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Abstract

Membrane structures are an frequently used architectural design element in the modern society

due to their simplicity and elegance. However, these structures require often in their design

process the usage of complicated numerical finite element softwares because of their non-linear

behavior. Written calculations can only be used for the preliminary determination of the re-

quired pretensioning, but not for the whole design process, which includes several different

loading cases. Therefore, this work with the title Membrane Structures - An Introduction and

Manual for the Design-Process of Membrane Structures intends to develop a possible way of

determining stresses in a membrane structure caused by additional loadings.

Inhalt

Membrantragwerke sind wegen ihrer Einfachheit und Eleganz ein gerne genutztes architek-

tonisches Mittel in der Modernen Gesellschaft. Jedoch setzt der Bemessungsprozess durch die

nicht-linearen Eigenschaften, häufig die Nutzung von komplizierten numerischen Finite Element

Programmen voraus. Handrechnungen können nur für die Vordimensionierung der benötigten

Vorspannungen durchgeführt werden, aber nicht für den ganzen Bemessungsprozess mit ver-

schiedensten Lastfällen. Deshalb versucht diese Arbeit mit dem Titel Membrantragwerke - Eine

Einführung und Anleitung für den Bemessungsprozess von Membrantragwerken (engl. Mem-

brane Structures - An Introduction and Manual for the Design-Process of Membrane Structures)

eine mögliche Herangehensweise zu entwickeln, mit der Spannungen in der Membranstruktur

auch für verschiedene zusätzliche Lasten bestimmt werden können.
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1 Introduction

”We try to realize what nature is by studying the self-formation process of large real

objects that can be explained by neither physics nor chemistry alone. We are seeking

the principles of formation.”

- Frei Otto (1925 - 2015) -

The general idea of light-weight structures is to put only the material there, where it is really

required and has a purpose, everything else can be left out. Exactly this is the kind of func-

tional evolution of forms, shapes and structures, can we find everywhere around us in nature.

All different types of living creatures or plants are specialized in their appearance or physical

abilities exactly for their surrounding environment.

As the opening quotation of Frei Otto indicates, he was trying to analyze the capacity of many

natural appearances. He specialized in the topic of light-weight structures. However this work

will solely concentrate on the special topic of membrane structures.

Trying to apply the ideas of nature on membrane structures, one small structure comes practi-

cally naturally to mind: spiderwebs.

Especially the web the of the canopy spider can be seen as a natural example of the simple

shaping of membrane structures (cf. Figure 1-1) as it is spread horizontally in between blades

of grass with developed high- and low-points and flexible edges around the surface. However,

due to the constant force of gravity and lack of additional vertical support, the web sags after

a while and is endangered to break with attacking wind or rain.

(a) Canopy spider web [1] (b) Illustration of a canopy spider web [2]

Figure 1-1: Canopy spider web

Therefore another idea of the nature has to be consulted: for example the wings of flightable

animals, a bat, a bird or even a Pterodactyl. The skin of the wings has to be stabilized to ensure

the continuous and controllable flow of air and wind around them. This stabilization is gained

by the mechanical tensioning of the skin with the help of the skeleton and muscles (see Figure
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1-2). Applying this idea of pretensioning onto a canopy spider web, could stabilize it vertically

for impacts like rain and wind.

Figure 1-2: Assembling of airworthy animals (from top to bottom: Pterodactyl, bat, bird) [3,
p.17]

This leads to the general idea of membrane structures, where the ensemble acting of both,

the shape and pretensioning are an essential part of modern membrane structures and of their

design process. However, more detailed approaches are discussed in the following work.
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2 History of Membrane Structures

This chapter will give a short introduction of the history of membrane structures and then will

move on the the distinctions and divisions of the structure and its influence on the static system.

For about 2000 years the construction with ropes and membranes was limited to temporal con-

structions like tents or shading structures (see Figure 2-1). These buildings had short spans

due to the imitated quality of the used materials, which where e.g. sticks and leather. With

the development of wrought iron in the 19th century those light-weight structures found their

way into architecture and midway through the 20th century the spans were getting large with

the usage of ropes. [4, p.V]

(a) Tipi tent of Native Americans [5] (b) Beduin shading structure [6]

Figure 2-1: Ancient types of membrane Structures

One of the pioneers that developed the type of structures known today was Frei Otto. He

recognized the possibility to describe the shape of membranes by only high- and low-points

with a freely span in between by studying parts of nature like for example a spiderweb. Which

is a perfect natural example of a three-dimensional rope-net. [4, p.V]

He also developed complicated shells by the simple usage of hanging structures. Following the

rule of the principals of ropes, which can only bear tensile stresses, the idea is to flip them by

180°, so that the pure tensile stresses will become pure pressure, without any shear stresses (cf.

Figure 2-2).

Today membrane structures are often used for architectural purposes, like the shadowing struc-

ture in front of the Bundeskanzleramt in Berlin (cf. Figure 2-3 (a)) or serve as surface load-

bearing elements, like the roof of stadiums (cf. Figure 2-3 (b)).
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(a) Hanging structure (b) Rod structure

Figure 2-2: Model of hanging structure (a) turned into a rod structure (b) [7]

(a) Architectural membrane in front of the Bundeskan-
zleramt in Berlin [8]

(b) Load bearing facade made out of membranes for the
Allianz Arena in Munich [9]

Figure 2-3: Architectural and load bearing membrane structures

The development of materials and the ability to influence their properties makes membranes

nowadays a widespread alternative, that gains attention. The sole problem is the not standard-

ized design process. There are several different approaches, each different in their assumptions

and acceptance level.
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3 Membrane Structures

Membrane structures can be distinguished in their appearance and therefore in their design

process. Those distinctions are:

- type of curvature,

- type of pretensioning,

- bearing and support,

- formation of the membranes - single or multiple-layer construction,

- three-dimensional arrangement of the membrane

and will be discussed further in this following chapter. [10, p.6-8]

3.1 Type of Curvature

Figure 3-1 shows all four different possibilities of curvature of membrane structures.

(a) Even surface (b) Simply curved (c) Double curved synclas-
tic

(d) Double curved anti-
clastic

Figure 3-1: Possibilities for curvatures of membrane structures [10, p.6]

(a) shows an even flat surface, which cannot be realized perfectly, as the membrane will always

have a slight slope. However, the smaller the slope, the higher the necessary axial forces

at the boundaries and therefore the stresses inside the membrane itself.

(b) shows a simply curved membrane. Those kind of membrane structures are only usable for

design purposes, as they are unable to carry any load reliably.

(c) shows a double curved synclastic curvature, which is often used in pneumatic supported

membrane structures. The form of both (c) and (d) will be given by the equilibrium of

forces inside of the membrane and not by the designer.

(d) shows a double curved anticlastic curvature. This is the only type, that can securely and

reliably serve as a load bearing element in a structure without to add inner pressure to

the membrane.
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3.2 Type of Pretensioning

There are three different types of pretensioning of membranes.

- mechanical pretensioning

- pneumatic pretensioning

- centrifugal force

Mechanical Pretensioning

Mechanical pretensioning is induced into the membrane by producing it smaller then necessary

and then pull it in the correct shape. By pulling the membrane, it is exposed to tension and will

elongate following Hooke’s Law expressed by Equation 3.1) slightly alternated for membrane

structures. A more detailed examination using Poisson’s numbers can be neglected as the change

in volume due to elongation are minimal for membranes.

∆L =
nmembrane

E
· L (3.1)

Figure 3-2: Principle of mechanical pretensioning

Pneumatic Pretensioning

The other type of pretensioning a membrane uses of internal pressure inside of the structure.

The internal pressure presses the membrane surface until it is in its final shape. An approximate

calculation can be made with the usage of Barlow’s formula (see Equations 3.2, 3.3 and Figure

3-3).

Fun fact: The effect described by Barlow’s formula is the cause, why sausages when heated

always tear up lengthways, as the stress there is twice as high then diagonally.

ncircumference =
p ·R
t

(3.2)

naxial =
p ·R
2 · t

(3.3)
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Figure 3-3: Stresses caused by pneumatic internal pressure p [11]

Centrifugal Forces

It is also possible to tighten membranes by using centrifugal forces. Then the membrane is

mounted on a rotation plate, which erects by turning the membrane through the arising cen-

trifugal forces. It is a highly complex process depending on the span, weight of material and

revolutions per minute. Werner Sobek examined and developed this type of membrane struc-

tures in 2003 (cf. Figure 3-4). [12]

Figure 3-4: Umbrella errected by centrifugal forces [12]

3.3 Bearing and Support

Membrane surfaces need to be beared constantly along their edges. Those bearings can be

formed like shown in Figure 3-5, where (a) shows a linear bearing at the bottom edges and a

punctuate support at the top, (b) has linear bearings at its edges, made out of cables (also called

soft bearings) and (c) has similar to (a) linear bearings at its bottom, however those bearings

work also as a surface support, as this particular structure has to be sealed at the edges.

(a) Punctuate bearing (b) Linear bearing (c) Surface bearing

Figure 3-5: Possible types of bearing of membrane structures [10, p.7]
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4 Principals of Membrane Structures

This chapter will give a short overview of the general principals of membrane structures. The

load-bearing behavior, the form-finding process, some information about the membrane material

and the development of the final and correct cut.

4.1 Load-Bearing Behavior

Membranes have no pressure- or bending-resistance, a negligible shear capacity and high de-

flections. Therefore, membranes can only bear tension as they react to pressure with instant

buckling or fall into folds. Only in surface effective forces produce a constant loading over the

thin membrane thickness which means an optimal exploitation of the material.

