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Abstract 

 This dissertation describes the kineto-elastic analysis and component structural dynamic 

model updating of serial modular reconfigurable robots (MRRs). In general, kineto-elastic 

analysis is concerned with the structural vibrations, elastic deflections, and torque transmissions 

of robots which undergo motion from one pose (position and orientation) to another. This work 

focuses on the kineto-elastic analysis of MRRs undergoing low-speed quasi-static motion. When 

determining an MRR’s payload capacity, or designing MRR modules, the main difficulty is the 

large number of module configurations and the infinite number of poses within each 

configuration. Also, the kineto-elastic models of MRRs can become quite large with an 

increasing number of modules, thereby increasing the numerical complexity. Furthermore, the 

analytical models of individual MRR components may contain uncertainties, such as unknown 

stiffness and material parameters, which may lead to large errors for assembled MRR models.  

 

 To alleviate these issues, a new framework was developed for the kineto-elastic analysis of 

MRR modules with an emphasis on assessing the worst-case poses. First, a combinatory search 

method was presented to reduce the computational burdens associated with determining the 

maximum payload capacity, and performing the module stiffness designs. This involved 

identifying the worst-case configuration and pose amongst a large number of configurations and 

infinite number of poses. Afterwards, it was demonstrated that the determination of an MRR’s 

payload capacity, as well as the module stiffness designs, can be performed at the worst-case 

pose and configuration to satisfy a global set of kineto-elastic performance requirements for all 

remaining configurations. Next, a new component mode synthesis (CMS) model with fixed-free 

component boundaries was developed to reduce the sizes of kineto-elastic models, mimic natural 

link-joint connectivity, and allow experimental tests of joint modules in multiple poses to enable 

 iii



test-analysis model correlation. Finally, a novel method was created to update the uncertain 

model parameters of joint and link modules using frequency response data from component 

vibration tests in multiple poses (including the worst cases), with boundary conditions matching 

those from the CMS models. This procedure can completely avoid testing an entire assembly to 

perform model updating, and can provide accurate updated model results in any assembly pose. 
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m4 

J torsion constant m4 
kx, ky, kz virtual spring stiffness in along the 

x-, y-, or z-axis 
N/m 

kθ, kϕ, kψ rotational virtual spring stiffness in 
about the x-, y-, or z-axis 

N-m/rad 

L length m 
mx, my, 
mz 

moment about x-, y-, or z-axis N-m 

m mass kg 
nele number of elements - 
ndof number of structural DOFs - 
r radius m 
t thickness m 
u, v, w translational displacements along x-, 

y- or z-axis 
m 

 

 

 

Greek 
Symbol 

Definition Units 

Φ mass-normalized mode shape vector - 
Ψ constraint mode matrix - 
α mass-proportional viscous damping 

constant 
1/s 

β stiffness-proportional viscous damping s 

 xiv



 xv

constant 
ε relative error - 
η stiffness proportional hysteretic damping 

constant 
- 

ρ material density kg/m3 

θ torsional deformation about x-axis rad 
ϕ, ψ bending angle about y-, or z-axis rad 
ωn resonance frequency rad/s (or Hz if specified) 
ωar antiresonance frequency rad/s (or Hz if specified) 
 

 

 

Subscript Definition 
axial for axial deformation 
bend,z for bending about z-axis 
bend,y for bending about y-axis 
casing relating to joint casing 
config configuration 
CMS relating to CMS assembly in global frame 
e element (in the local coordinate frame) 
G global frame 
i ith module 
joint relating to joint structural components 
m motion 
motor relating to motor components 
n total number of modules (or components) 
s static 
tip variables at the tip of the module or 

assembled MRR 
torsion for torsion about x-axis 
w relating to rigid wrist 
 

 



1. Introduction 

 This introductory chapter first provides a background of existing MRR designs and describes 

their differences. The subsequent sections describe motivations for the current research, the 

problem statement and the dissertation’s objectives. The final section in this chapter provides a 

brief overview for the remaining chapters presented in this dissertation. 

1.1  Background  

 Modular reconfigurable robots are perhaps the most versatile machines in use today. These 

robots consist of several interconnected joint and link modules that can be reassembled and 

reconfigured to perform a variety of tasks in order to meet different motion and workspace 

requirements. On the contrary, typical non-reconfigurable manipulators are designed with only 

one configuration to attain a certain range of motion, thus their motion capabilities are rather 

constrained to a single workspace volume, and their tasks are limited to the type of end-effector 

used as an attachment. Throughout this dissertation, the term “configuration” refers to the initial 

joint axes configurations where all joint motion variables are set to zero, and “pose” refers to the 

position and orientation of an MRR after the joints rotate from their initial configuration setup. 

 

 The geometry of reconfigurable modules can be made simple or complex. Simple module 

geometry consists of an actuator (active joint) which drives a connected link using a common 

connection interface. Therefore, each joint module can be made to operate independently, as a 

self-contained unit. Conversely, complex module geometry is composed of several actuators that 

can simultaneously drive a platform. In general, there are three types of reconfiguration, namely, 

self-assembly [1-4], self-reconfiguring [5, 6] and manual-reconfiguring [7, 8]. Self-assembly 

mechanisms are at the highest level of reconfiguration and are fully autonomous since these 

mechanisms can automatically assemble and disassemble from their inter-module connections 

without any form of manual assistance. Self-reconfiguring mechanisms can reconfigure 

themselves, but only after the system is assembled with some form of manual assistance. 

Manual-reconfiguring mechanisms are the most common and simplest in terms of structure, but 

can only be assembled and reconfigured manually. Furthermore, modular robots can be classified 
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depending on whether or not their modules are identical in shape and functionality [9] and the 

types of MRR structures that are formed when the modules are connected. Generally speaking, 

MRRs with sets of identical modules are easier to maintain than traditional robots since the 

modules can be readily interchanged if a module malfunctions. In a non-redundant, non-

reconfigurable manipulator, the malfunction of a single joint (especially the base joint) can be 

catastrophic, as it may render the entire manipulator as inoperable until the component is 

replaced or repaired 

 

 In terms of module connectivity, there are two main categories: open-chain (serial) and 

closed-chain (parallel). The former is the most common form of connectivity found in MRRs, in 

which modules are connected in series to form a serial arm [7, 10-12]. The open-chain 

configurations can also be branched off to form additional open-chains leading to a tree-like 

structure [13]. In general, the joint modules in most serial MRRs, such as those found in [7] and 

[14], are larger in size compared to the joints of traditional robots due to the fact that the 

connection interfaces located on the joint module must have enough connection points to 

properly secure adjacent link modules. Figure 1-1(a) shows an example of an MRR with large 

joint modules. The most noticeable difference between the serial joint module types are the joint 

offset distances, which occur along the axis of rotation for the example in Fig. 1-1(a), leading to 

an increased joint range of motion and the ability to hold a larger motor, thus more torque, at the 

cost of a higher module weight. On the other hand, there are examples of smaller MRR joints, 

such as the hinged joint modules in Fig. 1-1(b), which are lightweight and have zero offset 

distances along the joint rotation axis, but offer a decreased range of motion. In both cases, the 

connection interfaces for the joints are located at the ends of the joint output shafts. A popular 

example of a serial modular robot structure is the Canadarm2, shown in Fig. 1-1(c), which uses 

three successive revolute joint modules (with their axes of rotation perpendicular to each other) 

at the shoulder and wrist, and a single revolute joint at the elbow. 
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Figure 1-1:  Types of common MRR structures (a) Serial with long joint axis offsets [14], (b) Serial with 
hinged joint modules1, (c) Serial with successive revolute joints2 (d) Parallel kinematic machine (PKM) 

 

 While closed-chain structures are possible for MRRs, research has been focused on a single 

module type, namely reconfigurable parallel kinematic machines (PKMs) which can be re-

assembled to include additional joints, links and tool heads [15]. However, they are more 

difficult to manually reconfigure than serial MRRs due to the large number of parts. Unlike serial 

MRRs, which contain only active joints to drive the links, PKMs may contain both active and 

                                                 
1Engineering Services Inc., Robot Arms, http://www.esit.com/index.php/business/robot-arms. Retrieved March 
2014.   
2 NASA, Canadarm2 and Mobile Servicing System, 
http://www.nasa.gov/mission_pages/station/structure/elements/mss.html. Retrieved March 2015. 
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passive joints (which do not have any motors or motion input). Because of the closed-loop 

structure of PKM branches, greater accuracy can be achieved than with a serial robot, at the cost 

of a greatly reduced range of motion. An example of a PKM with sliding-leg prismatic joints is 

shown in Fig. 1(d). If separate parallel mechanism modules are connected at each other’s end 

platforms to form an open-chain serial structure, the resulting assembled mechanism becomes a 

hybrid serial-parallel mechanism [5, 16], thereby increasing the range of motion. Such MRRs 

benefit from the high stiffness and low weight advantages of parallel mechanisms and the wide 

range of motion capabilities of serial manipulators. Other types include biologically-inspired 

lattice structured MRRs [3] and MRRs that can perform locomotion [6]. 

1.2  Motivation 

 This section describes the motivation for the current MRR research presented in this 

dissertation. The following topics are of concern: the kineto-elastic analysis of serial MRRs, the 

structural design of MRR modules and payload capacity optimization, the reduction and 

synthesis of module structural dynamic models, and module model updating using experimental 

data for each module. What links these topics is that all of their analyses are directly affected by 

the MRR module configurations and poses. Overall, these are relatively new topics relevant to 

MRR research, most of which have not been previously studied. 

1.2.1  Serial Modular Robot Structural Stiffness Performance  

 Positional accuracy remains one of the leading concerns in mechanism analysis and 

component stiffness is one of its main affecting factors. In general, tip position inaccuracies are 

caused by deflections due to applied payloads, self-weights of the joints and links, and robot 

vibration. Although serial MRRs can be reconfigured to perform different motion tasks, their 

stiffness performance for a known task usually does not match that of a non-reconfigurable 

mechanism designed only for performing the task requirement in a single configuration 

repeatedly. When joint module axes are reconfigured, the maximum stiffness and payload 

capacities for assembled MRRs can vary drastically between different module configurations. 

Moreover, the number of total MRR configurations can increase exponentially with an increase 

in the number of modules. For open-chain MRRs, considerable research has been conducted for 

MRR kinematics [17] and rigid-body dynamic models [18]. These models mainly focus on the 
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automatic generation of the required kinematic and dynamic equations for MRR module 

reconfigurations. Other research involved automated kinematic calibration methods to improve 

the pose accuracy of multiple MRR configurations [19, 20], and methods for optimal module 

selection for task-specific configurations [21, 22]. However, little attention has been paid to the 

analysis of serial MRRs with modules that exhibit inherent structural flexibility. 

  

 Kineto-elastic analysis is an essential tool to analyze the aforementioned causes of structural 

inaccuracies over different poses in a robot’s workspace. In general, kineto-elastic analysis can 

be subdivided into three categories [23]: kinetostatics (which is focused on the force or velocity 

transformations from the end-effector to the joints), kineto-elasto-statics (which incorporates the 

structural flexibilities of the joints and/or links in order to determine the linear elastic 

deformations due to applied static loads and low-speed quasi-static motion) and kineto-elasto-

dynamics (which includes the time-varying loads from rigid body dynamics and vibration, 

coupled with the elastic structural properties of the components). In the current literature, kineto-

elastic analysis has been extensively studied for reconfigurable parallel robots. However, there is 

a lack of research contributions for the kineto-elastic analysis of serial MRRs, which are more 

susceptible to adverse stiffness issues than their parallel counterparts. This is because the load of 

the entire robot is carried on a single base joint for serial MRRs, rather than multiple base joints, 

as found in PKMs, in which the loads are distributed. Although recent studies on serial MRRs 

include stiffness models [24, 25], the variation in stiffness and payload capabilities for multiple 

configurations were not presented. For typical non-reconfigurable serial robots with minimal 

joint length offsets, the most critical stiffness pose is known to occur at maximum arm stretch, 

which can be easily determined by visual inspection. However, due to the larger joint sizes found 

in serial MRRs, their shapes after assembling the modules can become quite complex and it can 

be shown that with increased joint elasticity, the stiffness performance of serial MRRs can 

exhibit changes in dominant elastic deformation modes, which may occur away from fully 

stretched poses. Unlike a non-reconfigurable robot, where the search space for the worst-case 

structural performance occurs within a single configuration’s workspace, the search space for 

MRRs includes both the “configuration-space”, which contains all of the configurations to be 

analyzed and the individual workspaces within each configuration. Therefore, both the 

configuration-space and the individual configuration workspaces must be searched to identify the 
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configurations and poses that can affect the structural performance of the MRR most drastically. 

Overall, more research to assess the stiffness performance requirements for multiple serial MRR 

configurations is warranted.  

1.2.2  Stiffness and Payload Design of Serial Reconfigurable Modules 

 Typically, the topology design of a reconfigurable module is concerned with three aspects: 

Kinematic synthesis, configuration design, and structural design. Kinematic synthesis refers to 

the design of the module lengths and joint parameters to meet assembly motion and workspace 

volume requirements. Configuration design refers to the selection of modules to perform task 

requirements. Finally, structural design refers to the stiffness design of the modules, by 

optimizing the individual module shapes or material properties, to achieve satisfactory kineto-

elastic performance requirements for all available configurations. Evidently, the structural 

performance of an MRR is tightly coupled with its kinematic parameters and configuration. For 

example, during the module design phase, if the length of the module changes, so will the 

stiffness. The existing structural design methods were developed for traditional non-

reconfigurable robots and there are no well-defined methods for MRRs that have been discussed 

in detail. The main challenge here is how to account for the number of different module 

configurations and their respective workspaces. In the structural design of traditional non-

reconfigurable mechanisms, the workspace of only one configuration is considered, which in 

itself requires a complicated design procedure. Because an MRR can have various topologies due 

to both configuration and kinematic changes, the structural design problem at hand can become 

quite tedious. For MRRs, all the feasible module configurations and their workspaces must be 

considered during the design phase, which can impose enormous computational complexities. 

Therefore, a clearly defined and numerically efficient methodology for the structural design of 

reconfigurable modules is an essential requirement for this field of research. 

 

 In general, the structural design of reconfigurable modules can be seen as an “inverse” design 

problem when it is required to construct a module from scratch in order to meet multiple kineto-

elastic performance requirements for a given payload. In order to improve the structural 

performance for existing MRR modules, instead of re-designing the module casings or adding 

stiffening springs to the joint modules, which is both time consuming and costly, the “forward” 
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design problem is to optimize the maximum payload an MRR can carry in order to safely satisfy 

a given set of kineto-elastic constraints. The payload capacity design problem can play an 

important role for stationary MRR positioning tasks such as part inspections, where parts that are 

too heavy can cause significant link deflections, leading to large errors in measurement. 

Evidently, some MRR configurations may outperform others with regards to kineto-elastic 

performance, thereby affecting the maximum payload capacity between configurations. Thus, a 

procedure to identify the maximum payload that existing MRR modules can carry, for each 

possible configuration, should prove useful in configuration selection and tool or end-effector 

design. 

1.2.3  Structural Dynamic Model Reduction for Modular Robots 

 When an MRR is reconfigured, or changes its pose, the structural dynamics (stationary 

vibrations, response amplitudes, natural frequencies and mode shapes) of the MRR assembly 

also changes. Because assembled system finite element (FE) models are often large and 

complex, substructuring methods such as component mode synthesis (CMS) can provide a 

means of reducing the number of structural degrees of freedom (DOF) of component models for 

assembly into a larger system, while maintaining a specified degree of accuracy by retaining a 

pre-selected number of mode shapes. Also, any structural design modifications to one 

substructure model should not affect the individual component dynamics of the remaining 

substructures. Therefore, CMS methods are ideal for modeling MRR modules that do not change 

shape. However, structural changes to one module will inevitably affect the overall system 

dynamics of an MRR assembly. For example, “joint 1” in Fig. 1-1(a) does not change shape 

during motion since the rotation axis of the output shaft (connected to “link 1”) is aligned with 

the length of the joint module’s offset axis. On the other hand, CMS is more difficult to 

implement if a joint module behaves as a hinged joint as in the case of the base joint in Fig. 1-

1(b), with the offset distances perpendicular to the axis of rotation. In this scenario, because the 

shape of the joint module changes, the joint should be modeled as two separate substructures 

with connection nodes directly on the axis of rotation. 

 

 For the majority of CMS procedures, the choice of component modes used in the reduction 

process are dictated by the boundary conditions (BCs) imposed on each substructure model to 
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determine the set of normal modes used for reduction. In previous mechanism CMS models [26-

28], the moving joints, such as revolute joints, were considered rigid and the link components 

were usually separated directly at the joints. Thus, the choice of BCs typically imposed on the 

link substructures were either free-free, or fixed-fixed boundaries. In reality, the joints 

themselves contain small sub-components such as bearings, axles, joint yokes, gears or motors, 

which can directly affect the dynamic characteristics of the entire mechanism assembly. 

Likewise, it is impossible to experimentally evaluate the dynamic contributions of hinged joints 

if free-free boundary conditions are used for link modal tests, since testing the links alone cannot 

provide sufficient information about the flexible joint dynamics or constraints. Furthermore, the 

connection interfaces between each MRR module may exhibit flexible dynamic characteristics, 

especially if the connection ports carry large masses or if the modules are connected by bolts (as 

in Fig. 1-1(a) and (b)). Therefore, the additional dynamic properties of the joints and connection 

interfaces should be accounted for in the CMS models for MRRs, along with the inclusion of the 

appropriate BCs. 

1.2.4  Component Experiments and Model Updating for Modular Robots 

 Large articulated systems such as industrial robots typically undergo experimental structural 

dynamic testing to validate existing analytical models. In these cases, it is required to test a 

number of robot poses to check for pose-based model dependencies such as natural frequencies 

of the entire system. Also, testing multiple robot poses can provide more experimental 

information in the absence of rotational frequency response function (FRF) measurements or 

joint FRF measurements, since these are usually difficult, if not impossible, to directly measure. 

Likewise, another advantage of testing multiple poses is that the local model parameters (such as 

link cross section areas and material properties) should remain the same for different poses. 

Usually, if the required accuracy of an analytical assembly model is not within specified limits, 

the entire FE model needs to be updated to match the experimental results as close as possible, 

which can prove to be a troublesome task considering the large number of possible updating 

parameters. Conversely, if smaller sub-assemblies and components are tested first, large and 

expensive experimental setups can be completely avoided and the model updating process is 

more efficient since the number of simultaneous updating parameters can be reduced 

significantly. Afterwards, the updated component models can be assembled using CMS and 
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further structural dynamic testing can be conducted in a virtual environment, thereby reducing 

the need for extensive experimental testing of the entire robot assembly in different 

configurations and poses. 

 

 Since MRR modules can be readily removed from an MRR assembly, they are ideal 

candidates for substructure experimental testing and CMS model updating. To update or identify 

unknown FE model parameters for MRR modules effectively, the component experiments, and 

hence CMS model, should mimic the natural connectivity between modules as closely as 

possible. Furthermore, the module connection interfaces may contribute to the dynamic behavior 

of the entire module. In these scenarios, the connection stiffness, mass or damping should be 

accounted for in both the experiment and updated model. Therefore, the experiment BCs should 

match the module connection interfaces. Also, individual modules will experience stiffened 

dynamic behavior during component tests, compared to testing an assembled MRR. As a 

consequence, the experimental mode shapes and natural frequencies of individual modules will 

occur at higher frequencies than those of an assembled MRR. Hence, the use of experimental 

FRF data across the entire measurement bandwidth should be more beneficial for model 

updating, rather than the use of measured natural frequencies and mode shapes. Additionally, the 

experiment and CMS BCs must be carefully selected in order to test different module poses for 

pose-based model dependencies. In the case of hinged joint modules, as in Fig. 1-1(b), slight 

variations in joint angles, as well as physical model parameters affecting the stiffness, mass and 

damping, could have a large impact on the dynamic performance with visible differences in 

FRFs. The problem is further complicated if nonlinearities exist within the joint, such as friction, 

wear, contact and clearance. For this reason, an updating method should be formulated to allow a 

best-fit solution for a simplified linear joint model in order to entirely avoid modeling 

complexities and remain computationally efficient. 

1.3  Problem Statement 

 There is a need for a computationally efficient method for the kineto-elastic performance 

analysis of serial MRRs, namely, a method to determine the worst-case configurations and poses 

for a given set of modules. For this problem, one has to account for a large number of module 

MRR configurations and within each configuration’s workspace there are an infinite number of 
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poses which must also be taken into account to find the worst-case stiffness pose. This problem 

is further complicated if multiple kineto-elastic performance quantities are included, such as 

deflections, joint torques and vibrations. Due to the added complexity of multiple configurations, 

poses and different kineto-elastic performance requirements (in the form of design constraints), it 

can be shown that the module structural design and payload capacity problems may form 

redundant and inconsistent systems of equations when more than one module is considered. 

Therefore, unique closed-form solutions to these problems do not exist. However, to ease the 

complexity of these design problems, it would be most beneficial to develop a method such that 

the design computations are performed at a single configuration and pose, rather than multiple 

configurations and poses.  

 

 For the updating of CMS models of MRR modules, a method needs to be developed such 

that the experimental and CMS model BCs incorporate the natural connectivity boundaries at the 

module connection ports or interfaces. The experiment conditions should allow each joint 

module to be tested in more than one pose to determine if the joint flexibility is pose-dependent. 

Furthermore, the CMS model should include the possibilities of additional stiffness, mass and 

damping terms at the connection interfaces of each module to account for the connection 

dynamics of adjoining components. Evidently, if more than one pose is used during the updating 

process, the problem becomes an overdetermined system of equations since there are more 

equations available than possible model updating parameters. Overall, the updating method 

should solely rely on experimental data from the component tests, and should be completely 

independent of utilizing experimental data from entire MRR assembly tests during the module 

updating process. At most, tests should only be performed on an MRR assembly to validate the 

updated models. 

1.4  Research Objectives 

To address the issues mentioned in the previous sections, the main objectives of this dissertation 

are summarized as follows: 
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1. Develop a kineto-elastic model for the quasi-static stiffness performance analysis of serial 

MRRs. The model should account for reconfigurable kinematics, joint offsets, structural 

flexibilities and masses of the links and joints, non-structural masses, such as motor masses 

and their associated rigid-body offsets. Also, the model should solve for the kineto-elasto-

statics (tip deflections at the last link in the MRR chain and joint wrench moments) and the 

stationary structural vibrations (undamped MRR natural frequencies) at any given 

configuration and respective pose after motion from initial assembly. 

 

2. Create a computationally efficient and numerically accurate direct search method to find 

the worst-case quasi-static stiffness performance configurations and poses for a given 

number of MRR modules, payload and multiple kineto-elastic parameters. The method must 

include all possibilities in the feasible configuration space, as defined by the number of 

modules and their possible configurations, as well as the workspaces of each configuration.  

 

3. Develop design methodologies for the maximum payload capacity determination and the 

optimal module stiffness design. Both methods should be subject to multiple kineto-elastic 

performance requirements in the form of design constraints.  

 

4. Develop a CMS method for MRR modules using fixed- and free-interface conditions for 

model reduction and to allow for hinged joint module experimental tests in different poses. 

Along with computing the natural frequencies and mode shapes, a method should be 

developed such that FRFs can also be recovered for force inputs and elastic motion outputs at 

all node locations, including those of the CMS reduced structural DOF. 

 

5. Create a component model updating method for MRR modules which uses experimental 

FRF data from hinged joint module tests. The BCs of the module experimental conditions 

should match those of the CMS model and adjacent module connection interfaces, while 

allowing different joint module poses to be tested. The goal here is to update the FE 

parameters such that the assembled MRR model does not require further updating. Thus, the 

CMS model of the MRR assembly using updated parameters should perform accurately in 

any random pose.  
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1.5  Outline of Dissertation 

This dissertation is organized into eight chapters. The remaining chapters are described as 

follows: 

 

 Chapter 2 contains a literature review which covers the main topics related to the research in 

this dissertation, namely kineto-elastic analysis and modeling of flexible robots, robot stiffness 

design methods, workspace search methods, dynamic component model substructuring 

techniques and structural dynamic model updating methods. 

 

 Chapter 3 describes a kineto-elastic modeling method for serial MRRs, which includes the 

kinematics required for MRR initial configuration assembly, the pose computations using a 

recursive method for MRR motion, combined with the module stiffness modeling using the FE 

method to solve for the kineto-elasto-static deflections, moments, and the stationary structural 

vibrations. 

 

 Chapter 4 proposes a novel methodology to search for the worst-case stiffness 

configurations and poses for a given number of MRR modules. First, the method includes an 

automated enumeration algorithm which can effectively reduce the large configuration-space to a 

small subset of configurations by eliminating all infeasible configurations with respect to MRR 

kinematics and equivalent structural performance properties between two or more 

configurations. The second stage involves determining the worst-case stiffness configurations 

and poses using direct search optimization methods and forward kinematics, which completely 

avoids searching through a pre-determined number of poses. 

 

 Chapter 5 presents new methods to solve the redundant/inconsistent stiffness and payload 

design problems, such that a given set of kineto-elastic performance requirements are fulfilled 

for all configurations. This is accomplished by including the results from the search methods in 

Chapter 4, thereby forming a combinatorial search method to simplify the problem by reducing 

the size of the configuration-space, identifying the worst-case configurations and poses, and 

finally identifying the maximum allowable payload capacity, or performing the structural design 

of the modules. 
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 Chapter 6 covers the development of structural dynamic model reduction techniques using 

CMS methods for MRR modules, with particular emphasis on using hybrid (fixed-free) interface 

boundaries, which are suitable for experimental testing. Also, methods are developed to recover 

FRFs when the input/output coordinates are located on separate components with different poses, 

and when physical coordinates corresponding to input/output DOFs are eliminated in the CMS 

reduction. 

 

 Chapter 7 presents a new method for updating reduced CMS models of MRR modules using 

experimental data from individual hinged joint-link module tests in different poses. An 

optimization approach is formulated using a genetic algorithm (GA) to minimize the FRF error 

between the updated component models and experiments with bounded constraints on the 

updating parameters and nonlinear constraints on the resonance and antiresonance frequencies 

for multiple component poses simultaneously. Component vibration tests are performed on an 

adjustable linkage system made to resemble a serial MRR with hinged joints. The experimental 

component BCs are made to naturally mimic component connectivity along with the fixed- and 

free-interface conditions used for the hybrid CMS method. The component updating method is 

validated using further tests on the assembled system in different poses. To convey the versatility 

of the updating approach for other mechanisms, an experimental model resembling a landing 

gear (parallel mechanism) was constructed and a similar procedure, with the inclusion of fixture 

flexibility, was conducted to update the reduced component models in different poses with fixed-

interface conditions. 

 

 Chapter 8 briefly summarizes the work in this dissertation, lists the major contributions, lists 

the associated journal publications submitted, and suggests future work for this research. 
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2. Literature Review 

 This chapter presents a literature survey on the relevant subjects related to the research in this 

dissertation. First, a background on the existing methods for the kineto-elastic modeling of 

robots with flexible links and/or joints is introduced. Next, a review of the currently available 

workspace search methods for the pose-based kineto-elastic analysis of robots is presented. This 

is followed by a survey of the existing robot stiffness design methods. Afterwards, the available 

component-based substructuring techniques for structural dynamic modeling are discussed, as 

well as the associated literature pertinent to available robot substructuring models. Particular 

attention is paid to CMS and FRF-based substructuring methods. Finally, structural dynamic 

model updating methods are discussed, along with approaches to update CMS models and the 

available model correlation tools. 

2.1  Kineto-elastic Modeling of Robots 

 The kineto-elastic modeling of robots has been extensively studied over the past few decades, 

with the majority of research conducted for high-speed lightweight non-reconfigurable 

manipulators. Such manipulators, suffer, to a greater extent than large industrial manipulators,  

from detrimental structural flexibility issues such as high deflections and increased vibrations. 

Previous research led to significant advancements in the kineto-elastic modeling for robots 

considering flexible components, most of which are well documented in the survey papers [29-

33]. Most of the research reviewed in these papers focused on the development of kineto-elasto-

dynamic models for non-reconfigurable robotic systems for the purpose of validating analytical 

models, robot control or path planning. The equations of motion were usually developed 

according to the choice of elastic deformation reference frames and typically resulted in highly 

nonlinear systems of differential algebraic equations which inevitably couple the rigid-body and 

flexible-body dynamics. The three main types of reference frames used for kineto-elastic models 

in the literature are shown in Fig. 2-1.  

 
 The global (or inertial) reference frame, shown in Fig. 2-1(a), is a single fixed coordinate 

system from which all other reference frames for rigid-body or elastic motions are defined. The 

floating frame method, shown in Fig. 2-1(b), is the most commonly used reference frame method 
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for the analysis of flexible robotic systems [30, 31]. In this method, each component has its own 

coordinate system fixed to its body (also known as body-fixed, or local coordinate frames), and 

the deformations of each component are defined with respect to their own coordinate systems. 

