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Abstract 

 

 

X-ray Computed Tomography (CT) scans, while useful, emit harmful radiation which is why low-

dose image acquisition is desired. However, noise corruption in these cases is a difficult 

obstacle. CT image denoising is a challenging topic because of the difficulty in modeling noise. 

In this study, we propose taking an image decomposition approach to removing noise from low-

dose CT images. We model the image as the superposition of a structure layer and a noise 

layer. Total Variation (TV) minimization is used to learn two dictionaries to represent each layer 

independently, and sparse coding is used to separate them. Finally, an iterative post-processing 

stage is introduced that uses image-adapted curvelet dictionaries to recover blurred edges. Our 

results demonstrate that image separation is a viable alternative to the classic K-SVD denoising 

method. 
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Chapter 1. Introduction 
 

 

 

 

 

 

 

X-Ray Computed Tomography (CT) is a valuable resource in medical imaging. It creates a 

comprehensive representation of the body of patients and allows us to see all the different 

tissues and bones in 2D image slices or in a 3D virtual reconstruction. However, it comes with 

some risks for the health of the person being scanned because of the ionizing nature of x-ray 

emissions. As a result, lowering the x-ray dosage during image acquisition is desired. It is well 

known that as the dose is decreased, noise and streak artifacts become more prominent, 

degrade the image and lower the Signal to Noise Ratio (SNR) [1]. Therefore, methods of 

lowering noise in low-dose images are required. 
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The main source of noise in the raw data (sinogram) is quantum noise which is due to an 

insufficient number of x-ray photons reaching the detector. Lowering the radiation dose has a 

direct restrictive effect on how many photons penetrate the patient, thus causing an increase in 

noise. This noise can be modeled as a Poisson process. After image reconstruction from the 

sinogram occurs, the noise no longer has a known distribution and becomes non-stationary. As 

a result, usual denoising methods are not appropriate for dealing with CT images. We propose 

taking an image decomposition approach to separate the main image structures from 

unwanted artifacts that arise in low-dose CT images. 

Many CT denoising techniques have previously been proposed. They mainly fit into three 

categories. The first two are similar in their goal to take the statistical nature of CT data and 

noise into account and then construct the image from the projection data. To achieve this we 

can either optimize a function whose parameters are image pixels [2] or we can denoise the 

projection data first and then perform the image reconstruction [3]. The former in particular 

has recently garnered great attention with the class of algorithms called Statistical Iterative 

Reconstruction (SIR). With the increase in computing power, newer scanners incorporate this 

type of image reconstruction rather than the traditional Filtered Back Projection (FBP) method 

[4]. However, this is still a relatively new movement, and the most common noise removal 

method is to take the reconstructed image and perform signal denoising on it. This report will 

focus on this approach. 

Edge preservation is a critical aspect of medical image denoising because edges often 

contain important diagnostic information. Many signal and image denoising algorithms exist. 

Wavelet thresholding [5] [6], diffusion [7], and total variation (TV) denoising [8] methods are a 
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few such algorithms. More recently, sparse representation and dictionary learning methods [9] 

have shown great potential in adaptively analyzing and denoising images. 

Many sparse transforms have been proposed over the years. Wavelets [10], curvelets 

[11], contourlets [12], and shearlets [13] are just a few of the many transforms that can 

sparsely represent images over a fixed dictionary. More recently, Aharon et al. proposed the K-

SVD algorithm for adaptively learning the dictionary from image patches [14]. This method is 

able to find better and sparser representations of images with complex patterns which would 

not be possible with fixed dictionaries. 

The task of image decomposition can be considered a generalization of denoising. 

Morphological diversity is the idea that an image can be decomposed into two or more layers, 

each having a different morphology. In 2004, Starck et al. introduced a sparse representation 

approach called Morphological Component Analysis (MCA) [15]. It aims to use mutually 

incoherent analytical dictionaries, each one good in representing one layer but not the others. 

The success of this method depends on the choice of each dictionary and how efficient it is in 

sparsifying the intended layer while being highly inefficient in doing so for the other layers. 

Peyré et al. extended the MCA algorithm by combining fixed and learned dictionaries 

[16]. The reason is that some complicated textures may not be effectively represented with any 

fixed dictionary. In that case learning the dictionary will result in better image separation. 

Shoham et al. showed in [17] that if pre-learned dictionaries exist for each layer, the separation 

can be done by a directly degenerated block-coordinate-descent algorithm. If pre-learned 

dictionaries do not exist, they can be alternatively learned and their corresponding layers 

separated iteratively as Li et al. showed in [18]. 
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In this thesis we propose treating noise and unwanted streaks in low-dose CT images as 

texture that needs to be separated from the main structures. The contributions are outlined 

here. First the image is smoothed using TV denoising [19] and a dictionary representing the 

noiseless image is learned from it. A second dictionary representing the noise is learned from 

the residual between the original image and its smoothed version. Each of these dictionaries is 

better in coding its own intended morphological content, and sparse representation will result 

in a piecewise smooth (main structures) layer and a noise layer. Finally, the curvelet transform 

and dictionary learning are combined to recover edges that falsely end up in the noise layer. 

This report is organized as follows. In chapter 2, an overview of CT imaging and its risks is 

provided; sources of noise and their effect on image quality are examined, and a few methods 

of dealing with noise are surveyed. In chapter 3, the development of mathematical transforms 

from orthogonal to overcomplete dictionaries, pursuit methods for seeking sparse 

representations of signals, and dictionary learning methods are studied. Chapter 4 contains the 

details of the MCA algorithm leading to the specifics of our proposed method. In chapter 5, the 

results of testing our algorithm on various CT and natural images are compared to the K-SVD 

denoising method using the peak signal to noise ratio (PSNR) and structural similarity (SSIM) 

metrics. Chapter 6 offers some concluding comments about this work and any potential future 

extensions. 
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Chapter 2. X-Ray Computed Tomography 
Imaging 

 

 

 

 

 

 

 

X-ray Computed Tomography (CT) is a diagnostic tool that is used to scan the interior of 

objects and present them as images based on the various degrees that different materials 

absorb x-ray photons. It has both industrial and medical uses. The latter in particular is a 

sensitive topic because of the risks that accompany this type of scanning. X-rays are energetic 

photons that are able to create ions by liberating electrons from their molecular orbits. Such 

ionizing radiation is harmful to biological tissue especially DNA which can increase the risk of 

cancer [20]. By examining CT usage statistics from 1991 to 1996, estimations show that 0.4% of 
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all current cancers in the United States may be linked to CT use in the past [21] [22]. In another 

study, 1 in every 1800 CT scans was followed by an excess cancer [23]. 

CT scanning has several advantages over 2D radiography which is another type of x-ray 

imaging. The latter simply forms an image which is the superposition of all the structures in the 

scanned object, whereas CT creates a series of image slices that can be viewed individually. This 

improves contrast and gives the ability to view objects nested inside one another. Estimates 

show that 67 million CT scans were conducted in 2006 in the U.S. alone [24]. Although the risk 

to one person undergoing one CT scan may not be large, given how prevalent CT scanning has 

 

Figure 2.1  Basics of CT imaging [20] 
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become it is considered a public health issue and measures need to be taken to reduce its 

harm. One way of reducing the radiation absorbed by a person during a scan is to decrease the 

dose which will consequently result in more noise and a lower Signal to Noise Ratio (SNR) [1]. 

The focus of this report is to examine methods of decreasing noise in low-dose CT images. 

 

2.1. Procedure Overview 

CT scanning involves a motorized bed for the patient with a rotating apparatus around it. 

An x-ray source sends photons in a fan shaped beam towards the patient and several rows of 

detectors at the opposite side record the photons that get through. As can be seen in Figure 2.1 

this process continues as the source and detectors rotate and the bed is moved through the 

middle. Consequently, a series of image slices are produced that correspond to slices of the 

patient’s body. Each slice can be viewed individually as a 2D image or a 3D representation of 

the body can be constructed using special software. 

          

Figure 2.2  Left: Shepp–Logan phantom [25], Right: Its sinogram 
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The raw data captured by the detectors, called a sinogram, consists of several projections 

from different angles of the same body slice. These projections are essentially the radon 

transform of the scanned object. Figure 2.2 shows the transform of the Shepp—Logan phantom 

[25]. To get the image back the inverse radon transform of the sinogram needs to be solved.  

 

2.2. Radiation Dose and Image Quality 

CT imaging is susceptible to a number of artifacts that are detrimental to image quality. 

Many factors contribute to these imperfections such as miscalibration of the scanner elements, 

metallic implants in the patient, and patient motion during the scan. The most prevalent 

artifacts are caused by beam hardening, Compton scattering, and photon starvation. 

X-ray CT imaging takes advantage of the fact that different tissues absorb photons of a 

given energy to varying degrees. Most CT scanners use polychromatic x-ray beams which mean 

the photons have a range of energies. This causes the artifact known as beam hardening which 

occurs when the lower energy photons in the x-ray beam get absorbed more than those with 

higher energy [26]. It shows up as non-uniformities in the image of a uniform material. These 

artifacts are usually small and not very noticeable, but they can become significant alongside 

large bones or metallic objects [27]. Iterative and reconstructive methods of correcting this 

anomaly have been proposed [28] [29]. 

Compton scattering involves an x-ray photon interacting with a free electron or one that’s 

loosely bound to an atom. As a result the photon is redirected in a different direction and ends 

up in a different detector than the one positioned to receive it. This causes the same kind of 
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dark streaks as beam hardening because of a higher than expected number of photons in a 

particular detector [30]. 

The number of photons that reach the detectors is perhaps the most important factor in 

determining image quality and consequently the radiation dosage applied to the patient. Under 

ideal conditions without any of the problems discussed before, the number of photons reaching 

each detector follows a Poisson distribution with the mean equal to the variance. Therefore, 

low photon numbers result in poor SNR. Since the measurements of various x-ray projections 

contribute to a pixel’s value in the final image, the noise becomes more complicated and 

appears as small streaks mostly oriented in the direction of greatest attenuation. In the 

extreme photon starvation case, the streaks appear as long straight lines. See Figure 2.3 for 

illustration of this kind of noise. 

 
60 mA, 120 kVp, slice thickness 5 mm                         440 mA, 120 kVp, slice thickness 5 mm 

Figure 2.3  Effect of mA on Poisson noise. LEFT: Low dose CT image obtained during a CT-guided biopsy 
shows extensive Poisson noise. These streaks are the same whether or not the abdomen or arms are 
partially outside the field of view. RIGHT: Post-biopsy image obtained at 𝟕. 𝟑 times higher dose has 

√𝟕. 𝟑 = 𝟐. 𝟕 times less noise. The images show an enlarged retroperitoneal lymph node (arrow) and 
infiltration of the right kidney in a patient with Hodgkin’s lymphoma. [31] 
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There are a few parameters that have a large impact on the photon numbers detected. 

They can be changed at the start of the scanning process depending on the body part under 

examination and other factors decided by the radiologist. The maximum voltage applied across 

the x-ray tube, called the peak kilovoltage (kVp), relates to the peak energy of the emitted x-ray 

spectrum (Figure 2.4). A higher value means an increase in the probability of each photon 

penetrating the tissues. The x-ray tube current, measured as milliamperes (mA) determines the 

intensity of the beam or the number of x-ray photons emitted. Increasing the current would 

mean the peak of the x-ray spectrum is elevated upwards. Scan time is the duration of each 

measurement which means how long the scanner stays in one position to gather photons. Since 

 

Figure 2.4 The bremsstrahlung energy distribution for a 90-kV acceleration potential difference. The 
unfiltered bremsstrahlung spectrum (a) shows a greater probability of low-energy x-ray photon 
production that is inversely linear with energy up to the maximum energy of 90 keV. The filtered 
spectrum (b) shows the preferential attenuation of the lowest-energy x-ray photons. The vertical 
arrow (c) indicates the average energy of the spectrum, which is typically 1/3 to 1/2 the maximal 
energy. [32] 
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this value and the current are related, they are often combined as milliampere-seconds (mAs). 

Slice thickness is the width of the beam entering each detector which affects the number of 

photons detected. This parameter also affects spatial resolution which leads to a trade-off 

between sharpness and noise. 

The tube current and the scan time are often the only values that are changed in relation 

to radiation dose. In the interest of the patient’s health they can be lowered which will result in 

more noise. It is the purpose of this report to examine methods of removing noise in the CT 

images resulting from low photon counts while leaving the actual structures intact. 

Filtered Back Projection (FBP) is the most common method of obtaining an image from 

raw scanner data [33]. First the sinogram is high-pass filtered and then the inverse radon 

transform is performed on the result. The filtering is necessary to avoid the extensive blurring 

that would otherwise occur. However, this also emphasizes noise because this algorithm 

assumes the data is noiseless. Therefore, more complex filters are often used to also dampen 

noise. This creates a trade-off between lower noise and sharper edges, and different filters are 

used depending on the situation and achieve one in the expense of the other. The 

reconstruction process changes the noise distribution to something unknown. Therefore, 

simple denoising algorithms that assume a known noise model are not optimal for CT images.  
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2.3. Introduction to Noise Reduction Methods 

There are three areas of research that aim to reduce noise and streaks in low-dose CT 

images: statistical iterative reconstruction, sinogram denoising, and image denoising. In the 

following sections, they are briefly examined.  