Plane membranes cause relatively high internal as well as external forces (see chapter 3.1), there-

fore the only stable variation are double curved membranes. The form of these double curved

membranes depends on the type pretensioning. There are two different types of pretensioning,

the mechanic and pneumatic pretensioning. [10, p.9]

4.1 Mechanical Pretensioned Membranes

The mechanical pretensioning is induced at the edges of the membrane. The membrane will

adjust in an equilibrium of internal and external forces as well as deflection, this process is

called form-finding (see chapter 4.2). When the edges are not on the same level a double curved

surface arises. This means, that on each point on the surface the main curvature are on different

sides of the tangent plane. This can be expressed in the so called Gaussian Curvature. [10, p.10]

Gaussian Curvature

Each point is defined by its curvature and therefore its radius of curvature:

k1 =
1

R1
k2 =

1

R2

The product of the curvature in both main directions is called the Gaussian Curvature:

k = k1 · k2 =
1

R1
· 1

R2

Is the Gaussian Curvature positive the double bended surface is called synclastic and if it is

negative anticlastic (see Figure 4-1).

To consider the anisotropic properties of the membrane materials, it is possible to assume a dif-

ferent pre-stressing force in each main direction.This assumption can also be used, to alternate

the form of the membrane, as a higher stress in one direction will pull the whole form in its

8



Figure 4-1: Possible membrane structures - left: anticlastic surface; right: synclastic surface
[10, p.11]

direction. [10, p.10]

A large curvature produces always lower stresses for the same loading then a smaller one. This

means, as previously mentioned, that a nearly plane surface always goes with high stresses as

well as the danger of water and snow bags. [10, p.10]

Load-bearing behavior of double bended membranes

Figure 4-2 and 4-3 are showing the nature of membranes, whereas the load-bearing direction

changes its position and faces always the loading q (orange lines) on the simple example of a

four-point supported membrane (see Figure 4-1 left). In both figures the pretensioning force p

and the additional loading q are applied in their individual direction of action. Whereas the

load q will always increase the stresses in the load-bearing direction, it will decrease the stresses

in tensioning direction simultaneously.

Hence, the tensioning direction will fail when the loading q becomes greater then the preten-

sioning force p. Therefore, to ensure the stability of the system, the pretensioning force p is one

of the significant values and has to be chosen appropriately. Also the stresses in load-bearing

direction are not allowed to overcome the maximum tensile strength of the membrane (see

Chapter 6.1.2). [10, p.11]

4.1 Pneumatic Pre-Tensioned Membranes

The pneumatic pretensioning is considered to be an area-loading. The difference of pressure

between a closed-up medium, such as gases or a fluid and the surrounding medium pretensions

the membrane. In the state of equilibrium the tension in the membrane and the over- or under-

pressure are equal. The structure usually has a positive Gaussian Curvature which means a

synclastic form (see Figure 4-1). [10, p.12]
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Figure 4-2: System with pretensioning load p and load q from above

Figure 4-3: System with pretensioning load p and load q from below

4.2 Form Finding Process

As previously mentioned, the form of pretensioned membranes is a result of a equilibrium of

the internal and external forces. All form but few exceptions cannot be incorporated by sim-

ple geometric shapes, as they would lead folds, local overloading and inhomogeneous states of

tension inside the membrane. The aim of the form finding process is to find this equilibrium

between the shape and forces.[10, p.12]

Minimal Surface

The shape of the membrane surface is a mathematical problem and is called a minimal surface,

which is defined as the surface in a space with the local minimal surface area. In a mechanical

and structural point of view, a minimal surface is the shape a membrane takes in the case, that

each main direction has consistent stresses. However, there is not only one definite minimal

surface, as it can change with different amount of pretensioning in each axis, also the loading

will have an influence on the shape. There are several experimental approaches to find and map

a minimal surface.

Minimal surfaces are of limited usage in the case of membrane structures. The applied materials

often have anisotropic properties also the seams between the individual membrane lines will

cause differences in the stiffness of the membrane in each direction. [10, p.13]
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4.2 Experimental Form-Finding

For a long time experimental form-finding was the only possibility to determine the shape of

double bended membranes. There are three different models which differ in their development

of the membrane structure:

- Design models

- Measurement models

- Special models

Design Models

Even today design models are essential for the design process of membrane structures and are

usually build out of fabric, wire or soap skin. Those models are a fast, simple and cheap method

to present first ideas and the spatial effect. Therefore are these models most of the time quite

simple and rough in their dimensions and serve only as a basis for the ongoing design process.

For example, the usage of a soap skin model is where a soap skin is put into the three dimen-

sional outlines of the designed structure. The characteristics of soap skin is, that it will always

shape in its most stable way and that is always a minimal surface. Hence, the shape the soap

skin will take in this experiment is the minimal surface for its isotopic pretensioned form. This

approach was developed at the Institute for light-weight structures at the University Stuttgart

and was conducted by Frei Otto (see Chapter 2). [10, p.13]

Measurement Models

These precise built models are used to define the final shape of a membrane structure and are

the basics for the execution of the structure as well as the design process and final cutting of

the membrane. [10, p.13]

Special Models

Special models can be used to investigate specific areas of the structure. They find application

for example in wind tunnel or movement testings or the detailed depiction of boundary elements

that can be further examined with these kind of models. [10, p.13]

4.2 Numerical Form-Finding

The method of numerical form-finding increased its importance with the fast development of

computing power. It is easy and quick to implement the numerical model in a software and

change its properties as often as necessary to identify the best shape. Also the possibilities to

change other characteristics such as the stresses in the membrane or vary boundary elements

11



to get the optimal result. In short, the now available changes to optimize a structure are the

foundation for the modern design process of membrane structures.

An example is shown in Figure 4-4, where the shape was found with an finite element software

called Sofistic. The initial geometry is shown in the left Figure and the final on the right, the

Figure in the middle shows a staging post in the calculation process.

Figure 4-4: Form finding process in the software Sofistic [10, p.35]

There are several different methods to get a suitable solution. All of them are approximation

procedures, where the wanted shape is described by an idealized model made out of small ele-

ments (e.g. rods, triangles or quadrilaterals, etc.). [10, p.15]

One of the key features of a numerical form-finding process is the fact, that ”there is a direct

correlation between the loading pre-stress and the shape of membrane structures” [13, p.3] and

also that the process is independent of any material properties. However, as the methods are

almost always an iteration process, it is important to change the settings to an sufficient amount

of iteration steps to ensure the accuracy of the final results.

The subsequently utilized finite element static software Dlubal RFEM uses two different meth-

ods, which are both based on the form-finding method Updated Reference Strategy short URS

published by K.U. Bletzinger and E. Ramm in 1999:

- Projection Method

- Tension Method

Projection Method

The Projection Method is used for the calculation of high conical shapes (see Figure 4-5).

It uses also the certain equilibrium condition, which claims, that it is possible to determine

stresses tangential of the direction of all adjacent points on the basis of a certain equilibrium

condition, when the loading was defined in a radial direction. The Projection Method projects

the prestresses on the XY plane. If the membrane inclination against the global XY plane equals

zero, the stress in the membrane corresponds to the preset values. If it ”is unequal to zero, the

prestress in the fall line (loading) direction increases whereas the prestress in the contour line

(tensioning) direction decreases.” [13, p.3-4] It ”allows the prestress equilibrium to be preserved

in the direction of the global axes X and Y. In the form-finding process, the program then seeks

such a layout of the membrane structure in space that provides for the equilibrium prestress in

the direction of the global axis Z as well.” [13, p.4]
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(a) Input of a conical structure (b) Result of the numerical form-finding for a conical
structure

Figure 4-5: Form-finding of a conical membrane structure with the Projection Method [13,
p.23-24]

Tension Method

Whereas the Projection Method is applicable on conic structures, the Tension Method is used

for membranes supported by points and arches as well as for pneumatically stabilized structures

(see Figures 4-6, 4-7 and 4-8). [13, p.4]

”The Tension Method is very different from the Projection Method : The prestress previously

defined is not modified [...]. When determining the equilibrium shape, the Tension Method

applies both values previously defined for the prestress in the warp and weft direction.” [13,

p.4]

It also uses the fact that ”the deformations perpendicular to the membrane plane are more

frequent than the deformations in the membrane plane. Once the number of iterations for using

the required prestress is reached, the structure is stabilized. The resulting prestress is usually

very close to the preset value.” [13, p.4]

(a) Input of a point-supported structure (b) Result of the numerical form-finding for a point-
supported structure

Figure 4-6: Form-finding of a point-supported membrane structure [13, p.17]
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(a) Input of an arch-supported structure (b) Result of the numerical form-finding for an arch-
supported structure

Figure 4-7: Form-finding of a membrane structure supported by arches [13, p.18]

(a) Input of a pneumatic structure (b) Result of the numerical form-finding of a pneumatic
structure

Figure 4-8: Form-finding of a pneumatic membrane structure [13, p.21-22]
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5 Components for

Membrane Structures

This chapter will introduce the commonly used components for membrane structures. These

components can be divided into two different sections, distinguished by their load-bearing be-

havior [14]:

- linear load-bearing elements

- surface load-bearing elements

However, this chapter will elaborate solely on the components of actual membrane structures

and not their supporting structures.

5.1 Linear Load-Bearing

Elements

Linear load-bearing elements can only be used to ablate loading alongside their main axis.

These elements are usually elongated and limp, such as ropes or thin steel rods. Whereas ropes

can only carry tensile stresses, it is possible for rods to bear pressure, however as these rods

are normally thin and long, their ability to carry pressure is limited due to buckling. Because

of that it can be claimed, that linear load-bearing elements used for membrane structures are

mainly used to bear tensile stresses.

5.1 Ropes

In the construction industry ropes are usually made out of steel or steel alloys and consist out

of intertwined wires in a variable amount of layers. An example of an assembling is shown in

Figure 5-1. Wires are twisted around another wire called strand inserts. This whole package is

called a strand. Several strands surrounding one another are the actual rope.

Figure 5-1: Assembling of wire ropes [15]

The thicker the final rope, the more tensile load it can carry and the less deformation it will

have due to loading, the stiffness will increase though. Another distinction is made for open

and fully-closed ropes which are shown in Figure 5-2.

15



Figure 5-2: Different types of ropes (left: open rope; right: closed rope) [16]

Ropes can serve in different roles for membrane structures. For example they can be used as

so called soft edges alongside the edge of the membrane system as shown in Figure 5-3 (a), or

underneath the membrane as an additional support or to prevent the building of pools. Also

ropes are often used in the supporting system of the membrane system itself, this case is shown

in Figure 5-3 (b).

