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Abstract

This thesis presents extensions to an interactive 3D image visualization framework. The existing software
framework provides functionality for interactively visualizing 3D medical data. The extensions consist
of software modules that execute directly on the graphics hardware, utilizing the massively parallel,
general-purpose computing platform provided by modern graphics processing units (GPUs). These GPU-
based software modules are designed to support the execution of volume image processing algorithms,
implemented using recently available GPU programs known as “compute shaders”, as well as to support
interactive editing of the algorithms’ output. The new modules are seamlessly integrated as new stages
in a GPU-based rendering pipeline provided by the existing framework. In this thesis, an example
volume image processing algorithm known as level set segmentation is implemented and demonstrated.
In addition, a new editing module is demonstrated that enables user modification of this algorithm’s

output by extending a pre-existing volume “painting” interface.
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Chapter 1

Introduction

Medical imaging currently plays a critical and expanding role in a host of clinical applications, from
disease diagnosis and subsequent treatment planning, to surgical and radiotherapy planning, and even to
intraoperative surgical navigation. For this reason many techniques and algorithms have been developed
over the years to visualize, process and analyze 3D medical data, such as CT scans and MRI scans.
Advances in medical imaging technology have resulted in the generation of massive volume images
containing hundreds of high-resolution image slices. Therefore, efficiently visualizing and processing
these data sets has become extremely computationally expensive.

Fortunately, graphics processing unit (GPU) technology continues to rapidly evolve. While a CPU
consists of a few cores supporting complex instruction sets and optimized for serial processing, the GPU
architecture consists of hundreds of simpler cores optimized for performing repetitive and independent
data processing tasks in a massively parallel manner. Although GPUs were initially designed to efficiently
render surfaces consisting of millions of polygons by taking advantage of the inherently parallel nature
of polygon vertex and pixel operations, recent generations of graphics cards can now also be used as
general-purpose parallel computing platforms and support programming for the GPU using high-level
programming languages. The result of these advances in GPU programmability is the ability to not
only perform real-time surface rendering but also real-time volume (image) rendering. Furthermore, the
general purpose computing capability of GPUs, known as GPGPU, is well-suited for efficient volume
image processing. Medical volume images are represented as a 3D grid of voxels (i.e. volume elements),
the logical 3D extension of 2D pixels (i.e. picture elements). Many volume image processing algorithms
are data-parallel and require repeating operations on individual voxels or on a small local neighborhood
of voxels.

Graphics hardware is traditionally organized to render polygonal surfaces in stages, where the stages
form a rendering “pipeline”. For example, some stages are designed to transform vertex positions into
various coordinate systems, while other stages break up (i.e. rasterize) polygons into fragments'. A

fragment processing stage can, for example, blend fragments together based on their color. As men-

1Fragments are often considered as “potential pixels” since they may or may not appear as visible screen pixels,
depending on operations performed on them.
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tioned, GPUs are now programmable and most of the rendering stages can have their fixed functionality
overridden by executing custom programs called “shaders”. Many GPU-based volume visualization pro-
grams have been developed in recent years that provide real-time volume rendering by programming
the fragment shader stage of the rendering pipeline to accommodate the 3D grid structure of a volume
image. However, few of these programs are able to seamlessly and simply integrate general volume im-
age processing algorithms, such as image segmentation, into the interactive volume rendering pipeline.
Recently, a new programmable pipeline stage has been made available on graphics hardware called a
“compute shader”. Compute shaders can execute general purpose numerical calculations and can be
flexibly inserted into the rendering pipeline. In this thesis we describe extensions to an existing software
framework that tightly integrates interactive medical volume rendering with volume image processing
capability by utilizing compute shaders. The volume visualization and volume processing integration
is achieved by adding compute shader modules and other modules to the existing volume visualization
framework (14). This previous framework, which in turn was based on a well-known open source vi-
sualization framework called ImageVis3D? (15), provided the ability to flexibly combine both volume
rendering of 3D medical images with surface rendering of polygonal meshes. This feature is used to
support the ability of the user to create surface envelopes, using a “painting” style interface, that defines

a 3D region within the volume image.

1.1 Contributions

The primary goal of this thesis was to create a complete software framework for interactive volume
image visualization and volume image processing that harnesses the massively parallel computational
and rendering power of modern graphics hardware. The volume visualization and volume processing
capabilities should be seamlessly integrated into a single graphics pipeline to maximize the volume
exploration and visualization work-flow. A secondary goal was to add an interactive editing capability
to the framework that supports the editing of the volume image outputted by the processing algorithms.

The following contributions were realized in an effort to meet these goals:

1. The extension of an existing GPU-based volume visualization framework(13),(14) with GPU-based
modules for performing volume image processing algorithms utilizing state-of-the-art GPU pro-
grams known as “compute shaders”. The existing visualization framework provided a flexible
surface and volume rendering pipeline with a “front-end” “painting” based user interface for in-
teractively defining 3D regions of interest. The compute shaders were designed such that volume
image processing algorithms can be initialized, executed and (optionally) their output displayed

entirely within this pipeline.

2. The implementation of an example volume image processing algorithm that performs volume im-
age segmentation. Segmentation is a necessary component for visualizing noisy volume images and

for performing volume image analysis. The segmentation algorithm is a variant of the well-known

2ImageVis3D is a volume rendering project developed by NIH/NCRR Center for Integrative Biomedical Imaging. It is
written in C++, using the Boost library.
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level-set algorithm(28). The compute shader-based implementation, written in a high-level GPU
programming language, executes in a massively parallel manner and provides significant speedup
compared to an equivalent CPU-based implementation using MATLAB?(31). The GPU based im-
plementation was designed such that the performance of the segmentation algorithm will naturally

continue to improve as the number of GPU cores increases through graphics hardware evolution.

3. The implementation and integration of an interactive image editing capability for editing image
regions defined by the segmentation algorithm. The editing capability extends the framework’s
existing intuitive front-end painting interface, allowing the user to use the same interface for both
painting an initial 3D region and subsequently editing the refined region outputted by segmentation
algorithm. The implementation of the editing capability involved modifying a GPU rendering
shader in the existing framework such that a user-controllable 3D image slice is rendered together
with a 3D rendering of the volume. This allows the user to edit 3D regions in a slice-by-slice
manner, providing simple and precise editing control and the ability to paint and edit regions on

noisy volume images.

1.2 Thesis Outline

Chapter 2 reviews alternative application program interfaces (APIs) for GPU programming and for
GPGPU programming. A brief review of volume rendering algorithms is then presented, followed by a
survey of GPU-based volume image processing algorithms, including segmentation algorithms. Finally
a summary of techniques researchers have used to interactively define and edit regions of interest (ROIs)
within a 3D image is presented. Chapter 3 presents a detailed description of the extensions made
to the existing visualization framework. The implementation and integration of the various compute
shaders is described. In particular, the compute shader implementation of the specific variant of the
level set segmentation algorithm used in this thesis is presented. Finally, the interactive 3D slice editing
mechanism utilizing the existing painting interface is described. Chapter 4 demonstrates the extended
functionality of the visualization framework. Several synthetic, artificial, and real medical data sets are
used as input to the level set segmentation algorithm. The results of the segmentations are visually
validated and the algorithm speedup achieved is discussed. A demonstration of the editing capability is
also presented. Chapter 5 presents conclusions as well as suggestions for improvements and additions

to the framework.

