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Abstract

Order Selection in Unsupervised Learning and Clustering for
Arbitrary and Non-arbitrary Shaped Data

Mahdi Shahbaba

Doctor of Philosophy, Electrical and Computer Engineering

Ryerson University, 2015

This thesis focuses on clustering for the purpose of unsupervised learning. One topic

of our interest is on estimating the correct number of clusters (CNC). In conventional

clustering approaches, such as X-means, G-means, PG-means and Dip-means, estimat-

ing the CNC is a preprocessing step prior to finding the centers and clusters. In another

word, the first step estimates the CNC and the second step finds the clusters. Each step

having different objective function to minimize. Here, we propose minimum averaged

central error (MACE)-means clustering and use one objective function to simultaneously

estimate the CNC and provide the cluster centers. We have shown superiority of MACE-

means over the conventional methods in term of estimating the CNC with comparable

complexity. In addition, on average MACE-means results in better values for adjusted

rand index (ARI) and variation of information (VI). Next topic of our interest is order

selection step of the conventional methods which is usually a statistical testing method

such as Kolmogrov-Smrinov test, Anderson-Darling test, and Hartigan’s Dip test. We

propose a new statistical test denoted by Sigtest (signature testing). The conventional

statistical testing approaches rely on a particular assumption on the probability distri-

bution of each cluster. Sigtest on the other hand can be used with any prior distribution

assumption on the clusters. By replacing the statistical testing of the mentioned conven-

tional approaches with Sigtest, we have shown that the clustering methods are improved

in terms of having more accurate CNC as well as ARI and VI. Conventional clustering

approaches fail in arbitrary shaped clustering. Our last contribution of the thesis is in

arbitrary shaped clustering. The proposed method denoted by minimum Pathways in
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Arbitrary Shaped (minPAS) clustering is proposed based on a unique minimum spanning

tree structure of the data. Our simulation results show advantage of minPAS over

the state-of-the-art arbitrary shaped clustering methods such as DBSCAN and Affinity

Propagation in terms of accuracy, ARI and VI indexes.
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Chapter 1

Introduction

Clustering has wide range of applications in different disciplines of science and engineer-

ing such as bioinformatics, genetics, image segmentation [1], voice recognition, document

classification and weather classification [2–4]. Even astronomers categorize galaxies and

stars using cluster analysis techniques [5]. Clustering is used in monitoring spread of

disease and detecting significant spatial disease clusters [6]. In life sciences, clustering is

an inevitable step in most of the methods for analyzing protein interactions and grouping

gene expressions [7, 8]. Customizing and categorizing Internet search results is another

application of clustering on text, image and audio data, which can be used for recom-

mending books, movies and music to users [9]. For example, a user who has searched

for a specific book might be also interested in other books written by the same author.

Those books are considered as a single cluster based on the selected author. Therefore,

any member of the cluster can be suggested to the user. In market research, clustering is

mainly used for segmenting or grouping customers and products. The result of clustering

also reveals the size and capacity of market, dependencies among different segments, and

it gives a better understanding about the acceptance of a product by its users [10–12].

Finding different communities in social networks is another application of clustering in

the field of computer science [13].
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CHAPTER 1. INTRODUCTION

Clustering is mainly an unsupervised learning problem, where unlike supervised learn-

ing training sets or class labels of data samples are not available. In other words, the

only available information is the unlabeled data itself. The goal of a clustering algorithm

is to subjectively group observed data samples based on their similarity and dissimilarity

[14]. A priori definition of similarity plays an important role in data clustering. Assumed

shape or distribution of a cluster such as Gaussian or non-Gaussian [15], the membership

definition for samples of clusters, and clustering optimization criteria are fundamental

elements for defining similarity in clustering [16], [17].

Challenges in Clustering: In majority of clustering methods a predefined number

of clusters is required before clustering process. In real life, however, the correct number

of clusters (CNC) is not known a priori. Consequently, one main challenge for these

clustering methods is determining the CNC. Another challenge in clustering is having a

predefined definition for shape of clusters. Therefore, grouping arbitrary shaped datasets

that do not follow any specific known distribution seems to be a difficult task.

In the following, a brief history of existing clustering methods is provided to further

elaborate on these challenges.

Order Selection Clusterer

Figure 1.1: Clustering with order selection.

Non-arbitrary shaped clustering methods: K-means clustering is one of the

earliest partitional clustering methods which needs to have the number of clusters (K)

before clustering [18, 19]. It starts with randomly selecting K cluster centers from the

samples and assigns other samples as the cluster members. K-means iteratively updates
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CHAPTER 1. INTRODUCTION

the centers and cluster members until the algorithm converges to a stable solution. K-

means algorithm is considered as a fast clustering method for partitioning datasets with

spherical Gaussian clusters. However, it is very sensitive to the initial choice of the

centers and can get trapped in the local optima of its objective function.

Model-based methods also have attracted a lot of attention over the non-probabilistic

and heuristic clustering techniques [20]. The reason of this superiority is in providing a

generative and predictive model, and measuring the uncertainty of the samples assigned

to each cluster [21]. Gaussian Mixture Model (GMM), a model based method, is among

the most commonly utilized models for clustering. In a GMM framework, each cluster

is assumed to have a Gaussian distribution and each sample can have a shared member-

ship with couple of clusters in the mixture model. To estimate the model parameters

of a Gaussian mixture, Expectation Maximization (EM) algorithm is considered as an

efficient solver which iteratively converges to a solution. EM algorithm is considered as

a general form of K-means clustering with this difference that clusters can follow any

distribution in Gaussian family. In addition, EM relates samples to their centers using

soft assignment, while K-means is limited to hard assignments between centers and their

members. Similar to K-means, EM relies on a provided CNC.

To estimate the CNC in K-means clustering (order selection in Figure 1.1) a wide

range of approaches are suggested in the literature [22]. Pioneer methods of CNC cal-

culation are proposed with K-means clustersr and are validity indexes. According to

these approaches, for each a priori assumption for the CNC, an index value is calcu-

lated. The method chooses the CNC based on optimizing the index value. Example of

these approaches are Xie-Beni index [23], Dunn index [24], Silhouette index [25], Davies-

Bouldin (DB) index, Calinski-Harabasz (CH) index [26], Krzanowski-Lai index [27], and

weighted inter-to intra-cluster ratio (wtertra) [28]. Most recent validity index methods

are available in [29], [30]. For example, Figure 1.1 shows two general steps in clustering

methods with order selection.

3



CHAPTER 1. INTRODUCTION

In general, model based clustering approaches are categorized as hierarchical or par-

titional clustering processes.

Hierarchical Clustering: Another approach for clustering data and estimating

the CNC is using hierarchical clustering joined with a proper order selection criterion or

statistical test in Figure 1.1. In this scenario, clustering algorithms such as K-means and

EM can split the data hierarchically and use an order selection criterion to decide about

terminating the splitting procedure. X-means [31], G-means [32] and Dip-means [33]

are some of the widely used and state of the art clustering methods based on splitting

criteria.

Order selection of these methods (in Figure 1.1) can be categorizes as follows: 1)

Bayesian Information Criterion (BIC) in X-means; X-means is an extension to K-means

which employs BIC to estimate the CNC, but it tends to over-fit the data. 2) Anderson-

Darling (AD) in G-means; G-means is another wrapper around K-means, which estimates

the CNC based on the AD statistical test. It examines the Gaussianity of the estimated

clusters and performs better than X-means, but has difficulties for overlapped clusters.

3) Dip test in Dip-means; Dip-means is a newly proposed hierarchical clustering method

that extends the choice of cluster distribution from Gaussian to a wider range of uni-

modal distributions, where Gaussian, log-Normal and student’s t-distributions are three

examples of this large family. This method employs Hartigan’s Dip statistical test to

evaluate whether each cluster has a unimodal distribution or not.

Partitional Clustering: Similar to hierarchical clustering methods, statistical tests

can be used for estimating CNC in partitional clustering approaches. PG-means clus-

tering is an example of a partitional clustering method with order selection. In this

method, data and its assumed Gaussian mixture model are projected over the direction

of maximum variance of data iteratively. Consequently, the projected versions of the

model and data are compared using Kolmogorov-Smirnov (KS) test to decide about the

CNC. In term of having Gaussian assumption PG-means is similar to G-means, but it

4



CHAPTER 1. INTRODUCTION

has this advantage that can find better models using EM algorithm [34]. In general,

clustering methods with statistical tests have a prior assumption on the distribution of

the observed data. The observed data provides an empirical distribution function (ecdf)

and this ecdf is compared with the desired cdf (Dcdf) in the process of estimating the

CNC.

In addition to the mentioned hierarchical and partitional clustering approaches, the

CNC challenge in clustering is studied from different perspectives. For example, Gap

statistic takes the output of any clustering algorithm, and then compares the change

within cluster dispersion to that expected under an appropriate reference null distri-

bution [35]. The main disadvantage of this method is its computationally expensive

behavior which makes it inefficient for high dimensional data. Another example is Sys-

tem Evolution which clusters data using K-medois [36, 37] and defines a validity index

from the viewpoint of a pseudo thermodynamics system [38] for estimating the CNC.

This method is efficient for well-separated clusters but has difficulties on overlapped

clusters.

Arbitrary shaped clustering methods: Unlike the above discussed approaches,

a large family of clustering methods don’t have any assumption on the shape and dis-

tribution of clusters. In these methods the center of cluster is a loose concept which

is not defined in the related algorithms. Most of these clustering methods group data

samples heuristically and don’t rely on statistical tests or order selection approaches for

estimating the CNC.

Spectral Clustering is one of the well-known clustering methods that can partition

arbitrary shaped data [39]. This method is constructed based on the eigenvectors and

eigenvalues of similarity matrix of data. The number of clusters is one of the requirements

of this algorithm that should be available as a predefined value.

Normalized cuts (Ncut) for image segmentation is another clustering approach based

on partitioning image graph [1]. This method measures both the total dissimilarity

5



CHAPTER 1. INTRODUCTION

among different clusters and the total similarity within clusters. Ncut optimizes its

criterion based on a generalized eigenvalue approach to partition the data samples. Sim-

ilar to spectral clustering, Ncut can work on arbitrary shaped data. The estimation of

CNC is not efficiently addressed, and the number of clusters should be provided to the

algorithm.

Data Spectroscopic (DaSpec) [40] is another extension of spectral clustering methods

which is constructed based on the Gaussian kernel matrix of data. This method estimates

the number of clusters by identifying the eigenvectors that have no sign changes up to a

predefined threshold value. A predefined kernel bandwidth is also another requirement

of this algorithm. DaSpec assumes that clusters are well-separated, therefore it cannot

recognize clusters with small distances among them.

Voting-K-means is an example of clustering methods based on combination of differ-

ent clustering results [41]. In this method, results of different K-means clusterings for

an initial number of clusters leads to a co-association matrix which helps to extract the

underlying consistent clusters.

Density based clustering approaches are another group of methods that don’t have

any assumption on the distribution of data. In these methods, high density regions are

assumed to be clusters which are separated with low density regions or gaps. There-

fore, these type of methods can cluster arbitrary shaped data better than model based

algorithms. DBSCAN is an example of state of the art clustering methods for arbitrary

shaped data [42].

Affinity Propagation [43] is an example of Graph theoretic clustering approaches

which also doesn’t have any assumption on the distribution of clusters and can inde-

pendently estimate the CNC value. This method has a high time complexity and has

difficulties in recognizing clusters with complex geometries.

Our Objectives: In this thesis, our main focus is on clustering methods that can

estimate the CNC and find clusters in arbitrary and non-arbitrary shaped datasets.
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CHAPTER 1. INTRODUCTION

We consider different statistical tests and order selection approaches for estimating the

number of clusters and suggest our solutions for estimating CNC and clustering different

shapes of data.

Thesis Outline: This thesis is organized as follows: In Chapter 2, we provide a

brief background on some of the widely used clustering methods, solvers algorithms,

dimension reduction and splitting criterion for estimating the number of clusters.

In Chapter 3, we estimate the CNC based on a rigorous modeling and analysis of

Mean Square Error for different number of centers in clustering. We define the average

central error (ACE) that is the difference between the ground truth center of the cluster

and our estimation of the center (unavailable error). We present the estimate of this

error based on the available compactness error. The proposed MACE-means clustering

is constructed based on minimizing the ACE error (Minimum ACE-means). The art

of this approach is in probabilistic validation of the unknown ACE by using available

cluster compactness.

In Chapter 4, we propose a new statistical test denoted by signature test (Sigtest) for

estimating the number of clusters. Unlike the existing statistical tests it can be used with

any prior assumption on the distribution of the clusters (Dcdf). Since the Dcdf can be

replaced with any other desired cdf, using the method with any other prior assumption

is analogous to what is presented here. Details of using Sigtest in both hierarchical and

partitional clustering is provided. Our simulation results show the superiority of using

Sigtest as the statistical test in terms of estimating the number of clusters, adjusted rand

index (ARI) and variation of information (VI). In addition, we propose using Sigtest in

image classification using bag of visual words (BOVW) [44], [45], [46]. While majority of

the BOVW based methods have the assumption of a fixed or predefined visual vocabulary

size, we propose using Sigtest for estimating the optimum size of the vocabulary based

on Scale Invariant Feature Transform (SIFT) features. We show that adaptive prior

estimation of vocabulary size in BOVW has a significant effect on increasing the accuracy

7



CHAPTER 1. INTRODUCTION

of image classification along with decreasing the time complexity in some applications.

In Chapter 5, we propose minimum pathway arbitrary shaped clustering, denoted by

minPAS, as a clustering approach that can work with both arbitrary and non-arbitrary

shaped clusters. minPAS can independently estimate the number of clusters with a high

level of accuracy compared with the similar methods. The proposed method benefits

from the unique tree structure of data and can measures the level of similarity among

samples using the minimum pathways. Unlike regular distance measures such as eu-

clidean distance, minimum pathways in minPAS respect the geometry of data and does

not impose any assumption on the distribution. Chapter 6 is our conclusion on the

proposed methods.

8



Chapter 2

Background

In this Chapter, we briefly discuss some of the widely used clustering methods and their

requirements.

In Section 2.1, we explain K-means and Mixture of Gaussians as two of the most

important bases in hierarchical and partitional clustering methods. We discuss X-means,

G-means, PG-means and Dip-means as some of the well known clustering examples based

on K-means and Gaussian Mixture models.

Kolmogorov-Smirnov, Anderson-Darling and Hartigan’s Dip test as statistical tests

for splitting criterion in clustering methods are discussed in Section 2.2.

In Section 2.3 we explain Principal Component Analysis (PCA) that is one of the

basic approaches for data dimension reduction. PCA can be used as a preprocessing step

for estimating the number of clusters.

Spectral clustering, Normalized Cut, DBSCAN, Voting-K-menas, and Affinity Prop-

agation as examples of clustering methods that can cluster arbitrary shaped data are

discussed in Section 2.4.

9
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2.1 Hierarchical and Partitional Clustering Methods

2.1.1 K-means

K-means is one of the most well known and widely used partitional clustering methods.

The algorithm can be implemented easily and has a reasonable speed for converging

to the clustering solution. However, it has the following limitations: K-means is very

sensitive to the initialization error and can be trapped in local optima of its objective

function. K-means also has its best performance for spherical Gaussian clusters and

using that for arbitrary shaped data can lead to a poor clustering result.

Assume we have a data set y = [x1, ..., xN ]T which is an N × n matrix consisting of

N observations in an n-dimensional space and each xi (i = 1, . . . , N) represents a data

sample in the feature space. The goal is to partition the data samples into K clusters in

a way that in each cluster internal distances among members of the cluster are smaller

than distances to points outside of the cluster. Consider µ = [µ1, ..., µK ]T as a K × n

matrix where µi (i ∈ {1, . . . ,K}) is a row of the matrix and the center of the ith cluster.

We assume that the number of clusters or K is given [47].

For the first step of clustering, µ should be initialized with K random centers in the

n-dimensional space. Then each data point should be assigned to the nearest cluster Cl:

xi ∈ Cl, if ‖ xi − µl ‖<‖ xi − µj ‖ (2.1)

for i = 1, ..., N, j 6= l, and j, l ∈ {1, ..., K} (2.2)

where µl and µj are the centers of clusters Cl and Cj , respectively. xi is a member of

the cluster Cl and || · || is l2-norm.

In the next step, we should recalculate the center of each cluster:
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µl =
1

Nl

∑
xi∈Cl

xi, (2.3)

where Nl is the total number of the samples assigned to the cluster Cl.

After this step all of the centers will be updated to the new values, then data points

will be assigned to the nearest centers and this routine continues until either location

of the centers remain unchanged or the algorithm reaches to the predefined maximum

number of iterations [48].

2.1.2 Mixture of Gaussians

Suppose we are given a data set y = [x1, . . . , xN ] where xis are i.i.d. random vectors of

length n generated from m unknown Gaussian distributions. In our assumptions, the

latent variable zi = j from a multinomial distribution assigns the ith sample of our data

set to the jth Gaussian distribution.

We wish to model our data set by joint distribution p(xi, zi):

p(xi, zi) = p(xi|zi) p(zi) (2.4)

having the latent variable zi, the distribution of the data sample xi can be given as:

(xi|zi = j) ∼ N (µj ,Σj) (2.5)

where µj and Σj are the mean and covariance matrices of the jth Gaussian distribution.

We define φj as the probability of choosing the jth Gaussian. Therefore, µ, Σ and φ can

be assumed the model parameters which are required to be estimated.
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The log-likelihood of the data can be employed to estimate the parameters of this

model:

l(φ, µ,Σ) =

n∑
i=1

log p(xi;φ, µ,Σ)

=

n∑
i=1

log

m∑
zi=1

p(xi|zi;µ,Σ) p(zi;φ). (2.6)

Unfortunately, the maximum likelihood estimates of the parameters does not lead

to a closed form solution. Thus, finding the derivatives of l(φ, µ,Σ) with respect to

the model parameters and setting them to zero cannot tackle this problem. Moreover,

zis are unknown which makes it more difficult to find the maximum likelihood estimation.