(a) Musical avillion in Kassel [17] (b) Olympic stadium in Montreal [18]

Figure 5-3: Different usages of ropes for membrane structures: (a) support at the edges (soft
edges); (b) supporting structure of the system

The material properties are given by the various manufacturers and can be inquired there if

needed.

5.1 Webbing

Slender membrane cut-outs are called webbing. They are is often used to reinforce edges, as

there often are the greatest stresses, due to recede material and the consequent spike in the

stresses. Therefore, webbings are usually installed parallel to the edges. [14, p.24-25]
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5.2 Surface Load-Bearing Elements

Surface load-bearing elements are used to cover an area and consist out of at least two main axes.

Usually these elements are loaded perpendicular to their main axis, which will cause a bending

moment as well as shear force, for example a ceiling. However in the case of membranes, there

is no bending resistance and only a shear resistance not worth to be mentioned. Membranes

ablate their internal forces by deformation. They will deform until every point in the surface is

inclined enough to respond to the loading, so that it can be absorbed and converted into axial

forces alongside the main axes. [14, p.26]

Figure 5-4: Load-Bearing behavior of membranes

Figure 5-4 above shows the deformation of membranes to allow them to carry perpendicular

loads. On the left Figure is the structure undeformed and unable to carry any vertical load,

therefore it deforms into the form shown on the right Figure which enables the transfer of ver-

tical loading.

5.3 Types of Membranes

There are two different types of membranes used for structures:

- fabrics

- foils

5.3 Fabrics

Fabrics or textiles are interwoven yarns. These fabrics can be coated to alternate their proper-

ties. There are three different types of weaving, basket, twill and satin weave which are defined

in the number of strings in the warp direction (cf. Figure 5-5). The type of weaving has also

an immediate influence on the tensile strength in warp and weft direction. The tensile strength

in twill and satin weaving is higher then in basket weaving, therefore those are preferred in

membrane structures. [14, p.27-34]

Whereas uncoated membranes are usually used as sunshade and in temporary structures, coated

textiles can be improved for several functions such as [4, p. 448 - 478]:

- proofness against environmental influences (e.g. water, dampness, dust and smell)

- protection of the webbing against mechanical damage
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(a) Basket weaving (b) Twill weaving (c) Satin weaving

Figure 5-5: Weaving types [19]

- improving the duration of usability of the textile

- improving the protection against fire

- manufacturing of glue and weld seams

- improving the shape stability

- color

- dirt-resistant or easy to clean

5.3 Foils

The usage of foils as the membrane material is divided into temporal and permanent struc-

tures. Whereas the temporal structures are usually made out of Polyvinyl Chloride (PVC), the

permanent ones are often made out of Ethylene-Tetraflourethylene Copypolymer (ETFE) or

Tetrahydrocannabivarin (THV). The thicknesses can vary from 50 to 250 µm and in some cases

up to 300 µm. The low tensile strength but high shear capacity are reason for the preference

of foils for pneumatic systems with short spans and pretensioned structures with low curvatures.

The type of production has an influence on the thickness of foils. The thickness of flat films

depends on the rotation velocity of the take-up roll and the accuracy of the geometry. The

accuracy of blow films is better then the one of flat films. [4, p.478-490]
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6 Safety Concept

The idea of safety concept for membrane structures is the same used as for all common struc-

tures. The impact has to be smaller then the resistance of both the stability, also expressed as

the Ultimate Limit State (ULS), and serviceability, Service Limit State (SLS). However there

are some differences in the application. The exact approach is described in DIN 4134.

6.1 Ultimate Limit State

The aim of the ULS, is to determine the maximal loading and the resulting internal forces in

the system and to make sure, that the cross-sections and materials are chosen adequately.

Ed

!
≤ Rd (6.1)

6.1 Loading Ed

For the determination of the design loading Ed the loading has to be multiplied with safety

factors γ. They are divided into γDL for dead loads, γLL for live loads and especially for

pretensioning forces γp. (cf. 6-2)

Table 6-1: Safety factors γ for different load cases

Impact Live Loads γDL Dead Loads
γLL

Pretensioning
γP

Incriminating 1.35 1.5 –
Relieve 1.00 0 –
Short-term – – 1.00
Long-term – – 1.50

Membrane structures are a special kind of structure, therefor the following combinations of

characteristic stresses were taken from the code DIN 4134:1983-02 from the year 1983 [20, p.7]:

- Blizzard

1.00 · nDL + 1.10 · np + 1.60 · nLL
!
≤ perm.n0

Where,

nLL is snow or wind

n0 is the allowed short-time strength for 20 ◦C

- Thunderstorm

1.00 · nDL + 1.10 · np + 0.70 · nLL
!
≤ perm.nϑ

Where,
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nLL is an up-current of wind

nϑ is the allowed short-time strength for 70 ◦C

- Long-Term:

1.35 · nDL + 1.30 · np
!
≤ perm.nt

Where,

nt is the allowed long-time strength for 20 ◦C

However, these load combinations are out-of-date and a new safety concept was initiated several

years ago. Therefore, following will show the more up-to-date version:

- Short-term loading for 20°C: perm.n0,Rd

1.35 · nDL + 1.00 · np + 1.5 · nLL
!
≤ perm.n0 (6.2)

Where,

nLL is snow or wind

n0 is the allowed short-time strength for 20 ◦C

- Short-term loading for 70°C: perm.nϑ,Rd

1.00 · nDL + 1.00 · np + 1, 5 · nLL
!
≤ perm.nϑ (6.3)

Where,

nLL is wind

nϑ is the allowed short-time strength for 70 ◦C

- Long-term pretensioning for 20°C: perm.nt,Rd

1.35 · nDL + 1.50 · np
!
≤ perm.nt (6.4)

Where,

nt is the allowed long-time strength for 20◦C

6.1 Resistance

Typical materials used for membrane structures were shown in Chapter 5. However, the deter-

mination of the ultimate tensile strength is different from the calculation of the tensile strength

of steel. Several impacts have influence on the strength and durability of the material.
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Steel

The strength of steel is calculated by dividing the characteristic strength by the safety factor

γs:

σs,Rd =
σs,c
γs

(6.5)

Table 6-2: Safety factors γs for steel

γs γs,0 (no buckling) γs,1 (buckling)

1.00 1.10

Textile Membranes

nt,d =
nt,c

γm ·
∏3

i=0(Ai)
=

nt,c
γm ·A0 ·A1 ·A2 ·A3

(6.6)

Figure 6-1: Description of the reduction factors A0, A1, A2 and A3 [21, p.151]

Foils

The design value for the single-axle tensile strength nt,d can be calculated with Equation 6.7

and the graphs in Figure 6-3 and Table 6-2:

Table 6-3: Description of the reduction factors A1, A2 and A3 [21, p.151]
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nt,Rd =
nt,c

γM ·
∏3

i=1(Ai)
=

nt,c
γM ·A1 ·A2 ·A3

(6.7)

(a) A1 (b) A2 (c) A3

Figure 6-2: Reduction factors A1, A2 and A3 [21, p.151]

A guideline from experience is:

γm ·
3∏

i=1

(Ai) = 2 . . . 4 (6.8)

6.2 Service Limit State

The global examination of the SLS for membrane structures based on the shape of geometry of

equilibrium of the unloaded system.

As the deformation often is the highest in edges due to loading, because there is the ratio of

curvature and stress the lowest, the deformations there have to be examined properly to prevent

the development of pools or other deposition, that would cause a local increase of the loading, as

is shown in Figure 6-3. Each structure has to be examined individually to ensure the drainage

of the surface. Hence, the SLS cannot be expressed in a equation like in other disciplines.

The Service Limit State is also defined as the usability and appearance of the membrane, which

can be described with following exemplary characteristics:

- duration of the usability, influenced by e.g. different materials, coatings or weaving types

- transparency, influenced by e.g. different materials, thicknesses of the membrane or coat-

ings

- fire resistance
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Figure 6-3: Development of pools at the edges in a FE-model in Dlubal RFEM
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7 Important Values

The following chapter will give a few important values for the most common materials for

membrane structures

7.1 Steel

Steel can be used for both solid cross-sections as a supporting structure and flexible cables for

membrane structures.

7.1 Solid Steel

Table 7-1 shows the tensile and shear strength for most common used types of steel, for the

each safety factor γm (cf. 6.1.1).

Table 7-1: Tensile and shear strength of solid steel [22]

7.1 Steel Ropes

For information about the tensile strength of ropes it is recommended to visit the specific website

of the producers, as there are many different types of ropes which all have different properties

in strengths, stiffness and cross-sections.

7.2 Membranes

Membranes can be divided into two different types (cf. Chapter 5.2).

7.2 Textile Membranes

Table 7-2 shows the tensile strength and breaking elongation separated for warp and weft

direction for various textile membranes. Special attention has to be placed on the possible

difference in tensile strength between warp and weft direction, which can be expressed in the

static software as anisotropic pretensioning.

24



Table 7-2: Tensile strength nk for textile membranes [23]

7.2 Foils

Table 7-3 shows the tensile strength and the breaking elongations for various foils. It can be

seen, that the values often are given in a range. This is due to the manufacturing of the foils,

where it is only possible to obey tolerances, hence the thickness and therefore the strength and

breaking elongation can vary over the length of the material.

Table 7-3: Tensile strength fk for foils [23]
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8 Modeling of a Preliminary Structure

This chapter will show two different possibilities to model a membrane structure, that can be

calculated by the static software Dlubal RFEM with its special Add-in RF-Formfinding that is

used for the form-finding process (see Chapter 4.2.2).

8.1 Stitching

One of the simplest types of the modeling is called stitching. It is carried out directly in the

finite element static software itself and can be used for a fast way of a preliminary determination

of stresses and form finding.

As the software only allows the user to type in membranes as plane surfaces the whole model has

to be built by using triangular surfaces, as that is the only shape, even in a three-dimensional

space.