SMATLAB is a computer program development environment that is primarily geared towards the development of
numerical programs.






Chapter 2

Literature review

In this chapter, we present a brief review of literature related to GPU programming in general, as well
as its application to volume image processing and volume image rendering. The chapter concludes with

a section on volume image editing.

2.1 GPU Programming and the Graphics Pipeline

Rendering is the process of creating an image, using computers, from a group of 2D or 3D models placed
in a scene. In recent years, this process has been executed almost entirely on the graphics hardware, with
more and more control of the process made available to the programmer. That is, the graphics hardware is
structured such that the rendering process is executed in a staged pipeline fashion (Figure 2.1) and many
of the stages are now programmable. Two of the best-known application programming interfaces (API’s)
that implement the pipeline are the Open Graphics Library(55) (OpenGL) and Microsoft Corporation’s
Direct3D(2). OpenGL is an open-standard API for rendering 3D vector graphics and interacting with
the GPU and is used in this thesis.

Rendering stages in the OpenGL pipeline can be programmed using OpenGL’s C-style programming

Vertex | o Geometry | | Rasterizer —o Fragment

r == Blendin,
Processor | | Processor Processor .
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Figure 2.1: Simplified diagram of a modern 3D graphics pipeline.
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language GLSL (OpenGL Shading Language). These programs are commonly referred to as “shaders”.
Common shaders include the vertex shader, geometry shader, and the fragment shader. Initially, the
graphics architecture was designed such that separate custom processors were reserved for vertex shaders
and fragment shaders. The hardware quickly evolved, however, resulting in a “unified” shader archi-
tecture that provided one large grid of general data-parallel floating-point processors. This hardware
advance coincided with the emergence of general purpose computing (GPGPU) on the graphics card.
GPGPU programs are not graphics programs but rather are used to solve general numerical algorithms
or image processing algorithms in a massively parallel manner. To support the creation of GPGPU
programs, two APT’s have emerged in recent years. CUDA(34) is a parallel computing platform and
programming model created by NVIDIA Corp. It is supported on NVIDIA graphics cards and al-
lows programmers to write GPGPU programs using a C-like language. OpenCL(56) (Open Computing
Language) is an open standard for general-purpose parallel programming on GPUs, as well as other
Processors.

It is possible to mix CUDA programs and OpenGL programs. The results of the computation output
by the CUDA program can be inserted into the rendering pipeline via a memory buffer. However, this
process involves several steps including mapping and unmapping of a buffer into formats understood
by CUDA and by OpenGL. In 2012, a new stage of the OpenGL graphics pipeline, called a“compute
shader” (55), was released. A compute shader provided the general-purpose computation functionality
of CUDA but was designed such that it can be, if desired, more tightly and seamlessly integrated as a
new stage of the rendering pipeline. Compute shader programs are flexible. They do not require vertices
as input, as in a vertex shader, or fragments as in the fragment shader; they can use any input and
output type. Unlike the fixed vertex-geometry-fragment shader execution order, a compute shader can
be inserted into the pipeline in a much more flexible manner (Figure 2.1). Furthermore, any resource that
can be made available to a specific rendering shader is available to a compute shader. A compute shader’s
design and versatility makes it a more suitable mechanism by which to integrate computational tasks
that may have some sort of visual output, such as volume image processing, into a visualization system.
For these reasons, this thesis adopts the compute shader approach for the processing and visualization
of 3D medical data.

2.2 GPU-based Volume Rendering

Figure 2.2: A 3D medical image depicted as a stack of 2D slices and as a 3D grid of voxels. Each voxel
stores an intensity value.
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Figure 2.3: Depiction of volume ray casting. (a) Example of a transfer function for mapping intensity
values to a color and opacity. (b) Ray casting into the volume and sampling at regular intervals along
the ray.

As mentioned in the introduction, medical volume images are represented as a 3D grid of cubical
elements called voxels (Figure 2.2). Each voxel stores an intensity value representing a sample of a
continuous three dimensional signal generated by a medical imaging device such as a CT or MRI scanner.
Volume rendering is a set of techniques for generating a 2D image from a volume image. The two main
categories of these techniques are iso-surface rendering and direct volume rendering (DVR). Iso-surface
rendering extracts points in the volume image with intensity values equal to a user-defined threshold
value and uses them to form a mesh of triangles, which can then be rendered using the standard surface
rendering pipeline. The marching cubes algorithm(29) is the most widely known and widely utilized Iso-
surface rendering algorithm due to its simplicity and highly parallel nature. Unlike Iso-surface rendering,
which considers only points in the volume that are equal to a threshold value, DVR (10),(27) considers
the entire volume as a material that interacts with and emits light according to a volume rendering
integral representing a physically realistic model of light absorption, emission and scattering (see (17)
for a detailed treatment of DVR). For this reason, this approach generates high-quality images but is
computationally intensive and the volume rendering integral is discretely approximated. One of the
most well known DVR techniques that computes a discrete approximation to the integral is volume
ray casting (27). In this image-based technique, a ray is cast from the eye through each screen pixel
into the volume image (Figure 2.3). The ray is sampled at regular (or adaptive) intervals as it passes
through the volume. For efficiency, the ray-volume entry and exit intersection points are calculated and
used as the start and end points of the sample point generation. At each sample point, a volume-image
intensity value is determined using interpolation - typically tri-linear interpolation. A user-controllable
transfer function is used to map (or classify) the intensity value to a specific color and opacity value.
The transfer function allows the user to make target anatomical structures or regions more visible or
highlighted, and conversely to make background structures less visible (Figure 2.4). The next step is to
compute the gradient of the intensity field at the sample point. The gradient is the normal vector of a

7
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Figure 2.4: Example of Direct Volume Rendering (DVR) using a CT image of the hand. In (a) the user
maps volume intensity values to a color and opacity.

corresponding Iso-surface of the volume image and is a measure of the orientation of the Iso-surface at
the sample point. The mapped color value is altered (i.e. “shaded”) according to a simplified scattering
(i.e. reflectance) model of light emanating from outside the volume. The normal vector, color value,
eye position, and external light source position(s) are used in the calculation. The shaded color and
opacity values at the sample point are then added into the current accumulated color and opacity of the
ray sample points via a compositing operation. The entire process is repeated until the ray exits the
volume. The composition of the sample point colors and opacities along the ray represents the discrete
approximation of the emission and absorption terms in the volume rendering integral.

As may be inferred from the above description, the volume ray-casting algorithm lends itself well
to a GPU-based implementation The generation and processing of ray sample points is the same for
all rays and rays are independent of each other. Furthermore, the image-based nature of the algorithm
suggests the use of a fragment shader. The entire volume can be stored into a 3D texture buffer'. A
quadrilateral “covering” the entire screen window can be rendered by a volume visualization program’s
main rendering routine. The quadrilateral is rasterized into fragments where each fragment represents
a screen pixel. Each fragment shader invocation handles one fragment and each fragment is associated
with a single ray. The fragment shader uses the 3D texture, as well as other input parameters, and
executes the ray-casting algorithm. The collective output of the fragment shader threads forms the final
2D output image. Volume ray casting, implemented as a fragment shader, can execute in real-time for

reasonably sized data sets (14).

