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ABSTRACT

The buckling failure of reinforced concrete spherical shell structures under the effect of the
horizontal component of earthquake is investigated using a finite element method over a wide
range of shell configurations. For this effect, two different loading case scenarios are considered;
first, the shell is analyzed under the effects of the vertical seismic component alone. Then, the
model is reanalyzed under the same loading conditions plus the horizontal earthquake component,
taking into account two different horizontal-to-vertical earthquake spectral ratios. It is concluded
that including the horizontal component of earthquake can result in a reduction in the buckling
capacity of this type of structure; the impact of which is highly influenced by the horizontal-to-
vertical earthquake spectral ratio and the shell geometry. It is also observed that the formulation
adopted by ACI slightly overestimates the buckling capacity of spherical shells especially when
horizontal seismic effects are included.
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CHAPTER 1

INTRODUCTION
1.1  Background

Spherical shells, commonly known as domes, have been used around the world for
more than two thousand years. From the Middle East to the Roman Empire, passing through
many other cultures, these structures were used as roofs of their most important buildings,

making them an iconic symbol of the ancient world.

A proof of this is provided by “the Pantheon”, one of the oldest existing structures
which dates back to 126AD. This marvelous structure count with a diameter of 43 meters
and a rise of 22 meters above its base, supported by a series of arches that rested at the same
time on eight piers; the majesty and engineering of this building served as inspiration for the
development of future dome structures. One other good example of the widespread use of
these structures is the “Dome of the Rock” located in Jerusalem, this one originally dates
from 691AD; however, due to the impact of three earthquakes in 808AD, 846AD and
1015AD:; the structure finally collapsed during the last one, being later rebuilt in 1027-1028.
The history of this particular dome shows how durable these structures could be; however,
even if they can provide great resistance; earthquakes always represent an outstanding hazard

that needs to be considered.

As noted, in the beginning the use of this type of structure was mainly oriented to
religious purposes; as they were always associated with some kind of spiritual symbolism.
Nonetheless, later in history, its use was extended to other purposes, since it was
demonstrated that they not only offer mighty architectural configurations, but they were also
highly resistant structures, capable of providing long spans with no intermediate elements,

and a minimum of material.

The resistance of these structures has its origin in their geometry; since, thanks to

1



their configuration, the internal forces of compression and tension are organized in such a
way that they allow the structure to withstand large loads with an optimum performance.
However, like any structure, they do not have an infinite resistance, and once again it is their
geometry, more specifically their thickness, that is the source of their failure. This complexity
in their behavior has led numerous scientists and engineers to perform in-depth analyses in
this area.

Even though these structures have been used for so many years, it was not until during
the last two centuries that formal investigations about their behavior have been developed

and documented, leading to formulations that provide a very close solution to the problem.

As may be seen, it has been a work of almost 200 years that has driven to precise
formulations; however, at the beginning, as in any unknown area, the problem was not
addressed in the correct angle; since the main criteria at the time of designing were based on
the resistance of membrane stresses. Nevertheless, later, the results obtained from
experimental investigations showed that this was not the right approach to analyze these
elements, since the shells were failing under much lower stresses. But, it was not until the
development of the theory of instability, when it was discovered that the failure of these
structures was not related to a material failure, but to an instability problem, which is closely
associated with the stiffness of the structure.

This type of failure that the structures were experiencing according to the theory of
instability, received the name of buckling. Timoshenko (1936), the main author of this
theory, developed along with it, a series of formulations that predicted the buckling failure
of different structures, including that of spherical shells, which is commonly known as the

“classical buckling pressure”.

However, later on, this formulation faced significant criticisms due to the many
simplifying assumptions made in the approach and significant discrepancies with

experimental results; leading later to the development of new formulations proposed by the



same author, and also by many other researchers (Karman and Tsien (1939), Krenzke and
Kiernan (1965), Bushnell (1981), Zarghamee and Heger (1983), among many others)

Since then, a large number of investigations have been carried out in order to redefine
the proposed formulation; one of these many attempts is the formulation proposed by
Zarghamee and Heger (1983). Based on the results of previous investigations along with a
great deal of analytical work of their own, they finally proposed a formulation that could
predict the critical buckling pressure of a spherical cap in good agreement with experimental

results.

