
ZIGBEE STANDARD IMPLEMENTATION FOR A WIRELESS

TEMPERATURE SYSTEM

by

Ritchinder Ritchie Singh Samrai

Bachelor of Engineering, Ryerson University, 2007

A project

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2015

c© Ritchinder Ritchie Singh Samrai 2015

Author’s Declaration

I hereby declare that I am the sole author of this project. This is a true copy of the
project, including any required final revisions.

I authorize Ryerson University to lend this project to other institutions or individuals
for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this project by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for
the purpose of scholarly research.

I understand that my project may be made electronically available to the public.

ii

Abstract

ZigBee Standard Implementation for a Wireless Temperature
System

Ritchinder Ritchie Singh Samrai

Master of Engineering, Electrical and Computer Engineering

Ryerson University, 2015

This project is concerned with the application of the ZigBee communication standard

for implementing a temperature measurement system. Due to ZigBee’s low-power and

low data rate features, it is ideal for analog sensor systems. Digi’s ZigBee devices called

XBee are used in this project. The XBee devices meet all the ZigBee standard. The

XBee device has the advantage of being programmed with API firmware (application

programming interface). XBee’s API provides fast and reliable communication between

the remote stations and the base station. The remote station has three different mod-

ules: power supply, temperature sensor and XBee device. The power supply is designed

to output 3.3V. The temperature sensor is designed so that the output stays within

the XBee’s maximum analog input voltage range of 0V to 1.2V. The XBee device is

programmed as a router. The base station has three different modules: Arduino micro-

controller, LCD display and XBee device. The Arduino is programmed to receive the

analog readings from the XBee device and convert them into temperature readings. The

temperature readings are displayed on the LCD display. The XBee device is programmed

as a coordinator. The design successfully worked for 3 remote stations and 1 base station.

iii

Acknowledgements

I would like to thank all of my family and friends for their support during my time

as a Master’s student at Ryerson University. I also thank my parents who have always

encouraged me set my goals high and helped me achieve them along the way. Finally,

I would like to especially thank my wife Satinder for her encouragement, support and

patience while I completed this project.

iv

Table of Contents

1 Introduction 1

1.1 Background . 1

1.2 Objective . 2

1.3 Organization of Report . 2

2 Overview of ZigBee 3

2.1 Basics of ZigBee . 3

2.2 Network Topologies . 5

2.3 Addressing Basics . 5

2.4 ZigBee Stack Protocols . 7

2.4.1 Application Support Layer (APS) 7

2.5 Routing . 9

2.6 Encryption and Security . 10

3 Overview of XBee Devices from Digi 11

3.1 Basics of the XBee Device . 11

3.2 API (Application Programming Interface) for XBee ZB Devices 12

4 Implementation of XBee for Wireless Temperature Sensors 15

4.1 Overall Structure of Temperature Sensors System 15

4.2 Power Supply Design for Remote Stations 17

v

4.3 Temperature Sensor Design for Remote Stations 17

4.4 Remote Station Setup . 19

4.5 Base Station Setup . 21

4.6 System Testing . 22

5 Conclusion and Future Work 25

5.1 Conclusion . 25

5.2 Future Work . 25

A Arduino Code for Base Station 27

B Data Sheets (front page only) 32

Bibliography 38

vi

List of Tables

2.1 ZigBee address examples. 6

vii

List of Figures

2.1 ZigBee standard layers. 4
2.2 ZigBee pair, star, mesh, and cluster tree topologies. 6
2.3 Venn diagram showing channel, PAN, and addressing. 7

3.1 Pin assignments for the XBee/XBee-PRO modules. 12
3.2 Mechanical drawings of the XBee/XBee-PRO ZB RF modules (antenna

options not shown). 12
3.3 Data packet for API operation with escape characters (AP parameter = 2). 13
3.4 Data frame for UART & API-specific structure. 13
3.5 API frame names and values. 14

4.1 Block diagram for remote stations. 15
4.2 Block diagram for base stations . 16
4.3 LM335 TO-92 package drawing and pin layout. 17
4.4 Typical LM335 implementation. 18
4.5 Typical LM335 implementation with calibration. 19
4.6 Circuit diagram for remote stations. 20
4.7 Remote station prototype top view. 20
4.8 Remote station prototype side view. 21
4.9 Base station prototype top view. 22
4.10 Base station prototype side view. 22
4.11 Serial monitor output while testing system. 24

viii

Chapter 1

Introduction

1.1 Background

The ZigBee Alliance is the official organization that developed and maintains the ZigBee

standard. The ZigBee standard is a radio frequency or wireless communication standard.

The ZigBee standard is based on the IEEE 802.15.4 specification or standard. ZigBee is

also known as a wireless personal area network (WPAN). Another example of a WPAN

is the Bluetooth standard, which is also based on IEEE 802.15.4. The main differences

between ZigBee and Bluetooth are:

• ZigBee requires less power and energy than Bluetooth. Which also means longer

battery life for ZigBee devices.

• Bluetooth has greater data rate than ZigBee, 1Mbps vs 250kbps.

• Wireless communication distance is max 100 meters for ZigBee and 10 meters for

Bluetooth (with line of sight).

• ZigBee has different network topologies built in (i.e. mesh and cluster tree).

For this project, a wireless temperature sensor system was built ans tested. Essentially

several remote stations with temperature sensors will communicate back to a base station

the temperature reading at each location. ZigBee was chosen due to its the low power

requirement and low data rate. High data rates are not required if the system is just

sending analog readings across the network. The objective for this project is to have

one base station receive temperature readings from 3 remote stations. The intended

application of this project is for home automation. Each remote station will have a

ZigBee device connected to a temperature sensor. The base station will have a ZigBee

1

CHAPTER 1. INTRODUCTION

device connected to an Arduino micro-controller. The user will be able to see the readings

via an LCD display and scroll through each station.

