.43 91.6 28 146 665 8 

13 113.35 13.34 106.8 28 190 597 8 

14 129.54 15.24 122.1 28 235 551 8 

 

With regard to the dome base boundary condition, a fixed connection is assumed at 

the supports. However, the influence of this type of connection will be further analyzed later 

under section 4.5.5. 

Finally, the properties of concrete and steel materials used in modeling the shells are 

summarized in Table 4.  

Table 4. Material properties 

Material Concrete Steel 

Density (kg/m3) 2400 7850 

f’c (MPa) 28 - 

E (MPa) 25029 200000 

𝞶 0.17 0.3 

The finite element idealization of reinforced concrete shells will be explained under 

section 4.3.  
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4.3   Finite element modelling of reinforced concrete shells 

Since this investigation intends to analyze the behavior of reinforced concrete shells, 

the use of a composite section is mandatory. ABAQUS provides a useful tool that allows the 

definition of one or multiple layers of rebar in shell elements.  

In order to create these layers, first concrete and steel material specifications are 

defined in accordance with the information given in Table 4. Subsequently, a local coordinate 

system is defined and assigned to the element; by which the direction of rebar in the element’s 

cross-section can be identified. However, this rebar orientation system is completely 

independent from the global orientation system used for the structure. For this purpose, a 

cylindrical coordinate system is used since a typical reinforcement arrangement for this type 

of structures, as also specified by ACI, is made of layers of reinforcement aligned 

circumferentially and radially as shown in  

Figure 20.  

 
 

Figure 20. Spherical shell reinforcement (Adapted from https://www.styrouae.com) 

 

Even though, ABAQUS allows for the creation of each one of these layers, 

https://www.styrouae.com/
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individually, the implementation of both layers simultaneously is not readily possible in 

ABAQUS/CAE. As a result, the introduction of these layers is done manually by modifying 

the keyword in FE model, as shown in Figure 21 for model 1.  

 

Figure 21. Shell reinforcement (ABAQUS keyword modification) 

As shown in Figure 21, the new command lines to define multiple layers of 

reinforcement are described as “Rebar Layer”; where; the first parameter corresponds to the 

geometry, either constant or angular, depending on the direction of the rebar described in 

Figure 22 and Figure 23; the second parameter is the orientation, which is set equal to the name 

of the rebar orientation system previously defined. Subsequently, in the data lines the rest of 

the rebar information is defined in the following order: name of the layer, area of 

reinforcement, spacing (length or degrees), position, material, orientation and isoparametric 

direction. This data line is repeated as many times as layers as necessary. 

In this manner, two layers were created, a “Meridional” layer and a “Circumferential” 

layer; the first one is considered to be radial with an orientation angle equal to zero, while 

the second one is circumferential with a 90° orientation, as shown in Figure 22 and Figure 23, 

respectively. Further information on the area and spacing of the reinforcement is provided in 

Table 5.  
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Figure 22. Radial rebars in axisymmetric shell elements (Adapted from ABAQUS manual) 

 

Figure 23. Circumferential rebars in axisymmetric shell elements (Adapted from ABAQUS 

manual) 

ACI 372R-13 suggests a single layer of reinforcement to be used in elements with 

thickness of 130 mm or under while two layers are recommended for any thickness greater 

than this.   

The amount of reinforcement should be calculated in accordance with the provisions 

of the Code. In this case ACI proposes a maximum spacing of 914 mm and a minimum ratio 

of non-prestressed reinforcement area-to-concrete area (As/Ac) of 0.0025 in both 

circumferential and radial directions. Considering these specifications and assuming #4 bars 
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(Abar=129 mm2), the following reinforcement arrangement is proposed and used for each 

model: 

Table 5. Reinforcement arrangement of the models  

Model h (mm) # Rebar Layers 
Circumferential 

Spacing (mm) 
Angular Spacing (°) As/Ac 

1 76 1 650 4.87 0.00261 

2 76 1 650 2.43 0.00261 

3 76 1 650 4.88 0.00261 

4 76 1 650 2.44 0.00261 

5 102 1 500 1.25 0.00253 

6 102 1 500 1.07 0.00253 

7 102 1 500 1.88 0.00253 

8 89 1 550 1.38 0.00264 

9 95 1 500 1.07 0.00272 

10 95 1 500 0.94 0.00272 

11 114 1 450 0.68 0.00251 

12 146 2 700 0.88 0.00252 

13 190 2 500 0.54 0.00272 

14 235 2 400 0.38 0.00274 

 

4.4   Linear analysis 

For many years the classical buckling equation was the leading formulation for 

analyzing the instability failure of shell structures; however, after a great deal of debate 

around this topic, it was known that this equation did not yield accurate results as a 

consequence of the diverse assumptions made in developing this formulation.  

However, to verify the adequacy of the proposed linear finite element technique and 

also for better understanding of the problem, a linear FE buckling analysis as per the classical 

buckling formulation will be undertaken. Analysis is performed assuming a linear behavior 
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of the material, perfect geometry of the dome and small deformations. The obtained FE 

results are then compared with the analytical solution proposed by Timoshenko (1936). 

4.4.1   Linear eigenvalue buckling analysis 

The classical buckling formulation estimates the bifurcation buckling of shell 

structures; however, as expressed by Bushnell (1981), this kind of buckling behavior only 

occurs in deep perfect spherical shells; while, for the shallow ones, the axisymmetric snap-

through buckling is the expected behavior. 

However, to confirm this theory and verify the validity of the proposed numerical 

technique, all models are subjected to an eigenvalue buckling analysis assuming a linear 

elastic buckling behavior and a perfect geometric condition in an effort to capture the 

bifurcation buckling response of the models, covering a wide range of geometries typically 

found in today’s practice.  

ABAQUS offers an analysis module called “Buckle” that allows the determination 

of this particular type of buckling. The process consists of a classical eigenvalue problem 

whose purpose is to find the loads for which the model stiffness matrix becomes singular: 

 ([K0]  +  λ[K∆])ν = 0 
 

(34) 

In this equation, the first matrix [K0] represents the stiffness at the initial state, which 

takes into account the effect of any load previously applied to the model; the second one 

[K∆] is the differential stiffness matrix due to the incremental loading, while ν and λ are the 

corresponding mode shapes and eigenvalues, respectively. 

The last mentioned factor (λ) multiplied by the perturbation load (Q) plus the load 

applied at the initial state (P) is set equal to the critical buckling load (qcr), which in our case 
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represents the bifurcation buckling pressure, also known as the classical buckling pressure: 

 𝑃 +  (λ 𝑄) = 𝑞𝑐𝑟 
 

(35) 

Figure 24 shows Model 1 modelled in accordance with the geometry and material 

properties mentioned in the preceding sections. For the purpose of analysis, no previous 

loading is considered; however, as can be observed from the figure, a uniform pressure 

normal to the surface and equal to unity is applied on the entire structure. As a result, the 

eigenvalue obtained directly represents the classical buckling pressure of the structure. . This 

result, as well as the deformed shape of the structure in a bifurcation buckling state can be 

observed in Figure 25. 

A similar procedure is undertaken for all 14 models; however, for the sake of brevity 

only the finite element idealization of Model 1 is presented. All obtained results from FE 

analysis are summarized in Table 6. 

 
Figure 24. FE idealization of Model 1 
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Figure 25. Linear eigenvalue buckling failure (Model 1) 

 

Table 6. Summary of FE buckling analysis results (linear theory)   

Model 
Classical buckling pressure (FE) 

(kPa) 

1 233.5 

2 59.3 

3 268.9 

4 68.5 

5 54.6 

6 39.9 

7 201.0 

8 67.7 

9 56.1 

10 64.5 

11 59.9 

12 70.6 

13 86.1 

14 103.7 
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4.4.2   Comparison with classical buckling equation 

As initially stated, this linear analysis was performed to be evaluated and contrasted 

against the results of the classical formulation; therefore in this section a comparison study 

is carried out between the buckling pressures obtained from both methods and later analyzed 

in order to estimate the accuracy of the results.  

For the determination of the classical buckling, the equation requires the following 

data to be entered for each model: the radius and thickness of the structure, Poisson’s ratio, 

and elastic modulus of the material. Since we are using a composite material, it is also 

preferred to use composite material properties; to this effect, the rule of mixture will be used.  