The Expectation Maximization (EM) algorithm is an iterative algorithm which has

two main steps (E-step and M-step). This algorithm can be applied to our problem to

estimate the model parameters. In the E-step, zis will be estimated:

wji = p(zi = j|xi;φ, µ,Σ) (2.7)

where wji is the probability of the ith sample being generated by the jth Gaussian com-

ponent, and
∑m

j=1w
j
i = 1. Then in the M-step, model parameters will be estimated as

follows:

12
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φj =
1

n

n∑
i=1

wji (2.8)

µj =

∑n
i=1w

j
ixi∑n

i=1w
j
i

(2.9)

Σj =

∑n
i=1w

j
i (xi − µj)(xi − µj)T∑n

i=1w
j
i

(2.10)

In the following section, the EM algorithm is explained in details, but before that Jensen’s

inequality which is a prerequisite to the EM is explained.

Jensen’s inequality: Let f be a convex function of random variable X, then:

E[f(X)] ≤ f(E[X]) (2.11)

In addition, for a strictly convex f , E[f(X)] = f(E[X]) holds true if and only if X =

E[X] with probability 1 which means X must be a constant. f is a convex function and

X (horizontal axis) is a random variable with a 0.5 chance for choosing a and 0.5 chance

of choosing b.

If f is strictly concave then −f is strictly convex and direction of Jensen’s inequalities

will be reversed (E[f(X)] ≥ f(E[X])).

EM algorithm: In some cases, deriving a closed form solution for maximum like-

lihood may not be possible. Expectation Maximization (EM) is an iterative algorithm

which is promising to find the maximum likelihood parameters [49–51].

Let consider an estimation problem in which x = [x1, . . . , xN ] is a set of N independent

training data (observed data) and z = [z1, . . . , zN ] is a set of latent random variable

(unseen data). We aim to fit the parameters of a model p(x, z) to the data. In this case
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Figure 2.1: Visualization of Jensen’s inequality.

likelihood of the data is given by:

l(θ) =
n∑
i=1

log p(xi; θ)

=
n∑
i=1

log
∑
z

p(xi, z; θ) (2.12)

To maximize l(θ) using EM, we repeatedly construct a lower-bound on l (E-step) and

then maximize that lower bound to estimate new optimal model parameters (θ).

Consider the following log-likelihood equation:

∑
i=1

log p(xi; θ) =
∑
i=1

log
∑
zi

p(xi, zi; θ) (2.13)

Let assume Qi(z) as a probability distribution over z (
∑

z Qi(z) = 1, Qi(z) ≥ 0). Then,

14



CHAPTER 2. BACKGROUND

Figure 2.2: EM algorithm iterations for estimating maximum likelihood.

we can rewrite the previous equation as follows:

=
∑
i=1

log
∑
zi

Qi(zi)
p(xi, zi; θ)

Qi(zi)

≥
∑
i=1

∑
zi

Qi(zi) log
p(xi, zi; θ)

Qi(zi)
(2.14)

Which the last step is derived based on Jensen’s inequality and the term:

∑
zi

Qi(zi)
p(xi, zi; θ)

Qi(zi)

(2.15)

The above equation (2.15) is expectation of p(xi, zi; θ)/Qi(zi) with respect to zi drawn

from distribution Qi(zi). Therefore, for any set of Qi a lower bound on l(θ) can be

estimated. There are many possible choices for Qi. If we have a current guess for θ

then we will have the lower bound tight at the value of θ which means inequality will

change into equality at that θ. By using Jensen’s inequality, the bound will be tight at

a particular θ. It means E[f(X)] = f(E[X]) holds true if and only if X = E[X], and
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this latter is only true for constant X. Therefore:

p(xi, zi; θ)

Qi(zi)
= c (2.16)

where c is a constant and it is independent of zi. Since we know
∑

z Qi(z) = 1, then:

Qi(zi) =
p(xi, zi; θ)∑
z p(xi, zi; θ)

= p(zi|xi; θ) (2.17)

where Qis are set to be posterior distribution of zs, given xi and setting of the parameters

θ. This was E-step of the algorithm which gives a choice of Qi to find the lower bound

on the log-likelihood l(θ) that we want to be maximized. In M-step we try to maximize

this lower bound in (2.14) to estimate the next optimum θ:

θ = maxθ
∑
i=1

∑
zi

Qi(zi) log
p(xi, zi; θ)

Qi(zi)
(2.18)

The model parameters (µ, Σ, φ) of a Gaussian mixture can be estimated by calcu-

lating the derivatives of (2.18) with respect to the model parameters and setting them

to zero. We can rewrite this equation as follows:
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m∑
i=1

∑
zi

Qi(zi) log
p(xi, zi;φ, µ,Σ)

Qi(zi)

=
m∑
i=1

k∑
j=1

Qi(zi = j) log
p(xi|zi = j;µ,Σ)p(zi = j;φ)

Qi(zi = j)

=
m∑
i=1

k∑
j=1

wji log

1
(2π)n/2|Σj |1/2

exp(−1
2(xi − µj)TΣ−1

j (xi − µj))φ

wji
(2.19)

Every E-step will be followed by a M-step and this procedure will be repeated itera-

tively. Since EM causes log-likelihood to converge monotonically, the stopping point for

the algorithm will be reached if the increase in l(θ) between two successive iterations is

smaller than some tolerance parameter.

2.1.3 X-means Clustering

One of the very first clustering methods which is able to estimate the number of clusters

independently is X-means clustering [31], [52]. This method is a wrapper around K-

means algorithm that hierarchically splits parent clusters into children clusters until

the convergence condition is satisfied. X-means relies on Bayesian Information Criterion

(BIC) to check whether a subset of data should be split or we should consider it as a single

cluster. Consequently it can estimate the number of clusters from number of times that

splitting happens. For example, X-means starts clustering with assumption of K = 1

as the number of clusters and then cluster the same data for K = 2. Consequently,

clustering results of these two scenarios will be compared by BIC criterion to decide

between K = 1 and K = 2.

In X-means clustering, there are following steps for grouping the data samples:

1. Initialize K = 1.

2. Run K-means algorithm on the data.
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3. Calculate the BIC of each cluster with K=1 and K=2

4. If BIC for K=1 is less than BIC for K=2, check the test for other clusters.

5. If BIC for K=2 is less than BIC for K=1, increment K by one, go to the step 2.

6. Stop the algorithm if the convergence condition is satisfied, for example K is not

changing.

The BIC can be calculated as follows:

BIC(θ) = L(D)− 1

2
p log N (2.20)

where L(D) is the log-likelihood of the data set D based on model θ which suggests a

certain number of clusters; p is the number of free parameters in the model and N is

the size of the data set. With assumption of having clusters generated from spherical

Gaussian distributions, the log-likelihood L(D) of the data set D will be defined as

follows:

L(D) = log
∏
j

∏
i

pr(xij)

=
∑
j

∑
i

log(
nj
N

1√
2πσ̂d

exp(−‖ xij − Ĉj ‖
2

2σ̂2
)) (2.21)

where xij is the ith member of the jth cluster with pr(xij) as its probability, nj is the

size of the jth cluster with Ĉj as its estimated center and σ̂2 is the estimated variance

in the clusters. d is the dimension of the data.

Estimations of Cj and σ in (2.21) can be derived as follows:

Ĉj =
1

nj

nj∑
i=1

xij (2.22)
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σ̂2 =
1

N −K
∑
j

∑
i

‖ xij − Ĉj ‖2 (2.23)

where K is the number of clusters.

Based on this fact that log-likelihood for all the data points is sum of the log-likelihood

of every single data point [53], log-likelihood L(Dj) for data points belong to the jth

cluster will be defined as follows:

L(Dj) = nj log nj − nj log N − nj
2

log(2π) (2.24)

− njd

2
log σ̂2 − nj −K

2

2.1.4 G-means Clustering

G-means is a hierarchical clustering algorithm which benefits from Anderson-Darling

statistic test (AD) for evaluating the Gaussianity of clusters. Similar to X-means clus-

tering, this algorithm is also a wrapper around the K-means and can only perform hard

clustering. In contrast to X-means, G-means can deal with any distribution from the

Gaussian family [32].

In G-means clustering, there are following steps for grouping the data samples:

1. Initialize K = 1.

2. Run K-means algorithm on the data.

3. Project the cluster members onto the direction of the maximum variance in the

cluster, this direction can be found by PCA or similar approaches.

4. Use the Anderson Darling test on the projected data to test its Gaussianity.

5. If the data passed the test, check the test for other clusters.

6. If the data didn’t pass the test, increment K by one, go to the step 2.
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7. Stop the algorithm if the convergence condition is satisfied, for example K is not

changing.

2.1.5 PG-means Clustering

PG-means clustering can learn the number of clusters in a Gaussian Mixture Model

(GMM) scheme using Expectation Maximization algorithm (EM) [34]. This method is

a partitional clustering approach which simultaneously projects data and its model onto

the several random directions in space. PG-means uses Kolmogrove-Smirnov test (KS)

to detect any mismatch between the data and the model. Unlike G-means that works

with K-means, using EM algorithm gives a better ability of recognizing the overlapped

clusters to PG-means.

In PG-means clustering, there are following steps for grouping the data samples:

1. Initialize K = 1.

2. Run EM algorithm on the data.

3. Project all of the data and the assumed model of the data onto several random

direction in space.

4. Use the Kolmogrove-Smirnov test (KS) on the projected data and model to find

any mismatch between them.

5. If the data and model are matched, stop the algorithm and give the final K.

6. If the data and model are not matched, increment K by one, go to step 2.

2.1.6 Dip-means Clustering

Dip-means clustering is constructed based on the Hartigan’s dip test of unimodality [33].

According to this clustering method, each sample is a viewer with different distance

values from other samples. Using Dip test, distribution of the distance values should be
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examined for unimodality. If all viewers pass the unimodality test then null hypothesis of

having a single cluster will be approved. Otherwise, a model with more than one cluster

should be considered for the samples. This method is a wrapper around K-means.

In Dip-means clustering, there are following steps for grouping the data samples:

1. Initialize K = 1.

2. Run K-means algorithm on the data.

3. Calculate the distance matrix for each cluster.

4. Use the Hartigan’s Dip test for the distances between each sample and the other

cluster members.

5. If the data passed the test, check the test for other clusters.

6. If the data didn’t pass the test, increment K by one, go to step 2.

7. Stop the algorithm if the convergence condition is satisfied, for example K is not

changing.

2.2 Statistical Tests in Clustering

In statistical testing for clustering, empirical distribution function of data (ecdf) is com-

pared to a desired cdf (Dcdf). The main goal of following statistical testing is to verify

whether ecdf can be considered as a sample of Dcdf or not. In general there are two

possible hypothesis:

• H0: The observed data (ecdf) is a sample of the desired model (Dcdf)

• H1: The observed data (ecdf) is not a sample of the desired model (Dcdf)

The first step of these methods usually requires transforming the observed data into

a 1-dimensional data. This preprocessing step is required by majority of the statistical
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tests such as AD, KS and Dip test. For example, one well-known approach is using prin-

cipal component analysis (PCA) to calculate the direction of maximum variance in data

(the main principal component), and projecting the data samples onto that direction.

G-means and PG-means clustering are examples of clustering methods based on data

projection. Dip-means clustering on the other hand works with another transformation

of data by calculating the distances between data samples and a proper reference point.

Lets x = [xi, · · · , xN ]T be the observed data and xi ∈ Rd, where d is the dimension

of data samples. The transformed version of data is y = [y1, · · · , yN ]T , where yi ∈ R1.

In the following subsections, we briefly discuss three statistical tests KS, AD and Dip

which employ different approaches to measure the similarity between the distribution of

transformed data y and the Dcdf.

2.2.1 Kolmogorov-Smirnov Test

This test compares the maximum point-wise distance between the ecdf with the Dcdf

of the reference distribution. For example, in the case of PG-means clustering the Dcdf

has Gaussian distribution. The distance is defined as [54]:

KSscore = sup
i

1≤i≤N

|FN (yi)− F (yi)| (2.25)

where F(yi) is the Dcdf and FN (yi) is the ecdf of observed data:

FN (yi) =
1

N

N∑
j=1

I(yj , yi) (2.26)

where

I(yj , yi) =


1 yj < yi

0 yj ≥ yi
(2.27)

The observed samples are compared with a critical value T , to either be accepted
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as a sample of a Gaussian distribution (H0) or to be not considered as a sample of a

Gaussian distribution (H1).

• H0: The observed data (ecdf) is a sample of a Gaussian distribution (Dcdf) ↔

KSscore ≤ T

• H1: The observed data (ecdf) is not a sample of a Gaussian distribution (Dcdf)

↔ KSscore > T

The critical value T is chosen adaptively by Lilliefor’s test statistic which is the result

of Monte Carlo calculations in [55].

2.2.2 Anderson Darling Test

Anderson-Darling test is similar to Kolmogorov-Smirnov test in comparing the ecdf and

Dcdf, but it calculates a weighted difference between Fn(y) and F (y) over all of the N

samples [56], [57]:

ADscore = N

∫ ∞
−∞

A(y)(FN (y)− F (y))2dF (y) (2.28)

note that compare to KS, AD emphasizes more on the tails of the distribution:

A(y) =
1

F (y)(1− F (y))
(2.29)

The observed samples are compared with a critical value T , to either be accepted as a

sample of a Gaussian distribution (H0) or it is not considered as a sample of a Gaussian

distribution (H1).

• H0: The observed data (ecdf) is a sample of a Gaussian distribution↔ ADscore ≤ T

• H1: The observed data (ecdf) is not a sample of a Gaussian distribution ↔

ADscore > T
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The critical value T is suggested to be T = 1.8692 for a confidence level of 0.0001 in [32].

2.2.3 Haritagn’s Dip test

A more recently proposed method for the purpose of statistical testing in clustering is

Hartigan’s Dip test. This method generalizes the Gaussian assumption of the two above

methods to a unimodal distribution. Unimodal distribution includes distribution such

as Gaussian, Log-Normal, Student’s t-distribution.

The probability density function (pdf), denoted by f , of unimodal distributions is

monotonically non-decreasing in (−∞, yL) and monotonically non-increasing in (yU ,∞),

where (yL, yU ) for yL ≤ yU is the mode region of distribution. We let ρ(FN , G) =

sup
i

1≤i≤N

|FN (yi)−G(yi)|, therefore, Dip value of ecdf FN , denoted by D(FN ) is defined as

[58]:

D(FN ) = min
G∈U

ρ(Fn, G) (2.30)

where G is a member of unimodal family U that represents the closest approximation

for FN
1.

It is shown that uniform distribution has the smallest Dip value among all of the

unimodal distributions, to decide about the unimodality of FN , its Dip value will be

compared with the Dip values of uniform distributions U [0, 1]. [33] suggested that if for

1000 bootstraps of U [0, 1], the probability of having D(Fn) smaller than Dip values of

the uniform distributions (we denote it by Dipscore) is larger than a critical value T ,

then data is unimodal (H0), otherwise it is multimodal (H1).

• H0: The observed data (ecdf) is a sample of a unimodal distribution↔ Dipscore >

T

• H1: The observed data (ecdf) is not a sample of a multimodal distribution ↔
1For some yL ≤ yU , G is the greatest convex minorant (g.c.m.) of Fn over (−∞, yL), and for (yU ,∞)

it is the least concave minorant (l.c.m.) of Fn. G has the constant maximum slope in (yL, yU ).
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Dipscore ≤ T

The critical value T is suggested to be zero (T = 0) for a significance level of 0, where in

all of the cases Dipscore of a data with unimodal distribution should be larger than any

other data with uniform distribution [33].

2.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is an algorithm for transforming data samples

from a space with high dimensionality to another space with less dimensionality.

PCA is an orthogonal transformation and it can only deal with linear data. In

general, we have the following assumptions for PCA:

1. Linearity of data (some extensions of PCA consider non-linear data).

2. Large variances have important structures.

3. The principal components are orthogonal.

Let y = [x1, . . . , xN ] be an n×N matrix where each column xi is a variable regarded

as a vector belonging to N observations. Assuming these observations are obtained on a

large number of variables (N is a large number), there may exist a redundancy in those

variables. In other words, some of the variables are correlated with each other, possibly

because they are observing the same source and not different independent constructs.

The goal of PCA is to decrease this redundancy and represent the data with m (m < N)

synthetic variables or Principal Components (PCs). These PCs are axes of new space

which represent the data with less dimensionality.

If we assume each xi is a linear combination ofm independent sources S = [s1, . . . , sm]

where si has the same length as xi, then the observed data y can be given as:

y = SA (2.31)

25



CHAPTER 2. BACKGROUND

where A is an m×N mixing matrix with constant elements.

Now the question is, what is the possible transformation on the observed data which

derives PCs and leads to the less dimensionality. The transformation should preserve the

independent constructs of the data and PCs should be the directions in the data space

which have high variances. The PC with the highest variance among other components

has the maximum information about the data. Therefore, PCA is more about finding

the components with high variances [59].

The covariance matrix of the data is necessary for deriving PCs. If we assume that

the covariance matrix Λyy of the normalized data y is not available but the observations

have stationary behavior, the estimation of covariance matrix can be given as follows:

Λ̂yy = E[yT y] (2.32)

=


σ̂11 · · · σ̂1n

...
. . .

...

σ̂n1 · · · σ̂nn



σ̂jk =
1

N − 1

N∑
i=1

(x(i,j) − µj)(x(i,k) − µk) (2.33)

where σ̂jk is located at the jth row and the kth column of the covariance matrix and is a

measure of relation between xj and xk which µj and µk are means of the variables. x(i,j)

and x(i,k) are the ith observation of xj and xk variables.

To decrease the variable redundancy and find the PCs, the first step is to find a linear

function of the variables xi (i = 1, . . . , N) which gives the maximum variance:

yα1 = α11x1 + α21x2 + . . .+ αN1xN (2.34)

where α1 = [α11, . . . , αN1]T is a vector of N constant values. We look for another linear
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function of the data samples (yα2) which has the second largest variance and is uncor-

related with yα1. The procedure of finding the linear functions can be followed until

having the kth (k ≤ N) linear function of the variables which has the kth largest variance

and at the same time is uncorrelated to previously derived functions. Therefore, it is

possible to calculate up to maximum n uncorrelated PCs, but we hope to represent the

data with less number of PCs which have most of the variations of the data set.