1.2 Objective

The objective of this project are as follows:

1. Research and study the ZigBee standard.

2. Research and study Digi’s XBee ZigBee based device.

3. Design and implement a wireless temperature sensor system using the XBee device.

Test ZigBee communication in a [8] [10] [4] [9] [6].

1.3 Organization of Report

This project report is organized in the following way. Chapter 2 provides a detailed

background information on the ZigBee standard focusing on the basics of the standard

and briefly going into the more advance features such as encryption. Chapter 3 provides

background information on Digi’s XBee ZigBee product which is used in the implemen-

tation. Chapter 4 provides detailed information and design of the wireless temperature

sensor system. Finally Chapter 5 concludes the report.

2

Chapter 2

Overview of ZigBee

2.1 Basics of ZigBee

The ZigBee standard is a wireless communication protocol. Its main purpose is for

low-power mesh networking. The different components and functions of modern com-

munication network standards are separated into independent modules. These modules

are also known as layers [2] [5].

The entire ZigBee protocol is built on top of the IEEE 802.15.4 network layer [11].

The ZigBee standard layers are depicted in Figure 2.1.

The ZigBee protocol or layers above IEEE 802.15.4 add 3 significant features: Ad

hoc network creation, routing and self-healing mesh networks. Ad hoc network creation

enables ZigBee to create a full network of ZigBee devices without the need of human

interaction or involvement. The routing feature characterize how a ZigBee devise com-

municates with its target device by passing messages through a series of other ZigBee

devices in the network. The self-healing mesh feature allows ZigBee networks to auto-

matically restructure the routing to fix broken routes created by ZigBee devices that

have left the network [11] [7] [3] [5].

All networks need a minimum of two devices communicating with each other to

call it a network. ZigBee networks have only three types of devices: coordinator, end

device and router. Every ZigBee network must have one coordinator and either one end

device or router or both. ZigBee networks may be composed of any of the following

combinations [11] [10]:

1. 1 coordinator and 1 (or multiple) router

2. 1 coordinator and 1 (or multiple) end device

3

CHAPTER 2. OVERVIEW OF ZIGBEE

Figure 2.1: ZigBee standard layers. [11]

3. 1 coordinator, 1 (or multiple) router and 1 (or multiple) end devices

Coordinators: Zigbee networks require only one coordinator. The coordinators func-

tions are to create the ZigBee network, manage addressing and keep the network

secure [11] [4].

Routers: Routers are ZigBee network nodes capable of full functionality. They are ca-

pable of sending/receiving data and joining existing networks. These nodes also

route data between nodes that are physically too far apart for direct communica-

tion. Multiple routers are allowed in ZigBee networks.

End Devices: End devices are nodes similar to routers, however they only have a few

capabilities. They are capable of sending/receiving data and joining existing net-

works. Due to the reduced capabilities, end devices may use less expensive hard-

ware. Power requirements are also reduced because of the reduced functions. End

devices are also capable of going into sleep mode and only power on when required

to send information, reducing energy requirements. These nodes need a parent de-

vice (coordinator or router) to help them join ZigBee networks. The parent device

also stores any messages for end devices while they are in sleep mode [11] [7].

4

CHAPTER 2. OVERVIEW OF ZIGBEE

2.2 Network Topologies

There are 3 network topologies that ZigBee networks use: Pair, Star and Mesh. They

are described below [11] [3]:

Pair Network Topology: The pair network topology consists of only 2 nodes. One

node must be a coordinator the other may be either a router or end device. For

practical purposes this topology will not get major benefit from using ZigBee radios.

Star Network Topology: The star topology consists of one coordinator and multiple

end devices. In this network setup, all messages pass through the coordinator.

There is no direct communication between end devices.

Mesh Network Topology: The mesh topology consists of one coordinator and multi-

ple routers and end devices. Multiple end devices may have their parent as a router

or coordinator (depends on which ever is better to establish communication with).

Data or messages from end devices do not have to pass through coordinators to

reach there destination, they pass through routers as well.

Cluster Tree Network Topology: This configuration is similar to mesh, however, the

routers do not communicate with each other. Coordinators and routers create a

communication back bone where end devices communicate with.

2.3 Addressing Basics

In order to send messages to ZigBee devices, you require the address of the destination

device. All ZigBee devices may have up to 3 different addresses assigned. Each device

has a 64-bit unique serial number which no other device will have. There is also a

16-bit address assigned to each network node by the coordinator. This address is only

unique in the network. A third address called the node identifier may be assigned by the

user. The node identifier is short string of text, which may or may not be unique in the

network [11] [7] [3] [5].

Pan Address Multiple ZigBee network may exist in close proximity to each other. This

is facilitated by the networks 16-bit Pan Address. When a ZigBee networks are

created Pan Addresses are assigned to distinguish each of them. For XBee devices,

Pan Addresses are manually assigned by the user. There are 65,536 Pan Addresses

available to use, under every Pan Address there are 65,536 16-bit device addresses

available to use.

5

CHAPTER 2. OVERVIEW OF ZIGBEE

Figure 2.2: ZigBee pair, star, mesh, and cluster tree topologies [2].

Channels For ZigBee network to operate, all devices must be communicating on the

same frequency (or channel). The coordinator looks at all available channels and

chooses one for that network to communicate on. XBee devices automatically

selects a channel for the user, so no user input is required and the user does not

need to worry about channel selection [11] [7] [3] [5].

Type Example Unique

64-bit 0013A200403E0750 Yes, always and everywhere

16-bit 23F7 Yes, but only within a network

Node identifier FREDS RADIO Uniqueness not guaranteed

Table 2.1: ZigBee address examples [2].

6

CHAPTER 2. OVERVIEW OF ZIGBEE

Figure 2.3: Venn diagram showing channel, PAN, and addressing [2].

2.4 ZigBee Stack Protocols

As with many communication standard, the ZigBee standard is divided into several

layers. Each layer has a specific function to complete in the standard and they combine

to form mesh communication structure for ZigBee. The IEEE 802.15.4 standard is base

standard that the ZigBee standard is built on top of. The network layer defines the mesh

network and how data is routed from device to another [11] [7] [8].