This method offers a simple formulation allowing the combination of two materials 

according to their modulus of elasticity and cross-sectional areas, as indicated in the 

following equation: 

 𝐸 = ρE𝑆 + (1 − ρ)E𝐶 (36) 

Where, ρ is the non-prestressed reinforcement ratio, and E𝑆 and E𝐶 are the elastic 

modulus of steel and concrete, respectively. By taking into account the above mentioned 

material properties, the composite modulus leads to a value of 25,466 MPa. For the case of 

the Poisson’s ratio, the one from concrete material is used since the rule of mixture does not 

yield a substantial change to it.  

Following the classical buckling formulation and on the basis of the above 

considerations, the results are obtained and summarized in Table 7 and Figure 26. The error 

from the previously estimated FE results is calculated in accordance with equation 33. 
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Table 7. Comparison of linear buckling pressure (FE vs. classical buckling equation) 

Model 
Classical Buckling Pressure  FE Error 

(kPa) (kPa) (%) 

1 232.6 233.5 -0.39% 

2 58.2 59.3 -1.89% 

3 268.2 268.9 -0.26% 

4 67.1 68.5 -2.09% 

5 53.7 54.6 -1.68% 

6 39.4 39.9 -1.27% 

7 197.8 201.0 -1.62% 

8 66.9 67.7 -1.20% 

9 56.0 56.1 -0.18% 

10 64.2 64.5 -0.47% 

11 59.2 59.9 -1.18% 

12 67.4 70.6 -4.75% 

13 83.8 86.1 -2.74% 

14 98.2 103.7 -5.60% 

 

Figure 26. Comparison of linear buckling pressure (FE vs. classical buckling equation) 

It is observed that there is a very good correlation between the FE and analytical 

approaches with the maximum deviation being less than 6% in all cases. It can also be noted 
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that FEM has led to higher buckling pressures in every case. 

The difference lies in the fact that: firstly, the finite element method provides accurate 

but not exact results; therefore a certainty corresponding to zero error is highly unlikely to 

be achieved, especially in such a complex problem. Secondly, as is also the case in reality, 

the software is considering a higher amount of steel for the upper sections of the dome. This 

is due to the fact that typically in these structures because of their geometry, the rebar to 

concrete ratio is minimum at the base, increases considerably moving toward the higher 

sections resulting in turn in an increase in the structural capacity. Unfortunately, such effect 

cannot be taken into account accurately through the classical equation and so such 

discrepancy is inevitable.  

In a similar manner, it is noted that the highest difference between the two sets of 

data is found for the last three models. The common aspect of these three models is that they 

all have two layers of reinforcement, in contrast to the rest of the models where only a single 

layer is provided. Therefore, such deviation in results indicates that the location of 

reinforcement in the cross section of a shell structure can have an important effect on its 

capacity, which in this case has represented an increase of up to 6%.  

Neglecting the last three models, one can observe that the maximum error obtained 

is around 2% which shows a reasonable agreement between the two methods, verifying the 

accuracy of the proposed numeral model.  

4.5   Nonlinear analysis 

In previous sections, no source of nonlinearity was included in the study. However, 

as stated earlier, nonlinearity effects such as material nonlinearity, geometric imperfection, 

and large displacement considerations play an important role in the derivation of actual 

critical buckling response. 

According to Bushnell (1981), the collapse of a spherical cap substantially depends 
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on the level of imperfection, and based on the results of numerous investigations the least 

resistant spherical cap is the one with a shallowness parameter (λ) of 4. Therefore, 

considering a geometry imperfection level corresponding to this shallowness parameter is 

expected to result in the most critical buckling pressure for the structure under consideration.  

In the same vein, it is also known from these investigations that the bifurcation 

buckling is not the type of behavior expected to cause failure in structures with this geometric 

configuration, instead it is proven that for structures with a shallowness parameter of 4, a 

snap-through behavior is always experienced. Consequently, a bifurcation buckling analysis 

is not an appropriate strategy to simulate the response of this class of structures, and so a 

different approach should be employed. ABAQUS proposes a nonlinear path analysis called 

“Static Riks” for such problems offering a precise solution for this specific case. More details 

about this procedure is provided under section 4.5.2.  

For the sake of brevity, and since it is out of the scope of this study, the effect of 

material nonlinearity is not taken into account in the derivation of the buckling pressure. 

Such effect is not considered in the formulation either. It is important to note that this is a 

comparative study and all the models are simulated under the same assumptions, as a result 

of which the obtained results are readily comparable. 

4.5.1   Imperfection 

A nonlinear buckling analysis is performed for the case of imperfect spherical shells. 

In accordance with the conditions expressed in previous sections, an imperfection level 

corresponding to the shallowness parameter of 4 is assumed, which is represented by the 

following span (d) and radius (Rimp) for the shell, respectively: 

 𝑑 = 4.3√𝑅𝑖𝑚𝑝 × 𝑡 (37) 
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 𝑅𝑖𝑚𝑝 = 1.4R (38) 

To better understand the effect of this parameter on the buckling response of the 

domes, Model 1 is analyzed considering two different levels of imperfection and thus two 

different shallowness parameters; 2 and 4. Shallowness parameter, λ=2 corresponds to the 

following diameter: 

 𝑑 = 2.5√𝑅 × 𝑡 (39) 

 

As shown in Table 8, the obtained results are in agreement with those from the 

previously mentioned theory, therefore, the rest of the study will be based on an imperfection 

level corresponding to a shallowness parameter of 4. For instance, a dome having the 

geometry properties of Model 1, with a mean radius (R) of 27.22m and a shell thickness (h) 

of 76mm, would have a diameter (𝑑) in the imperfect region of 7.32m and a radius (𝑅𝑖𝑚𝑝) of 

38.11m, in accordance with the configuration described in Figure 27.  

Table 8. Effect of different levels of geometric imperfections 

Model 

Analytical nonlinear 

Buckling Pressure 

FE Buckling Pressure 

λ=4 

FE Buckling Pressure 

λ=2 

(kPa) (kPa) (kPa) 

1 65.04 65.4 120.8 

In a similar manner, the geometric imperfection parameters for each model are 

calculated and summarized in Table 9. 
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Figure 27. Geometry of the imperfect region 

Table 9. Geometric imperfection parameters 

Model 
𝑑 (imperfect) 𝑅𝑖𝑚𝑝(imperfect) Rise(imperfect) 

λ 
(m) (m) (m) 

1 7.32 38.11 0.1753 4.0 

2 10.35 76.20 0.1755 4.0 

3 7.06 35.49 0.1752 4.0 

4 9.99 70.98 0.1754 4.0 

5 14.17 106.47 0.2355 4.0 

6 15.31 124.22 0.2355 4.0 

7 10.23 55.47 0.2352 4.0 

8 11.70 83.22 0.2054 4.0 

9 13.06 97.08 0.2193 4.0 

10 12.62 90.68 0.2193 4.0 

11 15.46 113.34 0.2632 4.0 

12 19.16 136.02 0.3370 4.0 

13 23.61 158.69 0.4385 4.0 

14 28.07 181.36 0.5423 4.0 

These imperfection parameters are now considered in both numerical and analytical 
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analyses. For the case of FEA, the imperfections are directly applied to the geometry of the 

models through the “section sketch” module in ABAQUS during the idealization process. As 

the analytical approach, the formulation suggested by Zhargamee and Heger (1983) is used. 

As previously explained in Chapter 2, they proposed inclusion of a new parameter, 𝛽𝑖𝑚𝑝 in 

the original buckling equation to account for imperfection effects leading to a considerable 

reduction in the predicted buckling capacity for imperfect shells, as follows:   

 𝛽𝑖𝑚𝑝 = [
𝑅/𝑡

(𝑅/𝑡)𝑖𝑚𝑝
]

2

 (40) 

Assuming the thickness to be the same under both conditions and thus eliminating 

that from numerator and denominator, and referring to equation 38,  𝛽𝑖𝑚𝑝 is estimated as 

0.50 (50% reduction). Referring to equation 25 and considering 𝛽𝑖𝑚𝑝 = 0.50 will lead to the 

derivation of the following equation for the buckling capacity of an imperfect dome 

assuming a shallowness parameter of λ=4:  

 𝑝𝑐𝑟 = 0.33E (
𝑡

𝑅
)

2

 (41) 

The resulting buckling pressures according to this formulation are listed in Table 10. 