As the results obtained were found quite accurate, the American Concrete Institute
(ACI) decided to adopt the same formulation in its ACI-372 (2013) code for the design of
the roof of circular prestressed concrete structures. However, in the estimation of the critical
buckling pressure only the effects of dead load, live load, and vertical component of
earthquake were accounted for and the effect of the horizontal component of earthquake was
totally neglected. On one hand, this could be taken as an appropriate and logical decision;
since, after studying the behavior of this type of structure, it is observed that the main type
of load influencing their behavior is the one perpendicular to the surface; which in this case,
comes from gravitational loads. However, on the other hand, it is known that when an
earthquake strikes a structure, the horizontal component shows large magnitudes, usually

becoming the main perturbation affecting the behavior of the entire structure.

Therefore, as mentioned before, a more detailed analysis of these structures under
the effect of seismic action seems essential; as an overestimation of the structural capacity
could be catastrophic from the design perspective. However, among the many different
investigations performed in the area, little or no information is provided about this particular
issue. For this reason, it is necessary to provide a quantitative answer to this problem in an
effort to verify the assumptions made by ACI and/or provide results that could lead to some

improvements in the proposed formulations.



In this investigation, the finite element technique is used to predict the response of
spherical shells under the influence of the horizontal component of earthquake; in order to
provide some useful information for the development of design guide for dome structures,

and improvement of the current code.
1.2 Objectives and scope

As previously mentioned, there is little information available about the buckling
response of spherical shells under the action of seismic loading; therefore, the general
purpose is to contribute and produce new information that can provide a better understanding

of such an effect.

In the same vein, driven by the lack of information and the assumption of ACI to
neglect the effect of the horizontal excitation of earthquake; the main objective of this study
is then to evaluate the response of these structures under the effect of the horizontal
component of earthquake and determine the accuracy of the design procedure proposed by
ACI.

In order to achieve this main objective, additional steps are also necessary throughout
the process. Prior to the analysis, a proper understanding of the problem is needed along
with a deep comprehension of all the theories that have been developed to evaluate this type
of failure. Once the basis for ensuring a correct analysis has been established, then a finite
element technique must be developed to ensure an adequate idealization of the problem and

consequently accurate results.
In summary, the main objectives of this research are as follows:

1) Propose arigorous finite element (FE) technique capable of accurately predicting

the buckling failure of spherical shells.

2) Verify the proposed FE technique by comparing the numerical results with those



3)

4)

5)

obtained from the analytical solution under both linear and nonlinear buckling

failure conditions.

Understand the effect of a wide range of parameters on the buckling response of
spherical shells, such as: radius-to-thickness ratio, span-to-rise ratio, boundary
conditions, geometric imperfections and rebar arrangement in member’s cross-

section.

Examine the effect of the inclusion of the horizontal component of earthquake on

the buckling behavior of spherical shells with different geometric configurations.

Investigate the validity of ACI approach in estimating the buckling capacity of
concrete spherical shells for design or evaluation purposes by comparing the

results from FE method with those recommended by the code.

On the other hand, the scope of this study is summarized as follows:

1)

2)

3)

4)

The spherical shells are assumed to have either hinged or fixed boundary
condition at their base. The effect of other possible base fixities is not studied

here.

All the loads, including seismic are applied as equivalent static load on the

structure.

The material used is reinforced concrete, defined in accordance with ACI

specifications.

In the FE modeling of the structure, all the materials are assumed as linear static.
Yielding of rebar, cracking/crushing of concrete, and creep effects are not
accounted for.