 

2.3.1. Statistical Iterative Reconstruction 

Instead of the FBP algorithm, the newest scanners use some kind of iterative algorithm to 

continually improve the reconstruction of the image by incorporating a statistical model of the 

noise [2]. This class of algorithms is called Statistical Iterative Reconstruction (SIR). Taking into 

account the Poisson nature of detected photons after attenuation by the scanned tissue, we 

can write 

 𝑦𝑖 =  𝑃𝑜𝑖𝑠𝑠𝑜𝑛 {𝐼𝑖𝑒−𝑙𝑖} , 𝑖 ∈ {1, … , 𝑁} (2.1) 

where 𝑦𝑖 are the recorded measurements for all positions and angles, 𝐼𝑖 are the incident x-ray 

intensities, and 𝑙𝑖 = ∑ 𝑎𝑖𝑗𝜇𝑗𝑗  are the line integrals through the tissue consisting of 𝑗 ∈ {1, … , 𝑀} 

voxels (3D equivalent of pixels). In this formulation, 𝑎𝑖𝑗 represents the probability of detecting a 

photon in sensor 𝑖 that originated in voxel 𝑗, and each 𝜇𝑗 is the pixel value in the CT image that 

we want to find. This relationship is often written in matrix form as 𝒍 = 𝑨𝝁. The matrix A, called 

the system matrix, models the scanner and its geometry and needs to do this very accurately or 

the algorithm will not work correctly. The amount of memory required to hold A grows rapidly 

as the resolution of the image and the number of x-ray projections increases. 
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One way of solving this problem is in a Bayesian framework as the maximum a posteriori 

(MAP) estimate of 𝑃(𝝁|𝒚) which is equivalent to 

 �̂� = max
𝝁

{ln 𝑃(𝐲|𝝁) + ln 𝑃(𝝁)} (2.2) 

 

Figure 2.5 Iterative reconstruction using Advanced Statistical Iterative Reconstruction (ASIR) and 
Model-Based Iterative Reconstruction (MBIR), both from General Electric (Milwaukee, WI, USA). 
Coronal reformation of a non-contrast CT scan inadvertently obtained with 50 mA and reconstructed 
with filtered back projection (FBP) shows excessive image noise (TOP LEFT), requiring a repeat scan 
acquired at 750 mA (TOP RIGHT). Reconstruction of the 50 mA dataset using ASIR shows decreased 
image noise (BOTTOM LEFT). Dramatic reduction of image noise is achieved by reconstructing the 50 
mA dataset with the full iterative reconstruction (MBIR) (BOTTOM RIGHT), which compares favorably 
with the 750 mA FBP image (TOP RIGHT) which was acquired at 15 times more radiation dose. [4] 
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By using the second-order Taylor series expansion in terms of the unknown image and the 

natural logarithm of the Poisson distribution for 𝑦𝑖 we can write the log likelihood term as 

 ln 𝑃(𝐲|𝝁) = −
1

2
(𝒚 − 𝑨𝝁)𝑇𝑫(𝒚 − 𝑨𝝁) + 𝑓(𝒚) (2.3) 

where 𝑓(𝒚) is some function, and D is a diagonal matrix whose coefficients are proportional to 

the inverse of the variance of the projection measurements: 𝑑𝑖 ∝ 𝑦𝑖 = 𝐼𝑖𝑒
−𝑙𝑖 ≅ 1

𝜎𝑦𝑖
2⁄ . Finally 

the image can be estimated as: 

 �̂� = max
𝝁

{
1

2
(𝒚 − 𝑨𝝁)𝑇𝑫(𝒚 − 𝑨𝝁) + 𝑅(𝒖)} (2.4) 

where 𝑓(𝒚) rewritten as 𝑅(𝒖) is a regularization term. 

These types of algorithms start from an initial estimate of the image �̂�𝟎 which can be 

from the FBP reconstruction, then iteratively update it. The regularization term 𝑅(𝒖) is 

important in enforcing smoothness in the image and without it the estimates become unstable. 

It is usually set to the negative of 𝑙𝑛 𝑃(𝝁) in equation (2.2) where 𝑃(𝝁) represents prior 

knowledge about the image. Markov random fields are commonly used for regularization. 

For all its strengths iterative reconstruction was not used in the past because of high 

computation times and large memory requirements to store the system matrix A. In the past 

few years, advances in computing power have allowed these methods to become more 

attractive compared to the traditional FBP reconstruction. Figure 2.5 illustrates some modern 

realizations of the SIR approach. 
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2.3.2. Sinogram Denoising 

There are some algorithms that try to smooth the sinogram so that it becomes closer to a 

noise-less set of data that one would get if the photon count was sufficiently high. The FBP 

algorithm can then be applied to the smoothed sinogram to get the image. In the SIR algorithm 

the optimization parameters are image pixels, but in this type of algorithm the optimization is 

done in the projection space. In [34] an adaptive filtering approach was proposed by taking into 

account the noise property. A multi-dimensional adaptive filtering approach was developed in 

[35] to enhance the projection data. Penalized likelihood sinogram smoothing techniques have 

also been proposed [3].  

 

2.3.3. Image Denoising 

In cases where the reconstructed low-dose CT image is noisy, image denoising techniques 

can be used to denoise the image. Edge preservation is crucial in any CT denoising algorithm 

because a diagnosis requires a sharp image with no small structures lost along with the noise. 

Thresholding in the wavelet domain is a method that has showed promise for removing 

white Gaussian noise in images [5] [6]. Either hard or soft thresholds can be applied to the 

wavelet coefficients to dampen the effect of noise. This is based on the fact that coefficients 

representing noise have lower magnitudes than those for structures. Hard thresholding simply 

sets to zero the coefficients below a preselected value, while soft thresholding lowers all the 

coefficients according to a continuous function. Therefore the main issue becomes how to 
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select the threshold to be used. The best results are attained from adaptive methods such as 

[36] where soft thresholding based on a Bayesian framework is proposed.  

Partial differential equations (PDE) have often been used in image processing. One of the 

first PDE-based edge preserving denoising methods was proposed by Perona and Malik [7]. 

They introduced a partial differential equation method called anisotropic diffusion where a 

diffusion tensor is chosen that varies along with the gradient of the image. As such it directs the 

denoising in the directions with low gradient and does not cross edges, preventing blurring. 

Another effective noise reduction method which also preserves edges was proposed by 

Rudin, Osher, and Fatemi [8]. It is called Total Variation (TV) denoising and is based on 

minimizing the total variation of a noisy signal subject to a regularization term. This method is 

widely used in signal processing applications but for highly contaminated images it is unable to 

differentiate between noise and actual structures which leads to oversmoothing, loss of fine 

details, and a blocky appearance. Therefore it is often used in conjunction with other methods. 

For example in [37] dictionary learning and total variation are used to improve magnetic 

resonance image (MRI) quality. 

Recently, the topic of sparse signal representation and dictionary learning has become 

the subject of much attention. Transform methods such as Fourier and wavelet can be said to 

sparsely represent signals using a fixed dictionary.  For the Fourier transform the dictionary is 

composed of complex exponentials, and for the wavelet transform it is the various scaled and 

translated versions of a mother wavelet. Precisely because these dictionaries are predefined, 

they are non-adaptive. In 2006 the K-SVD [14] algorithm vas introduced for learning a dictionary 

that is adapted to the signal. Consequently, it was shown to be very effective at removing noise 
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from images [9]. Because K-SVD creates an adaptive dictionary, it enables better and sparser 

representation of signals. Using this scheme for CT image denoising has been explored in works 

such as [38]. 

 

2.3.3.1. Wavelet Thresholding for Image Denoising  

The wavelet transform is a multiscale operator that captures both frequency and spatial 

information. By taking the inner product between a signal and an orthonormal wavelet function 

at various scales and positions their similarity can be calculated. The wavelet coefficients are 

given by 

 𝐶(𝑎, 𝑏) =
1

√𝑎
∫ 𝑓(𝑥)

∞

−∞

𝜓∗ (
𝑥 − 𝑏

𝑎
) 𝑑𝑥 (2.5) 

where 𝑎 > 0 is the scale parameter, b is the position, and 𝜓∗ is the complex conjugate of the 

wavelet function. The discrete wavelet transform (DWT) is defined for discrete intervals of the 

wavelet function and is used in digital signal analysis applications. 

 

Figure 2.6 The 3 level structure of the forward discrete wavelet transform. h[n] is a high-pass filter and 
g[n] is the corresponding low-pass filter 
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In using the DWT, the signal is both high pass filtered and low pass filtered using two 

quadrature mirror filters. The results are downsampled by 2 to form the first level coefficients. 

This procedure can be repeated on the low-passed part of the signal to form the next coarser 

level and so on. The process is illustrated in Figure 2.6. For 2D signals this process is executed 

on the rows and columns separately, thus each level contains the high frequency horizontal, 

vertical, and diagonal details separately as shown in Figure 2.7. 

For noisy images contaminated by high frequency noise such as additive white Gaussian 

noise, the wavelet domain coefficients representing noise are mostly contained in the finer 

scales. Those with the largest magnitudes have large SNR and mostly represent the image 

structures. The rest are mostly due to noise. Applying a hard or soft thresholding scheme to the 

coefficients and inverse-wavelet transforming them will result in an image with decreased noise 

and well preserved edges.  

    

Figure 2.7  LEFT: Sub-bands of the 2D orthogonal wavelet transform, RIGHT: Coefficients of the wavelet 

decomposition of a sample image 
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Selecting the threshold level to be used is difficult. Having a low noise tolerance may 

result in destroying the actual structures and ending up with a blurry image. A high tolerance 

may leave a lot of noise behind. Selecting a global threshold is also suboptimal since different 

image areas might have different amounts of noise.  

 

2.3.3.2. Diffusion  

One of the simplest denoising methods is Gaussian filtering which convolves the image 

𝐼(𝑥, 𝑦) with a Gaussian kernel 𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2 : 

 (𝐼 ∗ 𝐺)(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 − 𝑢, 𝑦 − 𝑣)𝐺(𝑢, 𝑣)

𝑣𝑢

 (2.6) 

This is known as a linear isotropic filtering process. The parameter 𝜎 determines the range of 

the filter and subsequently the amount of smoothing. Based on a diffusion process, filtering the 

image several times by various values of 𝜎 produces a scale space for the image composed of 

successively more blurred versions of the image. Gaussian filtering satisfies the Laplace 

equation 

 
𝜕𝐼(𝑥, 𝑦, 𝜎)

𝜕𝜎
= ∆𝐼(𝑥, 𝑦, 𝜎) =

𝜕2𝐼(𝑥, 𝑦, 𝜎)

𝜕𝑥2
+

𝜕2𝐼(𝑥, 𝑦, 𝜎)

𝜕𝑦2
 (2.7) 

This equation, also known as isotropic diffusion, spreads out (in all directions) the intensity 

values of the original image further and further with increasing 𝜎. Although such a procedure is 

effective for smoothing local noise, it is inadequate when treating images globally because of its 

blurring effect on edges. As mentioned before, edge preservation is very important especially in 
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medical imaging because important information is contained in those regions. Therefore, we 

need some way of removing noise without effecting true edges.  

Anisotropic diffusion replaces the linear Laplace equation with a non-linear PDE that 

avoids the uniform smoothing of its predecessor. Perona and Malik [7] replaced the isotropic 

formulation of (2.7) by the following: 

 
𝜕𝐼(𝑥, 𝑦, 𝜎)

𝜕𝜎
= 𝑑𝑖𝑣(𝐷(𝑥, 𝑦)∇𝐼(𝑥, 𝑦, 𝜎)) (2.8) 

where 𝐷(𝑥, 𝑦) is the diffusion tensor which controls the rate of diffusion. It is usually a function 

of the image gradient which is designed to recognize edges and stop smoothing by following a 

rule such that  

 𝐷(𝑥, 𝑦) → 0   when   ‖∇𝐼‖ → ∞  

For example the following functions can be used: 

 𝐷 = 𝑒
−(

‖∇𝐼‖

𝜎
)

2

   and    𝐷 = (1 + (
‖∇𝐼‖

𝜎
)2)−1 (2.9) 

where 𝜎 can be found experimentally or set to the noise variance. 

Even though anisotropic diffusion is able to keep edges intact, it suffers in the actual noise 

reduction of flat regions where false structures due to noise exist. In such cases, this method 

can wrongly identify noise as edge information because of the high gradient value. 
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2.3.3.3. Total Variation Denoising  

The basis of total variation (TV) denoising is that noise and false structures that may arise 

because of it have high total variation defined as 

 ∫‖∇𝑦‖𝑑𝑦

Ω

  

where 𝑦 is an image defined on the region Ω. The task of denoising is to reduce oscillations with 

high TV measures which are due to noise. This method is edge preserving and smoothing only 

occurs in areas where uncorrelated details exist. The goal is the following minimization: 

 min
𝑦

∫‖∇𝑦‖

Ω

𝑑𝑦            𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          ‖𝑥 − 𝑦‖2 ≤ 𝜀 (2.10) 

where 𝑦 is the noiseless image we want, 𝑥 is the noisy image and 𝜀 is an error tolerance. The 

unconstrained form of this formulation in discrete space is 

 min
𝑦

1

2
∑[𝑦(𝑖, 𝑗) − 𝑥(𝑖, 𝑗)]2

𝑖𝑗

+ 𝜆 [∑ √|𝑦(𝑖 + 1, 𝑗) − 𝑦(𝑖, 𝑗)|2 + |𝑦(𝑖, 𝑗 + 1) − 𝑦(𝑖, 𝑗)|2

𝑖𝑗

] (2.11) 

where 𝜆 is a regularization parameter. The first term is there to enforce closeness to the input 

and the second term is the total variation. In this algorithm 𝜆 is very important and determines 

the amount of smoothing that is allowed. Setting it to zero makes the output equal to the input 

and as it is increased so is the aggressiveness of the algorithm. Some of the algorithms to solve 

this optimization problem include [19] and [39]. 

