
SOFTWARE ENERGY CONSUMPTION

PREDICTION USING SOFTWARE CODE

METRICS

by

Sedef Akinli Koçak

Master of Science in Chemical Engineering, University of Maine, USA, 2001

Master of Business Administration, Ankara University, Turkey, 2001

Bachelor of Science in Chemical Engineering, Ankara University, Turkey, 1997

A dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Program of

Environmental Applied Science and Management

Toronto, Ontario, Canada, 2018

c�Sedef Akinli Koçak 2018

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A

DISSERTATION

I hereby declare that I am the sole author of this dissertation. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

I understand that my dissertation may be made electronically available to the public.

ii

SOFTWARE ENERGY CONSUMPTION PREDICTION USING SOFTWARE CODE

METRICS

Doctor of Philosophy 2018

Sedef Akinli Koçak

Environmental Applied Science and Management

Ryerson University

Abstract

In recent years, a significant amount of energy consumption of ICT products has resulted

in environmental concerns. Growing demand for mobile devices, personal computers, and the

widespread adaptation of cloud computing and data centers are the main drivers for the energy

consumption of the ICT systems. Finding solutions for improving the energy e�ciency of the

systems has become an important objective for both industry and academia.

In order to address the increase in ICT energy consumption, hardware technology, such as

production of energy e�cient processors, has been substantially improved. However, demand for

energy is growing faster than improvements are being made on these energy-aware technologies.

Therefore, in addition to hardware, software technologies must also be a focus of research

attention. Although software does not consume energy by itself, its characteristics determine

which hardware resources are made available and how much electrical energy is used.

Current literature on the energy e�ciency of software, highlights, in particular, a lack of

measurements and models. In this dissertation, first, the relationship between software code

properties and energy consumption is explored. Second, using static code metrics regression-

ii

based energy consumption prediction models are investigated. Finally, the models performance

are assessed using within product and cross-product energy consumption prediction approaches.

For this purpose, a quantitative based retrospective cohort study was employed. As research

methods, observational data collection, mining software repositories, and regression analysis

were utilized. This research results show inconsistent relationships between energy consumption

and code size and complexity attributes considering di↵erent types of software products. Such

results provide a foundation of knowledge that static code attributes may give some insights

but would not be the sole predictors of energy consumption of software products.

iv

Acknowledgements

The process of developing this dissertation represents countless hours of contemplation, reflec-

tion, and intellectual and personal discovery. I appreciate the constant kindness, patience, and

endless support from my supervisor throughout this journey. I would like to express my deepest

appreciation to Dr.Ayşe Başar Bener who inspired me, challenged me, kept me going during

tough times, and helped me find my way. This work would not have been possible and involved

such an interdisciplinary body of research without her guidance and insight.

I also extend my gratitude to my co-supervisor, Dr.Andriy Miranskyy, for all his sup-

port, valuable advice, constructive discussions, and technical help throughout this study. I am

tremendously fortunate to have had him through this journey. I would also like to thank my

thesis committee, for their precious feedback and support.

I would like to thank, for their technical contributions, IBM Canada, who made this research

possible. A special thanks goes to Dr.Gülfem Işıklar Alptekin for her guidance as well as her

friendship. I would also like to thank all of the graduate students, and post-docs in the Data

Science Laboratory at Ryerson University for their friendship and professional help during this

adventure.

I thank my parents for their love. They have always been there for me. I am deeply indebted

to my husband, Dr.Akın Koçak, for his continuing support and patience. It would not have

been possible to complete this research without his love, respect and extensive trust. Finally, I

would like to dedicate this dissertation to my daughter, Ipek Koçak, who is my best friend. I am

so proud of myself for completing this endeavour but nothing compares with being a mother.

.

iv

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Definition . 3

1.3 Organization of the Dissertation . 5

2 Related Work and Research Question 6

2.1 Software and Energy Consumption . 7

2.2 Static Code Metrics and Predictive Models in Software Engineering 8

2.3 Background and Definitions . 11

2.3.1 Energy E�ciency of Software, and Definitions 11

2.3.2 Energy Consumption and Mining Software Repositories 11

2.3.3 Software Metrics . 12

2.4 Research Question . 15

3 Research Methodology and Proposed Model 16

3.1 Research Approach . 16

3.2 Research Methods and Design . 20

3.2.1 Observational Method . 21

3.2.2 Mining Software Repositories (MSR) . 22

3.3 Proposed Model . 22

3.3.1 Linear Regression: . 23

Author’s Declaration ii
Abstract iii
Acknowledgments v
List of Tables ix

vi

List of Appendices . xv
List of Figures xii

List of Acronyms xvi

Table of Contents

3.3.2 Proposed Approach for Data Scarcity . 26

4 Data Collection Methodology and Dataset Construction 28

4.1 Dataset Construction . 28

4.1.1 Variable Selection . 28

4.1.2 Observational Data Collection and Analysis 30

4.2 Mining Software and Data Repositories . 37

4.3 Descriptive Statistics . 40

4.3.1 Descriptive Statistics of Observational Data: DB2 40

4.3.2 Descriptive Statistics of Mined Datasets 49

4.4 Correlation Analysis . 56

4.4.1 Dataset: DB2 Correlation Analysis . 57

4.4.2 Dataset: MYSQL Correlation Analysis . 60

4.4.3 Dataset: Firefox Correlation Analysis . 61

4.4.4 Dataset: VUZE Correlation Analysis . 62

4.4.5 Dataset: rTorrent Correlation Analysis . 64

4.4.6 Hypothesis Testing and Results . 65

5 Proposed Prediction Models 67

5.1 Proposed Models . 67

5.1.1 Designing the Regression Model . 67

5.1.2 Model Construction . 70

5.1.3 Models and Results for Dataset: DB2 . 72

5.1.4 Models and Results for DB2 Version Groups 79

5.1.5 Models and Results for Dataset: MYSQL 90

5.1.6 Models and Results for Dataset: Firefox 96

5.1.7 Models and Results for Dataset: Vuze . 98

5.1.8 Models and Results for Dataset: rTorrent 99

5.1.9 Regression Model Discussion . 102

5.2 Cross-Product Energy Consumption Prediction 103

5.2.1 Cross-Product Energy Consumption Prediction (CPECP) Analysis 103

5.2.2 Cross-Product Energy Consumption Prediction Results 104

5.2.3 Cross-Product Energy Consumption Prediction Discussion 111

6 Conclusions, Threats to Validity and Future Directions 113

6.1 Summary of Results . 113

6.1.1 Research Question Evaluation . 114

vii

6.1.2 RQ: How can we build a prediction model based on static code attributes

to predict the energy consumption of software? 114

6.2 Research Contributions . 115

6.2.1 Theoretical and Methodological Contribution 115

6.3 Threats to Validity . 118

6.3.1 Construct Validity . 118

6.3.2 Conclusion Validity . 119

6.3.3 Internal Validity . 119

6.3.4 External Validity . 120

6.4 Future Directions . 121

viii

Appendices

122

130

149

References

Acronyms

List of Tables

4.1 Definitions of the metrics used in this study. 29

4.2 List of four major DB2 releases with their corresponding minor versions used in

this study. 31

4.3 Configuration of the test machine. 32

4.4 Baseline system average power (watt) and energy consumption (Wh) measure-

ments. 36

4.5 Interpretation of the correlation coe�cient. 37

4.6 A summary of the datasets extracted from repositories. 38

4.7 Energy consumption (Wh) statistics overview. 42

4.8 Time spent (hour) statistics overview. 45

4.9 DB2: Descriptive statistics of software metrics, energy consumption, time spent,

and software metrics. 46

4.10 MYSQL - MYISAM engine directories only: Descriptive statistics of energy con-

sumption, time spent and software metrics. 50

4.11 MYSQL using MYISAM engine files and system files: Descriptive statistics of

energy consumption, time spent and software metrics. 50

4.12 MYSQL - InnoDB engine directories only: Descriptive statistics of energy con-

sumption, time spent and software metrics. 50

4.13 MYSQL using InnoDB engine files and system files: Descriptive statistics of

energy consumption, time spent and software metrics. 51

4.14 Firefox-1: Descriptive statistics of energy consumption, time spent and software

metrics, N = 366. 53

4.15 Firefox-2: Descriptive statistics of energy consumption, time spent and software

metrics, N = 32. 53

4.16 VUZE: Descriptive statistics of energy consumption, time spent, and software

metrics. 54

ix

4.17 Combination of rTorrent and libTorrent: Descriptive statistics of energy con-

sumption, time spent, and software metrics. 55

4.18 DB2: Pearson’s correlation coe�cients, r, and significance (p-values) in brackets. 57

4.19 DB2 version 9.5: Pearson’s correlation coe�cients, r, and significance (p-values)

in brackets. 58

4.20 DB2 version 10.1: Pearson’s correlation coe�cients, r, and significance (p-values)

in brackets. 58

4.21 DB2 version 10.5 and 11.1: Pearson’s correlation coe�cients, r, and significance

(p-values) in brackets. 59

4.22 MYSQL-MyISAM only engine directories Pearson’s correlation coe�cients and

significance (p-value) in brackets. 60

4.23 MYSQL-InnoDB only engine directories Pearson’s correlation coe�cients and

significance (p-value) in brackets. 60

4.24 MYSQL-MyISAM and all system file directories Pearson’s correlation coe�cients

and significance (p-values) in brackets. 60

4.25 MYSQL-InnoDB and all system file directories Pearson’s correlation coe�cients

and significance (p-values) in brackets. 60

4.26 Firefox-1 Pearson’s correlation coe�cients and significance (p-values) in brackets. 62

4.27 Firefox-2 Pearson’s correlation coe�cients and significance (p-values) in brackets. 62

4.28 Vuze Pearson’s correlation coe�cients and significance (p-values) in brackets. . . 63

4.29 rTorrent Pearson’s correlation coe�cients and significance (p-values) in brackets. 64

4.30 libTorrent Pearson’s correlation coe�cients and significance (p-values) in brackets. 64

4.31 Torrent (sum of rTorrent and libTorrent) Pearson’s correlation coe�cients and

significance (p-values) in brackets. 64

5.1 DB2 Hausman specification test results for choosing fixed or random e↵ect. . . . 73

5.2 DB2 varying intercept or varying intercepts and slope model results. 74

5.3 DB2 Dataset: Random e↵ect models coe�cients and model evaluations. 75

5.4 DB2 dataset: Random e↵ect model performance evaluations 76

5.5 DB2 mixed-e↵ect model residual Shapiro-Wilk test results 80

5.6 Prediction performance of models on dataset DB2-version 9.5. 80

5.7 DB2 v.9.5 residuals Shapiro-Wilk test results. 82

5.8 Prediction performance of models on dataset DB2-version 10.1. 84

5.9 DB2 v.10.1 residuals Shapiro-Wilk test results . 87

5.10 Prediction performance of models on dataset DB2 v10.5-v.11.1. 87

5.11 DB2 v.10.5-v11.1 residuals Shapiro-Wilk test results. 90

x

5.12 Prediction performance of models on dataset MYSQL-MyISAM. 90

5.13 MyISAM residuals Shapiro-Wilk test results . 93

5.14 Prediction performance of models on dataset MYSQL-InnoDB. 94

5.15 InnoDB residuals Shapiro-Wilk test results. 95

5.16 Prediction performance of models on dataset Firefox. 96

5.17 Firefox residuals Shapiro-Wilk test results. 98

5.18 Prediction performance of models on dataset rTorrent. 100

5.19 rTorrent residuals Shapiro-Wilk test results. 101

5.20 DB2 dataset cross-product energy consumption prediction RMSE results. 104

5.21 DB2 dataset cross-product energy consumption prediction PRED(25) results. . . 105

5.22 MyISAM dataset Cross-product energy consumption prediction RMSE results. . 106

5.23 MyISAM cross-product energy consumption prediction PRED(25) results. 106

5.24 InnoDB dataset cross-product energy consumption prediction RMSE results. . . 107

5.25 InnoDB dataset cross-product energy consumption prediction PRED(25) results. 108

5.26 Firefox dataset cross-product energy consumption prediction RMSE results. . . . 109

5.27 Firefox cross-product energy consumption prediction PRED(25) results. 109

5.28 rTorrent cross-product energy consumption prediction RMSE results. 110

5.29 rTorrent cross-product energy consumption prediction PRED(25) results. 110

xi

List of Figures

3.1 Overview of the study methodology in energy consumption prediction adopted

from Bener et al. [16]. 19

3.2 Overview of the observational method. 21

3.3 Illustration of the Cross-Product Analysis. 27

4.1 Time line of the DB2 releases. Y-axis depicts major release numbers; values

above the points depicts minor release numbers. For example, number 1 in the

top left corner represents the release date for version 9.5.1. 31

4.2 Testbed setup used in the DB2 energy data collection. 34

4.3 Metric data collection procedure illustration from available resources. 38

4.4 Energy consumption (Wh) box-plots of tested versions of DB2. 43

4.5 DB2 major versions energy consumption (Wh) and time spent (hour) box-plots. 44

4.6 Time spent (hour) box-plots of tested versions of DB2. 46

4.7 Q-Q Plots of energy consumption (Wh) and time spent (hour), the outer dotted

lines 95% confidence band. 47

4.8 Density graphs of energy consumption (Wh) and time spent (hour). 47

4.9 Q-Q Plot (a) and Density Plot (b) of energy consumption (Wh) of DB2 v.9.5.

In (a) the outer dotted lines 95% confidence band 48

4.10 Q-Q Plot (a) and Density Plot (b) of energy consumption (Wh) of DB2 v.10.1.

In (a) the outer dotted lines 95% confidence band. 48

4.11 Q-Q Plot (a) and Density Plot (b) of energy consumption (Wh) of DB2 v.10.5.

In (a) the outer dotted lines 95% confidence band 49

4.12 DB2 panel correlation matrix for energy consumption, time spent and software

metrics. The lower triangle shows scatter plots and smoothed line. The upper tri-

angle region shows the Pearson correlation coe�cient and significance indicated

by “*” symbols: ***0.0001, ** 0.001, *0.01, .0.05. 58

xii

4.13 MYSQL panel correlation matrix for energy consumption, time spent and soft-

ware metrics. Diagonal shows metric name. Lower triangle shows scatter plots

and smoothed line. Upper triangle region shows Pearson correlation coe�cient

and significance indicating with symbols: ***0.0001, ** 0.001, *0.01, .0.05. 61

4.14 Firefox panel correlation matrix for energy consumption, time spent and soft-

ware metrics. Lower triangle shows scatter plots and smoothed line. Upper

triangle region shows Pearson correlation coe�cient and significance indicating

with symbols: ***0.0001, ** 0.001, *0.01, .0.05. 62

4.15 Vuze panel correlation matrix for energy consumption, time spent and software

metrics. Lower triangle shows scatter plots and smoothed line. Upper trian-

gle region shows Pearson correlation coe�cient and significance indicating with

symbols: ***0, ** 0.001, *0.01, .0.05. 63

4.16 Torrent (sum of rTorrent and libTorrent) panel correlation matrix for energy

consumption, time spent and software metrics. Diagonal shows metric name.

Lower triangle shows scatter plots and smoothed line. Upper triangle region

shows Pearson correlation coe�cient and significance indicating with symbols:
***0, ** 0.001, *0.01, .0.05. 65

5.1 General Steps of Model Assessment and Performance Comparisons. 68

5.2 Residual scatter plots of standardized residuals versus fitted values for for DB2

models. 77

5.3 Normal Q-Q plots of residuals for DB2 models. 78

5.4 Standard normal quantiles versus random e↵ect quantiles for DB2 models. 79

5.5 Regression model graphs for DB2 v.9.5; the grey area show the 95% confidence

intervals. 81

5.6 Residual plots for DB2 version 9.5 models; the dashed lines show the 95% confi-

dence intervals. 83

5.7 Regression model graphs for DB2 v.10.1; the grey area show the 95% confidence

intervals. 85

5.8 Residual plots for DB2 version 10.1 models; the dashed lines show the 95%

confidence intervals. 86

5.9 Regression model graphs for DB2 v.10.5-v11.1; the grey area show the 95% con-

fidence intervals. 88

5.10 Residual plots for DB2 v10.5-v11.1 models; the dashed lines show the 95% con-

fidence intervals. 89

xiii

5.11 Regression model graphs for MyISAM; the grey area show the 95% confidence

intervals. 91

5.12 Residual plots for MYISAM models; the dashed lines show the 95% confidence

intervals. 93

5.13 Regression model graphs for MYSQL-InnoDB; the grey area show the 95% con-

fidence intervals. 94

5.14 Residual plots for InnoDB models; the dashed lines show the 95% confidence

intervals. 96

5.15 Regression model graphs for Firefox; the grey area show the 95% confidence

intervals. 97

5.16 Residual plots for Firefox models; the dashed lines show the 95% confidence

intervals. 99

5.17 Regression model graphs for Firefox; the grey area show the 95% confidence

intervals. 100

5.18 Residual plots for RTorrent models; the dashed lines show the 95% confidence

intervals. 102

5.19 Fitting MYSQL, Firefox and TOTAL data with DB2 Model#1 (LOC). 106

5.20 Fitting DB2 and TOTAL data with MyISAM Model#1 (LOC). 107

5.21 Fitting DB2 and TOTAL data with innoDB Model#1 (LOC). 108

5.22 Fitting DB2 and TOTAL data with Firefox Model#1 (LOC). 109

5.23 Fitting DB2 and TOTAL data with rTorrent Model#1 (LOC). 111

xiv

xiv

122

124

126

128

Python Script for downloading source code from mercurial repository.

R Script for constructing linear regression model and performance evaluations

R Script for constructing random effect linear model

R Script for cross-product analysis .

A

B

C

 D

List of Appendices

 Acronyms

CC Cyclomatic Complexity. 13

CP Cross-Product. 104

CPU Central Processing Unit. 7

DBGEN Data Base Generator Utility. 32

EC Energy Consumption. 28

EU European Union. 2

GB Gigbayte. 32

ICT Information Communication Technology. 1

IoT Internet of Things. 6

LOC Lines of Code. 13

LOCC Lines of Code Change. 14

MAE Mean Absolute Error. 25

MCC Modified Cyclomatic Complexity. 30

MSR Mining Software Repositories. 11

OECD Organization for Economic Cooperation and Development. 1

OLAP Online Analytical Processing. 32

OO object oriented. 4

xvi

List of

OS Operating System. 35

QGEN Query Generator Utility. 32

RMSE Root Mean Square Error. 25

SD Standard Deviation. 41

TPC-H Transaction Processing Unit H. 32

TWh Terawatt Hour. 3

USB Universal Serial Bus. 32

WEEE Waste Electrical and Electronic Equipment. 3

WP Within-Product. 104

xvii

Chapter 1

Introduction

The importance of understanding the relationship between Information Communication Tech-

nology (ICT) and environmental issues is widely acknowledged in areas such as energy conserva-

tion, climate change, and sustainable resources management [125]. ICTs and their applications

may result in positive and/or negative e↵ects on the environment. Green ICT is the study and

practice of using computing resources e�ciently [106].

Climate change is a major environmental concern. At the recent Paris Climate Conference

(COP21) in December 2015, it was stated that it is necessary to “undertake rapid reductions

of carbon emission” [145] and to move towards renewable energy sources and low- and non-

carbon-dependent energy sources. Meaning that energy consumption in all sectors needs to be

minimised. While researchers are often concerned with the carbon footprint of di↵erent sectors

and activities, waste management and energy consumption of the overall ICT sector, they

rarely consider the role of software in the environmental impact of computer technologies. Until

recently, most of the work done within the industry regarding environmental concerns focused

on improving the energy e�ciency of hardware. The idea of considering energy e�ciency in the

software context alone was not fully acknowledged until the “Greensoft” model was introduced

by Naumann et al. [141]. Since then, the trend has changed and a software related context has

emerged.

Green ICT is a broad field that includes the entire system life cycle from hardware man-

ufacturing, to minimizing computer-related waste, to software development. Being green in

ICT simply means being e�cient in using natural resources and on the impacts of ICT on CO2

emissions. This is either related to the power consumption of systems or to the role of system

as an enabling technology for conserving energy in various fields [43]. Thus, resource usage

is an important issue in green ICT [179]. The Organization for Economic Cooperation and

Development (OECD) defines “Green ICT” as “an umbrella term for technologies with bet-

1

Chapter 1. Introduction 1.1. Motivation

ter environmental performance than previous generations (direct impacts) and ICTs that can

be used to improve environmental performance throughout the economy and society (enabling

and systemic impacts)” [125]. Direct impacts refer to positive and negative impacts due to the

physical existence of products (goods and services) and related processes. Enabling impacts

refers to positive and negative impacts due to applications that reduce environmental impacts

across economic and social activities [52, 78]. Systemic impacts on the environment are rooted

in behaviour and behavioural change. Systemic outcomes of green applications largely depend

on end-user acceptance, lifestyle adjustments, and changes in collective social behaviour. Sys-

temic impacts are mostly related to rebound e↵ects [78]. For example, increased technological

e�ciency may lead people to use even more of the technologies which, in total, consume more

energy. This dissertation is focusing on direct impact due to the physical existence and usage

of software products.

Energy consumption is now becoming a major concern in society. Although, software engi-

neering tends to focus on the technical elements and artificial systems with clear boundaries,

identifiable parts and connections, modules and dependencies, there is little understanding of

how it is perceived by software engineering professionals and how energy concerns can become

an embedded part of the software engineering process [38]. Existing or new software systems

need to be redesigned to address environmental issues and support environmentally sustainable

business models and processes.

Predictive models become crucial to guide software practitioners in their decision-making

processes. Prediction models can be applied during di↵erent development processes to estimate

the various properties of software product [22]. For example, to predict defective parts of the

software [56, 124, 139, 186], to assess the reliability of the system [56, 130], and cost/e↵ort es-

timation [187] of the system. Energy consumption detection of the software product is mostly

relies on direct measurements, but this is time consuming [83, 155] and needs investment. Sim-

ilar to many prediction research in software engineering, using software metrics allow software

companies to estimate the impact of code features on energy consumption.

1.1 Motivation

There has been a focus in both practice and research to reduce the energy impact of compu-

tational systems. Many earlier studies focused on the hardware energy e�ciency ([184, 59, 25,

207]). However, hardware is driven by software. Therefore, software energy impact is critical

to the system’s overall energy consumption.

Many countries have passed laws on clean and e�cient energy and environmental pro-

tection. For example, the Environmental Protection Legislation in the European Union (EU)

2

Chapter 1. Introduction 1.2. Problem Definition

2012/19/EU [54]-(Waste Electrical and Electronic Equipment (WEEE)) focuses not only on the

physical waste of computing equipment, but also on the production, collection, storage, pro-

cessing, presentation, and communication of information by electronic products and equipment.

It also focuses on the “producer responsibility”, meaning that producers accept responsibility

when they design their products to minimize environmental impacts. This responsibility clearly

indicates the link between producer responsibility and design and production changes for the

industry. In order to have an energy e�cient end product, energy consumption must be taken

into consideration when designing the software. It is commonly accepted that software char-

acteristics ultimately determine, to a large degree, the energy e�ciency of a software system

[83, 103]. Therefore, the focus energy concerns should also include software optimization. An

e↵ective way of determining the software energy impact at the design stage is to predict its

energy consumption before completing its coding. The major di�culty of energy consumption

prediction is the lack of data, since the energy consumption measurement of software products

are relatively new and there is a lack of such product data available in software repositories.

For this reason, the motivations of this dissertation are:

• Investigating relationships between software code metrics and energy consumption by

using data from various open source products and from a closed source product, and

• Building a prediction model using regression by applying within-product and cross-product

data.

Although static code attributes may not be the sole predictors of energy consumption of

software products, such a model would provide some insights to software development managers

before the code is executed so that any code changes may be made before the production and

maintenance stages of the product development life cycle.

1.2 Problem Definition

The relative share of worldwide electricity consumption of communication networks, data cen-

ters and personal computer products and services was about 4.7% in 2012 with 920 Terawatt

Hour (TWh) 1 of the 19,000 TWh [191]. This consumption proportion is predicted to increase

to 14.5% of worldwide power consumption in 2020 [193]. As a consequence, average monthly

CO2 concentration exceeds 400 parts per million (2016) [143].

Rapid expansion of demand on hardware and software systems, such as the use of mobile

devices and smartphones, web-services, and the widespread adaptation of cloud systems have

1
1TWh is 10E+12 watt-hours

3

Chapter 1. Introduction 1.2. Problem Definition

aspects of energy consumption growth. It is projected that the energy costs (the financial im-

pact of energy consumption) of operating a typical system will exceed building/producing such

system [90]. Rapid transition in the information era, has signaled a vast increase in resource

demand and energy consumption that is not expected to stop anytime soon. Simultaneously,

software product size and complexity are increasing, including the overall complexity of deci-

sions surrounding software development. Additionally, there has been a significant increase in

awareness of resource consumption of software systems. For example, companies with large

data centers are starting to inquire as to whether or not the energy consumption problem

should be tackled from a software perspective, with the goal of controlling the growing trend of

computing capacity requirements [33]. Regarding the software products aspect, companies are

now facing challenges with how to build innovative products that not only meet the customers

needs, but are also environmentally friendly [148]. As a result, the energy e�ciency of software

is becoming increasingly important [155, 90, 83].

Although, there have been many researchers who work on power consumption and mon-

itoring of embedded systems, the energy consumption of software has recently been gaining

the attention of research community [183, 173, 144]. Software engineering does not currently

provide consolidated knowledge on the relationship between software products and its energy

consumption [82, 128, 129, 5, 154].

Regarding software properties, size, object oriented (OO) and churn metrics have been an-

alyzed in prediction studies, especially defect prediction in software engineering. These metrics

are easy to use and widely used [123]. Size, complexity and churn attributes can be automati-

cally and easily collected, even for very large systems. In software energy consumption studies,

an evidence of a potential relationship between size and churn software metrics and energy

consumption has been found [80, 82, 83, 67, 5, 129]. In addition to size and churn metrics,

Miranskyy et al. [129] validated that there is a perfect correlation between execution time and

energy consumption.

Execution time may be determined by static program analysis based on path information for

the program, such as identification of instructions, and the control-flow graph of the code [156].

Cyclomatic complexity measure approach is to measure the number of independent paths of a

program. Program complexity can be controlled by a control graph which includes branching

into/ out of a loops and decision paths [116]. Theoretically, control flow of a program depends

on problem settings. In the problem setting values of variables used in conditions (i.e., loop

conditions or conditions of alternatives) and the values of pointers to functions determine the

control flow. As a consequence, the execution time may be e↵ected. The actual time behaviour

of loops may di↵er from their behaviour within the program[156]. In practice, non-deterministic

polynomial completeness of the problem may a↵ect the execution time of such loops [147]. Com-

4

Chapter 1. Introduction 1.3. Organization of the Dissertation

plexity, therefore, could be a good indicator of energy consumption when considering control

flow and the execution time approach and also considering strong relationship between execu-

tion time and energy consumption as a measure of complexity. On the other hand, complex

code does not necessarily mean slow. Complex code may be very e�cient but it is also hard

for a human to comprehend. That is why the defects often occur in complex parts of the code.

Hence, complexity attribute enriches the information content of defect prediction models.

In this study, the aim was to better understand the relationship between code characteristics

and energy consumption at an early stage of the software development life cycle. As it was

explained earlier, static code attributes can easily be extracted from the source code in an

automated manner, and therefore they may be used to gain insights for the energy consumption

of software product.

1.3 Organization of the Dissertation

The dissertation is structured into the following chapters.

• Chapter 2 discusses related work in the literature and gives background information and

some related definitions. The research question is provided.

• Chapter 3 provides research design details accompanied by an explanation of each method

used. The Chapter ends with a proposed model.

• Chapter 4 presents the data collection approach for both observational and mining soft-

ware repositories followed by descriptive statistics of datasets.

• Chapter 5 demonstrates an empirical evaluation of energy consumption using software

static code metrics. This chapter also introduces proposed energy consumption prediction

models and cross-product energy consumption prediction approach.

• Chapter 6 concludes the dissertation with an evaluation of the research question, theoret-

ical and practical contributions, threats to validity, and future work.

5

Chapter 2

Related Work and Research

Question

Software engineering research has, for the most part, focused on increasing the reliability,

e�ciency and cost-benefit relationship of software products for their owners, by focusing on

processes, methods, models and techniques to create, verify and validate software systems and

keep them operational [148]. But, there is more to it than just operation and cost-benefits:

it has been suggested that every line of code has not only financial and technical implications

[24], but also environmental implications [148].

As ICT use continues to grow, so does the demand for energy. For example, laptop and

desktop machines for personal and business use, mobile systems, smart devices in Internet of

Things (IoT), data centers of di↵erent sizes, and large computing clusters for di↵erent purposes.

Thus, energy management of systems has become important in almost all computational do-

mains. Optimization of hardware to save energy has been studied by better understanding

software-hardware interactions. For mobile systems, energy analysis and optimization tech-

niques have been studied. Since battery life has long been an important issue with customers,

energy optimization inside a hardware component through processor, material, mechanical,

device, circuit, architecture design [59, 207, 60, 192, 190] has been improved. Additionally, op-

timization hardware behavior for energy savings through software1-hardware interactions has

been studied.

1
especially the operating systems

6

Chapter 2. Related Work and Research Question 2.1. Software and Energy Consumption

2.1 Software and Energy Consumption

Although, energy management of hardware systems is the predominant driver for resulting en-

ergy consumption, software itself has a considerable influence on energy consumption [34]. Many

researchers have emphasized that reducing the power consumption of software is becoming more

important in many environments, such as mobile systems [211], embedded systems [183] and

data centers [17]. Although industrial interest in software power consumption is limited, mobile

device and mobile software development companies have an increasing interest in energy e�-

cient tools and applications, such as Power Tutor [48] an Android power monitor supported by

Google. Another example is power consumption tooling for applications running on a Windows

Phone 7 platform, provided by Microsoft Research [67, 68].

The importance of software, regarding the energy consumption of computational systems,

was first stressed in Kaushik and Johnson [161]. They indicated that software directs much of

the activity of the hardware. Consequently, the software has a substantial impact on the power

dissipation of computational systems. In the literature, most of work on energy management

has been on measurements and optimization of the hardware/software system.

Regarding measurement, much of the previous work has attempted to reduce power con-

sumption by improving the power-e�ciency of individual hardware components. Tiwari et al.

[183, 184] conducted one of the earliest studies on power measurements. They modelled the en-

ergy of a Central Processing Unit (CPU) instruction using a base energy, as well as a transition

energy for each pair of instructions. Lorch and Smith [110] discussed software techniques to

utilize power saving provisions provided by various hardware components, such as CPUs, disks,

displays, wireless communication devices, and main memory. As power consumption is not just

CPU related, several studies have focused on the energy e�ciency of software by addressing

memory related power consumption [25]. Akinli Kocak et al. [102, 128] concentrated not only

on CPU and memory, but also I/O activities and storage, while others have examined the en-

ergy e�ciency of the operating system at a routine or system-call level [107] by transcoding

the received content [177]. All of these studies focused on energy consumption related to the

system resources within specific hardware architecture [86, 206].

Gurumurthi et al. [69] introduced a power simulator, SoftWatt, to simulate power consump-

tion on mainly hardware components such as CPU or memory systems. Amsel et al. [8] designed

a tool, GreenTracker, that simulates a real system’s power usage based on CPU measurements,

and benchmarks individual application power. They measured the system in real time. Gupta

et al. [67] described a method for measuring the power consumption of applications running

on a Windows Phone 7.

Regarding optimization, a primary goal of energy consumption measurements is to optimize

7

Chapter 2. Related Work and Research Question2.2. Static Code Metrics and Predictive Models in Software Engineering

the system for reduced energy consumption. Li et al. [108] applied the idea of load balancing to

server-room heating and cooling and Fei et al. [55] used context-aware source code transforma-

tions and achieved power consumption reductions of up to 23% for their software. Selby [167]

investigated methods of power reduction by code transformations and compiler optimizations.

To date, the research community is particularly interested in measuring systems’ resource

usage performance by taking into account CPU, memory and hard disk, input/output opera-

tions and network. In the last few years, besides measurements, research on mining software

repositories to investigate the changes in power consumption or performance over revisions is

gaining attraction: Shang et al. [168] investigated performance changes over versions of soft-

ware; and Gupta [67] worked on mining Windows Phone 7 power consumption traces. A set

of case studies were also conducted by Hindle [80, 82, 83, 209]. He first introduced a “green

mining” methodology of relating software change and configuration to power consumption in

Firefox and RTorrent. Then, Hindle and Zhang [209] observed that power consumption can

vary between versions; however, CPU usage is not enough to model power consumption. Then

they opened their dataset to the research community.

2.2 Static Code Metrics and Predictive Models in Software En-

gineering

In this section, related work in the area of predictive models in software engineering are pre-

sented. Predictive models in software engineering is a mature research area. There are many

studies in defect prediction [121, 124, 188, 28, 131] where software code metrics were used.

Static code metrics, as predictors in software engineering, have been widely adopted [120,

28, 101, 121, 142] A software failure occurs when a service delivered by software deviates from

fulfilling its intended functionality due to problems in the code, process, or people; error is the

discrepancy between the delivered and intended functionality [194]; and the cause of an error

is a defect [188]. Therefore metrics that measure product, or process, or people characteristics

are good indicators of defects. Static code attributes are the characteristics of the source

code and that is why they have been extensively used in defect prediction studies. Various

software metrics have been investigated, including size metrics (e.g., lines of code), complexity

metrics (e.g., McCabe‘s cyclomatic complexity [122, 131]), process/churn metrics [72], and social

network metrics [18].

Di↵erent metric categories show di↵erent performances in these prediction studies. For

example, D’Ambros et al. [50] systematically compared the predictive power of di↵erent metric

categories, and found that process metrics are superior in predicting the defect proneness.

8

Chapter 2. Related Work and Research Question2.2. Static Code Metrics and Predictive Models in Software Engineering

Misirli et al. [131] found that code and network metrics vary with defect category. Network

metrics have higher e↵ect than code metrics for defects reported during functional testing and

in the field, and vice versa for defects reported during system testing. They also reported

churn metrics are the best for predicting all defects. Most defect prediction studies combine

well-known methodologies such as statistical techniques [214, 188, 186] and learning algorithms

[189, 122, 28]. While some researchers prefer regression models, others use more complicated

models like Bayesian Networks that include causal relationship between project and process

metrics [130].

Energy consumption of software may not be so tightly related to code characteristics as

seen in defect prediction. However, code characteristics such as size, and complexity of the

code may result in higher resource consumption. Size and complexity are successful predic-

tors of productivity [93]. A significant relationship was found between software size and both

productivity and defect rate [111], implying that larger projects are more productive and have

lower levels of defects [93]. Productivity is also related to program performance. Program

performance or how quickly a program solves a specific problem is influenced by a number of

factors, some of which are developer controlled and others that are dependant on the hardware

and software environment of the programs execution. Program execution time is related to

energy consumption of system, thus energy consumption may be considered as a performance

measure. Although performance are increased with more powerful systems without software

productivity gains. However, software development companies are constantly looking for ways

to increase both productivity and code quality. Although it cannot be sure about the exact

energy consumption of the code unless the code is executed and runtime metrics are collected.

However, static analysis may give us useful insights before the code is executed, especially if

there are such data readily available for the purposes of building various predictive models and/

or performing software analytics.

Regarding energy consumption prediction, “green mining” is the first attempt to leverage

historical information extracted from the publicly available software to model software power

consumption [83]. Hindle [83] explored the feasibility of power consumption prediction based

on OO metrics and churn metrics using three open source projects. He demonstrated that soft-

ware change can a↵ect power consumption. He also found evidence of a potential relationship

between some software metrics and power consumption. In another study, Gupta et al. [67]

investigated power consumption of one mobile software product by mining software repositories

and quantified power consumption in di↵erent modules within the same software. Miranskyy

et al. [129] studied the e↵ect of software metrics on energy consumption and execution time of

one open source database product.

All of these energy consumption related studies are complementary to this research. The

9

Chapter 2. Related Work and Research Question2.2. Static Code Metrics and Predictive Models in Software Engineering

main focus of this research is to investigate to what degree static code metrics and energy

consumption are related, but also proposing models for energy consumption prediction using a

regression on various open- and closed-source software products.

Within-Project and Cross-Project Predictions: Cross-project prediction research

that has used metrics from one project to predict characteristics of metrics in a di↵erent project.

Most of the research in this area mainly focused on cost estimation and defect prediction. For

example, cost estimation models such as SLIM by Putnam and Fitzsimmons [157], Function

Points by Albrecht and Ga↵ney [6], and COCOMO by Boehm et al. [21] have provided general

purpose models that can be applied to arbitrary projects. As a consequence, studies have

been undertaken to address both cross-projects and within-projects e↵ort estimation. Most

research has addressed e↵ort estimation in cross-project models [199, 95, 118]. Kitchenham

et al. [96] reveals that, although some software development companies would benefit from

cross-project benchmarks, there is no clear indicator of when it works most e↵ectively. After

Kitchenham et al.[96], Turhan et al. [189] and Zimmerman et al. [213] analyzed di↵erent open

source products to address defect prediction across projects based on static code measures

such as code churn (code modified, added, deleted) and code complexity, metrics. Turhan

et al. [189] found that cross-project data dramatically increases the probability of detecting

defective modules (i.e. 22% increase); Zimmerman et al. [213] found a low ratio of cross-

project prediction performance (i.e., 3.4 %). They also addressed how the domain and the

process influence cross-project predictions.

Canfora et al. [32] explicitly took into account the trade-o↵ between e↵ectiveness and in-

spection cost proposing a multi-objective approach for cross-project defect prediction. Their

approach is based on a multi-objective logistic regression model built using a genetic algorithm.