Application support sublayer: (APS) This layer defines a set of messages for

typical ZigBee applications. A typical application is home automation. In essence the

APS layer would allows devices for home automation from different manufacturers to

communicate with each other seamlessly.

ZigBee device object: (ZDO) This layer is for working with ZigBee devices. It

defines device discovery and network management.

The APS and ZDO layers are important and will help with communication between

different brands of devices. It will also help with communication with ZigBee device

profiles like Home Automation, Health Care and Smart Energy [11] [12] [7],

2.4.1 Application Support Layer (APS)

The APS layer defines profiles, clusters and endpoints for different applications. Profiles

represents broad purpose of the application. Clusters represents the specific function

or operation being performed. Endpoints represent the area within the ZigBee device

where the operation will take placed. For XBee’s, API (Application Specific Interface)

frames send and receive APS messages [11] [12].

Application profiles may be developed by anyone or any organization and may be

private or public. The ZigBee Alliance develops and maintains various public application

profiles. Some of these profiles are listed below:

7

CHAPTER 2. OVERVIEW OF ZIGBEE

• Building Automation

• Health Care

• Home Automation

• Light Link

• Smart Energy

• Telecommunication Services

• Retail Services

These ZigBee public profiles may be used by anyone or any organization. Private

application profiles may also be created and used by device manufactures. An example

of a private application profile is Digi’s drop-in networking profile for XBee radios. The

is a proprietary application profile. Each application profile (public or private) has

a 16-bit identifier. Each message is tagged with this identifier. Smart energy uses

0x0109. Application profiles also specify the clusters. Clusters define how ZigBee devices

communicate with each other in the same application profile. Multiple clusters may be

present on one endpoint [11] [12].

Endpoints allow multiple application profiles on ZigBee devices. A single ZigBee

device may have smart energy and home automation profiles programmed. In essence

each application profile (or endpoint) in a ZigBee device is another address in the device.

For two ZigBee devices to communicate in the same application profile, APS messages

are sent from the endpoint on the transmitting device to the endpoint on the receiving

device. Endpoints have 8-bit identification number from 0x0 to 0xF0. Each endpoint

has multiple clusters for the application profile its assigned too [2] [11].

ZigBee clusters are functions that application profiles may use. Two categories of

clusters exist, client and server clusters. Client clusters transmit commands to server

clusters. These commands may execute functions or change aspects of a server cluster.

A device executing a service is a server cluster. Clusters are a assigned a 16-bit ID.

The ZigBee Cluster Library (ZCL) protocol is used by application profiles (but not

all). The ZCL protocol specifies various commands and functions that may be used in

different application profiles. The ZCL also specifies how clusters communicate with

each other. The benefits of ZCL is that existing clusters may be re-used as they have

already been created [2] [11].

8

CHAPTER 2. OVERVIEW OF ZIGBEE

2.5 Routing

The ZigBee standard has three different routing methods that may be used: Ad hoc

On-demand Distance Vector (AODV) mesh routing, Many-to-one routing, and source

routing.

Ad hoc On-demand Distance Vector (AODV) mesh routing: This is the most

common default routing method for ZigBee networks. The method creates routing paths

automatically from source devices to destination devices. Paths may go through (hop)

multiple routers on its way to the destination device. Every step or hope automatically

generating where the step will lead until the destination device is reached. This method

automatically generates all paths and may be used on most network topologies. However,

due to the large number of routing options the routing table may be to large for the

device to store and therefore the same routing paths will need to generated every time it

is needed. This will lead to low performance especially for networks with a large number

of nodes [11].

Many-to-one Routing: This routing method was designed manly for networks

where data or messages are transmitted from multiple nodes to one main or central node

(or location). The central node transmits a routing configuration message to all nodes.

All nodes within the network establish and save a path back to the central node. The

routing paths only need to be calculated once for each node. This method provides

superior performance for networks where one central node is receiving messages from

multiple remote nodes. However, this routing method requires custom configuration.

This method is also not efficient for messages between remote devices and messages

from the central location to remote nodes [11] [9].

Source routing: This routing method was designed manly for networks where data

or messages are transmitted from one or more central nodes (or location) to multiple

destination devices. The route path from the central location to each remote device is

stored either at the central node or the device thats controlling the central node (i.e.

computer). This method provides superior performance for networks where central nodes

are transmitting messages to multiple remote nodes. However, this routing method

requires extensive custom configuration for the routing paths and may even require

separate storage device for saving the routing paths [11].

9

CHAPTER 2. OVERVIEW OF ZIGBEE

2.6 Encryption and Security

Certain networks require security to protect the information that is being passed through

the network. ZigBee network like all other network standards has security features.

Deciding whether to add security to a network needs to be decision based on what the

network is used for. Transmitting sensitive information such as banking would most likely

require security features. On the other hand a remote controlled car would not require

security features. It should also be noted that adding security feature will increase

devices/networks resource cost and development time. When the adding security to

ZigBee networks, a cost vs. benefit analysis needs to be looked at [11] [5] [6].

The ZigBee standard defines two mathematical keys to encrypt information being

transmitted in the network: network keys and link keys. These two keys may be used

concurrently if needed. Network keys encrypt and decrypts data from node to node

until the destination of the message is reached. Essentially when a message is sent, it

is encrypted first then sent. Once it reaches the next node it is decrypted and then

re-encrypted and sent to the next node. Link keys encrypt data at the sender node

and is only decrypted once at the receiving node. Network keys protect the network

and link keys protect the data from being seen by other nodes except for the receiving

node (nodes along the way will be be able to decrypt the message). Encrypting data

adds bytes/overhead to every message sent and therefore decreases the packet size of

a message that may be sent. More messages need to be transmitted to send the same

amount of data [2] [11] [5].