Total variation denoising algorithms are effective in some cases, but the power of this 

type of minimization is still limited. The TV constraint is global, which makes it unable to 

directly reflect structures of an object. In addition, it cannot distinguish true structures and 
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those due to noise. Subsequently, images denoised using TV minimization may lose some fine 

features and in very noisy cases generate a blocky appearance. 

 

2.3.3.4. Image Denoising Using Sparse Representation And 

Dictionary Learning  

The noise reduction methods discussed so far have been limited in their ability to adapt 

to the specific signal they consider. With dictionary learning the aim is to create a set of 

primitive vectors called atoms that are adapted to a specific signal. By selecting only a few 

atoms and adding those together the original signal can be reconstructed thus the phrase 

sparse representation. By setting the error tolerance of the reconstruction to the noise variance 

we can find an approximation of the signal that is free of noise. 

An image denoising methodology based on K-SVD dictionary learning was developed in 

[9]. It was shown that to ease the computational difficulty, an image can be divided into small 

patches. Then the dictionary is learned from the patches in an iterative manner. Finally each 

patch of the image is reconstructed by a few dictionary atoms and the patches are combined to 

form a whole image. The details of this process are examined in section 3.3.2.1.  
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Chapter 3. Sparse Representation and 
Dictionary Learning  

 

 

 

 

 

 

 

Sparse representation is a way of reducing natural or artificial observations into their 

elemental constituents. Often these signals have a much more concise representation in a 

domain other than spatial or temporal where they usually appear. For tasks such as 

compression or analysis, it is often more efficient and meaningful to transform the signal to 

another domain or find its sparse representation among a set of basic signals, called atoms, 

that form a dictionary.  

Analytical dictionaries have precise definitions that make them convenient in some 

situations but they are rigid and inefficient in general. In the pursuit of more adaptability, 
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sparse coding methods such as [40] and [41] were introduced to allow atoms from the 

combination of various dictionaries to be selected and added to represent signals. Following 

this paradigm shift, Olshausen and Field [42] were among the first to propose a way to train a 

dictionary on examples related to a desired signal. Others such as [43] and [44] soon followed 

and the K-SVD [14] dictionary learning algorithm is widely used today. The following sections 

discuss the topics of analytical dictionaries, sparse representation, and dictionary learning in 

more detail.  

 

3.1. Transforms and Dictionaries 

Early in the modern signal processing history, mathematical transforms became 

prominent tools for tasks such as compression and analysis. Amongst these, the Fourier 

transform is one of the simplest and most widely known. The introduction of the Fast Fourier 

Transform (FFT) [45] algorithm made it easy and efficient to implement which increased its 

popularity. The Fourier transform aims to represent a signal as the summation of orthogonal 

sinusoidal waveforms and describes it in terms of its global frequency content. The K lowest 

frequency waveforms are added together to approximate the signal which makes it efficient at 

dealing with smooth signals. However, in reconstructing discontinuities K needs to be much 

larger creating a trade-off between efficiency and blurring of edges. 

In most practical applications, signals are finite and the Fourier transform implicitly 

assumes a periodic extension of the signal. This introduces a discontinuity at the boundaries. 

The Discrete Cosine Transform (DCT) is similar to the Fourier transform but assumes an anti-
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symmetric extension of the signal, resulting in continuous boundaries. This makes it a more 

efficient approximation. As an added benefit, the DCT produces non-complex coefficients. 

Therefore it is typically preferred in practice. 

Over time, more sophisticated transforms were proposed that would allow better 

descriptions of signals. One issue that was investigated was to allow more localization. This 

increases efficiency because representative functions more suited to the local characteristics of 

the signal can be used. The Short Time Fourier Transform (STFT) [46] was created with this in 

mind. The signal is first multiplied by a window function and then its Fourier transform is 

calculated. This process can be repeated with a moving window which will result in a time-

frequency (or space-frequency) description of the signal (Figure 3.1). This transform allows us 

to analyze the local properties of a signal. 

With the realization that natural signals (especially images) have details at many scales 

came the introduction of multi-resolution transforms. Among those, the wavelet transform is 

very well-known. It can represent a signal as a series of dilated and translated versions of a 

single function called the mother wavelet. Figure 3.1 shows a comparison of the STFT and the 

 

Figure 3.1 Time (or space) resolution at different frequency bands for the short-time Fourier transform 
and the wavelet transform 
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wavelet transform in terms of their time-frequency relationships. The STFT has a fixed 

frequency resolution for a given time window. The wavelet transform can analyze high 

frequency phenomena with a great time resolution while having excellent frequency resolution 

for low frequency events. 

For all its strengths, the wavelet transform is not optimal for representing images or 

higher dimensional signals. Towards the end of the 20th century, new transforms were being 

developed such as the wedgelet [47] and the ridgelet [48] transforms. These efforts ultimately 

led to the powerful curvelet transform [49] [11] which can represent 2D piecewise smooth 

functions with curve discontinuities at an optimal rate. 

All the transforms discussed can be formulated as dictionaries. A dictionary is composed 

of a collection of waveforms (called atoms), ∅𝑛, and a signal 𝑥 can be expressed as the 

superposition of those waveforms scaled by 𝛼𝑛: 

 𝑥 = ∑ 𝛼𝑛∅𝑛

𝑛

 (3.1)  

In the simplest case the waveforms form a basis and all of them can be combined to uniquely 

represent every signal. For many years, orthogonal and bi-orthogonal dictionaries were used 

because of their simplicity. However, they are limited in their representation abilities. This can 

be seen by considering the principal component analysis (PCA) and the independent 

component analysis (ICA) algorithms. PCA decomposes a signal into a set of orthogonal 

functions called principal components which are the eigenvectors of the data covariance 

matrix. The first principal component is in the direction of greatest variance of the data, the 

second one in the direction of second-greatest variance, and so on. ICA tries to find the 

underlying independent signals that produce an observation. The orthogonal constraint that 
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exists in these methods limits their expressiveness because they assume the number of causes 

of an observation is limited to its dimension. This sparked the creation of algorithms that allow 

the use of overcomplete dictionaries with the number of atoms larger than the dimension of 

the signal. 

The details of the most common analytical dictionaries are illustrated in the following 

sections. 

 

3.1.1. Discrete Cosine Transform (DCT) 

The Discrete Cosine Transform (DCT) represents a signal as the superposition of cosine 

waveforms with different frequencies. It is similar to the Discrete Fourier Transform (DFT) but 

deals only with real numbers. More importantly, the DCT is more efficient at representing finite 

signals. The reason is that the Fourier transform implicitly assumes a periodic extension of a 

signal which produces discontinuities at the boundaries for most signals. Conversely, the DCT 

 

Figure 3.2 Orthogonal DCT dictionary with 64 atoms of size 8x8 
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assumes an anti-symmetric extension to the signal. This leads to more sinusoids required to 

represent a signal with DFT than is the case with DCT. The two-dimensional DCT transform of a 

signal 𝑥 with dimensions 𝑀 and 𝑁 is: 

 𝐴(𝑝, 𝑞) = 𝛼𝑝𝛼𝑞 ∑ ∑ 𝑥(𝑚, 𝑛)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

cos
(2𝑚 + 1)𝜋𝑝

2𝑀
cos

(2𝑛 + 1)𝜋𝑞

2𝑁
,     

0 ≤ 𝑝 ≤ 𝑀 − 1
0 ≤ 𝑞 ≤ 𝑁 − 1

 (3.2) 

 𝛼𝑝 = {
1 √𝑀⁄ ,

√2 𝑀⁄ ,
   

𝑝 = 0
1 ≤ 𝑝 ≤ 𝑀 − 1

              𝛼𝑞 = {
1 √𝑁⁄ ,

√2 𝑁⁄ ,
   

𝑞 = 0
1 ≤ 𝑞 ≤ 𝑁 − 1

  

The inverse DCT transform is used to reconstruct the signal: 

 𝑥(𝑚, 𝑛) = ∑ ∑ 𝛼𝑝𝛼𝑞𝐴(𝑝, 𝑞)

𝑁−1

𝑞=0

𝑀−1

𝑝=0

cos
(2𝑚 + 1)𝜋𝑝

2𝑀
cos

(2𝑛 + 1)𝜋𝑞

2𝑁
,     

0 ≤ 𝑝 ≤ 𝑀 − 1
0 ≤ 𝑞 ≤ 𝑁 − 1

 (3.3) 

This reconstruction is in the form of (3.1) where the basis functions 

𝛼𝑝𝛼𝑞cos
(2𝑚+1)𝜋𝑝

2𝑀
cos

(2𝑛+1)𝜋𝑞

2𝑁
 form a dictionary and are weighted by the coefficients 𝐴(𝑝, 𝑞). If 

 

Figure 3.3 Overcomplete DCT dictionary with 256 atoms of size 8x8 
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𝑝 and 𝑞 are integers then the number of atoms equals the size of the signal (𝑀 × 𝑁) and the 

dictionary is orthogonal. An example is shown in Figure 3.2.  

Because of the simplicity, orthogonal dictionaries were often used in the past, but 

relaxing this constraint allows sparser representations for signals. This is achieved by allowing 

non-integer values for 𝑝 and 𝑞 thereby increasing the number of atoms beyond the size of the 

signal. An example of such an overcomplete dictionary is displayed in Figure 3.3. 

 

3.1.2. Wavelet Transform 

As previously discussed in section 2.3.3.1, the wavelet transform can be calculated by 

 𝐶(𝑎, 𝑏) =
1

√𝑎
∫ 𝑓(𝑥)

∞

−∞

𝜓∗ (
𝑥 − 𝑏

𝑎
) 𝑑𝑥 (3.4) 

The basic wavelet 𝜓 is designed to be reversible and computationally efficient. In practice, the 

translation and scaling parameters are discretized as 𝑎 = 𝑎0
𝑚, 𝑏 = 𝑛𝑏0𝑎0

𝑚  where 𝑚, 𝑛 ∈ ℤ and 

𝑎0 > 1, 𝑏0 > 0. In this case, the Discrete Wavelet Transform (DWT) becomes  

       

Figure 3.4 LEFT: 1D Haar wavelet, CENTRE: Three configurations of the Haar wavelet in 2D; black is 
negative and white is positive, RIGHT: Orthogonal Haar dictionary made up of dilations and 

translations of the Haar wavelets 
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 𝐶(𝑚, 𝑛) =
1

√𝑎0
𝑚

∫ 𝑓(𝑥)

∞

−∞

𝜓∗ (
𝑥 − 𝑛𝑏0𝑎0

𝑚

𝑎0
𝑚 ) 𝑑𝑥 (3.5) 

The signal 𝑓 can be reconstructed by summing the weighted wavelets: 

 𝑓 = ∑ 𝐶𝑚,𝑛

𝑚,𝑛

𝜓𝑚,𝑛 (3.6) 

Commonly the following values are used 𝑎0 = 2, 𝑏0 = 1. There are choices of 𝜓 where 

the collection of wavelets 𝜓𝑚,𝑛 creates an orthonormal basis in which case the wavelets are 

critically sampled in each scale to exactly span the new detail introduced at that scale. The 

simplest such wavelet is the Haar wavelet (Figure 3.4). Various other wavelets have been 

designed by Stromberg [50], Meyer [51], Daubechies [52], and others. In higher dimensions, the 

DWT is just a separable one-dimensional transform. Therefore for an image, first the columns 

then the rows are individually transformed by the same methodology as any 1D signal. This 

makes the DWT translation and rotation sensitive in higher dimensions [53]. To overcome this 

issue, the Stationary Wavelet Transform (SWT) was introduced by Beylkin [54] which abandons 

orthogonality in favour of overcompleteness. This is achieved by eliminating the sub-sampling 

and gathering all translations of the wavelet atoms. 

 

3.1.3. Curvelet Transform 

 Similar to the wavelet transform, curvelets are waveforms at different scales and 

locations but with the addition of an orientation parameter. As can be seen in Figure 3.5 

curvelets have specific anisotropic support which follows a parabolic scaling law 

𝑤𝑖𝑑𝑡ℎ~𝑙𝑒𝑛𝑔𝑡ℎ2. This is useful for the efficient representation of smooth curves. 
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Like the wavelet transform, the curvelet transform of a continuous signal 𝑓(𝑥) can be 

calculated by the inner product of the signal and the curvelet function 𝜑(𝑥):  

 𝐶(𝑗, 𝑙, 𝑘) = ∫ 𝑓(𝑥) 𝜑𝑗,𝑙,𝑘
∗(𝑥)𝑑𝑥 (3.7) 

where j, l, and k are variables of scale, direction and position. Given the basic curvelet 𝜑𝑗,0,0, the 

family of curvelet functions is provided by 

 𝜑𝑗,𝑙,𝑘(𝑥) = 𝜑𝑗,0,0 (𝑅𝜃𝑗,𝑙
(𝑥 − 𝑏𝑘

𝑗,𝑙
)) ,            𝑗 ∈ ℕ0 (3.8) 

where 𝑅𝜃𝑗,𝑙
 indicates the rotation matrix with angle 𝜃𝑗,𝑙 =

1

2
𝜋𝑙2−⌊𝑗/2⌋, 𝑙 = {0,1, … |0 ≤ 𝜃𝑙 < 2𝜋} 

and 𝑏𝑘
𝑗,𝑙

= 𝑏𝑘1,𝑘2

𝑗,𝑙
= 𝑅𝜃𝑗,𝑙

−1 (𝑘12−𝑗, 𝑘22−
𝑗

2) , 𝑘1, 𝑘2 ∈ ℤ indicates the position. 