The results from the classical linear buckling equation is also given in the table for 

comparison purposes. 

As can be observed from the table, there is a significant reduction in the buckling 

capacity of the models where the effect of nonlinearity due to imperfection is taken into 

consideration. As the obtained results suggest such effect can cause up to 72% reduction in 

the buckling capacity of the model representing a significant disagreement between the two 

formulations. This reduction is expected to be even more dramatic where the effect of 

material nonlinearity is also included.  
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Table 10. Analytical linear and nonlinear buckling pressure  

Model  
Linear Classical Buckling Pressure Nonlinear Buckling Pressure 

(kPa) (kPa) 

1 232.62 65.04 

2 58.18 16.27 

3 268.21 74.99 

4 67.05 18.75 

5 53.68 15.01 

6 39.43 11.03 

7 197.77 55.30 

8 66.90 18.70 

9 56.01 15.66 

10 64.19 17.95 

11 59.17 16.54 

12 67.38 18.84 

13 83.84 23.44 

14 98.20 27.46 

 

4.5.2   Static Riks Analysis 

The Riks method is a practical tool that allows the prediction of the nonlinear buckling 

failure of a structure, whether the response is stable or unstable. The procedure is based on a 

load-deflection analysis that treats both parameters as unknown values; which necessitates 

the introduction of another parameter, called “arc length” in order to measure the progress of 

the solution.  

The analysis consists of a number of arc length increments, where the first one is set 

by the user; and the subsequent ones are computed automatically by the software using the 

Newton’s method, following however the minimum and maximum values also set by the 

user. This will give the user a better control on the automatic incrementation process. 

The resulting loading (𝑃𝑡𝑜𝑡𝑎𝑙) at each increment is described as a proportional load 

defined by the initial loading (𝑃0), a load proportionality factor (λ) and the reference load 
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(𝑃𝑟𝑒𝑓) as shown in equation 42. 

 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃0 + λ 𝑃𝑟𝑒𝑓 (42) 

Where, the initial load has a constant magnitude and comprises any load applied 

during previous steps; the magnitude of the reference load is defined by the loading of the 

current step; while the load proportionality factor, LPF, is found as part of the solution for 

each increment. 

For the purpose of this part of the study, no initial loading condition is considered 

(𝑃0 = 0); however, a target load larger than the expected buckling capacity of the model is 

applied. The peak load proportionality factor (λ) occurring right before the first sudden drop 

in the LPF-Arc Length curve is measured and multiplied by the magnitude of the 

corresponding reference load (𝑃𝑟𝑒𝑓) and the calculated value is defined as the nonlinear 

buckling capacity of the structure.  

In Figure 21 (a - n) the results obtained from the finite element Riks Analysis are 

shown; it is noted that all the models show a snap-through unstable post-buckling behavior 

as anticipated; confirming the consistency with the assumptions initially made. 
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(a) Model 1 

 
(b) Model 2 

 
(c) Model 3 

 
(d) Model 4 

 

Figure 28. Results obtained from FE Static Riks analysis 
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(e) Model 5 

 
(f) Model 6 

 
(g) Model 7 

 
(h) Model 8 

 
(i) Model 9 

 
(j) Model 10 

Figure 28. Results obtained from FE Static Riks analysis, Continued 
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(k) Model 11 

 
(l) Model 12 

 
(m) Model 13 

 
(n) Model 14 

 

Figure 28. Results obtained from FE Static Riks analysis, Continued 

In the case of Model 1, at the time of first drop the magnitudes of load proportionality 

factor and reference pressure are 0.9336 and 70 kPa, respectively resulting in a structural 

buckling capacity of 65.35 kPa. Figure 29 shows the corresponding snap-through failure of 

the structure. 

Using the same approach, the buckling capacity for each of the 13 remaining models 

is calculated and listed in Table 11.   
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Figure 29. Snap-through buckling failure of Model 1 

 

Table 11. Nonlinear buckling capacity (FE) 

Model 
Non-linear Buckling Pressure 

(kPa) 

1 65.35 

2 16.26 

3 74.69 

4 18.67 

5 15.02 

6 11.00 

7 55.30 

8 18.78 

9 15.77 

10 18.07 

11 16.53 

12 20.04 

13 25.94 

14 30.37 

4.5.3   Comparison of results with the ACI formulation 

Once again, in order to validate the FE technique, the obtained results are compared 

with the closed-form solution proposed by Zhargamee and Heger (1983), later adopted by 
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ACI.  

Table 12 lists the results from ACI under the first column and the FE results under 

the second column, while the third column displays the percentage of error between the two 

approaches. In a similar manner, the results are organized with respect to the radius-to-

thickness ratio and presented in Figure 30. 

It is noted that both analytical and numerical strategies have resulted in close 

estimations of critical buckling pressure, achieving an error of less than 1% for Models 1 to 

11. However, for the last three models the error percentage varies between 6% and 11%. 

This discrepancy is attributed again to the arrangement of steel reinforcement in the shell’s 

cross section. As mentioned earlier, these models have two layers of reinforcement instead 

of one, providing greater resistance against buckling and thus a higher buckling capacity.  

Table 12. Nonlinear buckling response (ACI vs. FE) 

Model 

ACI Buckling 

Pressure 

FE Nonlinear 

Buckling Pressure 
Error 

(kPa) (kPa) (%) 

1 65.04 65.35 -0.47% 

2 16.27 16.26 0.06% 

3 74.99 74.69 0.40% 

4 18.75 18.67 0.44% 

5 15.01 15.02 -0.07% 

6 11.03 11.00 0.24% 

7 55.30 55.30 0.00% 

8 18.70 18.78 -0.41% 

9 15.66 15.77 -0.69% 

10 17.95 18.07 -0.67% 

11 16.54 16.53 0.07% 

12 18.84 20.04 -6.38% 

13 23.44 25.94 -10.65% 

14 27.46 30.37 -10.60% 
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Figure 30. ACI vs. FE nonlinear buckling results 

 

Aside from the above mentioned, no other discrepancy was found in the obtained 

results; suggesting that the proposed nonlinear FE model can be considered as an accurate 

representation of the problem.  

4.5.4   Comparison between the bifurcation and snap-through buckling 

response 

In this part of the study, the numerical results obtained through the linear (bifurcation) 

and nonlinear (snap-through) buckling approaches are compared and displayed in Table 13 

and Figure 31. 

It is interesting to note that including the nonlinearity in the analysis of such systems 

has caused a substantial reduction of between 70% and 73% (average of around 72%) in the 

buckling pressure for the models considered in this research.  
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Table 13. Bifurcation vs. Snap-through buckling (FE)  

Model 
 Bifurcation Buckling  Snap-through Buckling Error 

(kPa) (kPa) (%) 

1 233.54 65.35 72% 

2 59.291 16.26 73% 

3 268.9 74.69 72% 

4 68.485 18.67 73% 

5 54.637 15.02 73% 

6 39.949 11.00 72% 

7 201.03 55.30 72% 

8 67.684 18.78 72% 

9 56.111 15.77 72% 

10 64.49 18.07 72% 

11 59.905 16.53 72% 

12 70.584 20.04 72% 

13 86.074 25.94 70% 

14 103.74 30.37 71% 

 

 

Figure 31. Bifurcation vs. Snap-through buckling (FE)  
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It is observed that despite the use of different Radius-to-thickness ratios, the 

difference between linear and nonlinear analysis is constant. This however is the logical and 

expected result, since in all the cases an imperfection corresponding to the size of a 

shallowness parameter of four was used. And since according to Bushnell (1967) the failure 

of the structure occurs in the area of the shell with the imperfection; when using the same 

size, then, similar behavior is expected in all cases. 

4.5.5   Effect of base fixity 

The effect of base boundary condition on the buckling pressure of spherical shells has 

been extensively investigated in the past and the obtained results suggest that the most critical 

case is caused as a result of a shallowness parameter (λ) of 4 and a clamped boundary 

condition. The studies further suggest that for values of λ higher than 5, a simply supported 

boundary condition may lead to lower buckling capacities. However, considering that in this 

case two different λ are involved in the model; the one corresponding the perfect shell and 

the other from the imperfect region; the impact of the boundary conditions on the buckling 

failure of the structure cannot be predicted; since the combined effect of two shallowness 

parameter and different edge conditions have not yet been addressed in previous 

investigations. 