Afterwards, the position and orientation of each component’s body-fixed frame is defined by the 

global reference frame, from which the kineto-elastic equations are solved. Finally, for the 

corotational frame approach, shown in Fig. 2-1(c), each deformable element of a flexible 

component model has its own rigidly attached coordinate frame and the motion of the elements 

is separated into rigid-body and flexible-body components [34]. This formulation is used in 

conjunction with floating frames (the origins of which do not have to be rigidly attached to 

points on the deformable bodies) and a common global reference frame [35].   

 

 

Figure 2-1:  Typical reference frames used for flexible robot modeling (a) Global frame, (b) Floating frames, 
(c) Corotational frames 

  

 For each of the mentioned coordinate frame methods, the equations of motion can be 

formulated using Lagrange’s equations, Newton-Euler equations, or the principle of virtual work 

[36]. When selecting the coordinate frame representations, there exist several differences 

between the reference frame methods when the equations of motion are formulated [30, 31]. 

First, the coordinate transformation from the floating frames to the global frame leads to an exact 

representation of the rigid-body dynamics in the undeformed state [37], whereas corotational 

formulations eliminate the element’s rigid-body motion and the global formulations superimpose 

rigid-body motions on the deformations. Therefore, the floating frame representations are usually 

applied for robots that undergo small flexible-body deformations, while the corotational and 

global frame representations are better suited for large deformations. Next, the floating frame 
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formulation leads to a highly nonlinear mass matrix due to the inertia coupling between the rigid-

body velocities and the elastic deformation velocities, as found from computing the kinetic 

energy equations [30], while the corotational and global frame formulations both have linear 

mass matrices since the kinetic energy is computed in a single inertial frame, thus negating the 

coupling between rigid-body and flexible-body motions. Also, the floating and corotational 

frame formulations can have linear stiffness matrices since their elastic coordinates are defined 

in the body-fixed or element coordinates, while the global frame methods produce nonlinear, 

time-dependent stiffness matrices since they are formulated using nonlinear stresses and strains 

[31]. Finally, unless revolute joints are modeled as elastic bodies (such as virtual springs), their 

treatment differs among the three methods. The joints in the corotational and global frame 

methods are modeled by allowing two adjacent components to share a common node. In contrast, 

the floating frame methods require algebraic joint constraint equations between components to 

constrain relative motions. For the floating frame method, the equations of motion for a 

multibody system can be written as follows [30]: 

 , ,

, ,

rr rf r r r ext r v r c r,

,fr ff f ff f ff f ext f v f c f

                 
                    

                 

M M 0 0 0 0

M M 0 D 0 K

q q q f f f

x x x f f

 
  f

 (2.1) 

where M, D, and K are the respective mass, viscous damping, and stiffness matrices, qr 

represents the rigid-body (reference) generalized coordinates and xf denotes the elastic 

coordinates (representing the linear elastic structural deformations). In Eq. (2.1), fext, represents 

the vector of external forces, fv represents the vector of centrifugal and coriolis forces, and fc 

denotes the vector of constraint forces. 

 

 To solve the kineto-elasto-dynamic equations of motion, the differential algebraic equations 

must be solved for rigid-body motions and deformations simultaneously, regardless of chosen 

reference frame formulations. This presents considerable computational complexities. Shabana 

[23] developed an augmented approach which uses Lagrange multipliers to solve for the joint 

constraints in the floating frame, and integrates the accelerations numerically to determine the 

elastic and rigid-body poses and velocities. An alternative approach is to use recursive 

formulations, as found in the literature [36, 37]. To simplify the solution procedure of the kineto-

elasto-dynamic problem, the rigid-body dynamics could be solved separately a priori to obtain 
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the inertia and reaction forces, which can then be introduced into a set of linear flexible-body 

equations, from which the system deformations could be solved. Afterwards, the obtained 

deformations could be superimposed onto the rigid-body motions to obtain the total motion of 

the flexible system. This procedure is referred to as the linear theory of elasto-dynamics [23, 30, 

35]. Here, the inertia tensor (Mrr in Eq. (2.1)) as well as the forces on the right-hand side of Eq. 

(2.1) are assumed to be independent of the elastic deformation effects. Therefore, the equations 

for the linear theory of elasto-dynamics can be obtained as [23, 30]: 

 , ,rr r ext r v r c r,  M q f f f  (2.2) 

 , , ,ff f ff f ff f ext f v f c f fr r     M D K Mx x x f f f q    (2.3) 

Eq. (2.2) can be solved for the rigid-body displacements, velocities, accelerations and reaction 

forces. Afterwards, these rigid-body dynamic parameters can be substituted into Eq. (2.3) to 

solve for the deformations of each component using standard FE techniques. However, the 

accuracy of the results obtained by this approach are questionable when lightweight, high-speed 

robots are analyzed, which in turn cause large link deformations. In these instances, the inertia 

coupling between rigid-body motions and elastic deformations is significantly high and should 

not be neglected [30]. 

 

 Further simplifications to the equations of motion in Eq. (2.1) may arise if a robot undergoes 

low-speed quasi-static motion, with small elastic deflections relative to the link lengths. These 

quasi-static cases are the focus of the research in this dissertation. Though the majority of 

research is concerned with the flexible dynamics of robots, other research applied flexibility 

models to robots that experience quasi-static motion for the purpose of robot control [38] and 

stationary vibration analysis [39]. For quasi-static motion, the joint velocities are constant, thus 

the time-dependent inertial forces in the rigid-body dynamic equations of motion (  and rr rM q

fr rM q in Eq. (2.1)) become negligible. Furthermore, when revolute joint angular velocities 

approach zero, the nonlinear centrifugal and coriolis forces in the equations of motion (fv in Eq. 

(2.1)) also become null vectors. Therefore, the coupling effect between rigid-body and elastic 

motions is negligible for low-speed quasi-static motion. What remains in Eq. (2.1) are the terms 
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strictly related to the structural elasticity of the robot. Accordingly, the solutions to the structural 

elastic deformations can then be obtained linearly using FE methods.  

 

 Previously, a number of researchers assessed the flexibility of joints and links in serial 

manipulators. To account for link flexibility, most researchers used Euler-Bernoulli beams, 

which mainly account for link bending [33]. Also, flexible joints were usually modeled as virtual 

springs with lumped masses, since the inertia of motor components (such as joint shafts and 

gears) is relatively low, storing little kinetic energy [31]. Particular methods were developed to 

determine when components can be considered flexible or rigid. Spong [40] assessed the 

stiffness of manipulators with rigid links and flexible joints and noted that when the joint 

stiffness approaches infinity, the entire model can be treated as an assembly of rigid bodies. 

Yang and Sadler [41] studied the stiffness effects of manipulator components and noted that the 

ratio of joint to link stiffness is an indicator of a robot’s positioning deviation. Xi and Fenton 

[42] analyzed the coupling effects of flexible links and joints, and noted that the joint to link 

inertia ratios are also a factor in assessing the flexibility of an entire robot. Overall, the previous 

research determined that the geometric sizes and inertial properties of the links relative to the 

joints were the main contributing factors in assessing component flexibility.  

2.1.1  Kineto-elastic Model Discretization Techniques 

 To model the elasticity of flexible robot components, a number of discretization techniques 

have been employed in the literature such as finite segment methods, the assumed mode method 

and the finite element method.  Although there are many other existing methods available in the 

literature, the aforementioned methods are particularly useful since they can discretize the 

infinite number of flexible DOFs associated with robot modeling into a finite number of DOFs, 

therefore decreasing the required computational expense.   

 

 Finite segment methods, also known as pseudo-rigid body methods, assume that each 

component consists of a set of rigid bodies connected by a series of springs, dampers and lumped 

masses. Howell et al. [43] modeled flexible links by creating a pseudo-rigid body model. To 

mimic beam bending, their pseudo-rigid model can be represented by two rigid links connected 

with a nonlinear torsion spring joint. The underlying problem was the determination of an 
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equivalent torsional spring stiffness which can adequately represent the deflection at the tip of 

the rigid beam. To solve this problem, a parametric equation was developed under the 

assumption that the large-deflection cantilevered links follow a near-circular path at the tip. 

Afterwards, the rigid-body beam deflection angle was solved using a one-dimensional 

optimization method (golden search), from which the equivalent spring stiffness can be obtained 

from the load-deflection relationships. Saxena and Kramer [44] further developed the method to 

include combined bending and axial loads. Their method was proven to be useful for the kineto-

elasto-static analysis of flexure hinged compliant mechanisms, which undergo large deflections 

and where geometric nonlinearities are prevalent in the beam members.  

 

 For kineto-elasto-dynamic modeling, the assumed mode method can describe link deflections 

using sets of truncated modal series for each DOF, in the form of finite-dimensional Ritz vectors, 

which are in terms of mode eigenfunctions and time-varying modal amplitudes. These assumed 

link deflection functions are then substituted into Lagrange’s equations to derive the equations of 

motion. The method heavily relies on the selection of the assumed mode deflection shapes and 

appropriate BCs of the links. Shabana [45] evaluated a number of different link BCs and noted 

that if the choice of the reference coordinate frame is properly selected, then solutions for the 

assumed modes for different BCs can eventually converge to a single solution. Theodore and 

Ghosal [46] developed an assumed mode model considering only bending in the links with 

clamped BCs. They compared the results with a single-link two-element FE model and noted 

that the FE method is more convenient to model manipulators with complex link geometry, is 

computationally faster, but is less accurate than the assumed modes method in computing natural 

frequencies at higher modes.  

 

 For multi-link flexible robots, the FE method is the most popular choice for discretization in 

the literature. The ability to incorporate dissimilar elements for different components is 

particularly useful for modeling links attached to flexible joints. Huang and Wang [47] modeled 

a three-link spatial manipulator with flexible links and revolute joints. Each link was modeled 

using Timoshenko beam theory and each revolute joint transmission system was modeled using a 

series of virtual springs and lumped masses to mimic a spherical joint with three translational 

and three rotational structural DOFs. This type of joint model allows for full flexibility of the 
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joints and can incorporate relatively rigid joint DOFs by setting the spring stiffness coefficients 

to high values. Yang and Sadler [41] used the FE method to model flexible planar serial robots 

and accounted for flexibility in the links using Euler-Bernoulli beams and flexible joints by 

modeling them as torsional shafts. Torby and Kimura [48] developed an FE model for 

manipulators with prismatic joints by representing each sliding joint as two 3-D beam elements 

and applying moving boundary conditions. Wang and Wang [49] developed FE models for 

flexible planar parallel mechanisms and used an equivalent linear contact spring to represent the 

connecting pin and journal bearing for revolute joints. Zhou et al. [50] modeled a flexible tripod 

PKM considering link flexibility using beam elements, moving platform flexibility using plate 

elements and configuration-dependent flexible spherical joints using virtual springs and dampers.  

 

 In terms of MRRs, most of the kineto-elastic modeling and discretization techniques in the 

literature have been applied to reconfigurable PKMs [15, 50-52]. In references [15, 51, 52], the 

discretization methods involved modeling each link using a single element with diagonal 

stiffness terms (which neglect the coupling of translational and rotational deflections, as found in 

typical FE Euler-Bernoulli beams), and modeling the platforms as rigid bodies. These methods 

use the principle of kinematic and static duality to develop the elastic displacement compatibility 

and force equilibrium equations in terms of a Jacobian or transformation matrix. The equations 

were then used to describe kineto-elasto-static models, based on Hooke’s law. A similar kineto-

elasto-static model was developed by Hu et al. [53] for hybrid serial-parallel mechanisms. For 

serial MRRs, the number of available kineto-elastic analysis and modeling techniques in the 

literature is quite limited. Tosunoglu [54] developed a pseudo-rigid body model for flexible links 

and joints. The joints were modeled as linear torsional springs for revolute joints and linear 

translational springs for prismatic joints, while the links were discretized into a number of nodes 

containing six virtual spring DOFs connected by rigid bodies. In [55], a kineto-elasto-static 

model was developed for a serial MRR using compliance (or flexibility) matrices for the joint 

and link modules, and included the joint offset flexibilities, as well as the effects of gravity in 

terms of payload, motor and module structural weights. White et al. [56] developed a general 

kineto-elasto-static model for tetrahedron-shaped modules using beam elements connected to 6-

DOF virtual springs for the joints. Overall, the kineto-elastic modeling of fully flexible serial 
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MRRs has not been extensively studied, and more research is necessary since these robots suffer 

from flexibility issues more so than PKMs. 

2.2  Workspace Search Methods for Robot Kineto-Elastic Analysis 

 Workspace search methods are effective tools for quantifying the pose-dependent kineto-

elastic performance of MRR configurations. In the current literature, there are two main types of 

workspace search methods used in kineto-elastic analysis: increment-based and grid-based. 

Increment-based methods use forward kinematics to search a robot’s workspace. First, the joint 

ranges of motion are pre-specified and each joint range is divided into a number of motion 

increments (angular increments for revolute joints, linear increments for prismatic joints). Then, 

the robot poses are scanned one-by-one by hierarchically searching through the joint ranges in 

increments until all possible combinations of prescribed joint variables are accounted for. At 

these poses, the required kineto-elastic performance parameters are computed and stored. On the 

other hand, grid-based workspace search methods use inverse kinematics to search through a 

workspace. This is accomplished by assuming an initial shape for the workspace boundary, such 

as a cube, then dividing the boundary into a number of grid points which represent the possible 

number of robot positions. At each possible position, the inverse kinematics are computed to 

determine if the grid point is reachable, along with any kineto-elastic performance parameters. If 

a grid point is not reachable in the workspace, then it is removed from the set. Overall, the 

current workspace search methods are useful if the workspace boundary or volume is required. 

The kineto-elastic performance parameters can then be visualized in contour plots over the 

workspace, as shown in Fig. 2-2(a) which uses an increment-based search. A workspace volume 

computation using a grid-based search is shown in Fig. 2-2(b).  

 

 In the previous literature, increment-based workspace search methods were used for non-

reconfigurable serial robots, and grid-based methods were used for parallel robots. The main 

reason is that the forward kinematics are easier to compute for serial robots, whereas the inverse 

kinematics are easier to compute for parallel robots. As an early example, Tang and Wang [57] 

assessed the effects of link deflections and joint compliance on the overall positioning of a two-

link planar flexible manipulator by calculating the link displacements from Euler-Bernoulli beam 

theory, and approximating the joint compliance with a torsional spring. Their kineto-elasto-static 
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analysis used an increment-based search with 180° motion ranges, and joint variable increments 

of 20°. Increment-based workspace searches were also utilized to analyze the pose-dependent 

stationary vibration characteristics of serial manipulators. Sadler and Yang [58] analyzed a 

cylindrical serial manipulator with one revolute joint at the base connected to a prismatic joint 

and observed the natural frequency changes at different prismatic joint lengths. Their analysis 

was simplified by fixing the base joint motion to simulate low-speed quasi-static motion. 

 

 

Figure 2-2:  (a) Workspace visualization with kineto-elastic parameter mapping using increment-based 
search [59], (b) Workspace volume computation using grid-based search [51] 

 

 In more recent work, Li et al. [59] used an increment-based search method to analyze the 

dynamic effects of a 3-DOF industrial manipulator with flexible joints and an additional 3-DOF 

wrist, with and without the additional mass effects of a riveting tool. The manipulator was 

modeled with rigid links and flexibly joints. Also, the workspace computations were simplified 

by assuming the wrist and base joint DOFs were fixed, and were performed using 1° joint 

variable increments. The joint and tool vibration ratio over the workspace is shown in Fig. 2-2(a) 

as an example of kineto-elastic parameters plotted over a workspace. Many other researchers 

incorporated kineto-elastic indices to evaluate kineto-elastic performance over a robot’s 

workspace. A popular parameter for the evaluation of static torque was based on the condition 

number of the Jacobian (or twist transformation) matrix [60]. However, this parameter may not 

be as useful as directly searching for the highest torques. This was caused by two reasons: first, 

the twist transformation matrix terms do not have similar units, and second, the condition 
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number of the twist transformation does not take into account module self-weights, as shown in 

the derivation [60]. Previously, other parameters such as stiffness ellipsoids were also derived 

assuming external end-effector payloads and do not take into account individual component self-

weights [61, 62]. Thus, direct evaluations of the deflections, torques or natural frequencies are 

more reliable methods for assessing the stiffness performance of assembled MRR modules in 

different configurations and poses. Instead of mapping kineto-elastic indices over a robot’s 

workspace, other researchers performed workspace searches to determine only the best or worst 

robot poses with respect to kineto-elastic performance. Gan et al. [63] applied an increment-

based search method to a 3-DOF non-reconfigurable serial robot to determine the worst-case 

pose which yields the highest joint torques due to robot collision by hierarchically searching 

through the joint parameters together with joint angular velocity directions one-by-one in their 

alue ranges.  

of a PKM’s stiffness matrix in separate plots 

 find the dominant modes of static deformation.  

v

 

 In terms of grid-based workspace searches for parallel robots, Xi et al. [51] formulated a 

kineto-elasto-static model of a PKM using compliance matrices for the links and joints. Two 

indices were computed to evaluate the stiffness performance over the workspace using the trace 

of the assembled PKM compliance matrix. Piras et al. [64] mapped the static stiffness and 

fundamental natural frequency for a planar motion parallel robot’s workspace using a grid-based 

search. In their analysis, only the axial elastic deformations were considered in the links. 

Callegari et al. [65] performed a kineto-elasto-static analysis to aid in the design of a compliant 

parallel robot with flexure hinges as joints in order to optimize its workspace volume. Tyapin 

and Hovland [66] performed a similar analysis on a parallel robot and designed it to optimize 

kinematic and stiffness requirements via a multi-objective optimization approach. Chi and Zhang 

[52] mapped each of the dominant diagonal terms 

to

 

 In previous papers with non-reconfigurable robots, only the workspace of one configuration 

was analyzed, whereas an MRR has multiple configurations and each configuration has its own 

workspace. It would be beneficial to develop a computationally efficient and accurate method to 

analyze the workspaces of all feasible configurations to determine which configurations have the 

best or worst kineto-elastic performance. For serial MRRs, there are few published examples 
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which involve kineto-elastic workspace searches for different joint reconfigurations. In [55], a 

kineto-elastic workspace search was conducted to determine the MRR configurations with the 

highest translational tip deflections in order to facilitate the stiffness design of the modules. 

However, the increment-based search method, which scanned through the robot poses one-by-

one for each configuration workspace using joint angular increments, can be proven to lack 

accuracy if large increments are used, and can lead to extremely high computational times with 

smaller increments. A similar effect can be found using grid-based search methods with inverse 

inematics.   k

 

 In the incremental and grid-based search formulations, a pre-determined number of poses are 

analyzed, but in reality, a robot’s workspace has an infinite number of possible poses.  Also, 

these “brute force” search methods may be proven to be computationally expensive if only a 

maximum or minimum stiffness result is required, for example, to obtain knowledge of the 

robot’s operating payload limits. For typical non-reconfigurable serial robots with simple shapes 

and no joint offset distances, the worst-case kineto-elastic pose occurs at maximum arm stretch. 

On the other hand, the worst-case configurations and poses for MRRs are not easily identified 

due to possible changes in dominant deformation modes present in each module. Thus, a more 

direct search method is the preferred choice for MRRs. Earlier direct search methods were 

applied to the kinematic calibration or optimal module selection problems for serial MRRs. In 

[19], a hybrid method was developed for the kinematic calibration of a small set of predefined 

MRR configurations with unknown geometric errors. A Monte Carlo method was used to 

generate several random poses for a configuration and the calibration was performed only at 

those poses using a genetic algorithm to achieve a robust solution. However, there was no 

heuristic function to directly evaluate the relative error between the random poses. Thus, without 

any knowledge about the relevance of the poses in a configuration’s workspace, the worst-case 

poses might be completely missed or unaccounted for. Furthermore, when searching the 

workspaces using traditional optimization methods, such as gradient search methods or 

sequential programming methods, the solution for the worst-case kineto-elastic poses may 

become trapped in local optima instead of a global optimum. This is mainly due to the fact that 

these methods use local searches which compare the values of the nearest points, then move in 

the direction of the more optimal points. Overall, an efficient and numerically accurate direct 
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search method which can guarantee a global optimal solution for the worst-case kineto-elastic 

performance of an MRR is required. To do this, the method should be able to identify the 

feasible MRR configurations with respect to kinematics and kineto-elastic performance 

requirements, and search the MRR’s feasible configuration-space along with workspaces of each 

configuration.  

 

 additional stiffening elements can be added or the payload capacity could be optimized. 

2.3  Design for Robot Kineto-Elastic Performance Requirements 

 The structural design of typical non-reconfigurable robots usually includes minimizing 

kineto-elastic performance measures (such as deflections and vibrations), or maximizing 

stiffness. The design parameters usually include material properties and cross-section 

dimensions. Other possible topology design parameters, such as link lengths for serial robots, are 

usually pre-determined from a separate kinematic design stage, and are kept fixed during the 

structural design process. For realistic designs, constraints on link and joint sizes, or their 

masses, must be incorporated. Also, for a given payload requirement, when the objective is to 

minimize the mass of the robot, constraints on the deflections and vibrations must be applied. On 

the other hand, to meet a set of kineto-elastic performance requirements for existing robot

designs,

  

 Typically, the structural design problem is solved using optimization methods. Sadler et al. 

[67] presented design methods for flexible manipulators, including four-bar mechanisms and 

three-link serial manipulators, using the commercial FE software package ANSYS®. Lin and Lin 

[68] proposed a methodology for designing flexible robots and noted the weight trade-off 

between increasing the link thicknesses to reduce the deflections and vibrations of the robots 

under study. Oral and Ider [69] optimized the link cross-sections of a flexible manipulator with 

Euler-Bernoulli beam finite elements under time-dependent displacement constraints using 

sequential quadratic programming. Zhu et al. [70] performed a simultaneous structural and 

control optimization of a two-link manipulator with the FE link cross-section areas as design 

variables for reduction of the overall weight. Shijun and Jinjuan [71] optimized the structural 

variables of an industrial three-link parallel robot using ANSYS®. Roy et al. [72] used the FE 

method to design and analyze a two-link robotic arm to have high static strength, high vibration 

frequencies and low weight over the entire workspace. Dixit et al. [73] designed a single-link 
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Cartesian manipulator with a revolute joint and a prismatic joint support by determining the 

cross-section variables of the links to maximize the individual FE beam fundamental frequencies 

as opposed to maximizing the system fundamental frequencies with constraints on the link mass 

and deflections. Their optimization was performed using the sequential quadratic programming 

method. Abdel-Malek and Paul [74] increased the stiffness-to-weight ratio of a manipulator arm 

by replacing a hollow circular cross-section link with one that is made with three hollow tubes 

onnected in parallel. 

ization method for robot structural design, as evidenced by many applications in the 

terature.  

c

 

 Global optimization methods such as simulated annealing, particle swarm optimization and 

evolutionary algorithms, have been useful in designing robots for kineto-elastic performance 

requirements. Zhongyi et al. [75] used a simulated annealing algorithm and FE software to 

optimize the cross-section variables of a two-link high-speed manipulator to increase the 

structural stiffness and improve kineto-elasto-dynamic performance. Eberhard and Tang [76] 

implemented the particle swarm optimization algorithm to optimize the link stiffness vales of a 

hexapod PKM. They performed the optimization at a fixed number of random poses 

simultaneously, and their objective function was to minimize the average minimum eigenvalue 

of the leg stiffness at each pose. Cui and Xiao [77] optimized the shape of single-link 

manipulators with the objective of maximizing natural frequencies with weight constraints using 

a GA. Saravanan et al. [78] designed a robotic arm by optimizing the link cross section 

thicknesses using three different multi-objective evolutionary algorithms and the comparing the 

solutions of each. They also compared the effectiveness of performing the optimization using 

different link cross section shapes. For multi-objective optimization problems, many authors 

combined the multiple objective functions into a single weighted objective function.  Zhang et al. 

[79] used a GA with a combined objective function to maximize the workspace volume and 

stiffness over the workspace of a tripod PKM. Ultimately, the GA has been a proven reliable 

global optim

li

 

 Currently, the existing structural design methods were developed for traditional non-

reconfigurable mechanisms and there are few existing methods for serial MRRs that were 

discussed in detail. It is well known that an increasing number of modules can increase the total 
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number of configurations exponentially, so the optimal structural design of MRRs can become 

quite complicated. The design examples used in [67-72, 75, 77 and 78] were all non-

reconfigurable planar manipulators with the joints modeled as simple springs, and the most 

critical manipulator pose is known to occur at maximum arm elongation, which can be 

determined by visual inspection for these cases. For MRRs that undergo spatial motion with 

longer joint modules, such as the one shown in Figure 1-1, the shape of the assembled MRR 

structure can become quite complex and one has to consider the most critical configuration and 

pose that will yield the most suitable design points from a number of possible configurations and 

their respective poses, as opposed to just one. These design points are not easily obtainable by 

visual inspection, and the dominant modes of deformation for each module may change, for 

example, from link bending to joint torsion; thus yielding a critical pose that is different from the 

maximum elongation pose. Furthermore, the optimal MRR design should satisfy the kineto-

lastic performance requirements for all configurations.  

consideration for multiple joint reconfigurations, which is a clear deficit in the current literature.  

e

 

 The majority of research in open-chain MRR structural design has been focused on designing 

the modules for kinematic tasks. Other researchers who studied serial MRR structural designs 

did so without regard to the kineto-elastic flexibility issues in different module reconfigurations, 

as found in [8, 12-14, 21]. Alternatively, researchers focused on improving the kineto-elastic 

performance of existing MRR modules by adding stiffening springs to the joints to achieve static 

balancing [63, 80], but the design procedures conducted in the literature were limited to a single 

configuration only and it is not known which configurations are the best or worst performing 

based on their examples. Also, re-designing existing off-the-shelf modules is often a costly 

procedure, requiring extensive machining and modifications to the joint modules. Instead, tuning 

the parameters that are external to the MRR structure, such as the external payload capacity or 

tool reaction force, can prove to be viable options to improve the kineto-elastic performance of 

existing MRR modules. Overall, the published MRR module structural design methods lack 

2.4  Component Substructuring Methods for Vibration Analysis 

 Component mode synthesis (CMS) methods were originally developed to reduce the 

numerical complexity from analyzing the structural dynamics (for mode shapes and natural 
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frequencies) of large system FE models which do not change geometry, such as entire aircraft or 

trusses and frames. The first CMS method was developed by Hurty [81]. The FE model 

reduction is accomplished by dividing the system into separate substructures, each of which 

consists of boundary and interior DOFs, then performing a modal analysis on each substructure 

to determine the normal modes and other modes which relate to component connectivity in terms 

of forces and displacements. Afterwards, a specified number of normal modes are kept for the 

reduction process and modal transformation matrices (based on Ritz coordinate vectors) are used 

to reduce the matrix sizes of each component’s dynamic model. The reduced CMS matrices 

contain a combination of physical coordinates (corresponding to the boundary DOFs) and 

eneralized coordinates (corresponding to the reduced set of internal DOFs).  

vided into three substructures to convey the differences between the three main interface 

pes.  

g

 

 In general, CMS methods can be classified according to the types of interface BCs used to 

obtain the normal modes, and the types of modes that can enforce displacement compatibility 

and/or force equilibrium conditions between separate substructures. Among the most popular 

CMS methods are the Craig-Bampton method [82], which uses component fixed-interface 

normal modes, and the MacNeal and Rubin methods [83, 84], which use free-interface normal 

modes. Later researchers further developed the methods to include the possibility of hybrid-

interfaces which can connect one component with a free interface and another with a fixed 

interface [85-87]. The CMS modal transformation matrices developed in [85-87] are specific to 

the type of interface conditions used, and are therefore limited in their approaches since they 

have to be reconstructed for different interface BCs. Also, the physical coordinates of the 

component interfaces might be eliminated in the reduction process and CMS assembly needs to 

be performed using generalized modal coordinates. Fig. 2-3 shows an example of a cantilevered 

beam di

ty

 

 To assemble the reduced substructures (whose equations of motion usually contain terms in 

both generalized and physical coordinates from the applied modal transformation matrices), the 

displacement compatibility and force equilibrium constraints are enforced. There are two 

approaches most commonly used for CMS assembly. The first approach, termed the “primal 

formulation” in [88], defines a unique set of interface DOF, and the interface forces are 
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eliminated as unknowns using interface equilibrium, thus finally describing the system using the 

equations of motion and displacement compatibility equations. The second approach, called the 

“dual formulation” is another approach to perform CMS assembly [88, 89]. In this method, the 

full set of assembled global DOF is retained and the assembled system is obtained by satisfying 

the interface force equilibrium in terms of Lagrange multipliers. By implementing the constraint 

equations in the form of a matrix, a linear transformation can be introduced and the assembly 

process of the system equations resembles that of the direct-stiffness method for typical FE 

ssembly, as found in [90]. 