Recently, Minku and Yao [127] investigated the best use of cross-project data, and proposed

a framework to learn the relationship between cross-project and within-projects explicitly, al-

lowing cross-project models to be mapped to the within-project context. Their framework

achieved similar/better performance to within product results with less within-project data

than a corresponding within-project model.

Prior to this dissertation, no study has been conducted with cross-project models in the

context of energy consumption prediction. This dissertation is the first research to asses energy

consumption prediction across products based on static code metrics. The data originates

from within-product data. Here, prediction is used as a “cross-product prediction” if a model

learned from one product and the prediction is performed on another product. Most of the cross-

project studies have faced challenges in their models related to variations in the distribution

of predictors. To overcome this challenge, software metrics were transformed in both within-

10

Chapter 2. Related Work and Research Question 2.3. Background and Definitions

product and and cross-product to make them more similar in their distribution [140, 210].

2.3 Background and Definitions

This section summarizes the background on the energy impact of ICT and the importance of

energy e�ciency in a software context. Additionally, there is a discussion on code properties

and software metrics.

2.3.1 Energy E�ciency of Software, and Definitions

Energy e�ciency is simply the goal of reducing the amount of energy required to provide prod-

ucts and services. Something is more energy e�cient if it delivers more services for the same

energy input, or the same services for less energy input [2]. Rising energy costs, energy hunger

applications, limited battery life, and the high performance demands require optimization in

computers and mobile devices. In this regard, there are various approaches aimed at achieving

energy saving opportunities. Although software does not consume energy by itself, its charac-

teristics determine which hardware resources are made available and how much power is used.

Therefore, the energy e�ciency of a software product has recently become a popular area of

research in academia [81, 27, 104, 154].

Definition:

Energy and Power : In the literature, energy and power are used interchangeably. How-

ever, they represent di↵erent values. Therefore, it is important to provide a clear definition at

the outset. The simplest definition of energy is the “capacity to do work”. Energy is defined

as the amount of electricity consumed per unit of time [164, 47]. Energy is amount of work, so

the total amount of electricity consumed.

Energy = Power ⇥ T ime, (2.1)

In this research, all the energy measurements are written as “energy consumption” with

unit of watt-hour, which is an electrical energy equivalent to a power consumption of one watt

for one hour.

2.3.2 Energy Consumption and Mining Software Repositories

Data mining is an important methodology used in various research today. Researchers are

building prediction models and pattern identification tools and techniques by mining the large

repositories of data generated through the use of information technology in various domains.

These data are useful in conducting research in many areas of software engineering, such as,

11

Chapter 2. Related Work and Research Question 2.3. Background and Definitions

software reliability, finding developer expertise, quality of software, resource utilization, e↵ort,

cost and time estimation, dependency analysis, defect prediction, and impact analysis [89].

Mining Software Repositories (MSR) field analyses the rich data available in software reposi-

tories to uncover interesting and actionable information about software systems and projects.

Examples of software repositories are:

• Historical repositories such as source control repositories (e.g., Mercurial), bug/defect

tracking repositories (e.g., Bugzilla), and historical information about the evolution and

progress of a project (e.g., Promise) [71, 73].

• Run-time repositories such as deployment logs, contain information about the execution

and usage of an application at a single site or multiple deployment sites [71, 73].

• Code repositories such as Sourceforge and GitHub contain the source code of various

applications developed by multiple developers [71, 73].

By mining these repositories, useful and important patterns and information on software

projects can be revealed and used to shape the future projects [65]. Recently, MSR was used to

conduct energy related research from software engineering perspective. One of the first studies

in this area was conducted by Gupta et al. [67]. They focused on combining MSR techniques

with power performance and introduced a method for gathering and analyzing power data on

mobile device running Windows Phone 7. With the methodology, they quantified and detected

di↵erences in power usage of the mobile device. Aditional studies were conducted by Hindle [81,

81, 83]. He combined the MSR research and energy consumption by studying multiple versions

of the three open source projects and their characteristics of energy consumption patterns. He

also studied the relationship between code size, churn metrics and energy consumption. He

concluded that further study is required to establish relationships if they exist.

2.3.3 Software Metrics

As with any prediction problems in software engineering, software energy consumption predic-

tion necessitates a set of known features (i.e., predictive variables) to characterize the problem

and to give an estimation on the energy consumption of the system (i.e., response variable).

These features are related to software size, software complexity, and the development process.

They are identified with software metrics, which are a standard of measure of a degree to which

a software system or process possesses some property [126, 57].

High software energy consumption can be considered as undesirable software deficiency,

such as high defect or high cost that needs to be predicted to guide software practitioners in

12

Chapter 2. Related Work and Research Question 2.3. Background and Definitions

their decision-making process [148]. As seen from software defect and cost/e↵ort estimation

prediction research (see section 2.2), software product and process metrics have been successfully

utilized in prediction models. There are three major software metric groups: process, product,

and people. While product metrics are derived from the software product itself, process metrics

are derived from the processes that are employed to build the software product. People metrics

relate to the quality of people working on the software projects [126].

In the following subsections, a summary of product and process metrics that are relevant

to this dissertation is given.

Product Metrics

Product attributes describe a software product in a way that is dependent only on the product

itself. One of the most useful features is the size of the software. This metric can be measured

statically without having to execute the product. Product metrics are also called static code

metrics, because they are directly extracted from the product source code [188]. Static code

metrics indicate about the size and complexity of the implemented code. Analysis of static

code metrics is useful for ensuring the quality of later stages, such as testing and maintenance,

which are the most resource consuming stages of software development [105, 188, 57].

Size Metrics: Information about the size of the software product can be very useful.

Size attributes of the design and code can determine the e↵ort required for testing, as well

as the e↵ort required to add features. The most commonly used code size metric is Lines of

Code (LOC), which is a simple line counts of source code. It is a measure of size for code, not

for requirements or design documents. There are a number of di↵erent LOC metrics. These

include, but are not limited to: [105, 57].

• Total Lines of Code: A total line count of source code, where one line equals one count.

• Blank Lines of Code: A blank lines count of source code.

• Lines of Commented Code: A count of code lines that includes comments. Comments are

usually in block forms before the actual implementation of methods, providing a generic

description.

• Lines of Code and Comment: A count of code lines that includes both executable state-

ments and comments.

• Lines of Executable Code: A count of the actual code statements that are executable (i.e.,

total lines of code after the blank and commented lines are subtracted).

13

Chapter 2. Related Work and Research Question 2.3. Background and Definitions

Complexity Metrics: Complexity is usually an undesired property of software because,

it makes software hard to read and understand and hence is harder to change [77]. There are

several decades of research on finding the best complexity metrics that reflects the complexity

of code. The most commonly used type of metric is McCabe Cyclomatic Complexity (CC) [116].

This measures the number of linearly independent paths of a program execution (the control flow

within a module). The greater the number of paths through a module, the higher the complexity.

Another type of complexity metric is Halstead’s Complexity Metrics. Halstead metrics are the

total number of operators, total number of operands, unique number of operators, and unique

number of operands [57]. While McCabe’s complexity directly measures the number of linearly

independent paths with a single metric, Halstead’s complexity uses the number of operands

and operators to calculate the complexity.

Process Metrics

Process metrics provide measurements for software process improvement. They are usually as-

sociated with a time scale. Process activities have duration, they occur over time and they may

be ordered or related in some way that depends on time. For example, number or fault/defect

during formal testing or mean time to failure during testing [57].

Code Churn Metrics: Code churn is a measure of the amount of code change taking

place within a software unit over time. It is easily extracted from a system’s change history,

as recorded automatically by a version control system [134]. Lines of Code Change (LOCC) is

total number of changed codes between two versions of the same software. These metrics are

helpful for assessing the risk factor of code development and implementation (i.e., poor code

quality, or high number of post-release defects) by measuring the degree of change in source

code. Code churn metrics provide the following information [188]:

• number of added lines of code,

• number of deleted lines of code,

• number of modified lines of code,

• frequency of the code change,

• status of the code (i.e., new, changed, unchanged),

• number of changes made on the code (i.e., commit count),

• number of distinct developers who worked on the code,

14

Chapter 2. Related Work and Research Question 2.4. Research Question

• whether the code is modified by a developer, who has not created it, and

• whether a developer is working on that code for the first time.

2.4 Research Question

It has been observed that there is much interest in the energy e�ciency of software, but not a

lot of focus on the characterization of energy consumption and prediction using code attributes.

The goal of this dissertation is to (1) contribute to the e↵ort of reliable energy consumption

measurement using code attributes, (2) predict the energy consumption of software using a

linear-regression-based approach with learning method, and (3) evaluate cross-product energy

consumption prediction approach

This dissertation sought to answer the following Research Question:

RQ: How can we predict energy consumption of software product using static code attributes?

15

Chapter 3

Research Methodology and

Proposed Model

3.1 Research Approach

The focus of this research is to predict the energy consumption of software product. Following

this objective, the purpose is two-fold: First to investigate the relationship between software

code metrics and energy consumption, second, to characterize the change in energy consumption

software over time and to predict the energy consumption of software using software static code

attributes. Four open source software products and one closed source commercial software

product were examined.

In general, a quantitative approach was used in the research design [45]. Quantitative

research aims to obtain a numerical (quantitative) relationship between several variables or

alternatives under examination [88].

The broad research approach is the plan or proposal to conduct research, involving philo-

sophical assumptions, research designs, and specific methods. Similar to other research fields,

in order to perform research in the software engineering, methods that are available, their lim-

itations and when they can be applied have to be fully understood. With the guidance of the

main research approaches put forward by Basili [11] and Tichy et al. [181], and followed by

Glass [64, 63] following are the summarized four research approaches in the field of software

engineering.

• Scientific: A theory is developed to explain a phenomenon; a hypothesis is proposed and

data is collected to verify or refute the claims of the hypothesis.

• Engineering: Solutions are developed and hypotheses are tested. Based upon the results

16

Chapter 3. Research Methodology and Proposed Model 3.1. Research Approach

of the test, the solution is improved until it requires no further improvement.

• Empirical: A statistical method is proposed as a means to validate a given hypothesis.

Unlike the scientific method, there may not be a formal model or theory describing the

hypothesis. Data is collected to verify the hypothesis.

• Analytical: A formal theory is proposed and then compared with empirical observations.

Although application of an approach di↵ers from one field to another, some approaches may

be seen as variations of others. For example, the engineering and the empirical can be seen as

variations of the scientific approach [11, 172].

Empirical research studies play a fundamental role in software engineering [162]. Although

software engineering stems from the technical field, it also is recognized as a multi-disciplinary

field, which includes interactions between many social and technological backgrounds. To un-

derstand how software engineers construct and maintain complex, evolving software systems,

there is a need to investigate, not just the tools and processes they use, but also the social and

cognitive processes surrounding them [172, 51]. Therefore, empirical research helps to charac-

terize, evaluate and reveal relationships between software development deliverables, practices,

and technologies using empirical observations or data that is collected.

According to Wohlin [204] there are two types of empirical research approaches in software

engineering.

• Exploratory research is concerned with studying objects in their natural setting and letting

the findings emerge from the observations. This implies that research is primarily informed

by qualitative data. The subject is the person, who is taking part in an empirical study

in order to evaluate an object.

• Explanatory research is mainly concerned with quantifying a relationship or comparing

two or more groups with the aim to identify a relationship. The research is often conducted

through setting up a controlled experiment. This type of study implies that factors are

fixed before the study is launched. This is also referred to as quantitative research, as it

is primarily informed by quantitative data.

In software engineering most studies have strongly focused on the quantitative approach;

one of the earliest methodologies was presented by Basili et al. [10], and the first experimental

methodologies were presented by Wohlin et al. [202] and by Tichy [182]. Qualitative approaches

were discussed later by Seaman [166], and case studies in software engineering by Kitchenham et

al. [94], Wohlin et al. [203], and Runeson and Host [162]. A comprehensive review of empirical

research for software engineering was presented by Shull et al.[172] and a preliminary guideline

17

Chapter 3. Research Methodology and Proposed Model 3.1. Research Approach

was presented by Kitchenham et al.[97]. It is possible for qualitative and quantitative research

to investigate the same topics, but each of them will address a di↵erent type of question.

Depending on the purpose of the empirical investigation, three major types of methods are

identified by Wohlin et al. [204] that are believed to be the most relevant to software engineering

research: survey, case study and experiment. Runesaon and Host [162] counted action research

and Easterbrook at al. [51] added ethnographies to the list afterwards.

Zelkowitz and Wallace [208] and recently Juristo [88, 87] pointed out that experimentation is

often misused in the software engineering. Researchers must understand and carry their research

out properly when they conduct empirical studies, especially experiments. Over time, many

di↵erent experimental sub-types have been developed in response to the needs of di↵erent fields.

As Juristo and Moreno [88] stated, software engineering is similar to medicine with regards to

experimentation. Empirical studies in medicine are classified in two broad categories: analytical

and descriptive. Descriptive studies aim to generate hypotheses about associations between

exposures and outcomes. Analytic studies are then undertaken to test specific hypotheses.

Analytical studies are further sub-classified as observational or experimental studies

The di↵erentiating characteristic between observational and experimental studies is that

in the latter, the presence or absence of undergoing an intervention defines the groups. By

contrast, in an observational study, the researcher does not intervene and simply “observes”

and assesses the strength of the relationship between the variables [113, 87].

There are two types of experimental methods: true experimental and field trials, which is

same as quasi-experimental method, and three types of observational studies: cohort studies,

case-control studies, and cross-sectional studies. Cohort studies can be classified as prospective

or retrospective. The word “cohort” has been used to define a set of subjects followed over

a period of time. Prospective studies are carried out from the present time into the future.

Retrospective cohort studies, also known as historical cohort studies, are carried out at the

present time and look to the past to examine events or outcomes [160, 176]. In case-control

studies, starting point is the identification of condition of interest, and suitable controls without

that condition. Cases and controls are then compared to assess whether there are any di↵erences

in their past condition. Cross-sectional studies look at each subject at one point in time only.

Data are collected from subject as a single time [113, 160].

Similarly, Zelkowitz and Wallace [208] summarized experimentation in software engineering

into three categories: observational, historical, and controlled based on various data collection

methods. This study is classified as follows:

• According to classification of Wohlin [203, 204] classification and followed by Juristo

and Moreno [88] identification this research is explanatory empirical research that uses

18

Chapter 3. Research Methodology and Proposed Model 3.1. Research Approach

quantitative methods to explain the relationship between code characteristics and energy

consumption of a software product.

• According to classification of Zelkowitz and Wallace [208] this research is observational

retrospective cohort study where mining software repositories and machine learning meth-

ods were used.

Figure 3.1 shows adopted research design.

The overall prediction study was designed using methodology adapted from Shearer [170]

and Bener et al. [16].

Figure 3.1: Overview of the study methodology in energy consumption prediction adopted from
Bener et al. [16].

Following in the steps of Figure 3.1, the aim is to predict energy consumption of software

using code attributes by by examining the relationship between energy consumption and static

code metrics. This aim then was transformed into the research question “How can we build a

prediction model based on static code attributes to predict energy consumption of software?”.

The model is able to learn from the metrics that are available, and can predict the energy

consumption of the software product. To do that, it was decided that the inputs of the model

are size, complexity and churn metrics. The second step was data collection, which includes

observational data collection and mining software repositories. The third step was descriptive

analytics which is the simplest way to get an insight of the data [16]. In this research, descriptive

statistics, correlation analysis and visualizations were used to highlight the relationships. In the

forth step, predictive analytics were designed by using linear regression prediction models. The

models were validated using performance evaluation measures and followed by cross-product

energy consumption analysis. Details are given in section 3.3.

19

Chapter 3. Research Methodology and Proposed Model 3.2. Research Methods and Design

3.2 Research Methods and Design

Selecting an appropriate research method is important to the success of any research, and must

be driven by the research question and the state of knowledge in the area being studied. In

empirical software engineering research, Easterbrook et al. [51] points out that it is not easy

to decide which research methods are suitable for the research. A combination of research

methods may be the most e↵ective in achieving a particular research objective. For example,

when a subject area is not well understood, using more than one method may have complemen-

tary strengths and when used together can lead to a more comprehensive understanding of a

phenomenon. Di↵erent research methods serve di↵erent purposes; one type of research method

may not fit all purposes. Based on purposes, Runeson and Host [162] classify four types of

research:

• Exploratory: Finding out what is happening, seeking new insights and generating ideas

and hypotheses for new research.

• Descriptive: Portraying a situation or phenomenon.

• Explanatory: Seeking an explanation of a situation or a problem, but not necessarily in

the form of a causal relationship.

• Improving: Trying to improve a certain aspect of the studied phenomenon.

In empirical software engineering studies, the most common methods used are: survey,

experiment, case study, and action research. The most famous guideline for research methods

in the empirical software engineering field is proposed by Kitchenham and Pfleeger [150, 98]

in a series of articles for ACM SigSoft Software Engineering Notes. In empirical research,

data collection is performed by using observations and measurements. Observational data are

occurrences that can be simply recorded. Measurement data can be counted, calculated, or

quantified. As Erdogmus stated [53], observations provide deeper insight in areas in which

measurements serve only as proxies for other constructs.

By reviewing the guidelines, exploratory type retrospective cohort study design was chosen

as the best design for the purpose of this dissertation.

In the following subsections, the methods used in this dissertation are described in more

detail as they are used in software engineering. Because these methods were adapted from a

number of di↵erent fields to software engineering, there is no consistent terminology to describe

them. The terms and methods and their definitions were used from the software engineering

context, which is familiar to software engineers.

Let us explore the methods that are used in this research in details.

20

Chapter 3. Research Methodology and Proposed Model 3.2. Research Methods and Design

3.2.1 Observational Method

The term experiment is often used synonymously with observation. However, researchers must

distinguish between experiments, where at least one treatment or controlled variable exists, and

observations where there are no treatment or controlled variables [12]. According to Runesan

and Host [162], observations can be conducted in order to investigate how a certain task is

conducted by software engineers. Basili [12] characterized observational studies by whether

or not a set of study variables are determined in advance. According to Basili, a set of study

variables are predetermined by the researcher separates the observational study from qualitative

studies.

Observational study was conducted in this dissertation to determine possible relationship

between energy consumption and software static code metrics across software product releases.

All the variables were predetermined prior the study. As classified in Rosenbaum [160] and

Mann [113] there are three observational methods: cohort, cross sectional, and case-control

studies. Retrospective cohort allow this research to trace back certain product characteristics

that are believed to contribute to product energy consumption. A prospective cohort is an

empirical method where subjects, according to past or current exposure and follow-up into the

future are used to determine if the outcome occurs.

According to the motivation of the RQs, the retrospective cohort method was used in an

exploratory fashion to seek the relationships between the energy consumption of a software

product and its code attributes. General design methodology follows the process and guidelines

provided by Basili et al.[12], Wohlin et al. [204], Perry et al. [149], and Hindle [83]. Figure 3.2

shows the overview of the observational methodology.

Figure 3.2: Overview of the observational method.

21

Chapter 3. Research Methodology and Proposed Model 3.3. Proposed Model

3.2.2 Mining Software Repositories (MSR)

Data mining for software engineering has been used to describe a broad class of investigations

into the examination of software repositories. It mostly focuses on how to improve new and

current software projects using past project’s data. Software practitioners and researchers rec-

ognize the benefits of mining this information to use in many areas. For example, data mining

technique is used to obtain historical patterns to inform current issues when managers or devel-

opers are not certain about an important decision [123]. The field analyzes and cross-links the

rich data available in software repositories to uncover interesting and actionable information

about software systems and projects. Historical repositories, run-time repositories, and code

repositories are examples of software repositories [71]. Historical information can assist devel-

opers in understanding the rationale for the current structure of a software system. Research

and applications are now proceeding to uncover the ways in which mining these repositories can

help to understand software development and software evolution, to support predictions about

software development, to use operation system logs to predict software energy consumption,

and to exploit this knowledge in planning future development [133, 71].

There are many open source software repositories, and many methods are available to

developers and researchers. One simple and direct method is to check these code files one

by one and extract the useful ones. However, the size of data in the available repositories

for mining continues to grow rapidly. Therefore, to find useful information easily, we need

automated approaches [71]. A number of automatic techniques are present to analyze the

software repositories for reuse in software development, such as di↵erent search algorithms or

association rule miners [3], or hybrid approaches that combine di↵erent mining rules and search

algorithms.

3.3 Proposed Model

In this research, one or multiple variables linear regression models and fixed/random e↵ect

regression model were used as it a widely used model in the literature in analyzing clustered

datasets. Number of examples are [75, 76, 4, 1, 109, 58] where fixed/random e↵ect model

were used. Fixed/random e↵ect modelling approach was proposed for DB2 dataset. One-

or multiple variables regression for each DB2 version groups dataset, MYSQL, Firefox, Vuze,

rTorrent datasets to improve decision making for software managers by predicting the energy

consumption. Linear regression model is used for regression problems in which the dependent

variable is a continuous or discrete value.

22

Chapter 3. Research Methodology and Proposed Model 3.3. Proposed Model

3.3.1 Linear Regression:

Linear Regression is a statistical technique for determining the relationship between a single

dependent variable (a.k.a output variable, response variable) and one or more independent

(a.k.a input, explanatory, predictor) variables. In regression, the desired output consists of all

continuous variables [198]. The goal of regression is to predict the value of continuous response

variable given the value of predictor variables.

The analysis yields a predicted value for the criterion resulting from a linear combination

of the predictors. The linear model for regression, the response variable y is defined as a linear

functional form of input variables x. This is often simply known as linear regression. This

model assumes that the variable of interest, y, is linearly related to an independent variable x.

To describe the linear relationship the following equation is used [74, 117, 20]:

y = ↵+ �x+ ✏, (3.1)

where ↵ is the intercept the value of y when x = 0; and � regression coe�cient is the slope of the

line, defined as the change in y for a one-unit change in x. This model describes a deterministic

relationship between the variable of interest y, sometimes called the response variable, and

the independent variable x, often called the predictor variable. That is, the linear equation

determines an exact value of y when the value of x is given. The parameters ↵ and � can be

calculated using the principle of least squares method [117], finding the values of ↵ and � that

minimize the sum of squared residuals.

In order to determine the significance of the linear regression model p� values are reported

[117]. To measure the strength of the relationship between the response variable, y, and the

predictor variable, x, the coe�cient of determination, R2, is used. The R

2 value measures how

much of the response variable variation (around its mean) is explained by a linear model. It

can take values from 0 to 1, where 0 means none of the response variable variation is explained

by the linear model, whereas 1 means all of the response variable variation is explained by the

linear model. Therefore, values close to 1 mean a better model fit and a better prediction.

The equation for calculation of R2 is [117]:

(R2)=

P
i

(ŷ
i

� ȳ

i

)2P
i

(y
i

� ȳ

i

)2
, (3.2)

where y

i

represents the actual value of observation, while ŷ

i

represents the estimated value of

observation, and ȳ

i

represents the mean of actual values of observations.

23

Chapter 3. Research Methodology and Proposed Model 3.3. Proposed Model

Fixed/Random E↵ects Regression.

Fixed/Random e↵ects models are extensions of linear regression models for data that are col-

lected and summarized in groups. These models describe the relationship between a response

variable and independent variables, with coe�cients that can vary with respect to one or more

grouping variables. A model consists of fixed e↵ects and/or random e↵ects [62, 85, 175]. Fixed

e↵ect terms are usually the conventional linear regression part, and the random e↵ects are

associated with control individual groups drawn at random from a population [175].

Using fixed/random e↵ect model, individual di↵erences of groups can be modelled easily

by assuming di↵erent intercepts for each group. That is, each group is assigned a di↵erent

intercept value, and the model estimates these intercepts. The model also allows for di↵erent

slopes where control variables are not only allowed to have di↵ering intercepts, but where they

are also allowed to have di↵erent slopes. The combination of fixed and random e↵ect model is

called mixed-e↵ect model [205]. The standard form of a linear mixed-e↵ects model is:

Y

ij

= ↵

j

+ �X

ij

+ b

i

+ ✏

ij

, (3.3)

↵

j

= a+ c+ u

j

, (3.4)

where Y

ij

is the response variable for observation i and group j; X
ij

is the predictor (or

independent) variables; ↵, � are the regression coe�cients; and b is random e↵ect.

To write the correlation between any two observations in the same group as:

⇢ = cor(Y
ij

, Y

ij

0) = �

2
a

/(�2
a

+ �

2
e

), (3.5)

where �

2
a

is a variation across groups (usually called between groups, even if there are more

than two) and �

2
a

is variation within groups.

The key part of this modelling approach is varying coe�cients (intercept and slope). Varying-

intercept model is the model in which the regressions have the same slope. Varying-intercept

and varying-slope model is the model where intercepts and slopes both can vary [205].

The standard form of a varying intercept-varying slope model for groups is:

Y

i

= ↵

j

+ �

j

X

i

+ ✏

i

, i = 1, ..., n (3.6)

a

j

= a0 + c0Xi

+ u

j1, j = 1, ..., J, (3.7)

24

Chapter 3. Research Methodology and Proposed Model 3.3. Proposed Model

�

j

= a1 + c1Xi

+ u

j2, (3.8)

where i are observations; j are groups; ↵ and � are varying coe�cients; a, c are individual

group coe�cients; and u1, u2 individual group errors.

Performance Evaluation

In order to asses performance of the prediction model, three di↵erent measures, Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), and Prediction at level k (PRED(k)) are used.

They were applied to test dataset in machine learning experiment where the data was divided

into training and testing. These performance measures are commonly used and suggested to

validate prediction [16] and estimation models, especially in software engineering such as defect

prediction and e↵ort estimation [14, 16] and reliability estimation [186]. MAE is recommended

by Shepperd and MacDonell [171] for being unbiased towards under- or overestimations. The

RMSE gives a relatively high weight to large errors. Meaning that the RMSEmay be more useful

when large errors are particularly undesirable. RMSE is also a popular measure in the machine

learning community. An alternative measure, PRED, is used. According to Kitchenham et

al. [99], and Port & Korte [152], PRED has been more consistent and robust than other

performance measures, since it is simply the percentage of instances in which the model produces

an mean root error less than a pre-defined level k. Therefore, it is independent from variance

of mean root errors and dataset size.

MAE measures the average magnitude of the errors in a set of predictions, without consid-

ering their direction. It is the average over the test sample of the absolute di↵erences between

prediction and actual observations where all individual di↵erences have equal weight. RMSE is

a quadratic scoring rule that also measures the average magnitude of the error. It is the square

root of the average of squared di↵erences between prediction and actual observation. Both

MAE and RMSE express average model prediction error in units of the variable of interest.

Ideally MAE and RMSE should be as close to 0 as possible, whereas PRED(k) should

be close to 1. As the error rate decreases, PRED increases. The value of k in the PRED

calculation is usually selected as 25 or 30, meaning that the percentage of estimations whose

error rates are lower than 25% or 30%. PREDmight be a better assessment criterion for software

practitioners, since it shows the variation of the prediction error, that is, what percentage of

predictions achieve a level of error that was set by practitioners. Hence, it implicitly presents

both the error rate (k) and the variation of this error among all predictions made by the

analysts. PRED(25) was used to asses the performance of prediction, as recommended in the

context of prediction in software engineering. It was also observed that there is not an optimal

25

Chapter 3. Research Methodology and Proposed Model 3.3. Proposed Model

value for performance measures that fits best for all predictions studies. PRED(25) means “the

model should predict at least 75% of data with 25% error or less” [19].

Equations for calculating MAE, RMSE and PRED(k) are:

MAE =
1

N

NX

i=1

|y
i

� ŷ

i

|, (3.9)

RMSE =

vuut 1

N

NX

i=1

(y
i

� ŷ

i

)2, (3.10)

Pred(k) =
1

N

NX

i=1

|y
i

� ŷ

i

| /y
i

if |y
i

� ŷ

i

| /y
i

 k, (3.11)

where y

i

represents the actual value of observation, while ŷ

i

represents the estimated value of

observation.

Prediction model acceptance criteria depend on study context and there is no absolute

criterion for a good value of RMSE or MAE. In software engineering reliability or cost prediction

model studies, it is suggested that a model is good if PRED(25) value is greater than or equal

to 0.75 [41, 92, 57]. Conte et al. [41] and Kitchenham [92] suggested error performance of

prediction model is smaller or equal to 0.25. PRED(25) � 0.75 and RMSE  0.25 composite

objective criteria o↵er good means of verifying a reliability and cost estimation models in

software engineering [92]. However, in energy consumption prediction context, there is no

criteria has been suggested. Since, there is no suggested criteria in software energy prediction

context, only for this study purpose, PRED(25) � 0.75 is set for high performance model,

0.50  PRED(25) < 0.75 for medium performance and PRED(25) < 0.50 low performance.

Similarly, RMSE (MAE)  0.25 for high accuracy, 0.25 < RMSE (MAE)  0.50 for medium

accuracy and RMSE (MAE) > 0.50 low accuracy.

RMSE was selected higher than MAE criterion, since RMSE has a tendency to be larger

than MAE as the sample size increases.

3.3.2 Proposed Approach for Data Scarcity

As stated earlier, one of the problems faced by the software energy related studies: the challenge

of making energy consumption prediction using data that is usually scarce. Early studies in

software engineering suggested that a company needs its own dataset (single-company data) to

produce more accurate estimates [91, 100]. However, as Kitchenham et al. [96] states three main

problems may occur when relying on single-company data: (1) the time required to accumulate

26

Chapter 3. Research Methodology and Proposed Model 3.3. Proposed Model

enough data on past projects from a single company may be prohibitive, (2) by the time the

data set is large to be of use, technologies used by the company may have changed, and older

projects may no longer be representative of current practices, and (3) care is necessary as data

needs to be collected in a consistent manner.

Within-product data which are collected in the company from past product releases may

predict the same product future releases or di↵erent product energy consumption behaviour

successfully. Therefore aforementioned problems and cross-product prediction research (see in

Chapter 2) e↵orts have further motivated to use various software product datasets for cross-

product energy consumption prediction approach.

This approach, which was adopted from Mendes and Kitchenham [118] and Turhan et al.

[189], was employed in two steps:

• Step 1: Within-product models were derived for each product datasets. The performance

of prediction for these models were computed using RMSE, MAE and PRED(25) on the

same data used to build models. This allowed us to compare the prediction accuracy for

the cross-product model with the prediction accuracy for the within-product model.

• Step 2: All within-product models for each product was used to predict the values of the

other products (cross-products). This allowed us to assess how good the within-product

model predict another product data.

Figure 3.3 shows the illustration of the cross-product analysis.

Figure 3.3: Illustration of the Cross-Product Analysis.

27

Chapter 4

Data Collection Methodology and

Dataset Construction

This chapter presents the methodology for data construction from observational and mining

software repositories and provides a descriptive analysis of the datasets.

As was stated in Chapter 3, for the purpose of providing empirical evidence on the rela-

tionship between software static code metrics and energy consumption, a retrospective cohort

study was designed including observational data collection and mining software data reposito-

ries. Observational data collection consists of running benchmarks on a commercial database

software product and then collecting energy consumption data of the product. Mining software

data repositories consists of collecting data from data repositories and source code repositories,

and extracting product, process and energy consumption data.

4.1 Dataset Construction

Dataset construction consists of two di↵erent techniques: (i) observational data collection and

(ii) mining software repositories.

4.1.1 Variable Selection

In order to answer the RQ, it was necessary to specify the independent variables that char-

acterise the study. While the independent variables are represented by software static code

metrics, the dependent variable is Energy Consumption (EC) (Watt-Hour), measured as power

(Watt) over time (hour). The static code metrics are described in detail in the remainder of

this section. Measurement details are given in section 4.1.2.

28

Chapter 4. Data Collection Methodology and Dataset Construction 4.1. Dataset Construction

Static Code Metrics: As was described in Chapter 2, many researchers use code attributes

to guide software defect prediction. Recently, a few studies [83, 155, 129] have been conducted

seeking out a relationship between software code attributes by means of size, complexity, object

oriented metrics, and software energy consumption. However, the relationships between static

software code metrics and software energy consumption have not been studied with regards

to the prediction of software energy consumption. Thus, software static code metrics can be

utilized as indicators of software energy consumption. Table 4.1 shows the static code metrics

that were selected as the independent variables. These metrics were widely used, in part chosen,

as they are easy to use [123]. Size, complexity, and churn attributes can be automatically

and easily collected, even for very large systems.Therefore, in this study LOC, LOCC, and

cyclomatic complexity metrics (CC and MCC) were used.

Table 4.1: Definitions of the metrics used in this study.

Metric Name Acronym Description

Total Lines of Code LOC Total number of lines of code without comments.

Code Churn LOCC
Total number of lines of code changed between
two versions of the same software, as a sum of
the added and deleted lines of code.

Cyclomatic Complexity CC
Measures the amount of decision logic in a
single software module.

Modified Cyclomatic
Complexity

MCC
Same as cyclomatic complexity, except that each
case statement is not counted, entire select case
block count as 1.

Total Lines of Code: The number of lines of code is a traditional measure for software size.

Counting source lines of code is simple and reliable [57].

Code Churn: It includes collected, edited, added and deleted lines of code in all files of a

release. The sum lines of edited, added, deleted lines of code were taken for each release. Churn

metrics have been used by various researchers in software quality prediction [139, 138, 130]. It

has been shown that churn metrics are significant predictors in software systems. Thus, one

code churn metric has been included.

McCabe Cyclomatic Complexity : McCabe’s cyclomatic complexity metric, as the code churn

metric, is among the most popular predictors in software systems and it is widely used in pre-

diction studies such as in Menzies et al. [122] and in Tosun [186]. It provides a quantitative

basis to estimate the code complexity on the basis of the decision structure of a program.

Cyclomatic complexity is based entirely on the structure of software’s control flow graph. Con-

trol flow graphs describe the logic structure of software modules. Cyclomatic complexity of a

29

Chapter 4. Data Collection Methodology and Dataset Construction 4.1. Dataset Construction

module is v(G) = e � n + 2, where G is a program’s flow graph, and e and n are the number

of edges and nodes in the control flow graph, respectively. From a metrics perspective, total

cyclomatic complexity and total Modified Cyclomatic Complexity (MCC) values of all code

files were taken.

Modified Cyclomatic Complexity is a variant of cyclomatic complexity in which switch state-

ments are considered to have the same e↵ect on complexity as if statements, regardless of the

number of switch cases [135, 57]. The motivation behind using the cyclomatic complexity met-

rics in this study is that the more structurally complex (and more loops) a code gets, the more

di�cult it becomes to test and maintain the code, hence, the likelihood of energy consumption

increases.

4.1.2 Observational Data Collection and Analysis

The data collection and analyzing method employed here consists of five steps (see Figure

Chapter 3 3.2) adopted from Hindle [83].

• Step 1: Choosing a product and a context,

• Step 2: Deciding upon measurements and instrumentation,

• Step 3: Configuring the test beds and the tests,

• Step 4: Collecting and storing the data, and

• Step 5: Analysing the data.

Step 1: Software Under Study

The first step is to choose a product and the context in which the software product is going

to be tested. The main software product under study is IBM DB2 database system for Linux,

UNIX and Windows. DB2 is a commonly used relational database management software that

has been on the market since 1992 with a considerable market share. In 1983, DB2 for Multiple

Virtual Storage version 1 was released and it has been constantly evolving ever since. DB2

was used to indicate a shift from hierarchical databases to the new relational databases such as

the Information Management System. DB2 development continued on mainframe platforms as

well as on distributed platforms [39]. Tests were run on the “DB2 Advanced Enterprise Server

Edition” [36].

Based on availability, four major versions were chosen from among seven major versions of

DB2. For a variety of samples, all minor versions from each major version were also chosen.

30

Chapter 4. Data Collection Methodology and Dataset Construction 4.1. Dataset Construction

Table 4.2 shows the list of the DB2 major releases along with a list of the minor DB2 releases

used in this study. The release time line of the major and minor releases is shown in Figure

4.1.

Table 4.2: List of four major DB2 releases with their corresponding minor versions used in this
study.

Major Release v.11.1 v.10.5 v.10.1 v.9.5

Minor releases 11.1

10.5.8
10.5.7
10.5.6
10.5.5
10.5.4
10.5.3a
10.5.3
10.5.2
10.5.1

10.1.5
10.1.4
10.1.3a
10.1.3
10.1.2
10.1.1

9.5.10
9.5.9
9.5.8
9.5.7
9.5.6a
9.5.5
9.5.4a
9.5.4
9.5.3b
9.5.3a
9.5.3
9.5.2a
9.5.2
9.5.1

● ● ●●● ● ● ● ● ● ● ● ● ●

● ● ● ●● ●

●● ●● ● ● ● ● ●

●

2008 2010 2012 2014 2016

Release Date

M
ajo

r R
ele

as
e

Nu
m

be
r

11
.1

10
.5

10
.1

9.
5 0 1 22a3 3a 3b 4 4a 5 7 8 9 10

10.1.110.1.210.1.3 10.1.3a10.1.4 10.1.5

10.5.110.5.210.5.310.5.3a10.5.410.5.5 10.5.610.5.7 10.5.8

11.1.0

Figure 4.1: Time line of the DB2 releases. Y-axis depicts major release numbers; values above
the points depicts minor release numbers. For example, number 1 in the top left corner repre-
sents the release date for version 9.5.1.

31

Chapter 4. Data Collection Methodology and Dataset Construction 4.1. Dataset Construction

Step 2: Instrumentation

For the test system, a desktop computer operated by Windows 10 (64-bit) was used. The

computer configuration is given in Table 4.3.

Table 4.3: Configuration of the test machine.