Figure 8-1 (a) shows the process of stitching for a simple membrane structure. It is a fast and

straightforward way of producing a rough preliminary design for easy membrane structures.

However, the results have to be examined carefully, as the software is not able to give results

on the edges of one of the previously mentioned triangular surfaces due to mathematic issues

(orange lines).

(a) Input of triangular plane surfaces (b) Output of the calculation

Figure 8-1: Stitching process for modeling a structure into Dlubal RFEM

For more complex structures like the one shown in Figure 8-2 (b), that has lots of individual

triangular surfaces, the deficit of information for results can become a serious problem up to

the uselessness of the whole model. Stitching also increases the expenditure of work immensely

the more lines have to be connected and the more plane surfaces have to be created.

8.2 Modeling in a Special Software

There are several different professional modeling softwares that can be used to produce an inte-

gral surface in the approximate shape of the final membrane. The shape can vary in the static
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(a) Input of a complex structure with
stitching

(b) Output of the calculation

Figure 8-2: Stitching process for modeling a complex structure into Dlubal RFEM

software. Following will describe the production, usage and implementation into the static soft-

ware of these models shown exemplary with the software Rhino by McNeel Europe.

The outer shape of the structure can be built with simple polylines or curves as is shown in

Figure 8-3 (a) on a simple structure. The shape of the membrane is produced by the command

Patch which will insert a minimal surface with the outer lines as borders which is shown in

a simple example in Figure 8-3 (b). However, to ensure that the outer shape is held by the

newly produced surface, the option stiffness has to be as small as possible. Is the stiffness chosen

to small, the software will produce bad results as well, so there has to be made an approximation.

To transfer the newly produced surface into a static software, the surface has to be exported in

the Standard for the Exchange of Product Model Data (STEP) format in the option AP214AutomotiveDesign,

which can be imported and utilized by the software (see Figure 8-3 (c)).

(a) Input of the outline (b) Output of the approximate mem-
brane surface

(c) Imported structure

Figure 8-3: Modeling of a simple structure in Rhino and its input in a static software

The biggest benefit of the modeling in a special software is, that there is only one surface for

the membrane-member, which is not interrupted by stitching lines, that prevent calculations in

that area. Therefore, the whole structure and its various values for stresses and deformation

can be calculated. An example for a more complex system is shown in Figure 8-4 from the outer

shape till the final structure in a finite element software.
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(a) Input of the outline (b) Output of the approximate mem-
brane surface

(c) Imported structure

Figure 8-4: Modeling of a complex structure in Rhino and its input in a static software

After the import of the structure, the form-finding Add-in has to be activated in the basic

settings of the file. Also it is now possible to form any desired bearings and loadings. The

pretensioning of the membrane can also be changed initially only isotropic, however after the

definition of the axes it can also be inserted as anisotropic stresses. For the correct calculation

of the system the type of the form-finding analysis has to be chosen (see Chapter 4.2.2). The

whole process is also shown in Figure 8-5:
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Figure 8-5: Procedure of the import and export of a generated model
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9 Determination of Stresses with an Iterative Calculation

Following will introduce two different approaches to determine stresses for membrane structures.

9.1 Non-Linear Approaches

This non-linear approach takes several different impacts into account and will also consider

linear elongation of the membrane due to stresses. It uses the non-linear rope equations which

were introduced by Palkowski: [23, p.10]

Load-bearing direction:

n3l + n2l · bl − cl = 0

With:

bl = (EA)l ·
[
1− 1

Ll,s,0
· (Ll − αT ·∆T · Ll,s,0)

]

cl =
(EA)l · (p+ q)2 · L3

l

24 · Ll,s,0

Ll,0 = Ll ·
(

1 +
8 · f2l
3 · L2

l

)

Tensioning direction:

n3t + n2t · bt − ct = 0

With:

bt = (EA)t ·
[
1− 1

Lt,s,0
· (Lt − αT ·∆T · Lt,s,0)

]

ct =
(EA)t · (p− q)2 · L3

t

24 · Lt,s,0

Lt,s,0 = Lt ·
(

1 +
8 · f2t
3 · L2

t

)
30



To solve these problems Palkowski also gives an approximation formula based on the Newton

Approach which promises a fast convergence using an iteration process:

n1 = q · L ·

√
l

24 · (s0 · (1 + αT ·∆T )− L)

Another approximation that can be made is:

n1 ≈ nmembran · tmembran

Newton Approach:

ni+1 =
2 · n3i + b · n2i + c

3 · n2i + 2 · b · ni

The iteration process comes to an end, when two successive steps have approximately the same

result.

However, this approach was not taken into further account as the following approach gives

the more reliable, give more controllable results and is easier to understand due to its clear

calculation steps.

9.2 Linear Approach

Whereas the process of determining stresses for membrane structures is highly complex and

non-linear, this approach overcomes this with an iteration process, that finds for every step a

new equilibrium of the shape depended on the effective stresses, prestress or stresses caused by

additional live loads. This approach will be introduced and will be used used from now on.

This process uses Theory II. and the so called κ-procedure, that divides the live load into

load bearing and tensioning direction according to the geometry of the system. The process of

determining stresses is free of any material characteristics except the ratio of stiffness of each

main axis.

9.2 Iteration Process: Form-Finding and Calculation of Stresses

The iteration process determines the stresses in the membrane caused by the live load and

adds it up to the constant prestress of the membrane for each step anew. When two successive

iteration steps have practically the same results the iteration process stops. However, due to

unfortunate constellations of numbers it is possible, that the iteration process fails and does not

converge. Therefore, it is prudent to examine not only one dead load q but a series of different

ones.
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Geometry of Equilibrium

The first part of each iteration step is to determine the geometry of equilibrium of the current

system, which depends on the ratio of the pretensioning forces in each direction as they influences

the curvatures and therefore the sags of load-bearing and tensioning directions. For example a

higher force alongside the load-bearing direction will cause the membrane to ascend. This can

be derived with following two assumptions:

- the product of stress times the curvature is always equal for both directions

nl · kl
!

= nt · kt

- both sags added together are the total height of the system

H = fl + ft =
L2
l

8 ·Rl
+

L2
t

8 ·Rt

Since the reciprocal of the curvature is the radius, the first assumption can be transformed into:

nl
Rl

=
nt
Rt

Which gives:

Rt = Rl ·
nt
nl

Then Rt can be substituted into the second assumption to give following equation:

H =
L2
l

8 ·Rl
+

L2
t

8 ·Rl · nt
nl

Solving this equation for Rl or Rt respectively, leads to Equations 9.1 and 9.2:

1

kl,i
= Rl,i =

L2
l · np,t,i + L2

t · np,l,i
8 ·H · np,t,i

(9.1)

or

1

kt,i
= Rt,i =

L2
l · np,l,i + L2

t · np,t,i
8 ·H · np,t,i

= Rt,0,i ·
np,t,i
np,l,i

(9.2)
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With the mathematical changing of the radii, the sags will change as well. However, according

to assumption two, the sum of both sags will always ad up to the total height:

fl,i =
L2
l

8 ·Rl,i
(9.3)

and

ft,i =
L2
t

8 ·Rt,i
= H − fl,i (9.4)

Though the geometry of equilibrium has to be calculated repeatedly for every step of the

iteration process, it is only a mathematical approach and will not give the actual results for the

sags. The actual ones are usually close to the geometry of equilibrium without any live load

q. The further difference in shape comes from elastic elongation and shortening of the material

depending on the direction and loading (cf. Equation 3.1). [4, p.166-167]

κ-Procedure

The κ-procedure determines the division of the force q in load-bearing and tensioning directions

depending on the geometry solely to determine factors like G as a geometry factor or κ for the

actual force-division.

The geometry factor G depends on the shape and type of loading. Figure 9-1 shows exemplary

several different types of possible load cases on a simple rope system and the deformation they

will cause, which is called an alysoid, which can be described in different mathematical functions:

[24, p. 27-34]

(a) (b) (c)

Figure 9-1: Exemplary alysoid for different load cases [24, p.27]

(a) Alysoid under a uniformly distributed load

y(x) =
4 · f
L
· x2 − 4 · f

L
· x
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(b) Alysoid under a triangular distributed load

y(x) = f · 2.6 · x
L
·
(

1− x2

L2

)

(c) Alysoid under two triangular distributed load

y(x) = f · 2 · x
L
·
(

3− 6 · x
L

+ 4 · x
2

L2

)

To develop the geometry factor, the actual length of the alysoid has to be determined by using

a formula of line integration:

L′ =

∫ L

0
(1 +

(
y(x)′)2

)
dx

The geometry factor for case (a), the uniformly distributed load will be shown exemplary:

y(x)′ =
8 · f
l2
· x− 4 · f

l

L′ =

∫ L

0
(1 +

(
y(x)′)2

)
dx = L ·

(
1 +

16 · f2

3 · L2

)
Hence, the result is factorized with L, the geometry factors Gl and Gt are:

Gl,i = 1 +
3 · L2

l

16 · f2l,i
(9.5)

and

Gt,i = 1 +
3 · L2

t

16 · f2t,i
(9.6)

The force-distribution factor ρ depends on the ratio stiffness of the membrane as well as its

geometry-factors G. With the force-distribution factor ρ the actual division of the forces can

be calculated with the determination of the κ-factors.

ρl,i =
(EA)l ·Gt,i · L2

t,i

(EA)t ·Gl,i · L2
l,i

⇒ κl,i =
1

1 + ρl,i
(9.7)
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and

ρt,i =
(EA)t ·Gl,i · L2

l,i

(EA)l ·Gt,i · L2
t,i

⇒ κt,i =
1

1 + ρt,i
(9.8)

With the usage of the κ-factors, the area loading q can be divided into linear loads along each

main-direction by multiplying q with κ for each direction.

ql,i = q · κl,i (9.9)

and

qt,i = q · κt,i (9.10)

Stresses caused by Load

The load q or rather ql,i and qt,i respectively are perpendicular to the surface of the membrane.