 

a

 

Figure 2-3:  (a) Coupled cantilever beam system, (b) Fixed-interfaces, (c) Free-interfaces, (d) Hybrid 
interfaces 

 

 In terms of component damping models, the majority of CMS methods can handle Rayleigh 

proportional or structural (hysteretic) damping since the computed normal modes are nearly 

identical to those of an undamped model [91]. However, if general damping is considered, the 

kept normal modes will appear in complex conjugate pairs and the modal transformation matrix 

will need to be partitioned to include the complex-valued responses and their time derivatives. 

Morgan et. al [92] developed the fixed-interface Craig-Bampton modal transformation matrices 

for cases which involve general damping. More recently, the hybrid-interface CMS approaches 
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for stationary structures have been improved by Majed et. al, [93] and Dieker et al. [94] to allow 

for any set of interface BCs (all fixed, all free, or hybrid) to be used. Also, the component normal 

modes in these newer hybrid methods can be computed using any of the mentioned BCs. Further 

advantages of the methods in [93, 94] include explicit incorporation of physical coordinates at 

the interface boundaries, component independence, static completeness (gives the exact static 

solution for each component), inclusion of different damping types between components, and 

ase of testing components experimentally. 

pes of modes most commonly used for the 

of retained 

straint modes. The process is 

are computed by applying a unit displacement at each rigid-

body DOF one at a time.  

 

e

 

 The different combinations of component modes used in the CMS modal transformation 

matrices, often referred to as component mode sets [95], are specific to the CMS method used 

and the selection of component interface BCs. The ty

various CMS models are defined as follows [89, 95]: 

o Normal modes are the eigenvectors obtained from solving each component’s free 

vibration problem with the component BCs either all fixed, all free, or a combination of 

fixed and free constraints. Only a selected number of modes are kept from the complete 

set of normal modes from the full FE model of the component. The number 

normal modes is what dictates the reduction of matrix sizes in CMS methods. 

o Constraint modes are defined as the static deformation modes of a component when a 

unit displacement is applied to a set of interface DOFs (which are normally fixed when 

computing the normal modes), while the remaining component DOFs are restrained with 

zero forces. If there are multiple interface boundaries, or redundant interfaces, the process 

is repeated for each interface, thereby forming multiple con

equivalent to a Guyan reduction [96] of the interior DOFs.  

o Rigid-Body modes representaa the rigid-body configurations of a component when it 

experiences zero-deformation displacements. The rigid-body modes are defined relative 

to any set of boundary DOFs that are sufficient to restrain the rigid-body motion of a 

component. These modes 
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o Attachment modes are used to complement free-interface normal modes and are defined 

as the component displacement vector due to a unit force applied to one of the interface 

DOF, while all remaining DOFs have zero applied forces. If the component is fully 

unrestrained and rigid-body motion occurs, as found in free-free component BCs 

(statically indeterminate), then the flexible static behavior of the component can be 

captured by momentarily applying fixed constraints to the rigid-body DOFs and 

determining the resulting static modes. MacNeal [83] and Rubin [84] remove the rigid-

body contribution to form inertia-relief modes. 

o Residual flexibility modes compensate for the loss of accuracy when discarding free-

interface normal modes for statically determinate or indeterminate component BCs by 

removing the contributions of the kept normal modes from the flexibility matrix (inverse 

of the stiffness matrix). This process is equivalent to removing the kept mode 

contributions from the attachment (or inertia-relief) modes, which are an alternative 

representation of the flexibility matrix expressed in terms of the omitted normal modes. 

Thus, the residual flexibility modes can effectively increase accuracy without increasing 

the number of kept normal modes. 

 

 Other CMS modes were developed such as the use of quasi-static constraint modes from 

Shyu et al. [97]. The intention of these modes was to capture the inertial effects in the static 

constraint mode formulation by including the mass matrix. Therefore, the undamped equations of 

motion are used to solve for the quasi-static constraint modes at a particular tuning frequency. 

Shyu et. al [97] determined that the optimal tuning frequency for quasi-static modes should be 

chosen slightly lower than the natural frequency of interest. Benfield and Hruda [98] introduced 

the concept of loaded-interface normal modes to account for the stiffness and mass coupling of 

adjacent components. These types of modes are computed either by reducing the adjoining 

component interface terms, then adding those terms corresponding to the stiffness and mass 

matrices of the component of interest [98], or by adding ad-hoc stiffness and mass terms at the 

interface of the adjacent component to the current component under study [95]. The normal 

modes of the component are then computed with the loaded-interface terms. Although these 

methods violate the “component independence” criterion [95], they are useful for experimental 
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CMS applications, since separable components are usually connected to each other with 

fasteners or there are overlaps between components at their interface boundaries. 

2.4.1  Experimental Component Mode Synthesis Methods 

 Originally, CMS methods were developed with the intentions of reducing system models and 

not for experimental applications where measured modes are used in the CMS model [82, 95]. 

The early experimental examples were mainly conducted to validate CMS models [83, 84]. 

Many previous researchers made attempts to directly measure the required component modes 

used in CMS modal transformation matrices, with the overall goal of avoiding testing the entire 

assembled structure experimentally. However, direct experimental mode substitution methods 

are difficult to implement since direct measurements of static constraint modes for fixed-

interfaces, or attachment modes for free-interfaces, may prove to be troublesome tasks. The 

major difficulty in experimentally deriving component models for CMS is the treatment of 

experimental BCs for each component. Previous work by Rubin [84], Baker [99] and Alvin et al. 

[100] suggests using free-free BCs for component experimental testing. Typically, this is 

accomplished by hanging components using cables or bungee cords to simulate free boundaries. 

However, these methods heavily rely on the accuracy of measured residual flexibility terms due 

to modal truncation, thus requiring measurements at component interfaces. Because interface 

modes occur at much higher frequencies than the substructure’s internal modes, this is a difficult 

task to achieve, especially if the displacement output sensors (accelerometers) have a low 

frequency bandwidth.  

 

 To improve the accuracy of free-free CMS models, Karpel et al. [101] suggested testing 

components with mass-loaded interfaces, which force the lower frequency modes to contain 

necessary interface information. This method also allows the higher frequency residual flexibility 

modes to be captured in a lower experimental frequency range. Mayes et al. [102] developed a 

similar method in which a large flexible mass is added to each component tested to improve the 

modal basis of the substructures. The coupled system is first tested, then the flexible mass is 

tested alone to determine its dynamic characteristics and is then removed analytically 

(decoupled) from the experimental component to obtain the true system dynamic characteristics. 

The effectiveness of the method was further studied by Rohe and Allen [103]. Misawa [104] 
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developed a method in which the effects of untested components are accounted for in the 

analytical models of tested components using additional reduced stiffness and mass terms at 

specific nodal coordinates for translational DOFs. The method involves reducing the analytical 

system equations of motion to only include the coordinates where the translational stiffness and 

mass terms are to be added from the untested components using Guyan reduction, then reducing 

a tested component’s equations of motion without the effects of the added stiffness and mass 

terms. Afterwards, the difference between the two reduced models allows for a determination of 

the effects of the untested components, from which the stiffness and mass terms can be added to 

the system model to account for the untested components.  

 

 Other methods included performing modal tests on components attached to fixtures 

connected to the ground with arbitrary stiffness. Soucy and Humar [105] created a hybrid 

method in which the constraint modes of fixtures can be determined experimentally using static 

tests, and component free-interface and normal modes are determined using modal tests. The 

static tests were performed on beam and frame structures using a flexible fixture with arbitrary 

stiffness (constructed with thin beams) and the components were connected to the fixture at the 

interface attachment points. A known static force was applied at the attachment points on the 

fixture and the translational displacements and reaction forces at the supports were measured 

using and linear variable differential transformers (LVDTs) and load cells. Allen et al. [106] 

presented methods to remove the modal effects of large flexible fixtures by employing modal 

constraints to analytically force the fixture motion to zero. These methods do not require separate 

fixture motion measurements, and the tests are only required on the coupled fixture and 

component system. The first method they presented uses constraints to nullify the fixture 

motions and therefore required the number of measurement points to be equal to the number of 

fixture modes. However, in actual practice, the number of measurement points can be far greater 

than the number of measurable modes, especially if the fixture is much stiffer than the 

component. The second method Allen et al. [106] developed involved performing singular value 

decomposition (SVD) on the coupled fixture and component modes and constraining the fixture 

motion to zero. This method seems to be more practical since the fixture motion constraints do 

not require motion measurements on the fixture alone.  
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 Alternatively, frequency-based substructuring (FBS) methods were developed [107, 108] to 

couple or decouple the experimental FRFs of two or more components connected to each other 

[107, 108]. In the majority of the FBS methods, the component models are left in an unreduced 

form, and the difficulty of the experimental applications arise from the inability to directly 

measure dynamic stiffness terms. Instead, the receptance (inverse of dynamic stiffness matrix) 

rows and columns of components and assemblies can be readily measured. However, to decouple 

the receptance terms of an assembly, these methods usually require separate tests for the 

components of interest, along with force and motion measurements at their connectivity 

interfaces, where it might be difficult to place sensors or force transducers, especially if the 

components are clamped together or are connected by fasteners or joints.  

 

 To determine response measurements directly from a CMS model, test-analysis models 

(TAMs) were developed to include the measurement coordinate locations in the analytical CMS 

models. This is a requirement if the physical coordinates where measurements were taken are 

reduced to a set of generalized modal coordinates during the CMS reduction process. Blades and 

Craig [109] developed a TAM for a Craig-Bampton method with fixed interfaces. Morgan et al. 

[110] developed a TAM for determining the uncoupled forced response of each component using 

free-interfaces in order to determine the couple system response. What differs from other TAM 

techniques like Guyan reduction (which is used to eliminate specific unmeasured DOF from full 

FE models using static condensation), is that the CMS-based TAMs apply an additional modal 

transformation matrix during the reduction process to retain the measurable DOF (instead of 

eliminating unmeasurable DOF) thus increasing the number of physical coordinates in the CMS 

reduced system matrices. Another method is to recover the physical coordinates where 

measurements were taken in a post-processing stage, though this method is rarely discussed in 

the literature since measurements are usually taken at physical coordinates which coincide with 

interface boundaries. 

2.4.2  Component Mode Synthesis Modeling of Robots 

 The existing CMS methods were applied for the kineto-elasto-dynamic analysis or stationary 

modal analysis (structural dynamics) of robots. One of the earliest examples in the literature 

from Imam et al. [111] involved the development of a CMS model for the kineto-elasto-dynamic 
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analysis planar mechanisms by including the rate of change of the natural frequencies with 

respect to mechanism motion. Shabana and Wehage [112] developed a floating frame approach 

for the vibration analysis of serial robots. Also, the BCs for each link were assumed to be free-

free with normal and rigid-body modes computed to perform CMS. De Smet et al. [26] 

developed a stationary vibration model of an industrial manipulator using Craig-Bampton CMS 

with fixed link boundaries, and validated their results with modal experiments on the assembled 

robot in two different poses. Jen and Johnson [113] used a CMS model with free-interfaces to 

study the effects of pose changes and payload variations on the stationary vibration 

characteristics of a planar manipulator. Xianmin et al. [114] used a free-interface CMS method 

with residual flexibility attachment modes to model parallel mechanisms in order to analyze 

stationary vibration in different mechanism poses. Moon and Cho [28] obtained the experimental 

modal parameters of a four-bar linkage and industrial manipulator by separating the links and 

suspending them with cords to simulate free-free boundary conditions. The normal mode shapes 

were then directly substituted into their CMS model for validation purposes. However, their 

method did not include the use of attachment modes, rigid-body modes, or residual flexibility 

modes, and they did not include the possibility of joint stiffness or damping. Therefore their 

method yielded natural frequency errors as high as 14.1% and 16.2% for the first modes of each 

case. Park and Mills [27] modeled a manipulator connected to a flexible payload using CMS 

with fixed interfaces and quasi-static constraint modes to reduce the complexity of the dynamic 

equations of motion. 

 

 Aside from the floating (body-fixed) frame approach, CMS models have been developed 

using other coordinate frames. Craig and Anthony [115] developed a CMS method for multibody 

system dynamics using either tangent reference frames, where the coordinate frame is locally 

attached to a point on the link, or secant reference frames, which pass through specified interface 

nodes and are defined by the instantaneous positions of the endpoints of the link. Cardona [116] 

developed a corotational frame approach using the Craig-Bampton CMS method for links with 

fixed interfaces. More recently, other researchers developed CMS methods for robots using 

absolute coordinate frame formulations. Gerstmayr and Ambrosio [117] and Pechstein et al. 

[118] developed absolute nodal coordinate formulations for their CMS models for the Craig-

Bampton method. The advantage of their method when performing kineto-elasto-dynamic 
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analysis is that the assembled system’s mass and stiffness matrices become constant. However, 

their current shape function formulations do not consider flexible rotational DOFs.  

 

 In the current literature, there are no CMS methods applied to modular robots. For serial 

MRRs with separable joint-link modules, CMS modeling would be ideal since the modules can 

be naturally interchanged or removed from the system assembly. CMS models can also prove 

useful when comparing analytical models to experimental tests. Naturally, the simplest BCs to 

implement for joint-link modules would be to fix one end of an active joint, with the end of the 

link being free. This would allow the joint-link module to be tested at different joint angles to 

identify pose-based dependencies on the configurations, which may be caused by additional joint 

structural flexibility. Furthermore, the joint flexibility contributions in the current robot CMS 

methods in [26, 27, 111-118] were neglected, and the joints were all considered rigid. Although 

CMS methods with “mixed” BCs were studied for robots [119], the interface BCs between 

adjacent components were either all free, or all fixed. Therefore, a hybrid CMS method needs to 

be developed for serial joint-link modules.  

2.5  Structural Dynamic Model Updating Methods 

 For large and complicated system assemblies, the accuracy of FE or CMS vibration model 

predictions may often exhibit questionable errors when compared to experimental test data. 

These errors can often originate from modeling inaccuracies such as incorrect damping 

predictions, flexible connections or joints, improper modeling of experimental BCs, and 

incorrect assumptions of material properties. As a result, it would be beneficial to update the 

analytical structural dynamic model parameters to provide better correlation with experimental 

results. Over the past few decades, there has been a considerable amount of research in FE 

updating techniques using experimental data for large stationary structures [120]. Typically, 

these methods can be classified according to the types of data extracted from experiments (modal 

data vs. frequency response functions, or FRFs), types of parameter adjustments (direct matrix 

terms vs. model physical parameters such as element material properties and geometry), and 

solution methods (direct vs. iterative or optimization approaches). 
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 There are several advantages to using directly measured FRF data as opposed to estimating 

modal data for model updating [121,122]. First, FRFs contain a greater number of data points 

than modal data for the same number of tests. Likewise, FRFs contain information about sub-

component modes that cannot be directly measured and modes that are out of the specified 

bandwidth. Because modal data is derived from FRFs at resonant frequencies, accurate modal 

data is difficult to obtain near closely-spaced or highly damped modes. Also, modal parameter 

estimation procedures usually involve curve-fitting procedures, which can introduce further 

errors. Furthermore, FRF data can be specified for any number of measurable DOFs, whereas 

critical mode shape information may be lost if there are too few measurement points. Finally, 

measured modal data should either be expanded to fit the number of DOFs in an FE model, or 

the FE model should be reduced to match the number of measurement points; these expansion or 

reduction methods are usually prone to numerical errors. Fig. 2-4 shows an updated FRF of a 

beam model using simulated experimental data. 

 

Figure 2-4:  Updated FRF using simulated experimental data 

 
 In terms of FE parameter adjustments, updating the model physical parameters seems to be 

the most logical choice since direct matrix modifications may not produce physically meaningful 

results [123]. The majority of direct solution methods apply direct matrix modifications instead 

of tuning the physical model parameters. Pilkey [124] devised a direct solution method to 

determine a symmetric general damping matrix for beams using experimental modal data and 

known stiffness and mass matrices. Avitable et al. [125] developed the analytical model 

improvement (AMI) method, which uses initial estimates of analytical mass and stiffness 
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matrices along with experimental mode shape and natural frequency data in order to update the 

mass and stiffness matrices to match the target data. The AMI method uses a weighted pseudo-

inverse solution with the weighting terms equal to the experimental modal vectors. This method 

was implemented by Butland and Avitable to update analytical Craig-Bampton reduced 

component models of a plate assembly, instead of directly substituting experimental modes into 

the CMS matrices [126]. A Guyan reduction technique was used in [126] to eliminate the nodes 

where measurements were not taken before the CMS reduction was applied. Carvalho et. al 

[127], developed a direct updating method which requires no model reduction or expansion 

techniques and requires only a small number of resonance frequencies and modal vectors. 

Although direct solution methods, which mainly use extracted experimental modal properties, 

are more computationally efficient, they may suffer from improper node connectivity, fully 

populated matrices, violation of matrix symmetry, or the loss of a positive definite stiffness 

matrix [123].  

 

 Iterative updating methods which use FRF sensitivity matrices can produce physically 

realistic system matrices. Lin and Ewins [121] developed the response function method (RFM) 

initially for undamped structures. The RFM method uses FRF data (receptances) directly to 

compute an error function with respect to an analytical model. The analytical dynamic stiffness 

matrix terms are rewritten in terms of small perturbations and the RFM equations are then 

formed into a linear system of equations relating a sensitivity matrix and an unknown vector of 

fractional parameter corrections to the error between experimental and analytical FRFs. The 

RFM method is computed for a given number of FRFs at known frequency points and is solved 

using a pseudo-inverse in an iterative fashion. This method was further developed by Lin and 

Zhu [128] to include updating proportional or general damping matrices. Later, the RFM method 

was used extensively by Arora et al. [129] to update the stiffness and mass matrices of an F-

shaped beam structure, while the damping matrix was updated using the direct method from 

[124]. The advantage of the RFM method is that physical connectivity of the analytical model is 

preserved and that the system matrices remain symmetric, with positive semi-definite stiffness 

and positive definite mass matrices. Also, the method can use incomplete sets of FRF data, with 

analytical FRFs replacing the missing terms. On the other hand, these methods are sensitive to 

noise and can yield non-unique parameter estimates, especially if the initial model estimate is far 
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from the nominal system parameters. As well, the system matrices may become ill-conditioned if 

the error between experimental and analytical FRFs is too large and the solutions yield non-

unique updating parameter estimates. Furthermore, the method may experience large 

discrepancies near resonances when solving the pseudo-inverse [130]. To solve this problem, 

Kwon and Lin [131] determined that the frequencies from which the RFM method is computed 

should be at least 2 Hz away from resonances. Other iterative methods included updating FE 

parameters using sensitivity matrices based on modal vectors [132] or antiresonance eigenvalues 

[133]. 

 

 Alternatively, FE updating methods were applied using optimization algorithms for 

stationary structures. In the majority of these methods, the objective function is to minimize the 

error between the analytical and experimental FRFs, which takes the form of the initial RFM set 

of equations, without resorting to sensitivity matrices and small perturbation theory. Levin and 

Lieven [123] developed updating methods using a genetic algorithm or simulated annealing. 

Other optimization algorithms involved using particle swarm optimization [134], and the bees 

algorithm [135]. A multi-objective updating approach has been studied by Kim and Park [136], 

where the solutions for the updated parameters were chosen from a Pareto-optimal frontier, and 

robust updating parameter selection methods have been applied by Kwon and Lin [137] using the 

Taguchi method in combination with a GA. Recently, Beck et al. developed a neural network 

approach combined with two evolutionary algorithms to update component geometries in a 

simulated experiment [138]. The objective functions in the optimization methods are usually the 

summed error (or sum of squares error) over the entire range of FRF data [124, 134-136], or the 

Euclidean norm of an FRF error vector (row or column) is computed to reduce the objective 

function to a scalar quantity for multiple DOF [138]. Other researchers compute a mean square 

percentage error between analytical and experimental FRFs, then divide this quantity by the 

number of FRF data points used in the updating procedure [139]. The main advantage with using 

optimization methods for updating is that bounded inequality constraints can be applied to the 

updating parameters in order to provide physically realistic solutions and improve solution 

convergence [136, 140, 141]. The main downside to these methods is that unique solutions are 

almost never guaranteed and long computational times are required for high solution accuracy.  
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2.5.1  Model Updating Techniques for Robots 

 The model updating techniques have been successfully developed and applied to typical non-

modular robots in the current literature. In these methods, fully assembled robots were 

experimentally tested (or a simulated experiment was performed) using a large number of poses. 

In particular, the dynamic parameters of the joints, such as stiffness and damping, are unknown 

and should be identified. Pham et. al, [142] developed an updating method using a bandpass 

filter to identify the joint stiffness of a serial manipulator with rigid links and flexible joints. To 

excite the structure near the first natural frequency, the robot’s controller provided a chirp 

function to move the joints, and the position feedback was determined from the joint encoders. 

Alici and Shirinzadeh [143] developed an identification procedure to determine the joint stiffness 

of a fully flexible 6-DOF serial robot using static tests. The robot was tested in 20 different poses 

using a cable-pulley system to apply a known load at the end-effector, and the displacements 

were used to measure the static deflections at the robot’s tip. Also, a nonlinear least squares 

procedure was employed to minimize the summed square of the robot pose errors, which was 

solved using preconditioned conjugate gradient methods (Levenburg-Marquardt algorithm).  

 

 Zhou et al. [50] developed a joint stiffness identification method for a fully flexible PKM 

with pose-dependent hinged revolute and spherical joints. A modal analysis was performed on 

the PKM in 28 different poses. Guyan reduction was performed on the FE model to retain only 

the joint stiffness, mass and damping parameters. Afterwards, an eigenvalue sensitivity method 

was developed to identify the joint stiffness and proportional damping parameters using a 

pseudo-inverse with manual adjustments for fine tuning. A similar approach was used by 

Rognant et. al [144] for a parallel robot with modal tests performed for two robot poses. Instead 

of using eigen-sensitivity analysis, the joint stiffness and proportional damping parameters were 

obtained using an optimization approach by minimizing the sum of squares error between the 

analytical and experimental FRFs over a specified bandwidth. More recently, Dumas et al. [145] 

developed a static joint stiffness identification procedure for 6-DOF industrial manipulators 

subjected to an external payload force. The three poses where the robot’s kinematic dexterity 

was the highest were chosen as experimental measurement points, and the joint stiffness values 

were determined using a linear least squares method.  
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 While the majority of research has been focused on the structural dynamic model updating of 

non-modular robots, there are only a few publications which apply model updating methods for 

modular robots. The research group of Li et al. [146, 147] devised a joint stiffness updating 

method using fuzzy logic combined with an optimization method for a 9-DOF (nine revolute 

joint modules) serial modular robot. In [146, 147], modal tests were performed on the fully 

assembled modular robot in a single pose and configuration, while the updating method involved 

minimizing the summed squares of the natural frequency errors. Therefore, the method in [146, 

147] is similar to the updating methods found in [50, 142-145] for non-modular robots. 

Furthermore, the solutions obtained in [146, 147] may not be valid for different robot poses since 

the joint parameters were identified using a single robot pose. Currently, there are no true 

modular testing and model updating approaches in the literature for serial modular robots with 

flexible joints. That is, all of the robot updating techniques in the available literature use 

experimental data for the entire robot assembly, instead of testing the individual modules 

separately and performing the model updating at separate stages for each module. By taking 

advantage of component testing and updating methods for individual modules, large assembly 

tests can be completely avoided, and the number of simultaneous updating parameters can 

drastically be reduced, thereby possibly reducing the variations in the updating parameter 

solutions. The main difficulty in testing modules individually is the attempt to emulate the BCs 

to match the natural connectivity between modules. 
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3. Kineto-Elastic Modeling Method for Serial 
Modular Robots 

 In this chapter, a kineto-elastic modeling method for serial MRRs is presented, which 

combines the rigid-body MRR poses with the structural elasticity of the modules. First, a 

description of the types of serial MRRs under study is given. This is followed by the 

development of an MRR kinematic model to account for the module connectivity during initial 

MRR assembly setup and/or module reconfigurations, with all module lengths aligned with a 

common global reference frame. Then, recursive methods are developed for the MRR forward 

kinematics to determine the pose (position and orientation) or each module with respect to the 

global frame for given revolute joint input motions. Afterwards, the kineto-elastic model for 

assembled MRRs using the finite element (FE) method is presented. The goal of the kineto-

elastic model is to solve the stationary vibration and kineto-elasto-static problems. The 

underlying assumption in this dissertation is that the modules undergo low-speed quasi-static 

motion, such that the inertial, centrifugal and coriolis forces are negligible. The goal here is to 

solve for the kineto-elasto-static deflections, wrench moments at the output shafts of the joint 

modules, and undamped fundamental natural frequencies for an MRR in any possible 

configuration and pose subjected to an externally applied payload. Here, the payload refers to an 

externally applied load caused by a mass at the free-end (or tip) of the assembled MRR, and the 

tip deflection refers to the small elastic deformations found at the tip of the MRR caused by the 

applied payload and gravitational loads due to module structural self-weights along with non-

structural masses such as joint motors. 

3.1  System Description of Serial Modular Robot 

 The types of open-chain MRRs under study in this dissertation consist of separate detachable 

revolute joint and link modules, as shown in Fig 3-1(a). When an MRR is assembled in a 

particular initial configuration, the system is driven by the revolute joint modules, shown in Fig. 

3-1(b). The links are connected to the joint modules using bolts which connect one of the ends of 

a link to one of three orthogonal flat faces located near the base of the joint, or the top flat 

surface at the end of the joint output shaft. Each MRR module is initially configured with respect 
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to a common global reference frame [14, 19, 55], where the lengths of the joint and link 

components are always initially aligned along the global x-, y-, or z-axes. This type of 

orthogonal connectivity allows the joints to provide rotation about one of three possible axes in 

either direction (±x, ±y, and ±z) relative to the module’s local coordinate system. At these initial 

configurations, each joint variable is initially set to zero; once motion occurs, the pose of each 

module changes. On the last link, a separate wrist module or end-effector can be added for extra 

mobility. Successive revolute joint and link modules can be attached to each other by connecting 

one end of a link module to one of the flat faces of the previous joint module, thereby forming a 

serial robot. 

 

 

Figure 3-1:  (a) Inventory of MRR modules, (b) MRR assembled in two different configurations 

 

 For the MRR under study in Fig. 3-1, the longer joint lengths can be immediately noticed, as 

compared to those found in traditional non-reconfigurable serial robots. This allows the joint 

modules to contain larger components such as motors, gears and bearings, thereby allowing 

greater torque capabilities when compared to smaller joint modules. Also, a separate motor 
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driver/controller can be mounted on one of the flat faces at the base of a joint module, thus 

enabling the joint module to become a completely self-sustained unit, independent of other 

modules. The longer joint sizes can create a noticeable difference in the kinematics when the 

joint lengths are ignored and modeled as simple nodes that connect links. Therefore, the joint 

offset lengths must be taken into account in the MRR kinematic and kineto-elastic models. While 

the methods introduced in this dissertation can also be applied to other serial MRR modules with 

longer joint offsets, such as those found in [12, 20, 146, 147], the kineto-elastic methods can also 

be computed for MRR joint modules with zero offset distances. To facilitate module 

reconfigurations from a pre-existing configuration, the MRR can be moved to its home position 

to reset the joint variables to zero. Afterwards, the modules can be manually detached from their 

connection ports, then re-aligned with one of the global reference frame axes that are required for 

the new configuration, and re-attached to their neighboring modules. Since the joint variables are 

always reset to zero before any reconfigurations occur, new configurations are always assembled 

in their new home positions. 

3.2  Forward Kinematics Method for Serial Modular Robots 

 This section describes a computational method to solve for the rigid-body forward kinematics 

for open-chain MRRs. The problem is defined as the determination of the pose of each module 

for a given initial MRR configuration assembly (referred to as the static pose), and the 

determination of the MRR pose after joint input motion occurs (referred to as the motion pose). 

A recursive method is developed, instead of applying joint constraint equations (as in Shabana’s 

text [148]), to ease the MRR assembly process and avoid computational burdens associated with 

computing constraint Jacobian matrices.  

3.2.1  General Rigid-Body Motion for a Single Module 

 For an arbitrary single module undergoing rigid-body translations and rotations depicted in 

Fig. 3-2, a position vector, p, defines the position of a point on the module with respect to a 

global (space-fixed) coordinate system (for example, the XG-YG-ZG frame in Fig. 3-1). A local 

body vector, b’, defines the length of the module with respect to a local (body-fixed) coordinate 

system. Using Cartesian coordinates, these vectors can be represented as: 
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Figure 3-2:  General motion for a single link module 

 

The position vector of the link in Fig. 3-2 is due to the rotation and translation and is 

commutative as given by the following equation [149]: 

  Rp b' + h = h+ bR '  (3.2) 

where R is defined as a rotation matrix, which is used to describe the orientation of a module, 

and h is a vector of translations. If h becomes a null vector, then there is only rotation. Similarly, 

if R becomes an identity matrix, then there is only translation. The properties of rotation matrices 

are given in Appendix A. 