10

Chapter 3

Overview of XBee Devices from

Digi

3.1 Basics of the XBee Device

For this project the XBee ZB (ZigBee) devices from Digi International are used to im-

plement the wireless temperature sensor network. XBee devices (or modules) operate

within the ISM 2.4GHz frequency band. Over the years Digi has released 3 versions of

the XBee modules: Series 1, Series 2 and Series 2B (with Series 2B as the latest). Series

2 modules will be used for the project. The communication range for the series 2 is

133 feet (or 40 meters) indoor and 400 feet (or 120 meters) outdoors with line-of-sight.

The transmit and receive operating current is 40mA at a supply voltage of 3.3V. Idle

operating current is 15mA [1].

XBee modules may be ordered with several different antenna options such as: whip

antenna, PCB antenna, RPSMA connector or U.FL connector. Each of these antenna

options have there advantages and disadvantages. For this project all XBee modules

have whip antennas. This antenna was chosen because the size of the module did not

matter for the implementation and thus no extra cost was needed for a PCB antenna.

Also, our implementation will not be inside a metal enclosure and thus will not need an

external RPSMA or U.FL antenna. Figure 3.1 provides the pin assignments for XBee

and Figure 3.2 provides the mechanical drawings of the XBee device [1].

11

CHAPTER 3. OVERVIEW OF XBEE DEVICES FROM DIGI

Figure 3.1: Pin assignments for the XBee/XBee-PRO modules [1].

Figure 3.2: Mechanical drawings of the XBee/XBee-PRO ZB RF modules (antenna
options not shown) [1].

3.2 API (Application Programming Interface) for XBee

ZB Devices

XBee’s may be operated in either transparent mode or API mode. XBee devices oper-

ating in transparent mode are equivalent to serial data lines. The DIN pin receives data

and places the data in a queue for transmission. When the XBee devices receives the

wireless transmitted data, the data is sent out of the XBee through the DOUT pin. The

XBee when operated in transparent mode may be configured via AT command mode.

12

CHAPTER 3. OVERVIEW OF XBEE DEVICES FROM DIGI

XBee’s operated in API mode send and receive data differently. The major difference is

that API mode is frame based. Data transmitted from the XBee or received by XBee

is in standard frames. These frames may have additional operations as well. The DIN

pin in API mode receives the data frames to be transmitted by XBee. When the XBee

receives data frames, they are sent out through the DOUT pin [1].

For API all data is transmitted in a pre-defined order. Figure 3.3 provides an example

data packet for API operation. Every frame starts with the start delimiter of 0x7E. The

next part of the packet gives the length of the frame. This is followed by the frame data

and check sum. Figure 3.4 provides an example data frame for API operation with a

UART data frame. The data frame has 2 parts: API identifier and identifier specific

data. Figure 3.5 gives the list of API identifiers available [1].

Figure 3.3: Data packet for API operation with escape characters (AP parameter =
2) [1].

Figure 3.4: Data frame for UART & API-specific structure [1].

13

CHAPTER 3. OVERVIEW OF XBEE DEVICES FROM DIGI

Figure 3.5: API frame names and values [1].

14

Chapter 4

Implementation of XBee for

Wireless Temperature Sensors

4.1 Overall Structure of Temperature Sensors System

The temperature is being measured in 3 remote location (remote stations) and sending

that information back to one central location (base station). Each remote station has

one XBee device and temperature sensor which communicate back to the base station,

the block diagram is shown in Figure 4.1. The base station is made up of a XBee device

and an Arduino micro-controller with a LCD display to view the temperature at each

location, the block diagram is shown in Figure 4.2.

Power
Supply

XBee
Module

Temperature
Sensor

Remote Station

Figure 4.1: Block diagram for remote stations.

The XBee device in the remote station is programmed as a ”ZigBee Router AT”.

15

CHAPTER 4. IMPLEMENTATION OF XBEE FOR WIRELESS TEMPERATURE
SENSORS

LCD
Display

Aurduino
Uno

XBee
Module

Base Station

Figure 4.2: Block diagram for base station.

Each remote station is powered by a voltage regulator outputting 3.3V dc from a 5V dc

input. The 5V input is supplied via an external wall wart power supply. The wall wart

power supply may be substituted for a 9V battery if desired. Each remote station also

has a temperature sensor outputting the temperature in Kelvin [K]. The XBee device

in the remote station reads the temperature through one of the analog inputs, whose

maximum input value is 1.2V (or 1200mV). The analog input takes the readings and send

it to the 10-bit analog-to-digital converter (ADC). The ADC values are from 0x0000 to

0x3FF (or 0V to 1.2V), which gives 1023 possible values. The converted analog reading

is sent to the base station as the readings are requested [1].

The XBee device in the base station is programmed as a ”ZigBee Coordinator API”.

The XBee device is programmed as API at the base station to allow the Arduino to re-

ceive data packets continuously. The base stations XBee device receives the temperature

readings from the remote stations XBee device. The reading received is the converted

value from the XBee devices ADC. The reading is transmitted from the XBee device to

the Arduino micro-controller for processing. The first step for the Arduino is to convert

the ADC value to actual mV reading. The followings equation is used [1]:

ADmV = (ADreading ∗ 1200mV)/1023

Once the actual mV readings are calculated it may be converted to temperature

readings. The temperature sensor gives readings in Kelvin’s. The Arduino converts the

temperature readings in Kelvin’s to degrees Celsius. The last step for the Arduino is to

display the readings as the user request them.

16

CHAPTER 4. IMPLEMENTATION OF XBEE FOR WIRELESS TEMPERATURE
SENSORS

4.2 Power Supply Design for Remote Stations

For the power supply the LD1117V33 voltage regulator was used. The voltage regulator

takes a maximum input voltage of 15V dc and outputs 3.3V dc. For this project the

regulator is supplied with an external 5V wall wart power supply. A 9V battery may

also be used to power the voltage regulator. Decoupling capacitors of 10µF are placed

at both the input and output. The input capacitor is to minimize and low-frequency

noise from the 5V power supply. The output capacitor is to minimize any high-frequency

noise from the output of the regulator. The data sheet for the LD1117V33 is given in

the appendices.