Computer Configurations

Processor Intel Core i7-6700 CPU @ 4.00GHz 4.01GHz
Memory 32 GB
Operating System Windows 10 Home (64-bit)

The Meter: The energy measurement device used was “Watts up? PRO” [153]. The

device allows direct reading of the measurements to a computer via a Universal Serial Bus

(USB) port. It can measure both power (watt) and energy consumption (Wh). Its memory

capacity is related to the number of parameters that are stored and the memory mode. When

the device is in stop/overwrite mode, 32,000 measurements can be stored; when it is in automatic

mode 1000 records can be stored. It was chosen to use the energy (with resolution of 0.1 Wh)

measurement in automatic mode, as recommended by technical support [197] and in Miranskyy

et al. [129]. Based on the recommendation and the meter manual [197], the accuracy of the

power (Watt) measurement was ±98.5% (partially attributed to the shortest sampling interval

of one second [196], measurement error ±1.5%). However, the cumulative energy measurement

(cumulative Watt-Hours) was performed by the device continuously. The device was sampling

the wattage measure 1000 per second and then integrating the data to obtain cumulative energy

consumption, which resulted in higher accuracy. Cumulative energy readings were taken during

the execution of a given workload [129].

Workload Configuration: Reference workload is an Online Analytical Processing (OLAP)

type 5 from Transaction Processing Unit H (TPC-H) [44] benchmark. A benchmark is typically

a computer program that performs a strictly defined sets of operations (workload) and returns

some form of result describing how the tested system performed [115, 44]. TPC-H is a decision

support benchmark and is considered the standard benchmark in the database systems. It

consists of a set of 22 business-oriented ad-hoc queries. The data and queries simulate business

practices and requirements. This benchmark mimics decision support systems that use large

volumes of data, execute complicated queries (with relatively low volume of transactions), and

answer business related questions. It has two utilities, namely, Data Base Generator Utility

(DBGEN) and Query Generator Utility (QGEN), which generate the test data and queries of

32

Chapter 4. Data Collection Methodology and Dataset Construction 4.1. Dataset Construction

the TPC-H workload, respectively. DBGEN is used to generate data to be loaded into the

database and QGEN to generate queries to manipulate the data. TPC-H examines a minimum

of 1 Gigbayte (GB) of data, executes queries with a high degree of complexity, and gives answers

to critical business solutions. The term “workload” is used to refer to the set of all queries used.

Each query, based on the TPC-H design, performs one task. For example, one query produces

a business report. Detailed technical analysis of the queries is given in Boncz et al. [23] and

TPC-H [44]. Workload and queries were applied to each major and minor version.

Database Load Testing and Benchmarking: For benchmarking purposes, the Ham-

merDB tool was used. HammerDB is a graphical open source database load testing and bench-

marking tool for Linux and Windows to test databases running on any operating system. It is

automated, multi-threaded and extensible with dynamic scripting support. It supports Oracle,

SQL Server, DB2, TimesTen, MySQL, MariaDB, PostgreSQL, Greenplum, Postgres Plus Ad-

vanced Server, Redis Amazon Aurora and Redshift and Trafodion SQL on Hadoop. The tool

includes complete built-in workloads based on industry standard TPC-C and TPC-H bench-

marks [70]. The tool has two built-in scripts. One for creating a test schema with configurable

data size. The other, for running the workload test with a benchmark selection.

Before starting the tests in this study, test schema were built with 1 GB of raw data and

with one virtual user. In the actual test, a total of 22 distinct queries (from TPC-H) associated

with 1 GB raw data were executed. In each run, the 22 queries were executed sequentially and

measured the amount of energy consumed by the computer and time to finish all 22 queries.

The workloads were executed ten times and the average of the results were used in further

analysis. Details are given in section 4.1.2.

Software Static Code Metrics Extraction: For DB2 versions, CLOC tool [40] was

used to extract size (LOC) and churn (LOCC) metrics. For McCabe complexity (CC and MCC),

“PMCCABE” tool [151] for C and C++ were used. Both tools are open software. PMCCABE

calculates McCabe cyclomatic complexity for C and C++ source code. PMCCABE includes a

non-commented line counter, decomment, which only removes comments from source code; and

codechanges, a program used to calculate the amount of change which has occurred between

two source trees or files [151].

Step 3: Testbed Setup and Test Scenario

The computers used for the test system, as well as the data collection and analysis were identical

to each other (see Table 4.3). The testbed set up is shown in Figure 4.2.

33

Chapter 4. Data Collection Methodology and Dataset Construction 4.1. Dataset Construction

Figure 4.2: Testbed setup used in the DB2 energy data collection.

In order to eliminate the e↵ect of changing environmental conditions, the testbed was setup

in the Data Science Laboratory, Ryerson University. The system was dedicated to the test

workload and all other background and computational tasks and the network connection were

turned o↵. No other tasks were executed on the test machine concurrently.

As a reference database workload, TPC-H included 22 business oriented ad-hoc queries.

For each run, an empty database was generated, which created the required objects. Then, the

database was populated with 1 GB of raw data given the size of the hardware platform. All

the data and objects were generated before running the queries. As such, the time and energy

required for the generation was not included in the measurements. Details of the measurement

and data collection are provided in the section 4.1.2 below.

Step 4: Measurement and Data Collection

Energy Consumption: As was previously stated, energy consumption measurements

were obtained from WattsUp?Pro power meter instrument. In order to promote stability and

consistency of the measurements, the same steps were followed in all of the measurements. Be-

fore the tests, each DB2 version was installed and configured as stated in the DB2 manual [114].

First, an empty database was created. Then DB2 test schema were built using HammerDB.

Test schema, which included a number of users and data size selections. One user with 1 GB

data was selected for each test. After the test schema with 1GB data creation was complete, the

actual energy measurement tests were started. The energy measurement steps were adopted

from [154] and modified according to the study environment. These steps used were:

• Plug the computer into the WattsUp?Pro device, turn on the computer and start to collect

energy measurements;

• Close all unnecessary applications;

• Run the HammerDB and configure the database for the TPC-H test;

34

Chapter 4. Data Collection Methodology and Dataset Construction 4.1. Dataset Construction

• Run TPC-H simultaneously and wait for all the 22 queries to finish. Record query start

and end times of the queries;

• Collect the energy consumption data and time to finish all queries;

• Return the computer to its initial state.

Each minor and major versions were run ten times. The energy consumption reading was

recorded at the beginning and at the end of all 22 queries. The readings were reported in

Watt-hours. The average of ten runs per version was calculated to minimize the error. Start

and finish time of all queries were also recorded.

Baseline Measurement: In order to obtain reliable measurements from all of the tests, it

was also necessary to measure the idle energy consumption of the hardware and tools used.

As previously mentioned, no other workloads were executed when the tests were executed.

However, despite trying to minimize the number of externals run by the Operating System

(OS), some of them have to be functional to ensure the robustness of the operating system.

Additionally, idle database system and HammerDB may consume some amount of energy. In

order to determine the impact of such processes on the energy consumption of system, energy

consumption of idle system and HammerDB tool were measured and reported. Five runs were

utilized, each for approximately one hour. Ten minute intervals were obtained to calculate

mean power (watt) and mean energy consumption (Wh). Three di↵erent measurements were

obtained:

• Running the OS with no application;

• Running the OS with HammerDB installed (no connections to the database were made);

• Running the OS with HammerDB and DB2 v.11.1 installed (no connections to the

database were made).

The results are presented in Table 4.4. It can be seen that the OS alone and the OS with

the HammerDB tool consumed almost the same amount of mean power in idle state. DB2

consumes a smaller amount of mean power (0.2W) on top of the power consumed by the OS

and the HammetDB. However, the consumption remains almost constant throughout the tests.

Therefore, it can be said that the baseline consumption does not a↵ect the analysis.

35

Chapter 4. Data Collection Methodology and Dataset Construction 4.1. Dataset Construction

Table 4.4: Baseline system average power (watt) and energy consumption (Wh) measurements.

Baseline Setup
Average Power (Watts),

Standard deviation
Average Energy Consumption (Wh),

Standard deviation

OS alone 36.117±0.425 6.058±0.072
OS with Hammer DB 36.183±0.356 6.043±0.067
OS with HammerDB
and DB2 v.11.1

36.208±0.516 6.042±0.102

Software Metrics Extraction

The metrics, which were explained in section 4.1.1, of the software under study were extracted

by downloading the source codes from their respected repositories. Then, the each of the source

code files were uploaded into the code analysis tools to extract the metrics. As suggested by

Miranskyy et al. [129], source code files of test cases were eliminated before computing the

source code metrics. Source code files of test cases were eliminated, since the code from them

is not included in the production binaries of the database.

Source code files of test cases and the production binaries of the database engines did not.

Step 5: Data Analysis Methodology

The analysis of the data was performed using R statistical analysis software (v.3.2.4)1. The

following analysis and modelling techniques were applied to the data (most of them are described

in [117, 132]).

Descriptive statistics consists of procedures used to summarize and describe the impor-

tant characteristics of a set of measurements [117]. They are numerical descriptive measures

that characterize a population. In this research, descriptive statistics characterize the sample

which are used to infer population properties. The most common parameters are population

minimum, maximum, mean, standard deviation, and variance.

Pearson’s correlation is used to measure the strength of the linear relationship between

two variables [117]. The correlation is represented with the correlation coe�cient r (�1  r 
+1) and its significance. A value of r fairly close to 1 indicates a very strong linear relationship

between two variables [117]. In order to determine whether a result is statistically significant,

p-value is computed. p-value is the probability of obtaining a result equal to or more extreme

than what was actually observed, when the null hypothesis is true [117]. In correlation, the

null hypothesis is that there is no correlation between two variables. The p-value was adopted

compared to the significance of the relation. In this study, 0.05 significance level was taken,

1
http://www.r-project.org/

36

Chapter 4. Data Collection Methodology and Dataset Construction 4.2. Mining Software and Data Repositories

which is compared with the p-value  0.05. The correlation coe�cient has to be properly

interpreted. In order to interpret the correlation coe�cient values with the significance of

the relationship, several labelling systems [84, 180] have been proposed. Keep in mind that

a correlation only indicates the presence or absence of a relationship, not the nature of the

relationship; correlation does not imply causation. The strength of the correlation is described

in Table 4.5, as per [84]. For example, r = 0.76 would be interpreted as a “strong positive

correlation”.

Table 4.5: Interpretation of the correlation coe�cient.

Correlation Coe�cient, r Interpretation

.90 to 1.00 (-.90 to -1.00) Very strong positive (negative) correlation
.70 to .90 (-.70 to -.90) Strong positive (negative) correlation
.50 to .70 (-.50 to -.70) Moderate positive (negative) correlation
.30 to .50 (-.30 to -.50) Weak positive (negative) correlation
.10 to .30 (-.10 to -.50) Very Weak positive (negative) correlation

4.2 Mining Software and Data Repositories

In this section four di↵erent open source software products were analyzed. The products are

MySQL, Firefox, Vuze, and BitTorrent. Data sets were collected from their repositories using

data mining suggested in Menzies et al.[122], Bener et al. [16], and Hindle [83]. The data

collection procedure is shown in Figure 3.1. To collect raw data from source code reposito-

ries, automated scripts and queries were implemented (see Appendix A). Figure 4.3 shows a

schematic of the data collection procedure. The source code of products were collected from

their version control systems after that static code metrics were extracted using source codes.

MySQL energy consumption and software metrics data were collected from data sources in Mi-

ranskyy et al. [128]; Firefox, Vuze and BitTorrent energy consumption data were collected from

data sources in Hindle [83]. It was explained in Hindle [81, 83] that EC and time measurements

were collected by running di↵erent test cases created by Hindle on Firefox, Vuze and BitTorent.

There was no benchmark run performed.

The first software product to be tested was MySQL, a popular open source database soft-

ware written in C and C++. The second product was Firefox, a popular C++ implemented

consumer-oriented open-source web-browser maintained by the Mozilla foundation. The third

product was Azeurus, now known as Vuze, a popular Java-based Peer-to-Peer (P2P) BitTor-

rent client. The fourth product was BitTorrent, which included library libTorrent and its client

37

Chapter 4. Data Collection Methodology and Dataset Construction 4.2. Mining Software and Data Repositories

Figure 4.3: Metric data collection procedure illustration from available resources.

application, rTorrent. Much like Vuze, it is a BitTorrent client, but it is meant to run on UNIX

shells.

MySQL energy consumption and software metrics data were extracted from the study con-

ducted by Miranskyy et al. [129]. For Firefox, Vuze and rTorrent, software source codes

were extracted from their respective repositories. Energy consumption and LOCC data were

collected from Hindle’s study [83]2.

Table 4.6 summarizes the datasets that were extracted from their repositories.

Table 4.6: A summary of the datasets extracted from repositories.

MySQL Firefox Vuze rTorrent

Binaries 40 509 45 18
Releases 40 43 3 18
Source Subversion Nightlies Subversion Tarballs

Language C and C++
C++ and
JavaScript

Java C++

Size Metrics LOC LOC LOC LOC
Churn Metrics LOCC LOCC LOCC LOCC
Energy Consumption Wh Wh Wh Wh
Time Spent hour hour hour hour

2
Available at: https://github.com/abramhindle/green-data-msr/tree/master/green-mining/data

38

Chapter 4. Data Collection Methodology and Dataset Construction 4.2. Mining Software and Data Repositories

In Table 4.6, for Firefox, “Nightlies” are evening compilations from their version control

system between 2009 and 2010. “Tarballs” are tar.gz archives of source code, “Releases” are

publicly named versions such as 3.0b1 and 5.1.1, while “Binaries” are successful builds [83].

The versions of MySQL have two di↵erent table storage engines options, namely MyISAM

and InnoDB. InnoDB o↵ers ACID-compliant (atomicity, consistency, isolation and durability)

transaction features, which is important for confirming data consistency and integrity in the

database. Prior to v.5.5, MyISAM was used as a default storage engine, which is better suited

for analytical workloads [137, 136]. When extracting the source code metrics of MySQL, source

code distribution of MyQSL, MyISAM and InnoDB directories were also reviewed. It was

determined that there are 7 major directories in the MySQL main source code. One of them

is allocated for storage engines, the MyISAM directory. In the main MyISAM directory, there

are programs for handling files, rows, and keys. The programs in the other storage engine

directories essentially fulfill the same functions [137, 136].

In the data repository of MYSQL ([129]), di↵erent combinations of storage engines (My-

ISAM and InnoDB), data size (1 GB and 3 GB), and energy consumption and time spent

measurements are available. In order to be consistent with DB2 dataset measurements, 1 GB

data size, energy consumption, and time spent measurements were selected from MyISAM and

InnoDB data. For static code metrics, MyISAM and InnoDB engine files that belong to each

engine directory were combined separately.

Software Metrics Extraction:

The metrics were extracted from their respected source codes. First, all source codes were

downloaded from their repositories. Second, each of the source code files were uploaded into the

code analysis tools. Last, code metrics were extracted using code analysis tools. “Understand”

Static Code Analysis Tool v.4.0 (build number 864) from SciTools [165] was used for Firefox,

Vuze and rTorrent software metric extraction. “Understand” is a commercially licensed tool;

however, a student licence was obtained for this study. It has broad support for many di↵erent

programming languages. It can analyze a very large, complex software project. MySQL metrics

were collected from Miranskyy et al. [129]. The details of the extraction method are given in

section 4.1.2

Five di↵erent metrics were extracted from the version history and code base in the software

products. These metrics were added LOC, deleted LOC, total LOC, CC, and MCC. Energy

consumption and time spent measurement data were collected from their related study data

repositories.

Total Lines of Code (LOC): Total lines of code in all files of a release were collected for all

39

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

datasets and total lines of code of all files were computed for each release.

Code Churn (LOCC): Added LOC and deleted LOC in all files of a releases of all software

products were collected. The total lines of code change (LOCC) for each release were computed

from added LOC and deleted LOC (see Table 4.1).

Cyclomatic Complexity (CC) and Modified Cyclomatic Complexity (MCC): McCabe’s cy-

clomatic complexity and modified complexity metrics for each file in a release were extracted as

described in section 4.1.2. For the total complexity values of each version, complexity metrics

of all files were summed. When extracting metrics three steps were followed. The first step was

extracting all the product’s versions source codes from their respective code repositories and

storing them in a local machine. The second step was removing test files from all the source

codes. The final step was collecting complexity metrics using the SciTool Understand metric

extraction tool.

4.3 Descriptive Statistics

Before constructing a prediction model, descriptive statistics and relations among the attributes

[74, 117] must be computed. Descriptive statistics are information about the characteristics of

variables, central values, and variability. Relation analysis among variables identifies whether

or not there are statistical relationships between variables. Correlations are the most commonly

used analysis.

4.3.1 Descriptive Statistics of Observational Data: DB2

A set of statistics was derived from the collected data. For a single version of DB2, a total of

ten runs were executed, each composed of around 3000 observations (one per second) of the

energy consumption measurement. As for the calculation of statistics, the mean value of each

run was calculated. The energy consumption measurement was computed as follows:

EC

i

,

j

= EC

i

,

j (last reading) � EC

i

,

j (first reading), (4.1)

where EC

i

,

j

represents energy consumption for the i-th release of interest (major or minor)

and j-th run. EC

i

,

j first reading and EC

i

,

j last reading represent the energy consumption readings

from the WattsUp?Pro device when the test run started and finished, respectively. When the

computer was turned on energy measurement started immediately. After the system reached its

steady state, benchmark queries were run. Since energy measurements were taken continuously,

the first reading needed to be subtracted from the last reading in order to be consistent. Then,

40

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

the mean of 10 runs of each release were calculated according to Equation 4.2:

EC

i

= (EC

i

,1+EC

i

,2+...+ EC

i

, 10)/10, (4.2)

where EC

i

represents energy consumption for the i-th release of interest (major or minor). The

same method was applied to all versions of DB2.

Moreover, the relative percentage of di↵erence between each two release values was calcu-

lated using the Equation 4.3:

(new release value)� (old release value)

(old release value)
⇥ 100. (4.3)

Table 4.7 represents descriptive statistics about energy consumption (Wh) measurements

and Table 4.8 represents descriptive statistics about time spent (hour) measurements collected

from 32 DB2 releases.

The descriptive statistics tables report minimum (Min.), maximum (Max.), mean, median,

Standard Deviation (SD), and variance. In datasets with large variations and possibility of

outliers, reporting both median and mean is preferred since the median is less sensitive to

extreme values or outliers [117].

Table 4.7 shows that the mean values of newer versions (v.10.1.0-v.11.1.0) are 17.6% smaller

than the older versions (v.9.5.0.-v.9.5.10). Energy consumption decreases when a newer version

is released. This can also be seen in Figure 4.4.

Figure 4.4 displays the results of 320 runs of 32 di↵erent distinct releases of DB2 from

version 9.5.0 to version 11.1.0. Each version is a box-plot consisting of a set of 10 runs. Test

runs were performed more than 10 times for each version because of random failures such as

failure to connect to the WattsUp? Pro, old tests not shutting down, or an erroneous run. At

the end, 10 successful runs were taken into account for each version.

Figure 4.4 shows that DB2 v.10.1 is relatively stable in terms of EC, and time spent, but

it can fluctuate between versions and measurements. The di↵erence in means between v.9.5

versions and v.10.1 versions is about 1.13 Wh. Earlier versions of DB2 (v.9.5) have higher mean

EC, but also high fluctuations. This may result in poor general performance, since performance

is expected to be similar throughout the versions. Figure 4.4 also shows that v.9.5 consumed

22% higher EC (5.84 Wh) than v.10.1.0 (4.75 Wh), 20% higher than v.10.5.1 (4.67 Wh), and

34% higher than v.11.1 (4.45 Wh). Regarding minor versions of v.9.5, most releases stay close

to a mean 5.8 Wh and 6.0 Wh. Variance among v.10.1 and its minor versions are smaller than

variances of the v.10.5 versions. Moreover, mean values of v.10.1 versions are approximately

3.5% lower than the mean values of the v.10.5 versions (4.90 Wh and 5.07 Wh respectively).

The lowest EC value is obtained from v.11.1 with a value of 4.45 Wh, which is the latest release

41

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

Table 4.7: Energy consumption (Wh) statistics overview.

Version Min. Max. Mean Median SD Variance

v.9.5.0 5.50 6.00 5.84 5.90 0.164 0.027
v.9.5.1 5.90 6.40 6.04 6.00 0.151 0.023
v.9.5.2 5.70 6.40 5.99 6.00 0.191 0.036
v.9.5.2a 5.40 6.00 5.81 5.80 0.296 0.087
v.9.5.3 5.80 6.60 6.30 6.40 0.305 0.093
v.9.5.3a 5.80 6.10 5.89 5.90 0.099 0.009
v.9.5.3b 5.60 6.40 5.95 5.90 0.236 0.056
v.9.5.4 5.70 6.10 5.88 5.85 0.168 0.028
v.9.5.4a 5.80 6.50 6.10 6.11 0.202 0.041
v.9.5.5 5.70 6.30 6.03 6.10 0.200 0.040
v.9.5.6a 5.60 6.30 6.00 5.95 0.245 0.060
v.9.5.7 5.80 6.50 6.13 6.10 0.200 0.040
v.9.5.8 5.70 6.50 6.07 6.00 0.275 0.075
v.9.5.9 5.90 6.30 6.08 6.10 0.113 0.013
v.9.5.10 5.70 6.10 5.90 6.00 0.139 0.020

v.10.1.0 4.40 5.20 4.75 4.70 0.259 0.067
v.10.1.1 4.80 5.40 5.10 5.10 0.200 0.040
v.10.1.2 4.70 5.40 5.03 5.00 0.211 0.045
v.10.1.3 4.60 5.30 4.94 4.90 0.201 0.040
v.10.1.3a 4.60 5.10 4.83 4.85 0.141 0.020
v.10.1.4 4.70 5.30 4.93 4.95 0.170 0.029
v.10.1.5 4.40 5.10 4.69 4.60 0.246 0.061

v.10.5.1 4.40 5.10 4.67 4.70 0.211 0.045
v.10.5.2 4.60 5.40 5.04 5.00 0.259 0.067
v.10.5.3 4.90 5.40 5.13 5.15 0.194 0.038
v.10.5.3a 5.00 5.70 5.41 5.35 0.266 0.071
v.10.5.4 5.10 5.60 5.38 5.40 0.181 0.033
v.10.5.5 4.70 5.20 5.00 5.00 0.188 0.035
v.10.5.6 4.60 5.40 5.03 5.05 0.200 0.040
v.10.5.7 4.70 5.30 5.01 5.50 0.172 0.030
v.10.5.8 4.70 5.30 4.91 4.85 0.191 0.036

v.11.1.0 4.10 4.70 4.45 4.50 0.184 0.034

42

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

v.9
.5.

0

v.9
.5.

1

v.9
.5.

2

v.9
.5.

2a

v.9
.5.

3

v.9
.5.

3a

v.9
.5.

3b

v.9
.5.

4

v.9
.5.

4a

v.9
.5.

5

v.9
.5.

6a

v.9
.5.

7

v.9
.5.

8

v.9
.5.

9

v.9
.5.

10

v.1
0.1

.0

v.1
0.1

.1

v.1
0.1

.2

v.1
0.1

.3

v.1
0.1

.3a

v.1
0.1

.4

v.1
0.1

.5

v.1
0.5

.1

v.1
0.5

.2

v.1
0.5

.3

v.1
0.5

.3a

v.1
0.5

.4

v.1
0.5

.5

v.1
0.5

.6

v.1
0.5

.7

v.1
0.5

.8

v.1
1.1

.0

2

3

4

5

6

7

8

DB2 Versions

En
erg

y C
on

su
mp

tio
n (

W
h)

Figure 4.4: Energy consumption (Wh) box-plots of tested versions of DB2.

of the DB2.

To summarize, DB2 consumed less energy and became more energy e�cient over the releases.

Energy consumption fluctuated in v.9.5 minor versions. On the other hand, it was more stable

across v.10.1 versions. This may be an indication that DB2 is getting more e�cient as the

product matures.

By reviewing the DB2 functionality and feature changes in [114] it can be seen that after

v.10.1 was released, most of the changes were implemented for performance enhancement. One

of the major enhancements is for making the DB2 engine more e�cient with new features.

These changes may result in increasing the speed of queries and consuming fewer computational

resources [114]. The biggest change is in the parallelization capabilities of the optimizer to

enable workloads to better utilize multi-core processors [174]. Although CPU usage was not

analyzed in this study, this may be the reason why energy consumption decreased. For example,

a 19% decrease in EC was obtained from v.9.5.10 to v.10.1.

It was also noticed that when the product matures there are increases in EC within its major

release of a version. For example, there was a 15% increase from v.10.5.1 to v.10.5.4. It was

suspected that every new feature and functionality may lead to increases in energy consumption

because of the cumulative e↵ects of the software feature interactions. Thus, individual features

may work as expected, but the modification of an existing feature or addition of new features

43

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

v.9.5.0 v.10.1.0 v.10.5.1 v.11.1.0

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

DB2 Major Releases

En
er

gy
 C

on
su

m
pt

io
n

(W
h)

(a) Energy Consumption(Wh)

v.9.5.0 v.10.1.0 v.10.5.1 v.11.1.0

0.
06

0.
07

0.
08

0.
09

0.
10

DB2 Major Releases

Ti
m

e
Sp

en
d

(h
ou

rs
)

(b) Time Spent (hour)

Figure 4.5: DB2 major versions energy consumption (Wh) and time spent (hour) box-plots.

can trigger an unanticipated cumulative e↵ect not anticipated in the original development plan.

Figure 4.5 displays the results of EC and time spent results for 40 runs of 4 major DB2

versions from v.9.5 to version 11.1. Each version is a box-plot consisting of a set of 10 successful

runs. In the Figure 4.5, major version 10.5 did not have the 10.5.0 major release available to

test. Therefore, v.10.5.1 was taken as a first version of v.10.5. As can be seen from Figure

4.5(a) the highest energy consumption value was obtained from v.9.5 with a value of 5.84 Wh,

followed by v.10.1 and 10.5.1 with the values of 4.75 Wh and 4.67 Wh, respectively. The lowest

energy consumption was obtained from v.11.1 with 4.45 Wh. The same trend was obtained

from the time spent values, which are shown in the Figure 4.5(b)

In Table 4.8 and Figure 4.6 similar trends for energy consumption can be obtained. There

are noticeable variations between the v.9.5 minor versions. On the other hand, time values are

more stable across the v.10.1 (except 10.1.3a), especially in the later versions from v.10.1.5 to

10.5.3. This can be explained by the introduction of new features. When the feature matures,

it further lowers the time spent (from v.10.5.5 to v.11.1). Overall, early versions (v.9.5) spend

19.9% more time to execute the test queries than the 10.1 versions, 5.9% more than the 10.5

versions, and 12% more than 11.1 version. This time behaviour suggests that query optimization

to improve performance may lead to energy saving benefits.

Due to the availability of the DB2 source codes, 29 out of 32 releases were able to be analyzed

for LOC, LOCC, CC and MCC. In Table 4.9 minimum, maximum, mean, standard deviation

and variance of metrics collected from 29 DB2 releases are reported. Due to confidentiality of

the IBM projects, actual metrics values of DB2 versions were not reported.

44

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

Table 4.8: Time spent (hour) statistics overview.

Versions Min. Max. Mean Median SD Variance

v.9.5.0 0.081 0.089 0.086 0.087 0.002 5.8E-6
v.9.5.1 0.088 0.093 0.090 0.089 0.002 2.8E-6
v.9.5.2 0.085 0.093 0.90 0.091 0.003 8.6E-6
v.9.5.2a 0.081 0.093 0.086 0.086 0.004 13.2E-6
v.9.5.3 0.087 0.097 0.093 0.093 0.003 11.6E-6
v.9.5.3a 0.083 0.088 0.086 0.086 0.002 2.5E-6
v.9.5.3b 0.083 0.092 0.087 0.087 0.003 8.0E-6
v.9.5.4 0.082 0.091 0.087 0.088 0.003 8.6E-6
v.9.5.4a 0.086 0.096 0.092 0.092 0.003 7.7E-6
v.9.5.5 0.087 0.094 0.090 0.091 0.002 6.9E-6
v.9.5.6a 0.086 0.096 0.091 0.091 0.003 11.7E-6
v.9.5.7 0.088 0.098 0.093 0.092 0.003 8.2E-6
v.9.5.8 0.083 0.094 0.087 0.088 0.002 11.8E-6
v.9.5.9 0.088 0.094 0.091 0.090 0.002 2.9E-6
v.9.5.10 0.087 0.091 0.090 0.091 0.001 1.8E-6

v.10.1.0 0.069 0.078 0.072 0.074 0.003 10.0E-6
v.10.1.1 0.073 0.08 0.076 0.077 0.002 5.6E-6
v.10.1.2 0.072 0.081 0.076 0.076 0.003 7.2E-6
v.10.1.3 0.069 0.079 0.075 0.074 0.003 8.5E-6
v.10.1.3a 0.067 0.073 0.069 0.069 0.002 3.6E-6
v.10.1.4 0.072 0.08 0.075 0.075 0.002 5.4E-6
v.10.1.5 0.065 0.077 0.072 0.073 0.007 13.8E-6

v.10.5.1 0.068 0.079 0.073 0.073 0.003 11.2E-6
v.10.5.2 0.067 0.076 0.073 0.072 0.004 13.2E-6
v.10.5.3 0.07 0.077 0.073 0.073 0.003 9.4E-6
v.10.5.3a 0.073 0.083 0.079 0.079 0.003 8.5E-6
v.10.5.4 0.073 0.079 0.077 0.077 0.002 4.1E-6
v.10.5.5 0.067 0.073 0.07 0.07 0.002 4.0E-6
v.10.5.6 0.065 0.071 0.070 0.070 0.002 3.3E-6
v.10.5.7 0.068 0.076 0.073 0.073 0.003 6.9E-6
v.10.5.8 0.069 0.078 0.072 0.071 0.003 7.6E-6

v.11.1 0.063 0.073 0.068 0.069 0.003 10.2E-6

Data Distribution Analysis: To visualize the fit of the distribution, Q-Q plots plots

were examined and assessed for how closely the data points follow the fitted distribution line.

Figure 4.7 (a-b) shows Q-Q plots, which are graphical techniques for assessing whether a data

is normally distributed [37]. Figure 4.7 (a-b), the outer dotted lines form a 95% confidence

45

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

v.9
.5.

0

v.9
.5.

1

v.9
.5.

2

v.9
.5.

2a

v.9
.5.

3

v.9
.5.

3a

v.9
.5.

3b

v.9
.5.

4

v.9
.5.

4a

v.9
.5.

5

v.9
.5.

6a

v.9
.5.

7

v.9
.5.

8

v.9
.5.

9

v.9
.5.

10

v.1
0.1

.0

v.1
0.1

.1

v.1
0.1

.2

v.1
0.1

.3

v.1
0.1

.3a

v.1
0.1

.4

v.1
0.1

.5

v.1
0.5

.1

v.1
0.5

.2

v.1
0.5

.3

v.1
0.5

.3a

v.1
0.5

.4

v.1
0.5

.5

v.1
0.5

.6

v.1
0.5

.7

v.1
0.5

.8

v.1
1.1

.0

0.06

0.07

0.08

0.09

0.10

0.11

DB2 Versions

Ex
ec

uti
on

 Ti
me

 (h
ou

rs)

Figure 4.6: Time spent (hour) box-plots of tested versions of DB2.

Table 4.9: DB2: Descriptive statistics of software metrics, energy consumption, time spent, and
software metrics.

Metrics Min. Max. Mean Median SD Variance

Energy

Consumption (Wh)

4.45 6.11 5.39 5.13 0.570 0.325

Time Spent (hour) 0.068 0.093 0.079 0.076 8.523E-03 7.264E-05

band. The use of the confidence band in the plot is that when values fall within the band, the

distribution is approximately normal.

Figure 4.7 (a-b) and Figure 4.8 (a-b) show data distribution and density plots. Figure 4.7

(a-b) shows that all data values fall within the confidence band, meaning that the data follows

approximately normal distribution. On the other hand, shape of the distribution has multiple

peaks (see data density Figure 4.8 (a-b)). This means that distribution is multimodal. A

multimodal distribution often represents a mixture of di↵erent populations in the dataset [117].

In DB2 dataset these di↵erent groups reflect v.9.5, v.10.1, v.10.5 and v.11.1. One common

approach for analyzing this group data structure is to analyze groups separately. Therefore,

DB2 versions were analyzed separately. The first group included major version 9.5 and its

minor versions. The second group included version 10.1 and its minor versions. The third

group included version 10.5 and its minor versions. In the following sub-paragraphs, groups of

46

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

−2 −1 0 1 2

4.
5

5.
0

5.
5

6.
0

Norm Quantiles

EC

(a) Q-Q Plot of Energy Consumption (Wh)

Distribution

−2 −1 0 1 2

0.
07

0
0.

07
5

0.
08

0
0.

08
5

0.
09

0

Norm Quantiles

TS

(b) Q-Q Plot of Time Spent (hour) Distribu-

tion

Figure 4.7: Q-Q Plots of energy consumption (Wh) and time spent (hour), the outer dotted
lines 95% confidence band.

4.0 4.5 5.0 5.5 6.0 6.5 7.0

0.
0

0.
2

0.
4

0.
6

EC

D
en

si
ty

 o
f E

C

(a) Time Spent (hour)

0.06 0.07 0.08 0.09 0.10

0
10

20
30

40
50

TS

D
en

si
ty

 o
f T

S

(b) Time Spent (hour)

Figure 4.8: Density graphs of energy consumption (Wh) and time spent (hour).

DB2 data distributions were given. Version 11.1 has only one data point; therefore, it was not

included in the group analysis. But, it was included in the correlation analysis.

v.9.5 Data Distribution Analysis: Q-Q plot and density plot were examined and as-

sessed for how closely the data points followed the fitted distribution line.

Figure 4.9 (a) shows that all values fall within the confidence band; therefore, the v.9.5 data

is approximately normally distributed. The Figure 4.9 (b) density plot also shows that the EC

of v.9.5 data distribution is approximately normal.

47

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

5.
80

5.
85

5.
90

5.
95

6.
00

6.
05

6.
10

norm quantiles

D
B2

_V
.9

.5
$E

C

(a) Q-Q Plot of Energy Consumption(Wh)

Distribution

5.7 5.8 5.9 6.0 6.1 6.2

0
1

2
3

4

EC

D
en

si
ty

 o
f E

C
 v

.9
.5

(b) Density Plot of Energy Consumption

(Wh) Distribution

Figure 4.9: Q-Q Plot (a) and Density Plot (b) of energy consumption (Wh) of DB2 v.9.5. In
(a) the outer dotted lines 95% confidence band

v.10.1 Data Distribution Analysis: Q-Q plot and density plot were examined and

assessed for how closely the data points follow the fitted distribution line.

−1.0 −0.5 0.0 0.5 1.0

4.
7

4.
8

4.
9

5.
0

5.
1

norm quantiles

db
2.

v.
10

.1
$E

C

(a) Q-Q Plot of Energy Consumption (Wh)

Distribution

4.6 4.8 5.0 5.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

EC

D
en

si
ty

 o
f E

C
 v

.1
0.

1

(b) Density Plot of Energy Consumption

(Wh) Distribution

Figure 4.10: Q-Q Plot (a) and Density Plot (b) of energy consumption (Wh) of DB2 v.10.1. In
(a) the outer dotted lines 95% confidence band.

Figure 4.10 (a) shows that all values fall within the confidence band; therefore, the v.10.1

data is approximately normally distributed. Figure 4.10 (b) density plot also shows that EC of

version 10.1 data distribution is approximately normal.

v.10.5 Data Distribution Analysis: Figure 4.11 (a-b) show that EC of version 10.5

data is approximately normally distributed.

48

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

4.
8

4.
9

5.
0

5.
1

5.
2

5.
3

norm quantiles

gr
ou

p3
$E

C

(a) Q-Q Plot of Energy Consumption (Wh)

Distribution

4.8 4.9 5.0 5.1 5.2 5.3 5.4

0
1

2
3

4

EC

D
en

si
ty

 o
f E

C
 v

.1
0.

5

(b) Density Plot of Energy Consumption

(Wh) Distribution

Figure 4.11: Q-Q Plot (a) and Density Plot (b) of energy consumption (Wh) of DB2 v.10.5. In
(a) the outer dotted lines 95% confidence band

4.3.2 Descriptive Statistics of Mined Datasets

Dataset MySQL:

For MySQL, there are two storage engine dataset statistics to be reported. Table 4.10 and Table

4.11 show MySQL data using the MyISAM storage engine. Table 4.12 and Table 4.13 show

MySQL data using the InnoDB storage engine. Table 4.10 shows MyISAM source code metrics

that were extracted from only the MyISAM directory files. Similarly, Table 4.12 shows InnoDB

source code metrics that were extracted from only the InnoDB directory files. These files were

extracted from the MYSQL main source code files and metrics were computed automatically

using scripts.

Table 4.11 shows MySQL data using MyISAM storage engine. Code metrics were calculated

by subtracting files that belong to InnoDB storage engine directories. In this case, files contain

MyISAM files and other system files. Similarly, Table 4.13 shows MySQL data using the InnoDB

storage engine. Code metrics were calculated by subtracting files that belong to MyISAM

storage engine directories. In this case, files contained innoDB files and other system files.

In Table 4.10 minimum, maximum, mean, standard deviation and variance of metrics col-

lected from 40 releases of MYSQL using MyISAM engine were reported.

By examining Table 4.10 and Table 4.11 mean values of energy consumption and time spent

were shown to be similar to median values. On the other hand, mean values of code metrics were

not close to median values, specially in LOCC. All of the code metrics show some skewness, and

LOCC is the most severe. While LOC, LOCC and CC show skewness in a positive direction,

MCC shows skewness in a negative direction.

49

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

Table 4.10: MYSQL - MYISAM engine directories only: Descriptive statistics of energy con-
sumption, time spent and software metrics.