 

 Rotation matrices can be defined using different rotation sequences about each axis. In this 

work, the Tait-Bryan pitch, roll and yaw rotation sequence is used [149], also referred to as the 

“X-Y-Z” Euler angles in [150]. Starting with the common global reference frame, the module is 

first rotated by an angle θx about the body-fixed x-axis, then rotated by θy about the body-fixed y-

axis, and finally rotated by θz about the body-fixed z-axis. The rotation matrix for this rotation 

sequence is given by: 

      x y z  R = R R R  (3.3) 

where  
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with ‘c’ and ‘s’ denoting cosine and sine functions, respectively. Multiplying the terms in Eq. 

(3.4) gives the following: 
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R =  (3.5) 

Equation (3.5) is used in the subsequent sections for the initial configuration assembly for 

multiple modules to define the module orientations for each of the configurations, and to 

compute the pose after an MRR moves from its home position. 

3.2.2  Initial Configuration Assembly  

 In this dissertation, all initial module configurations (or reconfigurations) are initially defined 

with respect to a common global coordinate frame, referred to as the “zero reference plane” or 

ZRP in [14, 19, 55], where each of the joint variables are initially set to zero and once motion 

occurs, the pose of each module changes. In total, there are six possible ways of setting up each 

module, taking into consideration that modules are commonly connected in an orthogonal 

fashion. Three configurations are along positive directions of three axes and other three along the 

negative directions. Figure 3-3 shows the six configuration directions of a joint module with 

respect to the ZRP, with the joint output shaft rotations always counter-clockwise about the 

module’s body vector axis.  
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Figure 3-3:  Initial configuration directions for a single joint module 

 

 In the local frame attached to each revolute joint module with large offsets, the joint length is 

always assumed to be aligned with its axis of rotation, defined as the local x-axis, the link length 

is defined along its local x-axis, the joint output connection to the link is defined as the local z-

axis on the link’s body, while the local y-axis is determined using the right-hand rule. Using this 

convention, the local body vector for the ith module in Eq. (3.1) becomes: 

  (3.6)  T
0 0i iL'b 

, )

To attain the possible configuration directions at the initial configuration assembly, a static 

rotation matrix in the space-fixed frame that defines the initial orientation of the ith module 

relative to the ZRP is defined as: 

 , , , , , ,( ,  ,  s i x config i y config i z config i  R R  (3.7) 

where θx,config,i, θy,config,i, and θz,config,i are pre-defined pitch, roll and yaw angles for each 

configuration direction for the ith module, shown in Table 3-1.  
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Table 3-1:  Pitch, roll and yaw input angles for each initial configuration 

Configuration 
Direction 

θx,config,i 
[deg] 

θy,config,i 
[deg] 

θz,config,i 
[deg] 

x 0 0 0 
y 0 0 90 
z 0 -90 0 
-x 0 180 0 
-y 0 0 -90 
-z 0 90 0 

 

The order of rotations used in Eq. (3.7) is given by Eq. (3.3) to coincide with Tait-Bryan pitch, 

roll and yaw angles. Figure 3-4 shows an MRR with n reconfigurable modules and their 

corresponding body vector notations at their initial configurations. 

 

Figure 3-4:  MRR modules at initial configuration and after motion occurs 

 

 The static body vectors for the ith module in the global frame can be computed as: 

 '
, ,s i s i= Rb ib  (3.8) 

Using Eqs. (3.6) and (3.7), the static positions at the ith point along the chain defining the MRR 

assembly at the initial configuration can be determined using a recursive method as follows: 
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 (3.9) 

In the above equation, the subscripts for R0i,s denote that the rotation matrices are computed 

recursively from the base node, ‘0’ attached to the origin of the global reference frame, to the ith 

node on the corresponding module. From Eq. (3.9), at initial assembly, a position vector for the 

ith module with respect to the global coordinate frame can then be written in compact form for 

the tip of the nth module as: 

 , 1 ,
0

n

s n
i




s i=p b  (3.10) 

Because the orientations of the modules are initially computed at initial assembly with respect to 

the global frame, the rotation matrices, Rs,i, do not need to be recomputed if zero motion occurs. 

3.2.3  Motion Pose Computations  

 To determine the pose of each MRR module after motion occurs, given joint motion input 

angles, the ZRP method from [14, 19, 55] is employed. A separate rotation matrix which defines 

the relative motion due to the ith revolute joint module’s input motion angle, qi (in the joint’s 

local frame, about the x-axis) is defined as: 

   , 1 , 0, 0m i i iq R R  (3.11) 

where γi is a Boolean operator and is equal to zero if the ith module is a revolute joint, or equal to 

1 otherwise. Alternatively, the rotations in Eq. (3.11) may be adjusted if the revolute joint’s 

rotational motion axis is about the module’s local y- or z- axis. Afterwards, the rotation matrix 

which defines the orientation of the ith module after motion occurs can be defined as: 

 , ,i s i m iR R R  (3.12) 

Applying recursive rotations for each module down the chain yields the following rotation 

matrices, including the motion parts with respect to the fixed global reference frame: 
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where R0i denotes the rotation matrix to describe the orientation of the ith module with respect to 

the global coordinate frame due to the initial configurations and joint motions, and R12 is the 

rotation matrix, including static and motion parts, from module 2 relative to module 1. Similarly, 

Rs,12 is the static rotation matrix for module 2 relative to module 1. It can be noted at the initial 

assembly static configuration, where the motion rotation matrices are all identity matrices, Rs,2 = 

Rs,1Rs,12 and hence Rs,12 = Rs,1
TRs,2. Therefore, the rotation matrix for the second module with 

respect to the global frame becomes: 

 T
02 01 ,1 ,2 ,2s s mR R R R R  (3.14) 

Similarly, the rotation matrix for the third module after motion occurs becomes: 

 T
03 02 ,2 ,3 ,3s s mR R R R R  (3.15) 

The same procedure occurs for any remaining modules down the chain. Thus the rotation matrix 

after motion occurs for the ith module can be computed recursively as: 

  (3.16) T
0 , -1 ,

1

i

i s j s j
j

R R R R ,m j

i ib

And the position vector at the tip of the nth module after joint motion occurs can be computed as: 

  (3.17) '
1 0

0

n

n
i




Rp

 The advantage of using a fixed global reference frame is that all the modules can be 

reconfigured with respect to a single frame, thereby avoiding the reset of the n local frames 

during reconfigurations, which are automatically taken care of by Eq. (3.16) in this approach. 

Furthermore, the reason to use the vector form for MRRs instead of the more commonly used 

Denavit-Hartenberg parameters [151] is that the former is more general since it can be defined in 
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all three axes. For the modules in Fig. 3-4, the generality of the vector form is exploited during 

the initial configuration setup of each module, where adjacent modules are initially mounted 

orthogonal to each other along one of the three axes. This method allows for separate explicit 

expressions of the static and motion rotation matrices for each module, thereby enabling a 

greater level of reconfigurability since the static part only changes with the robot configuration, 

and the motion part changes with joint movements alone.  

3.3  Kineto-Elastic Modeling Using the Finite Element Method 

 To account for the structural elasticity of the MRR modules, a kineto-elastic model is 

developed in this section. A local (body-fixed) reference frame is used to first define the elastic 

deformations of the modules for the FE formulation, which are then assembled in the global 

frame to form a serial MRR. Thus, two sets of coordinates are used to describe the flexible 

behavior of the modules: a body-fixed coordinate system is used as a reference for the elastic 

deformations, while the pose of the module is described with respect to a fixed global reference 

frame. Therefore, the flexible-body global position vector of an arbitrary point p on a single 

module i can be denoted as: 

  '
, 0 , , ,flex p i i p i p e i  Rp p b d  (3.18) 

where b’
p,i is a local body vector from the origin of the body to point p on the body, dp,e,i is a 

vector of translational elastic deformations with respect to the local body-fixed frame at the pth 

node for the ith module. The kineto-elastic analysis methods in the forthcoming chapters are 

subject to the following assumptions: 

o The flexible modules are assumed to be undergoing low-speed (quasi-static) motion with 

negligible acceleration, thus the coriolis and centrifugal forces, as well as the dynamic 

inertia effects may be ignored. 

o It is assumed that each module undergoes small linear-elastic deformations due to its self-

weight, motor weight and externally applied payload. 

o The modules all have symmetric, uniform cross-sections, except in the case of hinged 

joint modules. 

o The first joint module is rigidly attached to a fixed support when the MRR is assembled. 

Therefore, no base structural motions occur. 
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o Although the joint motor shafts experience flexible (compliant) behavior, it is assumed 

joint friction and clearance is negligible, though these factors can be easily implemented 

directly in the FE model for later analysis if required. 

 

From the first assumption, the coupling effect between rigid-body motions and elastic 

deformations can be neglected. Therefore, the kineto-elastic problem becomes categorized into a 

kineto-elasto-static problem to solve for the static deflections and wrench moments, and a 

structural dynamic problem to solve for the natural frequencies and mode shapes. It can be 

shown that the elastic behavior with respect to a fixed global frame of an MRR assembly (or any 

multi-link robot for that matter) can change drastically in different robot poses, which is a main 

concern in this dissertation. The kineto-elastic analysis and structural dynamic models can then 

be used to perform stiffness design of MRR modules, determine the worst-case quasi-static 

stiffness performance MRR configurations and poses, or the maximum payload capacity an 

MRR can carry.  

3.3.1  Finite Element Discretization 

 In this work, the kineto-elastic model of the MRR is discretized into separate linear- elastic 

finite elements for the joint casings, motor stiffness and links, as shown in Fig. 3-5. To account 

for the additional flexibility of joint modules with longer offsets, instead of modeling the joints 

as torsional spring elements alone, the joint casings are modeled as finite element beams where 

the offset length of the joint shaft is taken into account to justify possible bending, torsion and 

axial deformation. It can be assumed that the links can also undergo the same type of 

deformations since they are also long and slender. The link modules are modeled as solid or 

hollow rectangular beams, and the joint modules are modeled as solid or hollow circular beams. 

The choice of the type of beam elements depends on the sizing of the module cross-sections. If a 

module’s thickness to length ratio is greater than 1/20, then Timoshenko beam elements are 

suitable since they can include the possibility of transverse deformations due to shear stresses 

[152]. Otherwise, Euler-Bernoulli beam elements are adequate for more slender modules. By 

using beams instead of solid elements, a computationally inexpensive model could be generated 

with smaller matrix sizes without greatly sacrificing accuracy if small linear-elastic deformations 
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occur. The choice of beam elements for the kineto-elastic analysis of robots has been widely 

adopted in the previous literature and was proven to be effective [23, 41, 44-55]. 

 

 

Figure 3-5:  Module finite element discretization 

 
 Although not shown in Fig. 3-5 for clarity, each link and joint module is further subdivided 

into a number of finite elements, with evenly spaced nodes numbered consecutively from the 

base to the tip of the assembled MRR. Therefore, the length of an element for module i is given 

by: 

 ,
,

i
e i

ele i

L
L

n
  (3.19) 

where Li is the total length of module i, and nele,i is the number of elements module i contains. 

Referring back to Fig. 3-4, the numbered nodes at the ends of each module refer to their 

connection points. Also, an additional virtual spring stiffness between each joint and link module 

is implemented in the kineto-elastic model to account for the flexibility found in the motors of 

each joint module. The motor spring element consists of six structural DOF at each node to 

account for motor compliance in all directions, but the flexibilities of the given structural DOF 

can be suppressed to only account for lateral and torsional motor compliance if required. 

Furthermore, the gravitational effects due the distributed weight of each model are to be 

accounted for, as well as those for non-structural masses (such as motor masses and payloads). 
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The non-structural motor masses are represented as lumped masses with possible length offsets 

at their center of gravity (CG) location. Moreover, if there are any components that are 

significantly shorter than the link or joint modules, such as the end-effector in Fig. 3-5, they may 

be modeled as rigid bodies with their offset lengths and masses taken into account. The 

following sub-sections describe the theoretical stiffness modeling of each MRR component. 

3.3.2  Module Structural Element Shape Functions 

 Each link and joint module casing is modeled using a given number of two-node spatial 

beam elements with six structural DOFs at each node. A single element is shown in Fig. 3-6 with 

the local element coordinate frame denoted as Xe-Ye-Ze and the end nodes denoted as “1” and 

“2”. At each node, an axial force denoted by fx, causes tension, denoted by u; the two lateral 

forces, denoted by fy and fz, cause two transverse bending deflections, denoted by v and w, as 

well as their slopes, denoted by  and , respectively. The moments include torque, denoted by 

mx, causing torsion, denoted by ; and two bending moments, denoted by my and mz, 

respectively. Because small linear elastic deformations are assumed, it is further assumed that no 

geometric nonlinearities exist for the individual elements, which may cause large strains, 

displacements or buckling [152]. Moreover, it is assumed that the module loads and 

deformations are small enough such that material nonlinearities (pre-stressed condition or 

inelastic behavior) do not exist. The vectors of local nodal displacements and forces for a two-

node element (as shown in Fig. 3-6) are defined as follows: 
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u

f
 (3.20) 

 In Eq. (3.20), the subscript ‘e’ denotes that the coordinates coincide with the module’s body-

fixed reference frame. For the axial and torsional displacements, a linear displacement function 

is assumed over the length of the two-node element (Le) in Fig. 3-6: 

 
 
 

1 2

11 12

u x c c x

x c c

 

  x
 (3.21) 

Note that for the torsional deformations, any warping along the axial coordinate is ignored, 

which limits the element to small displacement assumptions. For bending about the local Ze and 
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Ye axes, if the displacement contributions due to transverse shear are neglected, a cubic 

polynomial can be used to approximate the lateral deflections in terms of unknown coefficients: 
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 (3.22) 

 

 

Figure 3-6:  Local displacements and forces at each node in a spatial finite element beam 

 

To include the transverse shear strain contributions in the lateral bending displacements, the 

following holds [153]:  

 ,b s bv v v w w ws        (3.23) 

where vs and ws are the additional lateral deflections due to shearing strains. Accordingly, the 

total slopes, which include bending rotation and transverse shear, are the following: 

 ,      b s b s
xy

v v w wv w

x x x x x x xz     
        

     
   (3.24) 

where γxy and γxz are the shear strains in the Xe-Ye and Xe-Ze planes, respectively. The negative 

sign for ϕ in Eq. (3.24) denotes that the sign conventions for the positive bending moments in the 

Xe-Ye and Xe-Ze planes change according to Fig. 3-6. The shear strains in Eq. (3.24) can also be 

expressed as [153]: 

 ,    ;ys s z
xy xz

y z

fv w f

x k GA x k GA
   

   
 

 (3.25) 
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where ky and kz are the shear coefficients in Timoshenko’s beam theory and can be determined 

for a variety of cross-section shapes using the formulations in [154, 155], G is the elastic shear 

modulus, and A is the cross-section area of the module. The shear strains in Eq. (3.24) are 

independent of the beam’s axial coordinate. The moment-curvature relations in the Xe-Ye and 

Xe-Ze planes are given by: 
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 (3.26) 

where Iz and Iy are the polar moments of area about the Ze- and Ye-axis, respectively. Also, the 

relation between the shear forces and bending moments is given by the force-moment 

equilibrium equations: 

 0,     0yz
y

dmdm
f

dx dx zf     (3.27) 

Substituting Eqs. (3.25) to (3.27) into Eq. (3.24) and rearranging, the elastic bending slopes 

(rotations) about the local Ze- and Ye-axis which include the effects of the shear strains are 

written as: 
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  (3.28) 

If the shear effects are ignored (as in the case of Euler-Bernoulli beams), the corresponding shear 

strain terms in Eqs. (3.23), (3.24) and (3.28) are removed. Each of the displacement functions in 

Eqs. (3.21) and (3.22) can be written in matrix form as follows: 

  x  Xu c  (3.29) 

where u(x) = {u(x), v(x), w(x), θ(x)}T, X̄ is a matrix containing the polynomial terms relating to 

the length variable x in Eqs. (3.21) and (3.22), and c is a vector of the unknown coefficients c1 to 

c12. To determine these unknown coefficients, the following BCs are imposed: 
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where the slope functions for ϕ(x) and ψ(x) are given by Eq. (3.28). Afterwards, the displacement 

functions in Eq. (3.29) can be expressed using the polynomial terms when the BCs in Eq. (3.30) 

are applied, along with the nodal displacement vector in Eq. (3.20), giving the following: 

  (3.31) e  Xu  c

u

where X̃ is a matrix containing the polynomial terms of each displacement function after BCs are 

applied. The vector of the unknown coefficients c can be determined in terms of the nodal 

coordinates ue as: 

  (3.32) 1
e

 Xc 

By substituting Eq. (3.32) into (3.29), the displacement field can then be written in terms of the 

nodal displacement coordinates as: 

   1
e dx  XX Nu u

eu  (3.33) 

where Nd is the element shape function matrix, which contains the individual shape functions for 

each mode of elastic deformation for each set of elastic coordinates in ue. The obtained shape 

functions for each beam deformation mode are given in Appendix B. 

3.3.3  Local Connectivity of Module Element Coordinates 

 For a given number of discretized structural elements in the ith module, nele, the total number 

of connected nodes is nele+1, and the total number of structural DOFs in the module is ndof = 

6(nele+1), disregarding any BCs at the end nodes. The nodal coordinates for the Jth element in its 

own reference frame for Eq. (3.20) can be denoted as: 

     TT T( ) ( ) ( )
, 1 2

,

J J J
e i

e i
u u u  (3.34) 

where the subscripts 1 and 2 denote the pth node numbers, and {up
(J)}e,i is a 6×1 vector containing 

the three translational and three rotational displacements for the Jth element at the pth node. Let 

ue,i denote the vector containing the total elastic displacement coordinates after the ith module is 

discretized into nele attached elements using its body-fixed coordinate system as a reference: 

  TT T T T
, 1 2 ( 1) ,elee i p n e iu u u u u   (3.35) 
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Then, the vector of containing all individual (unattached) element coordinates (each of which are 

also parallel to the ith module’s body-fixed reference coordinates) is defined as: 

         TTT T T ( )(1) (2) ( )
, , , , ,

elenJ
e i e i e i e i e iu u u u u    (3.36) 

In general, if a nodal coordinate is misaligned with the module’s local coordinate frame, it must 

be rotated with respect to the body-fixed coordinate system of the module. Afterwards, the 

following linear transformation can be used to connect the coordinates of the unattached 

individual elements: 

  (3.37) ,e i C e i Bu 
,u

where B̃C,e,i is a Boolean matrix for connectivity. For example, suppose the ith module is 

discretized into three elements each containing two nodes, and the connected assembly 

containing four nodes. Then Eq. (3.37) takes the following form: 
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where the I terms denote 6×6 identity matrices. The relation between the individual Jth element’s 

nodal coordinates and the total assembly coordinates for the ith module is given by: 

  (3.39) ( ) ( )
,
J J

e i C e i Bu 
,u

Using the above 3-element example in Eq. (3.38), the nodal coordinates of the first and third 

elements can be expressed using Eq. (3.39) as: 
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3.3.4  Module Element Structural Stiffness 

 To determine the structural stiffness matrices for the modules, the minimum total potential 

energy formulation is used. The total potential energy for a single element in the ith  module is 

given by: 

 e eU We    (3.41) 

where Ue is the element’s internal strain energy, and We is the work done by external forces. 

These can be expressed as: 

 T1
, ,2

1

,     
dofn

e e e
je

U dV W u


  ε σ j e j ef  (3.42) 

where ε is the element’s strain tensor, σ is the element’s stress tensor, and the index j represents 

the jth structural DOF in the element. The work done by external forces involves the payload 

force and the self-weights of the modules and motors due to gravity. Other possible external 

forces such as traction are not of any concern in this dissertation. For a conservative system, 

∂χ/∂uj = 0, which is the minimum total potential energy to satisfy compatibility and equilibrium, 

leading to the static force-displacement equations for an individual element. For the axial, 

bending (transverse and rotational) and torsional modes of deformation, the potential energy of 

the spatial element can be expressed as: 

  (3.43) , , , , , ,e e axial e bend z e bend y e torsionU U U U U   

where the potential energy due to bending in the Xe-Ye and Xe-Ze planes (Ue,bend,z and Ue,bend,y) 

includes the additional shear strain contributions. Each term in Eq. (3.43) can be represented as 

[156, 157]: 
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where the Ke terms are the individual element stiffness matrices for each deformation mode and 

the ue terms contain the corresponding elastic nodal displacements. Substituting the first and 

second derivatives of the shape functions from Section 3.3.2 (with their explicit terms found in 

Appendix B) into the above equations, the stiffness matrices for each deformation mode can be 

determined as: 

  (3.48) T
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  (3.51) T
,

0

eL

e torsion GJ dx  K B B

where the respective Bd matrices (d = u, v, w, θ, ϕ, ψ) contain the first or second partial 

derivatives (with respect to the x coordinate) of the respective shape functions in Appendix B for 

each deformation mode: 
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If the Bd matrices are resized to have 1×12 dimensions with the terms for each partial derivative 

of the shape functions placed in the columns which correspond to the deformation modes of 

interest at particular nodes, and the remaining terms zero, the resulting stiffness matrix in the 

local coordinate frame for a single element becomes: 

 , , , , , , , , ,e e axial e bend z e rot z e bend y e rot y torsion  K K K + K K + K K  (3.53) 

The 12×12 stiffness matrix for a single element in Eq. (3.53) is shown in its explicit form in 

Appendix B. This type of element coincides with the spatial “Beam4” and “Beam188” elements 

found in the ANSYS® FE software, and produces nearly identical results. 

3.3.5  Module Element Structural Mass 

 For a single element, representing a finite portion of either a joint module’s casing, or a link 

module, the equations of motion considering the elastic structural deformations can be derived 

using Lagrange’s equation (neglecting dissipation energy from damping): 

 
 e ee e

e
e e e

U WT Td

dt

   
     

Q
u u u

  (3.54) 

where T is the kinetic energy of the element, ue contains the displacements in Eq. (3.20) 

(although it can be replaced with any set of generalized coordinates), and Qe is a vector of non-

conservative generalized forces applied at the respective coordinates in ue. To determine the 

structural mass matrices for the modules, the kinetic energy of a single element can be written as: 

  (3.55) , , , , , ,e e axial e bend z e bend y e torsionT T T T T   

where the kinetic energy due to bending in the Xe-Ye and Xe-Ze planes (Te,bend,z and Te,bend,y) 

includes rotary inertia effects. Each of the terms in Eq. (3.43) can be written as: 
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eL

e torsion e torsion e torsion e torsionT J dx   Mu u  , ,  (3.59) 

where the Me terms are the individual element mass matrices for each respective deformation 

mode in Eqs. (3.56) to (3.59). Substituting the shape functions from Section 3.3.2 (with the 

explicit forms found in Appendix B) into Eqs. (3.56) to (3.59), the consistent mass matrices for 

each deformation mode can be determined as: 
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 (3.62) 

  (3.63) T
,

0

eL

e torsion J dx  M N N

Afterwards, expanding the individual shape functions to become 1×12 vectors for each 

deformation mode at particular nodes of interest, the resulting 12×12 mass matrix for the element 

becomes: 
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  (3.64) , , , , , , , , ,e e axial e bend z e rot z e bend y e rot y torsion   M M M + M M + M M

The explicit form of Eq. (3.64) is given in Appendix B. 

3.3.6  Joint Motor Stiffness 

 To account for the additional flexibility found in the motor and gear system of each joint 

module, a virtual spring model is employed. Essentially, the virtual spring model is a general 

simplification of a complex system which has been employed by numerous researchers to 

convey the elasticity of the motor components [31, 40, 41, 47, 50, 54, and 56], and completely 

avoids the requirement to model each internal motor component separately. In this dissertation, a 

simple massless virtual spring stiffness model is used, and is attached to the local coordinate 

frame of the adjacent joint or link. Such a model, unlike the one in [50] is not dependent on the 

joint angular position. This allows the same joint stiffness model to be used for different joint 

angles. Thus, the pose dependency for the stiffness of the joint and link modules arise from their 

relative orientations from one another when connected in a chain. It is assumed that the motor 

stiffness terms do not experience any coupling with respect to the different deformation modes. 

It is further assumed that the elastic motor deformations are small enough that the motor stiffness 

behaves linearly, and is thereby free of friction, impacts and clearance issues. The motor spring 

element consists of six structural DOFs (three translations and three rotations) at each node to 

coincide with the six structural DOFs found at each node of the beam element used for the 

modules. For the revolute joint modules with the motor axis of rotation coinciding with the local 

Xe-axis of the body-fixed frame attached to the module casing, the motor stiffness terms (with 

the exception of the rotational stiffness about the local y-axis) are shown in Fig. 3-7.  

 

 

Figure 3-7:  Motor virtual spring stiffness (a) Side View, (b) Front view 
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 By minimizing the total potential energy, the system of equations for a motor’s virtual spring 

can be determined. The total potential energy of a motor’s virtual spring (at a stationary angle) is 

given as a similar form to Eq. (3.41), and the internal strain energy for the ith joint module’s 

motor spring with two nodes can be expressed as: 

 

      
      

2 2 2

, , 2 1 2 1 2 1
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U k u u k v v k w w
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 Ku u

 (3.65) 

where umotor,i contains the six structural deformations at each node in the local coordinate frame 

as shown in Eq. (3.20), and Kmotor,i is the motor’s virtual spring stiffness in the local frame. The 

size of Kmotor,i is 12×12, and is shown in its explicit form in Appendix B. One end of the virtual 

motor spring element is connected to the distal node of the joint module beam element at the 

output shaft, and the other end is connected to the successive link module beam element as 

shown in Fig. 3-5. Also, the coordinate frame of the motor spring element is assumed to always 

be aligned with the body-fixed coordinate frame of the joint module casing. 

 

 For typical revolute joints, ky = kz if there is a bearing or bushing securing the output shaft 

with minimal or zero clearance, leading to radial stiffness terms. That is, if an arbitrary force 

with a constant magnitude is applied in any radial direction perpendicular to the axis of rotation, 

the magnitude of the corresponding elastic deformations do not change radially. Additionally, kθ 

usually represents the stiffness of the motor’s brake, or the elastic torsional deformation of the 

motor shaft. The axial motor stiffness term, kx, represents the axial stiffness of the motor shaft, or 

gear assembly, in tension or compression, and the remaining rotational stiffness terms, kψ and kϕ, 

are usually treated as rigid DOFs. To obtain a semi-rigid virtual spring joint model, the stiffness 

terms for the required “rigid” DOFs can be set to high values (relative to the flexible DOFs), for 

example, on the order of 1015 N/m (or 1015 N-m/rad for the rotational stiffness terms). However, 

this procedure may lead to ill-conditioning of the stiffness matrix if the adjoining components 

exhibit relatively low stiffness values. On the other hand, a semi-rigid transformation matrix can 

be applied to the stiffness terms of the virtual spring element when it is connected to the joint 

casing element using multi-freedom constraints (MFCs). For the ith joint module, the stiffness of 
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the joint casing, combined with its motor stiffness, can be determined using the following semi-

rigid transformation to constrain the rigid virtual spring DOF in the module’s local frame: 

  (3.66) T
, , , , , ,

,

casing
joint e i r e i r e i

motor e i

 
 
 

K 0
K = B B

0 K
 

where Kcasing is the joint casing structural stiffness, Kmotor is the joint motor stiffness, and B̃r,e,i is 

a Boolean transformation matrix in the local frame of the joint casing, which can be derived 

using methods in [158]. The size of B̃r,e,i is (ndof,casing+ndof,motor)×(ndof,e,i), with ndof,e,i representing 

the number of structural DOF when the joint casing is connected to the virtual spring, and the 

rigid virtual spring DOF are removed. A transformation for the joint module’s mass matrix, 

Mjoint,e,i, is computed in a similar fashion to Eq. (3.66). Also, the nodal displacement and force 

vectors to connect the joint casing to the virtual spring can be determined using: 

 , , , ,

,

casing
joint e i r e i

motor e i

 
  

 
B

u
u

u
  (3.67) 

 , , , ,

,

casing
joint e i r e i

motor e i

 
  

 
B

f
f

f
  (3.68) 

As an example, suppose the motor’s virtual spring contains only three flexible DOF in its local 

frame, umotor,e,i = {vmotor, wmotor, θmotor}
T

e,i. Then, the vector containing the unattached motor 

casing and virtual spring connection DOFs, say at nodes p and p+1 is given by: 

  (3.69) 
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where the subscripts ‘c’ and ‘m’ in Eq. (3.69) denote the casing and motor, respectively. 