 The Fast Discrete Curvelet Transform (FDCT) [11] is able to find the representation of 

digital signals. 

 

Figure 3.5 A few curvelet atoms at different scales, and orientations 
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3.2. Sparse Representation 

A signal can have more than one optimal representation among the many transforms that 

exist. The idea to select the best atoms from a set of different analytical dictionaries took shape 

in such works as [40] and [41] that introduced signal decomposition by matching pursuit and 

basis pursuit, respectively. 

Consider 𝐷 ∈ ℝ𝑁×𝐾  to be an overcomplete (𝑁 ≪ 𝐾) dictionary made up of normalized 

atoms in the form of ℝ𝑁×1 column vectors. Then the problem of sparse representation is to 

find a sparse vector with very few non-zero elements to represent a signal 𝑥 ∈ ℝ𝑁×1 using a 

few dictionary atoms. Put formally, vector 𝛼 ∈ ℝ𝐾×1 is sparse when ‖𝛼‖0 ≪ 𝐾 and the 

optimization problem is 

 min 
𝛼

‖𝛼‖0        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        𝑥 = 𝐷𝛼 (3.9) 

where ‖. ‖0 is the 𝑙0 norm which is simply a count of the non-zero entries. In general, finding an 

exact representation of a signal is not feasible which might be due to the presence of noise. 

Therefore (3.9) is relaxed to allow some error tolerance 𝜀 ≥ 0: 

 min
𝛼

 ‖𝛼‖0        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        ‖𝑥 − 𝐷𝛼‖2 ≤ 𝜀 (3.10) 

where the 𝑙2 norm indicates the presence of Gaussian noise. Alternative loss functions can be 

used for other types of noise. The problem (3.10) seeks the sparsest representation vector 

given the constraint. An equivalent reformulation is to seek the vector that results in the least 

error given a sparsity tolerance 𝐿 ≥ 1: 

 min 
𝛼

‖𝑥 − 𝐷𝛼‖2        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        ‖𝛼‖0 ≤ 𝐿 (3.11) 
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It is also possible to consider the square of the 𝑙2 norm such that ‖𝑥 − 𝐷𝛼‖2
2 ≤ 𝜀2. Then with 

an appropriate Lagrange multiplier 𝜆(𝜀), the above problems can be written as an 

unconstrained minimization: 

 min 
1

2
𝛼  

‖𝑥 − 𝐷𝛼‖2
2 + 𝜆‖𝛼‖0 (3.12) 

Solving this minimization problem is NP-hard and exact solutions cannot be obtained. 

Nevertheless algorithms exist that find suboptimal solutions in reasonable time. These methods 

mainly fit into two categories: greedy pursuit and convex relaxation. Greedy algorithms select 

the locally optimal choice in an iterative process with the hope of reaching a global optimum. 

By adding or refining a set of selected atoms, they try to minimize the error between the 

approximated signal and the original, and gradually increase the precision of the estimation. 

Examples include the matching pursuit (MP) [40] and the orthogonal matching pursuit (OMP) 

[55]. 

The 𝑙0 norm is the limit of p-norms as p approaches zero, but it is not a true norm and is 

non-convex. Replacing it by the 𝑙1 norm makes the problem convex and allows us to take 

advantage of the powerful tools that exist for these types of optimization problems. Then (3.12) 

becomes: 

 min 
1

2
𝛼  

‖𝑥 − 𝐷𝛼‖2
2 + 𝜆‖𝛼‖1 (3.13) 

The optimization principles of basis pursuit denoising [41] and Least Absolute Shrinkage 

and Selection Operator (LASSO) [56] are closely related to this problem. Some algorithms that 

can be used to solve it include interior point, simplex, homotopy, and gradient descent 

methods. 
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3.2.1. Greedy Algorithms 

Greedy algorithms for sparse representation are pursuit methods. Starting from an 

estimate of the sparse vector, they iteratively refine it by changing the set of selected atoms 

and their weights to decrease the signal approximation error. These types of algorithms 

abandon the brute force approach of exhaustively searching every possible subset of the 

dictionary. Instead they pick locally optimal solutions. This means selecting the atom, in each 

iteration, that decreases the reconstruction error the most. Therefore they are able to find one 

of the many possible solutions in a timely manner. 

 

3.2.1.1. Matching Pursuit 

Matching pursuit was introduced in [40] to find time-frequency representations of signals 

from a dictionary of Gabor functions. Given any redundant dictionary, this algorithm selects 

atoms iteratively to approximate a signal as closely as needed. First, it selects the atom that 

produces the maximum inner product with the residual vector (which is just the signal at the 

start) and calculates the weight attributed to that atom. Then it subtracts the contribution of 

this atom from the residual vector. The algorithm iterates these steps until the 𝑙2 norm of the 

residual is equal or less than the required error. Alternatively, the stopping criterion can be the 

maximum number of atoms to represent the signal. Table 3.1 illustrates the details of the 

algorithm. 
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3.2.1.2. Weak Matching Pursuit  

The Weak Matching Pursuit is a computationally more efficient modification of the 

original algorithm that allows for suboptimal choices of the dictionary atoms. Rather than 

looking for the atom that maximizes the inner product with the residual, the algorithm settles 

on the first atom that is a factor 𝑡 away from the optimal choice. Using the Cauchy-Schwartz 

inequality we have 

 
(𝑑𝑘

𝑇𝑟𝑖−1)2

‖𝑑𝑘‖2
2 ≤ max

1≤𝑘≤𝑚

(𝑑𝑘
𝑇𝑟𝑖−1)2

‖𝑑𝑘‖2
2 ≤ ‖𝑟𝑖−1‖

2

2
 (3.14) 

Table 3.1 Matching Pursuit Pseudo-Algorithm 
 

Goal: approximate the solution of  min
𝛼

‖𝛼‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ‖𝑥 − 𝐷𝛼‖2 ≤ 𝜀 

Input: dictionary 𝐷 = {𝑑𝑘| 𝑘 = 1,2, … , 𝐾}, signal 𝑥, error tolerance 𝜀 

Initialization: 

 iteration number: 𝑖 = 0 

 initial vector: 𝑎0 = 0 

 residual: 𝑟0 = 𝑥 − 𝐷𝛼0 = 𝑥 

 set of selected atoms: 𝑆0 = { } 

Iteration: 

 𝑖 = 𝑖 + 1 

 Calculate error 𝑒(𝑘) = ‖𝑑𝑘𝑧𝑘 − 𝑟𝑖−1‖
2

2
, ∀𝑘 using the optimal solution 𝑧𝑘 =

𝑑𝑘
𝑇𝑟𝑖−1

‖𝑑𝑘‖2
2  

 Find the minimum 𝑘0, of 𝑒(𝑘) ∀𝑘 ∉ 𝑆𝑖−1, such that 𝑒(𝑘0) ≤ 𝑒(𝑘)  

 Add the index of the new atom to the set: 𝑆𝑖 = 𝑆𝑖−1 ∪ {𝑘0} 

 Update atom weight 𝛼𝑖(𝑘0) = 𝛼𝑖−1(𝑘0) + 𝑧𝑘0
 

 Update residual 𝑟𝑖 = 𝑥 − 𝐷𝛼𝑖 

 Stop if ‖𝑟𝑖‖
2

≤ 𝜀, otherwise apply another iteration 

Output: 𝛼 = 𝛼𝑖 
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which sets an upper bound on the maximum possible inner product. Therefore, by calculating 

‖𝑟𝑖−1‖
2

2
 at the beginning of each iteration and searching for the 𝑘0 that gives the smallest error 

𝑒(𝑘), we can select the first one that gives the following: 

 
(𝑑𝑘0

𝑇 𝑟𝑖−1)2

‖𝑑𝑘0
‖

2

2 ≥ 𝑡2‖𝑟𝑖−1‖
2

2
≥ 𝑡2 max

1≤𝑘≤𝑚

(𝑑𝑘
𝑇𝑟𝑖−1)2

‖𝑑𝑘‖2
2  (3.15) 

The details are in Table 3.2. 

 

 

 

 

Table 3.2 Weak Matching Pursuit Pseudo-Algorithm 
 

Goal: approximate the solution of  min
𝛼

‖𝛼‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ‖𝑥 − 𝐷𝛼‖2 ≤ 𝜀 

Input: dictionary 𝐷 = {𝑑𝑘| 𝑘 = 1,2, … , 𝐾}, signal 𝑥, error tolerance 𝜀, scalar 0 < 𝑡 < 1 

Initialization: 

 iteration number: 𝑖 = 0 

 initial vector: 𝑎0 = 0 

 residual: 𝑟0 = 𝑥 − 𝐷𝛼0 = 𝑥 

 set of selected atoms: 𝑆0 = { } 

Iteration: 

 𝑖 = 𝑖 + 1 

 Calculate error 𝑒(𝑘) = ‖𝑑𝑘𝑧𝑘 − 𝑟𝑖−1‖
2

2
 using the optimal solution 𝑧𝑘 =

𝑑𝑘
𝑇𝑟𝑖−1

‖𝑑𝑘‖2
2  until the 

following is satisfied: 
(𝑑𝑘0

𝑇 𝑟𝑖−1)

‖𝑑𝑘0‖
2

≥ 𝑡 ‖𝑟𝑖−1‖
2

 

 Find the minimum 𝑘0, of 𝑒(𝑘) ∀𝑘 ∉ 𝑆𝑖−1, such that 𝑒(𝑘0) ≤ 𝑒(𝑘)  

 Add the index of the new atom to the set: 𝑆𝑖 = 𝑆𝑖−1 ∪ {𝑘0} 

 Update atom weight 𝛼𝑖(𝑘0) = 𝛼𝑖−1(𝑘0) + 𝑧𝑘0
 

 Update residual 𝑟𝑖 = 𝑥 − 𝐷𝛼𝑖 

 Stop if ‖𝑟𝑖‖
2

≤ 𝜀, otherwise apply another iteration 

Output: 𝛼 = 𝛼𝑖 
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3.2.1.3. Orthogonal Matching Pursuit (OMP) 

The Orthogonal Matching Pursuit (OMP) algorithm [55] is an extension of matching 

pursuit which ensures the same atom is never selected twice in representing the signal. This 

means an N-dimensional vector converges after a maximum of N steps. To achieve this, the 

weight update of the selected atoms is changed. In each iteration 𝑖, a new atom is added to the 

selected subset 𝑆𝑖 and all their weights 𝛼𝑆𝑖  are updated by minimizing ‖𝑥 − 𝐷𝑆𝑖𝛼𝑆𝑖‖
2

2
. The 

solution can be found by setting the derivative with respect to 𝛼𝑆𝑖  to zero: 

 𝐷
𝑆𝑖
𝑇 (𝑥 − 𝐷𝑆𝑖𝛼𝑆𝑖) = −𝐷

𝑆𝑖
𝑇 𝑟𝑖 = 0 (3.16) 

which suggests the atoms that are included in 𝑆𝑖 are essentially orthogonal to the residual 𝑟𝑖. 

The details are shown in Table 3.3. 

Table 3.3 Orthogonal Matching Pursuit Pseudo-Algorithm 

 

Goal: approximate the solution of  min
𝛼

‖𝛼‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ‖𝑥 − 𝐷𝛼‖2 ≤ 𝜀 

Input: dictionary 𝐷 = {𝑑𝑘| 𝑘 = 1,2, … , 𝐾}, signal 𝑥, error tolerance 𝜀 

Initialization: 

 iteration number: 𝑖 = 0 

 initial vector: 𝑎0 = 0 

 residual: 𝑟0 = 𝑥 − 𝐷𝛼0 = 𝑥 

 set of selected atoms: 𝑆0 = { } 

Iteration: 

 𝑖 = 𝑖 + 1  

 Calculate error 𝑒(𝑘) = ‖𝑑𝑘𝑧𝑘 − 𝑟𝑖−1‖
2

2
, ∀𝑘 using the optimal solution 𝑧𝑘 =

𝑑𝑘
𝑇𝑟𝑖−1

‖𝑑𝑘‖2
2  

 Find the minimum 𝑘0, of 𝑒(𝑘) ∀𝑘 ∉ 𝑆𝑖−1, such that 𝑒(𝑘0) ≤ 𝑒(𝑘)  

 Add the index of the new atom to the set: 𝑆𝑖 = 𝑆𝑖−1 ∪ {𝑘0} 

 Update the vector 𝛼𝑖 = min
𝛼

𝑆𝑖

‖𝑥 − 𝐷𝑆𝑖𝛼𝑆𝑖‖
2

2
  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑆𝑖 

 Update residual 𝑟𝑖 = 𝑥 − 𝐷𝛼𝑖 

 Stop if ‖𝑟‖2 ≤ 𝜀, otherwise apply another iteration 

Output: 𝛼 = 𝛼𝑖 
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3.3. Dictionary Learning 

The dictionaries discussed in previous sections were based on precise mathematical 

functions that are supported by proofs of their optimality and error bounds, as well as fast 

implicit implementations. However, these analytical dictionaries are too generic and lack 

enough flexibility in optimal representation of complicated signals. An adaptive dictionary 

trained from examples close to a signal can allow better and more efficient representations of 

that signal. Figure 3.6 shows a comparison of learned and analytical dictionaries to illustrate 

this point. Olshausen and Field [42] were among the first to work on a methodology for signal-

adapted dictionaries. The dictionary learning method they developed was based on maximum 

likelihood estimation.  