Then the kth largest PC is given by zk = yαk where αk is an eigenvector of Λ̂yy

corresponding to the kth largest eigenvalue λk. For unit length αk (αTk αk = 1) the

var(zk) = λk where var(zk) is the variance of zk. The first PC (yα1) is related to α1

which maximizes var(yα1) = αT1 Λ̂yyα1. The constraint ‖αk‖ = 1 is used in derivation

which simplifies the optimization problem and it means sum of squares of elements of

α1 is equal to one.

To maximize αT1 Λ̂yyα1 with respect to ‖αk‖ = 1 the Lagrangian equation L(α1) can

be written as follows:

L(α1) = αT1 Λ̂yyα1 − λ(αT1 α1 − 1) (2.35)

where λ is a Lagrange multiplier. Differentiation subject to α1 gives:

α̂1 = max
α1
L(α1) (2.36)

Λ̂yyα̂1 − λα̂1 = 0 (2.37)

which gives:

(Λ̂yy − λI)α̂1 = 0 (2.38)

where I is the identity matrix. Thus, λ is an eigenvalue of Λ̂yy and it is corresponding
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to eigenvector α̂1. To decide which of the eigenvectors maximizes the variance of PC,

we consider that following term should be maximized:

α̂T1 Λ̂yyα̂1 = α̂T1 λα̂1 (2.39)

= λα̂T1 α̂1

= λ

Therefore, λ corresponds to eigenvector α̂1 and it should be the largest eigenvalue of Λ̂yy.

The second PC (yα2) also should maximizes αT2 Λ̂yyα2 subject to being uncorrelated with

previous PC (yα̂1) which means E[(yα̂1)T (yα2)] = 0.

E[(yα̂1)T (yα2)] = α̂T1 Λ̂yyα2 (2.40)

= αT2 Λ̂yyα̂1

= αT2 λ1α̂1

= λ1α
T
2 α̂1

= λ1α̂
T
1 α2

Then any of the following conditions will be useful to define the PCs uncorrelated:

α̂T1 Λ̂yyα2 = 0, αT2 Λ̂yyα̂1 = 0 (2.41)

α̂T1 α2 = 0, αT2 α̂1 = 0 (2.42)

If we choose the later constrain and having the normalization constrain then the La-

grangian function will be:

L(α2) = αT2 Λ̂yyα2 − λ(αT2 α2 − 1)− φ αT2 α̂1 (2.43)
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where λ and φ are Lagrange multipliers. Maximization with respect to α2 gives:

α̂2 = max
α2

L(α2) (2.44)

Λ̂yyα̂2 − λα̂2 − φα̂1 = 0 (2.45)

Multiplication by α̂T1 gives:

α̂T1 Λ̂yyα̂2 − λα̂T1 α̂2 − α̂T1 φα̂1 = 0 (2.46)

Since first two terms are zero and α̂T1 α̂1 = 1 then φ = 0.

Λ̂yyα̂2 − λα̂2 = 0 (2.47)

and

(Λ̂yy − λI)α̂2 = 0 (2.48)

So λ is an eigenvalue of Λ̂yy, and α̂2 the corresponding eigenvector. Similar to the first

PC, λ = α̂T2 Λ̂yyα̂2 should be as large as possible. This procedure can be repeated to find

all of the PCs as the λk is the kth largest eigenvalue of Λ̂yy and αk is the corresponding

eigenvector:

var(yαk) = λk (2.49)

We can summarize the calculation of PCs as follows:

1. Normalize data.

2. If covariance matrix of the population is not available calculate the covariance

matrix of the samples.
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3. Calculate eigenvectors and eigenvalues.

4. Keep m top eigenvectors which are related to the m largest eigenvalues.

5. Multiply eigenvectors by the data to calculate the PCs.

An extension of PCA for calculating principal curves is introduced in [60].

2.4 Arbitrary Shaped Clustering Methods

2.4.1 Spectral Clustering

Spectral clustering can partition arbitrary shaped data if the number of clusters K is

available [61, 62]. In general spectral clustering methods, K largest eigenvectors of the

Laplacian of the affinity matrix will be used for partitioning data. Following steps show

the process of spectral clustering for an observed dataset x = [x1, x2, · · · , xN ]T [39]:

1. Calculate the affinity matrix A ∈ RN×N , where Aij is the distance between sam-

ples xi and xj :

Aij = e
−‖xi−xj‖

2

2σ2 (2.50)

where i 6= j and Aii = 0.

2. Define D as a diagonal matrix where each Dii is a summation of the elements in

the ith row.

3. Calculate the Laplacian matrix L as follows:

L = D−1/2AD−1/2 (2.51)

4. Find the K largest eigenvectors of L, denoted by α1, α2, · · · , αK , and form the
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matrix P ∈ RN×K as follows:

P = [α1, α2, · · · , αK ] (2.52)

5. Normalize P and denote it by Q as follows:

Qij =
Pij

(
∑

j P
2
ij)

1
2

(2.53)

where each row of Q is a data point in RK .

6. K-means or similar algorithms can cluster rows of Q into K clusters.

7. If the ith row of Q is a member of cluster j, then assign the original point xi to the

cluster j.

2.4.2 Normalized Cut Clustering

Normalized Cuts (N-Cut) clustering is proposed for image segmentation in [1]. This

method constructs a weighted graph of data, where samples are nodes and weights on

edges between nodes reflect a measure of similarity between samples. More specifically,

edge weights are inversely proportional to the distances between nodes. N-Cut tries to

find two optimal partitions in the data which removing the edges between them will have

the minimum cut. In this setting, a cut is the total value of the removed edges and N-cut

for two partitions A and B can be given as follows:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(2.54)

and

cut(A,B) =
∑

u∈A,v∈B
w(u, v) (2.55)
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where w(u, v) is the weight between nodes u and v. The assoc(A, V ) =
∑

u∈A,t∈V w(u, t)

is the total connections between nodes in A and all nodes in the graph. The same

definition is valid for assoc(B, V ). The following shows required steps for partitioning

an image data using N-cut:

1. Given an image dataset, set up the weighted graph of the image with nodes and

weights for the connected nodes.

2. Solve the following relation for eigenvectors with the smallest eigenvalues:

(D −W )x = λDx (2.56)

where W is an N ×N symmetrical matrix of weights and D is an N ×N diagonal

matrix with d(i) =
∑

j w(i, j) as the ith element on its diagonal. d(i) is the total

connection from node i to all of the nodes.

3. Bipartition the graph using the eigenvector with the second smallest eigenvalue

that minimizes the N-cut.

4. Decide if the partitions should be subdivided recursively based on the stability of

cut and having N-cut less than a predefined value. The number of segments in the

above steps can be controlled by the maximum value of N-cut, but this 2-way cut

procedure has drawbacks on treating oscillatory eigenvectors and the approach is

computationally wasteful [1]. Therefore, instead of 2-way cut a K-way partitioning

using all of the eigenvectors based on a given K is suggested.

2.4.3 Voting-K-means

Voting-K-means algorithm combines clustering results of several K-means clusterings for

an initial given number of clusters. The resulted co-association sample matrix which

shows overall outcome of clusterings is then used to extract the underlying consistent
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clusters [41]. Following steps show the required procedure for partitioning data using

Voting-K-means for a given initial number of clusters K [41]:

1. Do R times:

• Randomly select K cluster centers among the N data samples.

• Organize the N samples in random order, keeping track of the initial data

indexes.

• Run the K-means algorithm with the reordered data and cluster centers and

update the co-association matrix according to the partition thus obtained over

the initial data indexes.

2. Detect the consistent clusters through the co-association matrix.

2.4.4 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a well known

and widely used clustering approach for arbitrary shape clusters [42].

In this method, clusters are regions with high density of samples which are separated

by lower density areas. This general definition suggests that clusters can follow any

non-convex and arbitrary shaped geometry.

DBSCAN algorithm requires to have two input parameters available before the task

of clustering, ε-neighborhood, and minimum number of points (minPts).

All the members of e-neighborhood of xi are within epsilon distance (distance usually

is defined based on the euclidean distance). for any xj , and a member of ε-neighborhood

of xi, we have the distance between xi andxj defined as dxixj .

The ε-neighborhood is the distance from any xi sample in the data set that any other

sample xj within this distance will be considered as a neighborhood sample for the xi.

In other words, for any neighborhood sample xj with the the distance dij from xi, the

following inequality is true:
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dij ≤ εneighborhood (2.57)

The minPts defines the possible minimum number of samples for the clusters. In

this method, samples with at least minPts number of samples in their neighborhood

are called core-samples, and samples with less number of neighborhoods are non-core

samples. Core samples are mainly located in the denser area of the data set, while non-

core samples belong to regions with less density. The samples which are neither core

sample nor non-core sample are considered as outliers.

Based on the above definition, any xj sample is directly density-reachable from the

sample xi, if there is a chain of intermediate samples which are all core samples like xi.

In general, DBSCAN starts with an arbitrary sample and check it for being a core

sample. If it is a core sample then a cluster will be emerged otherwise it will be assumed

as an out-lier sample which has this potential to be assigned to an undiscovered cluster.

2.4.5 Affinity Propagation Clustering

Affinity propagation or clustering by passing messages between data points is introduced

in [43], and relies on the similarity matrix of data as the input of algorithm. Here, the

number of clusters will be estimated simultaneously and the algorithm doesn’t rely on

a predefined distribution for clusters. According to this method, an iterative process

of sending messages back and forth among the data samples will lead to emergence of

clusters and their exemplars or centers. In this context, there are two types of messages

to be sent by data samples to each other: responsibility and availability.

We consider s(i, k) as the similarity value between the sample xi and sample xk.

When the goal is to minimize the squared error, each similarity is set to a negative

squared error. Therefore, we can formulate s(i, k) as the negative Euclidean distance

between the samples:

s(i, k) = −||xi − xk||2 (2.58)
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Accordingly, r(i, k) is the responsibility message sent from the sample i to the sample

k, which shows the significance of k as an exemplar for i considering all other available

exemplars for i. a(i, k) is the availability message sent from the potential exemplar k to

the sample i, which shows how appropriate is it for the sample i to choose the sample k

as its exemplar knowing the vote of other samples to select the sample k as an exemplar.

Consequently, the r(i, k) and a(i, k) can be defined as follows:

r(i, k)← s(i, k)− max
k′s.t. k′ 6=k

{
a(i, k

′
) + s(i, k

′
)
}

(2.59)

where s(i, k
′
) is the similarity between the sample i and all of the available exemplars

except the exemplar k. a(i, k
′
) shows the availability of all of the exemplars excluding

the sample k for the sample i.

a(i, k)← min
{

0, r(k, k) +
∑

i′s.t. i′ /∈{i,k}

max{0, r(i′ , k)}
}

(2.60)

where r(k, k) is the self responsibility of the sample k which relies on the s(k, k). Here,

s(k, k) is the self similarity or preference of the sample k that could be given as a prior

knowledge in the beginning of the clustering. Sample k with a large predefined value of

s(k, k) has higher chance to be served as an exemplar, therefore, preference values can

dictate the final number of clusters.

The self availability of k shows the positive votes or responsibilities sent from all of

the samples excluding the sample i to choose the sample k as the exemplar.

a(k, k)←
∑

i′s.t. i′ 6=k

max{0, r(i′ , k)} (2.61)

Having the availability and responsibility values, any sample k that maximizes the

a(i, k) + r(i, k) is an exemplar for the sample i.

In summary, availabilities will be updated based on the responsibilities and respon-
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sibilities will be updated based on the availabilities. Then, exemplars will be suggested

based on the combination of them. This procedure will be repeated iteratively until a

predefined condition for terminating the algorithm is satisfied.

In some cases, a numerical oscillation might occur which need to be avoided by using

a damping factor between 0 and 1 in the algorithm. It is suggested that a damping factor

equal to 0.5 can avoid most of the oscillations. Another suggested approach is adding a

tiny amount of noise to the similarity matrix.
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MACE-means Clustering

Majority of the existing clustering methods that can estimate the number of clusters

independently need to solve two optimization problems. One optimization problem for

estimating the number of clusters and one for clustering data based on the estimated

number of clusters. The methods that have optimization stages such as K-means based

methods are sensitive to the initial optimization parameter and local optima. These

errors, in most of the algorithms will not be detected, which propagates to the results of

clustering. One scenario is that number of clusters is chosen correctly, but optimization

error causes a difference between the true center and the estimated center. In another

scenario, the chosen number of clusters is not correct, and the error of mismatching

between samples and true centers is also added to the optimization error. Inspired

by [63], [64] and [65], we penalize the errors of clustering and optimization based on a

probabilistic approach. This chapter is motivated by searching for a quantitative measure

that can evaluate the clustering error [66].
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3.1 Our Formulation and Correct Number of Clusters (CNC)

Challenges

Observed data of length N, x = [x1, . . . , xN ]T where xi ∈ R1×d, is available and the

data is generated by m∗ cluster model. Centers of these clusters are rows of matrix c∗m∗ ,

c∗m∗ ∈ Rm∗×d (with dimension d):

c∗m∗ = [c∗1, . . . , c
∗
m]T , (3.1)

The observed data x is a sample of random variable X with the following statement:


X1

...

XN

 =


c∗x1
...

c∗xN

 +


W1

...

WN

, (3.2)

X = c∗x +W. (3.3)

where c∗x is the associated centers of the data, i.e., each c∗xi is an element of c∗m∗ , and W

is the representative of a random variable that demonstrates the variations in the clus-

ters. For example, if the variations are assumed to be from independent and identically

distributed (iid) Gaussian distributions, we have W T
i ∼ N (0, σ2

wId×d). Figure 3.1 shows

an example of such model in 3−dimensional space (d = 3) with three centers (m∗ = 3).

CNC Challenges: A clustering method aims for estimating the correct centers c∗x. In

this estimation, finding the CNC (m∗) is an important task. Here, we model the problem

of CNC calculation and clustering as follows:

c∗x −→ x −→ ĉm = [ĉm1, . . . , ĉmm]T . (3.4)
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Figure 3.1: Three clusters with 100 samples each (N = 300). The three bold points are
centers and the cluster variation is σ2

w = 3.

where ĉm is the vector of estimated centers in m-clustering. Arrows show that from

the correct centers, members of the clusters are generated and from the members of the

clusters the estimated centers are calculated. The main challenge is to find an optimum

m from a feasible range of values, m ∈ [mmin,mmax]. In an efficient clustering method

m̂=m∗, i.e., the CNC is found.

3.1.1 Naive K-means and Calculating ĉm

Naive K-means is a clustering algorithm that provides center estimates for a given number

of clusters m. For the available m and randomly initialized ĉ0
m (where the superscript

zero represents the initial step of the iterative optimization steps), K-means estimates

the compactness error ySm, which is the error between the available data and estimated

centers. At each iteration step, the following optimization is solved by K-means:

ylSm(ĉlm) = ‖x− ĉlm‖22, ĉl+1
m = arg min

ĉlm

ylSm(ĉlm), (3.5)

ĉm = ĉlmaxm , ySm = ylmaxSm . (3.6)

where lmax is the step when the convergence to a desired compactness error is satisfied.
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K-means can converge to the solution of clustering with a reasonable speed but it

has some shortcomings that need to be considered before any clustering. One of the

issues with K-means is that the objective function in (3.5) makes it limited to clusters

with spherical Gaussian distributions. Also, K-means is very sensitive to initialization

error for selecting centers of clusters and can be trapped in local optima of the objective

function.

CNC Challenges with K-means: Naive K-means can be used when CNC is

known a priori. However, its wide use is also for cases that CNC is not known. In

this scenario, a range of number of clusters is first considered and additional processing

compares these number of clusters to come up with an estimate of CNC. For example,

in some of these methods, the compactness error (ySm in (3.6)) is used as a part of the

criterion. Validity index methods, such as CH, DB, KL, Sil, and wtertra are examples

of such methods. Note that the compactness error itself is a decreasing function of m

and cannot provide any estimate of CNC by itself.

3.2 Minimum Average Central Error (MACE)

Considering (3.4) it seems desirable to have estimate of the sample of error1:

ZSm = ‖C∗x − Ĉm‖22. (3.7)

This error denoted by Average Central Error (ACE), is the error between the true centers

with correct number of centers and the estimated centers with m number of centers. In

the following, we provide a unique method of estimating this error and will show how

comparison of this error for a range of m is an efficient method for CNC estimation. We

will show how the available compactness error can be used in estimating the ACE.

1Please note that ĉm is a sample of the random variable Ĉm resulted by the random variable X.
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3.2.1 Average Central Error

The ACE, for when the number of clusters is assumed to be m, can be formulated as

follows:

ZSm =
m∑
i=1

ZSmi, (3.8)

where ZSmi is the ACE in the ith cluster:

ZSmi =
1

ni
‖C∗xmi − Ĉmi‖

2
2. (3.9)

Denote members of this cluster with Xmi = [X1
mi, · · · , X

ni
mi]. Therefore, we have :


c∗x1mi

...

c∗xnimi

 −→


X1
mi

...

Xni
mi

 −→


1

...

1

 Ĉmi, (3.10)

C∗xmi −→ Xmi −→ Ĉmi, (3.11)

Ĉmi =
1

ni

ni∑
j=1

Xj
mi, (3.12)

Figure 3.2 shows an example in which m∗ = 3 and m = 2. In this case K-means provides

an estimate of centers as Ĉ2 = [ĉ21, ĉ22]T . As the figure shows, the associated cluster

with ĉ21 has n2 = 9 members that includes one member of c∗3 denoted by x1
21, and eight

members of c∗1 denoted by [x2
21, · · · , x9

21]. For these nine members of x21 and based on

(3.10), we have:

c∗x21 = [c∗3, c
∗
1, · · · , c∗1]T −→ x21 −→ [1, 1, · · · , 1]T1×10 ĉ21. (3.13)
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Figure 3.2: In this example, m∗ = 3, d = 2, and m = 2. The two estimated centers are
ĉ21 and ĉ22.

3.2.2 MACE-means criterion

Minimizing ACE over a considered range of m results an estimate of CNC. This method

is denoted as MACE-means. In the following, we show required steps for deriving MACE

and employing that in data clustering.