4.3 Temperature Sensor Design for Remote Stations

For the temperature sensor the LM335 temperature sensor was used. It is a low-cost easy

to use sensor, the LM335’s data sheet is given in the appendices. The sensor requires

an operating current of 400µA to 5mA. The sensor comes with 3 pins: V−, V+ and

ADJ (adjustment). Figure 4.3 shows the TO-92 package and its pin layout. Figure 4.4

shows the typical connection for measuring temperature. The V− pin will be connected

to ground of the power supply. The V+ is connected to a resistor, whose other lead is

connected to the 3.3V power supply. The temperature reading is at the V+ (or output in

Figure 4.4. The temperature readings is 10mV/K with the sensor calibrated at 2.982V

for 25oC. The resistor provides the sensors bias current.

Figure 4.3: LM335 TO-92 package drawing and pin layout.

The resistor value is chosen such that the current stays within the 400µA and 5mA

required operating range. To calculate the resistor value temperature range must be

selected, which is −10oC to 45oC. From the temperature range output voltage range is

calculated using 10mV/K.

T1 = −10oC = 263.15K

17

CHAPTER 4. IMPLEMENTATION OF XBEE FOR WIRELESS TEMPERATURE
SENSORS

Figure 4.4: Typical LM335 implementation.

T2 = 40oC = 313.15K

263.15 × 10mV

1K
= 2.6315V = VT1

313.15 × 10mV

1K
= 3.1315V = VT2

The voltage across the resistor is calculated as follows:

VR(T1) = 3.3V − 2.6315V = 0.6685V

VR(T2) = 3.3V − 3.1315V = 0.1685V

The LM335 is operated best with the lowest current possible, this will reduce any heat

affecting the temperature reading. The maximum resistance is calculated by taking the

minimum 400µA current requirement and the lowest voltage across the resistor (VR(T2)):

Rmaximum(T2) =
0.1685V

400µA
= 421.25Ω

For this project a 330Ω resistor is used. To make sure this resistor value keeps the

operating current within range, the current is calculated for temperature range:

IT1 =
0.6685V

330Ω
= 2.0257mA

IT2 =
0.1685V

330Ω
= 510.6060µA

The above current calculations verify that the selected resistor value of 330Ω keeps

the current within operating range. The temperature sensor can potentially output a

voltage between 0V and 3.3V. The XBee devices analog input can only handle 0V to 1.2V.

18

CHAPTER 4. IMPLEMENTATION OF XBEE FOR WIRELESS TEMPERATURE
SENSORS

In order for the temperature sensor to connect to XBee without exceeding the maximum

1.2V, a voltage divider is used to reduce the voltage [1]. This will be discussed in detail

latter. In order to have the temperature readings accurate, the ADJ pin along with a

10K potentiometer is used to adjust the accuracy of the LM335. Figure 4.5 shows the

configuration the temperature sensor with calibration.

Figure 4.5: Typical LM335 implementation with calibration.

4.4 Remote Station Setup

The remote station has three components: power supply, temperature sensor, and XBee

device. The XBee device and temperature sensor will be powered by the 3.3V power

supply. The output of the power supply has a capacitor to minimize any noise from

entering the XBee. The output of the power supply feeds inputs 1 and 10 on the XBee,

with input 1 as the positive and input 10 as the negative (or ground). The power supply

also feeds power to the temperature sensor via a 330Ω resistor. The temperature sensor

is capable of outputting a maximum dc voltage 3.3V (also the supply voltage). However,

the XBee’s analog input can only handle a maximum of 1.2V. For the temperature

sensor to connect to the XBee module, a simple voltage divider is used to divide the

voltage by three [1]. When the readings are received at the central station, they are

multiplied by 3 to obtain the correct reading. A 0.1µF capacitors is also placed between

the XBee’s analog input (AD0) and ground to reduce noise from interfering with the

readings. Figure 4.6 shows the full schematic of the remote stations. Figure 4.7 and

Figure 4.8 show the prototype created for this project.

19

CHAPTER 4. IMPLEMENTATION OF XBEE FOR WIRELESS TEMPERATURE
SENSORS

Figure 4.6: Circuit diagram for remote stations.

Figure 4.7: Remote station prototype top view.

20

CHAPTER 4. IMPLEMENTATION OF XBEE FOR WIRELESS TEMPERATURE
SENSORS

Figure 4.8: Remote station prototype side view.

4.5 Base Station Setup

For the base station we have decided to use the Arduino Uno board with the wireless

prototyping shield and LCD keypad shield. The Arduino was selected for this project

due to the easy to use programming interface. Figure 4.9 and Figure 4.10 show the

prototype created for this project. The Arduino’s programming file is given in following

latter on in this chapter. For interfacing with the XBee’s API we have used the ”xbee.h”

from Andrew Rapp. The program goes through the following steps:

1. Receive data packet from remote station.

2. Save remote stations address and analog reading for AD0.

3. Convert readings to degrees Celsius.

4. If remote stations address already exists then overwrite temperature reading with

new reading.

5. If remote stations address does not exist then create save address and temperature

reading.

6. If user presses down key then scroll to next remote station and display address and

reading on screen.

7. Return to step 1.

21

CHAPTER 4. IMPLEMENTATION OF XBEE FOR WIRELESS TEMPERATURE
SENSORS

Figure 4.9: Base station prototype top view.

Figure 4.10: Base station prototype top view.

4.6 System Testing

With the system on all remote stations were communicating with the base stations.

Figure 4.11 shows the serial port monitor output while system is on with 3 remote

stations. The output is for each packet of information received by the base station from

the any of the 3 remote stations. For each packet of information the following is shown:

22

CHAPTER 4. IMPLEMENTATION OF XBEE FOR WIRELESS TEMPERATURE
SENSORS

• The 64-bit address for the remote XBee device

• The transmitted analog reading from the remote XBee devices ADC to the base

stations XBee device.