LA texture, in the context of OpenGL, is a memory buffer that is optimized for storing images and that typically resides
in GPU memory.
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Along with a GPU-based implementation, researchers have proposed other performance improve-
ments of the volume ray-casting algorithm (24; 44; 48; 38). For example, Kruger and Westermann (24)
integrated acceleration techniques to reduce per-fragment operations in the form of early ray termina-
tion and empty space skipping. Hadwiger et al.(18) employs a two-level hierarchical representation of
the volume grid to support object-order and image-order empty space skipping. Penner (38) utilizes

multi-pass coherent frustum casting to achieve significant performance improvements.

2.3 GPU-based Volume Image Processing

Volumetric data sets continue to grow in size due to advances in scanning technology. It is increasingly
labor-intensive for radiologists and technicians to perform a slice-by-slice examination of these massive
data sets. It is also difficult to set up complicated transfer functions to clearly visualize structures
of interest embedded within noisy volume images. As a result, highly automated and efficient image
processing algorithms that can filter and label a 3D image are becomingly increasingly important. Image
processing is a natural fit for data parallel processing since the algorithms are often inherently parallel,
which often translates into a simple GPU implementation. Image pixels can be mapped directly to
GPU threads and many image-processing algorithms access only a small local neighborhood of pixels.
Examples of processing algorithms that have been implemented on the GPU include various filtering
and denoising algorithms, such as Gaussian smoothing, median filtering and edge detection algorithms,
interpolation algorithms, histogram estimation algorithms, distance transforms, and finally registration
and segmentation algorithms.

For a recent and thorough survey of medical volume image processing on the GPU, the reader is
referred to Eklund et al.(12). Only a few representative research works are referenced here. Examples
of filtering operations implemented on the GPU are median filtering (59; 7; 47; 39), a convolution
approach to fast cubic interpolation(40, Chapter 20. Fast Third-Order Texture Filtering) and convolution
using Gabor filters(60), and an implementation of Canny edge detection(30). Shams and Kennedy(51)
and Shams et al.(52) present algorithms for histogram estimation using CUDA. Schwarzkopf et al.(50)
accelerate nonlinear anisotropic diffusion-based 3D image denoising using CUDA. Ruijters et al.(45)
present a fast implementation for non-rigid registration between pre- and intra-operative CT volumes.

The majority of these GPU implementations utilize CUDA for the programming environment. In
order to support fast and uninterrupted exploration and visualization of a large and noisy 3D image, it
is highly desirable to more tightly integrate volume image processing into the view generation work-flow.
This type of integration is especially important for volume image segmentation, which we present in the

next section.

2.3.1 GPU-based Volume Image Segmentation

Segmentation partitions a 3D image into segments (i.e. sets of voxels) by labeling voxels belonging to the
same anatomical structure or tissue class. The segmentation simplifies the representation of an image

and allows for the measurement of surface and volumetric properties of an object. In addition, for very

9
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noisy volumes, segmentation must first be performed before the anatomical structures can be effectively
volume rendered and their visual appearance controlled via transfer functions. Segmentation is still an
active area of research with a variety of techniques published over the years, including region growing,
deformable models, graph cuts and watershed algorithms. This section presents some representative
examples of GPU-based implementations for each of these categories. The reader is once again referred

to Eklund et al.(12) for a more complete review.

Perhaps the simplest of the segmentation approaches is region growing. Beginning with a region (or
regions) defined by user-selected seed voxels, the algorithm iteratively scans neighbor voxels, expanding
regions if neighbor voxels meet some inclusion criterion, which is often based on image properties such
as voxel intensity homogeneity. Region growing can be GPU accelerated by processing neighbor voxels
in parallel, although care must be taken to avoid processing the same neighbor voxel at the same
time by different GPU threads (37; 54; 5; 6). A very popular segmentation technique is the Level
Set algorithm(35). The algorithm defines a contour (a surface in 3D) as the zero level set of a higher
dimensional implicit function. The function is evolved according to equations depending on image
characteristics and the zero level set itself. The function is iteratively evaluated on a 3D grid and is
inherently parallel. Early GPU implementations are presented by Rumpf and Strzodka(46), Lefohn et al.
(26) and Cates et al.(4), while more recent optimized implementations are those of Roberts et al.(43) and
Sharma et al.(53). The active contour (or active surface) approach to image segmentation represents the
contour /surface explicitly as a set of connected nodes, rather than implicitly as in the level set approach.
Therefore, rather than parallelization based on 3D grid points, active contours can be parallelized based
on the nodes themselves. The positions of each node, as well as the image forces acting on each node,
are iteratively updated in parallel. Examples of GPU accelerated active contour algorithms are He and
Kuester(20) and Schmid et al.(49). More recent GPU-based segmentation algorithms are based on graph
cuts (Vineet and Narayanan(58)) and random walks (Collins et al.(9), Grady et al.(16), Top et al.(57)).

While no single technique or algorithm has yet emerged that that can solve all segmentation problems,
fast and accurate GPU-based implementations can have a significant impact on interactive volume image
exploration, especially for noisy volumes. For those segmentation techniques that are interactive to
some degree, the user can help the algorithm to provide a satisfactory result. For example, one of the
main problems with level set methods is the difficulty in fixing an incorrect solution. Therefore it is
highly desirable to integrate a simple, intuitive interaction model into the volume rendering and volume
segmentation pipeline so that the user can quickly and simply initialize (and optionally constrain) the
algorithm - mitigating the need for subsequent editing. However, if editing of the segmentation output
is needed, the interaction model should support this operation, ideally using interactions similar to
initialization. In the next section, we review interaction mechanisms for initializing and editing semi-

automatic segmentation algorithms.

10
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2.4 Interactive Volume Image Segmentation

Although image segmentation may be performed automatically, poorly defined boundaries, image noise
and sampling artifacts due to limited image resolution, often cause the algorithms to generate erroneous
results. Semi-automatic segmentation techniques, on the other hand, are designed to allow a medical
expert to initialize, steer, and edit the algorithm. Initialization of interactive segmentation techniques
are commonly in the form of contour delineation (19; 1), the planting of “seed” regions (4) or “painting”
of 2D strokes(16; 58; 41; 61) or regions (6), or the “sketching” of regions (5; 42). The input operations
are often performed on 2D image slices where the image slices are rendered in separate windows and
with the slices in a standard orientation (i.e. axial, sagittal, coronal). An alternative is to draw directly
on the view plane (36; 42). The marking and editing of contours and regions in a 2D window requires
this input to be visually integrated back into the 3D volume-rendered view of the data. However, many
of these techniques are constructed using a visualization package that commonly support interaction on
3D slice planes that can be arbitrarily oriented and displayed together with the volume rendered data.

The output of most segmentation algorithms is a set of labeled voxels representing the target struc-
ture. The exception is active contour algorithms that output a contour (or surface in 3D). However,
there are fast, GPU-based voxelization algorithms that can label the voxels inside the contour (11).
Segmentation errors typically consist of either the mislabelling of regions outside of the target structure
as voxels belonging to it (i.e. the segmentation has “leaked” into neighboring structures), or not label-
ing voxels that are, in fact, part of the target structure. Editing of the segmentation output therefore
typically requires either the deformation of a contour, or the interactive painting/erasing of voxels. A
good example of editing via contour deformation is the work of Ijiri and Yokota(22). In this work, a
boundary surface surrounding the labeled voxels is generated via Marching Cubes. Image slice planes,
or image slice surfaces, are used to examine cross-sections of this boundary surface with respect to the
region around the target structure. That is, boundary-surface contours are created as the intersection of
the image slice plane and boundary surface. The user can repair mistakes by deforming these contours.
The deformed contours are then used as constraints to smoothly deform the boundary surface. Heckel
et al.(21) employ sketch-based editing on image slices where contours representing the boundary of la-
beled voxel regions can be cut away or added to by drawing a new boundary segment. Kang et al.(23)
presented three interactive editing tools, applied on 2D image slices: a hole filling, a point-bridging tool
and a surface-dragging.