Metrics Min. Max. Mean Median SD Variance

Energy
Consumption (Wh)

23.02 34.30 28.27 27.93 3.49 12.17

Time Spend (hour) 0.19 0.30 0.24 0.24 0.02 9.01E-04

LOC 33036 34765 33992 34006 381 1.45E+05
LOCC 0 67315 2416 34 10761 1.24E+08
CC 6490 6745 6592 6593 63 3970
MCC 6032 6274 6125 6104 63.2 3988

Table 4.11: MYSQL using MYISAM engine files and system files: Descriptive statistics of
energy consumption, time spent and software metrics.

Metrics Min. Max. Mean Median SD Variance

Energy
Consumption (Wh)

23.02 34.30 28.27 27.93 3.49 12.17

Time Spend (hour) 0.19 0.30 0.24 0.24 0.02 9.01E-04

LOC 981942 1586869 1251148 1211503 212190 4.5E+10
LOCC 595 1180376 6392 69935 212536 4.47E+10
CC 118043 162696 139631 137739 17867 3.24E+08
MCC 108324 148101 127739 125565 16056 2.53E+08

Table 4.12 and Table 4.13 show minimum, maximum, mean, standard deviation and variance

of metrics collected from MYSQL running on the InnoDB engine.

Table 4.12: MYSQL - InnoDB engine directories only: Descriptive statistics of energy con-
sumption, time spent and software metrics.

Metrics Min. Max. Mean Median SD Variance

Energy
Consumption (Wh)

14.85 25.22 19.21 17.96 2.85 8.13

Time Spend (hour) 0.13 0.22 0.16 0.15 0.02 6.11E-04

LOC 86283 205838 153736 119313 45155 2.04E+09
LOCC 8 265691 24716 1166 64097 4.11E+09
CC 10328 24867 17782 14035 6083 3.70E+07
MCC 9960 22665 16615 12994 5482 3.0E+07

Similar to MyISAM results, mean and median values of energy consumption, time spent

50

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

Table 4.13: MYSQL using InnoDB engine files and system files: Descriptive statistics of energy
consumption, time spent and software metrics.

Metrics Min. Max. Mean Median SD Variance

Energy
Consumption (Wh)

14.85 25.22 19.21 17.96 2.85 8.13

Time Spend (hour) 0.13 0.22 0.16 0.15 0.02 6.11E-04

LOC 1034991 1759305 1370332 1295908 231597 5.40E+10
LOCC 603 1301242 88068 7107 254310 6.51E+10
CC 122915 175800 150692 147393 18384 3.39E+08
MCC 112954 161082 138122 134957 16548 2.73E+08

and code metrics were shown to be similar, except LOCC. Mean of LOCC are higher than

median values.

When comparing only MyISAM and InnoDB engine datasets, InnoDB software code met-

rics (Table 4.12) have higher variations than MyISAM software metrics (Table 4.10). When

comparing without InnoDB engine file metrics (Table 4.11) and without MyISAM engine file

metrics (Table 4.13) results, there is much variation in both data sets. This means a large

portion of LOC is added/deleted in every InnoDB release. On the other hand, there are smaller

number of code modifications done in every release of MyISAM when compared to InnoDB.

InnoDB files are more complex than MyISAM files (Tables 4.10 and 4.10). When comparing en-

ergy consumption and time spent, the MyISAM engine spent more time running the benchmark

queries, and therefore consumed more energy than InnoDB engine. Conversely, the InnoDB

engine has more LOC, LOCC and more complex files than MyISAM, which may indicate that

implementation of InnoDB into the system needs larger updates on the entire system rather

than small modifications/ updates for specific features in the software.

Although a benchmark [44] was run on both systems and its queries were the same, us-

ing MyISAM engine MYSQL versions consumed on average 5 times more energy than DB2

versions. Similarly, MYSQL using the InnoDB engine consumed, on average, 5.7 times more

energy than DB2 versions. Comparing complexity of source files indicates that DB2 files were,

on average, 8 times more complex than MYSQL files. Comparing LOC with LOCC in DB2,

a small portion of DB2 LOC is added/deleted on average across the releases and a large por-

tion LOC was maintained in every release. Similarly, in MyISAM around 6% of LOC was

added/deleted in every release. On the other hand, in InnoDB, a large portion, around 16%, of

LOC was added/deleted in every release. This may suggest that implementing and maintaining

the InnoDB storage engine required large updates on the entire system. On the other hand,

MyISAM is maintained with small modifications in every release.

51

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

Dataset Firefox:

Firefox is a popular open-source web-browser developed and published by the Mozilla Founda-

tion. The original dataset includes nightly builds provided by Mozilla on their FTP site with

the mozilla-1.9.2 main branch of Firefox 3.6 [81]. Generation of tests, measurements and collec-

tion of data details are given in Hindle’s studies [80, 81, 83]. Original dataset has nighlty builds

for 2009-2010 with versions ranging from 2.0 to 3.6, focusing mostly on 3.6 compilations for the

main Mozilla Firefox branch. In Hindle [80], it was mentioned that each nightly build was run

3 times and recorded. In this research analysis, the mean value of all 3 runs was computed and

used.

Table 4.14 shows minimum, maximum, mean, standard deviation and variance of metrics

collected from 366 nightly builds of Firefox. From the original data published by Hindle [79],

only the churn metric (LOCC) was obtained for 366 nightly builds. For LOC, CC and MCC,

all 366 nightlies’ source codes were mined from the Firefox source code repository (Mozilla-

Mercurial repositories) and loaded to the SciTool Understand metric extraction tool.

After reviewing the metric results, it was noticed that a large portion of LOC is maintained

with small modifications done in every nightly. By looking at the LOCC, it was noticed that

files are added/deleted every 4-6 weeks on average. This indicates that nightlies contain small

modifications/updates rather than large updates on the entire system. And big changes are

made every 4-6 weeks. Therefore, to avoid these small changes that may create a noise in

the dataset and to capture changes better in both energy consumption and metrics, the sub-

dataset was created. This new sub-dataset includes only 32 monthly builds including their

energy consumption, time spent, and code metric values.

For further notation clarification, the Firefox dataset with 366 nightlies is called “Firefox-1”

and Firefox dataset with only monthly builds is called “Firefox-2”.

The Firefox-1 dataset shows small variations between energy consumption and time spent

values across the versions compared to the DB2 and MYSQL datasets. It also shows very high

variance in LOC, LOCC, CC and MCC. Mean and median values of the energy consumption

and time spent values are very similar. Similarly, software metrics’ mean values are similar to

the median values, except LOCC. Mean of LOCC is higher that that of the median value of

LOCC.

Firefox-1 dataset shows many outliers. As was previously stated, in order to avoid outliers

Firefox-2 dataset was created as a sub-dataset. Descriptive statistics of the Firefox-2 dataset

are presented in Table 4.15.

52

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

Table 4.14: Firefox-1: Descriptive statistics of energy consumption, time spent and software
metrics, N = 366.

Metrics Min. Max. Mean Median SD Variance

Energy
Consumption (Wh)

1.51 2.86 2.41 2.47 0.169 2.88E-02

Time Spent (hour) 0.063 0.105 0.099 0.103 0.0063 4.87E-05

LOC 4951849 5698068 5440730 5353679 226810 5.14E+10
LOCC 0 407527 28764 115 93297 8.70E+09
CC 812387 915776 867200 848662 37757 1.43E+09
MCC 773327 869416 803909 822626 36832 1.35E+09

In the Firefox-1, the nightlies introduce noise into the dataset and it was hard to capture

energy consumption change associated with code metrics. Therefore, the Firefox-2 dataset were

used for prediction modelling purposes.

Table 4.15: Firefox-2: Descriptive statistics of energy consumption, time spent and software
metrics, N = 32.

Metrics Min. Max. Mean Median SD Variance

Energy
Consumption (Wh)

2.19 2.87 2.49 2.48 0.116 3.49E-03

Time Spend (hour) 0.089 0.105 0.103 0.102 0.0038 1.47E-05

LOC 4951849 5697871 5242529 5114790 249562 6.23E+10
LOCC 0 812169 306828 320879 196340 3.85E+10
CC 812387 911772 844478 830511 30658 9.39E+08
MCC 773332 865630 802705 790136 29487 8.69E+08

Table 4.15 shows that Firefox-1 and Firefox-2 have similar variations in metrics except

for EC. Firefox-2 dataset has less variation in EC than Firefox-1. LOCC values have higher

variation in the Firefox-2 dataset, which may indicate that 4-6 weekly builds contain large

updates on the entire system rather than small changes for specific feature in the software.

Firefox introduced a new release plan in 2011, which indicated that a new release was to

be introduced every 6 weeks instead of every year. However, the data from 2009 to 2010

showed short cycle Firefox builds that still include major enhancements similar to new release

enhancements.

53

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

Dataset VUZE:

Vuze is a popular Java based open-source BitTorrent client [9]. It is an end-to-end software

application for BitTorrent [178]. BitTorrent is a popular peer-to-peer file-sharing protocol often

blamed for much IP infringement, but it is also an e↵ective method of distribution for large legal

files, such as the Ubuntu Linux CDs [83]. In the original data from Hindle [80, 81, 83], there are

45 subversion revisions starting from revision number 26730 on September 14, 2011 to revision

number 26801 on December 15, 2011 (3 months); between those 2 revisions there are a total of

45 subversions of data available. From the original data, EC, time spent and LOCC metrics were

obtained. For LOC, CC and MCC metrics extraction, Vuze versions source codes were mined

from its code repository and loaded in to the metric extraction tool (Understand-SciTool).

Table 4.16 presents the descriptive statistics of the Vuze dataset. Descriptive statistics

include minimum, maximum, mean, standard deviation and variance of metrics collected from

45 subversions of Vuze.

Table 4.16: VUZE: Descriptive statistics of energy consumption, time spent, and software
metrics.

Metrics Min. Max. Mean Median SD Variance

Energy
Consumption (Wh)

3.12 3.77 3.57 3.58 0.161 0.025

Time Spend (hour) 0.137 0.166 0.158 0.159 7.293E-03 5.318E-05

LOC 2021000 2026269 2023390 2024137 1992.2 3.968E+06
LOCC 0 544 46.48 10 97.265 9460.61
CC 270434 271146 270778 270861 248 61546
MCC 267635 268347 267979 268062 248 61546

This dataset shows a very small variation in EC, time spent and all the metrics except LOC.

Moreover, mean and median values are similar across the releases.

Comparing all datasets, Vuze has less LOC than the others and does not show drastic

changes in code (LOCC), which indicates that subversions contain small changes or updates not

including major enhancements for specific features in the product. Moreover, total complexity

of source files in release was less than that of DB2, Firefox and MYSQL.

Dataset rTorrent:

rTorrent is a BitTorrent client, it runs on UNIX shells. Each rTorrent version works with a

dedicated library version, libTorrent. libTorrent is a feature, which is complete C++ Torrent

implementation and focuses on e�ciency and scalability. It runs on embedded devices and

54

Chapter 4. Data Collection Methodology and Dataset Construction 4.3. Descriptive Statistics

desktops. In the original data from Hindle [79] for rTorrent, 18 snapshot versions were tested

between rTorrent version 0.3.0 (2005) and rTorrent 0.8.9 (2011), and libTorrent versions between

0.6.4 (2005) and 0.13.0 (2011). rTorrent is the front-end client that makes calls to libTorrent

in order to download a torrent from a BitTorrent cloud of peers. rTorrent and libTorrent are

generally developed together and not all versions of libTorrent are compatible with rTorrent and

vice-versa. In the original publications by Hindle [80, 83, 79], there are 18 rTorrent version with

their respected libTorrent versions. He explained that, 18 libTorrent were linked to di↵erent

rTorrent versions and total 40 combinations of rTorrent-libTorrent pairs were built, tested and

measured. Similar to Firefox and Vuze, EC, time spent and LOCC metrics were obtained

from Hindle’s original data [79]. For LOC, CC and MCC metrics extraction, rTorrent and

libTorrent versions source codes were mined from their code repositories and loaded into the

metric extraction tool (Understand-SciTool).

In the original data, it was noticed that there were some irregularities in measurements such

as abnormal drop in energy consumption or time spent. These abnormalities were removed

before the data was used in this study. Table 4.17 shows minimum, maximum, mean, standard

deviation and variance of metrics collected from 40 combinations of rTorrent and libTorrent.

Table 4.17: Combination of rTorrent and libTorrent: Descriptive statistics of energy consump-
tion, time spent, and software metrics.

Metrics Min. Max. Mean Median SD Variance

Energy
Consumption (Wh)

3.60 3.82 2.37 3.73 0.30 8.834E-02

Time Spent (hour) 0.16 0.17 0.10 0.16 0.01 1.695E-04

LOC 62132 87268 72199.77 77857 8527.05 7.271E+07
LOCC 165 20410 7571.42 5861 5687.62 3.234E+07
CC 11024 15462 12809.06 13797 1477 2.183E+06
MCC 10665 14939 12406.03 13376 1434.47 2.057E+06

From Table 4.17 it can be seen that this dataset shows a small variation in EC and time

spent. Moreover, mean and median values are similar across the releases. On the other hand,

variations in software code metrics are high. Compared with the other analized products,

the combination of rTorrent and libTorrent datasets have the smallest LOC and LOCC, and

contained the least complex files, when compared to the other products. This small LOC and

LOCC may indicate that releases do not contain large updates on the entire system.

55

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

4.4 Correlation Analysis

To investigate the relations, Pearson correlations were computed to check whether metric pairs

had a statistical relation. Correlation significance (p-value) is given in each correlation table.

Significance is indicated by “*” and strength of the correlations are interpreted according to

Table 4.5. In this study, the significance level was set at 5% (↵ = 0.05).

Hypotheses Formulation: Hypotheses were formulated for each system analyzed. If the

p-value was less than or equal to a significance level (↵), then it is reported that the results

are statistically significant at level 0.05. The following hypotheses were tested to identify the

relationship between energy consumption and code metrics.

Although Hindle’s [83] study does not show correlation between LOC and energy consump-

tion, and lines of code change and energy consumption, he pointed out high p-values results

in his analysis. In order to make any statement about existence of relationships between LOC

and CC, LOCC and EC, there needs more data and more study. Thus, hypotheses H1 and H2

were produced below.

Hypothesis 1a (Null): Energy Consumption has no significant relation with Lines of Code.

Hypothesis 1b (Alternative): Energy Consumption has a significant positive relation with

Lines of Code.

Hypothesis 2a (Null): Energy Consumption has no significant relation with Lines of Code

Change.

Hypothesis 2b (Alternative): Energy Consumption has a significant relation with Lines of

Code Change.

Code complexity estimates complexity of execution paths. There may exist a relation be-

tween complexity of paths and energy consumption; on the other hand, there may exist a

simple code path (e.g., a non-complex for-loop with a large number of iterations) consuming

most of the computational resources and, in turn, energy. Therefore, hypotheses H3 and H4

were formulated below.

Hypothesis 3a (Null): Energy Consumption has no significant relation with McCabe Com-

plexity.

Hypothesis 3b (Alternative): Energy Consumption has a significant relation with McCabe

Complexity.

Hypothesis 4a (Null): Energy Consumption has no significant relation with McCabe Com-

plexity.

Hypothesis 4b (Alternative): Energy Consumption has a significant relation with McCabe

Modified Complexity.

56

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

For all datasets, the statistics associated with p-values are given in section 4.4.1.

4.4.1 Dataset: DB2 Correlation Analysis

Pearson correlation tests were run using R statistical software version 3.2.4 (2016-03-10). The

reasons for using R are for its simplicity of language of implementation and its readily available

functions that can be used within its library. The R Stats Package [146] was used to compute

correlations.

Results of the correlation test for metric pairs are presented in Table 4.18 and a panel cor-

relation matrix is given in Figure 4.12. Short abbreviations are mapped to metric explanations

in Table 4.1. The interpretation is given in Table 4.5.

Table 4.18: DB2: Pearson’s correlation coe�cients, r, and significance (p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.960

(<2.2e-16)
-0.912

(5.547e-12)
-0.307
(0.112)

-0.911
(6.593e-12)

-0.909
(8.515e-12)

TS
-0.949

(3.616e-15)
-0.209
(0.284)

-0.948
(5.63e-15)

-0.947
(6.755e-15)

LOC
0.169
(0.388)

0.998
(<2.2e-16)

0.998
(<2.2e-16)

LOCC
0.165
(0.398)

0.164
(0.404)

CC
0.999

(<2.2e-16)

From Table 4.18, EC-TS, EC-LOC, EC-CC, EC-MCC, TS-LOC, TS-CC, TC-MCC, LOC-

CC, LOC-MCC, CC-MCC pairs have very strong correlations with coe�cients greater than

zero and p-value<0.05. Correlations between metrics are also presented in Figure 4.12. The

upper triangle region shows correlation coe�cients with “*” indicating a significant p-value.

Strong relations (p-value<0.05) were considered while forming linear regression-based models in

Chapter 5 5. EC-TS is expected to have very strong correlations because, when time increases,

energy consumption increases. This strong correlation was found in Miranskyy et al. [129].

CC-MCC is also expected to have very strong correlation since MCC is derived from CC. As

a result of the correlation analysis of DB2, energy and time are governed mainly by LOC, CC

and MCC. On the other hand, LOCC has no e↵ect.

From Figure 4.4 and Table 4.12, it is seen that the observations are grouped into three

clusters. This clustered data structure is derived from di↵erent versions of DB2 data. The first

cluster contains v.9.5 and its minor version data. The second cluster contains v.10.1 and its

57

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

EC

0.070 0.080 0.090

0.96

−0.92

0e+00 2e+06

−0.31 −0.92

1000000 1200000 1400000

4.
5

5.
0

5.
5

6.
0

−0.91

0.
07

0
0.

08
0

0.
09

0
TS −0.95

−0.21 −0.95

−0.95

LOC 0.17 1.00

1.
0e

+0
7

1.
4e

+0
7

1.00

0e
+0

0
2e

+0
6

LOCC 0.17 0.16

CC

10
00

00
0

13
00

00
0

1.00

4.5 5.0 5.5 6.0

10
00

00
0

13
00

00
0

1.0e+07 1.3e+07 1.6e+07 1000000 1200000 1400000

MCC

DB2 Panel Correlation Matrix

Figure 4.12: DB2 panel correlation matrix for energy consumption, time spent and software
metrics. The lower triangle shows scatter plots and smoothed line. The upper triangle region
shows the Pearson correlation coe�cient and significance indicated by “*” symbols: ***0.0001,
** 0.001, *0.01, .0.05.

minor versions. The third cluster contains version 10.5, its minor versions and v.11.1. Cameron

[29] suggested that failure to analyze within-cluster correlation can lead to misleadingly small

standard errors, and consequent mislead to large correlation coe�cients and low p-values. In

order to avoid misleading correlation coe�cients, within-cluster correlations were also analysed.

DB2 Group Correlation Analysis

DB2 Version 9.5 Correlation Analysis: Table 4.19 presents DB2 version 9.5 metric

pairs correlations.

Table 4.19: DB2 version 9.5: Pearson’s correlation coef-
ficients, r, and significance (p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.76

(0.010)
0.60

(0.056)
0.13

(0.072)
0.61
(0.05)

0.61
(0.05)

TS
0.33
(0.34)

0.38
(0.28)

0.36
(0.31)

0.36
(0.31)

LOC
-0.56
(0.09)

0.99
(<2.2e-16)

0.99
(<2.2e-16)

LOCC
-0.55

(0.102)
-0.55

(0.102)

CC
0.99

(<2.2e-16)

Table 4.20: DB2 version 10.1: Pearson’s correlation co-
e�cients, r, and significance (p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.73
(0.06)

-0.67
(0.06)

0.25
(0.58)

-0.71
(0.072)

-0.71
(0.072)

TS
-0.27
(0.56)

-0.01
(0.97)

-0.29
(0.53)

-0.29
(0.53)

LOC
-0.82
(0.02)

0.99
(<2.2e-16)

0.99
(<2.2e-16)

LOCC
-0.78

(0.036)
-0.78

(0.036)

CC
0.99

(<2.2e-16)

58

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

From the Table 4.19, strong correlations with coe�cients greater than 0.70 are EC-TS,

CC-MCC and moderate correlations with coe�cients greater than 0.50 are EC-LOC, EC-CC,

EC-MCC, LOC-LOCC, LOC-CC, LOCC-MCC and LOC-MCC. Correlations between metric

pairs EC-TS, EC-CC, EC-MCC are significant at 0.05 (p <0.05). Similar correlations pairs

were obtained from v.9.5 and from all versions (Table 4.18). From all DB2 versions of data,

EC-LOC, EC-CC, and EC-MCC pairs have very strong positive correlations. On the other

hand, from version 9.5, these pairs have positive moderate correlations.

DB2 Version 10.1 Correlation Analysis: Table 4.20 presents DB2 version 10.1 metric

pairs correlations. From Table 4.19, strong correlations with coe�cients greater than 0.70 are

EC-TS, EC-CC, EC-MCC, LOC-LOCC, LOC-CC, LOC-MCC, LOCC-CC, LOCC-MCC, and

CC-MCC, and moderate correlations with coe�cients greater than 0.50 are EC-LOC, EC-CC,

EC-MCC. Similar to all DB2 versions of data, correlations (Table 4.18), from version 10.1 data,

EC-LOC, EC-CC, and EC-MCC pairs have strong negative correlations.

DB2 Version 10.5 and 11.1 Correlation Analysis: Table 4.21 shows DB2 version

10.5 and version 11.1 metric pairs correlations.

Table 4.21: DB2 version 10.5 and 11.1: Pearson’s correlation coe�cients, r, and significance
(p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.71
(0.02)

-0.67
(0.03)

-0.64
(0.04)

-0.63
(0.05)

-0.62
(0.05)

TS
-0.60
(0.06)

-0.45
(0.19)

-0.65
(0.04)

-0.66
(0.04)

LOC
0.89

(0.0005)
0.96

(<2.2e-16)
0.95

(<2.2e-16)

LOCC
0.88

(0.0008)
0.87

(0.001)

CC
0.99

(<2.2e-16)

From Table 4.21, strong correlations with coe�cients greater than 0.70 are EC-TS, LOC-

LOCC, LOC-CC, LOC-MCC, LOCC-CC, LOCC-MCC, and CC-MCC, and moderate correla-

tions with coe�cients greater than 0.50 are EC-LOC, EC-LOCC, EC-CC, EC-MCC, TS-LOC,

TS-CC, and TS-MCC. Similar to all DB2 versions of data, correlations (Table 4.18), from

version 10.5 and version 11.1 data, EC-LOC, EC-CC, and EC-MCC pairs have negative corre-

lations.

59

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

4.4.2 Dataset: MYSQL Correlation Analysis

Table 4.22 and Table 4.23 present correlations between metrics of MYSQL using only MYISAM

directories and only InnoDB directories, respectively. Moreover, Table 4.24 shows correlations

between metric pairs, which are from all systems and only MyISAM directory files (which means

without InnoDB directory files). Table 4.25 shows correlations between metric pairs, which are

from all MYSQL system files and only InnoDB directory files (which means without MyISAM

directory files).

Table 4.22: MYSQL-MyISAM only engine directories
Pearson’s correlation coe�cients and significance (p-
value) in brackets.

TS LOC LOCC CC MCC

EC
0.999

(<2.2e-16)
-0.315
(0.046)

-0.159
(0.325)

0.232
(0.149)

0.120
(0.461)

TS
-0.323
(0.042)

-0.157
(0.333)

0.232
(0.149)

0.120
(0.459)

LOC
-0.085
(0.598)

0.552
(0.00021)

0.589
(6.376e-05)

LOCC
-0.336
(0.033)

-0.295
(0.063)

CC
0.986

(<2.2e-16)

Table 4.23: MYSQL-InnoDB only engine directories
Pearson’s correlation coe�cients and significance (p-
value) in brackets.

TS LOC LOCC CC MCC

EC
0.998

(<2.2e-16)
0.250
(0.119)

0.057
(0.722)

0.178
(0.269)

0.173
(0.287)

TS
0.233
(0.147)

0.065
(0.688)

0.161
(0.320)

0.156
(0.336)

LOC
-0.107
(0.509)

0.992
(<2.2e-16)

0.994
(6.376e-05)

LOCC
-0.001

(0.9938)
-0.007
(0.968)

CC
0.998

(<2.2e-16)

Table 4.24: MYSQL-MyISAM and all system file direc-
tories Pearson’s correlation coe�cients and significance
(p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.999

(<2.2e-16)
0.843

(1.669e-11)
-0.003
(0.982)

0.287
(0.077)

0.314
(0.051)

TS
0.846

(1.107e-11)
-0.008
(0.959)

0.289
(0.074)

0.316
(0.049)

LOC
-0.112
(0.495)

0.651
(7.143e-06)

0.669
(3.083e-06)

LOCC
-0.116
(0.482)

-0.117
(0.479)

CC
0.999

(<2.2e-16)

Table 4.25: MYSQL-InnoDB and all system file direc-
tories Pearson’s correlation coe�cients and significance
(p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.998

(<2.2e-16)
0.451
(0.003)

-0.030
(0.855)

0.752
(3.387e-08)

0.748
(4.427e-08)

TS
0.428
(0.006)

-0.031
(0.851)

0.733
(1.103e-07)

0.729
(1.439e-07)

LOC
-0.118
(0.473)

0.732
(1.183e-07)

0.737
(8.379e-08)

LOCC
-0.145
(0.377)

-0.147
(0.372)

CC
0.999

(<2.2e-16)

When taking into account MyISAM directory files and all MYSQL system files, except

InnoDB directory files (Table 4.24), very strong correlations were obtained between EC-TS, CC-

MCC, strong correlations were obtained between EC-LOC, TS-LOC, and moderate correlations

with coe�cients greater than 0.50 were obtained between LOC-CC, LOC-MCC metric pairs.

When taking into account InnoDB directory files and all system files, except MyISAM directory

files (Table 4.25), similar to Table 4.24, very strong correlations were obtained in EC-TS and

CC-MCC metric pairs. Additionally, strong correlations were obtained in EC-CC, EC-MCC,

TS-CC, TS-MCC, LOC-CC, LOC-MCC, LOC-CC and LOC-MCC metric pairs. In contrast to

Table 4.24, correlations were obtained between EC-LOC and TS-LOC at 0.05 level.

Figure 4.13 shows MYSQL panel correlation matrices for energy consumption, time spent

60

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

and software metrics. These relations were considered when building the regression model.

EC

0.20 0.24 0.28

1.00

0.84

0 400000 800000

−0.0038

0.29
.

110000 130000

24
28

32

0.31
.

0.
20

0.
24

0.
28

TS 0.85

−0.0084

0.29
.

0.32
*

LOC −0.11

0.65

80
00

00
11

00
00

0

0.67

0
40

00
00

10
00

00
0

LOCC −0.12

−0.12

CC

12
00

00
15

00
00

1.00

24 26 28 30 32 34

11
00

00
13

00
00

800000 1000000 1200000 120000 140000 160000

MCC

Mysql: MyISAM only files Panel Correlation Matrix

(a) MYSQL without InnoDB engine directories

panel correlation matrix

EC

0.14 0.16 0.18 0.20

1.00

0.45
**

0 400000 1000000

−0.03

0.75

120000 140000 160000

16
20

24

0.75

0.
14

0.
18 TS 0.43

**
−0.031

0.73

0.73

LOC −0.12

0.73

80
00

00
11

00
00

0

0.74

0
60

00
00 LOCC −0.15

−0.15

CC

13
00

00
16

00
00

1.00

16 18 20 22 24

12
00

00
15

00
00

800000 1100000 1400000 130000 150000 170000

MCC

MYSQL: InnoDB Panel Correlation Matrix

(b) MYSQL without MyISAM engine directories

panel correlation matrix

Figure 4.13: MYSQL panel correlation matrix for energy consumption, time spent and software
metrics. Diagonal shows metric name. Lower triangle shows scatter plots and smoothed line.
Upper triangle region shows Pearson correlation coe�cient and significance indicating with
symbols: ***0.0001, ** 0.001, *0.01, .0.05.

When considering only storage engine files, none of the correlations are strong enough to

suggest a relationship except EC-TS and CC-MCC. EC-TS and CC-MCC are expected to

have strong correlations because of their high dependencies. When considering each engine file

together with all system files such as MyISAM engine files and all MYSQL system files, similar

relations to the DB2 dataset were obtained. But, the di↵erence is that in the DB2 dataset,

EC-LOC, EC-CC, EC-MCC, TS-LOC, TS-CC and TS-MCC relations are on the negative side,

but in the MYSQL dataset, these relations were on positive side.

4.4.3 Dataset: Firefox Correlation Analysis

Table 4.26 and Table 4.27 present correlations between metrics in the Firefox-1 and Firefox-2

datasets, respectively. When considering all nightly builds (Firefox-1), only EC-TS, LOC-

CC, LOC-MCC and CC-MCC pairs have very strong correlations. When considering only

monthly builds (Firefox-2), very strong correlation pairs are obtained as in dataset Firefox-

1. Additionally, EC-LOC, EC-LOCC, EC-CC, EC-MCC, LOCC-CC and LOCC-MCC pair

correlations are pronounced at 0.05 significance. But, these correlation coe�cients are weak

(correlations coe�cients lie between 0.30-0.50).

Figure 4.14 (a)-(b) shows Firefox-1 and Firefox-2 panel correlation matrices. It can be

seen that when the Firefox data is less noisy, relationships are more pronounced. Therefore,

61

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

Table 4.26: Firefox-1 Pearson’s correlation coe�cients
and significance (p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.941

(<2.2e-16)
-0.125
(0.016)

0.113
(0.031)

-0.096
(0.064)

-0.093
(0.076)

TS
-0.127
(0.015)

0.105
(0.044)

-0.106
(0.042)

-0.103
(0.049)

LOC
-0.198

(0.0001)
0.975

(<2.2e-16)
0.972

(<2.2e-16)

LOCC
-0.130
(0.013)

-0.127
(0.033)

CC
0.999

(<2.2e-16)

Table 4.27: Firefox-2 Pearson’s correlation coe�cients
and significance (p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.718

(5.414e-06)
-0.449
(0.011)

-0.404
(0.024)

-0.435
(0.014)

-0.423
(0.017)

TS
-0.319
(0.080)

-0.243
(0.187)

-0.341
(0.061)

-0.331
(0.069)

LOC
0.503
(0.003)

0.954
(<2.2e-16)

0.934
(1.591e-14)

LOCC
0.484
(0.005)

0.478
(0.006)

CC
0.998

(<2.2e-16)

EC

0.07 0.08 0.09 0.10

0.94

−0.13
*

0e+00 2e+05 4e+05

0.11
*

−0.097
.

780000 820000 860000

1.
6

2.
0

2.
4

2.
8

−0.093
.

0.
07

0.
09 TS −0.13

*
0.11

*
−0.11

*
−0.10

*

LOC −0.20

0.98

50
00
00
0

54
00
00
0

0.97

0e
+0
0

2e
+0
5

4e
+0
5

LOCC −0.13
*

−0.11
*

CC

82
00
00

88
00
00

1.00

1.6 2.0 2.4 2.8

78
00
00

84
00
00

5000000 5400000 820000 860000 900000

MCC

Firefox−1 Panel Correlation Matrix

(a) Firefox-1 Panel Correlation Matrix

EC

0.090 0.095 0.100 0.105

0.72

−0.45
*

0e+00 4e+05 8e+05

−0.40
*

−0.44
*

780000 820000 860000

2.
2

2.
4

2.
6

2.
8

−0.42
*

0.
09

0
0.

10
0

TS −0.32
.

−0.24

−0.34
.

−0.33
.

LOC 0.50
**

0.95

50
00

00
0

54
00

00
0

0.93

0e
+0

0
4e

+0
5

8e
+0

5
LOCC 0.48

**
0.48

**

CC

82
00

00
88

00
00

1.00

2.2 2.4 2.6 2.8

78
00

00
84

00
00

5000000 5400000 820000 860000 900000

MCC

Firefox−2 Panel Correlation Matrix

(b) Firefox-2 Panel Correlation Matrix

Figure 4.14: Firefox panel correlation matrix for energy consumption, time spent and software
metrics. Lower triangle shows scatter plots and smoothed line. Upper triangle region shows
Pearson correlation coe�cient and significance indicating with symbols: ***0.0001, ** 0.001,
*0.01, .0.05.

Firefox-2 dataset helps to see the relations between metrics. This can also be seen in Figure

4.14 (a)-(b) scatterplots region. For this reason, only Firefox-2 dataset results were considered

during model construction. In later sections,“Firefox” refers to the Firefox-2 dataset.

4.4.4 Dataset: VUZE Correlation Analysis

From Table 4.28, except between EC-TS, LOC-CC, LOC-MCC and CC-MCC (with the corre-

lation coe�cient being 0.9), none of the correlations are strong enough to suggest a relation.

Scatter plots in Figure 4.15 show relationships between metric pairs. The Vuze dataset con-

tains only subversion revisions. Descriptive statistics in Table 4.16 also show that unlike DB2,

MYSQL, and Firefox datasets, the Vuze dataset does not have a large amount of LOC or code

changes (LOCC) in between subversions. Therefore, in this dataset, it is hard to capture any

62

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

relationship between EC and software code metrics.

Table 4.28: Vuze Pearson’s correlation coe�cients and significance (p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.997

(<2.2e-16)
-0.012
(0.935)

0.024
(0.876)

0.0005
(0.997)

0.0005
(0.997)

TS
-0.009
(0.949)

0.027
(0.858)

0.001
(0.994)

0.001
(0.994)

LOC
0.179
(0.237)

0.995
(<2.2e-16)

0.995
(1.591e-14)

LOCC
0.176
(0.247)

0.176
(0.247)

CC
0.999

(<2.2e-16)

EC

0.140 0.150 0.160

1.00

−0.012

0 100 300 500

0.024 0.00054

267700 268000 268300

3.
1

3.
3

3.
5

3.
7

0.00054

0.
14

0
0.

15
5

TS −0.0097 0.027 0.001 0.001

LOC 0.18 1.00

20
21

00
0

20
24

00
0

1.00

0
20

0
40

0

LOCC 0.18 0.18

CC

27
05

00
27

09
00

1.00

3.1 3.3 3.5 3.7

26
77

00
26

81
00

2021000 2023000 2025000 270500 270800 271100

MCC

Vuze Panel Correlation Matrix

Figure 4.15: Vuze panel correlation matrix for energy consumption, time spent and software
metrics. Lower triangle shows scatter plots and smoothed line. Upper triangle region shows
Pearson correlation coe�cient and significance indicating with symbols: ***0, ** 0.001, *0.01,
.0.05.

63

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

4.4.5 Dataset: rTorrent Correlation Analysis

The last dataset analyzed was rTorrent. The rTorent dataset was constructed as three datasets.

The first dataset includes rTorrent versions metrics and the second dataset includes libTorrent

version metrics. Table 4.29 presents correlations which were obtained from only rTorrent ver-

sions. Table 4.30 presents correlations obtained only libTorrent versions. As explained in section

4.3.2, rTorrent dataset was analized and abnormalities were removed. The third dataset was

constructed from the combination of rTorrent version and its respected libTorrent version. Ta-

ble 4.31 shows correlations obtained from the third dataset containing metrics calculated by

summing rTorrent versions metrics and their respected libTorrent version metrics.

TS LOC LOCC CC MCC

EC
0.999

(<2.2e-16)
0.154
(0.539)

0.522
(0.026)

0.204
(0.416)

0.216
(0.388)

TS
0.165
(0.512)

0.516
(0.028)

0.216
(0.389)

0.228
(0.362)

LOC
-0.088
(0.729)

0.978
(2.14e-12)

0.981
(7.76e-13)

LOCC
-0.079
(0.753)

-0.059
(0.815)

CC
0.998

(<2.2e-16)

Table 4.29: rTorrent Pearson’s correlation coe�cients
and significance (p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.999

(<2.2e-16)
0.099
(0.693)

-0.006
(0.979)

0.069
(0.782)

0.070
(0.781)

TS
0.096
(0.703)

-0.009
(0.969)

0.067
(0.790)

0.068
(0.789)

LOC
-0.487
(0.040)

0.991
(9.591e-16)

0.991
(2.418e-15)

LOCC
-0.489
(0.039)

-0.491
(0.038)

CC
0.999

(<2.2e-16)

Table 4.30: libTorrent Pearson’s correlation coe�cients
and significance (p-values) in brackets.

From Table 4.29 except EC-TS, LOC-CC, LOC-MCC and CC-MCC, the only correlated

pairs are EC-LOCC and TS-LOCC with a moderate correlation coe�cient of 0.52. From Table

4.30, except for the very strong correlated pairs EC-TS, LOC-CC, LOC-MCC and CC-MCC,

there are no pairs that show significant correlation.

Table 4.31: Torrent (sum of rTorrent and libTorrent) Pearson’s correlation coe�cients and
significance (p-values) in brackets.

TS LOC LOCC CC MCC

EC
0.778

(3.93e-09)
0.417
(0.007)

-0.186
(0.249)

0.419
(0.007)

0.423
(0.007)

TS
0.263
(0.101)

-0.019
(0.904)

0.252
(0.116)

0.258
(0.107)

LOC
-0.168
(0.297)

0.998
(<2.2e-16)

0.998
(<2.2e-16)

LOCC
-0.173
(0.286)

-0.169
(0.295)

CC
0.999

(<2.2e-16)

From Table 4.31,in addition to very strongly correlated pairs, which are EC-TS, LOC-

64

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

CC, LOC-MCC and CC-MCC, new correlation pairs of EC-LOC, EC-CC and EC-MCC were

obtained with a significance of 0.01 with correlation coe�cients being 0.417, 0.419 and 0.423,

respectively. These results are presented in the panel correlation matrix Figure 4.16.

EC

0.162 0.164 0.166 0.168

0.78

0.42
**

0 10000 20000 30000

−0.19

0.42
**

6000 10000 14000

0.
00

32
0.