3.3 Calculating Minimum Average Central Error (MACE)

The average central error (3.9) is (for details see Appendix A):

ZSmi =
1

ni
‖AmiC∗xmi‖

2
2 +

1

n2
i

ni∑
j=1

W 2
j +

2

n2
i

ni∑
j 6=k

WjWk (3.14)

where

Ami =


1− 1

ni
· · · 1

ni
...

. . .
...

1
ni

· · · 1− 1
ni

 ,

The variance and mean of the ACE are as follows:

E[ZSmi] =
1

ni
‖AmiC∗xmi‖

2
2 +

1

ni
σ2
w , (3.15)
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var[ZSmi ] =
2

n2
i

σ4
w. (3.16)

where the above relations are result of assuming the same variance in clusters. We show

that in practice, the proposed clustering method based on this assumption can deal with

clusters with different variances to an acceptable level. An example of the behavior of

these statistics is shown in Figure 3.3. As these values show, the standard deviation is
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Figure 3.3: Expected value and standard deviation of ZSm for a range ofm (here, m∗ = 5,
σ2
w = 1, d = 3, N = 500).

much smaller than the expected value itself and can be ignored in comparison. Therefore,

in comparing m-clustering, we can focus on estimating and comparing the expected value

for feasible sets of m clusters. Consequently, we only need to estimate the ‖AmiC∗xmi‖
2
2/ni

in (3.15), which requires to have the variance σ2
w in advance. In the following two

subsections, we provide methods for estimating these values by only using the observed

data.
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3.3.1 Estimating 1/ni‖AmC∗xmi‖2
2 using the available cluster compactness

The available cluster compactness ySm in (3.6) is a sample of random variable YSm.

Average cluster compactness error in the ith cluster is:

YSmi =
1

ni
‖Xmi − Ĉmi‖22, (3.17)

by simplifying (3.17), we will have (See Appendix B for more details):

YSmi =
1

ni
‖AmiC∗xmi‖

2
2 −

2

n2
i

ni∑
j 6=k

WjWk+

ni − 1

n2
i

ni∑
j=1

W 2
j −

2

n2
i

ni∑
j=1

Wj

ni∑
k=1

c∗xk +
2

ni

ni∑
j=1

Wjc
∗
xj , (3.18)

consequently, the expected value and variance of cluster compactness are as follows:

E[YSmi] =
1

ni
‖AmiC∗xmi‖

2
2 +

ni − 1

ni
σ2
w, (3.19)

=
1

ni

ni∑
i=j

c∗2xj −
1

n2
i

(

ni∑
j=1

c∗xj )
2 +

ni − 1

ni
σ2
w, (3.20)

var[YSmi] =
4σ2

w

n2
i

ni∑
j=1

c∗2xj −
4

n3
i

σ2
w(

ni∑
j=1

c∗xj )
2 +

2(ni − 1)

n2
i

σ4
w, (3.21)

An example of expected value and standard deviation of YSm is shown in Figure 3.4.

Comparing (3.20) and (3.21), the variance is of order of 1/nith smaller than the expected

value, therefore we can assume that the available ySmi is a good representative of its

expected value. Therefore, from (3.19) the following relation will be given:

1

ni
‖AmiC∗xmi‖

2
2 ≈ ySmi −

ni − 1

ni
σ2
w. (3.22)
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Figure 3.4: Expected value and standard deviation of YSm for a range of m (here, m∗ = 5,
σ2
w = 1, d = 3, N = 500).

3.3.2 Estimating the Variance (σ2
w) using the available cluster compact-

ness

In this section, we use the available cluster compactness to find an estimate of variance.

Using (3.20) for the mith cluster of m-clustering, we have:

ySmi =
1

ni

ni∑
j=1

c∗2xj −
1

n2
i

(

ni∑
j=1

c∗xj )
2 +

ni − 1

ni
σ2
w + εi(m), (3.23)

where εi(m) represents the divergence of ySmi from its mean and therefore, E[εi(m)] = 0.

For the overall cluster compactness of m-clustering we have:

ySm =
m∑
i=1

(
1

ni

ni∑
j=1

c∗2xj −
1

n2
i

(

ni∑
j=1

c∗xj )
2 +

ni − 1

ni
σ2
w) + ε(m), (3.24)

= T1(m) + T2(m) + ε(m), (3.25)
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where

T1(m) =

m∑
i=1

(
1

ni

ni∑
j=1

c∗2xj −
1

n2
i

(

ni∑
j=1

c∗xj )
2), (3.26)

T2(m) =
m∑
i=1

(
ni − 1

ni
σ2
w), (3.27)

ε(m) =
m∑
i=1

εi(m), E[ε(m)] = 0, (3.28)

A typical behavior of terms T1(m) and T2(m) is shown in Figure 3.5. T2(m) is mainly a
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Figure 3.5: T1(m) and T2(m) when m∗ = 5, σ2
w = 1 and, ni = 100.

function of variance and the number of elements in each cluster. In general, if ni is large

enough such that (ni − 1)/ni ≈ 1, we have:

T2(m) = mσ2
w. (3.29)

On the other hand, as m grows to be larger than the true m∗, for each mith cluster,

we have c∗xj ≈ c∗mi, where c∗mi is one single true unknown center. Although c∗mi is not
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known, this property causes T1(m) in (3.26) to be negligible for m ≥ m∗. Consequently,

for the available cluster compactness in (3.23) with the range of m-clustering we have:

ySm =


T1(m) + T2(m) + ε(m) m < m∗

T2(m) + ε(m) m ≥ m∗
(3.30)

while m∗ is unknown, the behavior of this cluster compactness is such that it can help us

in finding an estimate of variance. An estimate of variance can be calculated as follows:

k = arg min
m

(ySm), (3.31)

σ̂2
w =

1

mmax − k + 1

mmax∑
m=k

ySm∑m
i=1

ni
ni−1

. (3.32)

where the second equation is the result of using (3.27) and (3.30). Please note that, while

it is known that minimizing ysm for a range of m does not provide a consistent estimate

of CNC, the above analysis shows that this minimization is beneficial in estimating the

variance. Figure 3.6 shows a typical behavior of ySm, T2, and how this averaging works.

In this example, m∗ = 5, and two of the clusters are highly overlapped, which has forced

the expected value of ySm to give a minimum at m = 4. As it can be seen, T2 is a function

of σ2
w, which for m ≥ 4 is the same as ySm. Therefore, minimum of ySm can be used to

estimate the variance σ2
w, but it does not give the correct m directly. In other word, if

we ignore the effect of l2-norm in calculation of ySm, ySm will be always a monotonically

decreasing function of m. Nevertheless, as Figure 3.6 confirms the minimum of E[ZSm]

occurs at CNC =5.
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Figure 3.6: Typical behavior of ySm, (m∗ = 5, N = 500, σ2
w = 2, σ̂2

w = 2.09, m̂ = 5).

3.4 Average Central Error Estimate

To estimate the ACE based on (3.22) and (3.32), we have:

1

ni
‖AmiC∗xmi‖

2
2 = ySmi −

ni − 1

ni
σ̂2
w, (3.33)

using this result and (3.32) in (3.15) follows as:

ẑSmi = ySm −
ni − 2

ni
σ̂2
w, (3.34)

which can be used to provide the following estimate for ACE:

ẑSm =

m∑
i=1

ẑSmi, (3.35)

consequently, the estimated CNC by MACE is as follows:

m̂ = arg min
m∈[mmin,mmax]

ẑSm. (3.36)
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An example of true and estimate of zSm is shown in Figure 3.7.
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True Zsm

Figure 3.7: True zSm and its estimate in (3.35), when m ranges between 2 and 15
(m∗ = 5, m̂ = 5, N = 500, d = 3).

3.4.1 MSDL-means clustering

MACE-means clustering can also be denoted as Minimum Structure Description Length

(MSDL-means clustering).

According to (3.3), the density function of the observed data based on the true

clusters is:

f(X;C∗x) =
1

(
√

2πσ2
w)N

exp−‖X−C
∗
x‖22/2σ2

w , (3.37)

Therefore, the description length of the observed samples can be modeled as follows [63]:

DL(X;C∗x) = − 1

N
log2(f(X;C∗x)), (3.38)
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Consequently, the description length of the associated cluster centers for m-clustering is:

DL(Ĉm;C∗x) = − 1

N
log2(f(Ĉm;C∗x)) = log2

√
2πσ2

w +
log2 e

2σ2
w

ZSm . (3.39)

where the last equation is the result of (3.8). This shows how minimizing the ACE is

equivalent to minimizing the description length based on m-clustering that we denote

by m-clustering structure description length.

3.5 Computational Complexity Analysis and Comparison

Computational complexity of K-means is O(mNdl), where m is the number of clusters,

N is the length of the data, d is the dimension of the data and l is the fixed number

of iterations in the optimization stage. Computational complexity of MACE-means is

analogous to G-means, which is O(m) × O(mNdl). This is obtained based on m + 1

required runs of K-means for estimating the minimum ZSm at m. Here, ZSm is calculated

based on YSm which is given by K-means. Therefore ZSm calculation doesn’t impose a

significant computational complexity on the method. Number of iterations for K-means

algorithm in G-means is l = 100, and in KL, CH, DB, wtertra, Sil and MACE-means

is l = 35, while this value for Expectation-Maximization (EM) optimization algorithm

in PG-means is l = 10. Table 3.1 gives a comparison of computational complexity for

different methods 2.

Table 3.1: Time complexity

Method Time complexity

MACE-means O(m)×O(mNdl)
KL and CH O(Nd)×O(mNdl) [67]
DB and wtertra O(d(m2 +N))×O(mNdl) [67]
Sil O(dN2 +Nm)×O(mNdl) [67]
G-means O(m)×O(mNdl) [32]
PG-means O(m2Nd2l +mN log(N)) [34]

2 Time complexity of DaSpec was not available, but it was comparable to indexed-based clustering
methods. In our simulation experiments, the complexity of X-means will be discussed in Section 3.6.
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3.6 Experimental Results

In this section we compare the performance of MACE-means clustering with other known

approaches. The compared methods are stand alone approaches, such as PG-means [34],

G-means [32], X-means [31], and Data Spectroscopic clustering (DaSpec) or they are

validity indexes used with K-means, such as Silhouette (Sil) [25], Davies-Bouldin index

(DB), Calinski-Harabasz index (CH) [26], Krzanowski-Lai index (KL) [27] and, weighted

inter-to intra-cluster ratio (wtertra) [28].

Our results are shown for the following three sets of data:

1. Six available data sets from UCI Machine Learning repository [68], that satisfy

clustering problem statement in Section 3.1: Breast, Vertebral [69], Seeds, Wave

Forms, Multiple Features (dutch handwritten) and Water Treatment Plant. Table

3.2 shows characteristics of these data sets.

2. Four synthetic data sets (S1 to S4) introduced in [70] are selected because of their

Gaussian nature which are suitable for MACE-means clustering. These four data

sets are generated based on different levels of overlap between Gaussian clusters.

Table 3.2 shows characteristics of these data sets.

3. A large set of synthetic data in 2D and 3D feature spaces with the main focus on

estimating the number of clusters in low dimension. The sets are generated with

random centers and various levels of overlapping.

The experimental result for the first data set is shown in Table 3.3. It includes the mean

and STD of the estimated number of clusters for 50 runs. The ARI and VI values are also

averaged over 50 runs. The CNC is presented by m∗. Note that for some of the data

sets, X-means did not converge to a solution, these data sets are marked by (N/A).3

3In calculating the computational complexity, X-means seems to be comparable with MACE-means
and G-means. However, even though X-means is based on Kd-tree [31], that is supposed to speed up
the method, the algorithm is very slow and in occasions does not converge.
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Table 3.2: Real and synthesized benchmark data sets from the literature.

Data set Number of data vectors Dimension of data Number of clusters

Breast 699 9 2
Vertebral 310 6 3
Seeds 210 7 3
Wave Form 5000 21 3
Multiple Features 2000 649 10
Water Treatment Plant 527 38 13
S1 − S4 5000 2 15

ARI and VI indexes are only calculated for data sets that have the true class labels

and clustering methods that provide the estimated labels in addition to the estimated

number of clusters. As the table shows, most of the methods give a robust estimation,

i.e., their STD values are negligible. However, on average, MACE-means suggests a

closer estimation to the accurate number of clusters and better values for ARI and VI.

The experimental results for 50 runs on the second data set in 2D space is presented in

Table 3.4, where the number of clusters is known and the true labels are not available.

As it is shown in the table, MACE-means, Sil, DB and CH are giving the most accurate

estimations of the number of clusters. But among the mentioned methods, only MACE-

means estimates the m∗ robustly with zero error. The remaining of the methods such

as X-means, G-means and PG-means tend to overestimate the number of cluster. Our

synthetic 2D data sets are generated by random selection of centers in a square of 20 ×

20 for a range of true number of clusters. The variance in the clusters is one or two, and

each data set is generated with 100 samples per cluster. Table 3.5 shows the results of

different clustering methods for 50 runs over the explained data sets. For example, the

first value in the second column (3±0) is the average of 50 simulations. Where for all of

the simulations, the cluster variance is one and in each run the algorithm selects three

random centers with uniform distribution in the square of 20 × 20. Note that with this

set up we are covering a large set of possibilities as in each run there is a uniform chance
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Table 3.3: Mean and standard deviation of estimated number of clusters (E[m̂] ±
STD[m̂]) for real data sets (average over 50 runs).

E[m∗]± STD[m∗]

Method Vertebral Breast Seeds Multiple Features Wave Forms Water Treatment Plant

m∗ = 3 m∗ = 2 m∗ = 3 m∗ = 10 m∗ = 3 m∗ = 13

MACE-means 3±0 2±0 3 ±0 11±0 3±0 10.1±0.31

ARI N/A 0.211±0.423 0.119±0.292 0.019±0.077 0.035±0.063 N/A

VI N/A 0.081±0.162 0.111±0.273 0.149±0.599 0.087±0.349 N/A

X-means N/A N/A 8±0 16±0 N/A N/A

G-means 5±0 92±0 2±0 33±0 13±0 6±0

ARI N/A 0.011±0.023 0.078±0.191 0.010±0.040 0.012±0.048 N/A

VI N/A 0.849±1.698 0.136±0.335 0.209±0.838 0.133±0.533 N/A

PG-means 1±0 10±0 1 ±0 1±0 6±0 1±0

ARI N/A 0.041±0.082 0±0 0±0 0.018±0.074 N/A

VI N/A 0.441±0.883 0.183±0.448 0.143±0.575 0.087±0.349 N/A

DaSpec 2±0 1±0 2±0 1 ±0 1±0 7±0

ARI N/A 0±0 0.076±0.187 0±0 0±0 N/A

VI N/A 0.161±0.323 0.135±0.332 0.143±0.575 0.068±0.2746 N/A

Sil+K-means 2±0 2±0 2±0 2±0 2±0 2 ±0

DB+K-means 2±0 2±0 2±0 7 ±0 2±0 5±0

KL+K-means 2±0 2±0 3±0 18±0 3±0 2±0

wtertra+K-means 3±0 4±0 3±0 4±0 4±0 4±0

CH+K-means 2±0 2±0 3±0 18±0 2±0 5±0

for different degrees of cluster overlapping.

For each method, mean and standard deviation of the estimated number of clusters

(m̂) along with the success rate in predicting the CNC is provided in the Table 3.5. The

success rate is the percentage of the times that the true number of clusters is estimated

correctly. As the table shows, by increasing the number of generated clusters as well as

increasing the variance, recognizing the overlapped clusters will be a challenging task.

All the comparing methods seem to tolerate and distinguish overlapping clusters with

a minimum distance between centers equal to 3σ2
w, while MACE-means performs well

even for center distances as small as 2σ2
w. This performance was evaluated by 90 percent

success rate in estimating the CNC. Table 3.5 also confirms that MACE-means provides

a reliable success rate as the mean is closer to CNC and robustness of MACE-means
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Table 3.4: Mean and standard deviation of estimated number of clusters (E[m̂] ±
STD[m̂]) for S data sets (average over 50 runs).