1.3  Research significance

In this investigation, a FE method is developed to analyze the buckling behavior of
spherical shell structures. The proposed model is verified by observing a strong correlation
with analytical results available in the literature. The resulting numerical model can be used
to analyze not only simple cases but also complex shell problems with a high degree of

precision.

As mentioned before, the buckling failure analysis of concrete spherical shells with
different geometric configurations, boundary conditions and under different load cases is
made possible; as a result of which important conclusions about the buckling behavior of
these structures can be obtained.

One of the parameters that has never been addressed in previous investigations is the
effect of having multiple instead of a single layer of reinforcement on the buckling behavior
of spherical shells; probably because it has not been expected to have considerable effect.
However, since there is little information available regarding this aspect, it is relevant to

address and provide conclusions to it.

The same situation is noticed regarding the effect of base boundary condition in
spherical shells with imperfections. A lot is known about the role having different base
fixities can play in buckling failure of a perfect dome; however, when an imperfection is
included in the geometry, there is not a conclusive theory with respect to the edge conditions.
Therefore, this investigation intends to provide more information in regards to this particular

problem and perhaps a response for future studies.

At the same time, for each case study, both linear and nonlinear analyses are
performed using the developed FE technique, and as previously mentioned, the results are
compared with the current analytical formulations. This not only seeks to verify the

technique used, but also to support the assumptions and conclusions made by the analytical



formulations related to each case.

However, the most important aspect studied in this research is the effect of inclusion
of the horizontal component of earthquake on the buckling behavior of spherical shells.
Given the fact that there is little information on this matter and that the impact this could

have on design is unknown, it is necessary to provide more data on this point.

Additionally, the common practices and current codes, such as ACI 372-13, neglect
the effect of horizontal component of earthquake in the design method of spherical shell
structures. Since this assumption does not have any rationale, it is necessary to provide
further clarifications, in order to verify the accuracy of the current approach to ensure an
accurate and a safe design procedures for these types of structures.

1.4 Thesis layout

This thesis is divided into six chapters, in accordance with the objectives and scope
previously explained. The first chapter presents and gives a general introduction to the
problem, specifying at the same time the objectives and scope of the investigation as well as

a brief explanation of the importance of this research, ending with a description of its outline.

The second chapter, presents a summary of the most important investigations that
have been used for the development of this thesis, as well as an explanation of the most
relevant theories that have also been essential for the understanding of the problem, such as
the theory of thin shells, theory of elastic stability and the classical buckling theory.
Additionally, a summary of the design method proposed by ACI is also described in this
chapter.

Subsequently, Chapter 3 discusses all the aspects of the idealization of the problem,
from a description of the Finite Element Method to the definition of the mesh size for each
one of the models, describing as well, the software and elements used throughout the

investigation.



Chapter 4, initially presents the properties of the models, describing also the
characteristics and conditions under which each case is analyzed. This is followed by an
explanation of the finite element technique used in this specific chapter for the analysis of
the linear and nonlinear buckling failure of the spherical shells, comparing each case with

the classical buckling equation and ACI formulation, respectively.

In Chapter 5, a detailed nonlinear finite element analysis is carried out; starting with
a frequency extraction analysis in order to determine the free vibration dynamics of the
models. After defining the earthquake excitations to be used, finite element analysis is
performed to determine the buckling failure response under two different loading conditions:
1) Pure vertical and 2) Combined vertical and horizontal seismic action. Once the results are

obtained, a comparative study is carried out between them and that of ACI approximation.

To conclude, in Chapter 6, a summary of the entire investigation is presented,
followed by a description of the main conclusions obtained from this study, and lastly some

recommendations for future studies are proposed as well.



CHAPTER 2

LITERATURE REVIEW
2.1 Introduction

In this chapter, a summary of the previously developed theories and investigations

related to this research is presented.

During the first part of this chapter and before delving into the problem, it is necessary
to provide a description of the general behavior of shell elements. Once the basis has been
established, a summary of the theories proposed to predict the behavior is presented, such as
the theory of thin shells and the theory of instability.