00
35

0.
00

38

0.42
**

0.
16

2
0.

16
6

TS 0.26

−0.02

0.25

0.26

LOC −0.17

1.00

30
00

0
60

00
0

90
00

0

1.00

0
10

00
0

25
00

0

LOCC −0.17

−0.17

CC

60
00

12
00

0

1.00

0.0032 0.0035 0.0038

60
00

12
00

0

30000 50000 70000 90000 6000 10000 14000

MCC

BitTorrent Panel Correlation Matrix

Figure 4.16: Torrent (sum of rTorrent and libTorrent) panel correlation matrix for energy con-
sumption, time spent and software metrics. Diagonal shows metric name. Lower triangle shows
scatter plots and smoothed line. Upper triangle region shows Pearson correlation coe�cient
and significance indicating with symbols: ***0, ** 0.001, *0.01, .0.05.

In Chapter 5, model construction, the rTorrent dataset refers to the third dataset, which

includes the sum of rTorrent and libTorrent metric values.

4.4.6 Hypothesis Testing and Results

Hypothesis 1: Except in the Vuze dataset, energy consumption has moderate to strong

correlations with LOC at a significance level of 0.05 in all datasets. In datasets DB2 version

9.5, rTorrent, and MySQL, this relation is in positive direction. Thus, H1b is accepted for DB2

version 9.5, rTorrent, and MySQL datasets. On the other hand, in dataset DB2 version 10.1,

version 10.5, Firefox, correlation between EC and LOC is in a negative direction. Therefore,

H1b is rejected and H1a is accepted for DB2 version 10.1, version 10.5, and Firefox.

EC improvement/deterioration seen in DB2 version 10.1, version 11.1 and Firefox datasets

is probably due to local code optimization that do not alter EC, but the change in the EC is in-

cidental. For example, addition of new features that change the LOC, may improve EC. In each

65

Chapter 4. Data Collection Methodology and Dataset Construction 4.4. Correlation Analysis

major release, new features are added, which increase LOC, and some local code optimizations

are made, which result in decreasing EC.

Hypothesis 2: Except in DB2 v.10.5 and the v.11.1 dataset, energy consumption shows

no correlation with lines of code change at a significance level of 0.05 in all datasets. There

is su�cient evidence at the 0.05 level to conclude that there is no significant relationship in

between energy consumption and lines of code change. Therefore, H2b is rejected and H2a is

accepted for all dataset.

Hypothesis 3: Except in the Vuze dataset, energy consumption has moderate to strong

correlations with McCabe cyclomatic complexity at a significance level of 0.05 in all datasets.

In datasets DB2 version 9.5, rTorrent, and MySQL the relation is in a positive direction. On

the other hand, in dataset DB2 version 10.1, version 10.5, Firefox, correlation is in a negative

direction. Thus, H3b is accepted for all datasets except Vuze.

Hypothesis 4: Except in Vuze dataset, energy consumption has moderate to strong corre-

lations with modified McCabe cyclomatic complexity at a significant level of 0.05 in all datasets.

In datasets DB2 version 9.5, rTorrent, and MySQL the relation is in a positive direction. On

the other hand, in dataset DB2 version 10.1, version 10.5, Firefox, correlation is in a negative

direction. Thus, H4b is accepted for all datasets except Vuze.

In the Firefox data, when outliers were removed and only monthly builds with large code

changes (LOCC) were considered, EC-LOC and EC-LOCC pair correlations were pronounced

at the 0.05 significance level. The results of Firefox reveals EC-LOC, EC-CC, EC-MCC, LOCC-

CC and LOCC-MCC metric pairs correlations at 0.05 significance level. In the rTorrent data,

when rTorrent versions and their respected libTorrent version metric values were summed,

EC-LOC, EC-CC and EC-MCC correlations were obtained.

Therefore, when noise is removed, correlations are significant enough to suggest relations

between EC-LOC, EC-CC and EC-MCC metric pairs.

66

Chapter 5

Proposed Prediction Models

5.1 Proposed Models

Based on the descriptive analysis of datasets in Chapter 4, fixed/random e↵ects regression

model were built for dataset DB2. The classical linear regression models were built for each

dataset. The explanation for using linear regression model can be found in Chapter 3. All

models were implemented in R. According to the correlation analysis results, one and/or multi-

variable linear regression models are presented for each dataset in this chapter.

In the model construction, all software metrics were used as predictive variables to predict

energy consumption (response variable). Since MCC is derived from CC, one of them was used

in the model according to the correlation results with EC in Chapter 4.

5.1.1 Designing the Regression Model

Model assessment and performance comparisons are given in Chapter 3. The steps used in this

study were adopted from Alpaydin [7], Bishop [20], and Montgomery [132].

General steps were adopted from Alpaydin [7]:

• Aim: to compare di↵erent one- and/or multi-variable regression models on five di↵erent

datasets. Data collection and processing are explained in Chapter 4.

• Selecting the response variable: Response variable is energy consumption.

• Choosing factors and levels: The factors are input variables, standardization of datasets,

and fixed learning algorithm. The input variables are software code metrics: LOC, LOCC,

CC, and MCC. Standardization technique is z-score and algorithm is regression.

67

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

• Choosing design: Generally, given dataset, some part is used as the train set and the rest

is used for testing. How this division is done is important. In practice, 70-30% or 60-40%

are commonly used configurations. In this study, 70% is used for training and 30% is used

for testing the algorithm. Replication is also important. Replication number depends on

the dataset size. In this study, 100 replications of partitioning training-testing data were

used.

• Performing the prediction: Predictions were conducted using R version 3.2.4, linear model

toolbox from the R Stats Package [146].

• Analyzing the results: Performance assessments were done using a variety of measures

given in Chapter 2.

In prediction models, a learner is targeted as having the highest generalization accuracy

and minimal complexity (so that its implementation is cheap in time) and is robust. In this

study the learner is a linear regression, details are given in Chapter 2. A schematic description

of general learning components are illustrated in Figure 5.1. This process was done for each

dataset. Learning system and data processing were replicated 100 times.

Figure 5.1: General Steps of Model Assessment and Performance Comparisons.

The model construction follows the R script-1 (see Appendix B) and R script-2 (see Ap-

pendix C). The model assessment and performance comparisons were conducted as follows:

68

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

• Step-1: Z-score standardization were applied for each dataset.

• Step-2: The dataset was divided into 70% training and 30% testing dataset.

• Step-3: Linear model was first trained on a training set, and tested on a testing set.

• Step-4: Performance measurements were computed and results were obtained. Then the

process were repeated 100 times starting from Step-2 for di↵erent training and testing

partition in the same dataset.

Checking for Regression Assumptions: Even though p-values and R

2 were used, the

results of regression analysis must be checked to ensure they satisfy the necessary regression

assumptions. The regression assumptions [117] are:

1. The parameters of the linear regression model must be numeric and linear.

2. The mean of the residuals must be close to 0.

3. For two-variable models, there must be no strong multicollinearity between the predictors.

4. The variance in the predictors must be larger than 0.

5. The residuals must be normally or approximately normally distributed.

The normal quantile-quantile plot (Q-Q plot) is the most commonly used and e↵ective

diagnostic tool for checking normality of the residuals. To support the graphical methods,

the numerical methods and formal normality tests should be performed before making any

conclusion about the normality of the data [159]. The Shapiro-Wilk normality test was used

[169] to check the normality of the residuals in each model. The Shapiro-Wilk normality test is

more e↵ective and sensitive in small sample sizes (n < 50) [169, 159]. Therefore, it is suitable for

all datasets in this study. The test result is given with W statistics and p-value. If the p-value

is less than alpha level (0.05), then there is evidence that the distribution is not normal. On

the contrary, if the p-value is greater than the alpha level, then error distribution is normal.

The value of W statistic lies between zero and one. Small values of W lead to the rejection of

normality, whereas a value of one indicates normality of the data [159].

All assumptions and Shapiro-Wilk results were checked for each dataset models and the

residuals against both the predicted values and the explanatory variables were plotted. The

assumption results are presented after the models.

69

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

5.1.2 Model Construction

According to the descriptive analysis results given in Chapter 4, linear fixed/random e↵ects re-

gression model were constructed for DB2 dataset, and single- and/or multi-variable regression

models were constructed for DB2 version group datasets, MYSQL, Firefox, Vuze and rTorrent

datasets. The models, their significance and their performance assessments are given in their

related dataset subsections. Before performing prediction, z-score standardization were per-

formed. The Standardization was performed before testing and training split on single data,

and it is performed in each data set first and then union is taken before the prediction takes

place. Z-score standardizes the variables, so that they are centered around 0 with a standard

deviation of 1. It aims to re-express all variables similar in scale, therefore it may make it easier

to compare regression coe�cients. It is important when comparing measurements that have

di↵erent scales, but it is also a general requirement for many learning algorithms. Since the in-

put variables are on di↵erent scales, the standardization needs to be done before the prediction.

With z-score standardization all the variables were rescaled so that they have the properties of

a standard normal distribution with µ = 0 and � = 1 where µ is the mean (average) and � is

the standard deviation from the mean. Z-scores of the variables are calculated as follows [117]:

z-score =
x� µ

�

, (5.1)

�

0
= � ⇤ �

x

�

y

, (5.2)

where �

x

standard deviation of x independent variable, and �

y

standard deviation of y

dependent variable. In order to get standardized coe�cients, replace every variable (y and all

the x) in the regression with its standardized equivalent (from equation 5.2, subtract the mean

o↵ every observation, and divide that by the standard deviation), and then run the regression

model. When standardized variables are used in regression, coe�cients are standardized regres-

sion coe�cients. Standard regression coe�cients come from fitting the equation to standardized

variables. Similarly, unstandardized regression coe�cients come from fitting the equation to

the unstandardized variables. It is not coe�cients that get standardized, but variables [61].

Linear Regression with Single Predictor Variable.

Linear regression models were constructed using a single predictor variable for predicting the

response variable. These models are formed based on the results of correlations given in Chapter

4. In Datasets DB2, MYSQL, and Firefox correlations were strong to moderate and relations

were successfully defined. On the other hand, in the dataset Vuze and rTorrent, most of the

70

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

pair correlations were moderate to weak. However, since their p-values are less than 0.05, they

were considered when constructing models.

Single predictor linear regression is represented as the following model:

Y = ↵+ �X + ✏, (5.3)

where Y is the response variable; X is the predictor (or independent) variable; ↵ and � are

the regression coe�cients.

Linear Regression with Multiple Predictor Variable.

Linear regression models were constructed using two predictor variables for predicting the re-

sponse variable. These models were formed based on the results of correlations given in Chapter

4. Two predictor variables were chosen for the model as independent variables a↵ecting the final

model. In order to avoid multicollinearity in three and more predictor variables and overfit-

ting, linear regression model with two independent variables were proposed. Highly correlated

variables were not feed into the same model.

Y = ↵+ �1X1 + �2X2 + ✏, (5.4)

where Y is the response variable; X1 and X2 are the predictor (or independent) variables;

and ↵, �1, and �2 are the regression coe�cients.

Linear Regression with Fixed/Random E↵ects.

Fixed/Random e↵ects models are extensions of linear regression models. Using fixed/random

e↵ect model, individual di↵erences of groups can be modelled easily. The importance of this

model is varying coe�cients (varying intercept and slope) [62].

The form of one random e↵ect model is:

Y

ij

= ↵+ �

j

X

ij

+ b

i

+ ✏

ij

, (5.5)

where where Y is the response variable; X are the predictor (or independent) variables; �
j

is e↵ect of predictor variables in each dataset; and b

i

(i=1, 2, 3) is e↵ect of version (random).

In DB2 dataset, there is noticeable variation between versions (see Figure 4.4), and this

variation should be accounted for in a model. In order to account for by-version variation,

random e↵ect was added to the model in overall DB2 regression model. This modelling approach

can be considered a linear regression where intercepts, and possibly slopes, are allowed to vary

71

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

by group and includes a categorical input variable representing group membership [62].

It is important to mention that all one- and multi-variable models and fixed/random e↵ect

models were run using standardized variables. The standardization was done by computing z-

scores for each of dependent and independent variables. Therefore, the model coe�cients (slope

of regression lines), which were given in the datasets model result sections were standardized

coe�cients.

5.1.3 Models and Results for Dataset: DB2

Fixed/Random E↵ect Model for DB2 Dataset

In Chapter 4, section 4.3.1, it was observed that the DB2 data had a group structure where

each version formed a group in the dataset. In grouped data structure, members of each group

had common characteristics within groups [26, 15]. In DB2 data, each group consisted of major

version and its corresponding minor versions. A common challenge in grouped data is within-

group observation dependence [158, 175]. That is, members in the same group tend to be

alike and share similar attitudes and behaviors relative to members from other groups. There

may be unobserved group characteristics that a↵ect the outcomes of the each group. This may

result in biased estimates of parameter standard errors (e.g., regression coe�cient), and possible

substantive mistakes when interpreting the importance of one or another predictor variable.

One approach to modelling grouped data is using the fixed/random e↵ect model approach

[26]. Another approach is to analyze at the level of the individual group [75].

In order to consider group characteristics, fixed/random e↵ect linear regression model is pro-

posed for DB2 data. In this modeling approach, one or more e↵ects are added to the model vari-

ables, which are considered as fixed and/or random e↵ects. These e↵ects essentially give struc-

ture to the error term ✏ and characterize individual group variation [26, 15]. This modelling ap-

proach has been widely used in data analysis of various domains [76, 4, 1, 109, 215, 58, 212, 195].

The advantage of the fixed/random e↵ect modelling is that it provides much more flexibility

and it take group-specific e↵ect in which the model quantify regression e↵ects for each group

[201]. Unobservable group factors may a↵ect the outcome of the regression. Fixed/random

e↵ect modelling approach has been recommended to use for clustered data analysis to consider

unobservable group factor e↵ect and it also provides a mitigation of omitted variable bias if

there is a concern [205].

There are many definitions of fixed versus random e↵ects [62]. Fixed e↵ects are usually

defined as varying coe�cients that are not themselves modeled. The variable which is of interest

is usually referred to as fixed e↵ect; the variable which is a blocking factor/control variable (of

interest) is random [62]. Gelman and Hill [62] suggested to always use random e↵ects and focus

72

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

on the description of the model itself (for example, varying intercepts and constant slopes),

with the understanding that batches of coe�cients will themselves be modeled.

The choice between fixed and random e↵ects can be made based on the Hausman speci-

fication test [66, 46]. The test checks the di↵erences between estimates. Random e↵ects are

preferred under the null hypothesis (p-value greater than ↵) due to higher e�ciency of the esti-

mators, while under the alternative (p-value smaller than ↵) fixed e↵ects is at least consistent

and thus preferred.

Based on Gelman and Hill [62], DB2 “version” was added as random e↵ect. In the model,

version was taken as a control variable and software metrics were taken as predictive variables.

In the random e↵ect model, each version was assigned a di↵erent intercept. Given that di↵erent

intercept of each version group, the model had taken version variability into account.

An advantage of random e↵ects is that time invariant variables can be included. Moreover,

random e↵ect models can be easily generalized to more than two groups [185]. This is an

important consideration in DB2, since there are more than two version groups present in the

dataset. In order to support random e↵ect choice, the Hausman specification test was applied

to one-variable and multi-variable models. The results are given in the Table 5.1.

Table 5.1: DB2 Hausman specification test results for choosing fixed or random e↵ect.

Model Predictive Variables chisq df p-value
1 LOC 1.412 1 0.235
2 LOCC 0.649 1 0.420
3 CC 2.537 1 0.111
4 MCC 2.512 1 0.113
5 LOC, LOCC 5.797 2 0.055
6 LOCC, CC 1.607 2 0.448
7 LOCC, MCC 1.377 1 0.502

Table 5.1 shows that all models are not significant (p-value > 0.05). This means that

“version” as a random e↵ect is more suitable to model DB2 grouped data.

After determining the random e↵ect model, model grouping factor were tested whether

dataset fits random intercept or random intercept and slope. A random intercept only model

and random intercept and slope models were constructed. To model comparison, analysis of

variance (ANOVA) test were performed [201]. The varying intercept models were run and the

estimates were saved, then random intercept and slope models were run and the estimates were

saved, then the ANOVA test were performed.

Figure 5.2 shows Chi-Square values, the associated degrees of freedom (df) and the p-values.

The p-value results of the test showed that the varying intercept and slope model does not fit

73

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

the data any better than the varying intercept model. Although the test showed that there was

no di↵erences between the models, varying intercept and slope models were adopted to identify

the individual version group di↵erences.

Table 5.2: DB2 varying intercept or varying intercepts and slope model results.

Model Predictive Variables Chi-Sq df p-value

1 LOC 1.434 2 0.488
2 LOCC 0.853 2 0.653
3 CC 1.384 2 0.501
4 MCC 1.415 2 0.492
5 LOC, LOCC 1.648 5 0.895
6 LOCC, CC 1.11 5 0.953
7 LOCC, MCC 1.21 5 0.943

Models are presented in Table 5.3 with random e↵ects for individual version groups. Model

coe�cients are shown in the intercept and slope (regression coe�cient) columns. It is important

to mention that these coe�cients are standardized coe�cients (see section 5.1.2). For the

e↵ect of each predictive variable, di↵erent intercept and di↵erent slopes were obtained. Model

evaluations are given with p-values and R

2. Models#1-4 represent one predictive variable

with random e↵ect; Models#5-7 represent with two predictive variables. P-values give the

significance of of each predictive variable in the e↵ect of version.

Results in Table 5.3 show that the coe�cients of the models by version are assigned di↵erent

intercept and di↵erent slope. That is expected, given that the model was constructed to take by-

version variability into account. The by-version coe�cients (intercept and slope) for the e↵ect

of predictive variables are di↵erent for each version. However, version 10.1 and 10.5 values are

quite similar to each other. It is also noticed that the slopes are in di↵erent directions for each

version. This means that, despite individual version variation, there is also inconsistency in how

predictive variables a↵ect the energy consumption in di↵erent version groups. For example, EC

of version 9.5 tends to go up with increasing LOC. On the other hand, EC of version 10.5 goes

down with increasing LOC. P-values of LOC, CC and MCC were significant in the models, but

p-values of LOCC were not significant in any of the models.

When comparing the one variable models, Model#3 has the highest R2 followed by Model#4

and Model#1. Among the two-variable models, Model#5 has the highest R

2, followed by

Model#6 and Model#7. When comparing all the models, two-variables models have better

fit than the one-variable models. For example, R2 of Model#5 increased 67% over Model#1.

Model#2 has the lowest significance and the lowest R

2. This was expected because there is

no significant correlation between EC-LOCC pairs. When LOCC was used in the two variable

74

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Table 5.3: DB2 Dataset: Random e↵ect models coe�cients and model evaluations.

Model Variables Versions Intercept Slope p-value R-squared

1 LOC

v.9.5

v.10.1

v.10.5

-0.229

-0.637

0.867

0.157

0.438

-0.596

0.009** 0.534

2 LOCC

v.9.5

v.10.1

v.10.5

1.216

-0.671

-0.544

0.040

0.202

-0.242

0.475 0.052

3 CC

v.9.5

v.10.1

v.10.5

-0.033

-0.450

0.483

0.016

0.216

-0.232

0.007** 0.666

4 MCC

v.9.5

v.10.1

v.10.5

-0.031

-0.463

0.494

0.015

0.223

-0.238

0.008** 0.657

5
LOC

LOCC

v.9.5

v.10.1

v.10.5

6.34e-18/0.041

-6.41e-17/-0.281

5.78e-17/0.241

-5.83e-18/-0.021

5.89e-17/0.145

-5.31e-17/-0.123

0.004**

0.145
0.893

6
LOCC

CC

v.9.5

v.10.1

v.10.5

0.093/0

-0.289/0

0.195/0

-0.044/3.53e-15

0.136/-1.04e-14

-0.092/6.81e-15

0.129

0.004**
0.865

7
LOCC

MCC

v.9.5

v.10.1

v.10.5

0.059/0

-0.245/0

0.186/0

-0.025/1.93e-16

0.102/-4.32e-14

-0.077/4.45e-14

0.131

0.004**
0.865

Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

models, it managed to increase the R

2 (e.g., Model#1 and Model#5).

Performance evaluations of the models are presented in Table 5.4.

Regarding accuracy evaluation of the models, all the models show high accuracy. Among all

the models, Model#5 has the lowest prediction error (highest accuracy) followed by Model#6

and Model#7. Among the one-variable models, Model#1 has the highest accuracy.

In summary, two-variable models achieve high R

2, low RMSE (0.282 in Model#5) and low

MAE (0.197 in Model#5). On the other hand, by looking at the inconsistency in coe�cients

of version groups (Table 5.3), the success of these models in terms of EC prediction in the DB2

dataset may not be conjectured.

75

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Table 5.4: DB2 dataset: Random e↵ect model performance evaluations

Model Predictive Variables R-squared MAE RMSE PRED(25)

1 LOC 0.534 0.227 0.292 0.831

2 LOCC 0.052 0.231 0.317 0.470

3 CC 0.666 0.237 0.306 0.892

4 MCC 0.657 0.238 0.307 0.766

5 LOC, LOCC 0.893 0.197 0.282 0.866

6 LOCC, CC 0.865 0.205 0.286 0.810

7 LOCC, MCC 0.865 0.206 0.287 0.818

Checking Random E↵ect Model Assumptions

Before making more inferences about the DB2 random e↵ects model, the underlying distribu-

tional assumptions should be checked. There are two basic distributional assumptions for the

mixed-e↵ects models [35]:

• Assumption 1: Errors are independent and error variance are non-constant. Residual

plots must be free of any patterns.

• Assumption 2: The random e↵ects are normally distributed and are independent for

di↵erent groups.

The most useful methods for checking these assumptions are based on diagnostic plots of

the residuals, the fitted values, and the estimated random e↵ects plots. Fitted values versus

residuals plot was used to check Assumption 1, normal quantile-quantile plot (Q-Q plot) plot

of estimated random e↵ects was used to check Assumption 2. The normal Q-Q plot is the most

commonly used and e↵ective diagnostic tool for checking normality of the data.

Assumption 1: Figure 5.2 shows that the residual plots are not free of patterns. This

suggests that other than the version e↵ect, there may be other factors e↵ecting the behaviour

of the response variable. They are outside of the scope of this dissertation, future directions for

exploring these variables are provided in section 6.4.

Assumption 2: Figures 5.3 (a-g) show normal Q-Q plots of all the DB2 mixed e↵ect

models.

To support Q-Q plots, standard normal quantiles versus random e↵ect quantiles plots are

given in Figures 5.4 (a-g).

76

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Fitted Values

R
es

id
ua

ls

(a) Model#1

−1.0 −0.5 0.0 0.5 1.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Fitted Values

R
es

id
ua

ls

(b) Model#2

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Fitted Values

R
es

id
ua

ls

(c) Model#3

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Fitted Values

R
es

id
ua

ls

(d) Model#4

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Fitted Values

R
es

id
ua

ls

(e) Model#5

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Fitted Values

R
es

id
ua

ls

(f) Model#6

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Fitted Values

R
es

id
ua

ls

(g) Model#7

Figure 5.2: Residual scatter plots of standardized residuals versus fitted values for for DB2
models.

From Figures 5.3 (a-g) and 5.4 (a-g) random e↵ect model residuals show approximately

normal distribution except, Model#2 where the predictive variable is LOCC.

To support the graphical methods, the Shapiro-Wilk test were performed. The test results

are given in Table 5.5.

The Shapiro-Wilk test results show that all p-values are greater than the alpha level, which

results in all the residuals being su�ciently normally distributed.

In summary, Assumption 2 plots and the Shapiro-Wilk results support the normality as-

sumption of the residuals of the models. On the other hand, Assumption 1 plots do not support

77

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−2 −1 0 1 2

−0
.5

0.
0

0.
5

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

(a) Model#1

−2 −1 0 1 2

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

(b) Model#2

−2 −1 0 1 2

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

(c) Model#3

−2 −1 0 1 2

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

(d) Model#4

−2 −1 0 1 2

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

(e) Model#5

−2 −1 0 1 2

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

(f) Model#6

−2 −1 0 1 2

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

(g) Model#7

Figure 5.3: Normal Q-Q plots of residuals for DB2 models.

normality, the residuals do not show random patterns. This suggests that there may be a model

fitting issue. One approach to address fitting issue of a model is improving model performance

by increasing model flexibility. To increase model flexibility, more predicting variables should

be added to the model. However, in this study, there is no such variable available in the dataset.

Although, fixed/random e↵ect models are useful for making predictions about new groups,

with small group numbers it reduces to a classical regression model. As more data become

available it makes sense to predict more. In small datasets it is hard to learn so much, and it

is not necessarily beneficial to fit a more complex model when the resulting uncertainties will

be so substantial.

78

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

(Intercept)

−1.0 −0.5 0.0 0.5 1.0

−0.3

0.0

0.3

Standard normal quantiles

R
an

do
m

 e
ffe

ct
 q

ua
nt

ile
s

(a) Model#1

(Intercept)

−1.0 −0.5 0.0 0.5 1.0
−3

−2

−1

0

1

2

3

Standard normal quantiles

R
an

do
m

 e
ffe

ct
 q

ua
nt

ile
s

(b) Model#2

(Intercept)

−1.0 −0.5 0.0 0.5 1.0

−0.50

−0.25

0.00

0.25

0.50

Standard normal quantiles

R
an

do
m

 e
ffe

ct
 q

ua
nt

ile
s

(c) Model#3

(Intercept)

−1.0 −0.5 0.0 0.5 1.0

−0.3

0.0

0.3

Standard normal quantiles

R
an

do
m

 e
ffe

ct
 q

ua
nt

ile
s

(d) Model#4

(Intercept)

−1.0 −0.5 0.0 0.5 1.0

−0.25

0.00

0.25

0.50

Standard normal quantiles

R
an

do
m

 e
ffe

ct
 q

ua
nt

ile
s

(e) Model#5

(Intercept)

−1.0 −0.5 0.0 0.5 1.0

−0.25

0.00

0.25

Standard normal quantiles

R
an

do
m

 e
ffe

ct
 q

ua
nt

ile
s

(f) Model#6

(Intercept)

−1.0 −0.5 0.0 0.5 1.0

−0.25

0.00

0.25

Standard normal quantiles

R
an

do
m

 e
ffe

ct
 q

ua
nt

ile
s

(g) Model#7

Figure 5.4: Standard normal quantiles versus random e↵ect quantiles for DB2 models.

In order to overcome non-normality of residuals, DB2 version groups were also analyzed

individually in section 5.1.4.

5.1.4 Models and Results for DB2 Version Groups

DB2 Version 9.5 Models and Results

Table 5.6 shows model assessments and their prediction performance on the DB2 version 9.5

group data. Results reveal that the models and their predictor variables are not significant

at the ↵ level. Moreover, prediction errors (MAE and RMSE) of all models are very high.

Except Model#1 and Model#5, all models have very low prediction performance with high

79

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Table 5.5: DB2 mixed-e↵ect model residual Shapiro-Wilk test results

Model Predictor Variables W p-value

1 LOC 0.944 0.146
2 LOCC 0.956 0.269
3 CC 0.949 0.196
4 MCC 0.963 0.404
5 LOC, LOCC 0.938 0.104
6 LOCC, CC 0.948 0.176
7 LOCC, MCC 0.948 0.177

Table 5.6: Prediction performance of models on dataset DB2-version 9.5.

Model Predictor Variables p-value R-squared MAE RMSE PRED(25)

1 LOC 0.128 0.237 0.883 1.080 0.75

2 LOCC 0.984 4.199e-05 0.926 1.222 0.4

3 CC 0.126 0.239 0.894 1.098 0.52

4 MCC 0.125 0.241 0.861 1.079 0.49

5 LOC, LOCC 0.229 0.308 1.079 1.079 0.63

6 LOCC, CC 0.236 0.303 1.021 1.427 0.375

7 LOCC, MCC 0.232 0.306 1.049 1.276 0.45

Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

prediction errors. Poor prediction accuracy and performance may be explained by the lack of

data. Accuracy of the model on training and testing data could be poor because the learning

algorithm did not have enough data to learn from. Performance can be improved by increasing

the amount of training dataset. The data points are already limited in the DB2 group data,

therefore increasing the training set did not have much e↵ect on the performance of the models

in the group. Figures 5.5 (a-g) show DB2 v.9.5 regression models graphs. The graphs also

support model performance results.

In summary, by reviewing significance and performance results of DB2 version 9.5 mod-

els, only Model#1 with predictor variable LOC may have potential to show better prediction

performance than the other models when the training data is available.

80

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−2

−1

0

1

−1 0 1
LOC

EC

(a) Model#1

−2

−1

0

1

2

−1 0 1 2
LOCC

EC

(b) Model#2

−2

−1

0

1

−1.5 −1.0 −0.5 0.0 0.5 1.0
CC

EC

(c) Model#3

−2

−1

0

1

−1.5 −1.0 −0.5 0.0 0.5 1.0
MCC

EC

(d) Model#4

−2

−1

0

1

2

−1 0 1
LOC + LOCC

EC

(e) Model#5

−2

−1

0

1

2

−1 0 1
LOCC + CC

EC

(f) Model#6

−2

−1

0

1

2

−1 0 1
LOCC + MCC

EC

(g) Model#7

Figure 5.5: Regression model graphs for DB2 v.9.5; the grey area show the 95% confidence
intervals.

Checking Regression Assumptions: DB2-version 9.5.

Assumption 1: The parameters of the linear regression model are numeric and p-values

are significant (Table 4.19).

Assumption 2: The mean of the residuals are close to zero (Model#1=-1.5e-17, Model#2

= 1.1e-17, Model#3= 2.8e-17, Model#4=-4.1e-17, Model#5= -3.8e-17, Model#6= -1e-16,

Model #7=-1.5e-17).

81

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Assumption 3: For two-variable models, multicollinearity must be su�ciently low be-

tween the predictors. If Variance Inflation Factor (VIF)>10, there is an indication for multi-

collinearity to be present. All two-variable models VIF values are smaller than 10. Thus, this

assumption holds true for all the two-variable models.

Assumption 4: The variance in the predictors must be larger than 0. All the variance

in the predictors is greater than 0, thus this assumption holds true for all the predictors.

Assumption 5: The residuals must be normally or approximately normally distributed.

Figure 5.6 (a-g) show Q-Q plots of the model residuals.

To support the graphical method of normality check, the Shapiro-Wilk test was applied to

the DB2 version 9.5 group. Results are presented in Table 5.7.

Table 5.7: DB2 v.9.5 residuals Shapiro-Wilk test results.

Model Predictor Variables W p-value

1 LOC 0.889 0.970
2 LOCC 0.586 0.975
3 CC 0.938 0.945
4 MCC 0.925 0.974
5 LOC, LOCC 0.536 0.941
6 LOCC, CC 0.961 0.979
7 LOCC, MCC 0.572 0.944

Table 5.7 shows that all model‘s residual p-values are greater than 0.05. W statistics of

Model#1, Model#3, Model#4, and Model#6 are closer to one. Assumption check results

suggest all assumptions hold true for all the DB2 version 9.5 models.

In summary, the results suggest EC-LOC and EC-CC relationships and provide base for

future EC prediction studies. However, the amount of training data set should be considered

for increasing the models prediction performance (Table 5.6).

DB2 Version 10.1 Models and Results

Table 5.8 shows model assessments and their prediction performance on DB2 version 10.1 group

data. Results reveal that the models and their predictor variables are not significant at the ↵

level. Moreover, prediction accuracy (MAE and RMSE) of all models was very poor. Except

Model#1, all models had very low prediction performance (PRED(25)) with low accuracy.

Similar to DB2 version 9.5 data results, low prediction accuracy and performance of group 10.1

82

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−2 −1 0 1 2

−2
−1

0
1

QQ Plot DB2 v.9.5 Model#1

Theoretical Quantiles

R
es

id
ua

ls

(a) Model#1

−2 −1 0 1 2

−2
−1

0
1

QQ Plot DB2 v.9.5 Model#2

Theoretical Quantiles

R
es

id
ua

ls

(b) Model#2

−2 −1 0 1 2

−2
−1

0
1

QQ Plot DB2 v.9.5 Model#3

Theoretical Quantiles

R
es

id
ua

ls

(c) Model#3

−2 −1 0 1 2

−2
−1

0
1

QQ Plot DB2 v.9.5 Model#4

Theoretical Quantiles

R
es

id
ua

ls

(d) Model#4

−2 −1 0 1 2

−1
0

1
2

3
QQ Plot DB2 v.9.5 Model#5

Theoretical Quantiles

R
es

id
ua

ls

(e) Model#5

−2 −1 0 1 2

−2
−1

0
1

2

QQ Plot DB2 v.9.5 Model#6

Theoretical Quantiles

R
es

id
ua

ls

(f) Model#6

−2 −1 0 1 2

−1
0

1
2

3

QQ Plot DB2 v.9.5 Model#7

Theoretical Quantiles

R
es

id
ua

ls

(g) Model#7

Figure 5.6: Residual plots for DB2 version 9.5 models; the dashed lines show the 95% confidence
intervals.

may be explained by the lack of training data. The data are already limited in DB2 version

groups, therefore increasing the training set may not e↵ect group model performance. Figures

5.7 (a-g) show that DB2 v.9.5 regression graphs. The graphs also support model performance

results.

In summary, significance and performance results of DB2 version 10.1 models suggest EC-

LOC, EC-CC, and EC-MCC relationships. These results provide base for future EC prediction

studies. However, the amount of training data set should be considered to increasing the model‘s

prediction performance (5.8).

83

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Table 5.8: Prediction performance of models on dataset DB2-version 10.1.

Model Predictor Variables p-value R-squared MAE RMSE PRED(25)

1 LOC 0.101 0.445 1.172 1.319 0.656

2 LOCC 0.588 0.062 5.986 9.629 0.495

3 CC 0.074 . 0.502 1.043 1.223 0.495

4 MCC 0.072 . 0.506 1.083 1.187 0.460

5 LOC, LOCC 0.084 . 0.709 4.063 9.069 0.495

6 LOCC, CC 0.065 . 0.749 4.604 6.495 0.500

7 LOCC, MCC 0.062 . 0.744 5.774 6.206 0.495

Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Checking Regression Assumptions: DB2-version 10.1.

Assumption 1: The parameters of the linear regression model are numeric and p-values

are significant (Table 4.20).

Assumption 2: The mean of the residuals are close to 0 (Model#1=4.7e-17, Model#2=2.3e-

17, Model#3=7.1e-17, Model#4=6.3e-17, Model#5=7.9e-17, Model#6=-7.9e-16, Model#7=-

2.7e-17).

Assumption 3: For two-variable models, multicollinearity must be su�ciently low be-

tween the predictors. If Variance Inflation Factor (VIF)>10, there is an indication for multi-

collinearity to be present. All two-variable models VIF values are smaller than 10. Thus, this

assumption holds true for all the two-variable models.

Assumption 4: The variance in the predictors must be larger than 0. All the variance

in the predictors is greater than 0, thus this assumption holds true for all the predictors.

Assumption 5: The residuals must be normally or approximately normally distributed.

Figures 5.6 (a-g) Q-Q plots of the model residuals.

To support the graphical method of normality check, the Shapiro-Wilk test was applied to

the DB2 version 10.1 group. Results are presented in Table 5.9.

From Figure 5.8 and Table 5.9, all model residuals show su�ciently normal distribution.

The prediction performance results in Table 5.8 and assumption check results suggest similar

relations to DB2 v.9.5. EC-LOC and EC-CC relations may be used for prediction of EC in

84

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−2

−1

0

1

2

3

−1 0 1
LOC

EC

(a) Model#1

−2

0

2

−0.5 0.0 0.5 1.0 1.5 2.0
LOCC

EC

(b) Model#2

−2

−1

0

1

2

3

−1 0 1
CC

EC

(c) Model#3

−2

−1

0

1

2

3

−1 0 1
MCC

EC

(d) Model#4

−2

−1

0

1

2

3

−1.0 −0.5 0.0 0.5
LOC + LOCC

EC

(e) Model#5

−2

−1

0

1

2

3

−1.0 −0.5 0.0 0.5
LOCC + CC

EC

(f) Model#6

−2

−1

0

1

2

3

−1.0 −0.5 0.0 0.5
LOCC + MCC

EC

(g) Model#7

Figure 5.7: Regression model graphs for DB2 v.10.1; the grey area show the 95% confidence
intervals.

DB2 dataset. However, the amount of training data set should be considered to increasing the

model‘s prediction performance.

DB2 Version 10.5 and 11.1 Models and Results

Table 5.10 presents model assessments and their prediction performance on DB2 version 10.5

and 11.1 data. Results show that only single-variable models are significant. Prediction ac-

curacy (MAE and RMSE) of all models are very low. Except Model#1, all the models had

low prediction performance (PRED(25)) with low prediction accuracy. Similar to DB2 v.9.5

85

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

QQ Plot DB2 v.10.1 Model#1

Theoretical Quantiles

R
es

id
ua

ls

(a) Model#1

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−2
−1

0
1

QQ Plot DB2 v.10.1 Model#2

Theoretical Quantiles

R
es

id
ua

ls

(b) Model#2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

QQ Plot DB2 v.10.1 Model#3

Theoretical Quantiles

R
es

id
ua

ls

(c) Model#3

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

QQ Plot DB2 v.10.1 Model#4

Theoretical Quantiles

R
es

id
ua

ls

(d) Model#4

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

QQ Plot DB2 v.10.1 Model#5

Theoretical Quantiles

R
es

id
ua

ls

(e) Model#5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

QQ Plot DB2 v.10.1 Model#6

Theoretical Quantiles

R
es

id
ua

ls

(f) Model#6

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

QQ Plot DB2 v.10.1 Model#7

Theoretical Quantiles

R
es

id
ua

ls

(g) Model#7

Figure 5.8: Residual plots for DB2 version 10.1 models; the dashed lines show the 95% confi-
dence intervals.

and v.10.1 group data results, low prediction accuracy and poor performance of group 10.5 and

11.1 models may be explained by the lack of training data. Figures 5.9 (a-g) show DB2 v.9.5

regression models graphs. The graphs also support model performance results.