Another common form of editing is to use a “paint brush” metaphor and manually add paint to
the labeled region or erase existing paint. This operation is primarily performed on a 2D slice, on a
slice-by-slice basis. We adopt this simple strategy in this thesis. This editing functionality is detailed in
the next chapter.
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Chapter 3

Methodology

In this chapter, we describe the various GPU-based modules that we added to extend the existing
interactive volume visualization framework. “Seamless” integration of these modules was one of the

primary design factors. The new modules consisted of the following:

1. Compute shaders providing basic volume image filtering in the form of Gaussian smoothing and

edge detection.
2. A compute shader that implements a variant of the level set segmentation algorithm(28).

3. Compute shaders and modifications to an existing fragment shader to extend the existing frame-

work’s 3D ROI painting mechanism.

3.1 The Existing Framework

Figure 3.1: Exposing bones in a CT hand data set by painting and blending a series of superellipsoid
brush strokes to form a 3D region of interest.

The existing framework was written to support user interaction with medical 3D data through a
painting metaphor. The user can paint a 3D envelope directly on iso-surfaces of the volume rendered data

in the 3D rendering window, creating a 3D region of interest (ROI) (Figure 3.1). The appearance of the
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Figure 3.2: High-level overview diagram of the existing framework.

volume rendered data inside the envelope is controlled using a separate transfer function. ImageVis3D(8)
supports 1D and 2D transfer functions. Faynshteyn(13) also implemented a visualization algorithm called
Maximum Intensity Difference Accumulation (MIDA)(3). MIDA was proposed by Bruckner et al.(3) to
quickly visualize volumetric data without the use of complex transfer functions. MIDA changes the
accumulating properties of the conventional Direct Volume Rendering (DVR) approach. During ray
casting, the opacity along the ray can quickly accumulate and local maximums depicting interesting
regions are hidden behind opaque layers. In MIDA, local maximums are not occluded and the opacity-
accumulation technique is modified to capture interesting regions even if they exist further along the ray.
In the existing framework, to use MIDA, the user simply specifies a minimum and maximum intensity
range using GUI sliders. Only features within this range are rendered, exposing internal structures
(Figure 3.1c). Furthermore, a MIDA base color can set by the user, if desired, and mapped to the
voxels within the defined intensity range. In this way, the user can highlight structures inside the

envelope.

The 3D paint in the painting interface is realized by blending a set of shape primitives, where each
primitive is defined using a superellipsoid implicit function(32). With superellipsoids the user is able
to create “blobs” of paint or “brush strokes” of paint of different shapes, sizes and thicknesses such as
spheres, cylinders and rectangular blocks. Furthermore, the user can use a mouse or other input device
to slide a “brush-tip” paint-blob along iso-surfaces of the data in the volume render window. In this way,
the brush tip acts as a lens supporting real time exploration of the medical data. Figures 3.2 and 3.3

illustrate the existing framework, as implemented in (14) and enhanced in (32). When the user deposits
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Figure 3.3: Graphics Pipeline showing the stages of the existing framework.

a blob or brush stroke of paint, an implicit superellipsoid shape primitive is defined and added to an
array. The shape primitives in the array are blended in a vertex shader to collectively define an implicit
scalar field function, referred to as “thick paint”(14). The vertex shader samples the scalar field function
and stores the samples at grid points on a 3D rectangular grid, referred to as the Paint Field Grid in
Figure 3.2 . Using this grid as input, the Marching Cubes algorithm (29) is run in a geometry shader to
generate the 3D polygonal surface envelope. The surface envelope rendering and volume rendering via
ray casting are then performed together in a fragment shader. As mentioned above, separate transfer
functions are available to control the appearance of the volume rendered data inside and outside the
envelope. The ability to mix surface and volume rendering is illustrated in Figure 3.2 by the pink

surface envelope within the intensity volume grid.

3.2 The Extended Framework

Volume image processing capabilities have been added to the existing framework to extend it. Seamlessly
integrating these capabilities into the interactive volume exploration and visualization work flow is, in
part, achieved by reusing and extending the 3D painting interface. In the extended framework, 3D
painting can be used for defining 3D regions of interest as an optional input to any volume image-
processing algorithm. Figure 3.4 shows the extended framework, with the left side of the dotted line
showing the extensions added in this thesis. Modules implementing computationally expensive volume
processing algorithms are built using compute shaders. Basic compute shader programs are designed to
accept a volume image grid and algorithm global parameters as input. The shaders iteratively execute
the algorithm and generate an output grid. This output grid can then be optionally used for volume
rendering, if desired. The upper middle and upper left part of Figure 3.4 shows an optional input
grid generated from the result of painting a 3D ROI. More complex compute shader programs, such
as the level set segmentation compute shader, can make use of this input. In the case of the level set
segmentation algorithm for example, the algorithm refines the 3D region and labels this region in an
output grid (Figure 3.4 lower left). The output grid can then be optionally input to a geometry shader
where the marching cubes algorithm will generate a boundary surface representation of the labeled

3D region. This envelope surface is treated in exactly the same manner as a painted envelope in the
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Figure 3.4: High level overview of the extended framework.

existing framework, with the same rendering options. Figure 3.5 depicts the graphics pipeline view of

the extended framework.

3.2.1 Painting and Editing on 3D Slice Planes

In this thesis, we have also extended the 3D painting interface to support painting a 3D ROI on a 3D
user-oriented image slice plane, also referred to as a clip-plane. In many visualization systems, a 3D clip
plane is texture mapped using voxel intensity values interpolated from the input volume image. In this
thesis, on the other hand, we alter the volume ray casting algorithm in the fragment shader to generate
an edit plane that is rendered along with the volumetric data during the volume rendering stage (Figure
3.6), achieving the effect of a clipped volume rendering of the data. The volume ray casting is altered by
computing the start of each ray from where it intersects the clip plane. These starting ray sample points
ensure that everything in front of the plane is clipped away. The starting ray sample points are then
used to look up the corresponding image intensity value in the volume image via interpolation. These
volume image samples are mapped, using a simple transfer function, to a color and an opacity value and
each corresponds to a fragment, which will appear as a screen pixel. The fragments are shaded using
the normal vector of the clip plane rather than a normal vector computed from the volume image. If
the fragments are mapped to an opacity equal to 1.0, the ray casting algorithm is terminated for this
ray; otherwise, the ray casting algorithm continues as usual.

It is often not possible to use a TF to isolate and volume render target structures in noisy volumes,
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Figure 3.5: Graphics Pipeline showing the stages of the extended framework.