• The Arduino devices calculated voltage reading of the remote XBee devices analog

input.

• The Arudino devices calculated temperature readings in degrees Celsius.

The voltage readings on the serial monitor were compared to the readings taken

with a volt meter from the circuit. All readings matched with very little error from the

ADC. This proves that the system is successful in providing temperature readings from

multiple remote locations.

23

CHAPTER 4. IMPLEMENTATION OF XBEE FOR WIRELESS TEMPERATURE
SENSORS

Figure 4.11: Serial monitor output while testing system.

24

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The objective of this project was to create a temperature sensor system using ZigBee

communication. Several remote stations would communicate temperature readings back

to one base station. The objective was achieved using Digi’s XBee ZB product. In the

report the ZigBee protocol is first discussed in detail then we looked at Digi’s ZigBee

based product. Digi’s ZigBee based product is called XBee. The XBee devices were

the most critical part of the temperature system as they established communication

between all remote stations and the base station. Each remote station had a power

supply, temperature sensor and XBee device. The base station had an Arduino micro-

controller, LCD display and XBee device. The XBee device was operated under its API

mode. The API mode allowed fast and accurate data flow in the network. All remote

stations communicated with the base station as they were required too. The project was

successful in implementing ZigBee communication for a temperature sensor system.

5.2 Future Work

There are several future expansions that may be added on:

1. Using the XBee’s sleep mode to only transmit reading less frequently or when they

are requested by the user. This would save energy consumption, which is helpful

if batteries are sued instead of external wall wart power supplies.

2. Added node identifiers to the XBee’s for easier identification at the base station.

25

CHAPTER 5. CONCLUSION AND FUTURE WORK

3. Adding an Ethernet shield to the Arduino at the base station. This would allow

for the temperature to be sent up to a cloud service and therefore allow the user

to view the temperature from remote locations with internet access.

4. Providing additional sensors such as humidity and pressure.

26

Appendix A

Arduino Code for Base Station

\\ **

\\Ritchie Samrai

\\XBee Temperature Sensor System

\\ **

\\ ******************* Included Libraries *******************

#include <LiquidCrystal.h>

#include <LCDKeypad.h>

#include <XBee.h>

\\ ******************* Variable Initialization *******************

LiquidCrystal lcd(8, 13, 9, 4, 5, 6, 7);

char msgs[5][16] = \{"Right Key OK ",

"Up Key OK ",

"Down Key OK ",

"Left Key OK ",

"Select Key OK" };

int adc_key_val[5] ={ 50, 200, 400, 600, 800 };

int NUM_KEYS = 5;

int adc_key_in;

int key= -1;

int oldkey= -1;

float read1;

float read2;

uint32_t temp_MSB;

uint32_t temp_LSB;

uint32_t sensor_address_MSB[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

27

APPENDIX A. ARDUINO CODE FOR BASE STATION

uint32_t sensor_address_LSB[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

float temperature[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int nextSensor = 0;

XBee xbee = XBee();

ZBRxIoSampleResponse ioSample = ZBRxIoSampleResponse();

XBeeAddress64 test = XBeeAddress64();

\\ ******************* SETUP *******************

Void setup() {

Serial.begin(9600);

xbee.setSerial(Serial);

\\start soft serial

lcd.begin(16, 2);

lcd.clear();

lcd.setCursor(0,0);

lcd.print("Temperature");

lcd.setCursor(0,1);

lcd.print("Reader");

delay(1000);

lcd.clear();

lcd.setCursor(0,0);

}

\\ ******************* Main Loop *******************

void loop() {

\\ read data packet

xbee.readPacket();

\\look at what kind of response was receives

if (xbee.getResponse().isAvailable()) {

\\ received correct response

if (xbee.getResponse().getApiId() == ZB_IO_SAMPLE_RESPONSE) {

xbee.getResponse().getZBRxIoSampleResponse(ioSample);

28

APPENDIX A. ARDUINO CODE FOR BASE STATION

\\ print xbee address on serial port

Serial.print("Received I/O Sample from: ");

temp_MSB=ioSample.getRemoteAddress64().getMsb();

Serial.print(temp_MSB, HEX);

temp_LSB=ioSample.getRemoteAddress64().getLsb();

Serial.print(temp_LSB, HEX);

Serial.println("");

\\ make sure data packet has analog readings

if (ioSample.containsAnalog()) {

Serial.println("Sample contains analog data");

}

\\ read analog inputs

for (int i = 0; i <= 4; i++) {

if (ioSample.isAnalogEnabled(i)) {

\\ print address and reading on serial port

Serial.print("Analog (AI");

Serial.print(i, DEC);

Serial.print(") is ");

read1 = (float) ioSample.getAnalog(i);

Serial.println(read1, DEC);

read2 = read1 / 1023.0 * 1.2;

Serial.println(read2, DEC);

read2 = (read2 * 3.0 * 100.0) - 273.15; \\ convert readings to degC

Serial.println(read2, DEC);

}

}

\\ see if sensor already exists

for (int g = 0; g <= 9; g++) {

if (temp_MSB == sensor_address_MSB[g] && temp_LSB == sensor_address_LSB[g]){

temperature[g] = read2;

g = 10;

}

else if (sensor_address_MSB[g] == 0 && sensor_address_LSB[g] == 0){

sensor_address_MSB[g] = temp_MSB;

sensor_address_LSB[g] = temp_LSB;

temperature[g] = read2;

g = 10;

}

29

APPENDIX A. ARDUINO CODE FOR BASE STATION

}

}

\\ got a response, but the response was not what was expected

else {

Serial.print("Expected I/O Sample, but got ");

Serial.print(xbee.getResponse().getApiId(), HEX);

}

}

\\ did not get any response

else if (xbee.getResponse().isError()) {

Serial.print("Error reading packet. Error code: ");

Serial.println(xbee.getResponse().getErrorCode());