E[m̂]± STD[m̂]

Method S1 S2 S3 S4

m∗ = 15 m∗ = 15 m∗ = 15 m∗ = 15

MACE-means 15±0 15±0 15±0 15±0
X-means 20±0 19±0 16±0 N/A

G-means 95±0 77±0 87±0 63±0

PG-means 19±0 30±0 18±0 24±0

DaSpec 5±0 1±0 1±0 1±0

Sil+K-means 14.03±0.18 14.03±0.18 15±0 15±0
DB+K-means 14±0 14.03±0.18 15.96±0.18 13.96±0.18

KL+K-means 15.96±0.18 4±0 2±0 5±0

wtertra+K-means 7.26±1.46 14.03±0.18 15.86±0.73 17.03±0.18

CH+K-means 15.96±0.18 15.96±0.18 15±0 15±0

relative to other methods is proved by the small standard deviation values. The average

of ARI and VI values over 50 simulations also confirms the accuracy of MACE-means

compared with other methods, where larger ARI and smaller VI values show better

clustering results. It seems that one of the main factors for larger standard deviation in

other methods is due to level of sensitivity to the initial optimization parameters and

being trapped in local minima. Table 3.6 shows similar results when the data dimension

is increased to 3. In this case, for each of the 50 runs the centers are chosen with

uniform distribution in a cube of 20×20×20. This increase in dimension of the data

makes it easier to distinguish the clusters. Therefore, the methods were able to give a

better clustering result for a larger number of clusters and variance values compared to

Table 3.5. As the table shows, MACE-means is the most accurate and robust method in

estimating the m∗ for all of the data sets. The averaged ARI and VI values also confirm

the superiority of MACE-means over the other methods.
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Table 3.5: Mean and standard deviation of estimated number of clusters (E[m̂] ±
STD[m̂]) for our 2D synthetic data sets (averaged over 50 runs).

m∗ = 3 m∗ = 4 m∗ = 5 m∗ = 6

d=2 σ2
w = 1 σ2

w = 2 σ2
w = 1 σ2

w = 2 σ2
w = 1 σ2

w = 2 σ2
w = 1 σ2

w = 2

MACE-means 3±0 3±0 3.9±0.307 3.95±0.223 5.3±0.470 4.75±0.910 5.95±0.223 5.65±0.587

Success (%) 100 100 90 95 70 45 95 55

ARI 0.166±0.408 0.133±0.327 0.067±0.191 0.072±0.203 0.096±0.305 0.074±0.235 0.078±0.271 0.081±0.282

VI 0±0 0.082±0.202 0.123±0.348 0.132±0.374 0.012±0.038 0.066±0.209 0.017±0.061 0.006±0.021

X-means 3±0 2.75±0.444 3.8±0.410 3.1±0.967 4.4±0.502 3.75±0.966 5.4±1.095 5.4±1.500

Success (%) 100 75 80 50 40 30 65 35

G-means 3±0 2.5±0.51299 3.6±0.680 3.5±1.357 4.7±0.470 4.05±0.944 5.7±0.656 5.25±0.850

Success (%) 100 50 70 20 70 30 50 35

ARI 0.166±0.408 0.089±0.218 0.038±0.109 0.058±0.164 0.096±0.305 0.074±0.235 0.078±0.271 0.079±0.275

VI 0±0 0.103±0.254 0.132±0.374 0.104±0.295 0.012±0.038 0.066±0.209 0.017±0.061 0.014±0.051

PG-means 3±0 3.25±1.118 3.45±0.686 3.15±0.988 4.1±0.852 3.3±0.571 5.45±0.510 4.95±0.686

Success (%) 100 50 55 55 40 5 45 5

ARI 0.166±0.408 0.071±0.175 0.040±0.113 0.058±0.164 0.096±0.303 0.060±0.191 0.078±0.271 0.081±0.281

VI 0±0 0.155±0.381 0.118±0.334 0.105±0.297 0.0133±0.042 0.059±0.187 0.017±0.060 0.007±0.027

DaSpec 3±0 2.2±0.410 2.85±1.04 2.25±1.118 2.95±1.276 2.15±0.875 3.55±0.604 2.25±0.716

Success (%) 100 20 35 10 5 0 0 0

ARI 0.166±0.408 0.088±0.217 0±0 0±0 0.078±0.247 0.060±0.191 0.047±0.164 0.036±0.126

VI 0±0 0.093±0.228 0.173±0.490 0.173±0 0.027±0.087 0.059±0.187 0.045±0.158 0.076±0.266

Sil+K-means 2.5±0.512 2.2±0.410 2.95±0.887 3.15±0.988 3.1±0.552 3.05±0.686 3.95±1.145 3.45±1.145

Success (%) 50 20 35 55 5 5 10 5

DB+K-means 3±0 2.2±0.410 3.35±0.670 3.15±0.988 3.7±0.571 2.95±0.510 4.3±1.080 4±1.297

Success (%) 100 20 45 55 5 0 10 15

KL+K-means 3±0 3.65±1.308 4.5±1.539 3.15±0.988 3.4±1.095 4.6±2.303 5.35±2.539 7.15±2.719

Success (%) 100 30 50 55 10 5 15 5

wtertra+K-means 3±0 3±0 2.9±0.640 3.4±0.598 4.25±3.35±0.670 3.5±0.760 3.8±0.767

Success (%) 100 100 15 45 60 10 0 0

CH+K-means 3±0 2.75±0.444 3.7±0.470 3.15±0.988 4.7±0.470 3.7±0.923 5.85±0.366 5.3±0.923

Success (%) 100 75 70 55 70 25 85 45

As the Table 3.5 and Table 3.6 show, MACE-means gives the best performance over the

2D and 3D Gaussian data sets. X-means is the second best method in terms of estimating

the number of clusters. G-means and PG-means are the next successful methods but

have less accuracy compared with MACE-means in terms of ARI, VI and estimated

number of clusters. The provided results are highly affected by the number of iterations

(see l in Section 3.5) in each run of the K-means or EM algorithm. In other words, both
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of the mentioned algorithms are sensitive to the initialization error and can easily get

trapped in local minima of their objective functions. To solve this issue, it is suggested

to choose a large enough value for l and then choose the best solution among all of the

iterations (the most optimized objective function). The choice of l should be a trade off

between accuracy and computational complexity. In all of the simulations, we limited

the l parameter of our method to its minimum value which is used by other methods.

3.7 Conclusions

In this Chapter, MACE-mean clustering was proposed as a wrapper around K-means

for simultaneous clustering and estimating the correct number of clusters. We defined

the Average Central Error (ACE) and proposed a method for calculation of CNC based

on minimizing this error. One of the main contributions of this work was to provide

probabilistic bounds for the unavailable ACE using the available cluster compactness.

In clustering approaches, the initialization error propagates to the clustering process

and affects estimation of CNC. Robustness of MACE-means is due to the choice of a

single objective function that is used in both clustering and order selection. Comparison

between MACE-means and widely used clustering methods demonstrated the robustness

and accuracy of the proposed method in estimating the CNC, even for highly overlapped

clusters. Time complexity of clustering methods are compared and it was shown that

MACE-means has one of the lowest time complexities among them.
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Table 3.6: Mean and standard deviation of estimated number of clusters (E[m̂] ±
STD[m̂]) for our 3D synthetic data sets (averaged over 50 runs).

m∗ = 5 m∗ = 6 m∗ = 7 m∗ = 8

d=3 σ2
w = 2 σ2

w = 3 σ2
w = 2 σ2

w = 3 σ2
w = 2 σ2

w = 3 σ2
w = 2 σ2

w = 3

MACE-means 5±0.324 4.8±0.615 5.95±0.394 5.75±0.444 6.85±0.489 6.7±0.571 7.9±0.447 7.6±0.598

Success (%) 75 76 85 75 75 75 80 65

ARI 0.098±0.309 0.066±0.211 0.079±0.274 0.057±0.200 0.064±0.240 0.061±0.228 0.057±0.228 0.043±0.173

VI 0±0 0.007±0.024 0.014±0.051 0.073±0.255 0.024±0.091 0.032±0.121 0.021±0.084 0.039±0.156

X-means 4.95±0.510 4.65±0.587 5.8±0.410 5.5±0.888 6.9±1.209 6.2±0.951 7.5±1.147 7.15±0.812

Success (%) 75 70 80 55 35 40 35 40

G-means 5±0.648 4.6±0.820 5.8±0.695 5.7±0.978 6.8±0.695 6.2±0.615 7.5±1.051 7±1.123

Success (%) 60 60 65 40 65 30 30 25

ARI 0.090±0.287 0.066±0.211 0.079±0.274 0.056±0.194 0.057±0.215 0.058±0.217 0.050±0.202 0.043±0.173

VI 0.026±0.082 0.075±0.239 0.014±0.051 0.063±0.220 0.028±0.106 0.028±0.105 0.030±0.121 0.039±0.156

PG-means 4.7±0.656 4.5±1.051 5.95±0.944 5.4±0.994 6.85±0.988 5.9±0.788 7.1±1.071 6.65±0.988

Success (%) 65 40 60 30 65 20 15 25

ARI 0.097±0.306 0.046±0.146 0.078±0.272 0.053±0.183 0.056±0.211 0.057±0.214 0.049±0.198 0.042±0.171

VI 0.012±0.038 0.079±0.252 0.015±0.055 0.057±0.197 0.030±0.115 0.027±0.101 0.028±0.113 0.039±0.159

DaSpec 3.2±0.951 2.65±0.875 3.5±1.051 3±0.794 3.8±0.894 2.8±1.056 3.5±1.192 2.5±0.760

Success (%) 10 0 0 0 0 0 0 0

ARI 0.056±0.179 0.020±0.064 0.027±0.095 0.011±0.040 0.007±0.027 0.033±0.127 0±0 0.009±0.038

VI 0.075±0.237 0.117±0.371 0.077±0.266 0.111±0.387 0.109±0.410 0.061±0.231 0.129±0.519 0.096±0.386

Sil+K-means 3.9±0.967 3.6±1.231 4.3±1.260 4.25±1.251 5.5±1.277 4.25±1.208 5.8±1.641 5.1±1.651

Success (%) 30 30 15 20 20 0 15 5

DB+K-means 3.95±0.887 3.85±1.136 4.35±0.988 4.2±1.239 5.3±0.978 4.45±0.944 5.9±1.619 5.55±1.316

Success (%) 30 35 10 25 10 0 15 10

KL+K-means 5.45±1.959 4.5±1.192 5.95±1.848 6.35±2.73 7.75±3.109 6.8±3.205 11.2±3.847 9.75±3.850

Success (%) 55 50 45 30 45 0 5 5

wtertra+K-means 3.75±0.786 3.9±0.911 3.9±1.29 4.45±0.887 4.35±1.424 4.3±1.454 4.45±1.234 4.5±1.317

Success (%) 20 20 25 10 10 10 0 0

CH+K-means 4.6±0.753 4.5±0.827 5.65±0.745 5.45±0.759 6.4±1.046 5.75±1.482 7.3±0.923 6.95±0.998

Success (%) 70 65 75 60 65 35 55 35
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Chapter 4

Signature Testing (Sigtest) in

Clustering

We propose a new statistical test denoted by signature testing (Sigtest) with the appli-

cation in clustering and image classification. Sigtest relies on probabilistic validation of

empirical distribution function of data. We implement Sigtest to estimate the number

of clusters in hierarchical and partitional clustering. In addition we propose a new adap-

tive estimation of the vocabulary size in image classification. Simulation results on both

real and synthetic data confirm superiority of Sigtest over existing statistical tests in

both hierarchical and partitional clustering as it estimates the number of clusters more

accurately. Sigtest also shows advantages in terms of adjusted rand index (ARI) and

variation of information (VI). In addition, using Sigtest for adaptive choice of vocabu-

lary size in bag of visual words improves the efficiency of the Support Vector Machines

(SVM) classifier as well as reducing the time complexity of the overall algorithm.
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4.1 Introduction

Sigtest can be employed for estimating the number of clusters. Unlike existing statistical

tests it can be used with any prior assumption on the distribution of the clusters (Dcdf).

In this Chapter, we focus on the application of Sigtest when prior assumption on dis-

tribution of clusters is Gaussian. Using the method with any other prior assumption is

analogous to what is presented here.

The chapter is organized as follows: Section 4.2 gives details of deriving Sigtest.

Section 4.3 shows applications of Sigtest in hierarchical and partitional clustering along

with BOVW image classification. Section 4.5 shows simulation results of using Sigtest

on real and synthetic data sets, and Section 4.6 presents the conclusion.

4.2 Signature Testing

As discussed in Section 2.2, the goal of all statistical testing methods is to propose an

efficient distance measure between the Dcdf and ecdf. In the following, we elaborate on

an idea that our desired cdf can be represented by its signature through transformation

of data which can benefit drastically in defining a distance measure. A signature of a

cdf is a new cdf that is derived from the original cdf, which has much smaller variations

and represents a set of dense data samples. The following example illustrates the notion

of signatures.

Consider a data that has been generated independently and identically distributed

(iid) from a Gaussian distribution N (0, σ2) with zero mean and variance σ2. Figure 4.1

(a) shows the histogram of 500 samples of a Gaussian random variable with zero mean

and σ = 1, N (0, 1).

Figure 4.1 (b) shows 100 of such samples (length of the data is 500) that are plotted

simultaneously over each other. As this figure shows, the original samples vary between

±3.5σ (σ = 1) which theoretically happens with the probability of 0.9995 for a Gaussian
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Figure 4.1: (a) Histogram of 500 randomly generated samples belong to a Gaussian
distribution with zero mean and unit variance. (b) The actual data without any manip-
ulation. (c) Sorted absolute values of the samples.

distribution. However, Figure 4.1 (c) shows the same 100 samples when the absolute

value of those Gaussian samples are sorted.

Based on this observation, it seems that the cdf of the sorted absolute version of the

Gaussian distribution has much smaller variance compared to the cdf of data itself. For

example, while the ranges in Figure 4.1 (b) and (c) are identical (0 < xlabel < 500, and

0 < ylabel < 4), the area shown in Figure 4.1 (c) compare to the area shown in Figure

4.1 (b) for exactly the same data is much smaller and denser. Figure 4.2 shows the same

transformation on a mixture of two Gaussians that leads to a denser area (Figure 4.2

(c)) which can be used for signature testing.

We denote such dense transformations of the original cdfs as the signature of those

cdfs. In the following, we describe how those signatures can be used as statistical tests

to compare ecdfs with the desired cdf.
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Figure 4.2: (a) Histogram of 1000 randomly generated samples drawn from a Gaussian
mixture model with mean values equal to zero and 5, and unit variances. (b) The actual
data without any manipulation. (c) Sorted absolute values of the samples.
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Figure 4.3: (a) sorted absolute version of 100 samples belong to a Gaussian distribution
with zero mean and unit variance. (b) the same plot while x axis and y axis are swapped.

4.2.1 Formulation of Signature testing (Sigtest)

Let V = [V1, V2, · · · , VN ]T be a vector of iid random variables of length N , where v =

[v1, v2, · · · , vN ]T is a sample of that random variable. For any given z the following

random variable:

g(V, z) =
1

N

N∑
i=1

I(vi, z) (4.1)

depicts the averaged number of vis less than z, where I(vi, z) was defined in (2.26) . If

we let w = [w1, w2, · · · , wN ]T to represent the vector of sorted absolute values of v, then:

g(v, wn) =
n

N
(4.2)

that means the g(v, wn) is the normalized index of the absolute sorted version of v.

Figure 4.3 (a) and (b) show this relationship by swapping the xlabel and ylabel.
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It can be shown that [64]:

E[g(V, z)] = Fa(z) (4.3)

var[g(V, z)] =
1

N
Fa(z)(1− Fa(z)) (4.4)

where Fa is the cdf of absolute value of vis.

This confirms that the variance of the index of the sorted version is of order of 1/N th of

the original random variable (Fa and F have variances of the same order). Consequently

sorted version of the original random variable is a good signature candidate of the original

random variable.

This signature has been used in denoising approaches to validate which small values

of an observed samples are members of the noise distribution by comparing the sorted

version of the absolute value of the observed data with the following boundaries:

S(z, α) = E[g(V, z)] + α
√
var[g(V, z)] (4.5)

S(z, α) = E[g(V, z)]− α
√
var[g(V, z)]

where SK(z, α) and SK(z, α) are the probabilistic upper and lower bounds and the α pa-

rameter is related to probabilistic validation to satisfy the desired confidence probability

pc for estimating the bounds of the index1.

An example of this signature testing for denoising is shown in Figure 4.4, where (a)

is noisy signal with SNR = 5. Figure 4.4 (b) shows sorted version of the noisy data

(blue line) and confidence region of the noisy data (red line). As the figure shows, at

wn = 1.47 data is crossing the lower boundary which suggests values between zero and

1Based on the Chebychev inequality, for the confidence probability pc:

Pr{|g(V, z)− E[g(V, z)]| ≤ J} = pc (4.6)

we will have J = α
√
var[g(V, z)], and it leads to the α ≤

√
1

1−pc which gives the upper limit of α.
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Figure 4.4: (a) Solid blue line is 100 samples of the noisy observed data (SNR = 5). (b)
Blue line is 100 samples of the sorted absolute values of the noisy observed data crossing
the noise confidence region (Red line) at wn = 1.47. The area between the red lines is
the noise confidence region with probability 0.999997.

wn are related to noise.

While this idea can be used for any assumption on the desired distribution, in the

following we provide the details for when the desired distribution is Gaussian.

Calculation of Fa: Calculating a closed form for cdf of the absolute value of the

random variable can be cumbersome. Note that as the desired cdf is known, in practical

applications, we can find a good estimate of Fa by using sampling approaches such

as Importance Sampling, Inverse Transform Sampling and Markov Chain Monte Carlo

(MCMC).

For a Gaussian distribution F , however, the closed form is (details are in Appendix

C):

Fa(z) =
1

2
[erf(

z − µ
σ
√

2
) + erf(

z + µ

σ
√

2
)] (4.7)

where µ and σ are mean and standard deviation of V respectively. The above cdf

is identical to (4.3) and can be used in (4.5) to define the signature of Dcdf. In the

following section, we show that this result can be easily extended for Gaussian mixture
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Figure 4.5: Ten observed samples (red dots) and their corresponding boundaries (blue
bars).

models.

4.2.2 Sigtest in Statistical Testing

In Sigtest statistical testing, we would like to verify whether the observed data y =

[y1, · · · , yN ]T (defined in Section 2.2 ) belongs to a desired cdf (Dcdf). To use the

sorting signature for such verification, we first sort the absolute value of the observed y

and denote it by t = [t1, · · · , tN ]T . We then compare i, which is the index of ti for any

z = ti, with S(ti, α) and S(ti, α) that are the upper and lower bounds from the Dcdf in

(4.5) for that observed ti. Consequently, each observed data will be tested against the

bounds as follows:

ci(α) =


0 S(ti, α) < i

N < S(ti, α)

1 otherwise

(4.8)

this value is a flag to check whether the ith sample is inside the provided boundaries by

Dcdf.
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The overall Sigtestscore for y is suggested to be the percentage of consistency of the

observed data with the Dcdf:

Sigtestscore(α) =
1

N

N∑
i=1

ci(α) (4.9)

Sigtestscore should be less than critical value T to accept the null hypothesis that ecdf

is a sample of the Dcdf (H0), otherwise it is not a sample of the Dcdf (H1):

• H0: The observed sample (ecdf) is a sample of the Dcdf ↔ Sigtestscore(α) < T

• H1: The observed sample (ecdf) is not a sample of the Dcdf↔ Sigtestscore(α) ≥ T

For example, Figure 4.5 shows the results for (α) = 4.5 when 10 observed data sam-

ples are sorted. S(ti, α) and S(ti, α) for each sample are calculated, where blue bars

represent the validated boundaries of the samples. As the figure shows, samples 2,

7 and 8 are outside of the boundaries and the rest are within the boundaries, where

Sigtestscore(4.5) = 0.7.

Similar to other statistical testing, The parameters α and T need to be chosen through

some statistical analysis. In Appendix D, we provide detailed steps in choosing α and T

for the case of Gaussian distribution using genetic algorithm. The optimal values with

this approach are α=0.53, T = 1.72 respectively. Note that for any other desired cdf

same approach can be used for calculation of this parameters. Algorithm 1 shows Sigtest

in statistical testing.