On the other hand, the clamped boundary condition is considered to be the most 

accurate representation of the actual connection between the wall and the roof. However, to 

provide better understanding of the subject, the effect of having different base fixities on the 

buckling capacity of shell structures is investigated in this part.  To do so, models with the 

same exact properties and geometries but hinged base boundary connection are recreated 

and analyzed, and the measured results are compared against those of fixed boundary 

condition in Table 14 and in Appendix A, Figures A. 1-14. 
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Table 14. Effect of base fixity on buckling capacity (FE) 

Model 
 Fixed Base  Hinged Base Error 

(kPa) (kPa) (%) 

1 65.35 64.13 1.87% 

2 16.26 16.28 -0.14% 

3 74.69 73.37 1.77% 

4 18.67 18.72 -0.27% 

5 15.02 15.02 -0.01% 

6 11.00 11.00 0.03% 

7 55.30 55.38 -0.15% 

8 18.78 18.79 -0.09% 

9 15.77 15.75 0.11% 

10 18.07 18.06 0.08% 

11 16.53 16.51 0.09% 

12 20.04 20.02 0.11% 

13 25.94 25.91 0.08% 

14 30.37 30.33 0.13% 

From the table and the graphs, one can notice that there is no consistent pattern in the 

obtained results inferring which type of boundary condition is more critical than the other, 

and indeed, the results are surprisingly close suggesting that the base fixity condition (fixed 

or hinged) has no significant effect on the buckling behavior.   

Additionally, it is noticed that changing the type of boundary condition from fixed to 

hinged does not change the structure's mode of buckling failure, as all models keep their 

unstable snap-through post-buckling behavior. 

On the other hand, the formulation proposed by ACI does not distinguish between 

hinged or fixed boundary conditions and predicts the same buckling capacity for both base 

conditions. Upon examining Figure 32, it can be seen that in most cases a fixed boundary 

condition produces closer results to the ones estimated by ACI. 
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Figure 32. Comparison between ACI and FE for different types of boundary conditions 

Based on the obtained results, it can be concluded that the buckling pressure in 

spherical shell structures is not highly influenced by the boundary condition effects when an 

imperfection corresponding to λ=4 is in place. In the present work a clamped boundary 

condition will be used in the subsequent chapters. 

4.6   Summary 

In this chapter, the buckling capacity of different dome configurations was 

determined under both linear and nonlinear conditions using the finite element technique 

proposed in the previous chapter. The results were later compared with the corresponding 

analytical solution in order to validate the finite element method. At the same time the effects 

of different parameters such as: geometric configuration, reinforcement arrangement, 

imperfection, and base fixity were also addressed. 

At the beginning, 14 different geometric configurations were presented. This was 

achieved by varying the thickness, radius, and angle of the domes providing then a wide 

range of geometries found in practice today. Once the analysis was carried out, it was noted 
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that as expected the lower the radius-to-thickness ratio, the higher the buckling capacity; 

setting a clear behavior with respect to this parameter.  

With regards to the base fixity effect, a nonlinear analysis was performed on all 14 

models using both fixed and hinged restraints at the edge of the dome. No considerable 

difference in buckling response was experienced as a result of eliminating the rotational 

restriction at the base. Overall, there was not a specific pattern associated with the two 

different boundary conditions considered, as in some cases an increase and in others a 

decrease in buckling pressure was observed. However, despite the lack of uniformity in the 

results, a fixed boundary condition is considered adequate for the idealization of the problem 

and will therefore be used in future chapters. 

It was also concluded that placing the steel reinforcement in two layers instead of 

one, despite representing the same area of reinforcement, increases the buckling capacity of 

the structure. Unfortunately, such effect cannot be accurately predicted by the existing 

analytical approach adopted in ACI; however, the Code results were always on the 

conservative side and thus suitable for design purposes.  

It was indicated by Bushnell (1981) and was reaffirmed by Zhargamee (1983) that 

the most critical case corresponded to a spherical shell with a shallowness parameter of 4. 

The validity of this theory was further supported by the results obtained from FE analysis in 

this study. As a result, a shallowness parameter of 4 will be considered in buckling response 

analysis of the models in the following chapters as well.  

For the case of linear buckling, an eigenvalue buckling analysis was performed using 

ABAQUS, considering a linear material, a perfect geometry, small displacements and 

constant thickness, as proposed by Timoshenko (1936). It was observed that numerical 

analysis led to higher results in all cases. This was influenced by the ratio of reinforcement 

considered in the analytical formulation in comparison to the numerical idealization. 

However, despite this slight difference, there was a high level of correlation between the 
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results. The classical buckling equation was also found to always lead to a conservative 

response when dealing with linear conditions. 

On the other hand, the nonlinearity effects due to geometry imperfections and large 

deformations/displacements were also included in analysis of the shells; however, with 

respect to material properties, only a linear elastic behavior was considered. The obtained 

results showed a clear agreement between the numerical and analytical models. As a result, 

the validity of the proposed finite element procedure was verified under both linear and 

nonlinear conditions.  

Comparing the linear and nonlinear analytical formulations, a nearly constant 

average reduction of 72% was observed in the buckling capacity of the models due to 

nonlinearity effects; indicating once again the large disagreement between the two strategies. 

However, comparing these results with the obtained FE numbers show that each formulation 

is accurate under its own terms. But then again, it should be made clear that the classical 

buckling equation does not represent the reality of the behavior of such structures, unlike the 

formulation by Zarghamee (1983) better describing the actual buckling behavior of the shell 

and also agreeing well with both experimental and FE results.  
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CHAPTER 5                                                                                                                         

BUCKING RESPONSE OF SPHERICAL SHELLS SUBJECTED TO 

EARTHQUAKE LOADING 

5.1   Introduction 

In this chapter, the buckling response of spherical shells under seismic loading is 

analyzed using the finite element technique verified in previous chapters. However, this time 

new procedures are also incorporated into the analysis for the determination of seismic 

effects.  

The main objective of this chapter is not only to study the buckling of spherical shell 

structures subjected to general earthquake loading, but first and foremost, to specifically 

focus on the effect of its horizontal component. To this effect, the analysis is carried out in 

two parts; first, where only the vertical earthquake component is applied in combination with 

the self-weight of the shell; and second, considering the same loading conditions but this 

time adding the horizontal component as well. Once the results from both parts are obtained, 

they can be analyzed and compared with each other, taking into consideration the influence 

that other parameters could also have on the response. 

However, prior to this, the respective seismic loading to be applied to the structure 

should be first determined, for which the response spectrum analysis proposed by ASCE7-

10 is considered suitable. For the purpose of spectral analysis, the first challenge is to obtain 

the fundamental frequency of the structure. To this end, there has been a number of analytical 

solutions for this particular type of structure; however, in these formulations the effect of 

imperfection is not included. As previously discussed such effect can represent an important 

contribution to the response and neglecting that may result in large discrepancies. Therefore, 

once again, finite element method as a useful tool capable of providing a precise solution to 

this problem is employed. The method allows to perform a free vibration analysis and obtain 
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the natural frequency of complex configurations, needed for the subsequent determination 

of the horizontal seismic loading.  

The vertical component is determined in accordance with both ASCE7-10 and 

ACI372R-13. Since the definition of vertical component is different in each case, two 

different Eh/Ev ratios are found, implying different levels of participation of horizontal 

component. This represents a new factor of interest to be studied through this research.  

Finally, the second focus of this chapter is to determine the accuracy of ACI approach 

when considering the seismic effects. To this end, the buckling capacity under seismic action 

estimated by the proposed finite element method is compared with that from the analytical 

formulation proposed by ACI.  

5.2   Natural frequency extraction  

As it is known, the fundamental frequency of a structure corresponds to the lowest 

natural frequency that the structure could experience. In this study, the extraction of these 

frequencies is necessary for each model, in order to determine the corresponding maximum 

spectral response acceleration of the structure.  

In the literature, there are diverse formulations proposed to determine this frequency; 

however, neither of them takes into account the imperfection in the structure, which, as 

explained before can highly influence the results obtained. In this study, the extraction of the 

fundamental frequencies of the imperfect domes has been made possible using the FEA 

software, ABAQUS and through its powerful analysis module called FREQUENCY. 