Figure 3.6: Painting on a 3D slice plane. (a) Paint brush “tip” blob, rendered as an opaque surface, can
slide along a slice plane that clips the volume rendered data. (b) Application of paint brush strokes on
the slice plane. The 3D surface of the painted envelope is transparent, and a simple transfer function
highlights the voxels inside the envelope and on the slice plane.

preventing the use of direct 3D volume painting. This situation also occurs when the target structure
is adjacent or connected to neighboring structures with similar intensity characteristics. In these cases,
the user can use the slice-plane painting approach, along with “flattened” superellipsoid paint blobs and
paint strokes, to define a 3D ROI that envelopes a cross-section of a target anatomical structure. The
thickness of the flattened paint blobs can be set by the user to range from a single slice thickness to
many slices thick, providing the user with precise control over the envelope thickness. The user can paint
thick envelopes (i.e. several image slices thick) on several cross-sectional slices of the target structure
such that these slice-painted envelopes overlap. The slice-painted envelopes are automatically blended
to form a single envelope tightly bounding the entire target structure. Chapter 4 presents examples of
this slice-painted envelope capability.

We have also added the capability to edit a labeled 3D region, via the 3D slice plane painting
approach. A segmentation algorithm, for example, generate 3D grids with labeled regions. The labeled

region can be edited by using the painting interface to erase parts of the region or to add “edit” paint to
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Figure 3.7: High Level Overview of editing a labelled 3D region via 3D slice paint painting.

the labeled region. An illustration of this process is shown in Figure 3.7. The left side of the dotted line
depicts the slice plane painting and editing extensions. A special volume image-processing algorithm
was implemented in a compute shader to perform the erasing and adding of labels to the voxels within

the 3D region. This algorithm is described in Section 3.5.

As mentioned previously, the appearance of the voxels within the labeled region can be controlled with
a separate transfer function, allowing these voxels to be volume rendered using a distinctive “highlight”
color. The altered volume ray-casting algorithm shades the color of voxels that are on the slice plane
using the normal vector of the slice plane. The color of the labeled voxels is a blend of the highlight
color and the color of the voxel intensity value assigned via the transfer function. The result is the
labeled region voxels appear as semi-transparent and highlighted 2D “paint”. Furthermore, the user
can dynamically set the superellipsoid paint blobs and paint brush strokes thickness to be just thicker
than a single slice plane. The surface of the paint blob can be made completely transparent. Any voxels
on the slice plane that are inside the blob can be made to appear semi-transparent and highlighted in
2D paint (Figure 3.6b). Thus, this special slice-plane rendering capability gives the user the illusion of
erasing and adding 2D paint to the labeled 3D region. This visual effect is easily understandable by the
user and allows the user to see the boundaries of the target structure underneath the semi-transparent
2D paint of both the labeled region and the paint blob. Corrections can be made to the labeled region
on the current slice plane. The user can then continue to another oriented slice plane to make further
corrections. While this slice-by-slice editing via painting approach can be tedious, especially if many

slices require correcting, it is simple and allows the user to learn only a single painting interaction model.
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Figure 3.8: Overview of basic image processing pipeline.

3.3 Image Processing: Image Filtering

Basic volume processing algorithms, such as filtering algorithms, that are commonly used in medical
imaging can be “plugged into” the extended framework as long as they are parallelizable at the 3D grid
point level. The image processing filters are implemented using compute shaders. Furthermore, the
filters can be cascaded - the output of one filtering stage can be used as input to the next (Figure 3.8.
We have implemented Gaussian Filtering to smooth a volume image. We have also implemented edge
detection using a simple image gradient magnitude calculation. The output of these cascaded image
filtering stages are used as input to the level set segmentation algorithm described in the next section.
We have used a modular approach in the design of our compute shaders for volume image processing
algorithms. We have consistently used buffers to store 3D input and output scalar grids, where the scalar
values stored at grid points can be image intensities, processed image intensities or any other field value.
In particular, we have used Shader Storage Buffer Objects (55) as buffers, using their binding points
as input or output hooks. By virtue of their binding point, we can use the same buffer as an input or
output buffer, thereby allowing different shaders to pick up the same buffer and process them as they see
fit. This strategy maximizes efficiency on the Graphics Processing Unit (GPU) by avoiding copying or
moving data around. Other global filter-specific parameters can be passed into a filter compute shader,

such as a kernel matrix.

3.4 Image Processing: Level Set Segmentation

We have chosen level set segmentation as our showcase volume image-processing algorithm for several
reasons. Segmentation is a necessary step when exploring and visualizing noisy volume images, and is a
requirement for subsequent volume image analysis. The level set algorithm is powerful and flexible and
can segment geometrically and topologically complex objects. The algorithm is defined on a 3D grid
and is highly parallelizable. Finally, the algorithm fits very well with the existing 3D painting interface.
In this section, we describe the compute shader based implementation of the level set algorithm.
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Figure 3.9: Depiction of level set evolution in 2D.

3.4.1 A Brief Look at Level Sets

In the level set method, a surface (in 3D) is defined to be the zero level set of a continuous function,
o(t,z,y,z). The movement of the level set surface is governed by an evolution equation of the level
set function ¢. The evolution equation contains terms defined as the gradient of an energy functional,
where the energy functional depends on the image data. These external energy terms drive the level
set surface towards object boundaries. There are also internal energy terms that are a function of ¢
only and that fundamentally act to minimize the surface area of the level set surface. At any point in
time, we can recover the location of the level set surface from ¢, by looking for points where ¢ takes on
a value of zero. To illustrate this idea, in Figure 3.9 a 2D level set contour is shown. The contour is
embedded in the conical function, ¢, and evolved over time. At each time step, we can construct the
embedded contour by extracting the points where ¢ is zero. The level set method, therefore, extracts
the level set surface representing the boundary of the target anatomical structure and the function phi
defines its interior. The method is initialized by creating an initial surface envelope that either loosely
surrounds the target structure or is contained inside it. An initial level set function ¢¢ is constructed
from this envelope. A brief mathematical overview of the specific level set algorithm used in this thesis

(28) can be found in Appendix 1.

3.4.2 Initial Level Set Construction

As the level set function evolves, it can develop shocks or very sharp corners, which cause numerical
inaccuracies in a software implementation of the evolution function. A common technique to deal
with this problem is to initialize the function ¢ as a signed distance function and then re-initialize it
periodically during the evolution. We follow the level set formulation described in Li et al. (28) which
eliminates the need for this re-initialization process. In this thesis, we use the painted envelope to

construct our initial level set function. Recall that the envelope is defined as a blended set of paint
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Figure 3.10: Illustration of initial level set. Values inside the VOI are marked as —p and outside the
VOI are marked as +p, where p is a constant (28).

blobs, where each blob is represented using a superellipsoid implicit function. From Li et al. (28) the

initial level set function, ¢q, is defined as:

—-p lf(.’L', y7Z) € Q0 - aQO
(b()(xvywz) =40 (x,y,z) € 690 (31)
P Q- QO,

where 2 is the volumetric domain, €2y is a subset of the volumetric domain containing all points inside
the painted envelope and 9 is the set of all points exactly on the boundary of €y (i.e. the painted
envelope boundary surface). As in (28), in our implementation we set p to a value of 6. The level set
field function ¢ (including the initial level set function ¢g) is sampled at points on a regular 3D grid
and is referred to as the ¢-grid (and ¢g-grid) in this thesis. Typically the ¢-grid dimensions are set
equal to the input volume image dimensions. That is, to initialize the ¢-grid, at each ¢-grid point, we
determine if the point is inside, outside, or on the painted envelope boundary using a point inside-outside
function defined in McInerney and Faynshteyn (32). This initial level set function construction process
is implemented in a compute shader, levelset_init.cs. The compute shader accepts the ¢-grid as input as

well as the array of paint blobs defining the painted envelope.