4.3 Sigtest in Clustering

In the following, we demonstrate how Sigtest can be used as a statistic test for estimating

the number of clusters in hierarchical and partitional clustering. We also illustrate

advantages of using Sigtest in image retrieval based on BOVW in order to estimate the

size of visual vocabulary and improving the accuracy of classification.
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Algorithm 1 Sigtest in Statistical Testing

Input: Input sample y of length N , model assumption (desired cdf), critical values T and α.
Output: result of the test for the model.

1: Sigtestscore(α)← 0
2: t← sort(abs(y))
3: compute S and S from (4.5)
4: for i = 1 to N do
5: if i

N > S or i
N < S then

6: Sigtestscore(α)← Sigtestscore(α) + 1
N

7: end if
8: end for
9: if Sigtestscore(α) < T then

10: H0: y ∈ Dcdf
11: else
12: H1: y /∈ Dcdf

13: end if

4.3.1 Sigtest in Hierarchical Clustering

In divisive or top down hierarchical clustering methods, we start at the top with all of

the samples in one cluster. If the number of clusters is not known, samples will be split

recursively until every cluster has only one sample. Adding a splitting criterion at each

splitting stage can also estimate the number of clusters in hierarchical clustering.

As a result, the process of cluster splitting will be stopped at the estimated number

of clusters. In general, the splitting criterion is a statistic test. It compares the ecdf of

the data and the desired cdf (Dcdf) as a splitting criterion:

• H0: The cluster data (ecdf) is a sample of the Dcdf (Split: No).

• H1: The cluster data (ecdf) is not a sample of the Dcdf (Split: Yes).

Figure 4.6 shows an example of such hierarchical clustering with order selection in

form of splitting criterion. Methods such as G-means and Dip-means clustering are

examples of such clustering. The shaded block is the splitting step, i.e., the statistical

test. The splitting test for G-means is AD test (Subsection 2.2.2 ) and for Dip-means is

Dip test (Subsection 2.2.3).

We propose to use Sigtest as the splitting criterion of the hierarchical methods. This
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Start

End

YesNo

No

Yes

 Data, 𝐾𝑛𝑒𝑤 ← 1 

𝑖 ← 1 

𝐾𝑜𝑙𝑑 ← 𝐾𝑛𝑒𝑤  
𝐶 ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝐷𝑎𝑡𝑎,𝐾𝑜𝑙𝑑 ) 

𝑖 ≤  𝐾𝑜𝑙𝑑  Split 𝐶𝑖  

𝐾𝑛𝑒𝑤 ← 𝐾𝑛𝑒𝑤 + 1 

𝐾𝑜𝑙𝑑 = 𝐾𝑛𝑒𝑤  

Yes

No

𝑖 ← 𝑖 + 1 

Figure 4.6: Hierarchical clustering with data splitting criterion.

test can be used for both G-means and Dip-means clusterings and replace AD and

Dip test. Figure 4.7 shows how this splitting criterion works. The solid lines are pre-

calculated boundaries of sorted elements ti (S(ti, α) and S(ti, α) in (4.5)). The dashed

line shows the sorted version of the absolute value of the data for two clusters.

As it can be shown in Figure 4.7 (b), Sigtest suggests to split data with an ecdf which

is not a sample of Dcdf. While in Figure 4.7 (a), it suggest that the ecdf is a sample of

Dcdf and the related cluster will not be split.

Detailed examples are provided in the simulations section.

4.3.2 Sigtest in Partitional Clustering

If the number of clusters is known to be K, partitional clustering method minimizes a

given clustering criterion by iteratively relocating data points between K clusters until
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(a) (b)

Figure 4.7: Sigtest in hierarchical clustering: (a) H0 holds (no split), and (b) H1 holds
(split).

a (locally) optimal partition is attained [71].

If the number of clusters is not known, it needs to be estimated using a proper

statistical test. For a considered range of K ∈ [Kmin,Kmax], ecdf of the data and the

Dcdf of a model will be compared for:

• H0: The observed data (ecdf) is a sample of the model with Dcdf of K clusters.

• H1: The observed data (ecdf) is not a sample of the model with Dcdf K clusters.

Starting from Kmin, the statistical test increases the value of K until H0 is satisfied.

Figure 4.8 shows a partitional clustering method based on Gaussian mixture models

(GMM), where Expectation Maximization (EM) is employed to estimate the parameters

of the mixture model (center of clusters µ, covariance matrices Σ and components mixing

factors π).

The shaded block shows the statistical testing step. This test in PG-means clustering

is the KS test (briefly described in Subsection 2.2.1). We propose to replace KS with

Sigtest and show the advantageous in the simulation section. In the case of Gaussian
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Test
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Figure 4.8: General procedure of partitional clustering with order selection.

mixture models, the desired Fa(z) used in (4.7) is in the form of [72] 2:

Fa(z) =
K∑
j=1

πjFaj(z) (4.10)

where Faj(z) is the Gaussian cdf of the jth component, where provided in (4.7) and πj

is the mixing factor of that component in the mixture.

Figure 4.9 shows an example of using Sigtest for such verification. In this example,

the true number of clusters is 4 and Figure 4.9a shows the histogram of the data (y).

2Details for calculating Faj(z) is provided in C.
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(a) Histogram of projected data belong to
a mixture of four Gaussians.

(b) Ecdf of data (dashed line) is not a sam-
ple of Dcdf (solid line) for K = 3.

(c) Ecdf of data (dashed line) is a sample of
Dcdf (solid line) for K = 4.

Figure 4.9: Sigtest for model verification in Gaussian mixture models.

If K is considered to be 3, the upper bound and lower bounds of Sigtest are solid lines

in Figure 4.9b. The ecdf in this case, however, is the dashed line and as the figure

shows it falls out of the boundaries. The method therefore increases the value of K to

4. Figure 4.9c shows the boundaries for K = 4. As the figure shows, in this case the

ecdf completely fits within the boundaries. Sigtest stops and the estimated number of

clusters is 4. 3

3 The optimum choice of alpha and T has improved the result of Sigtest compare to [73] and [74].
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4.4 Optimum vocabulary size in bag of visual words using

Sigtest

Image classification using bag of visual words is constructed based on transforming a 2D

image and representing that into a 1D histograms. This approach has the following main

steps: 1) feature extraction (methods such as scale-invariant feature transform (SIFT)

[75], Dense SIFT [76] and Histograms of Oriented Gradients (HOG) [77]) 2) feature

quantization to build a visual vocabulary of size K, 3) training and classification using

Support Vector Machines (SVM) or similar classifiers.

SIFT is an image descriptor for image matching and image recognition. It is com-

puted from image intensities around the key point locations in image. SIFT is invariant

to scaling transformations, rotations and translations in image domain and it is robust

to moderate changes in illumination. Dense SIFT is a similar approach where SIFT

descriptor is computed over dense grids in the image domain. HOG descriptor splits

image into overlapped cells and computes histograms of gradients for each cell. Unlike

SIFT, this method is not rotation invariant, however it is normalized with respect to

image contrast.

The concentration of our work is on the second step using SIFT feature of image.

Conventionally for this step a fixed size for visual vocabulary is considered. For example,

for most cases, they start with K = 500 words. This number is then given to k-means for

calculation of those 500 visual words (centers). The SIFT of each image is then compared

to these visual words and the histogram of the membership of these SIFTs to the centers

is then provided. Figure 4.10 shows an example of a test image from Caltech101 data set

(Figure 4.10 (a)) along with its histogram (Figure 4.10 (c)). Figure 4.10 (b) is a general

example to show the middle step for feature quantization.

Note that prefixing the vocabulary size, K, is providing a suboptimal solution for

the problem of bag of visual words. Motivated by this fact, we propose to find an
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(a)
(b)

(c)

Figure 4.10: (a) Test image from Caltech101, (b) general example of quantizing features
(blue dots) with their nearest centers (red dots) and (c) representing them as a histogram
over the visual words.

adaptive number of vocabulary size K by using the hierarchical G-means-Sigtest. This

preprocessing algorithm in step 2 can benefit the next step and the overall answer of the

classification.

In the following next section, benefits of such preprocessing is elaborated for a set of

image data sets (Subsection 4.5.3).

4.5 Experimental Results

We use real data sets with the following characteristics :
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Table 4.1: Benchmark datasets.

Data set Number of samples Dimension of data Number of clusters

Iris 150 4 3
Pendigits 3498 16 10
15 objects category 45312 128 15
4 objects category 10008 128 4
Breast cancer 699 9 2
Leukemia 70 40 3
Optical digits 1797 64 10
Seed 210 7 3
Wave Form 5000 21 3
Human activity 2947 561 6
MNIST 4000 784 10
COIL20 1440 1024 20

Where 15 objects and 4 objects categories are from test cases in Caltech101 data sets

[78]; MNIST and COIL20, from [79] and [80]; Rest of data sets are obtained from UCI

repository [81].

In addition to the benchmark data sets, the synthetic data is a set of Gaussian

clusters with σ = 1 and 100 samples in each cluster (Table 4.2). The centers of clusters

are chosen randomly inside a hypercube with each side of 20σ.

Table 4.2: Synthetic data sets.

Data set Number of samples Dimension of data Number of clusters

S1 1000 4 10
S2 2000 10 20
S3 3000 16 30
S4 4000 32 40

Adjusted Rand Index (ARI) and Variation of Information (VI) are used for compar-

ison and to measure the quality of clustering. A more efficient clustering has a smaller

value of VI and larger value of ARI [82], [83]. In the following table, N/A shows that

clustering method was unable to converge to a solution.
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4.5.1 Hierarchical Clustering

The comparison results between G-means and G-means-Sigtest is shown in Table 4.3.

G-means-Sigtest is the G-means where the AD splitting criterion is replaced by Sigtest.

Each number in the table is in the form of E[ · ]±std[ · ] which shows the mean and stan-

dard deviation of the estimated values based on the averaged results over 20 simulation.

As the table shows, G-means-Sigtest compared with the G-means has a better esti-

mation of the number of clusters. For Gmeans-Sigtest also we have smaller VI and larger

ARI indexes (better performance).

We denote Dip-means-Sigtest in which Dip statistical test is replaced by Sigtest.

Table 4.3 shows the result for Dip-means and Dip-means-Sigtest for both synthetic and

real data sets. As the table shows, replacing Dip test with Sigtest has significantly

improved the result of clustering in terms of estimated number of clusters, ARI and VI

indexes.

4.5.2 Partitional clustering

The comparison result between PG-means and PG-means-Sigtest where the statistical

test KS is replaced by Sigtest is shown in Table 4.3. Each number in the table is in the

form of E[ · ]± std[ · ] which shows the mean and standard deviation values based on the

averaged results over 20 simulation.

As the table shows, PG-means-Sigtest compared with the PG-means has a better

estimation of the number of clusters. For PGmeans-Sigtest also we have smaller VI and

larger ARI indexes.

Table 4.3 also shows a comparison between MACE-means clustering and the above

mentioned methods. As the table shows, MACE-means has its best performance on

Gaussian data sets and has difficulties in clustering real and non-Gaussian data sets.
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Table 4.3: G-means and G-means-Sigtest

Data set G-means G-means-Sigtest Dip-means Dip-means-Sigtest PG-means PG-means-Sigtest MACE-means

Iris 3±0 3±0 2±0 3±0 2±0 4±0 5±0

VI 0.52±0 0.52±0 0.60±0 0.67±0.13 0.46±0 0.413±0 0.133±0.326

ARI 0.56±0 0.56±0 0.53±0 0.56±0.11 0.56±0 0.841±0 0.101±0.248

Optical digits 18.50±1.32 6.36±0.77 1±0 16±0 N/A N/A 1±0

VI 1.76±0.07 1.29±0.05 2.302±0 1.22±0 0.115±0.514

ARI 0.27±0.03 0.63±0.02 0±0 0.62±0 0±0

Leukemia 4±0 3±0 2±0 3±0 4±0 6±0 2±0

VI 0.53±0 0.36±0 0.76±0 0.30±0 1.21±0 1.30±0 0.095±0.261

ARI 0.75±0 0.84±0 0.52±0 0.88±0 0.003±0 0.001±0 0.065±0.179

Seed 2±0 2±0 1±0 3±0 N/A N/A 3±0

VI 0.81±0 0.81±0 1.0986±0 0.66±0 0.111± 0.273

ARI 0.47±0 0.47±0 0±0 0.71±0 0.1194± 0.292

Pendigits 27.96±2.92 17.28±0.75 7±0 10.2±0.44 11±0 10±0 1±0

VI 1.63±0.06 1.55±0.02 1.586±0 1.401±0.00 1.45±0 1.38±0 0.115±0.514

ARI 0.46±0.02 0.50±0 0.34±0 0.57±0.00 0.47±50 0.48±0 0±0

COIL20 41.40±2.95 18.90±2.23 3±0 44.8±0.83 N/A N/A 1±0

VI 1.56 ±0.06 0.73 ± 0.07 2.73±0 1.40±0 2.99±0

ARI 0.43±0.02 0.64 ±0.02 0.07±0 0.54±0 0±0

wave form 9±0 5±0 2±0 5±0 6±0 4±0 2±0

VI 1.76 ±0 1.49 ± 0 1.106±0 1.427±0 1.39±0 1.38±0 0.184±0.451

ARI 0.23±0 0.25±0 0.371±0 0.291± 0.24±50 0.29±0 0.061±0.151

Human Activity 29.20±3.27 4±0 3±0 21±1.4 N/A N/A 1±0

VI 2.13 ±0.08 1.02 ± 0 0.770±0 1.59±0.01 1.78±0

ARI 0.32±0.02 0.53±0 0.49±0 0.37±0 0±0

Breast cancer 52±8.14 2±0 N/A N/A 6±0 6±0 2±0

VI 2.38 ±0.20 0.32 ± 0 0.973±0 0.928±0 0.081±0.162

ARI 0.20±0.02 0.84±0 0.500±0 0.524±0 0.211±0.423

MNIST 23.80±0 10.20±1.09 1±0 1±0 N/A N/A 1±0

VI 2.63 ±0.03 1.69 ± 0.02 2.299±0 2.299±0 0.115±0

ARI 0.28±0 0.45±0 0±0 0±0 0±0

S1 10.5±0.60 10.15±0.48 8.65±2.32 9.55±1.09 10±1.16 9.95±0.60 9.95±0.223

VI 0.09±0.07 0.07±0.08 0.08±0.09 0.05±0.06 0.08±0.09 0.05±0.06 0.003±0.015

ARI 0.95±0.02 0.97±0.05 0.81±0.31 0.92±0.15 0.954±0.05 0.972±0.04 0.049±0.219

S2 20.1±0.44 20.05±0.22 17.85±3.9 20.45±0.51 19.95±0.94 20.25±0.71 20±0

VI 0.003±0 0.001±0 0.27±0.52 0.01±0.01 0.08±0.04 0.02±0.02 0±0

ARI 0.99±0.0 0.99±0 0.82±0.32 0.99±0 0.94±0.02 0.98±0.01 1±0

S3 31.35±1.49 30.9±0.91 18±8.20 29.65±1.81 27.7±1.08 29.15±1.34 30.50 ± 0.527

VI 0.02±0.02 0.01±0.01 1.047±0.74 0.034±0.14 0.138±0.04 0.134±0.04 0.003±0.003

ARI 0.98±0.01 0.99±0 0.42±0.34 0.97±0.12 0.89±0.03 0.92±0.02 0.016 ± 0.128

S4 44.4±1.75 43.85±1.81 13.1±4.48 39.95±1.05 35.45±1.35 36.9±1.51 41±1.25

VI 0.07±0.02 0.06±0.03 2.07±0.32 0.01±0.04 0.24±0.09 0.15±0.08 0.09±0.01

ARI 0.97±0.01 0.97±0.01 0.096±0.02 0.98±0.04 0.75±0.09 0.84±0.10 0.88±0.11
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4.5.3 Adaptive vocabulary size in bag of visual words

As discussed in Subsection 4.4, the size of vocabulary is a pre-assumed fixed number in

the range of K = [500, 1000] in most cases. Here, we suggest using G-means and G-

means-Sigtest to adaptively estimate the size of the vocabulary for 15 objects category

and 4 objects category data sets, instead of the traditional fixed value of K = 500. This

two methods are chosen due to their high accuracy and fast convergence in large data

sets.

Figure 4.11 illustrates the accuracy of classification for 15 class of objects based on

different number of clusters or vocabulary sizes (blue line). In this figure, green and red

dashed lines show the estimated number of clusters using G-means-Sigtest and original

G-means respectively. As figure shows, G-means-Sigtest chooses 593 for the size of

vocabulary that results in the highest accuracy of classification. Fixed value of K=500

has less accuracy of classification and G-means chooses 1184 as the vocabulary size with

much less accuracy in classification.

Figure 4.12 shows similar results for BOVW experiment on 4 class of objects. As

the figure shows, in this case both Gmeans-Sigtest and Gmeans choose less number of

vocabulary size than 500. While Gmeans chooses 218, Gmeans-Sigstest chooses much

smaller value of 74 with the highest accuracy in classification for different vocabulary

sizes. Sigtest results in the smallest possible number of clusters along with the highest

classification rate with less time complexity compared to when K is pre set to 500.

4.6 Conclusions

In this Chapter, we proposed Signature Testing (Sigtest) as a new statistical testing

method for estimating the number of clusters in both hierarchical and partitioning clus-

tering methods. In addition we propose using Sigtest in image classification using bag

of visual words for adaptive choice of the size of visual vocabulary. Simulation results
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Figure 4.11: Accuracy of SVM classifier for different number of clusters (size of visual
vocabulary) for 15 objects category from Caltech101 data set. Black dashed shows the
accuracy at the location of K = 500 (fixed size assumption), green dashed shows the
chosen value K=593 by G-means-Sigtest, and red dashed line shows the accuracy of
G-means for estimated K = 1184.

confirm advantageous of using Sigtest as the statistical test in clustering in terms of more

accurate choice of number of clusters, and better values for ARI and VI. The results also

show that Sigtest improves the accuracy of image classification as well as reducing the

time complexity in bag of visual words.
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Figure 4.12: Accuracy of SVM classifier for different number of clusters (size of visual
vocabulary) for 4 objects category from Caltech101 data set. Black dashed line shows
the accuracy at the location K = 500 (fixed size assumption), green dashed line shows
the chosen value K= 74 by G-means-Sigtest, and red dashed line shows the accuracy of
G-means for estimated K = 218.
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Chapter 5

Minimum Pathways in Arbitrary

Shaped Clustering (minPAS

clustering)

In this chapter we consider data clustering for arbitrary shaped clusters. Briefly, this

class of clusters do not follow a simple and regular known distributions such as Gaussian

or Log-normal. In general, shape of an arbitrary cluster cannot be easily modeled by

a single mathematically available distributions. Therefore, majority of the model based

clustering approaches are unable to cluster arbitrary shaped clusters with a reasonable

level of error.