Applying Eq. (3.67) leads to the following vector for the joint DOF with attached DOF at node p 

and unattached spring DOF at node p+1: 

  TT
, , 1, 1 1 1 , ,joint e i c p p p p p p p p p joint e i

u v w v w     u u   (3.70) 

where the following constraints are employed: 
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  (3.71) 
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From the above set of constraints, node p+1 contains only three DOFs, whereas the next 

connecting link module contains six DOFs at the same node. Therefore, a similar procedure 

should be used to define the connectivity between the joint module with the virtual spring and 

the next adjacent link module. In this case, the flexible DOF of the virtual spring are connected 

to the corresponding flexible DOF of the link, while the remaining DOF of the link are directly 

connected to the previously unattached DOF of the joint casing. This procedure retains proper 

connectivity, since a lack thereof for any particular DOF may result in insufficient restraints for 

an element. Because the link modules are in different orientations than the joint modules at both 

the initial connectivity stage and after motion occurs, the transformations as well as constraints 

in Eqs. (3.66) to (3.68) must be conducted in the global frame instead of the local frame when 

connecting links to virtual springs. Details for connecting the modules in the global frame are 

given in Section 3.3.9. 

 

 If the motor stiffness is low and there are considerable elastic deformations present, the local 

displacements at the node representing the motor shaft’s output should be constrained to nonzero 

prescribed values, usually representing the maximum allowable joint clearance (or gap) between 

the motor shaft and joint casing. Upon solving for the MRR’s kineto-elasto-static displacements, 

a simple check of the local displacements at the node coinciding with the motor output can 

determine if the maximum allowable displacements are violated. If the constraints are violated 

for a particular motor spring DOF, then non-homogeneous single-freedom constraints (SFCs) 

[152] can be applied by substituting the values of the allowable elastic displacements into the 

local displacement vector for the virtual spring nodes, removing the corresponding rows of the 

local virtual spring stiffness matrix, then transferring all of the known terms to the right hand 

side (in terms of equivalent forces). The system of kineto-elastic equations can then be solved in 

a reduced form with the prescribed allowable displacements to solve for the unknown 

displacements and reaction forces along the MRR chain. 
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3.3.7  Rigid Offset Components and Non-Structural Masses  

 With the exception of the end-effector in Fig. 3-5, all module local stiffness matrices, Ke,i are 

represented using either Timoshenko beam elements or virtual springs. Since the end-effector 

offset length is significantly shorter than the link lengths, the end-effector can be modeled as a 

rigid body. In order to achieve rigid-body behavior, a slave-master transformation is applied in 

order to employ MFCs. Referring to Fig. 3-5, assuming the body-fixed local coordinate frame of 

the end-effector is initially aligned with that of the nth link module when all joint variables are 

zero, denoting the length of the wrist as Lw, the local body vector of the wrist, relative to the 

coordinate frame of the nth link module (last module in the chain) is written as: 

  (3.72) ' 0 0
T

nw nw wL Rb 

e

e

where Rnw is a rotation matrix defining the relative orientation of the wrist with respect to the 

local coordinate frame of the nth link. Let “s” denote the elastic node at the tip of the nth link 

module or “slave node”, and “m” denote the node at the tip of the wrist or “master node”. The 

rotational elastic DOFs at nodes “s” and “m” are equivalent, that is, θs,e = θm,e, ϕs,e = ϕm,e and ψs,e 

= ψm,e (or θs,e = θm,e in vector form for the local frame attached to the nth link). The goal here is to 

offset the elastic (slave) DOF behavior to the rigid (master) DOF. Assuming infinitesimal elastic 

translational displacements and rotations, the relations between the slave and master nodal DOF 

are determined from: 

  (3.73) '
s, m, m,e e nw  d d b θ

where ds,e and dm,e are the local translational DOF vectors for the slave and master nodes, 

respectively. The above equation represents the kinematic constraints between the slave and 

master DOFs, and can be written in terms of a rigid-body transformation matrix: 

 s, sm, m,e e Tu u

e

 (3.74) 

where the respective 6×1 slave and master displacement vectors are us,e = {ds,e
T  θs,e

T}T and um,e = 

{dm,e
T  θm,e

T}T. The force-displacement relationship for the slave DOF can be expressed as: 

 s, s, s,e e Kf u  (3.75) 
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In order to preserve equilibrium across the rigid link, the total work due to the external forces 

must be zero: 

 T T
s, s, m, m, 0e e e e u f u f  (3.76) 

Substituting Eq. (3.74) into (3.76) yields the following relationship between the slave and master 

nodal force vectors: 

 T
m, sm, s,e e T ef f  (3.77) 

Furthermore, substituting Eqs. (3.74) and (3.77) into (3.75), gives the following: 

 T
m, sm, s, sm, m,e e e e T K T ef u  (3.78) 

from which the equivalent 6×6 nodal stiffness matrix associated with the master coordinates (in 

terms of the slave coordinates) is given by: 

  (3.79) T
m, sm, s, sm,e e eK T K T e

The modified stiffness in Eq. (3.79), forces in Eq. (3.77) and deformations in Eq. (3.74) can 

account for the behavior of a rigid link coupled to an elastic node. These transformations occur 

with respect to the local frame of the elastic (slave) node and should be computed in the local 

frames prior to MRR system assembly. Note that the number of slave DOF is equal to the 

number of master DOF after the transformations are performed. Overall, the same 

transformations in Eqs. (3.73) to (3.77), and (3.79) can be applied for any type of rigid link in 

any orientation with respect to a body-fixed frame attached to the adjoining component. 

 

 To determine the equivalent mass matrix due to the rigid wrist’s motion caused by the 

velocities of the attached link’s elastic deformations, it is assumed that the total mass of the wrist 

is concentrated at its CG location and is represented by a point mass. Therefore to compute the 

rigid-body mass, Lw = LCG (distance from the base of the wrist to the CG) in Eq. (3.72). The 

kinetic energy of a rigid wrist connected to a flexible node, with respect to a body-fixed 

coordinate frame attached to the nth flexible link can be determined using: 

 T T1 1
,2 2e w w w w p nwT m  Id d θ θ   

w  (3.80) 
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where mw is the wrist’s mass,  is the wrist’s angular velocity vector (due to the angular 

velocity of the rotational elastic deformations of the nth node, 

wθ

w nθ θ  ), Ip,nw represents the rigid 

wrist’s mass moment of inertia tensor, which is first calculated by determining the inertia tensor 

of the wrist in its own coordinate frame Ip,w, then performing a transformation to the body-fixed 

coordinate system of the nth link (Ip,nw = RnwIp,wRnw
T). In Eq. (3.80),  is the wrist’s 

translational velocity vector due to the velocities of the elastic deformations at the tip of the nth 

link, and can be computed using: 

wd

 '
w n n nw  d d θ b    (3.81) 

Substituting Eq. (3.80) and solving for the kinetic energy terms in Lagrange’s equation, as found 

in Eq. (3.54), will lead to an equivalent mass matrix for the rigid wrist (Me,wrist).  Afterwards, the 

modified mass matrix for the nth link module becomes: 

 , , ,e n link e n wrist e n, , M M M  (3.82) 

where Me,link is the link’s structural mass matrix, as computed from Eq. (3.64). To account for 

other non-structural masses, such as the motor masses or tip payload, a similar procedure can be 

used if the CG locations are offset from an elastic node. Otherwise, if the non-structural mass 

locations are aligned within a structural element or at a nodal coordinate, a lumped mass matrix 

can be used for the motors. Thus, the mass matrix of the ith joint module becomes: 

 , , ,e i joint e i motor e i, , M M M  (3.83) 

Also, since the virtual spring terms for the motor elements in the stiffness matrix do not carry 

any mass or inertia, the absence of the coinciding terms in the global mass matrix will cause it to 

lose its positive definite properties. Therefore, some of the resulting undamped natural 

frequencies may become infinite (indicating rigid-body motion), or will not consist of positive 

real numbers, which have no physical meaning. To overcome this problem, the mass matrix 

entries corresponding to the virtual spring terms are set to relatively small positive numbers, 

which ensures that the global mass matrix remains non-singular, yet retains accurate predictions 

of the system’s natural frequencies. 

 69



3.3.8  Pose-Dependent Loads Due to Gravity 

 To account for the gravitational forces due to the masses of the joint motors or distributed 

self-weights of each module, the equivalent forces and moments must be relocated to the end 

nodes of each individual beam element. This is accomplished using consistent loading 

techniques, which can guarantee equivalent nodal force solutions with respect to the elastic 

displacements, since the same shape functions are used in the element stiffness matrix derivation 

[152]. For the self-weights due to the structural masses of each module, the work done by the 

discrete nodal forces should be equal to the work done by the distributed gravitational load, that 

is, Wnodal = Wdist, which can be expressed in the local frame of the beam element as: 

  (3.84)  T
,

0

ˆ
eL

T
e w e eA x d u f g u x

g

where u(x) = {u(x), v(x), w(x)}T in the above equation. Since the gravitational load always acts in 

a single global direction (negative YG direction), as shown in Fig. 3-8, the distributed loading 

due to element’s self-weight must first be transformed to the element’s local coordinate frame in 

order to proceed with the computations in Eq. (3.84). To proceed, the acceleration due to gravity 

in the local frame of the element is computed using: 

 
,

T
, 0

,

0

ˆ

0

e x

e e y i

e z

g

g

g

   
       
  

  

= Rg


N

 (3.85) 

where g = 9.81 m/s2, and R0i is the rotation matrix, which includes the module orientations at 

initial assembly and after motion for the ith module, as computed from Eq. (3.16). Afterwards, by 

substituting the shape functions for the axial and bending deformation modes, along with their 

respective local gravitational acceleration terms, the consistent nodal loads due to the module 

self-weights in Eq. (3.84) for each local direction can be expressed as: 

  (3.86) , , , , , , , , ,

0 0 0

,    ,   
e e eL L L

w e x e x u w e y e y v w e z e z wAg dx Ag dx Ag dx      N Nf f f

 

 70



 

Figure 3-8:  (a) Distributed load due to self-weight in global frame, (b) Equivalent consistent nodal loads in 
local frame, (c) Equivalent consistent nodal loads in global frame 

 

Afterwards, the consistent load terms in Eq. (3.85) can be arranged for an element as: 
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  ...(3.87) 

 To include the gravitational force due to the joint motor components, it is assumed that the 

each motor weight acts as a concentrated load, either directly on a node, or at a distance “a” from 

the origin of the element’s coordinate frame along the Xe-axis. The conservation of work can be 

expressed as: 

  T
, ˆT

e motor e motor emu f g u a  (3.88) 
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where mmotor is the motor’s mass. By substituting the shape functions and nodal displacement 

vectors, the consistent loads in each direction found in Eq. (3.88) can be written as: 
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 (3.89) 

In a similar fashion to Eq. (3.87), the consistent nodal loads due to the motor can be placed in a 

vector fmotor,e,i for a single element. It is important to note that when the assembly of the modules 

occur for kineto-elastic analysis in the global frame, the consistent loads only contain force 

components acting parallel to the global YG-axis, and the corresponding consistent moments 

should be about an axis that is parallel to the global XG-ZG plane at all times. The only exception 

is when a module’s Xe-axis is aligned with the global YG-axis, which causes the consistent 

moments to become zero. 

3.3.9  System Equations and Assembly 

 After a module is discretized into one or more elements, using the method in Section 3.3.3, it 

is necessary to assemble the elements of all modules in order to proceed with the kineto-elastic 

and structural vibration analysis of the assembled MRR, which is dependent on the initial 

module configurations, and their individual poses after motion. To do this, the local elastic 

displacement and force vectors must first be transformed to the space-fixed global frame. For the 

ith module, this can be accomplished by: 

 T
,e i i G i T ,f f  (3.90) 

and 

  (3.91) T
,e i i G i Tu u ,

where fG,i and uG,i are the global force and displacement vectors. To transform the local module 

deflection and force vectors to global coordinates, the block-diagonal coordinate transformation 

matrix, which is a function of the ith module’s configuration, ci, and joint motion variables, qi is 

given by: 

    0,i i i ic q diagT R  (3.92) 
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where R0i is the rotation matrix defined in Eq. (3.16), which is dependent on both the static 

orientation of the ith module at assembly (due to initial configuration directions), and the change 

in orientation after joint motions occur. In general, there is a rotation matrix, R0i, to transform the 

three translational DOF, and another R0i to transform the three rotational DOF at each node. 

Thus, the size of Ti is dependent on the number of structural elastic DOF present in a module and 

is ndof × ndof. Due to the orthogonality of the rotation matrices, Ti is also orthogonal (Ti
-1 = Ti

T). 

In the local frame, the module forces can also be determined using Hooke’s law as follows: 

 , ,e i e i e i, Kf u  (3.93) 

where Ke,i is the local stiffness matrix for the ith module. Substituting Eq. (3.91) into (3.93) 

gives: 

 T
, ,e i e i i G i K T ,f u  (3.94) 

which can be used to determine the local forces acting on a module if the global force vector is 

known. Afterwards, Eq. (3.90) is substituted into Eq. (3.94) to give the force-displacement 

relation in the global coordinate frame: 

 T
, ,G i i e i i G i TK T ,f u  (3.95) 

where the stiffness matrix in the global coordinate frame for the ith module becomes: 

  (3.96) T
, ,G i i e i iK TK T

Similarly, for the structural dynamic problem, the ith module’s mass matrix in the global 

coordinate frame is: 

  (3.97) T
, ,G i i e i iM TM T

Afterwards, the undamped equations of motion for the ith module in the global frame become: 

 , , , , ,( ) ( ) ( )G i G i G i G i G it t t M Ku u f  (3.98) 

 To obtain the global stiffness and mass matrices of the assembled MRR, KG and MG, as well 

as the vectors of nodal displacements and forces, uG and fG, a connectivity matrix is used in a 

similar fashion as connecting the individual elements in Section 3.3.3. The system FE 

connectivity matrix is defined according to: 
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  (3.99) 

where ũG and fG̃ are vectors containing the individual unassembled elastic DOFs, uG,i (i = 1, 2,..., 

n) and forces, fG,i (i = 1, 2,..., n), for each module in the global frame, and SFE is the system’s 

connectivity matrix, similar to the Boolean matrix in Eq. (3.37) for an individual module. 

Equation (3.99) ensures rigid constraints at the required connection DOFs. The assembled 

system’s stiffness and mass matrices in the global frame can then be obtained using: 

  (3.100) T T,    G FE G FE G FE G F K S K S M S M S
E



where K̃G and MG are block-diagonal matrices containing the individual unassembled KG,i and 

MG,i matrices for each module. The size of uG is dependent on the total number of elements 

chosen for the joint and link components (nele) and number of elastic DOFs chosen to represent 

the motor stiffness found in the joint modules (nele,joint). When the entire MRR is assembled, the 

total number of structural elastic DOFs is nele(6n)+ nele,motor(# of joints), which is equivalent to the 

number of rows found in uG or the force vectors on the right-hand side of Eq. (2). Referring back 

to Fig. 3-1, it is assumed that the MRR is fixed to a rigid base. Therefore, only the first node 

DOFs on the first joint module are rigidly constrained, and the FE boundary conditions are: 

 1 1 1 1 1 1 0u v w          (3.101) 

For serial MRRs, the assembled stiffness and mass matrices are banded with terms concentrated 

along the diagonal if the node numbering is consecutive from the base to the tip of the last 

module. However, if parallel or branched configurations occur (which is not the major focus in 

this dissertation), the matrices may become sparse due to the node numbering. 

3.4  Case Study 

 In order to compare the effectiveness of the FE methods developed in this chapter, kineto-

elasto-static and stationary vibration analyses were conducted for an MRR with three revolute 

joint modules, three link modules, and a 3-DOF wrist. To validate the models presented in this 

chapter, the MRR’s global tip deflections and undamped natural frequencies were computed at 

four random poses (initial configuration pose and three random poses), and the results were 
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compared to a commercial software package. The assembled MRR is shown in Figs. 3-9 and 3-

10.  

 

 

Figure 3-9:  MRR poses for case study (a) Initial configuration, (b) Pose #1 

 

 For this simulation, kineto-elasto-static models using the methods in Sections 3.3, 3.4 and 

ANSYS® were compared, while stationary vibration models were compared using only the FE 

method and ANSYS®. It was assumed that all modules (links and joint structural casings) were 

made of Al-6061 with E = 69 GPa, υ = 0.33 (G = 25.9398 GPa), and ρ = 2700 kg/m3. Also, the 

link modules were modeled as hollow Timoshenko beams with uniform square cross sections, as 

well as the cube-shaped portion of the joint modules (where the connection interfaces are 

located). The cylindrical portions of the joint modules, which contain added masses to the motors 

and gears, were modeled as hollow Timoshenko beams, while each motor’s stiffness and gearing 

system were modeled using massless linear virtual springs. Furthermore, it was assumed that the 

end-effector was treated as a rigid body. In ANSYS®, “BEAM188” elements were used to model 

the links and joint casings and an “MPC184” element was used to model the rigid end-effector 

link. To model the virtual spring joints in ANSYS®, tandem “COMBIN14” elements were used 
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at each joint output, since this element only allows either three rotational or three translational 

DOF to be applied at once. Thus, at each joint, one “COMBIN14” was used to model the three 

translational DOFs and another to model the rotational DOFs. To include the module and motor 

self-weights in the ANSYS® model, the equivalent nodal consistent moments and forces were 

computed using the method in Section 3.3.8 and directly entered as nodal force inputs in the 

software. Also, for the vibration analysis, the non-structural masses were modeled using the 

“MASS21” lumped masses at the corresponding nodes. In all cases, the structural masses of the 

modules were modeled using consistent mass matrices for Timoshenko beams. 

 

 

Figure 3-10:  MRR poses for case study (a) Pose #2, (b) Pose #3 

 

 The module geometric properties, including the initial configuration axes for the modules are 

shown in Table 3-2. After the modules were assembled for the initial configuration, the MRR 

was moved to the three different poses (labeled Pose #1, Pose #2 and Pose #3 in Figs. 3-9 and 3-

10) for the kineto-elasto-static and vibration analyses. For simplicity, it was assumed that the 

wrist module remained locked in a position such that it always remains aligned with the last link 

module, and because the wrist length is short relative to the other modules, it was modeled as a 

rigid-body. The local joint input angles and position vectors for each pose tested are given in 

Table 3-3.  
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Table 3-2:  Module geometric properties for case study 

MRR Module 

Module Axis  
Directions for 

Initial 
Configuration 

Length, Li  
[m] 

Inner Radius, 
ri  

[m] 

Inner Cross 
Section Base 

Length, bi  
[m] 

Wall 
Thickness 

(Outwards), ti 
[m] 

Joint 1 z 0.25 0.045 - 0.005 
Link 1 x 0.60 - 0.09 0.005 
Joint 2 -z 0.1875 0.035 - 0.004 
Link 2 x 0.45 - 0.07 0.004 
Joint 3 y 0.1875 0.035 - 0.004 
Link 3 x 0.45 - 0.07 0.004 
Wrist x 0.05 - - - 

 

 For the joint motor parameters, the lateral and torsional joint virtual stiffness terms for the 

base joint’s motor were assumed to be ky = kz = 2.5×109 N/m and kθ = 3×1011 N·m/rad. For the 

second and third joint modules, the motor stiffness terms were assumed to be ky = kz = 2×109 

N/m and kθ = 2×1011 N·m/rad. All other joint stiffness values were set to 1013 N/m (or N·m/rad). 

The motor mass for the base joint was 2 kg, while the remaining motor masses were 1.5 kg, and 

the end-effector mass was 1 kg. It was assumed that the CG locations for the non-structural 

motor masses were located at the mid-lengths of the modules (including the wrist) aligned with 

the length (Xe) axes. At the free-end of the wrist, an externally applied payload force of 70 N 

(7.1356 kg) was applied along the negative YG direction at the tip of the end-effector. 

Furthermore, for the kineto-elasto-static tests, each module was discretized using a single 

element, while for the vibration tests, each separate module was discretized into 10 evenly 

spaced Timoshenko beam finite elements. The results of the elastic displacements at the tip (free-

end) of the MRR, along with the first eight undamped natural frequencies for each test pose for 

the ANSYS® models, are given in Tables 3-4 and 3-5. The computational models from Sections 

3.3 and 3.4 were programmed in MATLAB® 7. When the computational models were compared 

to the ANSYS® model, and when 15-digit accuracy is set in the options for the output file, the 

results between the ANSYS® model and the FE model vary by a maximum error (relative to the 

ANSYS model®) on the order of 10-6%. This error might be due to the solver used in ANSYS® 

(sparse direct solver), although, the use of other iterative solvers, such as the preconditioned 

conjugate gradient solver, yielded slightly higher errors on the order of 10-5%. In any case, the 

computational kineto-elasto-static model still exhibits low relative differences when compared to 

the software.  
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Table 3-3:  Joint motion inputs and module position vectors for case study 

Module Tip Position Vector, pi  
(i = 2 to 8) Test Case 

MRR 
Module 

Joint Input 
Angle 
[deg] px,i [m] py,i [m] pz,i [m] 

Joint 1 0 0 0.9000 0.2500 
Link 1 - 0.6000 0.9000 0.2500 
Joint 2 0 0.6000 0.9000 0.0625 
Link 2 - 1.0500 0.9000 0.0625 
Joint 3 0 1.0500 1.0875 0.0625 
Link 3 - 1.5000 1.0875 0.0625 

Initial 
Configuration 

Wrist - 1.5500 1.0875 0.0625 
Joint 1 -25 0 0.9000 0.2500 
Link 1 - 0.5438 0.6464 0.2500 
Joint 2 -40 0.5438 0.6464 0.0625 
Link 2 - 0.9785 0.7629 0.0625 
Joint 3 40 0.9299 0.9440 0.0625 
Link 3 - 1.2629 1.0332 -0.2268 

Pose #1 

Wrist - 1.2999 1.0431 -0.2589 
Joint 1 50 0 0.9000 0.2500 
Link 1 - 0.3857 1.3596 0.2500 
Joint 2 85 0.3857 1.3596 0.6250 
Link 2 - 0.7543 1.1015 0.0625 
Joint 3 -45 0.8618 1.2551 0.0625 
Link 3 - 1.1225 1.0726 0.3807 

Pose #2 

Wrist - 1.1515 1.0523 0.4161 
Joint 1 90 0 0.9000 0.2500 
Link 1 - 0 1.5000 0.2500 
Joint 2 -85 0 1.5000 0.0625 
Link 2 - -0.4483 1.5392 0.0625 
Joint 3 -65 -0.4646 1.3524 0.0625 
Link 3 - -0.6541 1.3690 0.4703 

Pose #3 

Wrist - -0.6751 1.3709 0.5157 
 

Table 3-4:  Kineto-elasto-static tip displacement results for case study 

Global Elastic Tip Displacements at End-Effector 
Flexible Tip Position 

Vector, pflex,tip Test 
Case 

Model 
u  

[mm] 
v 

[mm] 
w 

[mm] 

θ 
10-3  

[rad] 

ϕ 
10-3  

[rad] 

ψ 
10-3 [rad] 

px,tip 

[mm] 

py,tip 

[mm] 
pz,tip 

[mm] 

ANSYS® 0.3359 -2.0512 -0.0341 -0.1816 0 -1.9650 Initial 
Config. FE error % 4.67×10-6 8.42×10-7 3.78×10-6 4.54×10-6 6.12×10-6 5.34×10-6 

1.5534 1.0854 0.0625 

ANSYS® 0.3867 -1.6633 -0.2501 -0.8170 0.0233 -1.5934 Pose 
#1 FE error % 9.38×10-7 2.76×10-6 3.45×10-6 1.23×10-6 6.34×10-6 2.12×10-6 

1.3003 1.0414 -0.2592 

ANSYS® -0.1436 -1.3737 -0.0407 0.5166 -0.0369 -1.5321 Pose 
#2 FE error % 4.89×10-6 6.24×10-6 8.13×10-7 7.34×10-6 5.90×10-6 3.91×10-6 

1.1514 1.0506 0.4161 

ANSYS® -0.0367 -0.9120 -0.0420 0.7298 -0.0089 1.1044 Pose 
#3 FE error % 4.61×10-6 8.45×10-7 3.09×10-6 1.08×10-6 4.77×10-6 6.56×10-6 

-
0.6751 

1.3700 0.5157 

  

 In terms of computation times, the average time to compute the tip displacements for ten 

computations using the FE model is 0.2452 s. If the remaining global and local displacements 
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and local force vectors were to be computed for the entire MRR, the average computation times 

for the FE model increased to 0.2498 s. The results of the first eight undamped natural 

frequencies for the FE and ANSYS® models are shown in Table 3-5. The results are nearly the 

same, with a maximum difference on the order of 10-3 Hz for the 7th mode for Pose #2. Again, 

this is likely due to the solver used in ANSYS®. All modes before the 6th mode have relative 

errors below 10-5%. Overall, the analytical models presented in this chapter are reasonably 

accurate when compared to commercial software. 

Table 3-5:  Stationary undamped natural frequency results for test cases 

Undamped Natural Frequencies, ωn,i [Hz], (i = 1,2,...,8 = Mode #) Test 
Case 

Model 
1 2 3 4 5 6 7 8 

ANSYS® 11.7377 12.5497 71.6454 80.5580 117.9026 184.6929 223.1502 291.2925 Initial 
Config. FE error % 3.74×10-6 3.46×10-6 3.59×10-6 1.58×10-6 5.20×10-6 8.89×10-6 4.48×10-5 3.43×10-5 

ANSYS® 12.5277 13.3462 45.8858 67.8382 132.3110 168.2681 228.3097 274.8912 
Pose #1 

FE error % 1.38×10-6 2.74×10-6 4.37×10-6 6.09×10-6 7.09×10-6 6.46×10-6 4.37×10-5 3.64×10-5 
ANSYS® 14.2569 14.3129 39.6156 109.1697 141.6993 277.0571 334.8830 403.8113 

Pose #2 
FE error % 1.58×10-6 2.18×10-6 4.48×10-6 4.89×10-6 3.33×10-6 3.61×10-5 5.97×10-5 5.43×10-5 

ANSYS® 16.5048 17.4337 33.7521 56.0165 94.5081 129.7650 276.4221 342.2687 
Pose #3 

FE error % 3.03×10-6 3.27×10-6 2.19×10-6 3.85×10-6 4.28×10-6 5.96×10-6 3.62×10-5 2.92×10-5 

3.6  Summary 

 This chapter presented a kineto-elastic computational method which combines the rigid-body 

reconfigurable kinematics with module structural elasticity for an MRR. By using the recursive 

kinematic method in Section 3.2, the requirement to reset the local kinematic coordinate frames 

is avoided. Also, the modeling methods are valid for low-speed quasi-static motions, with the 

goal of determining the global tip deformations, local forces and undamped natural frequencies 

when the MRR is subjected to module self-weights, motor weights, and external forces due to a 

payload at the end-effector. These kineto-elastic parameters can be solved in any possible MRR 

pose. Furthermore, the inclusion of rigid component modeling and joint motor stiffness adds to 

the versatility of the kineto-elastic models. The modeling methods in this chapter can be adapted 

to MRRs that have small or large joint offsets as well as hinged modules. It is shown in the 

results from Section 3.4 that the FE model is accurate when compared to commercial software. 

Moreover, the pose-dependency on the global tip deformations and the natural frequencies are 

evident in the case study. This will be further examined in the next chapter to determine the 

worst-case kineto-elastic MRR configurations and poses. Overall, the FE methods developed in 

this chapter are utilized in the remaining chapters of this dissertation. 
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4. Hybrid Search Method for the Worst-Case 
Quasi-Static Stiffness Performance 

 This chapter presents a new and effective hybrid search methodology for the quasi-static 

stiffness performance evaluation of serial MRR configurations. For a given set of MRR modules 

and a specified payload requirement, the goal is to determine the maximum static torques, 

maximum tip deflections and minimum fundamental natural frequency that exist for each 

feasible MRR configuration. By doing so, the configurations and their respective poses with the 

worst-case stiffness performance characteristics can be identified. Afterwards, these worst-case 

configurations can be avoided during MRR assembly, thereby ensuring configurations with 

better kineto-elastic performance. The problem at hand presents considerable numerical 

difficulties, mainly due to the large number of possible module configurations and the infinite 

number of poses within each configuration’s workspace. Since multiple structural and kinematic 

parameters exist for an MRR, an analytical solution is rather difficult to obtain. Therefore, to 

alleviate these difficulties, the proposed hybrid search method combines an elimination search 

algorithm to reduce the total number of configurations to a smaller subset of feasible 

configurations (configuration-space search), with a genetic algorithm (GA) [159], or non-

dominated sorting genetic algorithm (NSGA-II) [160], to directly search for the worst-case 

stiffness poses for each kineto-elastic requirement (workspace search). It is demonstrated that the 

worst-case stiffness search method in this chapter is superior in computational time and 

numerical accuracy, compared to previous incremental or grid-based workspace search methods, 

which require searching through a pre-determined number of poses. Through case studies, the 

new hybrid search method is proven to be computationally efficient and able to obtain accurate 

results for the worst-case stiffness poses. 