}

adc_key_in = analogRead(0); \\ read the value from the sensor

key = get_key(adc_key_in); \\ convert into key press

\\ scroll through remote stations if down button pressed

if (key == 2){

delay(50);

adc_key_in = analogRead(0); \\ read the value from the sensor

key = get_key(adc_key_in); \\ convert into key press

if (key == 2){

lcd.clear();

lcd.setCursor(0, 0);

lcd.print(sensor_address_MSB[nextSensor], HEX);

lcd.print(sensor_address_LSB[nextSensor], HEX);

lcd.setCursor(0, 1);

lcd.print("Temp. = ");

lcd.print(temperature[nextSensor], DEC);

if (nextSensor == 9){

nextSensor = 0;

}

else {

nextSensor = nextSensor + 1;

}

}

}

delay(100);

}

30

APPENDIX A. ARDUINO CODE FOR BASE STATION

\\ ******************* Convert ADC value to key number *******************

int get_key(unsigned int input) {

int k;

for (k = 0; k < NUM_KEYS; k++) {

if (input < adc_key_val[k]) {

return k;

}

}

if (k >= NUM_KEYS)k = -1; // No valid key pressed

return k;

}

31

Appendix B

Data Sheets (front page only)

32

APPENDIX B. DATA SHEETS (FRONT PAGE ONLY)

1/27December 2005

n LOW DROPOUT VOLTAGE (1V TYP.)

n 2.85V DEVICE PERFORMANCES ARE
SUITABLE FOR SCSI-2 ACTIVE
TERMINATION

n OUTPUT CURRENT UP TO 800 mA

n FIXED OUTPUT VOLTAGE OF: 1.2V, 1.8V,
2.5V, 2.85V, 3.0V, 3.3V, 5.0V

n ADJUSTABLE VERSION AVAILABILITY
(Vrel=1.25V)

n INTERNAL CURRENT AND THERMAL LIMIT

n AVAILABLE IN ± 1% (AT 25°C) AND 2% IN
FULL TEMPERATURE RANGE

n SUPPLY VOLTAGE REJECTION: 75dB (TYP.)

DESCRIPTION

The LD1117 is a LOW DROP Voltage Regulator
able to provide up to 800mA of Output Current,
available even in adjustable version (Vref=1.25V).
Concerning fixed versions, are offered the
following Output Voltages: 1.2V,1.8V,2.5V,2.85V,
3.0V 3.3V and 5.0V. The 2.85V type is ideal for
SCSI-2 lines active termination. The device is
supplied in: SOT-223, DPAK, SO-8 and TO-220.
The SOT-223 and DPAK surface mount packages
optimize the thermal characteristics even offering
a relevant space saving effect. High efficiency is
assured by NPN pass transistor. In fact in this

case, unlike than PNP one, the Quiescent Current
flows mostly into the load. Only a very common
10µF minimum capacitor is needed for stability.
On chip trimming allows the regulator to reach a
very tight output voltage tolerance, within ± 1% at
25°C. The ADJUSTABLE LD1117 is pin to pin
compatible with the other standard. Adjustable
voltage regulators maintaining the better
performances in terms of Drop and Tolerance.

LD1117
SERIES

LOW DROP FIXED AND ADJUSTABLE
POSITIVE VOLTAGE REGULATORS

Figure 1: Block Diagram

SOT-223

DPAK

SO-8

TO-220

Rev. 19

33

APPENDIX B. DATA SHEETS (FRONT PAGE ONLY)

LM135, LM135A, LM235, LM235A, LM335, LM335A

www.ti.com SNIS160D –MAY 1999–REVISED MARCH 2013

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors
Check for Samples: LM135, LM135A, LM235, LM235A, LM335, LM335A

1FEATURES • Easily Calibrated

• Wide Operating Temperature Range
2• Directly Calibrated in °Kelvin

• 200°C Overrange• 1°C Initial Accuracy Available

• Low Cost• Operates from 400 A to 5 mA

• Less than 1 Dynamic Impedance

DESCRIPTION
The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-
terminal zener, the LM135 has a breakdown voltage directly proportional to absolute temperature at +10 mV/°K.
With less than 1 dynamic impedance the device operates over a current range of 400 A to 5 mA with virtually
no change in performance. When calibrated at 25°C the LM135 has typically less than 1°C error over a 100°C
temperature range. Unlike other sensors the LM135 has a linear output.

Applications for the LM135 include almost any type of temperature sensing over a 55°C to 150°C temperature
range. The low impedance and linear output make interfacing to readout or control circuitry especially easy.

The LM135 operates over a 55°C to 150°C temperature range while the LM235 operates over a 40°C to
125°C temperature range. The LM335 operates from 40°C to 100°C. The LM135/LM235/LM335 are available
packaged in hermetic TO transistor packages while the LM335 is also available in plastic TO-92 packages.

Schematic Diagram

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.

1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

2All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Copyright © 1999–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.

34

APPENDIX B. DATA SHEETS (FRONT PAGE ONLY)

www.digi.com

Application Highlight

Features/Benefits

Related Products

Overview

Embedded RF modules provide low-cost, low-power

wireless connectivity using the ZigBee PRO Feature Set.

®

ZigBee® Embedded RF Module Family for OEMs

XBee® & XBee-PRO® ZB

Gateways

Development Kits SensorsNetwork Extenders

AdaptersModules

XBee and XBee-PRO ZB embedded RF modules provide cost-effective
wireless connectivity to devices in ZigBee mesh networks. Utilizing the
ZigBee PRO Feature Set, these modules are interoperable with other
ZigBee devices, including devices from other vendors*.

Products in the XBee family are easy to use. They require no
configuration or additional development; users can have their network
up and running in a matter of minutes.

Programmable versions of the XBee-PRO ZB module make
customizing ZigBee applications easy. Programming directly on the
module eliminates the need for a separate processor. Because the
wireless software is isolated, applications can be developed with no
risk to RF performance or security.

XBee modules are available in a variety of protocols and frequencies.
The common hardware footprint shared by Digi’s XBee modules
means users can substitute one XBee for another with minimal
development time and risk.