The module offers a linear perturbation procedure that is capable of solving the 

eigenvalue problem for symmetric mass and stiffness matrices; obtaining for each case the 

frequency and its corresponding mode shape. A classical eigenvalue undamped finite 

element model is represented by the following equation: 
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 (−𝜔2 [M] + [K]) λ = 0 
 

(43) 

Where, [M] represents the mass matrix, [K] the stiffness matrix, 𝜔 the frequencies 

and λ the eigenvector or mode of vibration. ABAQUS proposes different types of methods 

to solve this formulation: Lanczos, Automatic Multi-level Substructuring (AMS), and 

Subspace iteration. For this investigation, the Lanczos eigensolver is selected, since it is a 

faster solver for systems with many degrees of freedom. The obtained free vibration FE 

results are listed in Table 15 for the 14 models discussed in previous chapters: 

Table 15. Free vibration analysis results 

Model 
Fundamental Frequency 

(1/s) 

Fundamental Period 

(s) 

1 15.091 0.066 

2 7.459 0.134 

3 16.161 0.062 

4 7.993 0.125 

5 5.324 0.188 

6 4.577 0.218 

7 10.221 0.098 

8 6.777 0.148 

9 5.753 0.174 

10 6.071 0.165 

11 4.864 0.206 

12 4.117 0.243 

13 3.561 0.281 

14 3.122 0.320 

As expected the domes with larger mass and higher rise produce higher periods and 



87 

 

consequently lower frequencies.  

5.3   Horizontal component of earthquake 

To determine the magnitude of the horizontal component of earthquake, the Code 

ASCE 7-10 is used.  

Initially the site class and the location are selected in order to obtain the corresponding 

seismic parameters. Site class D is assumed as suggested by ASCE for the case where there 

is no geotechnical study available; while Missouri is the location assumed for the study as it 

is classified as one of the highest seismic zones in the USA according to the national seismic 

hazard mapping project website. 

According to these assumptions and using the seismic hazard mapping project 

website, the values of Ss and S1 are determined as 2.74 and 1.084, respectively. Since the 

current investigation is not focused on the design of the structure, the values of I=1 

(Importance Factor) and R=1 (Response modification factor) are chosen for the spectral 

analysis. 

The design spectral response acceleration 𝑆𝑎 is determined as follows as per ASCE 

7-10: 

For 𝑇 < 𝑇0 𝑆𝑎 = 𝑆𝐷𝑆 (0.4 + 0.6
𝑇

𝑇0
) (44) 

For 𝑇0 < 𝑇 ≤ 𝑇𝑆 𝑆𝑎 = 𝑆𝐷𝑆 (45) 

For 𝑇𝑆 < 𝑇 ≤ 𝑇𝐿 
𝑆𝑎 =

𝑆𝐷1

𝑇
 

(46) 
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For 𝑇 > 𝑇𝐿 
𝑆𝑎 =

𝑆𝐷1𝑇𝐿

𝑇2
 

(47) 

Where,  

SDS = 
2

3
F𝑎 S𝑠 = Design spectral response acceleration parameter at short periods 

SD1 = 
2

3
F𝑣 S1 = Design spectral response acceleration parameter at 1-s period 

T = Fundamental period of the structure, s 

T0 = 0.2
S𝐷1

S𝐷𝑆
 (s)  

TL = Long-period transition period (s)  

 T𝑆 =
S𝐷1

S𝐷𝑆
 (s)  

S𝑠 = Mapped MCE spectral response acceleration at short periods  

S1 = Mapped MCE spectral response acceleration at 1-second period  

F𝑎 = Short-period site coefficient (at 0.2 second period) 

F𝑣 =Long-period site coefficient (at 1.0 second period) 

The coefficients S𝑠 , S1, F𝑎 and F𝑣 are determined in accordance with ASCE7-10. 

Figure 33 shows the design response spectrum used to determine the horizontal acceleration 

of the models, and Table 16 presents a summary of the parameters used for this analysis. 
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Figure 33. Design response spectrum (Adapted from ASCE7-10) 

 

Table 16. Summary of response spectrum parameters 

Mapped acceleration parameters 

Ss = 2.74 g 

S1 = 1.08 g 

Site coefficients 

Fa = 1.00 g 

Fv = 1.50 g 

Design spectral acceleration parameters 

SDS = 1.83 g (Missouri) 

SD1 = 1.08 g 

Periods 

To = 0.12 s 

Ts = 0.59 s 

TL = 12.00 s 
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Presented in Figure 34 is the response spectrum used in analysis, developed in 

accordance with the procedure explained above. 

 

Figure 34. Response spectrum used in analysis for horizontal component of earthquake 

Once the response spectrum is developed and the fundamental period is found, it is 

possible to determine the corresponding maximum acceleration of the studied structure. This 

can be done by entering into the graph (Figure 34) the calculated period and obtaining the 

corresponding acceleration value; equivalently, equations 44 to 47 can also be used. 

For instance, the fundamental period for the first model is 0.066s; since it is lower 

than T0, equation 44 shall be used, resulting in: 

𝑆𝑎 = 1.83 (0.4 + 0.6
0.066

0.12
) = 1.34 (𝑔) 

A similar procedure is used for the other 13 models. Table 17 summarizes the results 
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obtained. 

Table 17. Spectral accelerations corresponding to the horizontal earthquake component 

Model 
Period 

(s) 

Sa 

(g) 

1 0.066 1.34 

2 0.134 1.83 

3 0.062 1.30 

4 0.125 1.83 

5 0.188 1.83 

6 0.218 1.83 

7 0.098 1.63 

8 0.148 1.83 

9 0.174 1.83 

10 0.165 1.83 

11 0.206 1.83 

12 0.243 1.83 

13 0.281 1.83 

14 0.320 1.83 

It is noted that most of the models experience the maximum possible acceleration for 

the chosen site class and location; only three of them are subjected to lower values, due to 

the short periods associated with their response. 

5.4   Vertical component of earthquake 

In general, the design of a structure is primarily affected by the horizontal component 

of earthquake and there are many occasions when it comes to the design of typical structures 

in which the effect of vertical component is neglected since it is usually of little significance 

in terms of the resultant force and deflection. Despite this being often the expected behavior 

in most structures, for spherical shells the opposite occurs; since it is the vertical component 
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that impacts the design of this type of structures most.  

The most common design practice, also adopted by ACI372R-13, recommends the 

vertical response spectral acceleration to be two third of the horizontal acceleration of the 

generic Design Basis Earthquake (DBE) spectrum at the corresponding frequencies with the 

exception of the site specific hazard; equaling to 2/3 SDS in the case of this study.  

On the other hand, ASCE7-10 suggests the use of a lower factor to account for the 

effects of vertical ground acceleration, addressing determination of the vertical response 

spectrum as only 20% of the horizontal response spectrum (0.2 SDS).  

As noted above, the first practice promotes a higher participation of the vertical 

component, making the horizontal component 1.5 times the vertical component; while for 

the second one, the horizontal component could be up to 5 times larger than the vertical 

component.  

The corresponding vertical acceleration according to each practice is summarized in 

the following table: 

Table 18. Effect of vertical earthquake component  

ACI 372R-13 ASCE 7-10 

𝐸𝑉 = 2
3⁄ 𝑆𝐷𝑆 = 1.22 (𝑔) 𝐸𝑉 = 0.2𝑆𝐷𝑆 = 0.37(𝑔) 

5.5   Finite element modeling  

Taking into account the aforementioned models, with the specified geometries and 

properties, the seismic analysis is carried out in this step.  

First, an initial step is set up accounting for only the self-weight of the structure. To 

this effect, ABAQUS proposes an analysis module called “Static General”, which is intended 

for such simple general cases.  



93 

 

As mentioned before, the standard implicit (static) analysis is used in this study 

instead of the explicit dynamic analysis. In a standard implicit analysis a set of equilibrium 

static equations should be satisfied at each time increment before proceeding to the next. In 

this type of analysis, a time period for load application maintaining consistent and accurate 

predictions should be selected. In the same way, an amplitude for load increment should be 

also specified. For the purpose of this research, the load is input as a linear ramp from zero 

to its maximum value in a total step time of 1.0 second. 