Given the generative model 𝑥 = 𝐷𝛼 for signal 𝑥 ∈ ℝ𝑁×1, with 𝐷 ∈ ℝ𝑁×𝐾 an 

overcomplete dictionary and 𝛼 ∈ ℝ𝐾×1 a sparse vector, the goal of the ML learning method is 

to maximize the likelihood that 𝑥 has a sparse representation in 𝐷: 

 𝐷 = max
𝐷

[log 𝑃(𝑥|𝐷)] = max
𝐷

[log ∫ 𝑃(𝑥|𝑎, 𝐷)𝑃(𝑎)𝑑𝑎] (3.17) 

 

Figure 3.6 Dictionary learned by the K-SVD algorithm and compared to analytical dictionaries [14], 
LEFT: Learned dictionary, CENTRE: Overcomplete Haar dictionary, RIGHT: Overcomplete DCT 

dictionary 
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In general this computation is very difficult. To simplify it, certain constraints have to be 

put in place such as the assumption that the distribution of 𝑃(𝑎) is Laplacian and that the 

approximation noise error can be modeled as zero-mean Gaussian noise. Other probabilistic 

dictionary learning methods have been proposed that follow the maximum likelihood [57] or 

the maximum a posteriori (MAP) [44] frameworks. 

 The task of dictionary learning is to find a dictionary as well as its corresponding sparse 

vector to represent a given signal. Put formally, solve 

 {𝐷, 𝛼𝑖} = 𝑚𝑖𝑛
                          𝐷,𝛼𝑖

∑ 𝜆𝑖‖𝛼𝑖‖0 + ‖𝐷𝛼𝑖 − 𝑥𝑖‖2
2

𝑖∈𝐼

 (3.18) 

where the signal has been split into 𝐼 smaller sections. For images this is accomplished by 

breaking it down into overlapping patches of size 𝑛 × 𝑛 with 𝑛 = 8 being a common choice. 

This is because of the enormous computational cost of operating on large signals. Solving (3.18) 

is a 2-step iterative process. The first step is to fix 𝐷 and find sparse representations with 

expressions synonymous to (3.10) and (3.11) for every image patch 𝑖 ∈ 𝐼: 

 𝛼𝑖 = 𝑚𝑖𝑛
            𝛼𝑖

‖𝛼𝑖‖0      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     ‖𝐷𝛼𝑖 − 𝑥𝑖‖2
2 ≤ 𝜀        ∀𝑖 (3.19) 

 𝛼𝑖 = 𝑚𝑖𝑛
             𝛼𝑖

‖𝐷𝛼𝑖 − 𝑥𝑖‖2
2       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     ‖𝛼𝑖‖0 ≤ 𝐿        ∀𝑖 (3.20) 

All the sparse coding methods previously discussed are applicable here.  

The second step is to fix 𝛼𝑖 for all 𝑖 ∈ 𝐼 and update the dictionary 𝐷. Several methods 

exist to accomplish this. Olshausen and Field used gradient descent. Two other ways of learning 

the dictionary are the method of optimal directions (MOD) [43] and K-SVD [14] which will be 

discussed in the following sections. 
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3.3.1. Method Of Optimal Directions (MOD) 

The MOD algorithm [43] follows the 2-step dictionary learning process to solve (3.18). 

Engan et al. used OMP for the sparse representation step, and proposed a closed form solution 

for the dictionary update step based on the least squares method. Consider the representation 

mean square error 𝑒𝑖 = ‖𝐷𝛼𝑖 − 𝑥𝑖‖2
2 for all 𝑖 ∈ 𝐼 expressed as a matrix with each 𝑒𝑖 as a 

column:  

 ‖𝐸‖2
2 = ∑‖𝑒𝑖‖2

2 = ‖𝐷𝐴 − 𝑋‖2
2

𝑖

 (3.21) 

Assuming 𝐴 is kept constant, we can find a new 𝐷 to minimize this error by setting the 

derivative with respect to 𝐷 to zero: (𝐷𝐴 − 𝑋)𝑋𝑇 = 0. The solution is obtained using the 

Moore-Penrose pseudo-inverse: 

 𝐷𝑛𝑒𝑤 = 𝑋𝐴𝑇(𝐴𝐴𝑇)−1 (3.22) 

The MOD algorithm typically converges after a few iterations; however it is hampered by 

the relative high complexity of the matrix inversion.  

 

3.3.2. K-SVD Algorithm 

The K-SVD algorithm [14] is designed to be a natural generalization of K-means clustering. 

K-means aims to assign 𝑄 observations into 𝐾 ≪ 𝑄 sets and is a 2-step algorithm similar to 

dictionary learning. First the observations are grouped into 𝐾 sets such that their 𝑙2 distance to 

a given centroid is minimal. This can be considered the extreme case of sparse coding where 

each observation (signal) vector is only allowed to be represented by a single atom with a 
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weight of 1. In the second step, the centroids are updated such that the overall distance in each 

set of observations is minimized. This is synonymous to updating the dictionary. 

Similar to dictionary learning algorithms discussed before, K-SVD tries to solve (3.18) by 

iterating between sparse representation and dictionary updating. The former can be done by 

any pursuit algorithm and OMP is a common choice because of its simplicity and fast execution. 

The latter is where the main contribution of K-SVD lies. The dictionary atoms along with their 

weights are updated one at a time making use of SVD decomposition to minimize 

approximation error. This greatly reduces computation time and complexity. For a given column 

(atom) 𝑑𝑘 and its corresponding row 𝜏𝑘 in the sparse matrix 𝐴, the approximation error (3.21) 

can be written as: 

 ‖𝑋 − 𝐷𝐴‖2
2 = ‖𝑋 − ∑ 𝑑𝑚𝜏𝑚

𝐾

𝑚=1

‖

2

2

= ‖(𝑋 − ∑ 𝑑𝑚𝜏𝑚

𝑚≠𝑘

) − 𝑑𝑘𝜏𝑘‖

2

2

= ‖𝐸𝑘 − 𝑑𝑘𝜏𝑘‖2
2 (3.23) 

The next step is to use SVD to decompose 𝐸𝑘 and find alternative 𝑑𝑘 and 𝜏𝑘. However, 

this will result in filling 𝜏𝑘 with non-zero entries. Therefore to avoid losing sparsity, we need to 

select the subspace of 𝜏𝑘 that contains non-zero elements. The equivalent term to be 

minimized is denoted as: 

 ‖𝐸𝑘
ℛ − 𝑑𝑘𝜏𝑘

ℛ‖
2

2
 (3.24) 

Performing the SVD decomposition on 𝐸𝑘
ℛ  gives us 𝐸𝑘

ℛ = 𝑈Δ𝑉𝑇. The solution to �̂�𝑘 becomes the 

first column of 𝑈, and the solution to �̂�𝑘
ℛ becomes the first column of 𝑉 multiplied by Δ(1,1). 

Now the entries in �̂�𝑘
ℛ can replace their corresponding values in 𝜏𝑘. More details of the K-SVD 

algorithm are provided in Table 3.4. 
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Table 3.4 K-SVD Pseudo-Algorithm 

 

Goal: find a dictionary 𝐷 to sparsely represent signal 𝑋 = {𝑥𝑖 ∈ ℝ𝑁×1|𝑖 = 1,2, … , 𝐼} by solving  

𝑚𝑖𝑛
𝐷,𝐴

‖𝐷𝐴 − 𝑋‖2
2       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     ‖𝛼𝑖‖0 ≤ 𝐿    ∀𝑖 

Input: signal matrix 𝑋 ∈ ℝ𝑁×𝐼, error tolerance 𝜀, sparsity measure 𝐿, number of atoms 𝐾 

Initialization: 

 iteration number: 𝑗 = 0 

 initial dictionary: set 𝐷0 ∈ ℝ𝑁×𝐾 to an overcomplete analytical dictionary or 𝐾 randomly 
chosen columns from 𝑋 and 𝑙2 normalize each column 

Iteration: 

 𝑗 = 𝑗 + 1 
 Sparse Coding: find sparse vectors 𝛼𝑖 for each signal 𝑥𝑖 by solving the following using any 

pursuit algorithm: 

𝛼𝑖
𝑗−1

= 𝑚𝑖𝑛
𝛼𝑖

‖𝐷𝑗−1𝛼𝑖 − 𝑥𝑖‖
2

2
      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     ‖𝛼𝑖‖0 ≤ 𝐿    ∀𝑖 

 Dictionary update: for each dictionary atom {𝑑𝑘 ∈ ℝ𝑁×1|𝑘 = 1,2, … , 𝐾} in 𝐷𝑗−1 follow 
these steps 
- Define the group of column signals that use atom 𝑑𝑘:  

Ω𝑘 = {𝑖|1 ≤ 𝑖 ≤ 𝐼, 𝛼𝑖
𝑗−1

(𝑘) ≠ 0} 

- Given the row 𝜏𝑘 in 𝐴 corresponding to 𝑑𝑘, calculate the residual matrix 𝐸𝑘: 

𝐸𝑘 = 𝑋 − ∑ 𝑑𝑚𝜏𝑚

𝑚≠𝑘

 

- Select only the columns in 𝐸𝑘 corresponding to Ω𝑘 to get 𝐸𝑘
ℛ 

- Apply SVD decomposition 𝐸𝑘
ℛ = 𝑈Δ𝑉𝑇. The updated atom �̂�𝑘 is the first column of 𝑈. 

The updated coefficient vector �̂�𝑘
ℛ becomes the first column of 𝑉 multiplied by Δ(1,1). 

Now the entries in �̂�𝑘
ℛ can replace their corresponding values in 𝜏𝑘 

 Stop if ‖𝐷𝑗𝐴𝑗 − 𝑋‖
2

2
≤ 𝜀, otherwise apply another iteration 

Output: 𝐷 
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3.3.2.1. Image Denoising by K-SVD 

In [9] Elad and Aharon formulated how an image can be denoised by sparse 

representation using a dictionary learned by K-SVD. Consider an image 𝑥 corrupted with an 

additive white Gaussian noise 𝑛; then the noisy image is: 

 𝑦 = 𝑥 + 𝑛 (3.25)  

The problem of minimizing noise while sparse representation and dictionary learning 

occur can be written as: 

 𝑥 = 𝑚𝑖𝑛
𝑥,𝐷,𝛼𝑖

 𝜆‖𝑦 − 𝑥‖2
2 + ∑ 𝜇𝑖‖𝛼𝑖‖0 + ‖𝐷𝛼𝑖 − 𝐸𝑖𝑥‖2

2

𝑖

 (3.26) 

where 𝐸𝑖 extracts patches from 𝑥. Patches are chosen to be small to ease the computational 

load. They are also overlapping so that blocking artifacts do not plague the reconstructed 

image. 

Two approaches can be followed to obtain the dictionary. It can be learned from training 

images that are noise-free, or it can be learned from the patches of the noisy image. It was 

shown in [9] that the second option leads to comparable results to the first. The reason is that 

after each iteration, dictionary learning gradually makes the atoms approach the underlying 

structure of the image. As a result, noise is not learned and the underlying structure of the 

image can be reconstructed without noise. Solving (3.26) amounts to first fixing x and following 

the familiar 2-step iterative algorithm composed of: 

 Sparse representation: solve (3.19) or (3.20) using any pursuit algorithm 

 Dictionary updating: use K-SVD as described in Table 3.4 
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After the final dictionary and its sparse representation are obtained, the denoised image 

can be reconstructed by the following closed-form expression: 

 𝑥 = (𝜆𝐼 + ∑ 𝐸𝑖
𝑇𝐸𝑖

𝑖

)

−1

(𝜆𝑌 + ∑ 𝐸𝑖
𝑇𝐷𝛼𝑖

𝑖

) (3.27) 

This is essentially a weighted average of all the patches with some moderation introduced by 

averaging with the noisy image. 
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Chapter 4. Methodology 
 

 

 

 

 

 

 

 

Conventional image denoising methods usually assume a simple noise model such as 

additive white Gaussian. However, noise in CT images does not have a known distribution. The 

projection measurements of CT scans are non-stationary [58] [59], and the reconstruction 

process itself affects the noise in the final image. Looking at CT images in general, the noise and 

the actual structures can be thought of as a texture layer and a piecewise smooth layer, 

respectively, superimposed on one another. Recently, the Morphological Component Analysis 

(MCA) [15] algorithm was introduced that aims to separate texture from the piecewise smooth 

(cartoon) parts of an image by sparse representation. With the advent of dictionary learning 
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algorithms in recent years we were motivated to combine these two techniques and 

decompose low-dose CT images into two morphologically distinct layers thus extracting and 

discarding unwanted streaks and noise from the main structures. 