5.1 Data assumptions

The main assumptions in arbitrary shaped clustering are as follows: data samples rep-

resent clusters with arbitrary shapes, arbitrary densities and arbitrary sizes. Figure 5.1

is an example of arbitrary shaped clusters which shows a ring cluster with another clus-

ter inside it. In this Figure, the center cluster could be approximated with a Gaussian
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distribution while the ring cluster cannot be modeled with simple distributions.
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Figure 5.1: Two centered clusters.

consequently, clustering methods which are limited to a specific class of distributions

will not be able to recover these clusters properly.

5.1.1 Data Skeleton Using Minimum Spanning Tree

Let X = [x1, x2, · · · , xN ]T be a vector of N samples, where xi ∈ RD, and D shows the

data dimensionality. sN×N is a symmetric dissimilarity matrix for the samples, where

s(i, j) = dxixj (dxixj ∈ R) is a weight to measure the distance between xi and xj .

We define G(X,E) as an undirected graph, where E = {eij : e(xi, xj), (i, j) ∈

[1, · · · , N ]} is a vector of undirected edges between the samples in X. The weight of

edge eij is denoted by dxixj and can be calculated as follows:

dxixj = ‖xi − xj‖22 (5.1)

We let E
′

be an acyclic subset of E (E
′ ⊂ E) that connects all of the samples, and

its size is |E′ | = N − 1. Therefore, the overall weight of edges, WE′ , can be given as

follows:
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WE′ =
∑
E′

dxixj (5.2)

Then, minimum spanning tree (MST) T (X,E∗) is also an acyclic subgraph of G that

passes through all of the samples in X and has the following set of edges [84], [85]:

E∗ = arg min
E′

∑
E′⊂E

WE′ (5.3)

Therefore, among all of the possible trees in X, MST has the minimum overall weight

Wmin.

The MST of samples in Figure 5.1 is shown in Figure 5.2. As the figure shows, any

two samples xi and xj have exactly one edge eij between them. The MST of data can

be constructed by any of proposed algorithms in [86] or [87].

Figure 5.2: Minimum spanning tree of 300 samples.

In the following section, we use MST of data as a robust and unique structure to

define the minimum pathways between samples in the tree.
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5.1.2 Minimum Pathways in Arbitrary Shaped Data

In this section, we employ the minimum spanning tree of the data samples for defining a

unique pathway between members of arbitrary shaped clusters. These pathways will be

used as relational measures to evaluate the dependency of each sample to an exemplar

candidate of each cluster.

The notion of MST requires that any pair of xi and xj in T (X,E∗) have a unique

shortest path between them. For an arbitrary shaped data setX, we denote Tp(Xxixj , E
∗
xixj )

as the minimum pathway between xi and xj , which is a subtree of T (Tp ⊂ T ). Xxixj =

[xi, xi+1, · · · , xj ] (Xxixj ⊂ X) is a sequence of samples that construct the minimum path

between xi and xj . E
∗
xixj = {ekk+1 : e(xk, xk+1), i ≤ k < j} represents the set of edges

for each consecutive samples in X
′
.

We let dpxixj be the distance weights of edges in E∗ between xi and xj :

dpxixj = [dxixj (1), · · · , dxixj (k)] (5.4)

In other words, dpxixj includes all of the step sizes that are required to traverse from

xi to xj and vice versa.

Figure 5.3a shows an example of a minimum pathway in arbitrary shaped data (min-

PAS). In this figure, minPAS (the blue subtree) has connected two samples xi (red dot)

and xj (green dot) from the same cluster. Connected samples are members of Xxixj and

the step sizes are members of dpxixj . Figure 5.3b shows another minPAS for the same

data with two samples from different clusters.

As these figures show, the step sizes in each pathway can be used for learning the

level of similarity between samples in arbitrary shaped clusters.
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(a) minPAS between xi and xj when sam-
ples belong to the same clusters.
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(b) minPAS between xi and xj when sam-
ples belong to different clusters.

(c) Step sizes in minPAS between xi and xj .
Samples belong to the same cluster.

(d) Step sizes in minPAS between xi and
xj . Samples belong to different clusters.

Figure 5.3: Minimum pathways between two samples from the same and different clus-
ters.
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5.1.3 Membership Score

Clustering methods with assumption of having a specific distribution for clusters cannot

be applied directly on arbitrary shaped data. This is mainly a result of having distance

based similarity measures in those clustering methods. As a result, simple similarity

measures like euclidean distance cannot work well on clusters with complex geometries.

For example, euclidean distances between the samples xi and xjs in Figure 5.3a and

Figure 5.3b suggest more similarity between the samples in Figure 5.3b compared to

Figure 5.3a. Therefore, this can lead to a wrong sample membership in clusters. For

example, clustering methods like K-means with assumption of spherical clusters are not

able to cluster these samples correctly.

Our motivation in this Subsection is defining an efficient membership score which

can assign arbitrary shaped samples to their related exemplars without imposing any

predefined geometry on the data (for example, Gaussian assumption imposes spherical

clusters). Using (5.4), we let Score(xi, xj) be the dissimilarity score between the samples

xi and xj :

Score(xi, xj) = max
1≤l≤k

dpxixj (l) (5.5)

Figure 5.3c shows required step sizes for traversing between xi and xj in Figure

5.3a, where dissimilarity Score(xi, xj) = 0.11. In a similar example, Figure 5.3d shows

required step sizes for traversing between xi and xj in Figure 5.3b, where dissimilarity

Score(xi, xj) = 0.33

As the figures show, this simple dissimilarity score can be employed as a membership

score to assign samples to their related exemplars. For example, two samples with larger

jumps in the pathway between them are less likely to be from the same cluster compared

with two other samples that have smaller jumps in their pathway. However, this is only

one of the possible membership scores based on the minPAS between two samples and
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it can be extended for designing similar scores.

5.2 minimum Pathway in Arbitrary Shaped clustering (min-

PAS)

In the previous section, we explained details of extracting a unique tree structure for

arbitrary shaped data. We showed that the minimum pathways between samples can be

used as a dissimilarity measure between samples.

In the following, we show steps of our proposed clustering method, denoted by min-

imum Pathways in Arbitrary Shaped clustering (minPAS clustering).

minPAS clustering groups samples in one cluster and then iteratively increases the

number of clusters until a stopping criterion is satisfied.

Lets Ci be the first cluster exemplar chosen from the data samples with the fol-

lowing conditions: 1) Ci is not a leaf in the MST, 2) Ci has the minimum averaged

distance with its nearest neighbors in the MST. It follows that for any Ci, the dissimi-

larity Score(Ci, X) between samples and the exemplar can be categorized into two main

regions with the maximum and minimum dissimilarities. The region of minimum dis-

similarity, denoted by Rmini , includes all of the members of exemplar Ci. The region

with maximum dissimilarity are samples that cannot be assigned to the exemplar. At

each iteration of the algorithm, Rmax includes a subset of the region with maximum

dissimilarity. We iteratively subtract Rmaxs from the range of available samples and

assign the final remaining samples to Rmini .

We let Z be an intermediate set to track the available samples. The initial set of

values in Z is X:

Zi,0 = {x1, x2, · · · , xN} (5.6)

I) Excluding non-members of Ci:
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For a chosen Ci, the Rmaxi,k+1 at the Kth step is defined as follows:

Rmaxi,k+1 = {x|Score(Ci, x) = max
y∈Zi,k

Score(Ci, y)} (5.7)

if the size of Rmaxi,k+1 is greater than δ, where δ is the minimum possible number of members

in a cluster (δ is a predefined parameter in majority of arbitrary shaped clustering

methods):

|Rmaxi,k+1| > δ (5.8)

then Rmaxi,k+1 can be one or more potential cluster(s) that we are going to discover in the

next steps. Therefore, we exclude it from Zi,k to reach to the final members of Ci+1:

Zi∗,k+1 = {x|x ∈ Zi,k and x 6∈ Rmaxi,k+1} (5.9)

The above routine (I) will be repeated until |Rmaxi,k+1| ≤ δ. Zi∗ will be members of the

cluster with exemplar Ci:

Rmini = Z∗i (5.10)

II) Stopping Criterion at Each Ci:

We let Rsi be the union set of all members of the previous exemplars:

Rsi =

i⋃
j=1

Rmini (5.11)

if the size of Rsi is smaller than N (total number of samples):

|Rsi | < N (5.12)

This indicates that not all of the data set is labeled. Therefore, we continue searching
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Figure 5.4: Dissimilarity Scores based on assumption of having C1 = x150.

for new clusters Cis and redefine the Z as follows:

Zi+1,0 = {x|x ∈ X and x 6∈ Rsi} (5.13)

Consequently, we choose a new exemplar Ci+1 ∈ Z (Ci+1 should not be a leaf in the

MST and it should have the minimum averaged distance with its neighbors in the MST)

and calculate Score(Ci+1, X). Next, for the updated Z and Ci+1, we start over from the

procedure (I) (5.7) to the end except (5.12) is not true.

The dissimilarity scores of the exemplars can be used to find the label of each sample

xi:

label(i) = arg min
j

(Score(Cj , xi)) (5.14)

For example, Figure 5.4 shows the dissimilarity score of each sample related to Ci =

x150 as the exemplar (Score(Ci, X)). Here, there is only one Rmaxi,0 and excluding that

from the samples leads to the region of Rmini . Then, the new exemplar Ci+1 = x201

is chosen from Rmaxi,0 , which leads to Score(Ci+1, X) in Figure 5.5. Since Rmini ∪ Rmini+1

covers all of the N samples, the algorithm stops. Figure 5.6 shows the final scores for two

possible exemplars. Consequently, using (5.14) the labels of clusters will be provided.

88



CHAPTER 5. MINIMUM PATHWAYS IN ARBITRARY SHAPED CLUSTERING
(MINPAS CLUSTERING)

Figure 5.5: Dissimilarity Scores based on assumption of having C1 = x201.

Figure 5.6: Sample Scores for Ci (blue line) and Ci+1 (red line).
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Algorithm 2 shows steps of the explained procedure in minPAS clustering.

Algorithm 2 minPAS clustering

Input: data X, δ.
Output: Cluster labels, number of clusters K.

1: T (X,E∗)←MST (X)
2: i← 0
3: Z ← X
4: Rs ← ∅
5: while |Rs| < N do
6: i← i+ 1
7: Z ← X −Rs

8: choose Ci ∈ Z
9: calculate Score(Ci, X) using (5.5)

10: calculate Rmax using (5.7)
11: while |Rmax| > δ do
12: Z ← Z −Rmax

13: calculate Rmax using (5.7)
14: end while
15: Rmin

i ← Z

16: Rs ←
⋃i

j=1R
min
j

17: end while
18: K ← i
19: for i = 1→ N do
20: label(i) = arg minj(Score(Cj , xi))

21: end for

5.3 Computational Complexity Comparison

Computational complexity of minPAS clustering isO(N2)+O(KE log(N)), whereO(N2)

is related to the calculation of similarity matrix for N samples. O(KE log(N)) is the

required computational complexity in Dijkstra’s algorithm for calculating the shortest

pathways between samples, where E is the number of edges in the minimum spanning

tree of data and K is the number of clusters. DBSCAN has a computational complexity

of O(N2). Affinity Propagation has a computational complexity of O(N2l), where l is

the number of iterations in the algorithm.
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5.4 Experimental Results

In this section we compare minPAS clustering with Data Spectroscopic clustering (DaSpec),

Affinity Propagation (AP), DBSCAN and Agglomerative clustering using ward’s method.

In our experiments, the number of clusters is provided to ward’s method clustering, while

the rest of methods can estimate it independently.

The methods are compared based on arbitrary shaped datasets such as Atom and

Chain link in [88], and our synthetic datasets as well as real data sets such as Iris, Seeds

and Wine. The adjusted random index (ARI) and variation of information (VI) are two

quality measures that we have employed in our analysis [83] [82].

Figure 5.7 shows the comparison between methods on a ring cluster with a Gaussian

cluster in the center. We have repeated the experiment for different clustering parameters

(minPts in DBSCAN and δ in minPAS clustering) and only provided the distinct results.

As the figure shows, AP and ward’s method clustering cannot distinguish the clusters

correctly. minPAS, DaSpec and DBSCAN are the only clustering methods that for

a specific range of parameters can cluster the samples correctly. DBSCAN can only

recognize the clusters for a small range of 10 ≤ minPts ≤ 20, while the parameter of

minPAS clustering is less sensitive and provides the correct results for a wider range of

5 ≤ δ ≤ 198. Table 5.1 shows the values of ARI and VI, where smaller VI and larger

ARI show a better clustering result. As the table shows, minPAS clustering has the best

ARI and VI values among the methods.

Table 5.1: Quality of clustering in ring data set.

Method Parameter ARI VI

minPAS [5,198] 1 0
Affinity Propagation -0.002 2.152
Ward’s method -0.021 0.956
DBSCAN 5 0.986 0.044
DBSCAN [10,20] 1 0
DBSCAN 30 0 0.636
DaSpec 1 0
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(a) Affinity Propagation. (b) Ward’s method.

(c) minPAS for 5 ≤ δ ≤ 198. (d) DBSCAN for minPts = 5.

(e) DBSCAN for 10 ≤ minPts ≤
20. (f) DBSCAN for minPts = 30.

(g) DaSpec.

Figure 5.7: Ring data set.
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Figure 5.8 shows the result of clustering for a 3-dimensional spiral cluster with a

Gaussian ball on top of it. As the figure shows, only minPAS was able to recognize the

clusters with a significantly better VI and ARI values (Table 5.2), where changing the

parameters didn’t make any improvement in the results.

Table 5.2: Quality of clustering spiral and ball data set.

Method Parameter ARI VI

minPAS 0.977 0.041
Affinity Propagation -0.063 1.179
Ward’s method -0.078 0.896
DBSCAN 0 0.376
DaSpec 0 0.376

Figure 5.9 shows the comparison between methods on heart data set. minPAS pro-

vides an accurate clustering result for a wide range of parameter 5 ≤ δ ≤ 48. The second

successful method is DBSCAN which in its best case is limited to minPts = 5 and it

was not able to cluster all of the samples correctly. Table 5.3 shows better ARI and VI

values for minPAS clustering on heart data set.

Table 5.3: Quality of clustering in heart data set.

Method Parameter ARI VI

minPAS [5,48] 1 0
Affinity Propagation 0.120 1.523
Ward’s method 0.189 1.294
DBSCAN 5 0.997 0.050
DBSCAN 10 0.994 0.018
DaSpec 0 1.053

Figure 5.10 shows the simulation results on Atom data set consists of two clusters,

a small ball in the center of a spherical cluster. The best result of clustering belong

to minPAS, where DaSpec, DBSCAN, AP and ward’s method had the worst clustering

results (Table 5.4).

Figure 5.11 shows the simulation results of Chain link data set. Chain link consists

of two linked rings in 3-dimensional space. As the figure shows, minPAS clustering
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(a) minPAS.

(b) Ward’s method . (c) DBSCAN.

(d) Affinity Propagation. (e) DaSpec.

Figure 5.8: Spiral and ball data set.
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(a) DaSpec. (b) Affinity Propagation.

(c) Ward’s method .

(d) minPAS for 5 ≤ δ ≤ 48. (e) DBSCAN for minPts = 5.

(f) DBSCAN for minPts = 10.

Figure 5.9: Heart.
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(a) DBSCAN for 4 ≤ minPts ≤
8.

(b) DBSCAN for 9 ≤ minPts ≤
184.

(c) DBSCAN for minPts ≥
185. (d) minPAS for 4 ≤ δ ≤ 140.

(e) minPAS for 141 ≤ δ ≤ 283. (f) minPAS for 284 ≤ δ ≤ 398.

(g) minPAS for δ ≥ 399. (h) Ward’s method .

(i) Affinity Propagation. (j) DaSpec.

Figure 5.10: Atom data set.
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Table 5.4: Quality of clustering in Atom data set.

Method Parameter ARI VI

minPAS [4,140] 0.985 0.038
minPAS [141,283] 0.995 0.0157
minPAS [284,398] 1 0
DBSCAN [4,8] 0.8554 0.353
DBSCAN [9,184] 1 0
Affinity Propagation 0.260 1.118
Ward’s method 0.2384 1.065
DaSpec 0 0.832

can recognize two clusters for the wide range of 5 ≤ δ ≤ 498, while in DBSCAN the

same result is given for a much smaller range of parameter minPts, 5 ≤ minPts ≤ 153.

This fact shows that minPAS clustering is less sensitive to the choice of its parameter

compared to DBSCAN. The ARI and VI values are shown in Table 5.5.

Table 5.5: Quality of clustering in chain link data set.

Method Parameter ARI VI

minPAS [5,498] 1 0
DBSCAN [5,153] 1 0
Affinity Propagation 0.213 1.504
Ward’s method 0.280 0.806
DaSpec 0 0.693

Figure 5.12 shows the simulation results of half moon data sets. Among the methods,

minPAS has the most accurate result of clustering for a wide range of δ. DBSCAN is

the second accurate method with more sensibility to the parameter minPts. Table 5.6

shows minPAS clustering has the best ARI and VI values among other methods.

Table 5.7 shows the comparison between clustering methods on three real data sets

Iris, Seeds and Wine, where the number of clusters in each of them is three. As the

table shows, Ward’s method has the best result in terms of ARI and VI. The second

best method is DaSpec. minPAS and AP provide a better estimation of the number of

clusters but have difficulties in partitioning the clusters.
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(a) DBSCAN for minPts ≥
154.