On account of the type of loading, ABAQUS offers different options for the 

consideration of the self-weight of the structure; since all of them are equally accurate for 

this type of problem, only as a matter of preference, the dead load is applied as body force 

in the gravity direction, as shown in Figure 35.  

Once the effect of self-weight is fully taken into account; the seismic load is to be 

applied to the model. This requires the creation of a new step using a Static-Riks procedure, 

in which the initially applied conditions of the elements will be continued until one or more 

of the elements are going to fail (buckle) under the given conditions and as a result of 

continuously increasing the load.  

In order to analyze the effect of the horizontal component of earthquake on the 

buckling response of spherical shells, it is imperative to divide the problem into two stages: 

first, to estimate the buckling capacity under the pure vertical seismic action; second, to 

analyze the buckling response of the structure under the combined effect of horizontal and 

vertical components, simultaneously acting on the structure. 

For this purpose; in both cases, a uniformly distributed pressure equal to one is 

applied in Y direction (gravity) as a representation of the vertical earthquake excitation. 

While, for the case of horizontal component, a surface traction proportionally adjusted 

according to the Eh/Ev ratio stated previously under section 5.4 is applied in X direction. As 

explained before, this ratio could be different depending on the Code to be applied and the 
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frequency characteristics of each model to be analyzed. A summary of the corresponding 

seismic loading data is shown in Table 19 for each model and Code case. 

 

Figure 35. Self-weight loading of the dome  

 

Table 19. Seismic loading data for FE analysis (horizontal and vertical excitation)  

Model 
Ev 

(kN/m2) 
Eh (kN/m2) 

ASCE7-10 ACI372R-13 

1 1.000 3.675 1.102 

2 1.000 5.000 1.500 

3 1.000 3.564 1.069 

4 1.000 5.000 1.500 

5 1.000 5.000 1.500 

6 1.000 5.000 1.500 

7 1.000 4.473 1.342 

8 1.000 5.000 1.500 

9 1.000 5.000 1.500 

10 1.000 5.000 1.500 

11 1.000 5.000 1.500 

12 1.000 5.000 1.500 

13 1.000 5.000 1.500 

14 1.000 5.000 1.500 
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5.6   Finite element results  

 To evaluate the effect of the horizontal component of earthquake on the buckling 

failure of spherical shells, a comparative analysis between the results obtained for the two 

cases of pure vertical (EV) and combined horizontal and vertical (EV+EH) seismic action is 

carried out.  

Table 20 and Figure 36 show a summary of the results obtained under loading 

conditions prescribed in ACI372R-13. A consistent trend can be observed in the obtained 

results, as including the horizontal loading has resulted in a reduction in the buckling 

capacity of the models in all cases. However, such effect is quite negligible, not more than 

0.50% assuming the ACI372R-13 seismic loading scenario.  

 

Table 20. Buckling pressure from FEA under seismic action (ACI372R-13) 

Model 

Buckling Pressure 

EV 

Buckling Pressure 

EV+EH 
Error 

(kPa) (kPa) (%) 

1 64.65 64.54 -0.18% 

2 16.18 16.17 -0.10% 

3 74.21 74.10 -0.16% 

4 18.68 18.65 -0.14% 

5 14.96 14.93 -0.19% 

6 10.96 10.94 -0.18% 

7 54.86 54.65 -0.37% 

8 18.78 18.77 -0.08% 

9 15.84 15.78 -0.37% 

10 18.06 18.02 -0.21% 

11 16.61 16.58 -0.18% 

12 20.27 20.20 -0.35% 

13 25.96 25.86 -0.40% 

14 30.83 30.70 -0.42% 
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Figure 36. Buckling pressure from FEA under seismic action (ACI372R-13) 
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Table 21. Buckling pressure from FEA under seismic action (ASCE7-10) 

Model 

Buckling Pressure 

EV 

Buckling Pressure 

EV+EH 
Error 

(kPa) (kPa) (%) 

1 64.65 63.40 -1.97% 

2 16.18 15.83 -2.26% 

3 74.21 72.95 -1.74% 

4 18.68 18.20 -2.63% 

5 14.96 14.65 -2.08% 

6 10.96 10.79 -1.59% 

7 54.86 52.57 -4.36% 

8 18.78 18.35 -2.38% 

9 15.84 15.50 -2.19% 

10 18.06 17.65 -2.29% 

11 16.61 16.24 -2.26% 

12 20.27 19.80 -2.39% 

13 25.96 25.27 -2.74% 

14 30.83 29.94 -2.97% 

 

 
Figure 37. Buckling pressure from FEA under seismic action (ASCE7-10) 
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Table 22. Models sorted by error percentage  

Model R/t Span : Rise 
Error (%) 

EV vs. EV+EH 

7 388 10 4.36% 

14 551 8 2.97% 

13 597 8 2.74% 

4 667 13 2.63% 

12 665 8 2.39% 

8 668 10 2.38% 

10 682 8 2.29% 

11 710 8 2.26% 

2 716 14 2.26% 

9 730 10 2.19% 

5 746 13 2.08% 

1 358 14 1.97% 

3 334 13 1.74% 

6 870 13 1.59% 

The above results suggest that the reducing effect of the horizontal component on 

buckling capacity is higher for the cases with lower radius-to-thickness ratios; consequently, 

as the ratio increases the difference between the two sets of data becomes smaller. Regarding 

the effect of the span-to-rise ratio, no clear trend can be identified; however, as a general 

tendency, it can be stated that lower span to rise ratios could potentially result in higher errors.  

As an exception to the above general rule, one can notice that despite having the two 

lowest radius-to-thickness (R/t) ratios, Models 1 and 3 are not highly influenced by the effect 

of horizontal component on their buckling capacity, as expected. This can be justified by the 

fact that these models have at the same time the two highest span-to-rise ratios, suggesting 

that this factor can be as much effective as R/t.  

In general, in all considered cases, the effect of the horizontal component is 

noticeable in the measured FE results; however, it is important to emphasize that the 

deviation between the buckling capacity values calculated with and without this component 

becomes greater when higher ratios of EH/EV are considered, otherwise, the change in the 
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results is almost imperceptible. 

5.7   Comparison of FE results with current practice 

In order to determine the accuracy of current practice in predicting the buckling 

failure of spherical shell structures, the results previously obtained are now compared with 

the analytical results proposed by ACI.  

Table 23 and Figure 38 show the comparison of results between FEA and ACI 

obtained under the pure vertical seismic action. It can be noted from the table that the average 

error estimated is found to be around 0.60% for all models with the exception of the last 3 

models where two layers of rebar are incorporated, resulting in considerably higher average 

error of 10.20%. 

It is noted that in some of the models with higher span-to-rise ratios, the FE results 

are lower than those of ACI leading to an unconservative design; however, this difference is 

negligible, and is not considered a risk to the structural safety when it comes to design. 

 
Figure 38. ACI vs. FE results under pure vertical seismic action  
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Table 23. ACI vs. FE results under pure vertical seismic action 

Model R/t Span : Rise 

Buckling Pressure 

ACI 

Buckling Pressure 

FE 
Error 

(kPa) (kPa) (%) 

1 358 14 65.04 64.65 0.60% 

2 716 14 16.27 16.18 0.53% 

3 334 13 74.99 74.21 1.03% 

4 667 13 18.75 18.68 0.37% 

5 746 13 15.01 14.96 0.36% 

6 870 13 11.03 10.96 0.66% 

7 388 10 55.30 54.86 0.80% 

8 668 10 18.70 18.78 -0.44% 

9 730 10 15.66 15.84 -1.17% 

10 682 8 17.95 18.06 -0.60% 

11 710 8 16.54 16.61 -0.44% 

12 665 8 18.84 20.27 -7.58% 

13 597 8 23.44 25.96 -10.75% 

14 551 8 27.46 30.83 -12.27% 

 

A similar analysis is carried out under the combined action of vertical and horizontal 

earthquake components; assuming both ACI372R-13 and ASCE7-10 criteria.  