 

4.1. Morphological Component Analysis 

The image decomposition problem is of the form 

 𝑦 = 𝑥1 + 𝑥2 (4.1)  

where 𝑥1 and 𝑥2 are two morphologically distinct layers that are to be extracted from 𝑦 ∈ ℝ𝑁. 

The MCA model assumes that there exist two mutually incoherent overcomplete dictionaries. 

Each one can very sparsely represent one of those layers but results in a non-sparse solution 

when applied to the other layer. Formally the following assumptions hold true: 

 There exists an overcomplete dictionary 𝐷1 ∈ ℝ𝑁×𝐾1 (𝐾1 ≫ 𝑁) for signal 𝑥1 such that 

solving 𝛼1 = 𝑚𝑖𝑛
𝛼

‖𝛼‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥1 = 𝐷1𝛼, leads to a sparse solution. 

 There exists an overcomplete dictionary 𝐷2 ∈ ℝ𝑁×𝐾2  (𝐾2 ≫ 𝑁) for signal 𝑥2 such that 

solving 𝛼2 = 𝑚𝑖𝑛
𝛼

‖𝛼‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥2 = 𝐷2𝛼, leads to a sparse solution. 

 For signal 𝑥1, solving 𝛼1 = 𝑚𝑖𝑛
𝛼

‖𝛼‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥1 = 𝐷2𝛼, and for signal 𝑥2 solving 

𝛼2 = 𝑚𝑖𝑛
𝛼

‖𝛼‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥2 = 𝐷1𝛼, both lead to non-sparse solutions. 

where ‖. ‖0 is a count of non-zero entries. Therefore, the two dictionaries 𝐷1 and 𝐷2 are able to 

discriminate between the two morphologically distinct layers 𝑥1 and 𝑥2. 
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The Original MCA algorithm called for selecting an appropriate fixed dictionary for each of 

𝑥1 and 𝑥2. For example, we can select the overcomplete discrete cosine transform (DCT) to 

represent oscillatory texture content and the curvelet transform can be used to represent the 

piecewise smooth parts of the image as shown in Figure 4.1. For an image y with the 

dictionaries selected, the optimization task becomes 

 {𝛼1, 𝛼2} = min
{𝛼1,𝛼2}

‖𝛼1‖0 + ‖𝛼2‖0      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     𝑦 = 𝐷1𝛼1 + 𝐷2𝛼2 (4.2) 

 

      

Figure 4.1 TOP: Original simulated mixture, BOTTOM LEFT: Recovered cartoon image using the 
curvelet transform, BOTTOM RIGHT: Separated texture part using DCT. [15] 
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The problem as it is posed in (4.2) is non-convex and hard to solve. Additionally, in general 

it is not possible to cleanly separate the two layers as there might be some content that does 

not belong to either dictionary. Fortunately the matching and pursuit algorithms are able to 

find an approximate solution [40] [41]. So the 𝑙0-norm can be relaxed to an 𝑙1-norm and the 

constraint is changed to a penalty: 

 {𝛼1, 𝛼2} = min
{𝛼1,𝛼2}

‖𝛼1‖1 + ‖𝛼2‖1 + 𝜆‖𝑦 − 𝐷1𝛼1 − 𝐷2𝛼2‖2
2 (4.3) 

In [15], an iterative shrinkage algorithm based on the block coordinate relaxation method was 

used to solve this problem. 

In general, images might contain complicated textures which may not be effectively 

represented with any fixed dictionary. Therefore, using dictionary learning to create a set of 

atoms adapted to the image will result in better image separation. 

 

4.2. Learning the Morphological Content 

Peyré et al. [16] extended the MCA algorithm by combining fixed and learned 

dictionaries. They suggested using a fixed dictionary such as wavelets or curvelets to represent 

the piecewise smooth content and learning a dictionary based on patches of the image 

(manually selected) that contain mostly texture. This would allow better image separation as 

the learned dictionary is adapted to the texture content. 

With the success of dictionary learning and its ability to adapt to any image, it makes 

sense to represent both the smooth and texture parts of an image by learning their content 

separately. Indeed this is possible as shown in [17]. The same paper also argues that given two 
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previously learned dictionaries, it is faster (with no noticeable degradation in the results) to use 

a direct degenerated block-coordinate-descent algorithm rather than an iterative one as was 

done previously in [15] and [16]. 

The task of sparse representation is usually done by the Orthogonal Matching Pursuit 

(OMP) algorithm which needs to operate on small patches to be computationally feasible. 

Consider an image broken down into 𝐼 patches of size √𝑁 × √𝑁  and each patch 𝑖 ∈ 𝐼 formed 

into a column vector of size 𝑁 × 1. The image decomposition problem can be formulated as the 

generalization of the denoising problem in [9]: 

 𝑚𝑖𝑛
𝑥1,𝑥2,𝛼𝑖,𝛽𝑖

 𝜆‖𝑦 − 𝑥1− 𝑥2‖2
2 + ∑ 𝜇𝑖‖𝛼𝑖‖0 + ‖𝐷1𝛼𝑖 − 𝐸𝑖𝑥1‖2

2 + 𝜌𝑖‖𝛽𝑖‖0 + ‖𝐷2𝛽𝑖 − 𝐸𝑖𝑥2‖2
2

𝑖

 (4.4) 

where 𝐸𝑖 extracts the ith patch from the image, 𝜇 and 𝜌 are Lagrange multipliers, and 𝜆 is a 

regularization parameter. The first term exists to enforce input-output proximity in the 

presence of noise. The rest express our belief that two distinct dictionaries 𝐷1 and 𝐷2 can 

sparsely represent 𝑥1 and 𝑥2 respectively. 

We do not have initial values for 𝑥1 and 𝑥2, so to solve (4.4) the following approximation 

is used: 

 ∑‖𝐷1𝛼𝑖 − 𝐸𝑖𝑥1‖2
2 + ∑‖𝐷2𝛽𝑖 − 𝐸𝑖𝑥2‖2

2

𝑖𝑖

≈ ∑ ‖[𝐷1, 𝐷2] (
𝛼𝑖

𝛽𝑖
) − 𝐸𝑖(𝑥1 + 𝑥2)‖

2

2

𝑖

 (4.5) 

which is true with uncorrelated separation errors: 

 (𝐸𝑖𝑥1 − 𝐷1𝛼𝑖)
𝑇(𝐸𝑖𝑥2 − 𝐷2𝛽𝑖) = 0 (4.6) 

Therefore we can write (4.4) as 

 𝑚𝑖𝑛
𝑥1,𝑥2,𝛼𝑖,𝛽𝑖

 𝜆‖𝑦 − (𝑥1+ 𝑥2)‖2
2 + ∑ 𝜇𝑖‖𝛼𝑖‖0 + 𝜌𝑖‖𝛽𝑖‖0 +

𝑖

‖[𝐷1, 𝐷2] (
𝛼𝑖

𝛽𝑖
) − 𝐸𝑖(𝑥1 + 𝑥2)‖

2

2

 (4.7) 
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Solving this problem involves three stages. First we need to learn dictionaries 𝐷1 and 𝐷2 from 

training patches that represent piecewise smooth structures and noise respectively in a CT 

image. Then we can set 𝑦 = 𝑥1 + 𝑥2 in (4.7) and find the sparse vectors using OMP. Finally 

having found the parameters to represent 𝑥1 and 𝑥2, we can proceed to construct them. After 

this process is completed, there is a need to recover some edges that may end up in the wrong 

layer. Figure 4.2 shows the overall profile of the proposed algorithm and Figure 4.5 presents a 

more detailed flowchart. The details are provided in the following sections. 

 

4.2.1. Pre-learning of Dictionaries 

To ensure successful image decomposition the two dictionaries that are to be used need 

to be mutually incoherent to avoid ambiguity in the sparse representation stage. The first 

dictionary needs to represent the noiseless structures of the CT image. We propose using a 

simple and fast denoising method on the given image to prepare training samples for dictionary 

learning. This denoising method should be edge preserving and smooth away all the noise. Even 

if some small details get lost at this stage, the impact on the final outcome is negligible. The 

purpose of this stage is to provide us with a noiseless starting point from which a dictionary 

 

Figure 4.2 Main stages of the proposed algorithm 

Learn 
Dictionaries 𝐷1

and 𝐷2

Image 
Decomposition

Edge 
Reconstruction
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representing only the main structures can be produced. Total Variation (TV) denoising [8] is a 

good candidate that meets our requirements. 

Using Chambolle’s method [19] we solve the TV minimization for the low-dose CT image 𝑦 

to smooth away the noise and unwanted streaks and find �̂�𝑠: 

 min
�̂�𝑠

1

2
∑[�̂�𝑠(𝑖, 𝑗) − 𝑦(𝑖, 𝑗)]2

𝑖𝑗

+ 𝜆 [∑ √|�̂�𝑠(𝑖 + 1, 𝑗) − �̂�𝑠(𝑖, 𝑗)|2 + |�̂�𝑠(𝑖, 𝑗 + 1) − �̂�𝑠(𝑖, 𝑗)|2

𝑖𝑗

] (4.8) 

In the algorithm, the regularization parameter 𝜆 controls the strength of the smoothing. We 

need to find the optimum value of 𝜆 that does not blend or destroy small structures yet is able 

to produce a reasonably smooth output. This is achieved experimentally by running the TV 

algorithm a few times with a series of linearly increasing 𝜆 values as inputs and finding the 

corner of the L-curve [60]. 

The L-curve is a plot of the 𝑙2-norm of the solution ‖�̂�𝑠‖2 against the 𝑙2-norm of the 

residual ‖�̂�𝑠 − 𝑦‖2 as shown in Figure 4.3. The corner of the curve is identified as the point 

where the change in slope is most rapid. This can be calculated to be where the magnitude of 

the second derivative of ‖�̂�𝑠‖2 with respect to ‖�̂�𝑠 − 𝑦‖2 is at its maximum. In the example in 

Figure 4.3, this point occurs at ‖�̂�𝑠 − 𝑦‖2 ≅ 9 × 102 where the second derivative is furthest 

from zero. Therefore the corner corresponds to the value of 𝜆 that resulted in that residual 

value. The regularization parameter is chosen in this manner and a dictionary representing 

image structures is learned from the corresponding TV smoothed output. 
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To learn the dictionary representing noise we subtract the TV denoised image from the 

original noisy one and discard patches that inevitably have leftover edges in them. What is left 

is a fairly accurate representation of the noise without any strong edge information. We then 

learn the dictionary from these patches. The next step is to find the sparse vectors. 

 

 

 
Figure 4.3  TOP: Log-log plot of the solution norm ‖�̂�𝑠‖2 against residual norm ‖�̂�𝑠 − 𝑦‖2, 

BOTTOM: Second derivative of ‖�̂�𝑠‖2 with respect to ‖�̂�𝑠 − 𝑦‖2 
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4.2.2. Sparse Coding and Image Separation 

Now that we have the dictionaries, we need to find their corresponding sparse vectors. 

Fixing 𝐷1 and 𝐷2 to the obtained dictionaries and setting 𝑦 = 𝑥1 + 𝑥2 in (4.7) leads to the 

sparse representation expression 

 𝑚𝑖𝑛
𝛼𝑖,𝛽𝑖

 ∑ ‖(
𝛼𝑖

𝛽𝑖
)‖

0𝑖

     𝑠. 𝑡.   ‖[𝐷1, 𝐷2] (
𝛼𝑖

𝛽𝑖
) − 𝐸𝑖𝑦‖

2

2

< 𝜀     ∀𝑖 (4.9) 

Note that for the right choice of 𝜇 and 𝜌, the following equality ‖(𝛼𝑖
𝛽𝑖

)‖
0

= ‖𝛼𝑖‖0 + ‖𝛽𝑖‖0 holds 

true [9].  

This problem can be solved by the OMP algorithm the same way it is done for a single 

dictionary because we are essentially concatenating 𝐷1 and 𝐷2 together and seeking a sparse 

vector to represent the input image using all the atoms contained in both dictionaries. After 

finding the sparse vector, it is easy to split it into 𝛼 and 𝛽 according to which dictionary they 

belong to. Therefore each patch of the noisy image is approximated as closely as we want (by 

setting ε). The atoms from one dictionary are better at capturing structural information in each 

patch while atoms from the other dictionary are better at doing so for the unwanted artifacts 

and noise. 

Since we are trying to capture all the information in a given image and send them to their 

respective layers (𝑥1 or 𝑥2), ε should ideally be zero. However for time constraints and because 

there is no reason to capture all the noise, ε can be set to an estimated Gaussian noise 

variance. 
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To get 𝑥1 and 𝑥2, fix the dictionaries and the sparse vectors in (4.4) and we have 

 𝑚𝑖𝑛
𝑥1,𝑥2

 𝜆‖𝑦 − 𝑥1− 𝑥2‖2
2 + ∑‖𝐷1𝛼𝑖 − 𝐸𝑖𝑥1‖2

2 + ∑‖𝐷2𝛽𝑖 − 𝐸𝑖𝑥2‖2
2

𝑖𝑖

 (4.10) 

the solution of which amounts to the following: 

 𝑥1 = (𝜆𝐼 + ∑ 𝐸𝑖
𝑇𝐸𝑖

𝑖

)

−1

(𝜆 (𝑦 − ∑ 𝐸𝑖
𝑇𝐷2𝛽𝑖

𝑖

) + ∑ 𝐸𝑖
𝑇𝐷1𝛼𝑖

𝑖

) (4.11) 

 𝑥2 = (𝜆𝐼 + ∑ 𝐸𝑖
𝑇𝐸𝑖

𝑖

)

−1

(𝜆 (𝑦 − ∑ 𝐸𝑖
𝑇𝐷1𝛼𝑖

𝑖

) + ∑ 𝐸𝑖
𝑇𝐷2𝛽𝑖

𝑖

) (4.12) 

Despite trying to separate only noise from the actual image, some edges will end up in 

the wrong layer blurring the desired layer. The reason is that the high frequency nature of noise 

makes it morphologically similar to the edges of actual image structures. Therefore atoms from 

the noise dictionary tend to represent some edge information as well as unwanted streaks. In 

the next section we develop an iterative procedure based on the curvelet transform to 

reconstruct the edges in the denoised image. 