Therefore, the stresses alongside the membrane can be calculated for further calculations. Each

of these forces are affiliated with restrictions, which will be discussed later on more precisely.

nq,l,i =
ql,i · L2

l

8 · fl,i
(9.11)

and

nq,t,i =
qt,i · L2

t

8 · ft,i
(9.12)

Remaining Stresses

Until now the pretensioning stresses and the stresses caused by loading were examined sep-

arately. In the next step however, they will be assembled to the remaining stresses in the

membrane. The load q will cause an increase of stresses along the direction of load-bearing, but

at the same time decrease along the tensioning direction.

np,l,i+1 = np,l,0 + nq,l,i (9.13)

and

np,t,i+1 = np,t,0 − nq,t,i (9.14)
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The last step of each iteration step process is to determine, when the calculations come to a

sufficiently exact value. This is the case, when the results of the Equations 9.13 and 9.14 from

two successive iteration steps will be approximately equal.

np,l,i
!
≈ np,l,i+1 (9.15)

and

np,t,i
!
≈ np,t,i+1 (9.16)

Pretensioning Forces

For further examination, the pretensioning stresses at the beginning are be divided into load-

bearing np,l,0 and pretensioning np,t,0 direction. However, these forces can be converted into the

vertical forces pl,0 and pt,0 with Equations 9.17 and 9.18:

pl,i =
8 · np,l,i · fl,i

L2
l

(9.17)

and

pt,i =
8 · np,t,i · ft,i

L2
t

(9.18)

Restrictions for Results

The whole iteration process from Equation 9.1 to 9.16 is bound to several restrictions to ensure

its accuracy.

- To maintaining the tensile strength of the membrane, the stresses in the load-bearing

direction have to be smaller then the tensile strength of the membrane:

np,l,i+1
!
< fmembrane (9.19)

- To ensure the functionality of the system, the stress along the tensioned direction have

to be greater then 0 all the time. Sometimes the iteration process will deliver unrealistic

results for higher loadings, therefore another examination is needed to eliminate those

mistakes. The result of Equation 9.18 has to be greater then the loading qt,i (cf. Figures

4-2 and 4-3):

np,t,i+1
!
> 0 (9.20)
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and

pt,0
!
< qt,i (9.21)

- As previously mentioned is it also advisable to calculate the system for a range of loadings

q, to visualize and reveal potential mistakes caused by numerical issues, such as division

by zero or unlucky constellations of numbers.

9.2 System Requirements

The equations above are restricted to following characteristics of the structure:

- clearly divided in orthogonal load-bearing (l) and tensioning (t) directions

- the ratio of total height to length has to bigger then 0.25 in all directions, otherwise can

the correction of the results net be guaranteed, which was found out by trial and error.

It can be claimed that the higher the ratio, the better the later results.

H

Ll

!
> 0.25 (9.22)

H

Lt

!
> 0.25 (9.23)

The calculations are free of any material characteristics, only the Young’s Modulus and therefore

the stiffness in each direction is required, to determine the segregation of forces inside the system:

- Stiffness in load-bearing direction (EA)l

- Stiffness in tensioning direction (EA)t

9.2 Soft Edges

The following part will describe the design process of soft edges.

Figure 9-2: Geometry of edge ropes
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The first step is to determine the required sag frope of the edge. Usually it is about one eighth

of the span, however this value can be chosen randomly with the factor ssag:

frope = ssag · Lrope (9.24)

The next step is to determine the required pretensioning force Nrope in the rope, to receive the

chosen sag. This was derived with an analogy of a simple rope system, where the approximately

the average of both pretensioning stresses is taken as the linear loading (cf. Figure 9-2).

The force Nrope can be determined by calculating the horizontal and vertical forces Hrope and

Vrope and then using Pythagoras’ Theorem as is shown in Figure 9-3.

Figure 9-3: Calculation of the force Nrope

Therefore, the horizontal forces H can be calculated with

Hrope =
1

frope
·
nl+nt

2 · L2
rope

8

and the vertical forces can be determined by using following equation

Vrope =
nl+nt

2 · Lrope

2

With Equation 9.25 the absolute value of of those vectors and therefore the force Nrope can be

calculated, which is also equal to the force at each support of the rope.

Nrope ≈ Lrope ·
nl+nt

2

frope
·
√

16 · f2rope + Lrope (9.25)

9.3 Results

As previously mentioned it is recommended to calculate the stresses with the iteration process

for several different loadings to reduce possible mistakes. Therefore, the Figures 9-4 and 9-5

are showing possible results of the iteration process for nl and nt for a structure subjected to

loadings q from 0 to 2.5 kN
m2 . The results are also compared to other values determined with an
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finite element software.

Figure 9-4: Results of nl of the iteration process for various loadings q

Figure 9-5: Results of nt of the iteration process for various loadings q

The solid orange line indicates the usable results which were determined by the use of the re-

strictions from the Equations 9.19, 9.20 and 9.21. The dotted black lines show the remaining

non-usable results calculated by the iteration process, which are showing their highly non-linear

behavior for higher loadings. The solid gray lines show the results calculated by a finite element

software.

It can be seen, that the results calculated in the iteration process and the ones from the finite

element software are in the usable section in the acceptance range of approximately 20 to 30%

and drift apart irregularly in the non-usable section.

9.4 Exemplary Process

Following will show an exemplary application of the iteration process.

Geometry

- Ll = 10.00m

- Lt = 10.00m

- H = 3.00m
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Materials

- (EA)l = (EA)t

Pretensioning Forces

- np,l = 4, 00kN
m

- np,t = 8.00kN
m

Loading

The system will be investigated for the loading q. However, it is recommended to investigate it

for several different loadings, to point out eventual continuous mistakes of calculation.

q = 0, 20
kN

m2

9.4 Check of the System

The first step is to determine the requirements of the system to ensure the applicability of the

iteration process:

- orthogonal directions? X

- ratio of height to length:

H

Ll
=

3.0m

10.0m
= 0.3 X

H

Lt
=

3.0m

10.0m
= 0.3 X

9.4 Iteration Process

Step 0

Geometry of equilibrium:

Rl,0 =
L2
l · np,t,0 + L2

t · np,l,0
8 ·H · np,t,0

=
10.02 · 8.0 + 10.02 · 4.0

8 · 3.0 · 8.0
= 6.25m

Rt,0 = Rt,0 ·
np,t,0
np,l,0

= 8.33 · 8.0

4.0
= 12.5m

fl,0 =
L2
l

8 ·Rl
=

10.02

8 · 8.33
= 2.0m
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ft,0 = H − fl,0 = 3.0− 1.5 = 1.0m

κ-Procedure (load distribution):

Gl,0 = 1 +
3 · L2

l

16 · fl,0
= 1 +

3 · 10.02

16 · 2.0
= 5.69

Gt,0 = 1 +
3 · L2

t

16 · ft,0
= 1 +

3 · 10.02

16 · 1.0
= 19.75

ρl,0 =
(EA)l ·Gt,0 · L2

t

(EA)t ·Gl,0 · L2
l

=
(EA)l · 5.69 · 10.02

(EA)t · 19.75 · 10.02
= 3.47

ρt,0 =
(EA)t ·Gl,0 · L2

l

(EA)l ·Gt,0 · L2
t

=
(EA)t · 9.33 · 10.02

(EA)l · 9.33 · 10.02
= 0.29

κl,0 =
1

1 + ρl,0
=

1

1 + 3.47
= 0.22

κt,0 =
1

1 + ρt,0
=

1

1 + 0.29
= 0.78

ql,0 = κl,0 · q = 0.22 · 0.2 = 0.04
kN

m

qt,0 = κt,0 · q = 0.78 · 0.2 = 0.16
kN

m

Determination of stresses caused by load:

nl,q,0 =
ql,0 · L2

l

8 · fl
=

0.04 · 10.02

8 · 2.0
= 0.28

kN

m

nt,q,0 =
qt,0 · L2

t

8 · ft
=

0.16 · 10.02

8 · 1.0
= 1.94

kN

m
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Remaining stresses:

np,l,0+1 = np,l,1 = 4.0 + 0.28 = 4.28
kN

m

np,t,0+1 = np,t,1 = 8.0− 1.95 = 6.06
kN

m

Are the results sufficiently exact?

np,l,0 = 4.0
?
≈ 4.28 = np,l,1

np,t,0 = 8.0
?
≈ 6.06 = np,t,1

Step 1

Geometry of equilibrium:

Rl,1 =
L2
l · np,t,1 + L2

t · np,l,1
8 ·H · np,t,1

=
10.02 · 6.06 + 10.02 · 4.28

8 · 3.0 · 6.06
= 6.25m

Rt,1 = Rt,1 ·
np,t,1
np,l,1

= 10.52 · 6.06

4.28
= 12.50m

fl,1 =
L2
l

8 ·Rl,1
=

10, 02

8 · 6.25
= 1.76m

ft,1 = H − fl,1 = 3.0− 1.76 = 1.24m

κ-Procedure (load distribution):

Gl,1 = 1 +
3 · L2

l

16 · fl,1
= 1 +

3 · 10.02

16 · 1.76
= 7.07

Gt,1 = 1 +
3 · L2

t

16 · ft,1
= 1 +

3 · 10, 02

16 · 1.24
= 13.16
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ρl,1 =
(EA)l ·Gt,1 · L2

t

(EA)t ·Gl,1 · L2
l

=
(EA)l · 13.14 · 10.02

(EA)t · 7.07 · 10.02
= 1.86

ρt,0 =
(EA)t ·Gl,0 · L2

l

(EA)l ·Gt,0 · L2
t

=
(EA)t · 7.07 · 10.02

(EA)l · 13.14 · 10.02
= 0.54

κl,1 =
1

1 + ρl,1
=

1

1 + 1.86
= 0.35

κt,1 =
1

1 + ρt,1
=

1

1 + 0.54
= 0.65

ql,1 = κl,1 · q = 0.35 · 0.2 = 0.07
kN

m

qt,1 = κt,1 · q = 0.65 · 0.2 = 0.13
kN

m

Determination of stresses caused by load:

nl,q,1 =
ql,1 · L2

l

8 · fl
=

0.07 · 10.02

8 · 1.76
= 0.50

kN

m

nt,q,1 =
qt,1 · L2

t

8 · ft
=

0.13 · 10.02

8 · 1.24
= 1.31

kN

m

Remaining stresses:

np,l,1+1 = np,l,2 = 4.0 + 0.50 = 4.50
kN

m

np,t,1+1 = np,t,2 = 8.0− 1.31 = 6.69
kN

m

Are the results sufficiently exact?