From Table 24 and Figure 39, it can be observed that in the case of the first loading 

condition (ACI372R-13), in general the difference between analytical and numerical results 

is slightly lower under the combined action than what obtained previously under the pure 

vertical action; measuring an average difference of around 0.66% without taking into account 

the last three models. For the last three models alone an average difference of 9.70% is 

obtained.  
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Table 24. ACI vs. FE results under combined seismic action (seismic loading as per ACI372R-13) 

Model 

Buckling Pressure 

ACI 

Buckling Pressure 

FE 
Error 

(kPa) (kPa) (%) 

1 65.04 64.54 0.78% 

2 16.27 16.17 0.63% 

3 74.99 74.10 1.19% 

4 18.75 18.65 0.51% 

5 15.01 14.93 0.55% 

6 11.03 10.94 0.84% 

7 55.30 54.65 1.17% 

8 18.70 18.77 -0.37% 

9 15.66 15.78 -0.80% 

10 17.95 18.02 -0.39% 

11 16.54 16.58 -0.26% 

12 18.84 20.20 -7.21% 

13 23.44 25.86 -10.31% 

14 27.46 30.70 -11.80% 

The results given in Table 25 and Figure 40 show that assuming the second loading 

condition (ASCE7-10), the results obtained from FEA for all the models with a single layer 

of rebar are lower than the Code estimations, reaching difference percentages of up to 5% in 

some cases. Such trend indicates that considering ASCE7-10 seismic loading condition can 

lead to an overestimation of buckling capacity by the Code which can in turn yield an 

unconservative design of such structures under combined seismic effects. However, since the 

error is still fairly small (not more than 5%), the Code safety factors considered as a 

compromise between precision and simplicity are deemed enough to compensate for this 

shortfall. 

On the other hand, it can be noticed that the difference between FE and ACI results 

in the case of last three models is reduced as a consequence of the addition of the horizontal 

component of earthquake. Furthermore, for these three models the buckling capacity 

estimated numerically is higher than the ACI proposed value, in turn leading to conservative 

results.  
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Figure 39. ACI vs. FE results under combined seismic action (seismic loading as per ACI372R-13) 

 

Table 25. ACI vs. FE results under combined seismic action (seismic loading as per ASCE7-10) 
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3 334 13 74.99 72.95 2.72% 
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6 870 13 11.03 10.79 2.21% 

7 388 10 55.30 52.57 4.94% 
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9 730 10 15.66 15.50 0.99% 
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11 710 8 16.54 16.24 1.78% 

12 665 8 18.84 19.80 -5.07% 

13 597 8 23.44 25.27 -7.80% 

14 551 8 27.46 29.94 -9.04% 
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Figure 40. ACI vs. FE results under combined seismic action (seismic loading as per ASCE7-10) 
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factors, made the creation of the response spectrum possible. This in conjunction with the 

fundamental frequencies previously found, allowed the determination of the corresponding 

horizontal spectral acceleration for each model. 

 While for the case of the vertical component, two design methods were used; the one 

proposed by ACI, corresponding to 2/3Sds and the other suggested by ASCE, equal to 0.2Sds. 

The use of these two different criteria, results in two different Eh/Ev ratios, establishing, 

therefore, different levels of participation of horizontal component; a factor that was 

considered later in the analysis.  

These two seismic components, were later applied to the structure as static loading; 

however, as previously explained, since the Static Riks procedure was used, these loads kept 

increasing in accordance with the Load Proportionality Factor (LPF) until the maximum 

capacity of the structure was reached. Finally, the critical buckling pressure was found as 

the maximum pressure before the sudden failure of the structure. The results were then 

computed for two specific cases: first, under the pure vertical component, and second under 

the combined effect of horizontal and vertical components.  

Comparing the results showed that the inclusion of the horizontal component always 

led to lower buckling capacities. On the one hand, in the cases where ACI loading condition 

was used, the maximum error found was only 0.42%. While in the cases where ASCE 

loading criterion was applied, a higher difference was shown, resulting in error percentages 

in the range of 1.59% to 4.36%. The results further demonstrated that the higher the 

participation of the horizontal component, the lower the buckling capacity of the dome.   

When organizing the results in accordance with the error obtained, it was observed 

that the effect of the horizontal component was also influenced by the radius-to-thickness 

ratio used. Generally speaking, lower ratios led to higher differences, and therefore, lower 

buckling pressures. In summary, the buckling capacity of a spherical shell is always reduced 

due to the effect of the horizontal earthquake component; however, the magnitude of this 
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reduction is highly influenced by the level of participation of this component and the 

geometrical configuration of the structure.  

Finally, the FE results previously obtained were later compared with the ACI 

analytical solution; revealing that ACI is overestimating the buckling capacity of the 

structure in most of the cases, reaching a 4.94% difference when ASCE earthquake loading 

criterion is considered. While in the cases where the vertical component is measured 

according to ACI372R-13, this difference decreases to a maximum of 1.19%, making ACI 

in some cases a more conservative approach.  

On another matter, once again placing the reinforcement in two layers instead of one 

is shown to have a significant effect on the buckling capacity of the structure. In the last 

three models with two layers of reinforcement, despite noting some reduction in the buckling 

capacity due to the effect of horizontal component, the results proposed by ACI Code are 

still on the conservative side when comparing with the numerical ones.  
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CHAPTER 6    

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1   Summary 

The main objective of this investigation was to analyze the effect of the horizontal 

component of earthquake on the buckling failure of concrete spherical shells. To this effect, 

a deep understanding of the behavior of shells, as well as the theories that predict their failure 

were required in advance.  

According to the previous investigations; due to the geometry of the spherical shells, 

the type of failure that these structures experience is an instability failure and not a material 

one; therefore, their behavior will be controlled by their buckling capacity. To this effect, 

several formulations were proposed to predict this failure; the most commonly known is the 

“Classical buckling equation” proposed by Timoshenko. However, this formulation was 

limited to a linear analysis, which resulted in a type of failure commonly known as 

“bifurcation buckling”.  

Further investigations proved that this type of buckling was only achieved if the 

structure was geometrically perfect and where the effect of edge condition was ignored; 

which is not usually a real case scenario. Therefore, Zarghamee and Heger (1983), later 

proposed a formulation that considered a more realistic solution, and closely predicted the 

snap-through buckling of spherical shells. Considering its accuracy, ACI adopted the 

formulation for the roofing design of Circular Wire and Strand-Wrapped Prestressed 

Concrete Structures in ACI373R-13 code. They adjusted this formulation, in order to include 

the effect of the vertical component of earthquake; however, as observed in the equation the 

horizontal component was neglected from the design.  

For this reason and given that little or no information is found with respect to this 

effect, the aim of this investigation is to analyze the effect of the horizontal seismic excitation 
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on dome structures, in order to provide a better understanding of this effect and more 

available data for future designs. 

To analyze the buckling behavior of such a complex problem, a numerical technique 

was first developed to analyze simple cases; and once its accuracy was verified, the 

procedure was applied in the analysis of more complicated cases. In this vein, the finite 

element software ABAQUS was selected, using which both linear and nonlinear buckling 

analyses were made possible. For the first one, an eigenvalue bifurcation routine was 

implemented; while for the second case, a static Riks substep was employed.  

After obtaining the buckling pressure for each case, the results were compared with 

the corresponding analytical formulation. The comparison showed that the developed finite 

element technique was quite accurate, since the numerical results were in good agreement 

with those obtained from the analytical solution.  

However, in the cases where two layers of rebar were used, greater differences 

between the numerical and the analytical formulation were constantly found, since the 

analytical formulation does not take that into account this condition.  

Once the accuracy of the proposed finite element technique was verified, the models 

were analyzed under the seismic loading effects. In this manner, a free vibration analysis 

was performed in order to obtain the natural frequency of the structure. Using this and the 

response spectrum from ASCE, the corresponding horizontal acceleration for each model 

was found. 

While, for the vertical component of earthquake, the formulations proposed by ACI 

372R-13 and ASCE 7-10 were used, as a result of which two levels of relative participation 

for the horizontal component of earthquake were obtained. 

Initially, the structure was analyzed under the effect of the pure vertical loading; once 

the buckling failure was obtained, the horizontal component was introduced into the analysis 
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and the results for the two cases were compared.  

These results showed that despite the level of participation of the horizontal 

component of earthquake, a reduction in the buckling capacity of the structure was 

constantly found when comparing with the results under pure vertical loading.  

Finally, the buckling pressure obtained from the numerical analysis was compared 

with ACI solution and was shown that in most cases the Code lightly overestimated the 

buckling capacity of the structure.  