In summary, significance and performance results of DB2 version 10.5 and 11.1 models

results suggest similar relations to DB2 v.9.5 and v.10.1. EC-LOC, EC-CC, and EC-MCC

relations may base for future prediction of EC in DB2 dataset. However, the amount of training

data set should be considered to increasing the model‘s prediction performance.

86

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Table 5.9: DB2 v.10.1 residuals Shapiro-Wilk test results

Model Predictor Variables W p-value

1 LOC 0.339 0.901
2 LOCC 0.874 0.966
3 CC 0.234 0.882
4 MCC 0.224 0.880
5 LOC, LOCC 0.562 0.931
6 LOCC, CC 0.311 0.896
7 LOCC, MCC 0.288 0.892

Table 5.10: Prediction performance of models on dataset DB2 v10.5-v.11.1.

Model Predictor Variables p-value R-squared MAE RMSE PRED(25)

1 LOC 0.032* 0.455 0.890 0.847 0.67

2 LOCC 0.045* 0.412 0.882 1.185 0.50

3 CC 0.050* 0.390 0.862 0.972 0.50

4 MCC 0.050* 0.384 0.875 0.972 0.50

5 LOC, LOCC 0.113 0.463 1.041 1.291 0.50

6 LOCC, CC 0.141 0.428 0.985 1.118 0.50

7 LOCC, MCC 0.142 0.427 1.018 1.239 0.50

Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Checking Regression Assumptions: DB2 v.10.5-11.1

Assumption 1: The parameters of the linear regression model are numeric and linear

(Table 4.21) all p-values are close to 0.

Assumption 2: The mean of the residuals are close to 0 (Model#1=3.1e-17, Model#2

=8.3e-17, Model#3= 5.5e-18, Model#4=4.4e-17, Model#5=-7.7e-17, Model#6=8.3e-17, Model

#7=6.1e-17).

Assumption 3: For two-variable models, multicollinearity must be su�ciently low be-

tween the predictors. If Variance Inflation Factor (VIF)>10, there is an indication for multi-

collinearity to be present. All two-variable models VIF values are smaller than 10. Thus, this

assumption holds true for all the two-variable models.

87

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−3

−2

−1

0

1

0 1 2
LOC

EC

(a) Model#1

−2

−1

0

1

2

−1 0 1 2
LOCC

EC

(b) Model#2

−2

−1

0

1

−1.5 −1.0 −0.5 0.0 0.5 1.0
CC

EC

(c) Model#3

−2

−1

0

1

−1.5 −1.0 −0.5 0.0 0.5 1.0
MCC

EC

(d) Model#4

−2

−1

0

1

2

−1 0 1
LOC + LOCC

EC

(e) Model#5

−2

−1

0

1

2

−1 0 1
LOCC + CC

EC

(f) Model#6

−2

−1

0

1

2

−1 0 1
LOCC + MCC

EC

(g) Model#7

Figure 5.9: Regression model graphs for DB2 v.10.5-v11.1; the grey area show the 95% confi-
dence intervals.

Assumption 4: The variance in the predictors must be larger than 0. All the variance

in the predictors is larger than 0, thus this assumption holds true for all the predictors.

Assumption 5: The residuals must be normally or approximately normally distributed.

Figure 5.10 (a-g) show Q-Q plots of the model residuals.

To support the graphical method of normality check, the Shapiro-Wilk test was applied to

v.10.5-v11.1 dataset. Results are presented in Table 5.11.

Table 5.7 shows that all models residuals p-value are smaller than 0.05 except Model#2.

W statistics of all the models are closer to one. Thus, except Model#1, all the model residuals

88

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−4
−3

−2
−1

0
1

QQ Plot DB2 v.10.5−v11.1 Model#1

Theoretical Quantiles

R
es

id
ua

ls

(a) Model#1

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−2
−1

0
1

2

QQ Plot DB2 v.10.5−v11.1 Model#2

Theoretical Quantiles

R
es

id
ua

ls

(b) Model#2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−4
−3

−2
−1

0
1

QQ Plot DB2 v.10.5−v11.1 Model#3

Theoretical Quantiles

R
es

id
ua

ls

(c) Model#3

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−4
−3

−2
−1

0
1

QQ Plot DB2 v.10.5−v11.1 Model#4

Theoretical Quantiles

R
es

id
ua

ls

(d) Model#4

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−3
−2

−1
0

1
2

QQ Plot DB2 v.10.5−v11.1 Model#5

Theoretical Quantiles

R
es

id
ua

ls

(e) Model#5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−3
−2

−1
0

1
2

QQ Plot DB2 v.10.5−v11.1 Model#6

Theoretical Quantiles

R
es

id
ua

ls

(f) Model#5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−3
−2

−1
0

1
2

QQ Plot DB2 v.10.5−v11.1 Model#7

Theoretical Quantiles

R
es

id
ua

ls

(g) Model#5

Figure 5.10: Residual plots for DB2 v10.5-v11.1 models; the dashed lines show the 95% confi-
dence intervals.

follow su�ciently normal distribution.

The prediction performance results in Table 5.10 and assumption check results suggest

similar relations to DB2 v.9.5 and v.10.1 group data results. EC-LOC and EC-CC relations

may be used for prediction EC in DB2 dataset. However, the amount of training data set

should be considered to increasing the model‘s prediction performance.

Summary of DB2 individual group model analysis: Individual DB2 version group

model graphs Figure 5.5,5.7 and 5.9 showed that there was inconsistency in regression coe�-

cients of versions.This result also support inconsistent results in random e↵ect varying intercept

89

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Table 5.11: DB2 v.10.5-v11.1 residuals Shapiro-Wilk test results.

Model Predictor Variables W p-value

1 LOC 0.880 0.130
2 LOCC 0.959 0.780
3 CC 0.927 0.417
4 MCC 0.930 0.443
5 LOC, LOCC 0.869 0.097
6 LOCC, CC 0.927 0.424
7 LOCC, MCC 0.930 0.450

and slope coe�cients Table 5.3. The results also showed that all models have very low accuracy

(MAE and RMSE) and medium prediction performance. This may be due to the fact that the

e↵ect of versions is not represented in individual analysis. Additionally, the individual group

data were quite small (5-10 subversions), therefore lack of individual group data may results in

low accuracy. If more data had been available, the prediction performance would be improved.

5.1.5 Models and Results for Dataset: MYSQL

Table 5.12: Prediction performance of models on dataset MYSQL-MyISAM.

Model Predictor Variables p-value R-squared MAE RMSE PRED(25)

1 LOC 1.67e-11 *** 0.753 0.465 0.560 0.817

2 LOCC 0.981 0.218 1.023 1.030 0.712

3 CC 0.0765 . 0.292 0.797 1.002 0.694

4 MCC 0.0511 . 0.265 0.771 1.009 0.729

5 LOC, CC 1.441e-14*** 0.829 0.430 0.457 0.823

6 LOC, MCC 2.569e-14*** 0.824 0.423 0.451 0.843

Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 5.12 presents model assessments and their prediction performance on Dataset My-

ISAM. Results show that among the one variable models, regarding significance and R

2,

Model#1 has the highest significance followed by Model#3 and Model#4. Regarding pre-

diction performance, Model#1 has the highest performance (PRED(25) being 1.84) followed

by Model#3 and Model#4. All the MAE and RMSE results are somewhat similar, except

Model#2. Similar to dataset DB2, Model#1 with LOC predictor is very successful at pre-

dicting EC in MyISAM. Among the two-variable models, Model#5 and Model#6 had similar

90

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

R

2 values. Regarding prediction performance, Model#5 has better prediction with PRED(25)

being 0.84 and the lowest MAE and RMSE with values of 0.358 and 0.346, respectively.

CC shows moderate significance (0.07), but low predictive performance in the one-variable

model. When it is used in two-variable models (Model#5), it managed to reduce prediction

error in terms of RMSE down to 18%, MAE down to 7.5% with 82% of predictions (PRED(25)).

When comparing all the models, Model#6 has the best prediction performance, followed by

Model#5 and Model#1, respectively. When comparing R

2 values, Model#5 has 10% increased

in R

2 than Model#1. Model#2 has the lowest significance, lowest R2 and lowest performance.

This was expected because there is no significant correlations between LOCC-EC pairs. Fig-

ures 5.11 (a-f) show MYSQL-MyISAM regression models graphs. They also support model

performance results.

−1

0

1

−1.0 −0.5 0.0 0.5 1.0 1.5
LOC

EC

(a) Model#1

−1

0

1

0 2 4
LOCC

EC

(b) Model#2

−1

0

1

−1.0 −0.5 0.0 0.5 1.0
CC

EC

(c) Model#3

−1

0

1

−1.0 −0.5 0.0 0.5 1.0
MCC

EC

(d) Model#4

−1

0

1

−2 −1 0 1 2
LOC + CC

EC

(e) Model#5

−1

0

1

−2 −1 0 1 2
LOC + MCC

EC

(f) Model#6

Figure 5.11: Regression model graphs for MyISAM; the grey area show the 95% confidence
intervals.

In summary, two-variable models achieve low RMSE rates (0.457 in Model#5), with low

MAE (0.430 in Model#5). In terms of PRED(25), similar to error performance, Model#5 and

Model#6 have the highest predictive performance (PRED(25)) followed by the one variable

model (Model#1).

91

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Checking Regression Assumptions: MyISAM

Assumption 1: The parameters of the linear regression model are numeric and linear

(Table 4.24), all p-values are close to 0.

Assumption 2: The mean of the residuals are close to 0 (Model#1=8.5e-18, Model#2=

8.8e-17, Model#3= 1.2e-17, Model#4= 6.6e-18, Model#5= 1.9e-17, Model#6= 9.2e-18).

Assumption 3: For two-variable models, multicollinearity must be su�ciently low be-

tween the predictors. If Variance Inflation Factor (VIF)>10, there is an indication for mul-

ticollinearity to be present. Model#5 VIF=1.73, Model#6 VIF=1.81. All VIF’s are smaller

than 10, thus this assumption holds true for these models.

Assumption 4: The variance in the predictors must be larger than 0. All the variance

in the predictors is much larger than 0, thus this assumption holds true for all the predictors

(LOC=4.5e+10, LOCC=2.6e+10, CC=3.2e+8, MCC=2.6e+8).

Assumption 5: The residuals must be normally or approximately normally distributed.

As in the case of DB2, Figure 5.12 (a-f) shows that models do not follow normal distribution.

To address these non-normally residual distributions, log transformation was applied to vari-

ables, then error distributions were checked. However, log transformation could not overcome

the non-normality issue.

From Table 5.12, Model#2 shows no significance (p-value= 0.981), predictive performance

PRED(25) was 0.71 and it has the highest error rate (RMSE = 1.03) among the MyISAM

models. Moreover, predictor LOCC showed no correlation with EC (Table 4.24). Therefore,

error plot Model#2 (Figure 5.12 (b) shows non-normal distribution. Although assumptions

1-5 hold true for all the MyISAM models, Figures 5.12 (a-f) show non-normally-distributed

residuals.

To support the graphical method of normality, the Shapiro-Wilk test was applied to My-

ISAM dataset. Results of the test are presented in Table 5.13. Although all model‘s residual

p-value are smaller than 0.05, Model#1, Model#3, and Model#4 W statistics are closer to one.

In summary, findings suggest relationships between EC and LOC, EC and CC, EC and

MCC. These relations may provide a foundation for EC prediction on Dataset MYSQL-MyISAM.

Table 5.14 presents model assessments and their prediction performance on Dataset Innodb.

One-variable model results show that, regarding significance, R2, and prediction performance

(PRED(25)) Model#3 has the highest significance and performance followed by Model#4 and

Model#1. All two-variable models show significance, and their R

2 values are 8% higher than

92

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−2 −1 0 1 2

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

QQ Plot MYISAM Model#1

t Quantiles

R
es

id
ua

ls

(a) Model#1

−2 −1 0 1 2

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

QQ Plot MYISAM Model#2

t Quantiles

R
es

id
ua

ls

(b) Model#2

−2 −1 0 1 2

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

QQ Plot MYISAM Model#3

t Quantiles

R
es

id
ua

ls

(c) Model#3

−2 −1 0 1 2

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

QQ Plot MYISAM Model#4

t Quantiles

R
es

id
ua

ls

(d) Model#4

−2 −1 0 1 2

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

QQ Plot MYISAM Model#5

t Quantiles

R
es

id
ua

ls

(e) Model#5

−2 −1 0 1 2

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

QQ Plot MYISAM Model#6

t Quantiles

R
es

id
ua

ls

(f) Model#6

Figure 5.12: Residual plots for MYISAM models; the dashed lines show the 95% confidence
intervals.

Table 5.13: MyISAM residuals Shapiro-Wilk test results

Model Predictor Variables W p-value

1 LOC 0.920 0.001
2 LOCC 0.862 0.0002
3 CC 0.918 0.008
4 MCC 0.916 0.006
5 LOC, CC 0.842 7.105e-05
7 LOC, MCC 0.842 6.816e-05

one-variable models. They also show 8% better prediction performance (PRED(25)) on average

than one-variable models. Regarding model accuracy, MAE and RMSE results of all InnoDB

models are similar and had medium accuracy, except model#2 which had low accuracy.

When comparing all the models, Model#6 had the highest prediction performance, fol-

lowed by Model#5 and Model#4, respectively. When comparing their R2, two-variables model

Model#5 has 11% increased in R

2 than Model#1. Similar to other MyISAM and DB2 datasets,

Model#2 with LOCC did not show any significance and it had low accuracy and low perfor-

mance. These results were expected, because there was no significant correlation found between

93

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Table 5.14: Prediction performance of models on dataset MYSQL-InnoDB.

Model Predictor Variables p-value R-squared MAE RMSE PRED(25)

1 LOC 0.00397 ** 0.544 0.590 0.574 0.747

2 LOCC 0.855 0.158 0.760 0.849 0.612

3 CC 3.39e-08 *** 0.566 0.436 0.659 0.791

4 MCC 4.43e-08 *** 0.560 0.449 0.622 0.801

5 LOC, CC 1.215e-07*** 0.604 0.458 0.580 0.850

6 LOC, MCC 1.527e-07*** 0.595 0.466 0.686 0.852

Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EC and LOCC. Figures 5.13 (a-f) show MYSQL-InnoDB regression models graphs. They also

support model performance results.

−1

0

1

2

−1 0 1
LOC

EC

(a) Model#1

−1

0

1

2

0 1 2 3 4 5
LOCC

EC

(b) Model#2

−1

0

1

2

−1.5 −1.0 −0.5 0.0 0.5 1.0
CC

EC

(c) Model#3

−1

0

1

2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
MCC

EC

(d) Model#4

−1

0

1

2

−2 0 2
LOC + CC

EC

(e) Model#5

−1

0

1

2

−2 0 2
LOC + MCC

EC

(f) Model#6

Figure 5.13: Regression model graphs for MYSQL-InnoDB; the grey area show the 95% confi-
dence intervals.

In summary, although Model#3, Model#4, and Model#5 are significant and have high

prediction performance, their accuracy is in medium level (see section 3.3.1).

94

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Checking Regression Assumptions: InnoDB

Assumption 1: The parameters of the linear regression model are numeric and linear

(Table 4.25), all p-values are close to 0.

Assumption 2: The mean of the residuals are close to 0 (Model#1=1.4e-18, Model#2

=1.1e-16, Model#3= 6.3e-18, Model#4= 7.5e-17, Model#5= 2.1e-17, Model#6= 1.5e-17).

Assumption 3: For two-variable models, multicollinearity must be su�ciently low be-

tween the predictors. If Variance Inflation Factor (VIF)>10, there is an indication for mul-

ticollinearity to be present. Model#5 VIF=2.15, Model#6 VIF=2.19. All VIF’s are smaller

than 10, thus this assumption holds true for the models.

Assumption 4: The variance in the predictors must be larger than 0. All the variance

in the predictors is much larger than 0, thus this assumption holds true for all the predictors

(LOC=3.2e+10, LOCC=6.5e+10, CC=3.5e+8, MCC=2.8e+8).

Assumption 5: The residuals must be normally or approximately normally distributed.

Although Figure 5.14 (a-f) show that models do not follow normal distribution, especially Model

#2.

Model#2 had no significance (p � value = 0.855) and predictive performance PRED(25)

being 0.61 and RMSE 0.85 (Table 5.14) predictor LOCC had no correlation with EC (Table

4.25). Although, assumptions 1-5 hold true for all the InnoDB models, Figures 5.14 (a-f) show

non-normally-distributed residuals.

To support the graphical method of normality check, the Shapiro-Wilk test were applied to

the InnoDB dataset. Results are presented in Table 5.13.

Table 5.15: InnoDB residuals Shapiro-Wilk test results.

Model Predictor Variables W p-value

1 LOC 0.909 0.004
2 LOCC 0.862 0.0002
3 CC 0.877 0.0005
4 MCC 0.863 0.0.0002
5 LOC, CC 0.884 0.0007
7 LOC, MCC 0.877 0.0005

Although all models residuals p-value are smaller than 0.05, only Model#1 W statistic is

closer to one.

95

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−2 −1 0 1 2

−1
0

1
2

3

QQ Plot INNODB Model#1

t Quantiles

R
es

id
ua

ls

(a) Model#1

−2 −1 0 1 2

−1
0

1
2

QQ Plot INNODB Model#2

t Quantiles

R
es

id
ua

ls

(b) Model#2

−2 −1 0 1 2

−1
0

1
2

3

QQ Plot INNODB Model#3

t Quantiles

R
es

id
ua

ls

(c) Model#3

−2 −1 0 1 2

−1
0

1
2

3

QQ Plot INNODB Model#4

t Quantiles

R
es

id
ua

ls

(d) Model#4

−2 −1 0 1 2

−2
−1

0
1

2
3

QQ Plot INNODB Model#5

t Quantiles

R
es

id
ua

ls

(e) Model#5

−2 −1 0 1 2

−2
−1

0
1

2
3

QQ Plot INNODB Model#6

t Quantiles

R
es

id
ua

ls

(f) Model#6

Figure 5.14: Residual plots for InnoDB models; the dashed lines show the 95% confidence
intervals.

As a result, the one-variable model with LOC and the two-variable models with LOC, CC

and MCC are suggested in MYSQL dataset. If there had been more data representing MYSQL,

the prediction accuracy would be improved.

5.1.6 Models and Results for Dataset: Firefox

Table 5.16: Prediction performance of models on dataset Firefox.

Model Predictor Variables p-value R-squared MAE RMSE PRED(25)

1 LOC 0.0112 * 0.343 0.626 0.932 0.530

2 LOCC 0.0241 * 0.340 0.622 1.110 0.555

3 CC 0.0143 * 0.316 0.659 0.921 0.553

4 MCC 0.0178 * 0.270 0.616 0.897 0.575

Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 5.16 presents Firefox dataset models and their prediction performance. From the

96

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

correlation results (Table 4.27), significant correlations were obtained from LOC-LOCC, LOC-

CC and LOC-MCC, LOCC-CC and LOCC-MCC pairs. Therefore, only one variable models

were analized. All models show significance at the 0.05 level. However, their R

2 values were

very low. Regarding prediction performance, they all had medium prediction performance

with PRED(25) being 55% and low accuracy. The highest accuracy (RMSE and MAE) and

highest prediction performance were obtained from Model#4 with predictor MCC, followed by

Model#3 with predictor CC and Model#1 with predictor LOC. Figures 5.15 (a-d) show Firefox

regression models graphs. They also support model performance results.

−2

0

2

−1 0 1
LOC

EC

(a) Model#1

−2

0

2

−1 0 1 2
LOCC

EC

(b) Model#2

−2

0

2

−1 0 1 2
CC

EC

(c) Model#3

−2

0

2

−1 0 1 2
MCC

EC

(d) Model#4

Figure 5.15: Regression model graphs for Firefox; the grey area show the 95% confidence
intervals.

In summary, although Firefox dataset models had low accuracy and medium performance,

model with MCC, CC or LOC may have been suggested and the model performances would be

increase with more data.

97

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Checking Regression Assumptions: Firefox

Assumption 1: The parameters of the linear regression model are numeric and linear

(Table 4.26) all p-values are close to 0.

Assumption 2: The mean of the residuals are close to 0 (Model#1=7.6e-18, Model#2=

1.3e-18, Model#3= 1.6e-17, Model#4= 2.3e-17).

Assumption 3: There are no multi-variable model in Firefox dataset.

Assumption 4: The variance in the predictors must be larger than 0. All the variance

in the predictors is much larger than 0, thus this assumption holds true for all the predictors

(LOC=6.2e+10, LOCC=3.8e+10, CC=9.3e+8, MCC=8.6e+8).

Assumption 5: The residuals must be normally or approximately normally distributed.

Figure 5.16 (a-d) show that Model#1, Model#3, and Model#4 residuals scatter along normality

line. Therefore, it can be said that their residuals follow su�ciently normal distribution.

To support the graphical method of normality check, the Shapiro-Wilk test were applied to

the Firefox dataset. Results are presented in Table 5.17.

Table 5.17: Firefox residuals Shapiro-Wilk test results.

Model Predictor Variables W p-value

1 LOC 0.901 0.005
2 LOCC 0.836 0.0002
3 CC 0.900 0.004
4 MCC 0.889 0.003

Although, all models residuals p-value are smaller than 0.05, W statistics of Model#1,

Model#3, and Model#4 are closer to one.

In summary, all Firefox one-variable models achieved low accuracy (high RMSE and MAE)

with medium prediction performance. Although noise had been removed from the dataset, the

models were not be successful in predicting EC on Firefox dataset.

5.1.7 Models and Results for Dataset: Vuze

No model can be proposed with the Vuze dataset, because none of the metrics show correlation

with EC (Table 4.28). This may be due to the fact that the Vuze dataset contains only

98

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−2 −1 0 1 2

−3
−2

−1
0

1
2

3
4

QQ Plot Firefox Model#1

t Quantiles

R
es

id
ua

ls

(a) Model#1

−2 −1 0 1 2

−2
−1

0
1

2
3

4
5

QQ Plot Firefox Model#2

t Quantiles

R
es

id
ua

ls

(b) Model#2

−2 −1 0 1 2

−2
−1

0
1

2
3

4

QQ Plot Firefox Model#3

t Quantiles

R
es

id
ua

ls

(c) Model#3

−2 −1 0 1 2

−2
−1

0
1

2
3

4

QQ Plot Firefox Model#4

t Quantiles

R
es

id
ua

ls

(d) Model#4

Figure 5.16: Residual plots for Firefox models; the dashed lines show the 95% confidence
intervals.

subrevisions from which they could not capture any relationships between metrics and EC. If

there had been more data with major revisions, relations would be captured.

5.1.8 Models and Results for Dataset: rTorrent

Table 5.18 shows model assessments and their prediction performance on Dataset rTorrent.

Results show that among the one-variable models (Model#1-#4), all the proposed models are

significant; however, their R2 values were very low when comparied with one-variable models on

dataset DB2 and MYSQL. Model#1 had the highest R2 followed by Model#3 and Model#4.

Regarding prediction performance, all one-variable models had low prediction performance

(PRED(25)) results. Regarding RMSE and MAE, Model#3 and Model#4 had medium accu-

racy, followed by Model#1. Model#5, as the only two-variable model, is also significant with

medium accuracy (MAE being 0.49). However, this model had the lowest R

2 among the all

99

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

Table 5.18: Prediction performance of models on dataset rTorrent.

Model Predictor Variables p-value R-squared MAE RMSE PRED(25)

1 LOC 0.0075 ** 0.390 0.509 0.775 0.402

2 LOCC 0.25 0.064 0.472 1.136 0.344

3 CC 0.0072** 0.312 0.481 0.577 0.364

4 MCC 0.0065 ** 0.189 0.464 0.507 0.403

5 LOCC, CC 0.021* 0.170 0.489 0.879 0.349

Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 0

models. Similar to MYISAM-InnoDB results, the results suggest EC-MCC relation. Addition-

ally, similar to DB2 and MyISAM, EC-LOC relation may also be suggested. Figures 5.17 (a-e)

show rTorrent regression models graphs. They also support model performance results.

−4

−3

−2

−1

0

1

−2 −1 0 1
LOC

EC

(a) Model#1

−4

−3

−2

−1

0

1

−1 0 1 2 3
LOCC

EC

(b) Model#2

−4

−3

−2

−1

0

1

−2 −1 0 1
CC

EC

(c) Model#3

−4

−3

−2

−1

0

1

−2 −1 0 1
MCC

EC

(d) Model#4

−4

−2

0

−2 0 2 4
LOCC + CC

EC

(e) Model#5

Figure 5.17: Regression model graphs for Firefox; the grey area show the 95% confidence
intervals.

In summary, by reviewing R

2, accuracy and performance results, among the one-variable

100

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

models, Model#1 and Model#4 achieved the highest performance on rTorrent dataset.

Checking Regression Assumptions: rTorrent

Assumption 1: The parameters of the linear regression model are numeric and linear

(Table 4.31) all p-values are close to 0.

Assumption 2: The mean of the residuals are close to 0 (Model#1=2.9e-17, Model#2

=6.3e-17, Model#3= 3.4e-17, Model#4=9.7e-17, Model#5=1.4e-17).

Assumption 3: For two-variable models, multicollinearity must be su�ciently low be-

tween the predictors. If Variance Inflation Factor (VIF)>10, there is an indication for multi-

collinearity to be present. Model#5 VIF=1.03 smaller than 10, thus this assumption holds true

for the Model#5.

Assumption 4: The variance in the predictors must be larger than 0. All the variance

in the predictors is much larger than 0, thus this assumption holds true for all the predictors

(LOC=2.2e+8, LOCC=4.4e+7, CC=6.7e+6, MCC=6.2e+6).

Assumption 5: The residuals must be normally or approximately normally distributed.

Figure 5.18 (a-e) show that only Model#1 residuals follow su�ciently normal distribution.

To support the graphical method of normality check, the Shapiro-Wilk test was applied to

the rTorrent dataset. Results are presented in Table 5.17.

Table 5.19: rTorrent residuals Shapiro-Wilk test results.

Model Predictor Variables W p-value

1 LOC 0.882 0.001
2 LOCC 0.702 1.068e-07
3 CC 0.877 0.0004
4 MCC 0.880 0.0005
5 LOC, CC 0.864 0.0002

Table 5.19 shows that all models residuals p-value are smaller than 0.05, only W statistics

of Model#1 is closer to one.

Table 5.18 shows that Model#3, Model#4 and Model#5 are significant (p-value <0.05). On

the other hand, their residuals do not follow normal distribution. Additionally, these models

have medium accuracy and low predictive performances (Table 5.18). In summary, except

101

Chapter 5. Proposed Prediction Models 5.1. Proposed Models

−2 −1 0 1 2

−4
−3

−2
−1

0
1

QQ Plot RTorrent Model#1

t Quantiles

R
es

id
ua

ls

(a) Model#1

−2 −1 0 1 2

−5
−4

−3
−2

−1
0

1

QQ Plot RTorrent Model#2

t Quantiles

R
es

id
ua

ls

(b) Model#2

−2 −1 0 1 2

−4
−3

−2
−1

0
1

QQ Plot RTorrent Model#3

t Quantiles

R
es

id
ua

ls

(c) Model#3

−2 −1 0 1 2

−4
−3

−2
−1

0
1

QQ Plot RTorrent Model#4

t Quantiles

R
es

id
ua

ls

(d) Model#4

−2 −1 0 1 2

−4
−3

−2
−1

0
1

QQ Plot RTorrent Model#5

t Quantiles

R
es

id
ua

ls

(e) Model#5

Figure 5.18: Residual plots for RTorrent models; the dashed lines show the 95% confidence
intervals.

Model#1 ,with LOC as a predictor, the models are not successful for predicting EC on dataset

rTorrent.

5.1.9 Regression Model Discussion

Dataset DB2 showed that both one-variable in which LOC is a predictor and two-variable

models in which LOC, LOCC and CC are predictors, have high prediction performance with

low error. Similar to DB2, in MYSQL (both MyISAM and InnoDB) both one-variable with

LOC and two-variable with LOC and CC/MCC manage to have good prediction performance,

but high error rates. Dataset Firefox results suggest only one-variable model using EC-LOC,

EC-CC and EC-MCC relations. Similar to Firefox, in rTorrent dataset results suggest only the

one-variable model with EC-LOC have an e↵ective prediction performance. This study findings

suggest that there is inconsistency in how predictive variables a↵ect the energy consumption in

di↵erent datasets.

102

Chapter 5. Proposed Prediction Models 5.2. Cross-Product Energy Consumption Prediction

5.2 Cross-Product Energy Consumption Prediction

As explained in Chapter 3, after assessing the models within products, they were evaluated in

cross-product.

Intuitively, it could be argued that there is no issue in comparing within-project versus

cross-project studies, because of the common belief that within-project data is always better

than cross-project data. However, in the domain of e↵ort estimation and defect prediction, it

turns out that this intuition has contradictory results [112, 96]. Turhan [188] expressed one

reason for the variance in the results reported in within-project and in cross-project studies

is that there was an ambiguity of the e↵ort estimation features [188] used in the studies. In

order to clarify the ambiguity, Turhan et al [188, 189] adopted the most commonly used static

code features and showed that models used on cross-company data performance were close to

within-company data performance.

5.2.1 Cross-Product Energy Consumption Prediction (CPECP) Analysis

In the CPECP analysis, datasets from the five products given in Chapter 4 were used for

all possible combinations to determine whether or not cross-product prediction works for EC

prediction. Two additional datasets were built out of existing datasets. One dataset was formed

by pooling MyISAM and InnoDB datasets and was named “MYSQL”. The other dataset was

formed by pooling all product datasets and was named “TOTAL”. When the Total dataset

was used as testing dataset in CPECP, within product dataset was not included in the pooling.

For example, when we conducted CPECP on Firefox, the data from the remaining products

(MyISAM + InnoDB + Vuze + rTorrent) was used to test a prediction model.Illustration and

component of cross-product analysis is given in Chapter 3, Figure 3.3.

As explained previously, the modelling assessment steps for the CPECP analysis was adopted

from Alpaydin [7] and Montgomery [132]. The same methodology was used in section 5.1.1.

The general steps are:

• Aim: to determine whether using cross-product data is beneficial for constructing energy

consumption prediction and to identify the conditions under which cross-product data

should be preferred to within-company data. Data collection and processing are explained

in Chapter 4.

• Selecting the response variable: Response variable is energy consumption.

• Choosing factors and levels: The factors are input variables, standardization and di↵erent

datasets with fixed learning algorithm. The input variables are software code metrics,

103

Chapter 5. Proposed Prediction Models 5.2. Cross-Product Energy Consumption Prediction

LOC, LOCC, CC and MCC. Standardization technique is z-score standardization and

prediction is based on linear regression. More details are given in the following paragraphs.

• Choosing design: Test sets were built from Cross-Product (CP) data. Then, the model

learned from Within-Product (WP) data. WP data is a single product dataset and CP

data is all the other product datasets. Replication is also important and replication

number depends on the dataset size. In this study 100 replications were performed.

• Performing the prediction: Assessment is conducted using the R version 3.2.4 (2016-03-10)

tool. Linear model provided by The R Stats Package [146] was used.

• Analyzing the results: Model fit and performance assessments are done using a variety of

measures which are given in Chapter 2.

The CPECP analysis follows the R script-3 given in Appendix D.

From the model analysis in section 5.1 results, the models that have significance in 0.05

level and high predictive performance among the models for the each dataset were used for the

CP analysis.

5.2.2 Cross-Product Energy Consumption Prediction Results

Table 5.20 to Table 5.29 presents RMSE and PRED(25) results obtained from the CP analysis

with standard deviations in brackets. Moreover, a one-variable linear regression model with

LOC predictor fit plots for all datasets is given in Figure 5.19 to 5.23.

Table 5.20: DB2 dataset cross-product energy consumption prediction RMSE results.

Model

#

Predictor

Variables

WP

db2

CP

myisam

CP

innodb

CP

mysql

CP

firefox

CP

vuze

CP

rtorrent

CP

total

1 LOC 0.292 1.833 1.637 1.440 0.981 1.382 1.584 1.201

3 CC 0.316 1.533 1.769 1.400 0.985 1.382 1.581 1.185

4 MCC 0.318 1.553 1.780 1.398 0.986 1.383 1.585 1.174

5 LOC, LOCC 0.284 1.809 1.539 1.414 0.995 1.374 1.522 1.244

6 LOCC, CC 0.297 1.497 1.726 1.750 0.984 1.334 1.501 1.223

7 LOCC, MCC 0.298 1.510 1.697 1.330 0.987 1.365 1.503 1.213

104

Chapter 5. Proposed Prediction Models 5.2. Cross-Product Energy Consumption Prediction

Table 5.21: DB2 dataset cross-product energy consumption prediction PRED(25) results.

Model

#

Predictor

Variables

WP

DB2

CP

myisam

CP

innodb

CP

mysql

CP

firefox

CP

vuze

CP

rtorrent

CP

total

1 LOC 0.831 0.718 0.615 0.551 0.548 0.511 0.425 0.629

3 CC 0.792 0.717 0.627 0.518 0.534 0.509 0.415 0.620

4 MCC 0.766 0.718 0.628 0.520 0.530 0.501 0.406 0.618

5 LOC+LOCC 0.816 0.717 0.636 0.569 0.559 0.533 0.420 0.630

6 LOCC+CC 0.768 0.710 0.615 0.589 0.512 0.535 0.405 0.635

7 LOCC+MCC 0.818 0.716 0.628 0.600 0.515 0.540 0.414 0.640

Table 5.20 and 5.21 show DB2 models on CP analysis RMSE and PRED(25) results. RMSE

results revealed that there is no model that performed close to WP DB2. All the CP RMSE

results are approximately 5 times higher than WP DB2 RMSE results. Among all CP results,

all models shows the lowest error performance on Firefox dataset followed by Total dataset,

which contains all datasets except DB2. This may suggest that bigger datasets decrease the

accuracy of the model.

PRED(25) results show that (Table 5.21), in most of the datasets, Model#1 with LOC

predictor shows higher prediction performance, followed by Model#6 with LOCC and CC.

Prediction performance of MyISAM dataset has the closest performance to WP DB@ dataset

performance, followed by Total dataset and InnoDB dataset. All the models show around 71%

prediction performance on the MyISAM dataset, followed by Total with 63% and InnoDB with

62%. In summary, the analyzed models show around 30% lower prediction performance on

CP than on WP DB2. Among the one-variable models, Model#1 has the highest prediction

performance on WP with 83% and on all CP datasets with 57%. Model#6 has the highest

performance among the two-variable models on WP with 77% and on all CP datasets with

56%. Model#1 fit on WP DB2, CP Firefox and CP Total dataset are also given in Figure 5.19

(a-c).

Considering CP prediction results, all CP datasets show low accuracy (high RMSE), but

similar prediction performance, especially CP MyISAM, CP Total and CP InoDB. This may

suggest that products in the same domain show similar prediction performance. Moreover, the

success of cross-product energy consumption prediction is largely data-size driven.

From Table 5.22, MyISAM models on CP RMSE results revealed that there is no model

105

Chapter 5. Proposed Prediction Models 5.2. Cross-Product Energy Consumption Prediction

−1.5 −1.0 −0.5 0.0 0.5 1.0

−2
−1

0
1

2

Fitting MYSQL(myisam and innodb) data with DB2 Model#1 (LOC)

MYSQL(myisam and innodb) LOC

M
YS

Q
L(

m
yis

am
 a

nd
 in

no
db

) E
C

MySQL (myisam+Innodb) Actual

DB2 Actual

MySQL predicted using DB2

(a) Fitting MYSQL data with DB2

Model#1

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2
−1

0
1

2

Fitting Firefox data with DB2 Model#1 (LOC)

Firefox LOC

Fi
re

fo
x

EC

Firefox Actual

DB2 Actual

Firefox predicted using DB2

(b) Fitting Firefox data with DB2

Model#1

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2
−1

0
1

2

Fitting Total data with DB2 Model#1 (LOC)

Total LOC

To
ta

l E
C

Total Actual

DB2 Actual

Firefox predicted using DB2

(c) Fitting Total data with DB2

Model#1

Figure 5.19: Fitting MYSQL, Firefox and TOTAL data with DB2 Model#1 (LOC).

Table 5.22: MyISAM dataset Cross-product energy consumption prediction RMSE results.

Model

#

Predictor

Variables

WP

myisam

CP

db2

CP

innodb

CP

firefox

CP

vuze

CP

rtorrent

CP

total

1 LOC 0.560 1.771 0.933 1.414 1.285 1.060 1.373

5 LOC, CC 0.457 1.620 1.120 1.347 1.201 0.998 1.269

6 LOC, MCC 0.451 1.629 1.162 1.380 1.205 1.100 1.274

Table 5.23: MyISAM cross-product energy consumption prediction PRED(25) results.

Model

#

Predictor

Variables

WP

myisam

CP

db2

CP

innodb

CP

firefox

CP

vuze

CP

rtorrent

CP

total

1 LOC 0.817 0.528 0.632 0.548 0.576 0.305 0.791

5 LOC, CC 0.823 0.551 0.681 0.617 0.554 0.425 0.796

6 LOC, MCC 0.843 0.603 0.675 0.517 0.551 0.381 0.787

that performs closer to WP MyISAM. Among all CP results, all models behave di↵erently.