np,l,1 = 4.27
?
≈ 4.50 = np,l,2
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np,t,1 = 6.06
?
≈ 6.69 = np,t,2

Step 2

Geometry of equilibrium:

Rl,2 = 6.67m,Rt,2 = 10.37m

fl,2 = 1.79m, ft,2 = 1.21m

κ-Procedure (load distribution):

Gl,2 = 6.83, Gt,2 = 13.89

ρl,2 = 2.04, ρt,2 = 0.49

κl,2 = 0.33, κt,2 = 0.67

ql,2 = 0.07
kN

m
, qt,2 = 0.13

kN

m

Determination of stresses caused by load:

nl,q,2 = 0.46
kN

m
,nt,q,1 = 1.39

kN

m

Remaining stresses:

np,l,3 = 4.46
kN

m
,np,t,3 = 6.61

kN

m

Are the results sufficiently exact?

np,l,2 = 4.50
?
≈ 4.46 = np,l,3
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np,t,2 = 6.69
?
≈ 6.61 = np,t,3

Step 3

Geometry of equilibrium:

Rl,3 = 6.98m,Rt,2 = 10.34m

fl,3 = 1.79m, ft,2 = 1.21m

κ-Procedure (load distribution):

Gl,3 = 6.84, Gt,2 = 13.84

ρl,3 = 2.02, ρt,2 = 0.49

κl,3 = 0.33, κt,2 = 0.67

ql,3 = 0.07
kN

m
, qt,2 = 0.13

kN

m

Determination of stresses caused by load:

nl,q,3 = 0.46
kN

m
,nt,q,1 = 1.38

kN

m

Remaining stresses:

np,l,4 = 4.46
kN

m
,np,t,4 = 6.62

kN

m

Are the results sufficiently exact?

np,l,3 = 4.46
?
≈ 4.46 = np,l,4
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np,t,3 = 6.61
?
≈ 6.62 = np,t,4

Final Results

Therefore, the stresses caused by the loading q are:

np,l,final = 4.46
kN

m
,np,t,final = 6.62

kN

m

As was previously mentioned, it is recommended to examine the system for several different

loadings q. These results are shown in Figure 9-6, where the solid orange line shows the usable

sector of the loading q, whereas the dotted part is the non-usable sector. Both determined by

the application of Equations 9.19 and 9.20.

Figure 9-6: Results of np,l and np,t for the chosen range of loadings

To get a better idea of the accuracy of the results, close up views of the graphs are shown in

Figure 9-7. Both sections show only the usable area of the structure, as for the further loading

both approaches give rather accidental results (cf. Figure 9-6). It is also recognizable, that the
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results of the iteration process and the ones from the static software are similar in a range of

approximately 20% to 30%, when all system requirements are maintained.

Figure 9-7: Close up view of the results of the iteration process (orange) and the static soft-
ware Dlubal RFEM (grey)
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10 Exemplary Calculation

This chapter will show an exemplary design process of a membrane structure. The structure

- a roof of a bus station in Pforzheim, Germany (see Figure 10-1) - was designed within the

context of a competition by Planfabrik SPS. Following will only concentrate on the membranes

themselves and not the supporting structure.

Figure 10-1: Visualization of the roofing of the bus station

10.1 System

The structure has a total length of approximately 180.00m and a width on one end of 40.30m

(Figure 10-2) and on the other of 43.90m (Figure 10-3) as well as minimum height of 6.90m

and a maximum height of 9.80m.

The structure is mounted on a total of 16 slender pillars, which gives the whole light-weight

structure a floating-like appearance.

Figure 10-2: Cross section of the roofing on the narrow end

However, the structure can be divided into four differently shaped members, which repeat

themselves several times over the building which is also shown in Figure 10-4):

I orange: This member of the structure is mid-field in the broader section and has mea-

surements of approximately: 10.80 x 3.60 x 1.10 m

II lilac: This member of the structure is the counterpart of Member I, only in the narrow

section of the structure, with approximate measurements of: 11.50 x 3.60 x 1.10 m
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Figure 10-3: Cross section of the roofing on the broad end

Figure 10-4: Overview of the further investigated parts of the structure

III blue: Both ends of the structure are rounded off with the biggest members roughly the

same measurements: 6.00 x 3.55 x 1.90 m

IV green: Lengthways of the structure, it is lined with the same member all along: 1.90 x

3.60 x 1.10 m

Modeling

The members I to IV were modeled by using the software Rhino:

(a) Outlines (b) Surface (c) FE Software

Figure 10-5: Modeling of Member I

(a) Outlines (b) Surface (c) FE Software

Figure 10-6: Modeling of Member II
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(a) Outlines (b) Surface (c) FE Software

Figure 10-7: Modeling of Member III

(a) Outlines (b) Surface (c) FE Software

Figure 10-8: Modeling of Member IV

10.2 Loadings

For the preliminary design of the structure following loadings will be approximately determined:

- Snow s

- Down-wind w↓

- Up-wind w↑

Snow s

The determination of the snow-loading was made by the lead of DIN EN 1991-1-3:2010 includ-

ing DIN EN 1991-1-3/NA:2010-12 and the assumption of a double pitch roof.

Characteristics of the location Pforzheim:

- Snowzone 1

- Height: 261m above sea level < 400m →minimum value

sk = 0.65
kN

m2

Characteristics of the structure:
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- maximum slope ≈ < 30◦ →γ1 = 0.8

sc = 0.8 · 0.65 = 0.52
kN

m2

Wind w

The determination of the snow-loading was made by the lead of DIN EN 1991-1-4:2005 includ-

ing DIN EN 1991-1-4/NA:2008-09 and the assumption of a freestanding pitch roof (see Figure

10-9).

Figure 10-9: Breakdown of the roof area [25, p.326]

Characteristics of the location Pforzheim:

- Windzone 1

- Maximum height structure = 9.80m

→ qp = 0.50
kN

m2

The loading for up and down wind are determined in Table 10-1, for each section of the structure,

in comparison to its weight distributed over the total surface. The values for cpe were determined

by Table 7.7 in the code. [20]
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Table 10-1: Determination of the wind loading

To finally calculate the loadings, each section loading has to be added together to get consider-

able preliminary loadings.

wc,↑ = −0.50
kN

m2

wc,↓ = 0.46
kN

m2

Final Loadings

As the death load and therefore the stress nDL is usually very small for membrane structures,

it is going to be neglected from now on.

The loading qc,↓ has to be determined by following Equation, which considers a combination

factor Ψ and probability of a simultaneously acting of wind and snow loadings:

qc,↓ = max

sc + wc,↓ ·Ψ = 0.52 + 0.46 · 0.2 = 0.612kN
m2

sc ·Ψ + wc,↓ = 0.52 · 0.2 + 0.46 = 0.564kN
m2

qc,↓ = 0.612
kN

m2

As the upward wind loading has no other impacts with the same direction of action, there is no

combination required.

qc,↑ = −0.50
kN

m2
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10.3 Determining Stresses

Following will show the determination of the pretensioning of the structures as well as the

stresses given by the using of the iteration process introduced in Chapter 9.2.1 for the structure-

members I to IV.

10.3 Member I

Figure 10-10: Measurements of Member I

Geometries

- Downward forces ↓

Ll = 3.60m

Lt = 10.80m

- Upward forces ↑

Ll = 10.80m

Lt = 3.60m

Choosing the Pretensioning

To make a preliminary design of the required pretensioning stresses in the membrane Equations

9.11 and 9.12 were used with the usage of the previously determined loadings qc,↓ and qc,↑ as

well as the assumption, that each sag is H
2

n1,member1 ≈
L2
l · qc,↓
8 · fl

=
10.802 · 0.612

8 · 0.55
= 1.80

kN

m

n2,member1 ≈
L2
l · qc,↑
8 · fl

=
3.602 · 0.50

8 · 0.55
= 13.25

kN

m

To reduce the high ratio between both pretensioning stresses to 0.5, n2 will be raised, therefore:
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n1,0,member1 = 7.00
kN

m

n2,0,member1 = 14.00
kN

m

Stresses for Downward Loading qc,↓

For the snow-load qc,↓ = 0.612kN
m2 the iteration process gives following stresses (including pre-

tensioning):

- nl,c = n1,iteration = 14.46kN
m

- nt,c = n2,iteration = 10.78kN
m

Which leads to following stresses caused by the loading:

- nl,q,c = nl,p,c − n1,0,member1 = 14.46− 7.00 = 7.46kN
m

- nt,q,c = nt,p,c − n2,0,member1 = 10.78− 14.00 = −3.22kN
m

Proofing Stresses for qc,↓

- Short-time strength for 20◦C

n0,Ed = 1.35 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.0 · 7.00 + 1.50 · 7.46 = 18.19kN
m

!
< perm.n0,Rd

- Short-time strength for 70◦C

nϑ,Ed = 1.00 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.0 · 7.00 + 1.50 · 7.46 = 18.19kN
m

!
< perm.nϑ,Rd

- Long-time strength for 20◦C

nt,Ed = 1.35 · nDL + 1.50 · np

= 0 + 1.50 · 7.00 = 10.50kN
m

!
< perm.nt,Rd

Stresses for Upwards Loading qc,↑

For the wind-load qc,↑ = −0.50kN
m2 the iteration process gives following stresses (including pre-

tensioning):

- ns,p,c = 22.28kN
m

- ns,p,c = 6.77kN
m

Which leads to following stresses caused by the loading:
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- ns,p,c = 22.28− 14.00 = 8.28kN
m