4.1  Problem Description  

 The type of serial MRR under study in this chapter is described in Section 3.1, with joint 

modules containing long offset distances relative to adjacent link axes. The problem under study 

is the determination of the MRR configuration and pose that yields the most detrimental quasi-

static stiffness performance with respect to tip deflections, fundamental natural frequencies and 
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base joint static torques (where the highest moments occur). Along with the assumptions for the 

kineto-elastic model in Chapter 3, the order of module assembly (from the module located at the 

base of the robot to the tip module) is assumed to remain constant due to the fact that the 

modules located near the base should be larger in size (and hence stiffer) than the modules 

located near the robot’s tip. To avoid further over-complicating the hybrid search method in this 

chapter, the quasi-static motion assumption must hold. The forthcoming analysis would be 

impossibly complex if flexible-body dynamic performance is included. The number of required 

workspace searches will increase drastically since solutions for all possible combinations of joint 

angular velocity directions are required, along with additional computational burdens in solving 

large systems of differential algebraic equations. 

 

 The main challenge in the kineto-elastic analysis in this chapter is how to account for the 

number of different robot configurations and infinite number of poses. For an MRR with n 

modules and six possible configurations for each module, the total number of possible 

configurations is 6n, which increases exponentially with an increase in the number of modules; 

thus the problem becomes computationally complex when searching for the worst-case kineto-

elastic poses for each configuration. For example, an MRR with two joint and two link modules 

has 1296 possible configurations, whereas an MRR with three joint and three link modules has 

46656 possible configurations. Because not every configuration is feasible with respect to the 

MRR kinematics, module assembly and configuration symmetry, an enumeration scheme should 

be employed to reduce the number of configurations to a smaller set of feasible configurations. 

Therefore, an automated enumeration process is required to identify a small subset of feasible 

configurations in order to avoid searching through the individual workspaces from each of the 6n 

configurations for the worst-case stiffness configurations and poses. After all configurations are 

enumerated for a given number of modules, the configuration-space can be represented as: 

  T1 2, , , , ,i Nc c c c =c  (4.1) 

where N is the number of enumerated feasible configurations for the study.  
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 When an MRR is assembled in a particular configuration, c, and moved to an arbitrary 

stationary pose with joint motion variables, q = [q1, q2, ..., qi, ..., qn]
T, the kineto-elastic tip 

deflections with respect to the global reference frame are as follows: 

  1
, , ,( , )G G p G w G motoc   = Ku q f f f r G

,

 (4.2) 

where uG is the global deflection vector, KG is the assembled global stiffness matrix, fp,G, fw,G 

and fmotor,G, are the global force/moment vectors representing the payload force acting at the tip 

of the end-effector, the forces due to the module structural self-weights, and the joint motor 

weights, respectively. In Eq. (4.2), uG contains all of the elastic deflections associated with the 

nodal DOF for the entire MRR due to the internal forces (fw,G and fmotor,G) and the externally 

applied payload force (fp,G). If the global deflection vector is determined from Eq. (4.2), the local 

wrench forces/moments can be solved at the end-tips of the ith module using: 

 T
, ,( , )e i e i i G ic  k Tf q u  (4.3) 

where fe,i is a vector containing the local forces and moments, ke,i is the local module stiffness 

matrix, Ti is a transformation matrix to transform the local element stiffness, deflection and force 

vectors to global coordinates, and uG,i is a vector containing the global nodal deflections for the 

ith module. In order to avoid the resonance phenomenon while the MRR is moved to another 

pose, it is desirable to determine the lowest system natural frequency. An undamped free-

vibration finite element model for a stationary configuration and pose can be derived (for 

example, using Lagrange’s equation) as: 

  2
, ,G n G p G motor G   K M M M Φ 0   (4.4) 

where ωn is a natural frequency found by solving the eigenvalues (λ = ωn
2) of Eq. (4.4), Φ is the 

mode shape eigenvector corresponding to ωn, MG is the assembled global mass matrix which 

accounts for the structural masses of the joints and links, Mp,G is a matrix representing the 

payload mass in global coordinates and Mmotor,G is a matrix containing all of the non-structural 

masses of the internal joint components, such as motors and gears.  

 

 Observing Eqs. (4.2) to (4.4), with the exception of fp,G, ke,i, and Mp,G, the remaining terms 

are not only dependent on the payload, but also on the initial configurations of the MRR 
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modules, and their poses after movement from those initial positions. The problem for the 

stiffness performance determination can be stated as: given a payload mass attached to the tip of 

the end-effector, mp (in Mp,G), and equivalent payload force acting in the direction of gravity, P = 

-mpg (in fp,G), determine the configurations, cfi, and their respective vectors of joint variables, qfi, 

with i = 1 to 4, in order to optimize the following kineto-elastic objective functions: 
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 (4.5) 

where utip is the magnitude of the three robot translational tip deflections along the global XG-, 

YG- and ZG-directions, or  T

tip
u v w . Similarly, ψtip is the magnitude of the robot angular tip 

deflections about the global XG-, YG- and ZG-axes, and can be written as  T

tip
   ; and 

me,1 is the static torque magnitude about the local Xe-, Ye- and Ze-axes obtained at the tip of the 

first joint module (where the first link is connected) and can be denoted as  T

1x y zm m m . In 

Eq. (4.5), ωn1 is the undamped fundamental natural frequency for free vibration found in the 

assembled MRR. At the worst-case stiffness performance configurations and poses found in Eq. 

(4.5), the loads acting on the individual modules are the highest for all configurations, thus 

causing the highest MRR deflections and torques, and lowest natural frequencies. It is expected 

that planar motion MRR configurations will have the same worst-case pose at full stretch for 

each of the objectives in Eq. (4.5), but not the spatial configurations due to the possible change in 

dominant deformation modes, which are also affected by additional joint motor compliance. For 

example, the dominant deformation mode for a module may change from joint torsion to joint 

bending with different MRR poses. The search for the kineto-elastic objective functions in Eq. 

(4.5) are subject to the following constraints: 

 
fi

LB fi U

c

B



 

      c

q q q
 (4.6) 

 83



where qLB and qUB represent vectors of the lower and upper bounds of joint motion limits, 

respectively. The jth row in qLB and qUB defines the motion limits for the jth joint module. 

4.2  Numerical Complexity 

 In this chapter, the problem to determine the worst-case stiffness configurations and poses 

can encounter significant numerical difficulties. First, a large number of computations are 

required to solve Eq. (4.5) for multiple MRR configurations. The multiple objective functions 

indicate that multiple structural analyses must be performed to optimize the quantities given in 

Eq. (4.5), three static and one vibration. In the stiffness analysis of traditional non-reconfigurable 

robots, the workspace of only one configuration is considered, which exhibits a complex 

problem already. Also, the worst case stiffness pose usually occurs at maximum arm elongation 

for non-reconfigurable serial robots with simple geometries. On the other hand, MRR joint 

module reconfigurations can produce different workspace ranges of motion, all of which must be 

considered when determining the worst-case stiffness performance. Likewise, within each 

configuration’s workspace there are an infinite number of poses which must be taken into 

account to find the worst-case stiffness pose. Also, due to the multiple objectives in Eq. (4.5), 

there may exist symmetric module configurations, or  multiple poses within a configuration 

which give the same worst-case stiffness results. Furthermore, with additional MRR modules, 

the number of possible configurations can become exceedingly large, and the systems of 

equations in (4.2) to (4.4) can increase drastically in size. 

 

 A closed-form analytical solution to determine the worst-case stiffness can be difficult, if not 

possible, to obtain. Since the deflection and torque objective functions in Eq. (4.5) are only 

required at one location on the assembled MRR, along with the lowest natural frequency, it 

becomes necessary to solve for the remaining global static deflections, torques and natural 

frequencies throughout the entire MRR structure. The given objective functions are dependent on 

the remaining deflections, frequencies and unknown joint variables, which are greater in number 

than the system of equations in Eqs. (4.2) to (4.4). Therefore, with multiple MRR modules, the 

worst-case stiffness determination is a redundant problem. Previous researchers employed 

incremental [39, 55, 59, 63] or grid-based search methods [51, 52, 64-66] to solve this problem. 
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However, to achieve a high degree of numerical accuracy, the methods in the aforementioned 

references might require computations at billions of possible poses for a single configuration.  

 

 For a single configuration, the time complexity for the incremental-based search problem 

assuming the numerical complexity of Eqs. (4.2) to (4.4) remains constant is O((ninc)
njoint), with 

ninc representing the number of angular joint increments and njoint representing the number of 

joint modules. For example, using an incremental search method to achieve 0.1° worst-case pose 

accuracy for a 3-DOF serial manipulator with 180° joint ranges of motion will require 

5.9297×109 calculations. Instead, by computing the worst-case stiffness poses using a direct 

search method, the large number of required computations can be drastically reduced. The time 

complexity using a direct search method for  a single configuration would be O((y(popt)
njoint) with 

y(popt) representing a function of the search optimization method’s adjustable tuning and 

convergence parameters. In both cases, an exponential increase in computation time is expected 

with an increasing number of joint modules. However, a fixed number of MRR poses is avoided 

using a direct search method. For a given number of joint modules and prescribed accuracy 

requirement for the worst-case poses, a search method needs to be developed such that the 

number of required computations in y(popt) is less than that of ninc. In general, direct search 

methods avoid possibilities for stiffness mapping over the workspace, but can provide a more 

direct solution to solving the MRR operational limits for the objective functions in Eq. (4.5) 

given a payload requirement. Therefore, for a specified payload, the identified worst-case 

deflections, torques and fundamental resonance frequencies will not be exceeded in any 

configuration’s workspace. 

4.3  Hybrid Search Method for Worst-Case Stiffness Performance 

 To reduce the computational burdens associated with the problem in this chapter, yet obtain 

accurate solutions, a new hybrid search method is developed which combines an elimination 

search algorithm to reduce the configuration-space to a smaller subset of feasible configurations, 

and a search method to directly search the workspaces of each feasible configuration. The hybrid 

search method is shown in Fig. 4.1. To apply this method for a given number of modules, each 

module’s local geometry, stiffness and mass properties are initially defined by the user since they 
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are constant throughout all configurations and poses. Also, the joint motion limits are pre-

defined based on each actuator’s physical range of motion. For the first stage of the method, an 

elimination search algorithm is developed to automatically generate the total number of 

configurations (for example, 6n configurations for six configuration directions per module), scan 

the set of all possible MRR configurations and reduce the size of the configuration-space to a 

small subset of feasible configurations for MRR kineto-elastic analysis. 

 

 Once the set of feasible configurations is determined, the next stage involves determining the 

worst-case stiffness poses for each stored feasible configuration. Because of the inherent 

nonlinearity in this problem, a direct search method is proposed which exploits the direct search 

capabilities of a GA or NSGA-II. The idea is to automatically “morph” the configurations into 

their respective poses with the worst-case stiffness conditions which satisfy the objective 

functions in Eq. (4.5). The GA/NSGA-II is performed sequentially to solve Eqs. (4.2) to (4.4) 

using MRR forward kinematics found in Section 3.2, thereby including all possible MRR pose as 

potential candidates for the worst-case poses in Eq. (4.5). Due to the stochastic nature of 

GA/NSGA-II operations, a stability check is then performed by running the search method for 

fully converged solutions a number of times, and checking the standard deviation of the 

converged joint variable solutions. In the following section, details of each stage in the hybrid 

search method are given.  
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Figure 4-1:  Hybrid search method for worst-case stiffness configurations and poses 

4.4  Implementation Considerations 

4.4.1  Elimination Search for Feasible Configuration Enumeration 

 In general, the total number of configurations can be expressed as 6n. However not all of the 

configurations are feasible. Thus, the first issue in the hybrid search method is a search of the 

configuration-space to enumerate feasible configurations with respect to the required kineto-

elastic analysis for the objective functions in Eq. (4.5). Previous researchers such as Chen and 

Burdick [161] developed enumeration procedures based on geometric symmetry properties of 
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MRR configurations. However, the currently existing enumeration procedures in the literature 

were not developed to consider eliminating configurations which may give identical worst-case 

kineto-elastic performance values at one or more poses. Therefore, an automated enumeration 

algorithm using an elimination search was developed and is shown in Fig. 4-2. 

 

 First, a full-factorial table containing all possible configurations is generated based on the 

number of available modules. The row dimension of the full-factorial table is equivalent to the 

total number of possible joint configurations found in the assembled MRR (6n) and the column 

dimension is equal to the number of modules (n). Next, each configuration (or row) in the full-

factorial table is scanned to determine if any of the MRR configurations are infeasible with 

respect to following requirements: 

o The first joint cannot have any axis configurations that are in negative directions. This 

measure will greatly reduce the symmetric configurations about the base of the robot, and 

will prevent the base joint from clashing with the ground link/fixture. 

o The assembled MRR configuration must not be restricted to planar motions if a spatial 

motion wrist is attached. At least one joint rotation axis must be perpendicular to all 

remaining joint axes. The reason why planar configurations are not considered for the 

analysis is due to a larger workspace volume requirement with the added end-effector.  

o Link modules cannot have their length axes aligned with adjacent joint module rotation 

axes. If a joint is initially configured to align in the ±YG- or ±ZG-directions, it is 

automatically assumed that the corresponding link should be aligned with the global XG-

axis. Also, if a joint is initially configured to align in the ±XG-direction, the 

corresponding link should be aligned with the global ZG-axis. This will ensure that link 

modules will always remain perpendicular to adjacent joint modules and will also prevent 

module clashing during initial assembly. 

o Initial module configurations that are symmetric about the x-z, x-y, or y-z planes cannot 

exist. Symmetric MRR poses not only give the same kinematic results, but also produce 

the same tip deformations, base joint torques and natural frequencies. Although this 

measure will eliminate symmetric configurations at initial module assembly, it does not 

guarantee that two or more poses for different configurations will not be symmetric (at 

the worst-case poses for Eq. (4.5)) after motion occurs. 
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Figure 4-2:  Elimination search algorithm for configuration enumeration 

 

If any of the above requirements are violated, the corresponding configurations are removed 

from the table. Using the above four rules reduces the likelihood that two or more configurations 

will yield the same kinematic and kineto-elastic analysis results (utip, ψtip, me,1 and ωn1). The 

remaining configurations will form the feasible configuration-space, c. Using this method does 

not take a considerable amount of computational time: ~2×10-2 s for 2-DOF to ~12 s for 6-DOF. 

However, since the full-factorial table containing all possible configurations can get quite large 

with an increasing number of modules, it is recommended that the enumeration stage occurs 

separately before the workspace search stage for better computer memory allocation. Overall, the 

presented automated enumeration scheme is relevant in the fact that it can effectively reduce the 
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large configuration-space to a small subset of configurations by eliminating all infeasible cases, 

thereby requiring fewer configuration workspace searches.  

4.4.2  Workspace Search for using GA/NSGA-II for Worst-Case Kineto-Elastic 
Performance  

 The proposed method to determine the worst-case kineto-elastic configurations and poses 

which satisfy the objective functions in Eq. (4.5) utilizes a customized GA or NSGA-II and is 

shown in Fig. 4-3 with the shaded flowchart symbols representing NSGA-II operations. First, the 

user inputs an arbitrary payload and each module’s local FEM matrices are computed and stored. 

The workspace searches begin by selecting a feasible configuration ci from c and generating an 

initial population, which contains the initial guesses from a random number generator for the 

optimal joint variables, qfi, bounded by qLB and qUB. By using this approach, every possible joint 

angle in the motion ranges is a candidate for the worst-case scenario, and the proposed method is 

not limited to searching a fixed number of poses. For both the GA and NSGA-II, real-valued 

parameter coding is used throughout, except for the genetic operations in Fig. 4-3(a). Therefore, 

the initial population of optimal joint variable candidates, denoted as [q] in Fig. 4-3(a), is a real-

valued matrix with the rows representing the number of joints, and the columns representing 

each individual (or chromosome) in the population. 

 

 The objective functions (termed fitness functions for the GA or NSGA-II) in Eq. (4.5) are 

evaluated for each individual using the FEM pseudo-code in Fig. 4-3(b). That is, for each 

estimate of joint variable vectors in the population, the transformation matrix in Eq. (3.92) is 

computed for each module, then applied to Eqs. (3.96) and (3.97) to transform the local elements 

to the global coordinate frame, and assembled into the global force vectors, stiffness and mass 

matrices using the connectivity matrices in Eqs (3.99) and (3.100). Equations (4.2) to (4.4) are 

then used to evaluate the fitness functions fi(cfi, qfi) in Eq. (4.5) for each individual and they are 

ranked in order from best to worst. For a single set of joint variable predictions, the main 

difference between the GA and NSGA-II is that the GA is only able to solve one of the 

objectives in Eq. (4.5) at a time, while the NSGA-II can be utilized to compute all objectives in 

Eq. (4.5) simultaneously. Therefore, the entire GA procedure in Fig.4-3(a) must be performed 

separately for each of the fitness functions in Eq. (4.5) for each feasible configuration. 
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Figure 4-3:  (a) Flowchart of GA/NSGA-II workspace search method, (b)  Pseudo-code for FEM solver 

 
 For the NSGA-II, the solutions with non-dominant ranks are usually sorted using a crowding 

distance algorithm found in [160], which utilizes a cuboid to enclose a particular point on the 

Pareto frontier. The size of the cuboid is formed by the adjacent points on the Pareto frontier, 

from which the crowding distances from the cuboid’s vertices to the enclosed point can be 

computed. Afterwards, the genetic operations in Fig. 4.3(a) are computed by converting the real-

valued joint variables to binary bit strings. The selection stage uses the roulette wheel method 

[159] where the individuals with the higher fitness values have a higher percentage chance of 

being randomly selected for the next stage. Then the crossover stage occurs, where a percentage 

of selected individuals are chosen with a specified crossover probability and random sites on 

each of the bit-strings are swapped. Mutation is then performed on the bit strings, where a 

randomly selected position on a bit string is switched, thus changing the fitness of the 

chromosome. For a pre-specified number of GA/NSGA-II iterations (or generations), completely 

new designs are introduced into the current population in order to increase the diversity of 
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solutions in a process called migration [159]. After the genetic operations in Fig. 4-3(a) are 

completed, the binary strings are converted back to real-valued parameters and the bounded joint 

variable constraints in Eq. (4.6) are checked. If a newly formed individual violates the bounded 

constraints, it is discarded and the genetic operations are performed once again to generate a new 

individual. 

 

 The final phase of the workspace search involves combining the newly formed population 

 

(children) obtained from the genetic operations with the previous population (parents). For both 

the GA and NSGA-II, elitism is used to ensure that the best ranked individuals in both child and 

parent populations are included in the newly combined population. After each generation, the 

termination criteria include a tolerance on the cumulative change for each of the best-fit solutions 

for Eq. (4.5), divided by the number of current stall generations (the number of generations 

where there is minimal improvement in the best overall fitness function). The averaged 

cumulative change of the best-fit solutions can be represented as: 

 , , ,
1

1 s

,     1, 2,3, 4 i s i best i j
j

f abs f f i
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     (4.7) 

where s is the current stall generation number, fi,best is the current overall best-fit solution for Eq. 

 

(4.5), fi,j is the next best (or better) fitness found in the jth stall generation. If a new stall 

generation becomes available, then the averaged cumulative change in the best-fit solutions can 

be updated using: 
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 (4.8) 

Eq. (4.8) avoids recomputing the summation of differences in Eq. (4.7). For the current stall 

generation, the convergence condition for each fitness function is then satisfied when Δf̄i,s+1 ≤ εfi, 

with εfi denoting the user-defined tolerance for each fitness function in Eq. (4.5). Further 

stopping criteria for the GA or NSGA-II include pre-defined limits on the maximum number of 

generations and stall generations, and a pre-defined time limit for stalled generations (if there is 

no improvement in the best fitness value). Once the GA or NSGA-II solutions converge, the best 

solutions for Eq. (4.5) are stored. For the NSGA-II, the Pareto-optimal frontier can be plotted 

with the dominant and non-dominant solutions found in the current population. However, only 
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the extreme points on the Pareto frontier are necessary for the work in this chapter since only the 

worst-case solutions in Eq. (4.5) are required. 

4.4.3  Workspace Search Simplifications and Convergence Issues 

le MRR poses may 

Like most direct search methods, the solutions obtained from the GA (or NSGA-II) are sub-

 

 It is important to include the fact that for any given configuration, multip

exist which satisfy the fitness functions in Eq. (4.5). This is especially true for configurations 

with the first joint axis aligned with the global YG-axis. In such cases, joint motion for the first 

joint is assumed to be locked. Furthermore, when searching the various configuration 

workspaces to solve Eq. (4.4) for the natural frequencies, the first joint for every configuration 

always remains locked since the natural frequencies are dependent on the shape the MRR 

structure can form, rather than its pose with respect to the global coordinates. 

 

 

optimal. In particular, the final converged solutions produced by the GA for Eq. (4.5) are 

stochastic in nature since the initial population generation, crossover, and mutation operations 

are defined by random number generators which typically use uniform probability distributions. 

To alleviate the solution variations for the optimal joint variables obtained from the GA/NSGA-

II, a cumulative moving average method is employed. To check GA solution stability, the 

workspace searches are conducted by repeatedly running the GA and solving each of the fitness 

functions and their respective joint variables until the cumulative mean values for each optimal 

joint variable converges to a single value within a specified tolerance, or for a pre-specified 

number of converged GA runs. For the current converged GA run, k, the mean value for each 

predicted optimal joint angle is given by: 

k

,
1

, ,     = 1, 2, ... , 
i r

r
i k joint

q
q i n

k



 (4.9) 

where qi,r is the predicted optimal joint angle for the ith joint module in the rth GA run. Similarly, 

 

the standard deviation for each optimal joint angle for the current GA run is: 
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The workspace searches continue until Eqs. (4.9) and (4.10) become stable within a given 

lerance with respect to the previous converged GA run. With an

converged GA runs, the values of the cumulative moving averages and standard deviations will 

 Two case studies were performed on an MRR with three reconfigurable revolute joints and 

9 in Section 3.5, with the same geometric and material 

properties, as well as joint stiffnesses and motor masses. Moreover, it was assumed that each 

to  increasing number of 

eventually approach a constant value. Therefore, Eqs. (4.9) and (4.10) can be used to dictate the 

number of necessary converged GA runs, k, to check the solution stability of the joint variables. 

Afterwards, the best fit solutions for each scenario in Eq. (4.5) can be selected from each set of 

converged GA runs. In order to provide more rapid convergence for multiple converged GA 

runs, the upper and lower search limits for the joint variables, qLB and qUB, can be reset to lie 

within a smaller specified range of the near-optimal joint angles obtained from the first few GA 

runs. This measure will further reduce the chances of each successive GA run converging to 

symmetric sets of joint angles, thus guaranteeing convergence to a single pose and reducing 

simulation time when performing the stability check. However, for each run of the GA, if the 

stall time limit or maximum number of stall generations is reached before the solution converges 

to an acceptable optimal solution, the results of the current GA run are discarded and a new GA 

run is restarted. 

4.5  Numerical Case Studies 

an end-effector, as depicted in Fig. 3-

joint module has an angular range of motion from -90° to +90°. For the initial kineto-elastic 

workspace searches, the MRR was loaded with a stationary payload force of 70 N (7.1356 kg) 

acting in the negative global YG-direction. The GA and NSGA-II parameters used for the 

simulations are listed in Table 4-1. These parameters were determined based on initial tests of 

the workspace search, where the simulation was run several times for a randomly selected 

configuration until the adjusted parameters gave desirable results. Details on tuning the GA 

parameters are found in [159], albeit through trial and error methods. All computations were 

performed using a desktop PC with a 3.4 GHz processor and 16 GB of memory. First, a 

verification study for the workspace search is performed using a planar configuration with 

known joint variable solutions, with the worst-case kineto-elastic poses occurring at maximum 

stretch. The GA and NSGA-II are compared with the incremental-based search methods from 

 94



[55], [59] and [63] for solution times and accuracy. Afterwards, the hybrid search method is 

applied to determine all feasible spatial configurations, then searching these configurations with 

the goal of determining the worst-case kineto-elastic performance configurations and poses for 

the MRR. 

Table 4-1:  GA and NSGA-II parameters 

Parameter Value 
Initial population size 30 

Crossover fraction 0.85 
Crossover function Two point method [159] 

Fitne 59] ss scaling function Rank method [1
Max. number of generations 500 

Mi n gration fractio 0.1 
Migration interval 10 
Selection function Roulet ] te wh thod [159eel me

Max. n tions umber of stall genera 15 
Stall time limit 80 s 

Tolerance for fitness 10-13 

Pareto only)   fraction (NSGA-II 0.1 

 

4.5.1  Planar Configura pace Search Verification 

To verify the solutions obtained for the workspace searches, a planar configuration in Fig. 4-

4 is used, with all joints having "+z" axis initial configurations. The optimal worst-case solutions 

mum stretch) with all 

tion for Works

 

are known to occur at the initial configuration pose (equivalent to maxi

joint variables set to 0° for each requirement in Eq. (4.5). The fitness functions in Eq. (4.5) are 

solved sequentially using the GA, and are solved simultaneously using the NSGA-II. 

 

 

Figure 4-4:  Planar verification configuration 
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For comparison purposes, the incremental search method in [55], [59] and [63] is used by 

searching the joint ranges of motion in angular increments of 1° (5,929,741 poses), 3° (226,981 

poses) and 5° (50,653 poses). This was accomplished using three nested “for” loops (one for 

each joint) and searching the joint parameters one-by-one in a hierarchical fashion. 

Coincidentally, this method gives the most optimal solution for this verification example since 

all optimal joint variables, q = [0°, 0°, 0°] lay exactly upon a set of points within the given 

angular increment ranges. However, this is not the case if angular increments were chosen such 

that the optimal solution lied between them. To observe the stability of the fitness solutions, the 

best fitness and mean fitness va d 

e results for the maximum translational deflection in Eq. (4.5) obtained from running the GA 

lues for a single converged GA run are shown in Fig. 4-5(a), an

th

and NSGA-II for 30 consecutive converged solutions are shown in Fig. 4-5(b). 

 

 

Figure 4-5:  Maximum translational deflection results for planar configuration (a) Single GA run, (b) 
Multiple GA/NSGA-II runs 
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 The random variations in the fitness functions for all 30 converged runs have standard 

deviations of 4.7671×10-13 m for the GA solutions and 5.0537×10-13 m for the NSGA-II 

solutions. It is shown that the deflections obtained using the joint variables from the running 

averages in Eq. (4.9) converge closer to the optimal solution with increasing GA or NSGA-II 

runs, therefore proving that the solution for the maximum translational deflection is reliable, and 

stochastic variations in the fitness functions are small. Furthermore, it is shown in Fig. 4-5 that 

the GA and NSGA-II methods can provide accuracy for the optimal translational deflections 

within six decimal places. Therefore, if a larger degree of accuracy is not necessary, a single GA 

or NSGA-II converged run should prove to be sufficient in order to spare a great deal of 

computational time. Alternatively, a common method to refine the GA or NSGA-II results is to 

include a local search after each converged run in a post-processing phase. In this research, the 

MATLAB® function fminunc (a gradient-based method) was applied after the 30 GA runs in an 

effort to improve the accuracy of the results. It was found however, that by using the GA 

parameters in Table 1, the post-processing method did not show a significant improvement in the 

accuracy of the results and had additional computational times due to the added local searches.  

 

 For the solutions of the optimal worst-case joint angles, there exists a larger degree of 

var -6. 