Model#5 and Model#6 have 5%-10% higher accuracy than Model#1. Regarding PRED(25),

all the models have high performance on Total CP with 79% followed by InnoDB with 66%

and Firefox 55%. When comparing all the models, Model#5 shows the highest prediction

performance on CP Total with 80% and CP innodb with 65%. Only Total dataset showed

close performance result to the WP. Summarizing the MyISAM CPECP results, it can be said

that all CP show low accuracy and medium to low prediction performance. In contrast to DB2

106

Chapter 5. Proposed Prediction Models 5.2. Cross-Product Energy Consumption Prediction

results, the same domain models do not lead to accurate predictions.

As an example, Model#1 fit plots are given in Figure 5.20 (a-b).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2
−1

0
1

2

Fitting DB2 data with MyISAM Model#1 (LOC)

DB2 LOC

DB
2

EC

DB2 Actual

MyISAM Actual

DB2 predicted using MyISAM

(a) Fitting DB2 data with MyISAM Model#1

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2
−1

0
1

2

Fitting TOTAL data with MyISAM Model#1 (LOC)

TOTAL LOC

TO
TA

L
EC

Total Actual

MyISAM Actual

Total predicted using MyISAM

(b) Fitting Total data with MyISAM Model#1

Figure 5.20: Fitting DB2 and TOTAL data with MyISAM Model#1 (LOC).

Table 5.24: InnoDB dataset cross-product energy consumption prediction RMSE results.

Model

#

Predictor

Variables

WP

innodb

CP

db2

CP

myisam

CP

firefox

CP

vuze

CP

rtorrent

CP

total

1 LOC 0.574 1.379 0.643 1.153 1.089 0.944 1.130

3 CC 0.659 1.677 1.011 1.446 1.236 1.033 1.309

4 MCC 0.622 1.680 1.013 1.456 1.234 1.027 1.312

5 LOC, CC 0.580 1.614 1.172 1.416 1.202 1.012 1.275

6 LOC, MCC 0.686 1.616 1.163 1.425 1.199 1.006 1.279

Table 5.24 and 5.25 present InnoDB models on CP analysis RMSE and PRED(25) results.

From Table 5.24 similar to other CP results, there is no model on CP that performs closer

to WP InnoDB. All CP results have 2 times lower accuracy than the WP results. Model #1

with LOC predictor has the highest accuracy across all CP results, followed by Model#5 and

Model#6. Model #1 performed at 10%-23% higher accuracy than all the other models on CP.

Regarding PRED(25), similar to MyISAM, all the InnoDB models performed well on CP

Total, followed by CP MyISAM. Unlike the RMSE results, the PRED(25) results revealed that

Model#6 has the highest performance among all CP. It showed 80% on WP InnoDB, followed

107

Chapter 5. Proposed Prediction Models 5.2. Cross-Product Energy Consumption Prediction

Table 5.25: InnoDB dataset cross-product energy consumption prediction PRED(25) results.

Model

#

Predictor

Variables

WP

innodb

CP

db2

CP

myisam

CP

firefox

CP

vuze

CP

rtorrent

CP

total

1 LOC 0.747 0.532 0.718 0.547 0.511 0.555 0.756

3 CC 0.791 0.570 0.675 0.476 0.509 0.378 0.744

4 MCC 0.801 0.540 0.726 0.505 0.562 0.385 0.776

5 LOC, CC 0.850 0.541 0.716 0.516 0.544 0.327 0.783

6 LOC, MCC 0.852 0.593 0.728 0.605 0.604 0.432 0.800

by 80% on CP Total, and 73% on CP MyISAM. As a summary, similar to MyISAM CPECP

results, all CP show low accuracy and medium to low prediction performance. Moreover, the

same domain models do not lead to accurate predictions.

As a model fit example, Model#1 fit on WP InnoDB, CP DB2 and CP Total datasets are

given in Figure 5.21 (a-c).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2
−1

0
1

2

Fitting DB2 data with InnoDB Model#1 (LOC)

DB2 LOC

DB
2

EC

DB2 Actual

InnoDB Actual

DB2 predicted using MyISAM

(a) Fitting DB2 data with InnoDB Model#1

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2
−1

0
1

2
3

Fitting TOTAL data with MyISAM Model#1 (LOC)

TOTAL LOC

TO
TA

L
EC

Total Actual

InnoDB Actual

Total predicted using InnoDB

(b) Fitting Total data with InnoDB Model#1

Figure 5.21: Fitting DB2 and TOTAL data with innoDB Model#1 (LOC).

From Table 5.26, WP Firefox models on CP analysis, except on CP DB2, all models show

low accuracy on CP datasets. Models are on CP DB2 have 35% higher accuracy than on WP

Firefox. Other CP results are 1.25 times higher than WP Firefox.

Regarding PRED(25) results, all models have 36% higher performance on CP MyISAM,

23% higher on CP InnoDB and 38% higher on MYSQL than on WP Firefox, followed by 10%

108

Chapter 5. Proposed Prediction Models 5.2. Cross-Product Energy Consumption Prediction

Table 5.26: Firefox dataset cross-product energy consumption prediction RMSE results.

Model

#

Predictor

Variables

WP

firefox

CP

db2

CP

myisam

CP

innodb

CP

mysql

CP

vuze

CP

rtorrent

CP

total

1 LOC 0.887 0.606 1.355 1.220 1.114 1.079 1.205 1.189

5 LOC, CC 0.921 0.604 1.346 1.266 1.105 1.081 1.207 1.192

6 LOC, MCC 0.897 0.602 1.371 1.255 1.111 1.079 1.206 1.189

Table 5.27: Firefox cross-product energy consumption prediction PRED(25) results.

Model

#

Predictor

Variables

WP

firefox

CP

db2

CP

myisam

CP

innodb

CP

mysql

CP

vuze

CP

rtorrent

CP

total

1 LOC 0.530 0.553 0.734 0.612 0.784 0.530 0.306 0.586

5 LOC, CC 0.553 0.541 0.713 0.616 0.731 0.45 0.298 0.575

6 LOC, MCC 0.575 0.614 0.695 0.681 0.767 0.501 0.291 0.583

higher on CP Total and CP DB2. Among the models, Model#1 have higher performance than

other models. As a model fit example, Model#1 fit on WP Firefox, on CP DB2 and on CP

Total are given in Figure 5.22 (a-c). Figures also confirm that Model#1 performed well on DB2

and on Total datasets.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2
−1

0
1

2
3

Fitting DB2 data with Firefox Model#1 (LOC)

DB2 LOC

DB
2

EC

DB2 Actual

Firefox Actual

DB2 predicted using Firefox

(a) Fitting DB2 data with Firefox Model#1

−1 0 1 2

−3
−2

−1
0

1
2

3

Fitting TOTAL data with Firefox Model#1 (LOC)

TOTAL LOC

TO
TA

L
EC

Total Actual

Firefox Actual

Total predicted using Firefox

(b) Fitting Total data with Firefox Model#1

Figure 5.22: Fitting DB2 and TOTAL data with Firefox Model#1 (LOC).

109

Chapter 5. Proposed Prediction Models 5.2. Cross-Product Energy Consumption Prediction

Table 5.28: rTorrent cross-product energy consumption prediction RMSE results.

Model

#

Predictor

Variables

WP

torrent

CP

db2

CP

myisam

CP

innodb

CP

mysql

CP

vuze

CP

firefox

CP

total

1 LOC 0.835 1.277 0.739 0.890 1.024 1.042 1.160 1.147

3 CC 0.849 1.269 0.945 0.781 1.036 1.035 1.151 1.142

4 MCC 0.846 1.274 0.936 0.780 1.038 1.037 1.152 1.150

5 LOCC, CC 0.906 1.278 0.945 0.779 1.037 1.038 1.163 1.148

Table 5.29: rTorrent cross-product energy consumption prediction PRED(25) results.

Model

#

Predictor

Variables

WP

torrent

CP

db2

CP

myisam

CP

innodb

CP

mysql

CP

vuze

CP

firefox

CP

total

1 LOC 0.402 0.594 0.719 0.641 0.475 0.535 0.527 0.551

3 CC 0.364 0.482 0.685 0.723 0.550 0.504 0.511 0.575

4 MCC 0.403 0.626 0.660 0.710 0.598 0.512 0.496 0.545

5 LOCC, CC 0.349 0.476 0.729 0.728 0.510 0.530 0.564 0.567

From Table 5.28 rTorrent models on CP analysis showed similar results to DB2, MyISAM

and InnoDB CPECP analysis. All the models have 65% lower accuracy on CP DB2, 30% lower

on CP Firefox and CP Vuze, and 47% lower on CP Total than on WP rTorrent. Model#1,

Model#4 and Model#5 showed 15% higher accuracy on CP InnoDB than on WP rTottent.

Similarly, Model#1 on CP MyISAM showed 12% lower accuracy than on WP rTorrent.

Regarding PRED(25) results from Table5.29, all models showed 75% higher prediction per-

formance on CP MyISAM and CP InnoDB, 37% on CP DB2 and 33% on the rest of the CP

datasets. On CP DB2, CP MyISAM and CP InnoDB, Model#3 and Model#1 have higher

prediction performance than Model#4 and Model#5. In summary, similar to Firefox CPECP

analysis results, rTorrent models have a better performance on CP than on WP. As a model fit

example, Model#1 fit on WP rTorrent, CP DB2 and CP Total are given in Figure 5.23 (a-c).

Figures also confirm that Model#1 performed better on CP Total than on CP DB2 datasets.

110

Chapter 5. Proposed Prediction Models 5.2. Cross-Product Energy Consumption Prediction

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2
−1

0
1

2
3

Fitting DB2 data with Torrent Model#1 (LOC)

DB2 LOC

DB
2

EC

DB2 Actual

rTorrent Actual

DB2 predicted using rTorrent

(a) Fitting DB2 data with rTorrent Model#1

−2 −1 0 1 2

−3
−2

−1
0

1
2

3

Fitting TOTAL data with rTorrent Model#1 (LOC)

TOTAL LOC

TO
TA

L
EC

Total Actual

rTorrent Actual

Total predicted using rTorrent

(b) Fitting Total data with rTorrent Model#1

Figure 5.23: Fitting DB2 and TOTAL data with rTorrent Model#1 (LOC).

5.2.3 Cross-Product Energy Consumption Prediction Discussion

When considering CP prediction results, all CPs showed higher RMSEs and higher prediction

performance (PRED(25)) than WPs. Only prediction performance (PRED(25)) results, which

are close to WPs were obtained from CP Total datasets. This may indicate that the success of

cross-product energy consumption prediction is largely data-size driven.

One interesting result obtained from cross-product analysis is that, models that come from

the same domain had no e↵ect on lowering error or increasing performance on CP. Having DB2

and MYSQL in the database domain, models on DB2 failed to predict MYSQL (MyISAM and

InnoDB). The opposite direction also did not work out, both in terms of RMSE and PRED(25).

Although DB2 and MYSQL are database products, they may not share the same components.

DB2 is a “closed source” database product, whereas MYSQL is an “open-source” and their

development organizations and their priorities are di↵erent. To summarize, DB2 and MYSQL

share similar features and components because of their common domain; however, they are

di↵erent in the process and tools used for their development. Same domain insights need

further analysis and more data from di↵erent products from the same domain.

Unlike the same-domain cross-product results (DB2 and MYSQL), there were decreases in

di↵erent-domain cross-product prediction performance (PRED(25)) and no improvement on

accuracy results. Therefore, cross-product prediction does not work well. For example, DB2

models were able to predict Firefox. Similarly, MyISAM and InnoDB had better performance

on Firefox than on other products. The reasons may be due to the product heterogeneity or

domain source code characteristics. The results of cross-product prediction somewhat confirms

the results of previous literature conclusions in the context of defect prediction. For example,

111

Chapter 5. Proposed Prediction Models 5.2. Cross-Product Energy Consumption Prediction

Zimmermann et al. [213], Turhan et al. [189] and Canfora et al. [32] showed that cross-project

prediction is not always successful.

When using all data as the Total dataset, the proposed models show better prediction

performance than individual CP datasets. This may be explained with the increase in data size

with di↵erent . When test data size increases cross-product prediction performance (PRED(25))

increases.

In summary, cross-product energy prediction is important for products with little or insuf-

ficient data to build prediction models. The results suggest that data size seemed to be crucial

factors. However, on analyzed datasets there was no model that led to success in CPECP. In

the case of di↵erent domains, it will not be possible to reuse the prediction model in same do-

main products. These results are limited to the datasets that were used in this study. In order

to have more substantial outcome, the analysis will need to be replicated with more product

datasets.

112

Chapter 6

Conclusions, Threats to Validity and

Future Directions

This chapter presents a summary of the results and RQ evaluation followed by theoretical and

practical contributions, and threats to validity. The chapter concludes with future directions.

6.1 Summary of Results

In applied sciences, study results should be beneficial to both academia and to industry. In

the software engineering domain, study results (theoretical or experimental) should guide both

software companies and researchers in academia. Therefore, while summarizing and generalizing

the results, they need to be precisely presented.

The aim of this doctoral research is to predict the energy consumption of software products

using a random e↵ect based approach and classical linear-regression-based approach. Empirical

findings on five di↵erent software products suggest that the e↵ects of software code attributes

and their relationships on software energy consumption are worthy of investigation. However,

size, process and cyclomatic complexity metrics are not enough when designing software in

order to e↵ectively control its energy consumption. There are other factors that needs to

be considered together with size and complexity. Although it seems that software releases

are irrelevant, it has been found that product release have an e↵ect on energy consumption.

Performance of the mature product releases plays a role when comparing energy consumption

among the product releases. In addition, cross-product analysis results suggest that cross-

product data for energy consumption prediction may not feasible to use. More real world

applications need to be analized with more product data. Similar to previous within-company

cross-company predictive studies in software engineering (see Chapter 2), it is concluded that

113

Chapter 6. Conclusions, Threats to Validity and Future Directions 6.1. Summary of Results

using products data in the same domain or di↵erent domain does not achieve accurate prediction

models on energy consumption. Development process, data characteristics and domain need to

be quantified, understood and evaluated before prediction models are built and used. Therefore,

more studies with real world applications and with more products, di↵erent metrics, and more

product characteristics are required.

6.1.1 Research Question Evaluation

This section summarizes the answers to the research question, according to the findings in

Chapter 4 and Chapter 5.

6.1.2 RQ: How can we build a prediction model based on static code at-

tributes to predict the energy consumption of software?

The aim of the study was to investigate the relationship between static code attributes and

energy consumption of a software product. The findings of this study suggest relationships

between energy consumption and size, energy consumption and complexity on analized datasets.

Based on the correlation analysis, one- and two-variable random e↵ect regression model and

classic linear regression model are proposed.

Random-e↵ect model is a successful modelling approach for grouped data structures ac-

counting individual- and group-level variation in estimating group-level regression coe�cients.

This approach also has advantages regarding unobservable e↵ects. Therefore, it is well suited

to the DB2 dataset. Classic linear-regression is well suited to the problem since (i) it uses rela-

tionships between input and output variables and (ii) it can be built using continuous variables.

Thus, both modelling approaches were analized on di↵erent datasets.

Two data collection approaches were adopted: observational data collection by measuring

one software product and data extraction from software repositories. Results showed that the

proposed random-e↵ect one-variable model with LOC as a predictor had prediction performance

upto 83% with less than 25% RMSE-MAE on the DB2 dataset. Simple linear regression model

with LOC as a predictor had a performance around 75% with less than 50% RMSE-MAE on

the MyISAM and InnoDB datasets. A proposed random e↵ect two-variable model with LOC

and LOCC had performance of 86% with less than 25% accuracy on DB2 dataset, while models

with LOCC and CC/MCC had performances 81% with less than 25% accuracy on DB2 dataset.

In MYSQL datasets, two-variable models with LOC and CC/MCC were able to predict 80-85%

EC with 45% RMSE-MAE. One-variable models are able to predict only up to 57% EC with

60% RMSE in Firefox dataset. Similar to Firefox, in dataset rTorrent, one-variable models

were only able to predict up to 40% with less than 50% accuracy. Finally, no model was able

114

Chapter 6. Conclusions, Threats to Validity and Future Directions 6.2. Research Contributions

to be proposed on Vuze dataset.

In summary, the research findings suggest that cyclomatic complexity, size and code change

metrics are not su�cient to consistently predict energy consumption.

After the prediction models built WP, model performances on CP data was investigated and

the results were compared. The results of these experiments showed that WP models were able

to predict EC with 80-85% (PRED(25)) performance, on the other hand, CP analysis showed 60-

65% (PRED(25)) performance on predicting EC. While WP models were able to predict 80-85%

of WP data, they were only able to predict only 50-60% of CP data. Moreover, WP models were

able to predict 65-75% of a CP dataset, which is a pool of all the product‘s data. But, in all CP

analysis, accuracy of the predictions were quite low. In summary, single CP data had no e↵ect

on increasing the prediction of EC, but pooled CP data showed close prediction performance

to WP data. As stated in section 3.3.1, software reliability prediction guidelines suggest that

a good model has a higher than 75% prediction performance. However, based on knowledge,

there is no adopted guideline for energy consumption prediction performance. Therefore, only

for the purpose of this study, higher than 70% would be adequate for performance.

6.2 Research Contributions

6.2.1 Theoretical and Methodological Contribution

The theoretical and methodological contributions of this dissertation are summarized as follows:

In this dissertation, a thorough analysis of a relationship of software metrics with energy

consumption were conducted.

Recent research in software energy consumption have utilized correlations and only one of

them used a linear model on one product [129]. Moreover, all of the research to date only

investigated open source software products. This research contributes to the investigation with

closed-source software product as well. Moreover, a methodology was suggested incorporating

observational data collection, which includes energy consumption measurements and software

code metrics extraction, with mining software repositories. Relationships were also investigated

based on statistical tests strengthened with graphical analysis. Similar relationship analysis us-

ing code metrics were previously conducted in the literature [83]. In this dissertation, previous

studies are improved upon considering complexity metrics and using various open source prod-

ucts and one closed source product.

A set of well-defined observational data collection and software repository mining followed

by a regression analysis were performed during the model constructions. This allows other re-

searchers to replicate the methodology. Reproducibility of empirical studies is a very important

115

Chapter 6. Conclusions, Threats to Validity and Future Directions 6.2. Research Contributions

property in the software engineering domain. Unfortunately, there is a lack of publicly available

datasets in software engineering, especially in the context of industrial energy data, as it is hard

to collect. Therefore, constructing another dataset provides an important resource for software

energy consumption studies. However, due to the confidentiality of IBM product, the dataset

will not be available to public.

The study also investigated cross-product energy consumption prediction. Cross-product

analysis is important for software projects with little or insu�cient data to build prediction

models. Although, there are a number of cross-project studies on software defect prediction and

cost estimation, until now there has been no study in building energy consumption prediction

models using cross-product data. To the best of our knowledge, this study is the first to use

within-product and cross-product approaches in the software energy consumption prediction

context.

Practical Implications

The aforementioned contributions also have practical implications, which are discussed as fol-

lows:

Energy e�ciency and related measurements and tools are gaining increasing attention in

software engineering practices. Monitoring and modelling energy consumption of software prod-

ucts and software intensive systems are yet to become mainstream in practice. Thus, it is nec-

essary to investigate how to assess software energy consumption for stimulating the awareness

of energy e�ciency beginning in the early phases of the software development life cycle.

As discussed in Chapter 5, energy measurements were taken by an external device. Mon-

itoring system consumption does not alter system state, hence, if one would like to conduct

performance and measurements simultaneously, an external hardware device is safer to use. As

explained, the process of incorporating an external measurement device is relatively straightfor-

ward: the energy measuring device has to be attached to the power of the system being tested

and take the measurements before and after the test to compute the consumption for a given

test. Note that the measurement process can be automated, as the measuring device provides

programmatic access to the data. Although it is argued that measuring energy consumption

directly from the incorporated external device is not an easy choice, it requires significant in-

vestments in terms of resources, specialized knowledge [104], and benchmark data. Predicting

energy consumption from static code attributes would enable the software teams to re-factor

the code before execution. The empirical study showed that energy consumption prediction

is complicated. The findings suggest there are relationships between energy consumption and

code attributes. However, size, process and complexity attributes are not strong predictors of

116

Chapter 6. Conclusions, Threats to Validity and Future Directions 6.2. Research Contributions

energy consumption. It is important to note that, size and complexity metrics findings may

be helpful in highlighting performance departures from design principles. In the explanatory

analysis, version e↵ect were identified and evaluated with the random e↵ect model approach.

Other factors which may e↵ect on energy consumption must be quantified, understood and

evaluated before prediction models are built and used.

It was observed that a product such as DB2 may be optimized by only changing one variable

and hence the energy e�ciency has nothing to do with the size or complexity of the product.

In that case, static code attributes can not give any information and therefore the software

company should look for collecting runtime metrics in order to predict the energy consumption.

As seen in the literature of predictive models in software engineering, there is no specific set

of metrics that should be used in any prediction. It would be useful to extract a common set of

metrics, which proved to be significant indicators of product energy consumption. Although,

suggested relationships between static code attributes and energy consumption are promising,

runtime metrics need to be collected to build a model with high predictive performance. For

example, extract significant events and/or operational metrics (i.e. the number of queries

executed by a system, the time spent in a particular function, etc.) at runtime. However,

di�culty of collecting run time metrics, easily accessible static code attributes provide support

for future investigation.

In order to assess proposed model performances, three di↵erent measures are presented:

MAE, RMSE, and PRED(25). In practice; however, companies may use only a single measure.

PRED(k) measure would be the most practical to use, since PRED(k) would evaluate the

overall success of a model in terms of variance of its predictions. In order to use this measure,

practitioners need to set their own threshold (k) for a model. For example, if they set their “k”

as being 25 that means their model should predict at least 75% of data with 25% error or less.

Considering the CPECP analysis, the results showed that, overall, the CP prediction for

single-product were significantly worse than the WP predictions for single-product. None of

the models had higher accuracy than the WP. Thus, development companies need their own

dataset (a single-product dataset) to build more accurate energy consumption prediction.

Overall, the findings provide insights to both practitioners and researchers with a foundation

of knowledge that static code attributes may give some insights, but they would not be the sole

predictors of energy consumption of software products. Developers may benefits from finding

when assessing the energy footprint and performance of their product with the help of software

metrics which would support developing green software; researchers may use the findings for

building foundation for models predicting energy consumption.

117

Chapter 6. Conclusions, Threats to Validity and Future Directions 6.3. Threats to Validity

6.3 Threats to Validity

In this section, the possible threats to validity and their mitigation are presented. There

are di↵erent types of validity when trying to develop a model to understand experiments in

complex settings. The most commonly used and general types are internal validity and external

validity [42]. Furthermore, construct validity is defined in order to consider the generalizability

of experiments across di↵erent settings. Cook and Campbell [30, 31] suggest that, statistical

conclusion validity should be defined as a special case of internal validity in order to consider

sources of random error and the appropriate use of statistics and statistical tests. Therefore,

in this research, possible threats are underlined to internal, external, construct and conclusion

validities.

6.3.1 Construct Validity

Threats to construct validity a↵ect the degree to which the measures capture the concepts of

interest in the experiment [163, 45]. The following construct validity threats are identified and

their mitigations are explained.

• Metric selection. One limitation is the selection of the metrics for the the study. To

mitigate this threat, metrics were chosen from the set of metrics that can be calculated

from direct measurements and extractions. Moreover, the metrics represent the most

commonly used software static code attributes, which are size, complexity and code change

for estimation and prediction studies. Static code attributes have very good reasons to be

used in estimation and prediction studies: they are easy to collect and widely used [123].

• Model selection. It is stated that relationships between metrics are a major part of the

research and these relationships should be identified in order to construct an e↵ective

model. Regression models suggest relations between metrics representing size, complexity

and processes. Moreover, all the variables in this study are continuous variables. Regres-

sion is simple and commonly used in previous studies. As for grouped data structure,

fixed/random e↵ect model approach is commonly used approach. Therefore, classic re-

gression and fixed/random e↵ect regression are the most well-known choices for modelling

energy consumption on this study datasets.

• Performance measure selection. Another limitation is selection of performance measures

for accessing the models. To overcome threats of selecting the right performance mea-

sures, various, most commonly used, performance measures are chosen. These measures

have been used in e↵ort estimation studies (e.g., [95, 14, 152]) and in cross-project ef-

118

Chapter 6. Conclusions, Threats to Validity and Future Directions 6.3. Threats to Validity

fort prediction studies (e.g.,[127]). Therefore, MAE, RMSE and PRED(k) values were

reported.

6.3.2 Conclusion Validity

Conclusion validity concerns the relation between the treatment and the outcome [31]. The

following threats to conclusion validity are identified:

• Data heterogeneity. In the literature it is stated that the level of heterogeneity of the

data may vary and influence WP models’ performance (e.g., [119, 127]). To mitigate the

data heterogeneity threat, z-score standardization was performed. A similar approach

was applied by Minku and Yao [127] and Canfora et al. [32].

• Statistical tests. Statistical significance of relationships of metrics were checked using

Pearson’s correlation test, which is relevant for this study‘s variables. Significance test

and scatter plots were are also used due to independence of a relation between two vari-

ables from distributions of data. Moreover, considering linear regression assumptions, all

the assumptions were checked using various tests and residual plots. Thus, selecting ap-

propriate tests were considered during the experiments in order to validate assumptions

implied by several tests.

• Accuracy and consistency of measurements. In order to maintain accuracy of results

and reduce measurement error, all the observational data collection tests were repeated

10 times. To ensure consistency of measurement and workload between two databased

products, the same standard benchmark TPC-H workloads were run in data collection of

DB2.

6.3.3 Internal Validity

Threats to internal validity a↵ect the interpretation of the results. Internal validity is concerned

with the uncontrolled factors that might a↵ect the results of the experiments [97, 163]. The

following threats to internal validity were identified:

• Data collection. Data collection is a challenging task in software engineering studies.

In order to avoid bias during data collection, data collection guidelines for empirical

studies were followed. For extraction required code metrics, the most commonly used code

extraction tools were utilized. The results of the experiments and source code metrics

were stored in a local computer and results and tests were automatically generated using R

scripts. Furthermore, possible outliers in datasets, which may occur due to measurement

error or miscalculation of metrics were investigated and removed.

119

Chapter 6. Conclusions, Threats to Validity and Future Directions 6.3. Threats to Validity

• Instrumentation. Changes in measuring instrumentation or changes in observers used

may produce changes in obtained measurements. To mitigate this threat, all the mea-

surements regarding DB2 were conducted in the same test setup, as explained in Chapter

4. Regarding metric extractions, for all DB2 and MYSQL releases the same metric ex-

traction tools were used. Similarly, for Firefox, Vuze and Torrent releases the same metric

extraction tools were used.

• EC measurement reliability. Using open source EC measurements data may bring another

treat to the internal validity. However, EC data of four products and various analysis that

were done using these data have been published in peer-reviewed conferences and journals.

Therefore, this threat were addressed.

• Omitted variable bias. Unobservable factors that simultaneously a↵ect the outcome of the

regression may create an omitted variable bias. All the variables that have measurements

in this study were used. There may be other factors that may a↵ect the results, however,

there were no measurements of such factors. Fixed/random e↵ect and/or instrumen-

tal variables can mitigate or eliminate the bias [49]. Therefore, the used fixed/random

modelling approach for clustered data mitigates this potential threat as it introduces

fixed/random e↵ects.

• Grouped data structure. Grouped (clustered) structure of DB2 dataset was a major inter-

nal threat. Individual groups may a↵ect the outcome of the prediction. Thus, each DB2

version group was analyzed individually. However. individual group analysis reduced

the e↵ective sample size, which, in turn a↵ected the model results. In order to analyzed

group e↵ect on whole DB2 dataset without splitting the version groups, fixed/random

e↵ect modelling approach were used.

6.3.4 External Validity

External validity refers to the extent to which the results of the study can be disseminated to

the outside world and be used more generally, rather than being limited to the scope of the

study [97, 163].

• Generalizability of results. As described by Basili et al. [13] and Wieringa & Daneva [200]

ware engineering studies su↵er from the variability of the real world, and the generalization

problem cannot be solved completely. As they indicate, to build a theory we need to

generalize to a theoretical population and have adequate knowledge of the architectural

similarity relation that defines the theoretical population.

120

Chapter 6. Conclusions, Threats to Validity and Future Directions 6.4. Future Directions

Each product has unique characteristics, in terms of software processes, the product and

the organization it belongs to. Thus, major results that influence software engineering

practice rely on accumulation of evidence from many di↵erent products. Each individual

research provides incremental knowledge, and collections of related research and reports

provide both confirming and cumulative evidence [89].

Two database products, two Torrent trackers, and one web-browser were studied. The

generalization to other database products, Torrent trackers, or other software products

is, obviously, not possible. In this study, we do not aim build a theory, rather we would

like to have a deeper understating of relationship between energy consumption and code

attributes.

6.4 Future Directions

Software energy e�ciency has gained importance in the software engineering community, but

many challenges remain. The findings of this study provide basis for future research agenda

on conducting more observational studies with di↵erent products and new sets of software

metrics. Consequently, future aim is to build robust predictive models and integrate them

into daily software development activities, so that software practitioners and decision makers

may use such models in their decision making processes to define policies and contribute to

environmental sustainability by decreasing their product footprint.

The next e↵ort in energy prediction will be to develop benchmarks and benchmark data

suitable for di↵erent domains (e.g., browser testing and streaming software testing) and to

develop automated prediction and to design recommendations for software products. This will

provide more experimentation and maturity to the area of energy e�cient software design.

Another future direction is to extract run time metrics and predict run time software energy

consumption behavior.

121

Appendix A

Python Script for downloading source code from mercurial repository

122

Appendix A. Python Script for downloading source code from mercurial repository

Python Script-1

1 import csv
2 import requests, zipfile, io
3 import os
4 from urllib2 import urlopen, URLError, HTTPError
5 def dlfile(url):
6 # Open the url
7 try:
8 f = urlopen(url)
9 print "downloading " + url

10 # Open our local file for writing
11 with open(os.path.basename(url), "wb") as local file:
12 local file.write(f.read())
13 #handle errors
14 except HTTPError, e:
15 print "HTTP Error:", e.code, url
16 except URLError, e:
17 print "URL Error:", e.reason, url
18 reader = csv.reader(open("mozilla directories.csv", "rb"))
19 for row in reader:
20 row = ".join(row)
21 url = ’https://hg.mozilla.org/releases/mozilla-1.9.1/archive/’ + row +’. -

tar.bz2’
22 print url
23 dlfile(url)

Assignment 5 Page 1

123

Appendix B

R Script for constructing linear regression model and performance evaluations

124

Appendix B. R Script for constructing linear regression model and performance evaluations

R Script-1

1 db2<- read.csv("DB2_all_model.csv") #reading db2 data
2 # Now Let’s write standardization function Z-score
3 standard_sd <- function (x) {return((x-mean(x))/(sd(x)))}
4 db2<- as.data.frame(lapply(db2, standard_sd)) #compute standardization
5 #Now lets run one-variable linear regression model
6 model_1<- lm(EC~LOC, db2)
7 summary(model1) #summary of model for p-value and R-squared
8 #Now doing Machine Learning and Calculating MAE, RMSE and Pred (25)
9 # 100 random replication for MAE

10 rep<-replicate(100,
11 {
12 db2_1 <- sample(nrow(db2), floor(nrow(db2)*0.7)) # train-test (70-30)
13 train <- db2[db2_1,]
14 test <- db2[-db2_1,]
15 model1 <- lm(EC ~ LOC, data=train) # build the model with LOC
16 predict<- predict(model1, test) # predict EC on test dataset
17 errors <- predict - test$EC
18 mae<-mean(abs(errors))
19 mae
20 })
21 mean(rep) #calculating MAE mean of 100 replication
22 # 100 random replication for RMSE
23 rep<-replicate(100,
24 {
25 db2_1 <- sample(nrow(db2), floor(nrow(db2)*0.7)) # train-test (70-30)
26 train <- db2[db2_1,]
27 test <- db2[-db2_1,]
28 model1 <- lm(EC ~ LOC, data=train) # build the model with LOC
29 predict<- predict(model1, test) # predict EC on test dataset
30 RMSE<- RMSE(predict, test$EC) # calculating RMSE on test dataset
31 RMSE})
32 mean(rep) #calculating RMSE mean of 100 replication
33 # 100 random replication for Pred(25)
34 rep<-replicate(100,
35 {
36 db2_1 <- sample(nrow(db2), floor(nrow(db2)*0.7)) #train-test (70-30)
37 train <- db2[db2_1,]
38 test <- db2[-db2_1,]
39 model1 <- lm(EC ~ LOC, data=train) # build the model with LOC
40 predict<- predict(model1, test) # predict EC on test dataset
41 errors <- predict - test$EC
42 rel_change <- 1 - ((test$EC - abs(errors)) / test$EC)
43 table(rel_change<0.25)["TRUE"] / nrow(test)
44 })
45 mean(rep) #calculating Pred(25) mean of 100 replication

1

125

Appendix C

R Script for constructing random e↵ect linear model.

126

Appendix C. R Script for constructing random e↵ect linear model.

R Script-2

1 install.packages("lme4") #linear Mixed Effect model package
2 install.packages("lmerTest") #Tests in Linear Mixed Effects Models
3 db2<- read.csv("DB2_all_model.csv") #reading db2 data
4 # Now Let’s write standardization function Z-score
5 standard_sd <- function (x) {return((x-mean(x))/(sd(x)))}
6 db2<- as.data.frame(lapply(db2, standard_sd)) #compute standardization
7 #Now lets run one-variable random effect (version) linear regression model
8 model_1<- lmer(EC ~ LOC + (1+LOC|version), REML=FALSE, data=db2)
9 summary(model1) #summary of model

10 ranef(model1) #random effect coefficients
11 fixef(model1) #fixed effect coefficients
12 #Now doing Machine Learning and Calculating MAE, RMSE and Pred (25)
13 # 100 random replication for MAE
14 rep<-replicate(100,
15 {db2_1 <- sample(nrow(db2), floor(nrow(db2)*0.7)) # train-test (70-30)
16 train <- db2[db2_1,]
17 test <- db2[-db2_1,]
18 model_1<- lmer(EC ~ LOC + (1+LOC|version), REML=FALSE, data=train)
19 predict<- predict(model1, test, re.form=NA) # predict EC on test -

dataset
20 errors <- predict - test$EC
21 mae<-mean(abs(errors))
22 mae})
23 mean(rep) #calculating MAE mean of 100 replication
24 # 100 random replication for RMSE
25 rep<-replicate(100,
26 {db2_1 <- sample(nrow(db2), floor(nrow(db2)*0.7)) # train-test (70-30)
27 train <- db2[db2_1,]
28 test <- db2[-db2_1,]
29 model1 <- lm(EC ~ LOC, data=train) # build the model with LOC
30 predict<- predict(model1, test) # predict EC on test dataset
31 RMSE<- RMSE(predict, test$EC) #calculating RMSE on test dataset
32 RMSE})
33 mean(rep) #calculating RMSE mean of 100 replication
34 # 100 random replication for Pred(25)
35 rep<-replicate(100,
36 {db2_1 <- sample(nrow(db2), floor(nrow(db2)*0.7)) #train-test (70-30)
37 train <- db2[db2_1,]
38 test <- db2[-db2_1,]
39 model_1<- lmer(EC ~ LOC + (1+LOC|version), REML=FALSE, data=train)
40 predict<- predict(model1, test) # predict EC on test dataset
41 errors <- predict - test$EC
42 rel_change <- 1 - ((test$EC - abs(errors)) / test$EC)
43 table(rel_change<0.25)["TRUE"] / nrow(test)})
44 mean(rep) #calculating Pred(25) mean of 100 replication

1

127

Appendix D

R Script for cross-product analysis.

128

Appendix D. R Script for cross-product analysis.

R Script-3

1 db2<- read.csv("DB2_all_model.csv") #reading db2 data
2 mysql<-read.csv("MYSQL_all_model.csv") #reading mysql data
3 # Now Let’s write standardization function Z-score
4 standard_sd <- function (x) {return((x-mean(x))/(sd(x)))}
5 db2<- as.data.frame(lapply(db2, standard_sd)) #compute standardization
6 mysql<- as.data.frame(lapply(mysql, standard_sd)) #compute standardization
7 #Now lets run one-variable random effect (version) linear regression model
8 model_1<- lmer(EC ~ LOC + (1+LOC|version), data=db2, REML = FALSE)
9 #Now doing Cross-product analysis and Calculating MAE, RMSE and Pred (25)

10 # 100 random replication for MAE
11 rep<-replicate(100,
12 {
13 train <- db2
14 test <- mysql
15 model_1<- lmer(EC ~ LOC + (1+LOC|version), data=train, REML = FALSE) # -

model on train dataset
16 predict<- predict(model1, test, re.form=NA) # predict EC on test -

dataset
17 errors <- predict - test$EC
18 mae<-mean(abs(errors))
19 mae})
20 mean(rep) #calculating MAE mean of 100 replication
21 # 100 random replication for RMSE
22 rep<-replicate(100,
23 {
24 train <- db2
25 test <- mysql
26 model_1<- lmer(EC ~ LOC + (1+LOC|version), data=train, REML = FALSE)
27 predict<- predict(model1, test, re.form=NA) # predict EC on test -

dataset
28 RMSE<- RMSE(predict, test$EC) #calculating RMSE on test dataset
29 RMSE})
30 mean(rep) #calculating RMSE mean of 100 replication
31 # 100 random replication for Pred(25)
32 rep<-replicate(100,
33 {
34 train <- db2
35 test <- mysql
36 model_1<- lmer(EC ~ LOC + (1+LOC|version), data=train, REML = FALSE)
37 predict<- predict(model1, test, re.form=NA) # predict EC on test -

dataset
38 errors <- predict - test$EC
39 rel_change <- 1 - ((test$EC - abs(errors)) / test$EC)
40 table(rel_change<0.25)["TRUE"] / nrow(test)})
41 mean(rep) #calculating Pred(25) mean of 100 replication

1

129

References

[1] Marc Aerts, Geert Molenberghs, Louise M Ryan, and Helena Geys. Topics in modelling

of clustered data. CRC Press, 2002.