6.2   Conclusions 

In this study the effect of the horizontal component of earthquake on the buckling 

response of spherical shells was investigated. Based on the results obtained, the following 

conclusions are made: 

1. The proposed FE method provides a good agreement with the analytical results in 

both linear and nonlinear cases. Therefore, this method could be used in future 

investigations. 

2. Comparing the snap-trough buckling (nonlinear analysis) with the bifurcation 

buckling (linear analysis), a reduction of around 72% in the buckling capacity is 

always found; in agreement with the conclusions of previous research. 

3. In accordance with previous investigations, an imperfection with a shallowness 

parameter of four results in the most critical buckling case scenario. 

4. Generally the buckling capacity of spherical shells fixed at the base are lower 

compared to those that are pinned; however, this is not true in all cases. The obtained 

difference between the two cases is negligible suggesting that such effect is not of 

much significance.   
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5. Including two layers of rebar result in a significant increase in the buckling pressure. 

Although the results obtained from the ACI formulation are on conservative side, it 

is not accurate in the estimation of buckling capacity of double layered reinforced 

concrete domes.  

6. Considering the combined effect of the horizontal and vertical components of 

earthquake, it is concluded that including the horizontal component leads to a 

reduction in the buckling capacity; however, the impact of this reduction is highly 

influenced by the Eh/Ev ratio assumed. 

7. ACI372R-13 and ASCE7-10 propose different formulations for considering the 

contribution of vertical earthquake forces, the first one results in lower Eh/Ev in 

comparison with the second one. The results obtained under both conditions 

consistently indicate that there is always a reduction in the buckling pressure; 

however, this reduction only becomes significant when relatively higher Eh/Ev ratios 

are considered; as is the case in ASCE7-10.  

8. The effect of the horizontal component of earthquake on the buckling capacity of the 

dome structure increases as the radius-to-thickness ratios decreases; a similar 

behavior is also observed for low dome rise/base diameter ratios; however, since in 

the case of this study they are linked in most of the cases to low radius to thickness 

ratios, no conclusive finding is obtained with regards to the effect of this parameter. 

9. According to the cases studied and the results obtained, the inclusion of the 

horizontal component of earthquake could lead to a reduction of up to 4.36% in the 

buckling capacity of the structure.  

10. In general, ACI372R-13 provides a good estimation of the buckling pressure of 

spherical shells; however, it is observed that the results obtained by this formulation 

are slightly overestimating the buckling capacity, especially in the cases where the 
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effect of horizontal component of earthquake is taken into account, in which a 

maximum difference of 4.94% is obtained.  

6.3   Recommendations for future studies 

Based on this research study, some suggestions for further research on the effect of 

the horizontal component of earthquake on the buckling of spherical shells are presented 

below: 

1. The dynamic response of spherical shells under the combined effect of vertical and 

horizontal acceleration can be further studied, in order to resemble as much as 

possible the reality of the seismic forces. 

2. The effect of including the wall and its connections to the roof can be investigated in 

further researches. Different types of fixities can be studied as well. 

3. The effect of material nonlinearity including reinforcement yielding, concrete 

cracking and crushing as well as creep in concrete can be incorporated in future 

investigations. Even though, the buckling is expected to happen at nominal stresses 

far below yielding, it is known that the creep could have a substantial effect on the 

buckling behavior.  

4. The fabrication and testing of small samples is suggested to be analyzed in a future 

research in order to support the numerical results obtained.  
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APPENDIX A: COMPARISON BETWEEN FIXED AND HINGED 

BOUNDARY CONDITIONS 

 

Figure A. 1 Comparison of boundary conditions – Model 1 

 

Figure A. 2 Comparison of boundary conditions – Model 2 
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Figure A. 3 Comparison of boundary conditions – Model 3 

  
Figure A. 4 Comparison of boundary conditions – Model 4 
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Figure A. 5 Comparison of boundary conditions – Model 5 

 

Figure A. 6 Comparison of boundary conditions – Model 6 
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Figure A. 7 Comparison of boundary conditions – Model 7 

 

 

Figure A. 8 Comparison of boundary conditions – Model 8 
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Figure A. 9 Comparison of boundary conditions – Model 9 

 

 

Figure A. 10 Comparison of boundary conditions – Model 10 
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Figure A. 11 Comparison of boundary conditions – Model 11 

 

 

Figure A. 12 Comparison of boundary conditions – Model 12 
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Figure A. 13 Comparison of boundary conditions – Model 13 

 

 

Figure A. 14 Comparison of boundary conditions – Model 14 
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APPENDIX B: INPUT FILE OF MODEL 2 

In this appendix, the ABAQUS input file for the seismic analysis of model 2 is 

presented. The mentioned parameters are defined as follows: 

S4R: Four-node shell element with reduced integration 

DL: Dead Load 

Eq-H: Horizontal component of Earthquake 

Eq-V: Vertical component of Earthquake 

RebarOri-1: Cylindrical orientation of rebar 

Section-1: Entire structure 

Part-1-1.Base: Edge of the spherical shell  

The input file considering the combined effect of the vertical and the horizontal 

component of earthquake for model 2 is given below: 

** Job name: DL Model name: Model-2 

*Preprint, echo=NO, 

** Generated by: Abaqus/CAE 2016 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Part-1 

** Section: Section-1 

*Shell Section, elset=_I1, material=Concrete 

0.076, 5 
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*Rebar Layer, geometry=angular, orientation=RebarOri-1 

Meridional, 0.000129, 2.43, 0., Rebar, 0., 1 

*Rebar Layer, geometry=constant, orientation=RebarOri-1 

Circumferential, 0.000129, 0.65, 0., Rebar, 90., 1 

** Region: (Section-1:Picked), (Controls:EC-1) 

*Elset, elset=_I2, internal 

** Section: Section-1 

*Shell Section, elset=_I2, material=Concrete, controls=EC-1 

0.076, 5 

*Rebar Layer, geometry=angular, orientation=RebarOri-1 

Meridional, 0.000129, 2.43, 0., Rebar, 0., 1 

*Rebar Layer, geometry=constant, orientation=RebarOri-1 

Circumferential, 0.000129, 0.65, 0., Rebar, 90., 1 

*End Part 

**   

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=Part-1-1, part=Part-1 

*End Instance 

**   

*Nset, nset=Set-1, instance=Part-1-1, generate 
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    1,  3097,     1 

*Elset, elset=Set-1, instance=Part-1-1, generate 

*Surface, type=ELEMENT, name=Surf-1 

_Surf-1_SPOS, SPOS 

*End Assembly 

**  

** ELEMENT CONTROLS 

**  

*Section Controls, name=EC-1, second order accuracy=YES 

1., 1., 1. 

**  

** MATERIALS 

**  

*Material, name=Concrete 

*Density 

 2.4, 

*Elastic 

 2.5029e+07, 0.17 

*Material, name=Rebar 

*Density 

 7.85, 

*Elastic 

 2e+08, 0.3 
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**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-1 Type: Displacement/Rotation 

*Boundary 

Part-1-1.Base, 1, 1 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES 

*Static 

1., 1., 1e-05, 1. 

**  

** LOADS 

**  

** Name: DL   Type: Body force 

*Dload 

Set-1, BY, -24.15 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 



122 

 

*Output, field, frequency=0 

*Output, history, frequency=0 

*End Step 

** ---------------------------------------------------------------- 

**  

** STEP: Step-2 

**  

*Step, name=Step-2, nlgeom=YES, inc=150 

*Static, riks 

0.01, 1., 1e-15, 1., ,  

**  

** LOADS 

**  

** Name: Eq-H   Type: Surface traction 

*Dsload, op=NEW, follower=NO, constant resultant=YES 

Surf-1, TRVEC, 1.5, 1., 0., 0. 

** Name: Eq-V   Type: Surface traction 

*Dsload, op=NEW, follower=NO, constant resultant=YES 

Surf-1, TRVEC, 1., 0., -1., 0. 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 
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**  

** FIELD OUTPUT: F-Output-1, F-Output-2 

**  

*Output, field, variable=PRESELECT 

**  

** HISTORY OUTPUT: H-Output-1, H-Output-2 

**  

*Output, history, variable=PRESELECT 

*End Step 
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