*Interoperability requires the ZigBee Feature Set or ZigBee PRO Feature Set to be

deployed on all devices. Contact Digi Support for details.

35

APPENDIX B. DATA SHEETS (FRONT PAGE ONLY)

Search the Arduino Website �

Arduino Uno

(http://arduino.cc/en/uploads/Main/ArduinoUno_R3_Front.jpg) (http://arduino.cc/en/uploads/Main/ArduinoUno_R3_Back.jpg)

Arduino Uno R3 Front Arduino Uno R3 Back

(http://arduino.cc/en/uploads/Main/ArduinoUno_r2_front.jpg) (http://arduino.cc/en/uploads/Main/ArduinoUnoSmd.jpg) (http://arduino.cc/en/uploads/Main/ArduinoUnoFront.jpg)

Arduino Uno R2 Front Arduino Uno SMD Arduino Uno Front

 (http://store.arduino.cc/index.php?

main_page=product_info&cPath=11&products_id=195) (http://arduino.cc/en/Main/Buy)

Overview

The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet
(http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf)). It has 14 digital input/output pins (of which 6 can be used as

PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button. It
contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-
DC adapter or battery to get started.
The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it features the Atmega16U2

(Atmega8U2 up to version R2) programmed as a USB-to-serial converter.
Revision 2 of the Uno board has a resistor pulling the 8U2 HWB line to ground, making it easier to put into DFU mode
(http://arduino.cc/en/Hacking/DFUProgramming8U2).

Revision 3 of the board has the following new features:

1.0 pinout: added SDA and SCL pins that are near to the AREF pin and two other new pins placed near to the RESET pin, the IOREF that allow the

shields to adapt to the voltage provided from the board. In future, shields will be compatible with both the board that uses the AVR, which operates

with 5V and with the Arduino Due that operates with 3.3V. The second one is a not connected pin, that is reserved for future purposes.

Stronger RESET circuit.

Atmega 16U2 replace the 8U2.

Page 1 of 4Arduino - ArduinoBoardUno

10/09/2014http://arduino.cc/en/Main/ArduinoBoardUno

36

APPENDIX B. DATA SHEETS (FRONT PAGE ONLY)

Search the Arduino Website �

Wireless Proto Shield

(http://arduino.cc/en/uploads/Main/Arduino_WirelessProtoShield_Front.jpg)

Wireless Proto Shield Front

 (http://store.arduino.cc/ww/index.php?

main_page=product_info&cPath=11_5&products_id=145) (http://arduino.cc/en/Main/Buy)

Overview

The Wireless Proto shield allows an Arduino board to communicate wirelessly using a wireless module. It is based on the Xbee modules

from Digi (http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-

module), but can use any module with the same footprint. The module can communicate up to 100 feet indoors or 300 feet outdoors

(with line-of-sight). It can be used as a serial/usb replacement or you can put it into a command mode and configure it for a variety of

broadcast and mesh networking options. The shields breaks out each of the Xbee's pins to a through-hole solder pad.

This shield doesn't have the SD socket.

An on-board switch allows the wireless module to communicate with the USB-to-serial converter or with the microcontroller.

Schematic

EAGLE files: arduino_WirelessShield_Proto_v3-reference-design.zip

(http://arduino.cc/en/uploads/Main/arduino_WirelessShield_Proto_v3.zip)

Schematic: arduino_WirelessShield_Proto_v3-schematic.pdf (http://arduino.cc/en/uploads/Main/arduino_WirelessShield_Proto_v3-

schematic.pdf)

Page 1 of 3Arduino - ArduinoWirelessProtoShield

10/09/2014http://arduino.cc/en/Main/ArduinoWirelessProtoShield

37

Bibliography

[1] Digi International Inc. XBee r /XBee-PRO r ZB RF Modules, 2013.

[2] R. Faludi. Building Wireless Sensor Networks. OReilly Media, Inc., 2011.

[3] K. Gill, F. Y. Shuang-Hua Yang, and X. Lu. A zigbee-based home automation system.

IEEE Transactions on Consumer Electronics, 55(2):422–430, May 2009.

[4] C. Gomez and J. Paradells. Wireless home automation networks: A survey of architectures

and technologies. IEEE Communications Magazine, pages 92–101, June 2010.

[5] D.-M. Han and J.-H. Lim. Smart home energy management system using ieee 802.15.4 and

zigbee. IEEE Transactions on Consumer Electronics, 56(3):1403–1410, August 2010.

[6] M. Idoudi, H. ELKHORCHANI, and K. GRAYAA. Performance evaluation of wireless

sensor networks based on zigbee technology in smart home. 2013 International Conference

on Electrical Engineering and Software Applications (ICEESA), pages 1–4, March 2013.

[7] J.-S. Lee, Y.-W. Su, and C.-C. Shen. A comparative study of wireless protocols: Bluetooth,

uwb, zigbee, and wi-fi. The 33rd Annual Conference of the IEEE Industrial Electronics

Society (IECON) Nov. 5-8, 2007, Taipei, Taiwan, pages 46–51, 2007.

[8] M. J. LEE, J. ZHENG, Y.-B. KO, and D. M. SHRESTHA. Emerging standards for wireless

mesh technology. IEEE Wireless Communications, pages 56–63, April 2006.

[9] A. A. Siddiqui, A. W. Ahmad, H. K. Yang, and C. Lee. Zigbee based energy efficient

outdoor lighting control system. 14th International Conference on Advanced Communication

Technology (ICACT), pages 916–919, February 2012.

[10] A. Wheeler. Commercial applications of wireless sensor networks using zigbee. IEEE Com-

munications Magazine, pages 70–77, April 2007.

[11] ZigBee Alliance. ZIGBEE SPECIFICATION, January 17, 2008.

[12] ZigBee Alliance. ZIGBEE HOME AUTOMATION PUBLIC APPLICATION PROFILE,

June 6, 2013.

38