(b) DBSCAN for 5 ≤ minPts ≤
153.

(c) minPAS for 5 ≤ δ ≤ 498. (d) minPAS for δ ≥ 499.

(e) DaSpec.

(f) Affinity Propagation. (g) Ward’s method.

Figure 5.11: Chainlink data set.
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(a) minPAS for 5 ≤ δ ≤ 98. (b) DBSCAN for minPts = 5.

(c) DBSCAN for minPts = 7. (d) DBSCAN for minPts = 10.

(e) Affinity Propagation. (f) Ward’s method

(g) DaSpec.

Figure 5.12: Half moon data set.
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Table 5.6: Quality of clustering in half moon data set.

Method Parameter ARI VI

minPAS [5,98] 1 0
DBSCAN 5 0.599 0.783
DBSCAN 7 0.458 0.814
DBSCAN 10 0.031 1.380
Affinity Propagation 0.146 1.204
Ward’s method 0.754 0.418
DaSpec 0.157 0.988

Table 5.7: Quality of clustering in real data sets.

Method Iris Seeds Wine

minPAS
Estimated K 3 3 1
ARI 0.563 0.002 0
VI 0.508 1.196 1.086

Affinity Propagation
Estimated K 2 3 3
ARI 0.449 0.001 0.296
VI 0.845 1.253 1.391

Ward’s method
Estimated K N/A N/A N/A
ARI 0.731 0.713 0.931
VI 0.499 0.587 0.198

DBSCAN
Estimated K 2 3 1
ARI 0.568 0.001 0
VI 0.462 1.253 1.086

DaSpec
Estimated K 2 2 3
ARI 0.568 0.459 0.371
VI 0.462 0.815 1.017

5.5 Conclusion

In this Chapter, we proposed minimum pathways in arbitrary shaped clustering (minPAS

clustering) for clustering arbitrary shaped data. minPAS can estimate the number of

clusters independently and measure the similarity of samples based on minimum path-

ways between them. The proposed method does not impose any assumption on the
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distribution of data and can recognize arbitrary shaped clusters accurately. The simula-

tion results on a wide range of arbitrary shaped clusters shows the superiority of minPAS

clustering over similar methods in terms of accuracy and insensitivity to the algorithm

parameter.
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Chapter 6

Conclusions and Future Works

In this thesis, we studied three problems of data clustering in terms of estimating the

number of clusters, the role of statistical tests as splitting criteria in partitional and

hierarchical clustering and challenges in clustering and estimating the number of clusters

in arbitrary shaped data.

We proposed minimum averaged central error (MACE)-means clustering as a new

clustering method in Chapter 3. MACE-means clusters data and estimate the correct

number of clusters (CNC) by minimizing the data reconstruction error. We derived the

probabilistic bounds on unobservable data reconstruction error by using observable data

error, and showed that minimizing the upper bound of this error leads to estimation of

the CNC. Unlike majority of the clustering methods which have different objective func-

tions for estimating the CNC and clustering data, MACE-means is constructed based

on a unique objective function for both of them. The experimental results showed su-

periority of MACE-means in estimating the number of clusters over similar approaches

as well as ARI and VI values. Note that MACE-means dependency on the assumption

of having the same variance in clusters is a disadvantage of the method which should be

addressed in the future work. MACE-means was proposed based on K-means due to its

low computational complexity and simplicity. Nevertheless, MACE has the potential to
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be used with other clustering methods. Another potential future work will be extending

the MACE fundamentals to use with clustering methods with wider range of assump-

tions beyond the spherical Gaussian. As MACE-means has better performance on low

dimensional data, working on scalability of the algorithm will be another direction for

improving MACE-means.

We proposed Signature testing (Sigtest) as a statistical test in Chapter 4. Sigtest

is motivated by this fact that sorted absolute value of observed data has much smaller

variation compared to the original data and the resulted data will be represented in a

much denser space. This dense region of the transformed data is used for designing a

signature for any desired cumulative distribution function (cdf). We showed analytical

steps for deriving upper bound and lower bound of the designed signature and used it for

comparison with the empirical cumulative distribution function (ecdf) of the test data.

We showed applications of Sigtest in hierarchical and partitional clustering algorithms

where statistical tests in G-means, PG-means and Dip-means clustering algorithms were

replaced by Sigtest. The simulation results showed that resulted clustering algorithms,

denoted by G-means-Sigtest, PG-means-Sigtest and Dip-means-Sigtest have significantly

improved the accuracy of clustering compared to the original methods. Another proposed

application of Sigtest was adaptively estimating the size of vocabulary in bag of visual

words (BOVW) problem. While majority of the BOVW methods use a prefixed vocabu-

lary size, we show that using Sigtest can improve the accuracy of image classification and

also decrease the time complexity of the algorithm. As fundamentals of Sigtest has been

proposed for any considered distribution, applying Sigtest on non-Gaussian distributions

is a possible interesting future work to extend the applications of Sigtest.

In Chapter 5 we proposed minimum Pathways in Arbitrary Shaped (minPAS) cluster-

ing for data sets with arbitrary distributions. MinPAS is constructed based on minimum

spanning tree structure of samples. We showed that having the tree structure of data,

each sample can be related to the exemplar of the cluster using a minimum pathway. As
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a result, the similarity measure between samples will be highly affected by geometry of

the data samples without relying on distribution assumptions. The experimental results

showed that minPAS is more efficient than state of the art methods such as DBSCAN,

DaSpec, and Affinity Propagation in terms of accuracy in clustering and having less

sensitivity to the choice of minimum size of a cluster.

Currently, we select exemplars from the samples which are not leaves in the tree

structure and have the minimum averaged distance with their neighbors. While the

experimental results show this choice of exemplars is promising, one future work for

minPAS clustering could be a robust approach for selecting the best exemplars. Another

possible future work can be detecting the outliers and excluding them from minPAS

clustering.

Data visualization could be another useful future work for deciding about the choice

of clustering algorithm. Visualizing high dimensional data can give a better understand-

ing about the distribution of clusters, and consequently makes it easier to select an

appropriate algorithm for arbitrary or non-arbitrary shaped data.

Data stream clustering using the proposed clustering methods could be another di-

rection for future work. While widely used stream clustering methods such as BIRCH

[89] and C2ICM [90] need to have the number of clusters as a predefined value, the

proposed methods could be employed for stream clustering and estimating the number

of clusters simultaneously.
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Appendix A

Average Central Error (ZSm)

From equation (3.9), we have

ZSmi = 1
ni
‖I


c∗x1mi

...

c∗
x
ni
mi

−Bmi


X1
mi

...

Xni
mi

 ‖22, (A.1)

Where I is an identity matrix and Bmi has the following format:

Bmi =


1
ni
· · · 1

ni
...

. . .
...

1
ni
· · · 1

ni

, (A.2)

Therefore:

ZSmi =
1

ni
‖IC∗xmi −Bmi Xmi‖22, (A.3)

where Xmi = C∗xmi +Wmi gives:

ZSmi =
1

ni
‖(I −Bmi)C∗xmi −BmiWmi‖22, (A.4)
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where I −Bmi = Ami and then ZSmi will be given as follows:

ZSmi =
1

ni
‖AmiC∗xmi −BmiWmi‖22, (A.5)

since ATmiBmi = 0, therefore:

ZSmi =
1

ni
‖AmiC∗xmi‖

2
2 +

1

ni
‖BmiWmi‖22, (A.6)

‖BmiWmi‖22 =
1

n2
i

ni∑
i=1

W 2
i +

2

n2
i

ni∑
j 6=k

WjWk, (A.7)

assuming that all of the clusters have the same σ2
w, the E[ZSmi ] will be:

E[ZSmi ] =
1

ni
‖AmiC∗xmi‖

2
2 +

1

ni
σ2
w. (A.8)

To find the variance of ZSmi , we need to derive the variance and covariance terms in

equation (A.6). The first term is a constant with zero variance. The remaining terms

are related to (A.7) and have covariance and variances as follows:

var[
1

n2
i

ni∑
i=1

W 2
i ] =

1

n4
i

(2niσ
4
w), (A.9)

where the above equation is derived based on the definition of a zero mean (E[wi] = 0)

chi-squared random variable.

var[
2

n2
i

ni∑
j 6=k

WjWk] =
4

n4
i

ni(ni − 1)

2
σ2
wjσ

2
wk
, (A.10)

by assuming the same σ2
w for all of the clusters, it can be simplified as follows:

var[
2

n2
i

ni∑
j 6=k

WjWk] =
4

n4
i

ni(ni − 1)

2
σ4
w , (A.11)
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4

n4
i

cov(
1

n2
i

ni∑
i=1

W 2
i ,

ni∑
j 6=k

WjWk) = 0, (A.12)

where (A.12) is always equal to zero, and that is because of having i.i.d. data samples.

In other words, both E[W 2
i WjWk] and E[W 3

i Wj ] are zero. Finally, there will be the

following statement for var[ZSmi ]:

var[ZSmi ] =
2

n3
i

σ4
w +

2(ni − 1)

n3
i

σ4
w =

2

n2
i

σ4
w. (A.13)
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Cluster Compactness YSm

From equation (3.17), we have

YSmi = 1
ni
‖I


X1

...

Xni

−Bmi


X1

...

Xni

 ‖22, (B.1)

Where Bmi is defined in A. We set Ami = I −Bmi:

YSmi = 1
ni
‖


1− 1

ni
· · · − 1

ni
...

. . .
...

− 1
ni

· · · 1− 1
ni




X1

...

Xni

 ‖22 =
1

ni
‖AmiXmi‖22, (B.2)

For each sample we have Xi = C∗xi +Wi, therefore:

YSmi =
1

ni
‖Ami(C∗xmi +Wmi)‖22 (B.3)

=
1

ni
‖AmiC∗xmi‖

2
2 +

1

ni
‖AmiWmi‖22 +

1

ni
(W T

miAmiC
∗
xmi + C∗TxmiAmiWmi),

knowing that ATmiAmi = Ami it follows:

‖AmiWmi‖22 =
ni − 1

ni

ni∑
i=1

W 2
i −

2

ni

ni∑
j 6=k

WjWk, (B.4)
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and

C∗TxmiAmiWmi =

ni∑
i=1

Wic
∗
xi −

1

ni

ni∑
i=1

Wi

ni∑
j=1

c∗xj , (B.5)

therefore, YSmi will be given as follows:

YSmi =
1

ni
‖AmiC∗xmi‖

2
2 −

2

n2
i

ni∑
j 6=k

WjWk+

ni − 1

n2
i

ni∑
i=1

W 2
i −

2

n2
i

ni∑
i=1

Wi

ni∑
j=1

c∗xj +
2

ni

ni∑
i=1

Wic
∗
xi , (B.6)

Assuming that all of the clusters have the same σ2
w, the E[YSmi] will be given as follows:

E[YSmi] =
1

ni
‖AmiC∗xmi‖

2
2 +

ni − 1

ni
σ2
w, (B.7)

where

1

ni
‖AmiC∗xmi‖

2
2 =

1

ni

ni∑
i=1

c∗2xi −
1

n2
i

(

ni∑
i=1

c∗xi)
2, (B.8)

therefore

E[YSmi] =
1

ni

ni∑
i=1

c∗2xi −
1

n2
i

(

ni∑
i=1

c∗xi)
2 +

ni − 1

ni
σ2
w. (B.9)

var[YSmi] will be given by calculating the variance of each term in equation(B.6):

var[− 2

n2
i

ni∑
j 6=k

WjWk] =
4

n4
i

ni∑
j 6=k

σ2
wjσ

2
wk, (B.10)

var[
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i

ni∑
i=1

W 2
i ] =

(ni − 1)2

n4
i

(2n1σ
4
w1

+ · · ·+ 2niσ
4
wni

), (B.11)

var[
−2

n2
i

ni∑
i=1

Wi

ni∑
j=1

c∗xj ] =
4

n2
i

(

ni∑
j=1

c∗xj )
2
ni∑
i=1

σ2
wi , (B.12)

var[
2

ni

ni∑
i=1

c∗xiWi] =
4

n2
i

ni∑
i=1

σ2
wic
∗2
xi , (B.13)
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cov(
−2

n2
i

ni∑
i=1

Wi

ni∑
j=1

c∗xj ,
2

ni

ni∑
i=1

c∗xiWi) =
−8

n3
i

ni∑
i=1

c∗xi

ni∑
j=1

c∗xjσ
2
wj , (B.14)

The rest of possible covariance terms will be zero as samples are i.i.d.:

var[YSmi] =
2(ni − 1)

n2
i

σ4
w −

4

n3
i

σ2
w(

ni∑
i=1

c∗xi)
2 +

4

n2
i

σ2
w

ni∑
i=1

c∗2xi . (B.15)
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Folded Normal Distribution

Let θ be a sample of standard Gaussian distribution, θ ∼ N (0, 1), with density function

φ(θ) as follows:

φ(θ) =
1√
2π
e−θ

2/2, θ ∈ R (C.1)

therefore, the distribution function of θ can be given as follows:

Φ(θ) =

∫ θ

−∞
φ(v)dv =

∫ θ

−∞

1√
2π
e−v

2/2dv, θ ∈ R (C.2)

We let v be a sample of Gaussian distribution with mean µ and standard deviation

σ, v ∼ N (µ, σ). Therefore, random variable V can be written as V = µ+ σΘ. It follows

that W = |V| = |µ+ σΘ| is a random variable with a folded normal distribution, where

all of the negative values of V are folded to the positive region of the distribution.
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Consequently, cdf of the sorted sample w, where w ∈ [0,∞), will be as follows:

Fa(w) = P (W ≤ w) = P (|V| ≤ w) = P (|µ+ σΘ| ≤ w)

= P (−w ≤ µ+ σΘ ≤ w)

= P (
−w − µ

σ
≤ w ≤ w − µ

σ
)

= Φ(
w − µ
σ

)− Φ(
−w − µ

σ
)

(C.3)

Since Φ(−θ) = 1− Φ(θ), we will have:

Fa(w) = Φ(
w − µ
σ

)− Φ(
−w − µ

σ
)

= Φ(
w − µ
σ

) + Φ(
w + µ

σ
)− 1

=

∫ w

0

1

σ
√

(2π)
{exp [−1

2
(
v + µ

σ
)2]

+ exp [−1

2
(
v − µ
σ

)2]}dv

(C.4)

In case of Gaussian mixture models, the above cdf will be calculated as follows [72]:

Fa(z) =

K∑
j=1

πjFaj(z) (C.5)

where Faj(z) is the Gaussian cdf of the jth component, and πj is the mixing factor of

that component in the mixture.
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Estimation of α and T

Here, we propose an approach to determine the proper values of α and T with assumption

of Gaussian Dcdf. Lets consider a set of possible combinations of α and T values. For

each combination, the similarity score A(α, T ) can be calculate using (4.9):

A(α, T ) =


1 Sigtestscore(α) < T (H0)

0 Sigtestscore(α) ≥ T (H1)

(D.1)

We consider A(α, T ) for two different scenarios: 1) A0(α, T ), where ecdf of the data

is related to a single cluster and Dcdf is a single Gaussian as well, 2) A1(α, T ), where,

ecdf of the data is relate to two overlapped clusters and Dcdf is a single Gaussian. A

proper combination of α and T should suggest to split the two clusters, and at the same

time should not split the single cluster. In Figure D.1, the synergistic combinations are

shown by warmer colors for different distances between two overlapped clusters.

Consequently, the following minimization problem can be used to estimate the proper

α and T :

[α̂, T̂ ] = min
α,T

[A1(α, T )−A0(α, T )] (D.2)

where 0 < T ≤ 1 and 0 < α ≤
√

1
1−pc (i.e. pc = 0.99 in (4.6)) are possible constraints
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Figure D.1: Increasing the distance between clusters and representing the result of Sigtest
for different combinations of α and T (warmer points show more reliable combinations).

for the minimization problem.

To solve the (D.2), we have employed genetic algorithm (GA) with a population size

of 100. Figure D.2 shows the result of GA simulations for estimating α and T for different

distances between the center of clusters. This result is consistent with the synergistic

regions in the Figure D.1 for the optimum α and T . Consequently, to be in a safe range

for the optimum behavior of Sigtest, we set the averaged values of 1.72 and 0.53 for α

and T respectively.

In the case of Gaussian mixture models, the T value will be adaptively calculated

based on the assumed mixing factor πj in (C.5). As a result, the T value in a mixture

model will be give as follows:
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Figure D.2: Estimated α and T parameters using Genetic algorithm for different dis-
tances between clusters.

T = 0.53 max
j
πj (D.3)
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Glossary

ACE Averaged Central Error.

AD Anderson-Darling Statistical Test of Gaussianity.

ARI Adjusted Rand Index.

AP Affinity Propagation.

BIC Bayesian Information Criterion.

BOVW Bag of Visual Words.

cdf cumulative distribution function.

CH index Calinski-Harabasz index.

CNC Correct Number of Clusters.

DB index Davies-Bouldin index.

DBSCAN Density-based spatial clustering of applications with noise.

Dcdf Desired cumulative distribution function.

Dip Dip statistic’s Hartigan Test of Unimodality.

ecdf empirical cumulative distribution function.

EM Expectation Maximization.
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GA Genetic Algorithm.

GMM Gaussian Mixture Model

HOG Histograms of Oriented Gradients.

KL index Krzanowski-Lai index.

KS Kolmogrov-Smirnov Statistical Test of Gaussianity.

MACE Minimum Averaged Central Error.

MCMC Markov Chain Monte Carlo.

minPAS Minimum Pathways in Arbitrary Shaped Clustering.

minPts minimum number of points for each cluster in DBSCAN.

MSDL Minimum Structure Description Length.

MST Minimum Spanning Tree.

N-cut Normalized cut.

PC Principal Component.

PCA Principal Component analysis.

SIFT Scale Invariant Feature Transformation.

Sigtest Signature Testing.

Sil index Silhouette index.

SNR Signal To Noise Ratio.

STD Standard Deviation.

SVM Support Vector Machines.
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VI Variation of Information.

wtertra weighted inter-to intra-cluster ratio.
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