- ns,p,c = 6.77− 7.00 = −0.23kN
m

Proofing Stresses for qc,↑

- Short-time strength for 20◦C

n0,Ed = 1.35 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.0 · 14.00 + 1.50 · 8.28 = 26.42kN
m

!
< perm.n0,Rd

- Short-time strength for 70◦C

nϑ,Ed = 1.00 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.00 · 14.00 + 1.50 · 8.28 = 26.42kN
m

!
< perm.nϑ,Rd

- Long-time strength for 20◦C

nt,Ed = 1.35 · nDL + 1.50 · np

= 0 + 1.00 · 14.00 = 21.00kN
m

!
< perm.nt,Rd

Comparison with RFEM

Determining the stresses for Member I with the Finite Element Software RFEM gives following

values:

- Stresses for qc,↓

nl,RFEM = 15.04kN
m →Difference: 1− 14.46

15.04
= 3.9%

nt,RFEM = 3.62kN
m →Difference: 1− 10.78

3.62
= −177.8%

- Stresses for qc,↑

nl,RFEM = 14.24kN
m →Difference: 1− 22.28

14.24
= −56.5%

nt,RFEM = 10.39kN
m →Difference: 1− 10.78

10.39
= −3.8%
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10.3 Member II

Figure 10-11: Measurements of Member II

Geometries

- Downward forces ↓

Ll = 3.60m

Lt = 11.50m

- Upward forces ↑

Ll = 11.50m

Lt = 3.60m

Choosing the Pretensioning

To make a preliminary design of the required pretensioning stresses in the membrane Equations

9.11 and 9.12 were used with the usage of the previously determined loadings qc,↓ and qc,↑ as

well as the assumption, that each sag is H
2

n1,member2 ≈
L2
l · qc,↓
8 · fl

=
11.502 · 0.612

8 · 0.55
= 1.8

kN

m

n2,member2 ≈
L2
l · qc,↑
8 · fl

=
3.602 · 0.50

8 · 0.55
= 15.00

kN

m

To reduce the high ratio between both pretensioning stresses to 0.5, n2 will be raised, therefore:

n1,0,member2 = 8.00
kN

m
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n2,0,member2 = 16.00
kN

m

Stresses for Downward Loading qc,↓

For the snow-load qc,↓ = 0.612kN
m2 the iteration process gives following stresses (including pre-

tensioning):

- nl,c = n1,iteration = 16.05kN
m

- nt,c = n2,iteration = 12.26kN
m

Which leads to following stresses caused by the loading:

- nl,q,c = nl,p,c − n1,0,member1 = 16.05− 8.00 = 8.05kN
m

- nt,q,c = nt,p,c − n2,0,member1 = 12.26− 16.00 = −3.74kN
m

Proofing Stresses for qc,↓

- Short-time strength for 20◦C

n0,Ed = 1.35 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.0 · 8.00 + 1.50 · 8.05 = 20.08kN
m

!
< perm.n0,Rd

- Short-time strength for 70◦C

nϑ,Ed = 1.00 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.00 · 8.00 + 1.50 · 8.05 = 20.08kN
m

!
< perm.nϑ,Rd

- Long-time strength for 20◦C

nt,Ed = 1.35 · nDL + 1.50 · np

= 0 + 1.50 · 8.00 = 12kN
m

!
< perm.nt,Rd

Stresses for Upwards Loading qc,↑

For the wind-load qc,↑ = −0.50kN
m2 the iteration process gives following stresses (including pre-

tensioning):

- ns,p,c = 25.04kN
m

- ns,p,c = 7.73kN
m

Which leads to following stresses caused by the loading:

- ns,p,c = 25.04− 16.00 = 9.04kN
m

- ns,p,c = 7.73− 8.00 = −0.27kN
m
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Proofing Stresses for qc,↑

- Short-time strength for 20◦C

n0,Ed = 1.35 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.00 · 16.00 + 1.50 · 9.04 = 29.56kN
m

!
< perm.n0,Rd

- Short-time strength for 70◦C

nϑ,Ed = 1.00 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.00 · 16.00 + 1.50 · 9.04 = 29.56kN
m

!
< perm.nϑ,Rd

- Long-time strength for 20◦C

nt,Ed = 1.35 · nDL + 1.50 · np

= 0 + 1.50 · 16.00 = 24kN
m

!
< perm.nt,Rd

Comparison with RFEM

Determining the stresses for Member II with the Finite Element Software RFEM gives following

values:

- Stresses for qc,↓

nl,RFEM = 16.87kN
m →Difference: 1− 16.05

16.87
= 4.9%

nt,RFEM = 4.89kN
m →Difference: 1− 12.26

4.89
= −150.7%

- Stresses for qc,↑

nl,RFEM = 11.07kN
m →Difference: 1− 25.04

11.07
= −126.2%

nt,RFEM = 16.20kN
m →Difference: 1− 7.73

16.20
= 52.3%

10.3 Member III

Figure 10-12: Measurements of Member III
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Geometries

- Downward forces ↓

Ll = 3.60m

Lt = 6.30m

- Upward forces ↑

Ll = 6.30m

Lt = 3.60m

Choosing the Pretensioning

To make a preliminary design of the required pretensioning stresses in the membrane Equations

9.11 and 9.12 were used with the usage of the previously determined loadings qc,↓ and qc,↑ as

well as the assumption, that each sag is H
2

n1,member3 ≈
L2
l · qc,↓
8 · fl

=
3.602 · 0.612

8 · 0.49
= 2.02

kN

m

n2,member3 ≈
L2
l · qc,↑
8 · fl

=
6.302 · 0.50

8 · 0.49
= 5.06

kN

m

To reduce the high ratio between both pretensioning stresses to 0.5, n2 will be raised, therefore:

n1,0,member3 = 3.00
kN

m

n2,0,member3 = 6.00
kN

m

Stresses for Downward Loading qc,↓

For the loading qc,↓ = 0.612kN
m2 the iteration process gives following stresses (including preten-

sioning):

- nl,c = n1,iteration = 6.40kN
m

- nt,c = n2,iteration = 4.63kN
m

Which leads to following stresses caused by the loading:

- nl,q,c = nl,p,c − n1,0,member1 = 6.40− 3.00 = 3.40kN
m

- nt,q,c = nt,p,c − n2,0,member1 = 4.63− 6.00 = −1.37kN
m
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Proofing Stresses for qc,↓

- Short-time strength for 20◦C

n0,Ed = 1.35 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.0 · 3.00 + 1.50 · 3.74 = 8.73kN
m

!
< perm.n0,Rd

- Short-time strength for 70◦C

nϑ,Ed = 1.00 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.0 · 3.00 + 1.50 · 3.74 = 8.73kN
m

!
< perm.nϑ,Rd

- Long-time strength for 20◦C

nt,Ed = 1.35 · nDL + 1.50 · np

= 0 + 1.50 · 3.00 = 4.50kN
m

!
< perm.nt,Rd

Stresses for Upwards Loading qc,↑

For the wind-load qc,↑ = −0.50kN
m2 the iteration process gives following stresses (including pre-

tensioning):

- ns,p,c = 11.39kN
m

- ns,p,c = 2.90kN
m

Which leads to following stresses caused by the loading:

- ns,p,c = 11.39− 6.00 = 5.39kN
m

- ns,p,c = 2.90− 3.00 = −0.10kN
m

Proofing Stresses for qc,↑

- Short-time strength for 20◦C

n0,Ed = 1.35 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.0 · 6.00 + 1.50 · 5.39 = 14.09kN
m

!
< perm.n0,Rd

- Short-time strength for 70◦C

nϑ,Ed = 1.00 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.00 · 6.00 + 1.50 · 5.39 = 14.09kN
m

!
< perm.nϑ,Rd

- Long-time strength for 20◦C

nt,Ed = 1.35 · nDL + 1.5 · np

= 0 + 1.50 · 6.00 = 9.00kN
m

!
< perm.nt,Rd
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Comparison with RFEM

Determining the stresses for Member III with the Finite Element Software RFEM gives following

values:

- Stresses for qc,↓

nl,RFEM = 6.55kN
m →Difference: 1− 6.40

6.55
= 2.3%

nt,RFEM = 0.04kN
m →Difference: 1− 4.63

0.04
= −%

- Stresses for qc,↑

nl,RFEM = 5.78kN
m →Difference: 1− 11.39

5.78
= −97.1%

nt,RFEM = 5.78kN
m →Difference: 1− 2.90

5.78
= 49.8%

10.3 Member IV

Figure 10-13: Measurements of Member IV

Geometries

- Downward forces ↓

Ll = 2.20m

Lt = 10.80m

- Upward forces ↑

Ll = 10.80m

Lt = 2.20m

The actual system height in the middle cross-section of Member IV (see Figure 10-14) is calcu-

lated by:
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Figure 10-14: Actual Height of Member IV

H = sin(tan−1(
1.10

1.90
)) · 1.90 = 0.95m

Choosing the Pretensioning

To make a preliminary design of the required pretensioning stresses in the membrane Equations

9.11 and 9.12 were used with the usage of the previously determined loadings qc,↓ and qc,↑ as

well as the assumption, that each sag is H
2

n1,member4 ≈
L2
l · qc,↓
8 · fl

=
2.202 · 0.612

8 · 0.475
= 0.78

kN

m

n2,member4 ≈
L2
l · qc,↑
8 · fl

=
10.802 · 0.50

8 · 0.475
= 18.90

kN

m

To reduce the high ratio between both pretensioning stresses to 0.5, n2 will be raised, therefore:

n1,0,member4 = 10.00
kN

m

n2,0,member4 = 20.00
kN

m

Stresses for Downward Loading qc,↓

For the snow-load qc,↓ = 0.612kN
m2 the iteration process gives following stresses (including pre-

tensioning):

- nl,c = n1,iteration = 14.61kN
m

- nt,c = n2,iteration = 14.92kN
m
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Which leads to following stresses caused by the loading:

- nl,q,c = nl,p,c − n1,0,member1 = 14.61− 10.00 = 4.61kN
m

- nt,q,c = nt,p,c − n2,0,member1 = 14.92− 20.00 = −5.08kN
m

Proofing Stresses for qc,↓

- Short-time strength for 20◦C

n0,Ed = 1.35 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.00 · 10.00 + 1.50 · 4.61 = 16.92kN
m

!
< perm.n0,Rd

- Short-time strength for 70◦C

nϑ,Ed = 1.00 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.00 · 10 + 1.50 · 4.61 = 16.92kN
m

!
< perm.nϑ,Rd

- Long-time strength for 20◦C

nt,Ed = 1.35 · nDL + 1.50 · np

= 0 + 1.50 · 10.00 = 15.00kN
m

!
< perm.nt,Rd

Stresses for Upwards Loading qc,↑

For the wind-load qc,↑ = −0.50kN
m2 the iteration process gives following stresses (including pre-

tensioning):

- ns,p,c = 27.67kN
m

- ns,p,c = 9.68kN
m

Which leads to following stresses caused by the loading:

- ns,p,c = 27.67− 20.00 = 7.68kN
m

- ns,p,c = 9.68− 10.00 = −0.32kN
m

Proofing Stresses for qc,↑

- Short-time strength for 20◦C

n0,Ed = 1.35 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.00 · 20.00 + 1.50 · 7.68 = 31.52kN
m

!
< perm.n0,Rd

- Short-time strength for 70◦C

nϑ,Ed = 1.00 · nDL + 1.00 · np + 1.50 · nq

= 0 + 1.00 · 20.00 + 1.50 · 7.68 = 31.52kN
m

!
< perm.nϑ,Rd
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- Long-time strength for 20◦C

nt,Ed = 1.35 · nDL + 1.50 · np

= 0 + 1.50 · 20.00 = 30.00kN
m

!
< perm.nt,Rd

Comparison with RFEM

Determining the stresses for Member IV with the Finite Element Software RFEM gives following

values:

- Stresses for qc,↓

nl,RFEM = 20.31kN
m →Difference: 1− 14.61

20.31
= 28.1%

nt,RFEM = 12.22kN
m →Difference: 1− 14.92

12.22
= −22.1%

- Stresses for qc,↑

nl,RFEM = 19.95kN
m →Difference: 1− 27.67

19.95
= −38.7%

nt,RFEM = 8.97kN
m →Difference: 1− 9.68

8.97
= −7.9%

10.3 Overview of the Stresses

Table 10-2 summarizes all maximal stresses for each member of the structure. It is clearly

visible, that the choice of the membrane is mainly depending on Member I, Member II and

Member IV, as there are the highest stresses.

Table 10-2: Overview of the stresses kN
m

For the preliminary design, the maximal stresses of Member IV were taken into further account.

10.4 Required Tensile Strength of the Membrane

The required tensile strength will be calculated exemplary for both textile membranes and foils.

Textile Membrane

The design strength of textile membranes can be calculated, as is shown in Equation 6.6, with

the help of several reduction factors Ai:

nt,d =
nt,c

γm
∏3

0(Ai)
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- Short-time strength for 20◦C: perm.n0,d

γm = 1.2

A0 = 1.2

A1 = 1.6

A2 = 1.2

A3 = 1.1

→nt,d = perm.n0,c · γm ·
∏3

0 = nt,c · 3.04

- Short-time strength for 70◦C: perm.nϑ,d

γm = 1.2

A0 = 1.2

A1 = 1.6

A2 = 1.2

A3 = 1.25

→nt,d = perm.nϑ,c · γm ·
∏3

0 = nt,c · 3.456

- Long-time strength for 20◦C: perm.nt,d

γm = 1.2

A0 = 1.2

A1 = 1.7

A2 = 1.2

A3 = 1.1

→nt,d = perm.nt,Ed · γm ·
∏3

0 = nt,c · 3.23

The final required tensile strength for textile membranes is the maximum value of each result

above:

nt,d = max


perm.n0,c · 3.04 = 31.52 · 3.04 = 95.82kN

m

perm.nϑ,c · 3.456 = 31.52 · 3.46 = 109.06kN
m

perm.nt,c · 3.23 = 30.00 · 3.23 = 96.90kN
m

The required tensile strength of the structure build with textile membranes is nt,c = 119.06kN
m .

So, the chosen material is a PTFE-Glass-Fiber textile membrane with a strength of 115kN
m in

each main direction.
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Foils

The design tensile strength of foils is described in Equation 6.7 and the help of reduction factors

Ai, as well:

nt,d =
nt,c

γM ·
∏3

i=1(Ai)

- Short-time strength for 20◦C: perm.n0,Rd

γm = 1.2

A1 = 1.0

A2 = 1.8

A3 = 1.1

→nt,d = perm.n0,c · γm ·
∏3

1 = nt,c · 2.38

- Short-time strength for 70◦C: perm.nϑ,Rd

γm = 1.2

A1 = 1.0

A2 = 1.6

A3 = 1.1

→nt,d = perm.nϑ,c · γm ·
∏3

1 = nt,c · 2.112

- Long-time strength for 20◦C: perm.nt,Rd

γm = 1.2

A1 = 1.6

A2 = 1.8

A3 = 1.1

→nt,d = perm.nt,c · γm ·
∏3

1 = nt,c · 3.802

Again, the final required tensile strength for foils is the maximum value of each result above:

nt,c = max


perm.n0,Ed · 2.38 = 31.52 · 2.38 = 75.02kN

m

perm.nϑ,Ed · 2.112 = 31.52 · 2.11 = 66.19kN
m

perm.nt,Ed · 3.802 = 30.00 · 3.802 = 114.06kN
m

The required tensile strength of the structure build with foils is nt,d = 114.06kN
m .

Manufacturing the structure with foils will be almost impossible, due to the high required tensile

strength.
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10.5 Discussion of the Results

Though the final results give a realistic setting, the difference between the results of the iteration

process and the ones from the static software are partially enormous. This could be explained

by overstepping one of the three requirements of Equations 9.19, 9.20 and 9.21 of the system in

each member, the minimum ratio of height to length of 0.25. Especially the second direction,

where the loading comes from below the system is subjected to this problem.

Member I

- Direction 1:
H

L1
=

1.10

3.60
= 0.30 > 0.25 X

- Direction 2:
H

L2
=

1.10

10.80
= 0.10 < 0.25 ×

Member II

- Direction 1:
H

L1
=

1.10

3.60
= 0.30 > 0.25 X

- Direction 2:
H

L2
=

1.10

11.50
= 0.10 < 0.25 ×

Member III

- Direction 1:
H

L1
=

0.98

3.60
= 0.27 > 0.25 X

- Direction 2:
H

L2
=

0.98

6.30
= 0.16 < 0.25 ×

Member IV

- Direction 1:
H

L1
=

0.95

2.20
= 0.43 > 0.25 X

- Direction 2:
H

L2
=

0.95

10.80
= 0.09 < 0.25 ×

Therefore, an exemplary calculation for Member I, with an alternated height of 3.00m, which

maintains the border of H
L = 3.00

10.80 = 0.28 > 0.25, was done to show the appropriateness of these

rules.

The required pretensioning stresses decrease to:

np,0,1 = 3.00kN
m

np,0,2 = 6.00kN
m

The final stresses of the iteration process for the force qc,↑ were determined to:

nfinal,1 = 2.90kN
m

nfinal,2 = 8.95kN
m

In comparison the results of the finite element software for upward loadings are:
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nRFEM,1 = 5.61kN
m

nRFEM,2 = 5.73kN
m

As can be easily seen, the results are now much more accurate, then the ones of the initial

Member 1.
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11 Conclusion and Prospect

The aim of this work, was to develop an universally usable tool to determine stresses of mem-

brane structures for different loading cases and to summarize this newly obtained knowledge

into an additional manual next to this current preparation.

Beside the main topic, this work also gives a short introduction to the general topic of mem-

brane structures and describes their special properties and special components. The special

safety concept for the membrane materials is given as well as some exemplary material charac-

teristics. Another topic is the modeling of membrane surfaces for a static software, including

the ex- and import and the utilization of those models. After the detailed explanation of the

process of the determination of stresses inside the membrane system, an meticulous revised

calculation of an exemplary membrane structure is shown.

One of the main issues for the determination of stresses of membrane structures is the direct

correlation of shape of the structure and its ability to ablate loading.

Since it was only possible to determine the pretensioning stresses and their corresponding ge-

ometry of equilibrium with simple written calculations, it was an interesting task to develop a

possible approach to extend those calculations to be also functioning for additional loading.

This was achieved by a literature research and the combination of several different approaches

into an iteration process which determines a new geometry of equilibrium and its specific stresses

in each step. This whole course of action was permanently monitored with the finite element

software RFEM by Dlubal.

However, in this new approach, there are two topics, that has to be noted:

1. Though the iteration process determines the sags of each main direction anew in each step,

they are non-real values and therefor only mathematical numbers. The actual shape is

produces by the initial pretensioning stresses. Additional deformation is caused by elastic

elongation of the membrane material due to the additional loading.

2. The boundaries and restrictions were determined by trial and error and the continuous

monitoring and comparison with the finite element software.

One problematic issue was recognized in the application of the iteration process, specifically

in the force dividing κ-approach, where the tensioning direction is subjected with increasing

loading to decreasing divided loadings to the point that they are non-existent, where it should

be the other way around. However, as this has not a major influence on the final results and

the additional live loads are usually so small, that it can be neglected.
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Further research could be done in the optimization of the iteration process, specifically as pre-

viously mentioned the κ-procedure. The development of geometry depending correction factors

could be helpful, to improve the final determined stresses. Also the further examination of

the restrictions and boundaries of this model would be important, to increase its safety and

therefore its usefulness.

At last, as the following aphorism of George Edward Pelham Box says in other words, it is

always important to know where the boundaries of a potential model are, to know in which

areas it can be useful, but almost more important is to know when the results of a model are

misleading and when it is more recommendable to search for another one.

”Essentially, all models are wrong, but some are useful.”

- George Edward Pelham Box (1919 - 2013) -
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