[2] International Energy Agency. Appliances and equipment cross sectoral energy e�ciency

indicators, (accessed March, 2016). http://iea.org/topics/energyefficiency/.

[3] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules between

sets of items in large databases. In Acm sigmod record, volume 22, pages 207–216. ACM,

1993.

[4] Alan Agresti, James G Booth, James P Hobert, and Brian Ca↵o. 2. random-e↵ects

modeling of categorical response data. Sociological Methodology, 30(1):27–80, 2000.

[5] Zainab Al-Zanbouri. Database engines: Evolution of greeness. Master’s thesis, Ryerson

University, 2015.

[6] Allan J. Albrecht and John E Ga↵ney. Software function, source lines of code, and de-

velopment e↵ort prediction: a software science validation. IEEE transactions on software

engineering, 1(6):639–648, 1983.

[7] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.

[8] Nadine Amsel and Bill Tomlinson. Green tracker: a tool for estimating the energy con-

sumption of software. In CHI’10 Extended Abstracts on Human Factors in Computing

Systems, pages 3337–3342. ACM, 2010.

[9] Inc. Azureus Software. Vuze project, (accessed September, 2016). http://www.vuze.com.

[10] Victor R Basili. Quantitative evaluation of software methodology. Technical report, DTIC

Document, 1985.

130

References References

[11] Victor R Basili. The experimental paradigm in software engineering. In Experimental

Software Engineering Issues: Critical Assessment and Future Directions, pages 1–12.

Springer, 1993.

[12] Victor R Basili. The role of experimentation in software engineering: past, current, and

future. In Proceedings of the 18th international conference on Software engineering, pages

442–449. IEEE Computer Society, 1996.

[13] Victor R Basili, Forrest Shull, and Filippo Lanubile. Building knowledge through families

of experiments. Software Engineering, IEEE Transactions on, 25(4):456–473, 1999.

[14] Bilge Baskeles, Burak Turhan, and Ayse Bener. Software e↵ort estimation using ma-

chine learning methods. In Computer and information sciences, 2007. iscis 2007. 22nd

international symposium on, pages 1–6. IEEE, 2007.

[15] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting linear mixed-

e↵ects models using lme4. arXiv preprint arXiv:1406.5823, 2014.

[16] Ayse Bener, A Misirli, Bora Caglayan, Ekrem Kocaguneli, and Gul Calikli. Lessons

learned from software analytics in practice. The art and science of analyzing software

data, 1st edn. Elsevier, Waltham, pages 453–489, 2015.

[17] Ricardo Bianchini and Ram Rajamony. Power and energy management for server systems.

Computer, 11:68–74, 2004.

[18] Serdar Biçer, Ayşe Başar Bener, and Bora Çağlayan. Defect prediction using social

network analysis on issue repositories. In Proceedings of the 2011 International Conference

on Software and Systems Process, pages 63–71. ACM, 2011.

[19] Christian Bird, Tim Menzies, and Thomas Zimmermann. The Art and Science of Ana-

lyzing Software Data. Elsevier, 2015.

[20] Christopher M Bishop. Pattern recognition. Machine Learning, 128:1–58, 2006.

[21] Barry W Boehm, Ray Madachy, Bert Steece, et al. Software cost estimation with Cocomo

II with Cdrom. Prentice Hall PTR, 2000.

[22] Barry W Boehm and Ricardo Valerdi. Achievements and challenges in cocomo-based

software resource estimation. IEEE software, 25(5), 2008.

131

References References

[23] Peter Boncz, Thomas Neumann, and Orri Erling. Tpc-h analyzed: Hidden messages and

lessons learned from an influential benchmark. In Technology Conference on Performance

Evaluation and Benchmarking, pages 61–76. Springer, 2013.

[24] Grady Booch. Software engineering in practice keynote: The future of software engineer-

ing. In ICSE15: Proc. of the 37th Intl. Conf. on Software Engineering, 2015. Available

at: https://www.youtube.com/watch?v=h1TGJJ-F-fE.

[25] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for

architectural-level power analysis and optimizations, volume 28–2. ACM, 2000.

[26] Göran Broström and Henrik Holmberg. Generalized linear models with clustered data:

Fixed and random e↵ects models. Computational Statistics & Data Analysis, 55(12):3123–

3134, 2011.

[27] Christian Bunse, Zur Schwedenschanze, and Sebastian Stiemer. On the energy consump-

tion of design patterns. In Proceedings of the 2nd Workshop EASED@ BUIS Energy

Aware Software-Engineering and Development, pages 7–8. Citeseer, 2013.

[28] Bora Caglayan, Ayse Bener, and Stefan Koch. Merits of using repository metrics in

defect prediction for open source projects. In Proceedings of the 2009 ICSE Workshop on

Emerging Trends in Free/Libre/Open Source Software Research and Development, pages

31–36. IEEE Computer Society, 2009.

[29] A Colin Cameron and Douglas L Miller. A practitioners guide to cluster-robust inference.

Journal of Human Resources, 50(2):317–372, 2015.

[30] Donald T Campbell and Julian C Stanley. Experimental and Quasi-Exprimental Designs

for Research, volume 4. Rand McNally, 1971.

[31] Donald T Campbell and Julian C Stanley. Experimental and quasi-experimental designs

for research. Ravenio Books, 2015.

[32] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale

Panichella, and Sebastiano Panichella. Multi-objective cross-project defect prediction.

In Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth International

Conference on, pages 252–261. IEEE, 2013.

[33] Eugenio Capra, Giulia Formenti, Chiara Francalanci, and Stefano Gallazzi. The impact

of mis software on it energy consumption. In ECIS, 2010.

132

References References

[34] Eugenio Capra, Chiara Francalanci, and Sandra A Slaughter. Is software green? ap-

plication development environments and energy e�ciency in open source applications.

Information and Software Technology, 54(1):60–71, 2012.

[35] VJ Carey and You-Gan Wang. Mixed-e↵ects models in s and s-plus, 2001.

[36] IBM Knowledge Center. Db2 for linux, unix, and windows, db2 product edi-

tions and db2 o↵erings, (accessed September, 2015). http://www.ibm.com/support/

knowledgecenter/SSEPGG.

[37] John M Chambers. Graphical methods for data analysis. Champman and Hall, 1983.

[38] Ruzanna Chitchyan, Christoph Becker, Stefanie Betz, Leticia Duboc, Birgit Penzen-

stadler, Norbert Sey↵, and Colin C Venters. Sustainability design in requirements engi-

neering: state of practice. In Proceedings of the 38th International Conference on Software

Engineering Companion, pages 533–542. ACM, 2016.

[39] Raul F Chong, Xiaomei Wang, Michael Dang, and Dwaine Snow. Understanding DB2:

Learning Visually with Examples. Pearson Education, 2007.

[40] CLOC. Count lines of code tool version 1.72, (accessed December, 2016). https://

github.com/AlDanial/cloc.

[41] Samuel Daniel Conte, Hubert E Dunsmore, and Vincent Y Shen. Software engineering

metrics and models. Benjamin-Cummings Publishing Co., Inc., 1986.

[42] Thomas D Cook, Donald Thomas Campbell, and Arles Day. Quasi-experimentation:

Design & analysis issues for field settings, volume 351. Houghton Mi✏in Boston, 1979.

[43] Vlad Coroama and Lorenz M Hilty. Energy consumed vs. energy saved by ict–a closer

look. In Environmental Informatics and Industrial Environmental Protection: Concepts,

Methods and Tools, 23rd International Conference on Informatics for Environmental Pro-

tection, Berlin, pages 353–361, 2009.

[44] Transaction Processing Performance Council. Tpc benchmark-h, decision support, stan-

dard specification, (accessed August, 2015). http://www.tpc.org/tpch/spec/tpch2.

14.4.pdf.

[45] John W Creswell. Research design: Qualitative, quantitative, and mixed methods ap-

proaches. Sage publications, 2013.

133

References References

[46] Yves Croissant, Giovanni Millo, et al. Panel data econometrics in r: The plm package.

Journal of Statistical Software, 27(2):1–43, 2008.

[47] Oxford Online Dictionary. A dictionary of physics, 2009. http://www.oxfordreference.

com/view/10.1093/acref/9780198714743.001.0001/acref-9780198714743.

[48] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling for

battery-powered mobile systems. In Proceedings of the 9th international conference on

Mobile systems, applications, and services, pages 335–348. ACM, 2011.

[49] D Dranove. Practical regression: Introduction to endogeneity: Omitted variable bias,

2121.

[50] Marco DAmbros, Michele Lanza, and Romain Robbes. Evaluating defect prediction ap-

proaches: a benchmark and an extensive comparison. Empirical Software Engineering,

17(4-5):531–577, 2012.

[51] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Selecting

empirical methods for software engineering research. In Guide to advanced empirical

software engineering, pages 285–311. Springer, 2008.

[52] Lorenz Erdmann, Lorenz Hilty, James Goodman, and Peter Arnfalk. The future impact

of ICTs on environmental sustainability. European Commission, Joint Research Centre,

2004.

[53] Hakan Erdogmus. Essentials of software process. IEEE software, 25(4):4–7, 2008.

[54] EU2012directiveo. Directive 2012/19/eu of the european parliament and of the council of

4 july 2012 on waste electrical and electronic equipment (weee), (accessed January, 2016).

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0019.

[55] Yunsi Fei, Srivaths Ravi, Anand Raghunathan, and Niraj K Jha. Energy-optimizing

source code transformations for operating system-driven embedded software. ACM Trans-

actions on Embedded Computing Systems (TECS), 7(1):2, 2007.

[56] N Fenton, Martin Neil, and D Marquez. Using bayesian networks to predict software

defects and reliability. Proceedings of the Institution of Mechanical Engineers, Part O:

Journal of Risk and Reliability, 222(4):701–712, 2008.

[57] Norman Fenton and James Bieman. Software metrics: a rigorous and practical approach.

CRC Press, 2014.

134

References References

[58] Ste↵en Fieuws, Geert Verbeke, and Geert Molenberghs. Random-e↵ects models for mul-

tivariate repeated measures. Statistical methods in medical research, 16(5):387–397, 2007.

[59] Jason Flinn and M Satyanarayanan. Energy-aware adaptation for mobile applications.

ACM SIGOPS Operating Systems Review, 34(2):13–14, 2000.

[60] Jason Flinn and Mahadev Satyanarayanan. Managing battery lifetime with energy-aware

adaptation. ACM Transactions on Computer Systems (TOCS), 22(2):137–179, 2004.

[61] David A Freedman. Statistical models: theory and practice. cambridge university press,

2009.

[62] Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevelhierar-

chical models, volume 1. Cambridge University Press New York, NY, USA, 2007.

[63] Robert L Glass. The software-research crisis. IEEE Software, 11(6):42, 1994.

[64] Robert L. Glass, Iris Vessey, and Venkataraman Ramesh. Research in software engineer-

ing: an analysis of the literature. Information and Software technology, 44(8):491–506,

2002.

[65] Michael W Godfrey, Ahmed E Hassan, James Herbsleb, Gail C Murphy, Martin Robillard,

Prem Devanbu, Audris Mockus, Dewayne E Perry, and David Notkin. Future of mining

software archives: A roundtable. IEEE Software, 26(1):67–70, 2009.

[66] William H Greene. Econometric analysis. Pearson Education India, 2003.

[67] A Gupta, T Zimmermann, C Bird, N Naggapan, T Bhat, and S Emran. Energy con-

sumption in windows phone. Technical report, Microsoft Research, Tech. Rep. MSR-TR-

2011-106, 2011.

[68] Ashish Gupta, Thomas Zimmermann, Christian Bird, Nachiappan Nagappan, Thiru-

malesh Bhat, and Syed Emran. Detecting energy patterns in software development. Mi-

crosoft Research Microsoft Corporation One Microsoft Way Redmond, WA, 98052, 2011.

[69] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane Irwin, Narayanan Vijaykr-

ishnan, and Mahmut Kandemir. Using complete machine simulation for software power

estimation: The softwatt approach. In High-Performance Computer Architecture, 2002.

Proceedings. Eighth International Symposium on, pages 141–150. IEEE, 2002.

[70] HammerDB. Database load testing and benchmarking, (accessed September, 2016). http:

//www.hammerdb.com/index.html.

135

References References

[71] Ahmed E Hassan. The road ahead for mining software repositories. In Frontiers of

Software Maintenance, 2008. FoSM 2008., pages 48–57. IEEE, 2008.

[72] Ahmed E Hassan. Predicting faults using the complexity of code changes. In Proceed-

ings of the 31st International Conference on Software Engineering, pages 78–88. IEEE

Computer Society, 2009.

[73] Ahmed E Hassan and Tao Xie. Software intelligence: the future of mining software engi-

neering data. In Proceedings of the FSE/SDP workshop on Future of software engineering

research, pages 161–166. ACM, 2010.

[74] Anthony Hayter. Probability and statistics for engineers and scientists. Nelson Education,

2012.

[75] Donald Hedeker and Robert D Gibbons. A random-e↵ects ordinal regression model for

multilevel analysis. Biometrics, pages 933–944, 1994.

[76] Donald Hedeker, Robert D Gibbons, and Brian R Flay. Random-e↵ects regression mod-

els for clustered data with an example from smoking prevention research. Journal of

consulting and clinical psychology, 62(4):757, 1994.

[77] Israel Herraiz and Ahmed E Hassan. Beyond lines of code: Do we need more complexity

metrics? Making software: what really works, and why we believe it, pages 125–141, 2010.

[78] Lorenz M Hilty. Information Technology and Sustainability: Essays on the Relationship

Between ICT and Sustainable Development. BoD–Books on Demand, 2008.

[79] Abraham Hindle. Greenmining, (accessed September, 2016). https://github.com/

abramhindle/green-data-msr/tree/master/green-mining/data.

[80] Abram Hindle. Green mining: A methodology of relating software change to power

consumption. In Proceedings of the 9th IEEE Working Conference on Mining Software

Repositories, pages 78–87. IEEE Press, 2012.

[81] Abram Hindle. Green mining: investigating power consumption across versions. In 2012

34th International Conference on Software Engineering (ICSE), pages 1301–1304. IEEE,

2012.

[82] Abram Hindle. Green mining: A methodology of relating software change and config-

uration to power consumption–web edition. Web Edition, 2014. http://webdocs.cs.

ualberta.ca/~hindle1/2014/green-emse-web-edition.pd.

136

References References

[83] Abram Hindle. Green mining: a methodology of relating software change and configura-

tion to power consumption. Empirical Software Engineering, 20(2):374–409, 2015.

[84] Dennis E Hinkle, William Wiersma, and Stephen G Jurs. Applied statistics for the

behavioral sciences. Journal of educational statistics, 15(1):84–87, 2003.

[85] Joop J Hox, Mirjam Moerbeek, and Rens van de Schoot. Multilevel analysis: Techniques

and applications. Routledge, 2010.

[86] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end proces-

sors: Methodology and empirical data. In Proceedings of the 36th annual IEEE/ACM

International Symposium on Microarchitecture, page 93. IEEE Computer Society, 2003.

[87] Natalia Juristo. Keynote: Use and misuse of the term experiment in msr research. In

PROMISE16: Proc.Empirical Software Engineering Conference, 2016.

[88] Natalia Juristo and Ana M Moreno. Basics of software engineering experimentation.

Springer Science & Business Media, 2013.

[89] Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. A survey and taxonomy of

approaches for mining software repositories in the context of software evolution. Journal

of software maintenance and evolution: Research and practice, 19(2):77–131, 2007.

[90] Georgios Kalaitzoglou, Magiel Bruntink, and Joost Visser. A practical model for eval-

uating the energy e�ciency of software applications. In ICT for Sustainability 2014

(ICT4S-14), pages 77–86. Atlantis Press, 2014.

[91] Chris F Kemerer. An empirical validation of software cost estimation models. Commu-

nications of the ACM, 30(5):416–429, 1987.

[92] Barbara Kitchenham. Software development cost models. Software Reliability Handbook,

P. Rook (ed.), Elsevier Applied Science, NY, pages 487–517, 1990.

[93] Barbara Kitchenham and Emilia Mendes. Software productivity measurement using mul-

tiple size measures. IEEE Transactions on Software Engineering, 30(12):1023–1035, 2004.

[94] Barbara Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger. Case studies for

method and tool evaluation. IEEE software, 12(4):52, 1995.

[95] Barbara A Kitchenham and Emilia Mendes. A comparison of cross-company and within-

company e↵ort estimation models for web applications. In Proceedings of the 8th In-

ternational Conference on Empirical Assessment in Software Engineering, Edinburgh,

Scotland, UK, pages 47–55, 2004.

137

References References

[96] Barbara A Kitchenham, Emilia Mendes, and Guilherme H Travassos. Cross versus within-

company cost estimation studies: A systematic review. IEEE Transactions on Software

Engineering, 33(5), 2007.

[97] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones,

David C Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary guidelines for

empirical research in software engineering. Software Engineering, IEEE Transactions on,

28(8):721–734, 2002.

[98] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones,

David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary guidelines for

empirical research in software engineering. IEEE Transactions on software engineering,

28(8):721–734, 2002.

[99] Barbara A Kitchenham, Lesley M Pickard, Stephen G. MacDonell, and Martin J. Shep-

perd. What accuracy statistics really measure. IEEE Proceedings-Software, 148(3):81–85,

2001.

[100] Barbara A Kitchenham and NR Taylor. Software cost models. ICL technical journal,

4(1):73–102, 1984.

[101] Ekrem Kocaguneli, Ayse Tosun, Ayse Basar Bener, Burak Turhan, and Bora Caglayan.

Prest: An intelligent software metrics extraction, analysis and defect prediction tool. In

SEKE, pages 637–642, 2009.

[102] Sedef Akınlı Koçak, Andriy Miranskyy, Gülfem Işıklar Alptekin, Ayşe Başar Bener, and

Enzo Cialini. The impact of improving software functionality on environmental sustain-

ability. on Information and Communication Technologies, page 95, 2013.

[103] Patricia Lago. Software and sustainability, 2015, (accessed June, 2016). http://dare.

ubvu.vu.nl/bitstream/handle/1871/53978/Oratie_Lago.pdf?sequence=1.

[104] Patricia Lago, Niklaus Meyer, Maurizio Morisio, Hausi A Müller, and Giuseppe Scan-

niello. Leveraging energy e�ciency to software users: summary of the second greens

workshop, at icse 2013. ACM SIGSOFT Software Engineering Notes, 39(1):36–38, 2014.

[105] Linda M Laird and M Carol Brennan. Software measurement and estimation: a practical

approach, volume 2. John Wiley & Sons, 2006.

[106] John P Lamb. The greening of IT: how companies can make a di↵erence for the environ-

ment. IBM Press/Pearson, 2009.

138

References References

[107] Tao Li and Lizy Kurian John. Run-time modeling and estimation of operating system

power consumption. ACM SIGMETRICS Performance Evaluation Review, 31(1):160–

171, 2003.

[108] Zhichao Li, Radu Grosu, Priya Sehgal, Scott A Smolka, Scott D Stoller, and Erez Zadok.

On the energy consumption and performance of systems software. In Proceedings of the

4th Annual International Conference on Systems and Storage, page 8. ACM, 2011.

[109] Li C Liu and Donald Hedeker. A mixed-e↵ects regression model for longitudinal multi-

variate ordinal data. Biometrics, 62(1):261–268, 2006.

[110] Jacob R Lorch and Alan Jay Smith. Software strategies for portable computer energy

management. Personal Communications, IEEE, 5(3):60–73, 1998.

[111] Alan MacCormack, Chris F Kemerer, Michael Cusumano, and Bill Crandall. Trade-

o↵s between productivity and quality in selecting software development practices. Ieee

Software, 20(5):78–85, 2003.

[112] Stephen G MacDonell and Martin J Shepperd. Comparing local and global software e↵ort

estimation models–reflections on a systematic review. In Empirical Software Engineering

and Measurement, 2007. ESEM 2007. First International Symposium on, pages 401–409.

IEEE, 2007.

[113] CJ Mann. Observational research methods. research design ii: cohort, cross sectional,

and case-control studies. Emergency Medicine Journal, 20(1):54–60, 2003.

[114] IBM DB2 manual. Db2 database product documentation, (accessed August, 2015).

www-01.ibm.com/support/docview.wss?uid=swg27009474.

[115] Marius Marcu, Mircea Vladutiu, Horatiu Moldovan, and Mircea Popa. Thermal bench-

mark and power benchmark software. arXiv preprint arXiv:0709.1834, 2007.

[116] Thomas J McCabe. A complexity measure. Software Engineering, IEEE Transactions

on, 4:308–320, 1976.

[117] William Mendenhall, Robert J Beaver, and Barbara M Beaver. Introduction to probability

and statistics. Cengage Learning, 2012.

[118] Emilia Mendes and Barbara Kitchenham. Further comparison of cross-company and

within-company e↵ort estimation models for web applications. In Software Metrics, 2004.

Proceedings. 10th International Symposium on, pages 348–357. IEEE, 2004.

139

References References

[119] Tim Menzies, Andrew Butcher, David Cok, Andrian Marcus, Lucas Layman, Forrest

Shull, Burak Turhan, and Thomas Zimmermann. Local versus global lessons for defect

prediction and e↵ort estimation. IEEE Transactions on software engineering, 39(6):822–

834, 2013.

[120] Tim Menzies, Justin S Di Stefano, Mike Chapman, and Ken McGill. Metrics that mat-

ter. In Software Engineering Workshop, 2002. Proceedings. 27th Annual NASA God-

dard/IEEE, pages 51–57. IEEE, 2002.

[121] Tim Menzies, Justin DiStefano, Andres Orrego, and R Chapman. Assessing predictors of

software defects. In Proc. Workshop Predictive Software Models, 2004.

[122] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to

learn defect predictors. IEEE transactions on software engineering, 33(1):2–13, 2007.

[123] Tim Menzies, Ekrem Kocaguneli, Burak Turhan, Leandro Minku, and Fayola Peters.

Sharing data and models in software engineering. Morgan Kaufmann, 2014.

[124] Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, and Ayşe Bener.

Defect prediction from static code features: current results, limitations, new approaches.

Automated Software Engineering, 17(4):375–407, 2010.

[125] Arthur Mickoleit et al. Greener and smarter: Icts, the environment and climate change.

Technical report, OECD Publishing, 2010.

[126] Everald E Mills. Software metrics. Technical report, DTIC Document, 1988.

[127] Leandro L Minku and Xin Yao. How to make best use of cross-company data in soft-

ware e↵ort estimation? In Proceedings of the 36th International Conference on Software

Engineering, pages 446–456. ACM, 2014.

[128] A Miransky, Sedef Akinli Koçak, Enzo Cialini, and Ayse Basar Bener. Save energy

with the db2 10.1 for linux, unix, and windows data compression feature. IBM De-

veloperWoks, Technical Library, 2013. https://www.ibm.com/developerworks/data/

library/techarticle/dm-1302db2compression/.

[129] Andriy Miranskyy, Zainab Al-zanbouri, David Godwin, and Ayşe Başar Bener. Database

engines: Evolution of greenness, (2017). Journal of Software Evaluation and Process,

Accepted.

[130] Ayse Tosun Mısırlı. Modelling Software Reliability Using Hybrid Bayesian Networks. PhD

thesis, Bogaziçi University, 2012.

140

References References

[131] Ayse Tosun Mısırlı, Bora Çağlayan, Andriy V Miranskyy, Ayşe Bener, and Nuzio Ru↵olo.

Di↵erent strokes for di↵erent folks: A case study on software metrics for di↵erent defect

categories. In Proceedings of the 2nd International Workshop on Emerging Trends in

Software Metrics, pages 45–51. ACM, 2011.

[132] Douglas C Montgomery. Design and analysis of experiments. John Wiley & Sons, 2008.

[133] MSR. International conference on mining software repositories, (accessed November,

2016). http://2017.msrconf.org/#/home.

[134] John C Munson and Sebastian G Elbaum. Code churn: A measure for estimating the

impact of code change. In Software Maintenance, 1998. Proceedings., International Con-

ference on, pages 24–31. IEEE, 1998.

[135] Glenford J Myers. An extension to the cyclomatic measure of program complexity. ACM

Sigplan Notices, 12(10):61–64, 1977.

[136] MySQL. Mysql 5.7 reference manual: The innodb storage engine, (accessed October,

2016). http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html.

[137] MySQL. Mysql 5.7 reference manual: The myisam storage engine, (accessed October,

2016). http://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html.

[138] Nachiappan Nagappan, E Michael Maximilien, Thirumalesh Bhat, and Laurie Williams.

Realizing quality improvement through test driven development: results and experiences

of four industrial teams. Empirical Software Engineering, 13(3):289–302, 2008.

[139] Nachiappan Nagappan, Laurie Williams, Mladen Vouk, and Jason Osborne. Using in-

process testing metrics to estimate post-release field quality. In The 18th IEEE Interna-

tional Symposium on Software Reliability (ISSRE’07), pages 209–214. IEEE, 2007.

[140] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. Transfer defect learning. In Pro-

ceedings of the 2013 International Conference on Software Engineering, pages 382–391.

IEEE Press, 2013.

[141] Stefan Naumann, Markus Dick, Eva Kern, and Timo Johann. The greensoft model:

A reference model for green and sustainable software and its engineering. Sustainable

Computing: Informatics and Systems, 1(4):294–304, 2011.

[142] Allen P Nikora and John C Munson. Developing fault predictors for evolving software

systems. In Software Metrics Symposium, 2003. Proceedings. Ninth International, pages

338–350. IEEE, 2003.

141

References References

[143] National Oceanic and Atmospheric Administration (NOAA). Noaas global greenhouse

gas reference networ, (accessed March, 2017). http://research.noaa.gov/Home.aspx.

[144] Adam J Oliner, Anand P Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu Tarkoma. Carat:

Collaborative energy diagnosis for mobile devices. In Proceedings of the 11th ACM Con-

ference on Embedded Networked Sensor Systems, page 10. ACM, 2013.

[145] UN Framework Convention on Climate Change OP212015. Adaptation of the paris agree-

ment, (accessed January, 2016). http://eur-lex.europa.eu/legal-content/EN/TXT/

?uri=celex%3A32012L0019.

[146] The R Stats Package. Documentation for package stats version 3.4.0, (accessed

November, 2016). https://stat.ethz.ch/R-manual/R-devel/library/stats/html/

00Index.html.

[147] Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

[148] Birgit Penzenstadler et al. Safety, security, now sustainability: The nonfunctional re-

quirement for the 21st century. IEEE Software, 31(3):40–47, 2014.

[149] Dewayne E Perry, Adam A Porter, and Lawrence G Votta. Empirical studies of software

engineering: a roadmap. In Proceedings of the conference on The future of Software

engineering, pages 345–355. ACM, 2000.

[150] Shari Lawrence Pfleeger and Barbara A Kitchenham. Experimental design and analysis

in software engineering part 15. ACM SIGSOFT Software Engineering Notes, 19, 20(4,

1, 2):16–20, 22–26, 13–15, 1994.

[151] PMCCABE. Mccabe-style function complexity and line counting for c and c++, (accessed

December, 2016). https://people.debian.org/~bame/pmccabe/overview.html.

[152] Dan Port and Marcel Korte. Comparative studies of the model evaluation criterions mmre

and pred in software cost estimation research. In Proceedings of the Second ACM-IEEE

international symposium on Empirical software engineering and measurement, pages 51–

60. ACM, 2008.

[153] WattsUP? Pro. Wattplug load meters, (accessed January, 2016). http://

wattsupmeters.com/secure/products.php?pn=0.

[154] Giuseppe Procaccianti. Energy-E�cient Software. PhD thesis, Politecnico di Torino-VU

University Amsterdam (Paesi Bassi), 2015.

142

References References

[155] Giuseppe Procaccianti, Patricia Lago, and Grace A Lewis. Green architectural tactics

for the cloud. In Software Architecture (WICSA), 2014 IEEE/IFIP Conference on, pages

41–44. IEEE, 2014.

[156] Peter Puschner and Ch Koza. Calculating the maximum execution time of real-time

programs. Real-Time Systems, 1(2):159–176, 1989.

[157] Lawrence H Putnam and Ann Fitzsimmons. Estimating software costs. Datamation,

25(10):189, 1979.

[158] Stephen W Raudenbush and Anthony S Bryk. Hierarchical linear models: Applications

and data analysis methods, volume 1. Sage, 2002.

[159] Nornadiah Mohd Razali, Yap Bee Wah, et al. Power comparisons of shapiro-wilk,

kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical model-

ing and analytics, 2(1):21–33, 2011.

[160] Paul R Rosenbaum. Observational studies. InObservational Studies, pages 1–17. Springer,

2002.

[161] Kaushik Roy and Mark C Johnson. Software design for low power. In Low power design

in deep submicron electronics, pages 433–460. Springer, 1997.

[162] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study re-

search in software engineering. Empirical software engineering, 14(2):131–164, 2009.

[163] Neil J Salkind and Terese Rainwater. Exploring research. Prentice Hall Upper Saddle

River, NJ, 2009.

[164] Alvin Saperstein. Physics: energy in the environment. Little-Brown, 1975.

[165] SciTools. Understand static code analysis tool, (accessed September, 2016). https:

//scitools.com/features/#feature-category-metrics-reports.

[166] Carolyn B. Seaman. Qualitative methods in empirical studies of software engineering.

IEEE Transactions on software engineering, 25(4):557–572, 1999.

[167] Jason WA Selby. Unconventional applications of compiler analysis. PhD thesis, University

of Waterloo, 2011.

143

References References

[168] Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Michael W Godfrey,

Mohamed Nasser, and Parminder Flora. An exploratory study of the evolution of com-

municated information about the execution of large software systems. Journal of Software:

Evolution and Process, 26(1):3–26, 2014.

[169] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for normality

(complete samples). Biometrika, 52(3/4):591–611, 1965.

[170] Colin Shearer. The crisp-dm model: the new blueprint for data mining. Journal of data

warehousing, 5(4):13–22, 2000.

[171] Martin Shepperd and Steve MacDonell. Evaluating prediction systems in software project

estimation. Information and Software Technology, 54(8):820–827, 2012.

[172] Forrest Shull, Janice Singer, and Dag IK Sjøberg. Guide to advanced empirical software

engineering, volume 93. Springer, 2008.

[173] Amit Sinha and Anantha P Chandrakasan. Jouletrack: a web based tool for software

energy profiling. In Proceedings of the 38th annual Design Automation Conference, pages

220–225. ACM, 2001.

[174] David Sky. Db2 v10.1 query performance enhancements. IBM DeveloperWoks, Technical

Library, 2012.

[175] Tom AB Snijders. Multilevel analysis. In International Encyclopedia of Statistical Science,

pages 879–882. Springer, 2011.

[176] Jae W Song and Kevin C Chung. Observational studies: cohort and case-control studies.

Plastic and reconstructive surgery, 126(6):2234, 2010.

[177] Bob Steigerwald, Rajshree Chabukswar, Karthik Krishnan, and JD Vega. Creating

energy-e�cient software. Context, 184(1), 2007.

[178] J Sundell. libtorrent and rtorrent project, (accessed September, 2016). http://

libtorrent.rakshasa.no/.

[179] Juha Taina and Simo Mäkinen. Green software quality factors. In Green in Software

Engineering, pages 129–154. Springer, 2015.

[180] Richard Taylor. Interpretation of the correlation coe�cient: a basic review. Journal of

diagnostic medical sonography, 6(1):35–39, 1990.

144

References References

[181] Walter F Tichy, Nico Habermann, and Lutz Prechelt. Summary of the dagstuhl workshop

on future directions in software engineering: February 17–21, 1992, schloß dagstuhl. ACM

SIGSOFT Software Engineering Notes, 18(1):35–48, 1993.

[182] Walter F Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A Heinz. Experimental eval-

uation in computer science: A quantitative study. Journal of Systems and Software,

28(1):9–18, 1995.

[183] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded software:

a first step towards software power minimization. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 2(4):437–445, 1994.

[184] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee. Instruction level

power analysis and optimization of software. In Technologies for wireless computing, pages

139–154. Springer, 1996.

[185] Oscar Torres-Reyna. Getting started in fixed/random e↵ects models using r. Princeton

University, Data and, 15, 2010.

[186] Ayşe Tosun, Ayşe Bener, Burak Turhan, and Tim Menzies. Practical considerations

in deploying statistical methods for defect prediction: A case study within the turkish

telecommunications industry. Information and Software Technology, 52(11):1242–1257,

2010.

[187] Ayse Tosun, Burak Turhan, and Ayse Basar Bener. Feature weighting heuristics for

analogy-based e↵ort estimation models. Expert Systems with Applications, 36(7):10325–

10333, 2009.

[188] Burak Turhan. Improving the performance of software defect predictions with internal

and external information sources. PhD thesis, Bogaziçi University, 2008.

[189] Burak Turhan, Tim Menzies, Ayşe B Bener, and Justin Di Stefano. On the relative value

of cross-company and within-company data for defect prediction. Empirical Software

Engineering, 14(5):540–578, 2009.

[190] Keith S Vallerio, Lin Zhong, and Niraj K Jha. Energy-e�cient graphical user interface

design. IEEE Transactions on Mobile Computing, 5(7):846–859, 2006.

[191] Ward Van Heddeghem, Sofie Lambert, Bart Lannoo, Didier Colle, Mario Pickavet, and

Piet Demeester. Trends in worldwide ict electricity consumption from 2007 to 2012.

Computer Communications, 50:64–76, 2014.

145

References References

[192] Vasanth Venkatachalam and Michael Franz. Power reduction techniques for microproces-

sor systems. ACM Computing Surveys (CSUR), 37(3):195–237, 2005.

[193] Willem Vereecken, Ward Van Heddeghem, Didier Colle, Mario Pickavet, and Piet De-

meester. Overall ict footprint and green communication technologies. In 4th International

Symposium on Communications, Control and Signal Processing (ISCCSP 2010). IEEE,

2010.

[194] Stefan Wagner. Software product quality control. Springer, 2013.

[195] KS Wang. Linear and non-linear mixed models in longitudinal studies and complex survey

data. J Biom Biostat, 7(290):2, 2016.

[196] WattsUP? Communication protocol, wattsup: Power analyzer, watt meter and electricity

monitor, (accessed April, 2015). https://www.wattsupmeters.com/secure/downloads/

CommunicationsProtocol090824.pdf.

[197] WattsUP? Operators manual, wattsup: Power analyzer, watt meter and electricity

monitor, (accessed April, 2015). https://www.wattsupmeters.com/secure/downloads/

manual_rev_9_corded0812.pdf.

[198] Sanford Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

[199] Isabella Wieczorek and Melanie Ruhe. How valuable is company-specific data compared to

multi-company data for software cost estimation? In Software Metrics, 2002. Proceedings.

Eighth IEEE Symposium on, pages 237–246. IEEE, 2002.

[200] Roel Wieringa and Maya Daneva. Six strategies for generalizing software engineering

theories. Science of computer programming, 101:136–152, 2015.

[201] Bodo Winter. A very basic tutorial for performing linear mixed e↵ects analyses: Tutorial

2, 2015.

[202] C Wohlin, P Runeson, M Host, MC Ohlsson, B Regnell, and A Wesslen. Experimentation

in software engineering: an introduction. 2000, 2000.

[203] Claes Wohlin, Martin Höst, and Kennet Henningsson. Empirical research methods in

software engineering. In Empirical methods and studies in software engineering, pages

7–23. Springer, 2003.

146

References References

[204] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders

Wesslén. Experimentation in software engineering. Springer Science & Business Media,

2012.

[205] Je↵rey MWooldridge. Introductory econometrics: A modern approach. Nelson Education,

2015.

[206] Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. A programming environment with

runtime energy characterization for energy-aware applications. In Low Power Electronics

and Design (ISLPED), 2007 ACM/IEEE International Symposium on, pages 141–146.

IEEE, 2007.

[207] Wanghong Yuan and Klara Nahrstedt. Energy-e�cient soft real-time cpu scheduling for

mobile multimedia systems. In ACM SIGOPS Operating Systems Review, volume 37,

pages 149–163. ACM, 2003.

[208] Marvin V Zelkowitz and Dolores R. Wallace. Experimental models for validating tech-

nology. Computer, 31(5):23–31, 1998.

[209] Chenlei Zhang and Abram Hindle. A green miner’s dataset: mining the impact of software

change on energy consumption. In Proceedings of the 11th Working Conference on Mining

Software Repositories, pages 400–403. ACM, 2014.

[210] Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. Towards building a uni-

versal defect prediction model with rank transformed predictors. Empirical Software

Engineering, 21(5):2107–2145, 2016.

[211] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick, Zhuo-

qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic battery

behavior based power model generation for smartphones. In Proceedings of the eighth

IEEE/ACM/IFIP international conference on Hardware/software codesign and system

synthesis, pages 105–114. ACM, 2010.

[212] Zhiwu Zhang, Edward S Buckler, Terry M Casstevens, and Peter J Bradbury. Soft-

ware engineering the mixed model for genome-wide association studies on large samples.

Briefings in bioinformatics, 10(6):664–675, 2009.

[213] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and Brendan

Murphy. Cross-project defect prediction: a large scale experiment on data vs. domain

147

References References

vs. process. In Proceedings of the the 7th joint meeting of the European software engi-

neering conference and the ACM SIGSOFT symposium on The foundations of software

engineering, pages 91–100. ACM, 2009.

[214] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl. Mining

version histories to guide software changes. IEEE Transactions on Software Engineering,

31(6):429–445, 2005.

[215] Alain Zuur, Elena N Ieno, and Graham M Smith. Analyzing ecological data. Springer

Science & Business Media, 2007.

148