3.4.3 Overview of Level Set Implementation

The level set segmentation algorithm uses edge image features to determine if the evolving level set
surface has reached the boundary of the target structure. Input volume images are commonly convolved
with a smoothing filter to remove noise before performing edge detection. We use the Gaussian Filtering
and edge detection compute shaders, described previously, to compute the edge detected image. The
level set evolution is computed inside another compute shader, updatephi.cs. It takes an input ¢-grid,

along with the edge detected intensity grid outputted from the edge detection compute shader. It then
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22



CHAPTER 3. METHODOLOGY 3.4. IMAGE PROCESSING: LEVEL SET SEGMENTATION

30 Input
Data

Ly

. : Invocation

S

Group

Figure 3.12: Parallel computing in a compute shader. A computational problem on a 3D grid, exhibiting
a parallel pattern, is broken down and computed in parallel on compute shader threads.

outputs a grid containing updated values of the function ¢ referred to as ¢-gridOut. Initially, the input
¢-grid is the ¢p-grid (i.e. the ¢-grid at time ¢t = 0). Given the ¢-grid at time ¢, the shader computes
the evolved ¢-gridOut at time ¢ + At using Equation 1.5, described in Appendix A. As mentioned
previously, we use buffer binding indices as hooks to interchange the input and output ¢-grid buffers,
which avoids copying or moving the grids. That is, the input ¢-grid becomes the output grid and the
¢-gridOut becomes the input grid in the next temporal step (i.e. iteration).

The final output of the level set segmentation algorithm, ¢-gridOut, contains scalar values. This
output grid can be sent to a geometry shader that executes the Marching Cubes algorithm and generates
a mesh of triangles representing the zero level set surface. As mentioned in Section 3.2, this envelope
surface can be treated in exactly the same manner as a user painted envelope - it can rendered together
with the volume rendered data and voxels inside the level set surface can be volume rendered using a
separate transfer function. Figure 3.4.3 illustrates the level set segmentation processing pipeline. This

figure expands on the section labeled “Computational Module” from Figure 3.4.

3.4.4 Compute Shader Implementation

We begin this section with a brief description of the types of memory available on the GPU. A GPU
contains a few streaming multiprocessors (SM), which in turn contain a number of streaming processors
or cores. An image-processing problem is generally broken down and performed on the smallest compu-
tational unit such as a voxel in a 3D grid or a pixel in a 2D grid. Computation on these units is performed

by launching threads, with each thread processing a single unit (such as a voxel). Threads (also called
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invocations) are grouped into a block (also called a local work-group) and a Streaming Multiprocessor
(SM) can handle one or more blocks concurrently. A thread on the SM runs on a core in that SM.
Each SM has a small number of registers, which store thread specific variables. Data is loaded from
the Central Processing Unit (CPU) to the GPU and stored in global memory, which is typically quite
large but has a relatively low bandwidth. Upon launch, each thread loads the data it requires from the
global memory into its local registers. Upon finishing the computation, the data is written out to global
memory. Each SM contains a small amount of memory (between 16KB and 48KB) which is available to
the threads on that SM to share data efficiently with other threads in the same block. If threads within
a block read the same data, the data can be read in once and collectively shared by housing it on the
shared memory of the SM.

Modern GPUs have a general L1 and L2 cache to speed up reads from global memory. Cores on a SM
are meant to execute the same instruction at the same time. However, in practice, threads are grouped
together and the group executes the same instruction. That group of threads is called a warp, where the
warp size on recent architecture is 32. Performance is optimized when a warp, running on a SM, uses
data with nearby addresses. If a warp of threads is stalled, another warp can be immediately executed
to hide the latency, swapping out the first one. Stalls can occur due to data cache access delays and
instruction delays. If global memory access introduces some latency, this can be covered up by putting
enough warps on each SM.

One approach to optimizing the performance of a volume image-processing algorithm that requires
few iterations and that requires that each processed grid point access neighbor grid points, is an overlap-
ping tile method. This method attempts to take advantage of the shared memory on a local work-group.
Loading a “tile” of data grid points (e.g. an 8 x 8 x 8 region of grid point) that surrounds a smaller
tile of grid points (e.g. 4 x 4 x 4) on the shared memory allows the threads to efficiently lookup values
stored at neighbor grid points efficiently.

Another approach, used in this thesis for the level set segmentation compute shader, uses a sim-
pler scheme. Shader Buffer Objects storing 3D grids of scalar values are stored as a contiguous one-
dimensional array on the GPU. In a thread, we are able to use the thread id to compute a 3D grid point
position. This grid point position can be flattened into a linear one-dimensional index into the 3D grid
buffer. The thread then executes the level set evolution equation for its assigned grid point. Individual
threads are grouped in a local work-group or block. The local work-groups together make up the larger
global work-group (Figure 3.4.4). Shader Buffer Objects are stored in the L2 Cache and each thread

looks up its required data from these buffer objects.

Stopping Level Set Evolution

In Kuo et al. (25), the authors mention several criteria for stopping the level set evolution. A stopping
condition is typically evaluated after each iteration of the segmentation algorithm. We use a simple but
often effective stopping condition in this thesis. The volume of the segmented 3D region is denoted V and
the difference in the volume between the previous and current iteration is denoted AV. The evolution
is stopped when AV/V falls below a small threshold value of 0.005. In keeping with the philosophy of
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minimizing CPU-GPU intercommunication after the data is loaded on to the GPU for computation, we
have allowed the extra iterations to run through on computationally empty threads once the stopping
criterion is achieved.

We have utilized atomic operations, supported as of OpenGL 4.3, to implement the simple stopping
condition. Atomic operations can be safely performed by shader threads running simultaneously where
the threads are attempting to write to the same memory location. Atomic operations write to (or read
from) memory uninterrupted; if multiple threads attempt to access the same location simultaneously,
they will be serialized. We use atomic operations that operate on a special stopping condition buffer
that stores the previous and current volume of the segmented region, as well as the number of grid points
that have been processed.

When a thread begins executing at a current time step ¢ (i.e. iteration), it checks the stopping
condition (AV/V < 0.005). If the condition is met, the thread returns. Otherwise the thread uses an
atomic add operation to add 1 to the number of processed grid points. The thread then executes the
level set evolution equation for its assigned grid point. If the ¢ function field value for this grid point is
less than 0, we use the atomic add operation to add 1 to the current segmented region volume; that is,
the number of voxels (i.e. grid points) inside the segmented region is used as a measure of the region’s
volume. When the thread finishes executing the evolution equation, it checks the number of processed
grid points in the stopping condition buffer and determines if all grid points have been processed. If so,
this thread sets the previous segmented region volume equal to the current volume and then resets the

current volume and number of processed grid points to 0.

3.5 Editing a Labeled 3D Region

This section provides implementation details for the editing functionality. Editing the segmented region
has been provided in the form of erasing and adding operations, followed by optional local blending or
smoothing. These operations are implemented in special compute shaders. As mentioned in Section 3.2,
the user can use the painting interface to erase or add labels to the labeled region that is output from the
segmentation algorithm in the form of the ¢-grid. The edit compute shaders accept the ¢-grid as input
as well as the array of paint blobs defining the edit region. In editing mode, the edit compute shaders
use the painted blobs’ inside-outside function to determine if a ¢-grid point is inside the envelope formed
by the blobs. When adding to a labeled region, the grid point values inside the painted blobs are set to
—p, labeling them as part of the segmented region. Conversely, when erasing part of the labeled region,
the grid point values inside the painted blobs are set to +p.