Subsequently, the problem is focused on the specific case of spherical shells;
providing first a definition of the behavior of these elements, followed by an explanation of
the evolution of their design. Additionally, the improvements and discoveries that have been
developed over the years to provide a good correlation between the analytical, numerical and

experimental results are also described throughout this chapter.

Finally, the requirements and specifications provided by ACI for the design of these
structures are introduced in the last part of this chapter, together with the assumptions made

for this formulation.
2.2  Classical shell theory

Shells are three-dimensional elements characterized by having one dimension much
smaller than the other two. The main characteristic of this type of element is that it is able to
sustain applied loads by developing membrane in-plane stresses and bending moments at the
same time. However, the formulations to accurately represent this behavior have always
been a complex problem in the mechanics of materials that numerous researchers have

attempted to study for many years.



One of the methods that the researchers have found useful to study these complex
elements is by reducing the general problem to simpler particular cases. In this respect, the
general shell problem is divided according to their thickness, into two categories of shell

elements: thick shells and thin shells.

However, when the formulations for these elements were being developed, in the
beginning, the dividing line between them was not precisely established and therefore, thin
elements were just defined as elements with a thickness-to-length ratio much smaller than
the unity (z/r<<1). This assumption not only represented the divisive parameter, but also the

most important postulate of the theories.

The first theory of thin shells was proposed by Love (1888), based on the principles
proposed some Yyears earlier by Poisson (1827) and Kirchhoff (1859) concerning shells and
elasticity. The main assumption of this theory, as previously stated, is that the thickness is
much smaller in comparison to other dimensions; as a result of which the higher powers of
z/r are immediately neglected, and therefore, the formulation is transformed from a three-
dimensional to a two-dimensional problem that focuses on analyzing the middle surface of
the shell.

The second postulate assumes small strains and displacements, and together with
Hooke’s law (Hooke, 1678) neglects the higher order terms in the formulation, resulting then

in a system described by a set of geometrical linear equations, as follows:

E, E, ° E
1)
sy:&_& S
E, E, E,
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€& == ——0x ——0
* E, E, 7 E 7Y
Tyy Ty Ty
YXy G ) yXZ G ) yz — G )
Xy XZ yZ

According to Figure 1 and the coordinate system described by Billington (1965), €,
&, and g, represent the normal strains in X, Y and Z direction; oy, oy, and o, are the respective
stresses; Ex, Ey and E; describe the tendency of the element to deform along the
corresponding axis known as modulus of elasticity; Gxy, Gxy and Gy represent the shear
modulus or modulus of rigidity, while yyy, ¥z, ¥yz and Ty, Ty, Txy are the corresponding

shear strains and stresses.

Figure 1. Stresses in a shell differential element (Adapted from Billington, 1965)

The third postulate of Love’s theory is an extension of the Kirchhoff’s beam theory.

In this case it similarly states that straight lines that are normal to the middle surface remain

11



normal during the deformation, to this effect, the in-plane displacements should only vary
linearly through the thickness, and therefore, the normal strain components should be
neglected in the formulation. To comply with this assumption in the formulation, the

following relation should be satisfied:

€ =VYxz = Vyz = 0 2)

Finally, consistent with the first assumption, the forth postulate proposes that the

transverse normal stress is negligible as well:

o,=0 3)

The resulting constitutive equations proposed by Love’s theory, are summarized as
follows:

e = Do
X Ey Ey y
0. 12
y yX
g, = —— g 4
y Ey EX X ()
Txy
Yxy = , sz:)/xz:yyz:azzo
ny

In order to use this theory, as mentioned before, the shell should be classified as a
thin shell. Since the author did not specify the definition of a thin shell, numerous limitations
were later established by different other researchers which were not in most cases quite in
line with each other. However, in the absence of a precise definition, Kraus (1967)
recommended as a general rule, to apply this theory only to shells with a thickness smaller

than 1/10 of the main radius of curvature.
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Later, after its publication, the theory received numerous critiques sinc