 

4.2.3. Iterative Edge Reconstruction Using Curvelets 

In the decomposition process, it is inevitable that some edges are wrongly attributed to 

the noise dictionary and are sent to the noise layer. Therefore some processing is required to 

identify the missing edges and restore them to the structure layer. We use the curvelet 

transform [11] to produce a dictionary of adapted curvelet atoms and extract the edges from 

the noise layer. This transform is similar to the wavelet transform but better in representing 

curves. This property makes it useful in recovering CT image edges. 
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The curvelet transform is a multiscale operator. Consider the conversion of an image into 

an M-scale curvelet representation. The coefficients at the coarsest scale essentially contain the 

lowest frequency components of the image which is not of interest here. In fact for our purpose 

   

   

Figure 4.4  TOP LEFT: Phantom CT image [61], TOP RIGHT: Low frequency components of image 
represented by coarsest curvelets (scale=1) in a 3-scale transform, BOTTOM LEFT: Mid-range 
frequency components of image represented by curvelets at scale=2, BOTTOM RIGHT: Highest 
frequency components of image represented by curvelets at scale=3 
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of edge recovery, the two finest scales are all that is needed. By setting the coefficients of all 

but the finest scale to zero, and performing the inverse transform, we end up with the image 

edges at the highest curvelet resolution (Figure 4.4). We can use this result to learn a dictionary 

of high resolution curvelet atoms adapted to the image. Following the same procedure with the 

second-finest scale gives us a set of adapted curvelet atoms at the two highest resolutions. 

We learn the adapted curvelet dictionary from the TV denoised image to avoid the noise 

of the original image. Then we iterate the following steps:  

 

 

-1 �̂�𝑠  

𝑥2  

𝑥1  

Residual 

Total Variation 

Denoising 

Learn 

Structure 

Dictionary 𝐷1 

Image 

Decomposition 

Find Sparse 

Representation 

Using (4.9) 

Learn Noise 

Dictionary 𝐷2 

Separate Highest 

Frequency Content 

Using the Curvelet 

Transform 

Learn 𝐷𝑐𝑟𝑣 

Iteratively 

Move Edges 

from 𝑥2 to 𝑥1 

 𝒚 

𝒙𝟏 

Figure 4.5 Flowchart of the proposed algorithm 
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 Hard threshold the noise layer 𝑥2 so only the strongest edges remain 

 Sparsely represent the residual using OMP with no more than 2 atoms from the 

curvelet dictionary  

 Add the result to the structure layer 𝑥1 and subtract it from the noise layer 𝑥2 

This ensures only the strongest edges are added to 𝑥1 in each iteration. By continuously 

selecting edges and adding them to the structure layer a point is reached when only noise 

Table 4.1  Pseudo-Algorithm of the Proposed Method 

 

Goal: decompose input image 𝑦 into a noiseless layer 𝑥1 and a noisy layer 𝑥2 

Input: noisy image 𝑦, number of atoms K, noise variance σ2 

1. Pre-learn 𝑫𝟏 and 𝑫𝟐 

 Perform TV denoising on 𝑦 to find �̂�𝑠 using the optimum 𝜆 as explained in section 4.2.1  

 Learn 𝐷1 from �̂�𝑠 

 Remove the strongest edges from the residual 𝑦 − �̂�𝑠 and learn 𝐷2 from it 
2. Sparse Coding and Image Separation 

 Solve (4.9) for 𝑦 using OMP and the concatenated dictionary [𝐷1, 𝐷2] 

 Separate the sparse vector into 𝛼 and 𝛽 corresponding to 𝐷1 and 𝐷2 respectively 

 Using equations (4.11) and (4.12) decompose 𝑦 into 𝑥1 and 𝑥2 corresponding to 𝐷1 and 𝐷2 
respectively 

3. Edge Reconstruction 

 Curvelet transform �̂�𝑠 into 3 scales 

 Repeat for m=2 and m=3 
 Set all but the coefficients at scale m to zero  
 Inverse curvelet transform 
 Learn a dictionary from the result 

 Combine the adapted curvelet dictionaries to form 𝐷𝑐𝑟𝑣 

 Iterate until some error criterion is reached (e.g. highest PSNR and SSIM) 
 𝑘 represents the current iteration 

 Take the 𝑙2 norm of 𝑥2
(𝑘−1)

 and set the lower 90% to zero so only the strongest edges  ℰ 
remain 

 Set L=2 in equation (3.20) and use OMP and 𝐷𝑐𝑟𝑣 to represent ℰ thus forming noiseless 
edges ℰ𝑠 

 Update 𝑥1
(𝑘)

= 𝑥1
(𝑘−1)

+ ℰ𝑠 and 𝑥2
(𝑘)

= 𝑥2
(𝑘−1)

− ℰ𝑠  

Output: denoised image 𝑥1 
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remains and we can stop. In our experiments we measure the Peak Signal to Noise Ratio (PSNR) 

and the Structural Similarity (SSIM) index to stop the iterations when they reach their peak.  

The flow of our proposed method is depicted in Figure 4.5 and the details are illustrated in 

Table 4.1. 
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Chapter 5. Results and Discussion  
 

 

 

 

 

 

 

5.1. Setup of the Algorithm 

The following sections outline the parameters of the proposed algorithm that were used 

for testing and illustrate some of the dictionaries that were created. In section 5.2 the results of 

our experiments are presented and compared to the K-SVD denoising method of [9]. 

 

5.1.1. Preprocessing and Dictionary Learning 

In order to learn two dictionaries representing structure and noise artifacts respectively, 

we apply the total variation (TV) denoising. As explained in the previous chapter, 𝜆 is a 
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regularization term that determines the amount of smoothing that occurs. Figure 5.1 shows 

various degrees of smoothing.  

We need to produce a very smooth image to ensure the structure dictionary does not 

learn the morphology of the unwanted artifacts. The procedure outlined in 4.2.1 finds the 

optimal 𝜆 for a good balance between denoising and distance to the original. To this end, we 

    

    

Figure 5.1 Phantom images. TOP LEFT: low-dose, TOP RIGHT: not enough smoothing because of 
small 𝝀, BOTTOM LEFT: optimal smoothing, BOTTOM RIGHT: too much smoothing with large 𝝀 
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run the TV algorithm several times using a fixed range of 𝜆 values, and find the 𝜆 suggested by 

the corner of the L-curve. To ensure enough smoothing, we select the smoothed result 

corresponding to the next highest 𝜆.  

Next, a dictionary of 300 atoms is learned from 75% overlapping patches of size 8 × 8 

from the smoothed image. The noisy residual is formed, patches containing edges removed 

using the canny edge detector and another dictionary (same dimensions) representing noise is 

learned from it. In both cases the K-SVD algorithm is used and the number of iterations is set to 

10. The dictionaries corresponding to Figure 5.1 are shown in Figure 5.2. 

 

5.1.2. Sparse Representation 

Once the dictionaries are obtained the separation of their corresponding morphological 

content can begin. OMP is used for the sparse representation stage because it is efficient and 

           

Figure 5.2 Dictionaries learned using the optimally smoothed image of Figure 5.1. LEFT: Structure 
dictionary, RIGHT: Noise dictionary 
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quick. Our algorithm relies on morphology rather than noise variance; therefore, the stopping 

criterion for OMP is the maximum number of atoms taken from both dictionaries to represent 

the given image. In our experiments, the ratio of atoms taken from the noise dictionary 

compared to the structure dictionary was very high; the latter only contributed around 2 to 3 

atoms for each patch in all tests. Therefore, the stopping criterion for OMP is set to 20 atoms to 

allow enough structure atoms to be selected. 

    

 

Figure 5.3 TOP: High frequency components of smoothed image in Figure 5.1 used to train 
dictionary, BOTTOM: Learned dictionary. Left half and right half correspond to the top images 

respectively 
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5.1.3. Adapted Curvelet Dictionary  

Following the procedure of section 4.2.3, the fast curvelet transform [11] is used to 

isolate high frequency contents of the TV smoothed image and produce a dictionary to use for 

edge recovery. Figure 5.3 shows the training images corresponding to Figure 5.1 and the 

dictionary learned from them. Each half of the dictionary is learned from one of the training 

images. 

 

5.2. Results 

Experiments were performed on 3 sets containing 8, 6, and 10 images respectively, 

selected from low-dose CT scans of 3 different phantoms. Furthermore, 7 standard images 

(cameraman, Lena, peppers, etc.) were corrupted by Poisson noise to various degrees to 

produce 6 noisy images each, and these were tested. Altogether, 24 CT and 42 standard images 

were processed by the proposed algorithm and K-SVD denoising [9] to compare the two 

methods. All images are of size 512 × 512 pixels. More details are provided in the following 

pages. To evaluate the effectiveness of the algorithms the peak signal to noise ratio (PSNR) and 

the structural similarity (SSIM) index were calculated in each case. The same parameters used 

to learn dictionaries for the proposed method were input to the K-SVD denoising algorithm: 

300 column atoms of size 64, and 10 iterations.  

The CT images are from scans of 3 different phantoms and contain several registered 

high-dose (used as ground truth) and low-dose images that allow quantitative analyses to be 

performed. For the first phantom, the following parameters were used to scan: voltage of 
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120kVp, slice thickness of 0.75mm, effective dose of 210mAs for high-dose images, and 

effective dose of 60mAs for the low-dose images. Eight images were randomly chosen from this 

set, were denoised, and the results were recorded in Table 5.1. Figure 5.4 shows two of the 

results and the zoomed views for better examination of details.  

In the second group, another phantom was scanned once with slice thickness of 5mm, 

and again with slice thickness of 1.25mm. For all the images, the effective dose of the high-dose 

and low-dose images was 21mAs and 5mAs respectively, and the voltage was 120kVp. Table 5.2 

shows the denoising results. The first two rows correspond to the 5mm slices, and the rest to 

the 1.25mm slices. Figure 5.5 shows one of the results. 

The third group are images of an anthropomorphic phantom [61] which was scanned 

using the following parameters: voltage of 120kVp, slice thickness of 3mm, effective dose of 

200mAs for high-dose images, and effective dose of 25mAs for the low-dose images. The results 

of denoising 10 random images from this group are shown in Table 5.3 and Figure 5.6. 

The PSNR results of the proposed method are always within close to 1dB of PSNR for K-

SVD denoising. However, the SSIM metric is a better indicator of visual quality which is very 

important in medical imaging. The proposed algorithm is superior in that respect. K-SVD 

denoising assumes that each update of the dictionary brings it closer to representing the true 

image. However, the results show that this assumption is not always correct. Looking at Figure 

5.4 and Figure 5.6 it can be seen that some parts of the images have been completely 

smoothed while in other areas, streaks still remain. This is because K-SVD only learns the true 

underlying structures if the noise is close to Gaussian. However, CT noise has a more complex 

distribution. 
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An important advantage for the proposed method over many denoising algorithms is that 

it learns the morphological signature of the noise. It is a lot less dependent on knowing the 

noise variance which is often difficult to find especially for CT images. For this reason, one 

needs to run K-SVD denoising a number of times, inputting various estimates of the noise 

variance to find the best result. Even then it tends to smooth out certain regions too much 

while leaving others under-processed. 

To test the effectiveness of the proposed algorithm in general, 7 natural images were 

corrupted with Poisson noise to various degrees and were subsequently denoised. Some 

examples can be seen in Figure 5.7 and Figure 5.8. Table 5.4 shows the PSNR and the SSIM 

indices. Figure 5.9 plots the average over all 7 images and demonstrates that for lightly 

degraded images, both methods work similarly. However, as the noise becomes more severe, 

the proposed method out-performs K-SVD denoising. 