In Museth et al. (33), the authors define editing operators via the speed term in the general level set
equations. Employing editing operators based on level sets has advantages such as avoiding boundary
surface self-intersection issues and easily coping with topological genus changes. In this thesis, we use a
simple version of the constructive solid geometry operations mentioned in Museth et al. (33). A remove
or erase operation is analogous to the cut away operation in Constructive Solid Geometry (CSG) and

the difference operation in set theory. Similarly, an add operation is equivalent to a union operation in

25



3.5.

EDITING A LABELED 3D REGION

CHAPTER 3. METHODOLOGY

+ve Numbers
+ve Numbers

-ve Numbers B
! | Object to -ve Numbers
— ‘ Edit I
| e
1 | I
r
L ’
Remove ERASE
Paint Blob
+ve Numbers
+ve Numbers
| I
| -ve Numbers J -ve Numbers
| I
= e e
| I
| |
- | ’
4 _
Add Paint X
Blob Object to ADD

Edit

Figure 3.13: Conceptual Diagram of Adding and Removing Paint

CSG or set theory.

Both the erase and add operations are simply evaluated at the ¢-grid points. For the add operation,

at each ¢-grid point, we read its field value and store it at the corresponding output grid point. Using

array of painted blobs and blobs’ inside-outside function, we then check if this output grid point is inside

the painted region; if so, it is overwritten with a —p value, making it a part of the labeled region. For the

erase operation, at each ¢-grid point, we we read its field value and set the corresponding output grid

point to the same value. We then check if this output grid point is inside the painted region and if its

value is less than 0 (i.e. indicating it is currently part of the labeled region); if so, it is overwritten with

a +p value, removing it from the labeled region. Our editing operators are parallelized on the ¢-grid

and operate in real-time.
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Chapter 4

Results and Validation

We have performed a series of tests of the compute shader-based level set segmentation algorithm, using
several synthetic and real data sets. Since this thesis is primarily concerned with the compute shader
implementation and integration of volume image processing algorithms into the existing framework, we
focus on demonstrating a working segmentation algorithm and some measurements of its performance,
rather than on a formal analysis of segmentation accuracy and efficiency. A formal analysis of accuracy, as
well as optimization of the GPU implementation and performance comparisons to alternative GPU level
set implementations, is the subject of future work. For this reason, we rely upon informal visual analysis
to validate the correctness of the segmentation output. For tests using synthetic data sets, we visually
inspect the 3D rendering of the initial level set envelope and the final envelope to determine the degree
of segmentation success. For tests using real data sets, we make use of the 3D slice plane capability and
visually inspect slices containing the target anatomical structures as well as the segmentation “paint” to
assess segmentation accuracy. We also present some results on the performance of our GPU-based level
set implementation by comparing it to an equivalent CPU MATLAB implementation. This comparison
also serves only to validate the correctness of GPU implementation; that is, we expect significant speedup
over the MATLAB implementation. Finally we present tests of our 3D slice-plane based 3D painting

facility to demonstrate its potential for initializing and editing the level set segmentation algorithm.

4.1 Segmenting Synthetic Data Sets

In the first series of tests, we demonstrate a working level set segmentation algorithm using a synthetic
“cloverleaf” volume image. Voxel values inside the cloverleaf are smoothly graded inside and outside
voxel values are set to 0. The inside values change smoothly from 200 to 205. We use several sizes of
the data set, including 128 x 128 x 128 voxels and 256 x 256 x 256 voxels. Since the 3D image contains
a single object, we painted an initial envelope surrounding the cloverleaf directly in 3D. Three paint
brush strokes were required. We then triggered the level set segmentation algorithm with a key press.

In Figures 4.1a,b we show two views of the cloverleaf and the initial painted envelope. Figures 4.1c,d
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o050

(d)

Figure 4.1: Segmentation algorithm run on a a 256 x 256 x 256 cloverleaf dataset. (a),(b) Initial painted
level set surface. (¢),(d) Final segmentation result.

show two views after the segmentation has run for 100 iterations. The approximate time required for the
segmentation was 39 seconds. The result is visually very accurate. For the smaller data set (i.e. 128 x
128 x 128 voxels) only 50 iterations were required to generate an accurate result, requiring approximately

2.4 seconds. The parameter settings' were 4=0.02, y=5,A=5, e=1.5, 7=5

& &

(b) (c)

Figure 4.2: Segmentation algorithm run on a 168 x 160 x 92 CT image of a human vertebra phantom.
(a) Initial painted level set surface. (b),(c) Final segmentation result.

In a second set of tests we use a 168 x 160 x 92 CT volume image of a human vertebra phantom
(Figures 4.2. This test demonstrates the topological flexibility of level set surfaces. We painted an
initial envelope without holes, directly in 3D, that surrounds the vertebra. The level set segmentation
algorithm correctly captures the topology of the vertebra. The segmentation ran for 200 iterations. The
approximate time required for the segmentation was 11 seconds. The result is visually very accurate.
The parameter settings were ©=0.02, y=5, A=5, e=1.5, 7=5. Note that the user is able to paint more

accurate envelopes matching the topology of the target structure, resulting in fewer required iterations.

1See Li et al. (28) for a description of all parameters.
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4.2 Segmenting Real Data Sets

(a) (b) (c)

Figure 4.3: Segmenting the lateral ventricle in a 240 x 240 x 192 MRI brain image. (a) Initial 3D slice
painted level set surface. (b) Final segmentation result. (c) Volume rendering of manually segmented
ventricle.

We ran our segmentation algorithm on a 240 x 240 x 192 MRI volume image of the brain. Seg-
mentation of structures in MRI scans is often challenging due to noise, the similar voxel intensities of
neighboring structures and the complexity of the target structure shape. In these two examples we
segment the lateral ventricle and the caudate nucleus. In the first example we used the 3D slice paint-
ing facility and painted an envelope on several slices containing the lateral ventricle (Figure 4.3). The
parameter settings were p=0.02, v=5,A=5, e=1.5, 7=5. The segmentation ran for 75 iterations and

required approximately 14 seconds. In Figure 4.4, several 3D slice views are used to show the accuracy

(b) (c)

Figure 4.4: Slice-by-Slice examination of the segmentation of the lateral ventricle in a 240 x 240 x 192
MRI brain image. In (a),(b),(c) user scans through the slices to visually verify the segmentation result.

of the segmentation.

(a)

We also segmented the caudate nucleus from the brain image. This structure is challenging to
segment due to its proximity to other structures with similar intensity characteristics. The initial and
final level set surfaces are shown in Figure 4.6. In addition two slice views are shown in Figure 4.5.
The 100 iterations of the evolution took approximately 25.7 seconds with parameters p=0.02, y=5, A=5,
e=1.5, 7=5. Our implementation of the level set algorithm currently uses simple Gaussian smoothed
gradient magnitude edges to stop the level set evolution. More accurate edges may lead to more accurate
segmentations. We are currently investigating GPU-based median filtering (59; 7; 47; 39) combined with
more sophisticated edge detectors.
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() (b)

Figure 4.5: Slice-by-Slice examination of the caudate nucleus segmentation. In (a) and (b) different
slices are shown and the user scans through the slices for a visual check of the segmentation.