However, the overall standard devi with increasing GA/NSGA-II runs 

 

iability from the standard deviations for each converged solution as shown in Fig. 4

ations begin to stabilize 

and the variations of the mean joint angles from Eq. (4.9) converge to the predominant optimal 

value of 0° for each joint. For 30 converged runs, the highest overall standard deviation for the 

GA solution is 1.7344×10-3 degrees for the second joint, and for the NSGA-II solution it is 

1.6763×10-3 degrees for the first joint. Thus, the cumulative moving average method in Eqs. (4.9) 

and (4.10) is useful in identifying converged solution variations. On the other hand, it is obvious 

that the method does not guarantee the best solution possible. Therefore, it is more desirable to 

select the best overall fitness solution amongst a number of converged GA/NSGA-II runs. The 

optimal joint variable solutions for 30 converged GA and NSGA-II runs are shown in Fig. 4-7. In 

this simulation, the best deflection fitness is found from the 15th GA run, and the joint variables 

are qf1 = [-2.0692×10-4, 3.2689×10-4, 2.9592×10-5] degrees. 
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Figure 4-6:  Standard deviations for 30 translational deflection optimal joint variables 

 

 

Figure 4-7:  Planar configuration optimal joint variables for maximum translational deflections  
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 The computational times for each method are listed in Table 2 for 2- to 6-DOF cases when 

solving for all four of the fitness functions in Eq. (4.5). As the number of modules increases, the 

complexity in solving Eqs. (4.2) to (4.4) increases drastically. As shown in Table 4-2, with 

increasing DOF, the computational time using the incremental search method increases 

exponentially, which is complicated beyond acceptable when there are more than three 

reconfigurable DOF. On the other hand, the GA/NSGA-II computational times increase more 

linearly, and are acceptable within reasonable limits for all DOF solutions. Though the 

computational time for the GA is faster than that of the NSGA-II, the difference is less 

noticeable with increasing DOF. The non-dominated sorting of the optimal fitness functions 

using the crowding distance operations from [160] may be the main contributing factor to 

increased NSGA-II times.  

Table 4-2:  Computation times for solving the four parameters in Eq. (4.5) for a single configuration 

Time for Incremental Search [s] Time for GA Search [s] Time for NSGA-II Search [s] 
(Angular increments) (# of Converged Runs) (# of Converged Runs) #DOF 

1° 3° 5° 1 10 30 1 10 30 
2 289.48 33.72 12.91 11.36 1.12×102 3.60×102 22.19 2.09×102 6.41×102 
3 7.08×104 2.67×103 5.93×102 28.44 2.99×102 8.33×102 43.32 4.42×102 1.26×103 
4 *1.57×107 *2.09×105 2.76×104 44.32 4.01×102 1.42×103 69.51 6.82×102 1.99×103 
5 *4.65×109 *2.01×107 *1.59×106 91.64 8.82×102 2.69×103 1.08×102 1.23×103 3.10×103 
6 *1.03×1012 *1.55×109 *1.82×107 1.37×102 1.30×103 4.11×103 1.63×102 1.72×103 4.87×103 

*Denotes expected computational times based on average computational time for a single pose computation 
 

4.5.2

aximize the magnitude of the x- and z-components of the position 

  Worst-Case Kineto-Elastic Performance for Spatial Configurations 

 To determine the worst-case kineto-elastic performance configurations for each of the fitness 

functions in Eq. (4.5), the hybrid search method in Fig. 4-2 was applied. The configuration-space 

search stage yielded 14 enumerated feasible joint configurations for spatial motion, as shown in 

Table 4-3. This effectively reduced the computational effort instead of performing separate 

workspace searches for 6n = 46656 possible combinations of link and joint module 

configurations. For the workspace searches, the sequentially run GA (instead of the NGSA-II) 

was used to search for the kineto-elastic objectives in Eq. (4.5) for 30 converged runs. The best 

converged run for each of the objectives was chosen for the final results. These results were then 

compared to those obtained when each MRR configuration's pose is at full stretch in the XG-ZG 

plane (in a direction perpendicular to the payload force). This can be computed by determining 

the joint input angles which m
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vect  z-

ne

able um ion

at
4 6 8 0 12  

or at the MRR’s tip in Eq. (3.17), or max(║pn+1,xz║), where pn+1,xz contains only the x- and

compo nts of p .  n+1

T 4-3:  En erated MRR spatial configurat s 

Configur ion 
1 

# 
2 3 5  7  9 1 11  13 41

Joint 1 ax z z x    is x x z x  y  y z y y z y
Link 1 ax x z   is z z x x z  x  x x x x x x
Joint 2 axis x y y -z -y -y -z y y y z -y -y -z 
Link 2 axis z x x x x x x x x x x x x x 
Joint 3 axis y y y y y y y z z z z z z z 
Link 3 axis x x x x x x x x x x x x x x 

 

 First, the configuration-space and workspace search stages of the method in Fig. 4-2 were 

computed concurrently using a single processor with a total computation time of 1.18×104 s. If 

the computations were performed using the increment-based method in [55], [59] or [63] with 1° 

increments, the required computations would take ~84 times longer. To take advantage of multi-

core (and multi-threaded) processing capabilities, parallel processing in MATLAB® (using the 

“matlabpool” and “parfor” commands) was used to run the workspace searches for several 

configurations simultaneously. That is, the feasible configurations were first obtained separately, 

then the workspace searches using the sequentially run GA were conducted simultaneously with 

six separate processor threads (which mimic six processors). Therefore, the worst-case poses in 

Eq. (4.5) were solved for six configurations at a time twice, and then for the last two 

configurations. The use of parallel processing reduced the total computation time to 4.92×103 s.  

 

 The results for the joint variables which give the worst-case poses for each of the kineto-

elastic objectives are sho s for each configuration 

are also plotted and denoted as ma |P |). The joint variables for joint are ignored for 

configura , 11 2 d  si e t ir nt es  r tio ar lig d th e global 

y-axis, wh ny t input angle in e ng or e rs as os Fo all cases 

in Fig. 4-8 vari le or ch ne -e r 

at maxim , th gh on gu io #  and #14 have all variables quite close to 

aximum stretch. The corresponding worst-case kineto-elastic performance parameters for each 

wn in Fig. 4-8, where the maximum stretch pose

x( xz the first 

tion #'s 7, 9 , 1 an 14 nc he joi  ax  of ota n e a ne wi  th

ich yields a  first join  th ra e f  th wo t-c e p e. r 

, the joint ab s f ea  ki to lastic objective in Eq. (4.5) do not exactly occu

um stretch ou  c fi rat ns 11

m

configuration are shown in Fig. 4-9.  
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Figure 4-8:  Joint variables for worst-case stiffness poses in Eq. (4.5) 

 
 With the first joint locked for the analyses of configurations #11 and #14 (since the first joint 

is aligned with the YG-axis in these configurations), the MRR is essentially confined to 2-DOF 

planar motion, with a dominant bending deformation mode for the base joint and links, while 

torsion is dominant for the remaining joints. Therefore, the tip deflections and base joint torques 

for these configurations are highest at their maximum stretch, as shown in Fig. 4-9. However, 

their natural frequency poses vary slightly from maximum stretch, and the GA search produces 

poses that give lower natural frequencies, as evident in Fig. 4-9. Therefore, the objectives 

obtained using the GA to solve Eq. (4.5) produce better results compared to the maximum stretch 

pose due to the existence of joint elasticity and changes in dominant deformation modes that are 

not easily identifiable from simple visual inspection. Furthermore, for a single configuration, the 
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worst-case poses for each requirement in Eq. (4.5) may occur at different poses due to changes in 

dominant deformation modes. Configuration #4 in Fig. 4-9 shows the highest changes of worst-

case translational and angular deflections from the maximum stretch pose. For this configuration, 

the pose that gives max(Ψtip) has a local torsional deformation (θe,1) at the base joint’s output 

shaft of -5.0507×10-4 rad, and a local rotational deformation (Ψe,1 about the Ze-axis) of 

1.7182×10-5 rad. At the same nodal location, when the MRR is moved to the maximum stretch 

pose, θe,1 is just slightly decreased to -5.0381×10-4 rad, while Ψe,1 is drastically reduced to 

8.0588×10-8 rad. Therefore, the pose for max(Ψtip) has a dominant deformation mode for Ψe,1 as 

compared to the maximum stretch pose. 

 

 

Figure 4-9:  (a) Highest linear and angular deflections, (b) Highest static torques and lowest fundamental 
natural frequencies found in spatial MRR configurations with 70 N (7.1356 kg) payload 

 
 With further inspection of the results in Fig. 4-9, configuration #1 gives the highest worst-

case kineto-elastic translational and angular tip deflections (utip = 2.1796 mm, ψtip = 2.0488×10-3 
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rad), as well as the lowest fundamental natural frequency (ωn1 = 11.5406 Hz).  This configuration 

is shown in Fig. 4-10(a). The highest worst-case static torques (me,1 = 178.2140 N-m), are shared 

by three configurations (#’s 2, 3 and 11). Conversely, configuration #12 (shown in Fig. 4-10(b)) 

has the lowest worst-case translational tip deflections (utip = 1.8352 mm) and this configuration, 

along with configuration #9, has the lowest worst-case angular tip deflections (ψtip = 1.8398×10-3 

rad). Also, configurations #5 and #6 have the lowest worst-case torques at the base joint (me,1 = 

173.4429 N-m), and the highest fundamental natural frequencies (ωn1 = 12.2602 Hz), along with 

configuration #14. Therefore, it is recommended to use configurations #5, #6 or #12 to attain the 

best kineto-elastic performance. It is important to note that although the enumeration procedure 

liminates symmetric poses during initial configuration assembly, it does not prevent two or 

more configurations converging to symmetric or identical worst-case kineto-elastic poses which 

may give identical MRR shapes during the workspace search stage, thereby giving the same 

worst-case kineto-elastic results. This was the case for configurations #2 and #3 (shown in Fig. 

4.10(c) and (d)), as well as configurations #5 and #6.  

 

e

 

F ure 4-10: Worst-case poses for (a) Configuration #1, (b) Configuration #12, (c) Configuration #2, and (d) 
Configuration #3 

ig
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4.6  Summary 

 A new hybrid search method to determine the worst-case MRR configurations and poses was 

presented in this chapter. It was shown that the number of configurations can be drastically 

reduced to a small subset of feasible configurations, thereby avoiding the need to search an 

exponential number of configurations. When searching for the worst-case poses for each 

configuration, when compared to the previous incremental workspace search methods, the 

computational efficiency is greatly improved when using the sequentially run GA method. Also, 

the sequentially run GA is slightly more computationally efficient than the NSGA-II since only 

extreme optimal values are required, instead of multiple solutions along a Pareto-optimal 

frontier. It is shown that the automated enumeration procedure and payload search methods do 

not take much time away from the overall combinatorial search method. When observing the 

results of the joint variables, the worst-case stiffness poses for the majority of the configurations 

do not always occur at maximum stretch, demonstrating the additional complexity of MRR 

modules and therefore justifying the requirement for the workspace search. Though a model 

ficial to decrease the solution time, these models usually 

contain errors relative to the full FE model. Overall, this search method is a part of a larger 

combinatorial search method to either determine the maximum payload capacity of MRR 

configurations, or for the stiffness design of the MRR modules, which is the focus of the next 

chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

reduction procedure would be bene
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5. Combinatorial Search Method for the Payload 

-elastic performance requirements for a large number of feasible MRR configurations 

nd poses. So far, the existing methods in the literature have been developed only for the payload 

nalysis and structural design of traditional non-reconfigurable robots. Because an MRR has 

ultiple configurations, a simple design process is proposed in order to avoid performing the 

ayload capacity analysis or stiffness design stage at each configuration. In the forthcoming 

ctions, it is shown that the payload capacity determination and module stiffness design 

roblems are dependent on the MRR configuration and pose which gives the overall worst-case 

ineto-elastic performance (which is determined using the search method in Chapter 4). 

herefore, the payload analysis or stiffness design only needs to be carried out at the worst-case 

onfigurations and poses which can guarantee the robot’s satisfactory performance for all 

maining feasible configurations. By utilizing the search methods in the previous chapter in an 

verall combinatorial search method, the complexity of the design problems are further reduced 

 three search stages (configuration-space search, workspace search and payload or stiffness 

Capacity Analysis and Module Stiffness Design 

 In this chapter, new methods for the payload capacity analysis and module stiffness design of 

serial MRRs are presented. The problem for the module stiffness design is defined as the 

determination of proper module sizes according to pre-specified kineto-elastic performance 

requirements and a given payload. On the other hand, it is often difficult to directly implement 

design changes on existing MRR modules to increase stiffness performance due to component 

complexity, cost and time constraints. Previous researchers [80, 162] developed control methods 

to improve the payload capabilities of serial MRRs using spring-assisted joints to achieve static 

balancing. However, adjusting the maximum payload capacity for multiple joint module axis 

reconfigurations was not thoroughly investigated, and it is not known which configurations are 

the best or worst performing based on their examples. Instead of redesigning the joints to achieve 

improved kineto-elastic performance, the alternative approach in this chapter is to instead 

optimize the maximum external payload capacity for an existing set of MRR modules in order to 

meet multiple kineto-elastic performance requirements that are common to all configurations.  

 

 The main issue with both the payload capacity and module design problems is how to satisfy 

the kineto
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design search). Also, to assess the payload-carrying capabilities between configurations, the

payload capacity analysis can be performed at the worst-case poses in order to identify the best 

performing configurations (the ones with the highest payload capacities). It also mentioned that 

 

The maximum payload capacity problem can be stated as: given an existing set of MRR 

the payload capacity and module stiffness design problems may become inconsistent systems of 

equations for given kineto-elastic performance requirements. If the worst-case poses are known, 

the payload capacity problem can be reduced to a series of monotonic functions, dependent on 

the number of kineto-elastic performance requirements. On the other hand, when performing the 

static module stiffness design stage in the local frames of each module, while the payload force 

requirement can be fully determined, the determination of the module deflection requirement is 

in fact redundant. This is because there are more module tip deflections than the assembled 

system’s tip deflection requirement, thus leading to non-unique estimates of the optimal 

thicknesses for each module. To overcome this problem, a nonlinear approach in the global 

frame of the MRR assembly is used to search for a near-optimal solution.  

5.1  Problem Description 

5.1.1  Payload Capacity Problem 

 

modules and multiple quasi-static kineto-elastic performance requirements for all configurations, 

determine the highest allowable payload mass (mp) at the tip of the end-effector that the MRR 

can carry for all feasible configurations. This is represented by the following objective function: 

    ,

5

max                                      
,

;  ;  1,...,4

p i

fi fi

fi LB fi UB

m
f c

c i

 
    

q
c q q q

 (5.1) 

where the subscript i represents one of the four worst-case configurations and poses which are 

satisfied by Eq. (4.5) in Chapter 4. Eq. (5.1) is also subject to the feasible configuration 

constraints and joint motion limits defined in Eq. (4.6). The maximization problem in Eq. (5.1) is 

subject to pre-defined kineto-elastic performance requirements, which are represented as the 

following set of nonlinear inequality constraints: 
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where utip,c and ψtip,c are prescribed magnitudes of the linear and angular deflection performance 

requirements at the tip of the MRR, me,1,c is the magnitude of the static torque requirement for 

the first joint module, and ωn1,c is fundamental natural frequency requirement for the entire 

MRR. It is of interest to reduce robot positioning errors due to the tip deflections, thus in Eq. 

(5.2) they act as constraints for the payload capacity analysis. In general, the fundamental natural 

frequency requirement should be based on the avoidance of any known resonances, likely due to 

external forces produced by tools located at the end-effector or high-speed motion (though it is 

assumed here that low-speed quasi-static motion occurs). Furthermore, the static torque is 

oint in order to be able to hold the MRR with enough motor 

uration and pose. It is assumed that the MRR joint motors are 

torque requirements are defined based on manufacturer 

 For each of the kineto-elastic requirements in Eq. (5.2), it can be noticed that the maximum 

ayload determination problem may become an inconsistent system of e

requirements are given as magnitudes to coincide with a payload force acting in an arbitrary 

 stiffness and maximum payload determination 

problems are dependent on each other, as shown in Eqs. (4.2) to (4.4) in Chapter 4. That is, if the 

worst-case stiffness configurations and poses (cfi and qfi) are identified in Eq. (4.5), given the 

constrained at the tip of the base j

torque at any given feasible config

pre-selected for this problem, and the 

torque specifications. If it is determined that the allowable torque in Eq. (5.2) is exceeded during 

the payload capacity determination, the torque induced by the MRR’s module self-weights and 

payload may risk physically damaging the motors.  

 

p quations since the static 

direction. For example, inconsistencies in the system may appear when one assumes separate 

values for the XG-, YG- and ZG-components for the transverse tip deflection requirements 

(instead of magnitudes as in Eq. (5.2)), since satisfying two or more of these requirements may 

become physically impossible. Thus, a closed-form solution to determine the maximum payload 

capacity does not exist. However, the worst-case
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requirements of Eq. (5.2), the lowest payload capacity occurs at these poses since they will not 

change with variations in stationary payload magnitudes. 

5.1.2  Module Stiffness Design Problem 

 The module stiffness design problem can be stated as: given a payload requirement, along 

ltipwith mu le kineto-elastic performance requirements, design the individual module cross-

sections such that the given requirements are satisfied for all feasible configurations. For typical 

non-reconfigurable robots, the stiffness design stage only has to account for a single robot 

configuration, with the only topology changes being the robot’s pose due to kinematic motion. 

Since this method focuses on stiffness design rather than kinematic design, it is assumed that the 

kinematic design of the MRR is performed beforehand in order to meet workspace and kinematic 

performance requirements. Therefore, the module lengths are assumed to be pre-determined. 

Furthermore, it is assumed that the material properties used for each module are known 

beforehand. The ideal stiffness design scenario will yield a MRR structure with minimal 

deflections and vibrations. However, minimizing the deflections and maximizing the 

fundamental natural frequency will give exceedingly high module masses. Since the types of 

MRRs in this study are manually configured, the modules can get quite heavy for an individual 

to lift. Thus, the objective function for the stiffness design stage is to minimize the mass of each 

module for a given payload: 

   6 min
n

total i i i i 
1i

f m L A 
  t t  (5.3) 

 

where n is the total number of joint and link modules, ρi is the material density and Li is the 

length of the ith module. The cross section area of each module, Ai, is a function of the module’s 

thickness, ti, and the shape of the cross section is dependent on the type of module (revolute joint 

or link). In Eq. (5.3), the vector containing each of the module thickness parameters is defined 

as: 

  1 2, ,..., ,...,i nt t t tt  (5.4) 

The kineto-elastic performance requirements for the stiffness design stage can also be 

represented by Eq. (5.2) as nonlinear inequality constraints. That is, the magnitudes for each of 
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the static requirements are used. The optimization problem in Eq. (5.3) is also subjected to the 

following bounded constraints: 

 LB UBt tt  (5.5) 

d in Section 5.1.1. Therefore, a direct analytical solution for the 

module stiffness design problem is difficult to obtain. 

5.2  Combinatorial Search Method for Payload Capacity Analysis and 

s more efficiently. By using the configuration-space and workspace 

arches from Chapter 4, the problem is first simplified by

maximum allowable payload capacity can be identified, or the module cross-sections can be 

where tLB and tUB are positive constants representing the lower and upper bound constraints on 

the module thicknesses. 

 

 Observing the global static tip deflection solution from Eq. (4.2), along with the eigenvalue 

problem from Eq. (4.4) in Chapter 4, it can be noticed that the module self-masses (and 

equivalent forces due to the self-weights) affect the overall static and vibration performance of 

the MRR. Unlike the payload capacity problem, the stiffness design problem involves the 

necessary updating of module structural masses with each thickness design change, which also 

affects the system’s mass matrices (and equivalent consistent loads due to module self-weights) 

for the MRR at every pose. Also, for the static problem, each module’s tip wrench (due to the 

payload force at the end-effector) can be fully determined by simply projecting the payload force 

onto the tips of each module. However, the determination of the module tip deformations is a 

redundant problem, since there are more module tip deflections than the tip deflection 

requirement at the end-effector. Furthermore, inconsistencies in the system equations may 

become apparent as explaine

Module Stiffness Design 

 In order to avoid performing the payload capacity analysis or module structural design for 

every possible MRR configuration, a combinatorial search method was developed to reduce the 

overall complexity of the required search space in order to perform the payload capacity or 

stiffness design problem

se  reducing the size of the configuration-

space to a small subset of feasible configurations, then identifying the worst-case kineto-elastic 

configurations and poses. Afterwards, using these configurations and poses as design points, the 
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designed. Therefore, instead of designing an MRR at all of its possible configurations, this 

combinatorial search method focuses on determining the smallest set of design point 

onfigurations that can guarantee satisfactory ki

remaining feasible configurations. The combinatorial search method is shown in Fig. 5-1. 

city determination problem, the initial material property and geometric 

puts are based on an existing MRR design. After the feasible configurations are determined 

ass and an initial estimate of the module 

thicknesses (all material properties and module lengths are assumed to be known). For each of 

ch 

config t-performing (lowest rank) to best-performing (highest 

c neto-elastic performance throughout all 

 

 For the payload capa

in

using the enumeration method from Section 4.4.1, the workspace searches for each feasible 

configuration are conducted using the sequential GA method from Section 4.4.2 using an 

arbitrary payload. Once the worst-case stiffness poses for each kineto-elastic performance 

objective in Eq. (4.5) are determined, the payload capacity search for the final stage reduces to 

separate monotonic functions for each kineto-elastic requirement. Therefore, a computationally-

efficient bisection search method is introduced. The bisection searches are run sequentially 

according to the number of kineto-elastic requirements in Eq. (5.2). When all possible solutions 

are obtained for each of the configurations and their respective poses, the recommended 

maximum allowable payload capacity of the MRR for all feasible configurations is chosen as the 

lowest overall payload found in the method.  

 

 For the module stiffness design problem, after module enumeration occurs, the workspace 

searches are conducted using the required payload m

the four kineto-elastic objective functions in Eq. (4.5), the worst-case poses for ea

uration are ranked from the wors

rank). Afterwards, the four ranks for each configuration are summed, and the configuration with 

the overall lowest summed rank (overall worst kineto-elastic performance configuration) is 

chosen to perform the stiffness design. This process avoids designing the modules at every 

feasible configuration. For the chosen design point configuration in Eq. (5.2), the module 

stiffness design process is conducted separately for each worst-case pose and the final solution is 

chosen as the one with the highest sum of all module thicknesses. 
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Figure 5-1: Combinatorial search method for payload capacity analysis and module stiffness design 

   

 To design the module thicknesses, a nonlinear approach involving a GA is used to design the 

required module thicknesses with Eq. (5.2) acting as pre-specified nonlinear constraints on the 

module sizing. The inherent nonlinearity in this problem arises not only from the performance 

requirements in Eq. (5.2), but also from the required updating of each module’s mass during the 

design stage. Using the module thicknesses for the new MRR design obtained from satisfying 

Eq. (5.3) and the constraints in Eqs. (5.2) and (5.5), the current design configuration and pose is 

moved from the feasible configuration space and the configuration and pose search to 

determine the kineto-elastic performance quantities in Eq. (4.5) is performed again for the 

re
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remaining configurations to verify if any of the constraints in Eq. (5.2) are violated. If none of 

the constraints are violated, then the current design is chosen as the final design. Otherwise, the 

module thicknesses of the current design are stored, and the structural design is carried out at the 

most critical of the remaining configurations based on the configuration ranking scheme. 

Afterwards, the highest thicknesses for each module obtained from each of the design iterations 

are chosen for the final design. This process will guarantee a design with satisfactory structural 

performance for all of the feasible configurations for the MRR. 

5.3  Implementation Considerations 

5.3.1  Payload Capacity Determination 

 If the worst-case stiffness configurations and poses (cfi, qfi in Eq. (4.5)) are determined from 

the workspace search stage, the search to determine the maximum payload to satisfy the kineto-

elastic performance requirements of Eq. (5.2) can occur. However, one must first determine if 

the requirements in (5.2) are physically possible by solving Eq. (5) with zero payload and check 

if the requirements of (5.2) exceed their limits due to the MRR’s self weight alone. If the 

requirements cannot be satisfied with no external payload attached, then they must be re-adjusted 

to more realistic values, otherwise the method to determine the maximum payload will not 

converge. In general, the bisection method is typically used to find a solution for the roots of 

nonlinear systems of equations in the form of f(x) = 0 by searching an interval with lower and 

upper bound initial estimates for x [163]. Here, the bisection method is modified to use the 

cons  all 

nfigurations. The reason the bisection method was chosen over other search methods 

traint inequalities in Eq. (5.2) in order to find the highest allowable payload amongst

MRR co

(such as Newton-Raphson) was due to its ability to guarantee a converged solution, however at 

the cost of higher computational times due to converging linearly. To implement the bisection 

method, the first constraint in (5.2) is rewritten as utip(cf1, qf1) - utip,c ≤ 0, and all other constraints 

are rewritten in the same manner. When all the terms of the constraint inequalities in Eq. (5.2) 

are moved to the left-hand side, they can be expressed as: 

  ,, , 0,   1 to 4i fi fi p iF c m i q  (5.6) 
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where mp,i is the payload mass attached to the tip of the end-effector. The functions Fi in Eq. 

(5.6) are to be evaluated using the user-defined constraints utip,c, ψtip,c, me,1,c, or ωn1,c, along with 

Eqs. (4.2) to (4.4) to solve for utip, ψtip, me,1, or ωn1 at the corresponding worst-case 

configurations and poses, cfi, and qfi. Note for the vibration requirement, the “≤” sign in Eq. (5.6) 

changes to “≥”.  

 

 To search for the maximum allowable payloads using the bisection method, upper and lower 

limits for the payload (mp,U,i and mp,L,i) must be chosen such that: 

    , , , ,, , 0i fi fi p U i i fi fi p L ic m, ,F c m Fq q  (5.7) 

which guarantees that the maximum payload lies within the interval [mp,L,i, mp,U,i]. Afterwards, 

the initial estimate for the maximum allowable payload can be chosen as:   

 , , , ,
,max, 2

p U i p L i
p i

m m
m


  (5.8) 

 
Then, substituting Eq. (5.8) into Eq. (5.6), the user-defined requirements of Eq. (5.2) can be 

checked. The following evaluations are then computed to determine which sub-interval the 

maximum allowable payload lies:  
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 (5.9) 

The algorithm in Eq. (5.9) is repeated until the solutions converge to within a preset relative error 

rel), which can be written as: 

 

(ε

, ,

, ,

100%p u p l
rel

p u p l

m m

m m



 


 (5.10) 
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The computed payload capacities can then be verified by performing kineto-elastic workspace 

searches and determining if the values in Eq. (4.5) violate any requirements from Eq. (5.2). 

Alternatively, this method can be performed for all worst-case configurations and poses to 

determine the best configurations with higher payload capacities. 

5.3.2  Nonlinear Approach for Module Stiffness Design 

ire the solution to be obtained 

tly from the assembled kineto-elastic equations, thereby perm

 with design iterations. Also

cause of the inherent 

nonlinearity of the design problem, a search method can instead be used to determine the optimal 

odule thicknesses. This way, the bounded module thick

easily adopted. In general, there are two approaches for solving nonlinear problems: gradient 

n in Fig. 5-2. 

 

 The proposed method to solve for the optimal module cross-section sizes is to apply a 

nonlinear approach, which is a forward method that does not requ

direc itting required updates for the 

module self-weights concurrently , the kineto-elasto-static 

performance requirements in Eq. (5.2) can be defined as magnitudes, instead of separate XG-, 

YG-, and ZG-components (which may lead to solution inconsistencies). Be

m ness constraints in Eq. (5.5) can be 

based and direct search methods. The former involves an inverse approach, hence it is not used 

here. Therefore, a GA with bounded and nonlinear constraints was developed to determine the 

optimal module thicknesses, as show

 

Figure 5-2:  Search method for module stiffness design using GA with nonlinear constraints 
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 First, the payload requirements and the constraints in Eqs. (5.2) and (5.5) are defined. Also, 

the overall worst-case configuration which satisfies Eq. (4.5) is identified using the search 

method in Section 4.4, along with its four worst-case poses for each kineto-elastic performance 

parameter in Eq. (4.5). Afterwards, the initial population for the thickness design variables is 

generated and the global FE equations are computed for each individual. Then, the fitness 

 as the constraints in Eqs. (5.2) 

ints and links located near the base typically 

arry more load due to the local force increase from the tip of the robot towards the base, thus the 

module thicknesses should increase from the tip of the robot to the base. Because a GA is 

utilized, using upper and lower bound constraints on the module thicknesses may not guarantee 

that the thicknesses of the base joint and link modules are larger than the remaining module 

thicknesses. For this reason, additional sizing inequality constraints are required. This can be 

accomplished by enforcing ratios, by which the sizes of the link and joint modules located 

closest to the base can act as references to ensure proper sizing of the consecutive links and 

joints. The ratio for the sizes of each link relative to the first link can be defined as Rs,link,i and the 

sizing ratio for the sizes of each joint after the first joint as Rs,joint,i. The thickness sizing ratio 

constraints can then be written as: 

function in Eq. (5.3) is computed for the entire population as well

and (5.3). Using this process, the module structural masses and equivalent consistent loads can 

be computed for each separate individual. Next, the bounded and nonlinear constraints for each 

individual are computed and checked for solution feasibility. Infeasible solutions are assigned a 

rank of zero (in order to reject the individuals), while the feasible solutions are ranked from the 

worst to best in terms of fitness. The convergence criterion is then checked, which is similar to 

the fitness convergence criteria used in Eqs. (4.7) and (4.8), however by checking the fitness 

function in Eq. (5.3) instead. An additional tolerance is set for the maximum allowable constraint 

violations for each constraint in Eq. (5.2). The GA processes which occur afterwards (selection, 

crossover, mutation, migration, ranking and maximum number of generations) are identical to 

those used in Sections 4.4.2 and 4.4.3. 