Our tests show that for low-dose CT images or other severely corrupted images where it 

is difficult to distinguish true edges and false structures, the proposed method performs well to 

reconstruct the real image beneath the noise. 
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Table 5.1 PSNR and SSIM values for the results of the first set of phantom CT images 

 

# 

Low dose 

PSNR          SSIM 

K-SVD 

PSNR          SSIM 

Proposed 

PSNR          SSIM 

1 35.6831       0.8656 37.7097       0.9129 36.6571       0.9106 

2 36.0689       0.8721 41.3300       0.8847 40.4529       0.9463 

3 40.9773       0.9392 44.9002       0.9152 44.3386       0.9614 

4 42.0507       0.9563 46.7823       0.9178 45.8201       0.9743 

5 42.1265       0.9621 46.7936       0.7761 45.5155       0.9840 

6 38.7550       0.8584 39.7400       0.8247 39.6555       0.8769 

7 44.7696       0.9775 49.1444       0.9495 48.5232       0.9903 

8 41.8519       0.9592 46.8806       0.8089 46.2781       0.9845 

Average 40.2854       0.9238 44.1601       0.8737 43.4051       0.9535 
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PSNR=41.85, SSIM=0.95 

 
PSNR=46.88, SSIM=0.80 

 
PSNR=46.27, SSIM=0.98 

    

 
 

 
PSNR=44.76, SSIM=0.97 

 
PSNR=49.14, SSIM=0.95 

 
PSNR=48.52, SSIM=0.99 

    

Figure 5.4 Results of denoising the first set of phantom CT images with their zoomed views below them. From 

the left: FIRST COLUMN: High-dose, SECOND COLUMN: Low-dose, THIRD COLUMN: K-SVD denoising, FOURTH 

COLUMN: Proposed method 
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Table 5.2 PSNR and SSIM values for the results of the second set of phantom CT images. First two rows 
correspond to images with 5mm slice thickness. Last four rows correspond to images with 1.25mm slice 

thickness 

 

# 

Low dose 

PSNR          SSIM 

K-SVD 

PSNR          SSIM 

Proposed 

PSNR          SSIM 

1 46.9374       0.9911 48.7634       0.9345 48.2077       0.9959 

2 47.0486       0.9912 48.8657       0.9053 48.1017       0.9956 

3 41.8767       0.9632 43.7096       0.9017 43.4323       0.9836 

4 41.8661       0.9629 43.7103       0.8855 42.8274       0.9790 

5 41.8188       0.9622 43.6533       0.9006 43.2037       0.9834 

6 41.9235       0.9632 43.7923       0.9098 42.8346       0.9737 

Average 43.5785       0.9723 45.4158       0.9063 44.7679       0.9852 

 

 
 

 
PSNR=46.93, SSIM=0.99 

 
PSNR=48.76, SSIM=0.93 

 
PSNR=48.20, SSIM=0.99 

    

Figure 5.5 Results of denoising the second set of phantom CT images (5mm thickness) with their zoomed views 

below them. From the left: FIRST COLUMN: High-dose, SECOND COLUMN: Low-dose, THIRD COLUMN: K-SVD 

denoising, FOURTH COLUMN: Proposed method 



69 
 

 

Table 5.3 PSNR and SSIM values for the results of the third set of phantom CT images 

 

# 

Low dose 

PSNR          SSIM 

K-SVD 

PSNR          SSIM 

Proposed 

PSNR          SSIM 

1 36.6155       0.9378 40.7097       0.8445 39.8581       0.9706 

2 37.7416       0.9450 41.4014       0.8762 40.9290       0.9684 

3 37.7706       0.9650 40.9806       0.8972 39.8865       0.9862 

4 38.4865       0.9758 40.2136       0.8910 39.6846       0.9875 

5 39.3263       0.9796 41.5197       0.8820 40.7554       0.9916 

6 39.7248       0.9793 42.0855       0.9054 40.9162       0.9914 

7 40.0498       0.9806 42.2478       0.8918 41.4509       0.9922 

8 39.5338       0.9799 41.5934       0.8983 40.8602       0.9917 

9 39.5098       0.9801 41.4765       0.8794 40.8934       0.9901 

10 40.8774       0.9827 43.1494       0.9105 42.3225       0.9918 

Average 38.9636       0.9706 41.5378       0.8876 40.7557       0.9862 

 

 
 

 
PSNR=36.61, SSIM=0.93 

 
PSNR=40.70, SSIM=0.84 

 
PSNR=39.85, SSIM=0.97 

    

Figure 5.6 Results of denoising the third set of phantom CT images [62] with their zoomed views below them. 

From the left: FIRST COLUMN: High-dose, SECOND COLUMN: Low-dose, THIRD COLUMN: K-SVD denoising, 

FOURTH COLUMN: Proposed method 
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Table 5.4 PSNR (TOP) and SSIM (BOTTOM) values for the results of the natural images corrupted with Poisson 
noise. Standard deviation values are average estimates across all similarly corrupted images. 

LEFT: Low-dose, TOP RIGHT: K-SVD, BOTTOM RIGHT: Proposed method 

σ 5.77 9.17 12.01 24.68 34.50 75.96 

cameraman 36.66 
41.09 

29.65 
35.62 

26.64 
33.24 

19.66 
27.47 

16.64 
24.92 

9.65 
18.65 

39.45 34.12 32.27 29.56 28.05 23.48 

lena 36.85 
39.13 

29.86 
35.64 

26.83 
33.83 

19.86 
29.31 

16.84 
27.18 

9.86 
22.58 

38.62 34.02 31.90 30.07 28.47 23.81 

peppers 37.00 
36.48 

30.04 
34.36 

27.01 
32.82 

20.06 
28.31 

17.02 
25.97 

10.04 
20.24 

37.78 32.77 31.65 29.93 28.50 24.23 

baboon 36.14 
30.28 

29.16 
28.41 

26.13 
27.17 

19.13 
23.42 

16.12 
21.70 

9.14 
18.99 

36.43 29.92 27.77 21.68 20.73 19.19 

barbara 37.02 
37.98 

30.01 
34.53 

27.01 
32.58 

20.04 
27.50 

17.01 
25.38 

10.04 
21.07 

37.96 32.34 30.42 24.69 23.31 21.63 

boat 37.02 
36.61 

30.01 
33.99 

26.98 
32.37 

20.00 
28.22 

17.00 
26.39 

10.01 
22.43 

37.80 32.60 30.74 27.57 26.62 23.07 

couple 37.26 
38.06 

30.28 
34.26 

27.27 
32.37 

20.28 
27.85 

17.30 
26.01 

10.27 
22.12 

38.03 32.87 30.82 26.95 26.18 23.02 

average 36.85 
37.09 

29.86 
33.83 

26.84 
32.05 

19.86 
27.44 

16.85 
25.36 

9.86 
20.87 

38.01 32.66 30.80 27.21 25.98 22.63 

 

σ 5.77 9.17 12.01 24.68 34.50 75.96 

cameraman 0.97 
0.98 

0.90 
0.95 

0.84 
0.93 

0.63 
0.81 

0.53 
0.74 

0.26 
0.49 

0.98 0.96 0.94 0.88 0.87 0.65 

lena 0.98 
0.98 

0.90 
0.96 

0.84 
0.94 

0.64 
0.85 

0.53 
0.76 

0.27 
0.53 

0.98 0.95 0.93 0.89 0.80 0.59 

peppers 0.98 
0.97 

0.92 
0.96 

0.87 
0.94 

0.65 
0.86 

0.53 
0.78 

0.24 
0.53 

0.99 0.96 0.95 0.92 0.86 0.68 

baboon 0.99 
0.94 

0.96 
0.92 

0.92 
0.90 

0.71 
0.76 

0.55 
0.65 

0.22 
0.35 

0.99 0.96 0.94 0.76 0.70 0.50 

barbara 0.98 
0.98 

0.93 
0.97 

0.89 
0.94 

0.70 
0.82 

0.58 
0.73 

0.27 
0.40 

0.99 0.95 0.93 0.80 0.74 0.59 

boat 0.98 
0.98 

0.93 
0.96 

0.88 
0.94 

0.68 
0.85 

0.55 
0.77 

0.25 
0.48 

0.99 0.95 0.92 0.86 0.82 0.61 

couple 0.99 
0.98 

0.95 
0.96 

0.90 
0.94 

0.71 
0.85 

0.58 
0.76 

0.27 
0.51 

0.99 0.96 0.93 0.85 0.82 0.62 

average 0.98 
0.97 

0.93 
0.95 

0.88 
0.93 

0.68 
0.83 

0.55 
0.74 

0.25 
0.47 

0.99 0.96 0.93 0.85 0.80 0.61 
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PSNR=26.64, SSIM=0.84 

 
PSNR=33.83, SSIM=0.94 

 
PSNR=31.90, SSIM=0.93 

 
PSNR=19.86, SSIM=0.64 

 
PSNR=29.31, SSIM=0.85 

 
PSNR=30.07, SSIM=0.89 

 

 
PSNR=26.13, SSIM=0.92 

 
PSNR=27.17, SSIM=0.90 

 
PSNR=27.77, SSIM=0.94 

 
PSNR=19.13, SSIM=0.71 

 
PSNR=23.42, SSIM=0.76 

 
PSNR=21.68, SSIM=0.76 

Figure 5.7 Results of denoising natural images corrupted with Poisson noise. From the left: FIRST COLUMN: 

Original, SECOND COLUMN: Noisy images (𝑇𝑂𝑃 𝜎 = 12.01, 𝐵𝑂𝑇𝑇𝑂𝑀 𝜎 = 24.68), THIRD COLUMN: K-SVD 

denoising, FOURTH COLUMN: Proposed method 
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PSNR=26.64, SSIM=0.84 

 
PSNR=33.24, SSIM=0.93 

 
PSNR=32.27, SSIM=0.94 

 
PSNR=19.66, SSIM=0.63 

 
PSNR=27.47, SSIM=0.81 

 
PSNR=29.56, SSIM=0.88 

 

 
PSNR=27.01, SSIM=0.87 

 
PSNR=32.82, SSIM=0.94 

 
PSNR=31.65, SSIM=0.95 

 
PSNR=20.06, SSIM=0.65 

 
PSNR=28.31, SSIM=0.86 

 
PSNR=29.93, SSIM=0.92 

Figure 5.8 More results of denoising natural images corrupted with Poisson noise. From the left: FIRST COLUMN: 

Original, SECOND COLUMN: Noisy images (𝑇𝑂𝑃 𝜎 = 12.01, 𝐵𝑂𝑇𝑇𝑂𝑀 𝜎 = 24.68), THIRD COLUMN: K-SVD 

denoising, FOURTH COLUMN: Proposed method 
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Figure 5.9 Average PSNR and SSIM values for natural images with increasing noise standard deviation 
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Chapter 6. Conclusion and Future Works  
 

 

 

 

 

 

 

6.1.  Total Variation Dictionary Learning 

In order to separate noise from the true structures in an image we presented a 

preprocessing stage where a noisy image is smoothed by minimizing the total variation. The 

regularization method known as L-curve is used to find an optimally smoothed image that is 

balanced in terms of retaining structural detail and discarding noise. This smoothed image is 

used to train a dictionary representing the piecewise smooth parts of the image. Subsequently, 

the residual of the smoothed image is used to learn another dictionary representing noise and 

false structures. Care is taken to discard patches of the residual that may contain any strong 

edge presence. This makes sure that the dictionary atoms do not adapt to edge information.  
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This methodology creates two mutually incoherent dictionaries. When they are used together 

to represent the noisy image, it becomes possible to accurately reconstruct it and separate the 

morphological content represented by each dictionary. The goal is to decompose the image to 

the superposition of a noisy layer and a structure layer.  

 

6.2. Sparse Representation and Image Separation 

Once the dictionaries are obtained, they can be concatenated together and used to 

sparsely represent the noisy image. We use the OMP algorithm and set the stopping condition 

as the maximum number of atoms to use to represent each patch. The result is a sparse matrix 

that can be split according to which dictionary they belong to. This allows us to reconstruct the 

image layers individually according to which dictionary they belong to.  

There is a problem that is encountered in this separation process. Despite our best 

efforts, certain edges are represented by both dictionaries simultaneously and some are 

completely mistaken as noise. Because of this we developed an iterative method of identifying 

edges that appear in the noise layer, and add them back to the structure layer. 

 

6.3. Edge Recovery using Adapted Curvelets 

The curvelet transform provides an optimal way of representing smooth curves and image 

discontinuities. For this reason we chose it as the basis for learning a dictionary adapted to 

edges. As mentioned before, we want to capture the edge information imbedded in the noise 

layer. Naively using this dictionary to represent edges in the noise layer will result in capturing 
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some noise as well. Therefore, we showed how to iteratively select the strongest edges and 

very sparsely represent them to make sure only the main structures are returned back to the 

main layer. Continuing this procedure, a point is reached when most edges are recovered and 

the algorithm should stop. Our results show the superiority of our noise removal method 

compared to simple K-SVD denoising. 

 

6.4. Future Improvements 

The success and accuracy of image decomposition into distinct morphological 

components using sparse representation is highly dependent on the dictionaries assigned to 

each layer. In this report we used the smoothed image and its residual to learn the dictionaries. 

More accurate descriptions of noise could help design a more adaptive dictionary. 

Furthermore, it could be worthwhile to explore some recently proposed analytical dictionaries 

which could help distinguish true edges from random streaks in CT images. For example, the 

bandelet transform [62] [63] fits a specifically optimized dictionary to an image by taking 

advantage of geometric regularities. Another dictionary is obtained from the directionlet 

transform [64] which builds oriented and anisotropic wavelets based on local image 

directionality. 
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Glossary 

CT Computed Tomography 

DCT Discrete Cosine Transform 

DFT Discrete Fourier Transform 

DWT Discrete Wavelet Transform 

ICA Independent Component Analysis 

K-SVD Generalized K-Means Singular Value Decomposition 

LASSO Least Absolute Shrinkage and Selection Operator 

MAP Maximum A Posteriori 

MCA Morphological Component Analysis 

MOD Method of Optimal Directions 

MP Matching Pursuit 

OMP Orthogonal Matching Pursuit 

PCA Principle Component Analysis 

PDE Partial Differential Equation 

PSNR Peak Signal to Noise Ratio 

SSIM Structural Similarity Index 

STFT Short Time Fourier Transform 

SVD Singular Value Decomposition 

TV Total Variation 

 

 