- ®

(a) (b)

Figure 4.6: Segmentation of the caudate nucleus from a 3D MR brain image. (a) Initial 3D slice painted
level set surface. (b) Final segmentation result.

4.3 Editing

In this section we demonstrate the 3D slice plane editing facility. In Figure 4.7 we show a segmented
cloverleaf object and manually erase the segmentation in the lower right region of the cloverleaf. Figure
4.8 shows an example of adding to a segmentation. In both case a thin cylindrical brush tip was used
and only a single slice was affected. The user may optionally increase the size or thickness of the brush
tip and paint on several slices at once. Figure 4.9 shows an example of editing the caudate nucleus
segmentation on a 3D slice of the MR brain data set. We can see some segmentation “leakage” into the
ventricle in the upper right portion of the caudate so it is erased. In Figure 4.3 a portion of the lateral

ventricle is corrected using a small paint brush tip.

4.4 SpeedUp

We measured the wall clock time? of our GPU-based level set segmentation algorithm on a synthetic
clover leaf data set. Three sizes of the data set were used: 64 x 64 x 64, 128 x 128 x 128 and 256 x 256 x
256. We then compared these times to an equivalent CPU-based MATLAB implementation. The GPU

2In practical computing, wall clock time or real-world time is the actual time, usually measured in seconds, that a
program takes to run or to execute an assigned task
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A & 4

(a) (b) ()

Figure 4.7: Editing by erasing a portion of the cloverleaf segmentation on a 3D slice plane using a thin
cylindrical paint brush tip.

(a) (b) (c)

Figure 4.8: Editing on a 3D slice by adding to the segmentation of the vertebra.

is a Nvidia GTX 570M with 1.5 GDDR5 random access memory (RAM), 7 streaming multiprocessors
each with 48 cores. The CPU is an Intel i7-2670QM with 16 GB of RAM. The MATLAB code is not
compiled with an optimized C++ compiler so we expected significant speedup from the GPU imple-
mentation. Table 4.1 summarizes the results. The considerable performance difference between the two
implementations, coupled with the visual evaluation of segmentation accuracy, strongly suggests that

the level set segmentation algorithm benefits greatly from a data parallel implementation.

Table 4.1: Segmentation Time Comparison of CPU versus GPU (100 iterations)
Dimension of grid 64 x 64 x 64 128 x 128 x 128 256 x 256 x 256

CPU 62.19 sec 665.7 sec 5386.29 sec
GPU 1.08 sec 5.1 sec 39.22 sec

31



(a) (b)

Figure 4.9: Erasing paint (i.e. the segmentation labels) on a 3D slice of a caudate nucleus segmentation.

(a) (b) ()

Figure 4.10: A portion of the lateral ventricle segmentation is corrected using a small paint brush tip.



Chapter 5

Conclusions

Interactively exploring, visualizing and analyzing 3D medical images is a complex, integrated task.
Quickly generating insightful views of these often massive and noisy data sets requires a 3D interaction
model, real-time contextual visualization techniques and real-time image processing techniques that
are seamlessly and tightly integrated into a single rendering pipeline. With the advent of powerful
graphics hardware and GPU programming capabilities, real-time rendering of large 3D data sets is
now possible. Furthermore, with the onset of GPGPU programming capabilities, real-time processing
of these data sets is also within reach. However, until recently, the seamless integration of the two
into a rendering pipeline was problematic. The release of compute shaders for GPGPU programming
has potentially provided a solution to this integration problem. This thesis demonstrates the potential
of compute shaders for creating a complete, integrated software framework for interactive 3D medical
image visualization and processing that optimizes the use of the massively parallel computational and
rendering power of modern graphics hardware. The compute shader based processing capabilities are
designed such that the performance of the processing algorithms will naturally continue to improve as the
number of GPU cores increases through graphics hardware evolution. The inherent design of compute
shaders, as well as our use of a 3D grid based shader program interface supports flexible addition or
replacement of processing algorithms. The extended framework uses a single intuitive painting interface
for all selection, initialization and editing interactions with the data. The extended painting interface
also supports processing of noisy volume images by integrating a 3D slice plane view directly with the
volume rendered view.

Further improvements and additional capabilities can be made to the framework. Firstly, the GPU
level set implementation is currently un-optimized and can be improved considerably using techniques
similar to Roberts et al.(43). Secondly, while the painting interface provides slice-by-slice editing that
supports post-processing of noisy volume image segmentation, it can be labour intensive if many slices
require editing. One strategy to reduce or, in some cases, eliminate this editing phase would be the
ability to interactively create “barriers” that reinforce target structure boundaries in boundary regions
with no edge features. This capability could be carried out during the 3D slice painting of the initial

target structure envelope. The user could flip to a “barrier-paint” mode and create thin 3D regions that
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are then used to modify the edge detected image used by the level set segmentation algorithm. Another
useful improvement would be the ability to segment as you paint. That is, thick “flattened” paint blobs
and brush strokes can be painted on a 3D slice plane. This painted envelope is bounded by two parallel
3D slice planes, one on either side of the envelope. The level set segmentation algorithm can be executed
and the level set surface is constrained by the two planes. This constrained segmentation would allow the
user to quickly paint, segment and render a “chunk” of a target structure around the current slice plane
and then continue to another slice plane to segment the next chunk. This segment-as-you-paint strategy
may improve the volume exploration work-flow. Other possibilities for future work are the addition of
alternative segmentation algorithms such as 3D active surface techniques (20; 49) and random walks (9;
16; 57).
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Appendix 1

Level Set Formulation

This appendix provides some mathematical details of the level set segmentation algorithm, specifically
that of the variational formulation used by Li et al. (28). The reader is referred to Li et al. (28) for details.
Level sets are implicitly defined deformable surfaces defined as the zero level set {(z,y, 2)|o(t, x,y, 2) =
0}, of the level set function ¢. Li et al. define an energy functional £(¢), where the functional can be
viewed as a representation of the energy of the deformable surface and the final shape of the surface

corresponds to the minimum of this energy. The energy functional consists of two terms:

E(@) = pP () + Em (). (1.1)

where 1 > 0 is a parameter controlling the effect of the penalty term P(¢) and &,,(¢) is an external
energy that drives the motion of the zero level surface. The term P(¢) is used to penalize the deviation

of ¢ from the signed distance function and is defined as:
1
P() = [ 5(Vel - 1 dodyd: (12)
Q

From the calculus of variations, the evolution equation

0 O
i (1.3)

is the gradient flow that minimizes the functional £. The external energy functional &,,(¢) consists of

two terms, both of which incorporate edge indicator function g defined for an image I:

1

T 14 VG, # I (14)

g

where G, is the Gaussian kernel with standard deviation . The edge indicator function stops the

evolution of the level set surface on the boundaries of the target structure. Equation ( 1.3) can be

96 9

approximated using finite differences, where spatial partial derivatives 57, 3y and g—f are approximated
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by central differences, and the temporal partial derivative %—‘f is approximated by a forward difference.
The result is an iterative difference equation:
t+1 t ¢
¢i;,k = &; jx + TL(D; 1) (1.5)

where 7 is a time step and L(gbijk) is an approximation to the right hand side of equation 1.3.
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