 

 For typical open-chain robot structures, the jo

c
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where tlink,i and tjoint,i are the link and joint thicknesses for the ith module, and n is the number of 

available link or joint modules. Using Eq. (5.11) will ensure that the GA converges to preferable 

link and joint module sizes. Also, if the inequality signs in Eq. (5.11) are set to equal signs, and 

the thickness sizing ratio between the first link and first joint is known, then the stiffness design 

problem can be reduced to a single thickness design variable. 

5.4  Numerical Case Studies 

 Case studies for the payload capacity analysis and stiffness design were performed for the 

MRR given in the examples found Sections 3.5 and 4.5. Therefore, the MRR parameters are 

assumed to be known for the payload analysis, and the worst-case configurations and poses are 

found in the results of Section 4.5. For the module stiffness design problem, these worst-case 

nd poses are used as design points to re-design the modules in kineto-elastic configurations a

order to meet kineto-elastic and payload requirements. 

5.4.1  Maximum Payload Capacity Analysis  

 Using the four worst-case poses for each configuration found in Section 4.5, the maximum 

allowable payloads were determined using the bisection method in Eqs. (5.6) to (5.10). The user-

defined kineto-elastic performance requirements for Eq. (5.2) were given as: 

 

 
 
 

3

3

,1

max u 1.5 10  m

max ψ 1.5 10  rad

max m 140 N-m

tip

tip

e



 

 


 (5.12) 

 1min 14 Hzn





These values were chosen to improve the performance of the MRR for the kineto-elastic 

objectives found using Eq. (4.5). For the bisection search, the maximum number of iterations 

was set to 1000, and the upper payload limit for Eq. (5.8) was set to 100 kg, while the lower limit 
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was set to 0 kg. Also, the preset relative error in Eq. (5.10) was set to 10-13. As a stand-alone 

computation, the bisection method takes a total time of 17.93 s to compute the maximum 

ayload values for all configurations and worst-case poses in Table 

configuration #1 has the lowest payload capacities for the linear and angular deflection 

requirements, as well as the natural frequency requirement. This is evidenced in Fig. 4-9 since 

hes were performed using a single 

GA run for each case in Table 5-1 to ensure that the kineto-elastic requirements in Eq. (5.12) 

 the joint variables which satisfied Eq. (4.5) changed 

in

-elastic performance requirements 

Maximum Allowable Payloads for Requirements in Eq. (5.2) 

p 5-1. It is shown that 

this configuration has the highest tip deflections and lowest natural frequency. However, the 

lowest payload capacity for the torque requirement is shared by configuration #'s 2, 3, and 11, 

since these configurations have equivalent maximum torques in Fig. 4-9.  

 

 For all configurations, the kineto-elastic workspace searc

were not violated. It was noted that

m imally using the payload capacities in Table 5-1, and that for each configuration, the worst-

case kineto-elastic parameters were close to the given constraints, without violating them. In 

other words, using the prescribed payloads for each configuration and kineto-elastic requirement 

in Table 5-1 would give: max(utip) = 1.4999 mm, max(ψtip) = 1.4999 × 10-3 rad, max(me,1) = 

139.9999 N-m, and min(ωn1) = 14.0000 Hz for all feasible configurations.  

Table 5-1:  Stationary payload capacities for kineto

Config
# 

(for utip,c ≤  1.5 
mm) 

 (for Ψtip,c ≤  
0.0015 rad) 

[kg] [kg] [kg] [kg] 

 (for me,1,c ≤  
140 N-m) 

 (for ωn1,c ≥  
14 Hz) 

1 3.8562 4.4881 4.6688 4.2366 
2 4.2430 4.9529 4.6160 4.5352 
3 4.2430 4.9529 4.6160 4.5352 
4 4.0257 4.5921 4.6688 4.3598 
5 4.7885 5.2225 4.8613 5.0277 
6 4.7885 5.2225 4.8613 5.0277 
7 4.7005 5.0133 4.6688 4.5670 
8 4.2358 4.7661 4.6688 4.5698 
9 5.1948 5.3667 4.7777 4.2366 

10 4.2377 4.7910 4.6688 4.5670 
11 4.3676 4.6893 4.6160 4.5352 
12 5.2517 5.3667 4.7777 4.3598 
13 4.2377 4.7910 4.6688 4.5670 
14 4.9755 5.1009 4.8610 5.0277 
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 From the results in Table 5-1, it is determined that the maximum allowable MRR payload 

capacity is 3.8562 kg from the translational deflection requirement of configuration #1. For this 

configuration, the worst-case joint variables for the translational deflection from Fig. 4-8 are qf1 

= (6.9418×10-2, 12.4263, -73.6549) degrees, and its pose is shown in Fig. 5-3.  

 

 

Figure 5-3:  Configuration and pose with lowest payload capacity 

 

 If an incremental workspace search method with 5° increments was used to find the worst-

case pose for max(utip), the solution would be qf1 = (0, 15, -75) degrees, which would 

overestimate an allowable payload to be 3.8620 ents 

with maximum translation mended that the 

MRR in this ex sh e a er n o id violating the 

performance requirements for any feasible configuration. On the other hand, it is recommended 

to select the best-c e stiffn figurati  typical d-carry rations in order to 

reduce the errors resulting f  deflect d vibra r hold a  payload for given 

kineto-elastic con ints in .12). In 4 it is e that co tions #12, #5, and 

#6 have the highest payload capacities for the specific kineto-elastic ments. Naturally, 

these configuratio yield th m m the workspace search stage in 

Section 4.5.  

5.4.2  Module Stiffness Design Using Nonlinear Method 

To re-design the MRR modules in order to increase the maximum allowable payload 

capacity from 3.8562 kg (37.8923 N) found in Table 5-1 to 7.1356 kg (70 N), subject to the pre-

 kg and violate the performance requirem

al tip deflection of 1.5012 mm. Therefore, it is recom

ample ould not hav  payload ov  3.8562 kg i rder to avo

as ess con ons for  payloa ing ope

rom tip ions an tions, o  higher

stra  Eq. (5  Table vident nfigura

 require

ns e best kineto-elastic perfor ance fro
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defined kineto-elastic performance requirements for max(utip), max(ψtip), and min(ωn1) in Eq. 

(5.12), the GA with bounded and nonlinear constraints from Section 5.3.3 was utilized. Note that 

the requirement for the base joint torque in this design scenario was increased to me,1 ≤ 200 N-m, 

since the payload force of 70 N (combined with the module and motor weights) can induce static 

ase joint torques which can easily violate the torque constraint in Eq. (5.12) if the module 

structural self-weights increase for each design iteration. To design the cross-sections of the 

hollow module casings, it was assumed that the inner section distances (radius, ri, for joints and 

inner base length, bi, for links) remain fixed, from which the thickness design variables protrude 

outwards. For all modules, the bounded thickness constraints in Eq. (5.5) were set to 3 mm for 

the lower bounds and 30 mm for the upper bounds.  Also, using the first joint and link modules 

as size references, the sizing ratio constraints in Eq. (5.11) were all set to ≤ 0.75% for all 

remaining link and joint modules, thereby keeping the base joint and link modules larger. 

Additional test cases were performed by setting the sizing ratios equal to 0.75 (instead of using 

inequalities), and a to the thickness of 

e base link module (reducing the problem to a single variable design).  

hown in Fig. 5-2 was run for each of the four critical poses for configuration #1 

puted. For each kineto-

rged solutions were 

b

lso by setting the thickness of the base joint module equal 

th

 

 Instead of designing the modules at every feasible configuration and worst-case pose found 

in Fig. 4-8, the worst-case configuration is used, and is determined by ranking each of the four 

worst-case kineto-elastic performance parameters found in Eq. (4.5) for every configuration 

according to the results from Fig. 4-9. The absolute worst-cases are assigned a rank of “1”. This 

ranking scheme is shown in Table 5-2. For the ranking scheme, all numerical values for the 

worst-case kineto-elastic parameters were rounded to 7 decimal places due to small errors in the 

solutions of nearly identical worst-case kineto-elastic parameters (as shown in Fig. 4-5(b)).  The 

results in Table 5-2 indicate that configuration #1 is the overall worst-case configuration, thus it 

was used as the primary design point at its four respective poses.  

 

 The GA s

(shown in Fig. 4-8), and multiple thickness design candidates were com

elastic requirement (and their respective worst-case poses), ten conve

obtained (40 solutions overall) and the solutions with the lowest fitness functions in Eq. (5.3) for 

each of the four kineto-elastic requirements were chosen as the design candidates. For design 
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safety, the final design candidate was then chosen as the one with the highest mass. This process 

was eventually repeated for each sizing ratio test case. The GA parameters used for the test cases 

are the same as those used in Table 4-1, with an additional tolerance of 10-13 for nonlinear 

constraint feasibility. Evidently, the search space was smaller when the “=” size ratio constraint 

was active. In all cases, the GA converged closest to the linear deflection constraint of 1.5 mm, 

rather than the remaining constraints. Likewise, the pose which gave max(utip) for configuration 

#1 had the highest converged module masses, therefore it was chosen for the final design. Table 

5-3 shows the results of the module thicknesses and overall MRR mass obtained for each design 

case.  

Table 5-2:  Ranking scheme to determine overall worst-case configuration 

Individual Ranking for Worst-Case Kineto-
Elastic Performance from Eq. (4.5)  

and Fig. 4-9 
Config

# 
for 

max(utip) 
for 

max(Ψtip) 
for 

max(me,1) 
for 

min(ωn1) 

Sum of 
Ranks 

Overall 
Worst-Case 

Configuration 
Ranking 

1 1 1 4 1 7 1 
2 6 7 1 5 19 4 
3 6 7 1 5 19 4 
4 2 2 4 3 11 2 
5 10 11 12 12 45 12 
6 10 11 12 12 45 12 
7 9 9 4 8 30 9 
8 3 4 4 11 22 8 
9 13 13 10 1 37 10 

10 4 5 4 8 21 6 
11 8 3 1 5 17 3 
12 14 13 10 3 40 11 
13 4 5 4 8 21 6 
14 12 10 12 12 46 14 

 

Table 5-3:  Final module thickness designs 

Module Thickness, ti  
[mm] Design Case 

Total Mass 

Joint 1 Link 1 Joint 2 Link 2 Joint 3 Link 3 

Including 
Motor Masses 

[kg] 
“≤” Size Ratios 9.3144 5.5878 6.9758 4.1088 3.6474 3.0742 20.0740 
“=” Size Ratios 9.9353 5.3815 7.4515 4.0361 7.4515 4.0361 21.0147 

“=” Size Ratios (single t 
variable design) 7.8298 7.8298 5.8723 5.8723 5.8723 5.8723 23.1464 

 

 The results in Table 5-3 show that when the “≤” size ratio constraint is active, the entire mass 

of the MRR is about 1 kg lighter than the results produced when the “=” size ratio constraint is 
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used. However, it is more feasible to use the designs with the “=” size ratio constraint to increase 

the level of interchangeability between the second and third joint and link modules. Furthermore, 

when the problem is reduced to a single variable design, the total MRR mass obtained is the 

highest. However, in terms of computational times, the single variable design is most efficient 

with an average GA computational time of ~22 s, compared to the “≤” cases (~34 s) and “=” 

cases (~47 s). To validate the each of module designs, and check if another design iteration is 

required using the next best configuration in Table 5-2, the workspace searches from Section 4.4 

were run to obtain the worst-case kineto-elastic parameters for Eq. (4.5) for the new module 

designs. Table 5-4 shows the most extreme kineto-elastic performance parameters and their 

respective conf  the “≤” sizing 

ratio is used, the d nverge closes to the performance 

requirements, as compare es. Also, for each test case, the worst-

case design configurations do not differ. However, li yload capaci is results, the 

worst-case poses chan  slightl ll performance requirements were met, when 

designing the dules ing conf ration # another ign ite on with t  next worst-case 

configuration as not cessary verall,  case y confirms the effectiveness of the 

proposed design approach.  

Table  Worst-  kineto-e  perfor ce for d n validat

sign Ca
orst-Case neto-Elas

Perf ance 

Configuration(s) Where 
e Worst-Case 
ormance Occurs 

igurations for each of the new designs. The results show that when

eflections and natural frequencies co

d to the o e ratio casther two siz

ke the pa ty analys

ge y. Because a

mo us igu 1, des rati he

w  ne . O this stud

5-4: case lastic man esig ion 

W  Ki
rm

tic 
o

thse De
Perf

max(utip) [mm 1.4  1 ] 997
m ψtip) 10-3 ] 1.4  1 ax(  [rad 426

max(me,1) [N·m] 175.5077 2, 3, 11 
“≤” Size R  

min(ωn1) [Hz] 14.2589 1 

atios

max(utip) [mm] 1.4935 1 
max(ψ ) 10-3 [rad] 1.4307 tip 1 

max(me,1) 2, 3, 11  [N·m] 185.1973 
“=” Size Ratios 

min(ωn1) [Hz] .2862 1 14
max(utip) [  mm] 1.4999 1 

max(ψ ) 10tip
-  3 [rad] 1.4623 1 

m  [N 6 1 ax(m )e,1 ·m] 194.517 2, 3, 1

“=” Size Ratio
riable
) 

 [  

s 
(single va  

design
min(ωn1) Hz] 14.3671 1 
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5.5  Summary 

 This chapter presented new methods for solving the inconsistent payload capacity and 

redundant/inconsistent stiffness design problems for serial MRRs. For a given set of kineto-

elastic performance requirements, it was shown that the maximum allowable payload to satisfy 

the requirements of all configurations can be solved by pre-determining the worst-case 

configuration and pose. By doing so, the problem can be reduced to a set of monotonic functions 

for each kineto-elastic requirement and a complicated search method is not required. Similarly, 

since the module stiffness design problem focuses on performing the design stage at a single 

MRR configuration and pose to satisfy the kineto-elastic requirements, the design process is 

greatly simplified as opposed to performing the design stage at all known configurations, either 

one-by-one or simultaneously. The main problem with the module stiffness design problem is 

that it is in fact redundant. Although the stiffness design can be performed at the module level, 

infeasible results might be achieved. Therefore, a search method was developed using a GA with 

bounded and nonlinear constraints, as well as relative sizing ratios to constrain the module sizes. 

When using this nonlinear approach to perform the stiffness design, the results show the design 

method is effective since the module shapes optimized at a single configuration satisfy the 

structural requirements for all remaining configurations. 
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6. Component Mode Synthesis with Fixed-Free 

nterface conditions. Also, the existing 

MS models involved separating the components directly at the movable joints. These methods 

ake the experimental vibration testing of robot components difficult since the influence of joint 

ynamic parameters (in terms of stiffness and damping) or component connection dynamics 

annot be included if fixed-fixed or free-free component BCs are used. Alternatively, if fixed-

ee (hybrid interface) CMS models are developed for modular robots, separate modules can be 

sted using cantilevered BCs. This is particularly useful for testing joint modules, where the 

ase of the joint is fixed, and the output shaft is free to rotate, thereby mimicking the natural 

onnectivity of the base of the joint module (at the fixed portion) with a preceding link module.  

The hybrid interface CMS method does not require complicated experiment fixtures, 

specially if the connection interfaces for a given set of modules are identical. Furthermore, if 

nsors cannot be placed on a joint module, a link can be attached to the joint module for 

ibration experiments, and the effects of different poses can be tested with fixed-free BCs. This 

 particularly useful if the joint modules change their overall shape at different angular 

Interface Conditions for Serial Modular 
Robots  

 This chapter presents a new and effective model reduction technique using component mode 

synthesis (CMS) for the stationary structural dynamic analysis of serial modular robots. In the 

previous chapters, a full FE model (with multiple elements per module) was used to compute the 

undamped fundamental natural frequencies. To accurately compute the first resonance 

frequency, an FE model with a small number of elements will be sufficient [152]. However, to 

compute resonances accurately at higher modes, the system will require a large number of 

elements, thereby adding to the computational complexity. Therefore, a computationally efficient 

and accurate model reduction process will prove useful for analyzing large MRR assemblies. The 

focus of the CMS method in this chapter is to incorporate fixed-free (hybrid) interface conditions 

between the components (at their module connection interfaces), which can enable experimental 

vibration testing of individual joint-link modules for any angular position in a joint’s motion 

range. Previous research in the literature were limited to non-modular robots, and used classical 

CMS approaches utilizing either all fixed- or all free-i

C

m

d

c

fr

te

b

c

 

 

e
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positions, or if the joint dynamics are dependent on the joint’s angular position. In the follow

sections, the development of the hybrid CMS method for the pose-based stationary vibra

analysis of serial modular robots is presented, along with a comparison to the tradit

Bampton method [82,

ing 

tion 

ional Craig-

 89, and 95]. Although the sizes of CMS models can be drastically smaller 

than full FE models, the physical coordinates at interior nodes are usually lost in the reduction 

process. Further complications arise when two or more connected components are being tested in 

different poses with force input and motion output sensors at different coordinates. Because of 

the advantages of using experimentally measured FRF data over mode shapes (as mentioned in 

Section 2.5), a method is presented to recover the FRFs regardless of the physical locations and 

orientations of the input and output coordinates. Finally, a numerical case study for a serial 

modular robot with hinged modules shows the effectiveness of the hybrid CMS model when 

compared to the traditional Craig-Bampton method and a full FE model. 

6.1  Frequency Response Function for a Single Component 

 Each serial modular robot component is initially modeled using the FE method in Chapter 3 

and can contain ndof structural degrees of freedom (discretized into multiple elements). Here, the 

term “component” refers to a part which cannot change shape when it is separated from adjacent 

components. If a joint module changes its overall shape during motion, then it should be 

modeled as multiple components. It is assumed that each component’s structural dynamic model 

behavior is linear, and its motion is excited by a known force input. The separated component 

models for serial modular robot are shown in Fig. 6-1. For the ith component, the equations of 

motion in the time domain as formulated in the local body-fixed coordinate frame (Xe,i-Ye,i-Ze,i 

frame in Fig. 6-1) can be represented as: 

  , , , , , , , , ,( ) ( ) ( ) ( )e i e i V e i e i H e i e i e i e,it t j t t  M D D + Kx x x f   (6.1) 

where xe,i(t) is a dynamic nodal displacement response vector, fe,i(t) is an externally applied 

dynamic force vector obtained from exciting the experimental test component, and j2= -1. Note 

that xe,i(t) is different from the static deflection vector, ue,i (due to time invariant loads), in the 

sense that the total deflection is due to the superposition of dynamic and static components (xe,i(t) 

+ ue,i). A similar superposition of the dynamic and static forces (such as module self-weights due 

to gravity) would yield the total force vector. Thus, the static loads are independent of the 
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dynamic loads, assuming small linear elastic deformations for stationary structural dynamic 

analysis [166]. Also, the internal forces (resulting from the static deflections producing internal 

stresses) and externally applied static loads cancel each other. Therefore, the dynamic deflections 

can be independently measured with respect to the static deflection positions (at static 

equilibrium). 

 

Figure 6-1:  Serial modular robot component models  

 

 In Eq. (6.1), it is assumed that the local mass and stiffness matrices, Me,i and Ke,i, may 

contain rigid length offsets, non-structural masses (such as joint motors, external payload mass 

or heavy sensors), or additional joint stiffness terms. If damping is low, viscous and structural 

proportional damping may be assumed in the form: 
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 (6.2) 

where αi and βi are the respective mass- and stiffness-proportionality constants for Rayleigh 

viscous damping, and ηi is a hysteretic damping constant for structural damping. Harmonic 

otion is assumed for each component as follows:  m
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where e = cos(ωt) + jsin(ωt) (Euler’s formula). Substituting Eq. (6.3) into (6.1), the equations of 

motion in the frequency domain can be determined as: 

 2
, , , , , , , ( ) ( )e i V e i H e i e i e i e,ij j        M D D + K X F  (6.4) 

In a similar fashion to the FE equations in Chapter 3, the FE equations are solved using a 

common global coordinate reference frame. To convert the nodal displacements and excitation 

forces in Eq. (6.4) from the local Xe-Ye-Ze frame to the global XG-YG-ZG frame, the following 

kinematic transformations are applied: 

 
T

, ,

T

( ) ( )

( ) ( )

e i i G i

e,i i G ,i

 

 





T

T

X X

F F
 (6.5) 

where XG,i and FG,i are the displacement amplitude and force excitation global vectors, 

respectively. In Eq. (6.5), Ti is the same block-diagonal coordinate transformation matrix found 

in Eq. (3.92) and is dependent on the orientation at initial module assembly setup, and after the 

oved to a given pose. Substituting Eq. (6.5) into (6.4) gives the component’s equation 

e: 

robot is m

of motion in the frequency domain with respect to a fixed global coordinate reference fram

 2 T
, , , , , , , ( ) ( )i e i V e i H e i e i i G i G,ij j        T M D D + K T X F  (6.6) 

To determine the component’s response vector due to a force input in the global frame, Eq. (6.6) 

can be rearranged as: 

 ,

,

            ( ) ( )

            ( ) ( )

G i G,i

G i G,i

 2
, , , , , , ,

1

( )G i i e i V e i H e i e i i G,ij j  1
T ( )  



    T M D DX F 


+ K T

 

 

   


Z

H

F

F

 (6.7) 

where ZG,i is the dynamic stiffness matrix and HG,i is the receptance matrix. In general, ZG,i is 

not suitable for experiments since the global mass, stiffness and damping terms cannot be 

directly measured. If an accelerometer is placed at node p and the component is excited at node 

, then the corresponding receptance matrix entry is given 

 

q by: 

,
,

,

( )
H ( )

( )

p
G ipq

G i q
G i

X

F





  (6.8) 
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where ,
p

G iX  is the measured response at node p and ,
q

G iF  is the excitation force at node q. Taking 

the first derivative of Eq. (6.8) yields the mobility (jωHG,i), while the second derivative gives the 

ccelerance (-ω2HG,i). 

precursor to system CMS assembly. Each module in Fig. 

6-1 is modeled as a separate substructure, or superelement. The “interface” nodes which separate 

ach component are located at each module’s connection i

Fig. 6-1. Note that the internal nodes for each component are not shown in Fig. 6-1 for clarity. In 

ure 

with redundant interfaces computed from the local FE equations is described here. To begin, Eq. 

e partitioned for the ith component as follows: 

a

6.2  Component Structural Dynamic Model Reduction 

 This section describes methods to reduce the sizes of the component equations of motion 

using component mode sets, which is a 

e nterface, and are labeled with a “c” in 

general, the CMS transformation matrices (which contain the component modes and are used to 

reduce the sizes of the original FE matrices) can either be computed from the local or global 

frames of each component using either Eqs. (6.4) or (6.6), respectively. However, for 

mechanisms, the latter case requires the reduced CMS matrices for each component to be re-

computed with each pose change. Therefore, the CMS transformation matrices for a substruct

(6.4) can b

 

       

, ,

BB BI BE B B B

IB II IE I I I

EB EI EE E E Ee i e i e,i e

              
           

Z Z Z

Z Z Z

Z Z Z X F F'

 

X F 0

X F F'

 (6.9) 

here the I DOF set refers to internal coordinates, the B set refers to the res

coordinates (located at node “ic” in Fig 6-1), and the E set refers to the excess (redundant) 

boundary coordinates (located at node “i+1c” in Fig 6-1). The total number of elastic DOFs per 

itten in terms of a set of reduced 

generalized coordinates, Pi, as: 

 

w pective boundary 

component is equal to the number of boundary DOFs plus internal DOFs. F’B and F’E denote 

connection forces with adjacent structures. For simplicity, the frequency argument (ω) for the 

dynamic stiffness matrix is not shown in Eq. (6.9). The ith component’s local displacement vector 

in the frequency domain (in physical coordinates) can be wr

, ,( ) ( )e i S i i  WX P  (6.10) 
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where W i is the component mode transformation rix which contains the mass-normalized 

component normal mode shapes (eigenvectors from free-vibration) as well as other static modes, 

which are depende t o

S, mat

n n the interface BCs used to compute the normal modes. If the physical 

coordinates at the interface boundaries are retained, then the vector of reduced generalized 

coordinates can be expressed as: 

  T

, ,i B e K E e i
P X P X  (6.11) 

where PK is a reduced set of generalized modal coordinates, determined by the CMS method 

used. For ease of CMS assembly, the interface coordinates should remain in (or be transformed 

to) physical coordinates instead of modal or mixed coordinates. What sets the apart the CMS 

methods from one another are the types of BCs applied when computing the normal modes, as 

shown in Fig. 6-2.  

 

 

Figure 6-2:  Joint module i CMS interface conditions for (a) Craig-Bampton method, (b) Hybrid interface 
method 

 
Because the well-known Craig-Bampton method [82, 89, and 95] retains the interface DOFs in 

physical coordinates, it is used here for comparison with the hybrid interface method. These 

methods are described in the following sub-sections. 

6.2.1  Craig-Bampton Method for Component Model Reduction 

 The Craig-Bampton method utilizes a reduced set of fixed-interface normal modes to reduce 

the sizes of component FE models. For the ith component in Fig. 6-1, the fixed-interface normal 
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modes are obtained by setting the displacements at both interfaces (XB and XE) to zero in Eq. 

(6.9) and the solving following eigenvalue problem: 

  2
, , ,,

,   1,  2,  , II n r II I r dof Ie i
r n  K M Φ 0   (6.12) 

where ndof,I denotes the number of structural DOFs for the interior nodes (in the II partition of 

ΦI,r is the mode shape vector corresponding with the th

proportional damping is assumed in Eq. (6.2), ΦI,r is identical to that from an undamped model, 

de the complex-valued responses and their derivatives, which significantly 

creases the complexity of the problem at hand. Each mode shape vector obtained from solving 

Eq. (6.12) for ndof,I structural DOFs can be assembled as columns in the ndof,I × ndof,I  mode shape 

matrix, ΦN,i: 

  (6.13) 

The mode shape matrix in Eq. (6.13) is normalized with respect to MII such that: 

 

Eq. (6.9)), r  natural frequency, ωn,r. Since 

and the corresponding natural frequency is approximately equal to the undamped natural 

frequency [91]. Otherwise, if general damping is used, the fixed interface modes will contain 

twice the number of kept modes in complex conjugate pairs (as obtained from solving the 

required quadratic eigenvalue problem [167]), and Eqs. (6.10) and (6.11) will need to be 

partitioned to inclu

in

,

,
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Φ D D
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) i

I N i
Φ

 (6.14

, ,N H II N i N ii


where III is an I×I identity matrix,  2 2 2
, , ,  ,  , diag   Λ   and D̃V,II is a diagonal 

,1 ,2 , dof IN i n n n n

viscous damping matrix. The full FE component model is reduced by selecting K fixed-interface 

 in Eq. (6.13), ΦK,i. 

assembled system’s frequency bandwidth is known, then each component’s bandwidth of interest 

normal modes to retain, thereby forming a reduced mode shape matrix

Typically, the chosen number of normal modes to retain for CMS is based on the number of 

available modes within the frequency range of interest for each component. In general, if the 
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should be larger than the system’s bandwidth since the individual components give higher 

natural frequencies due to increased stiffness and lower mass when the BCs are applied. 

 To enforce displacement compatibility between components, static constraint modes can be 

 

 

used by applying a unit displacement on an interface coordinate (while constraining the motion 

of the remaining coordinates of that set), and leaving all remaining coordinates force-free [95]. 

For the B interface coordinate set in Eq. (6.9), the constraint mode matrix, ψB,e,i, can be 

determined from: 

 

, , ,

BB BI BE BB BB

IB II IE IB

EB EI EE EBe i e i e i

     
          
          

K K K I

K K K Ψ 0

K K K 0

R

R

 (6.15) 

where RBB and REB are reaction forces at the respective interface coordinates. Solving the second 

row of Eq. (6.15) yields: 

1
, ,

, ,

BB BB

B e i IB II IB

e i e i



   
        
      

I I

Ψ Ψ K K

0 0

 (6.16) 

e 

constraint mode matrix, ψE,e,i, as: 

For the excess E interface coordinate set in Eq. (6.9), a similar procedure gives the respectiv

 E
1

, ,

, ,

E e i IE II I

EE EEe i e i



   
        
      

0 0

Ψ Ψ K K

I I

 (6.17) 

Observing Eqs. (6.16) and (6.17), the constraint modes are frequency-independent, and do not 

ncy ranges. Afterwards, the Ritz coordinate 

transformation in Eq. (6.10) can be expressed as: 

need to be recalculated for different freque

 , , , , , , , , , , ,( )e i B e i B e i K i K i E e i E e i   Ψ Φ ΨX X P X  (6.18) 

from which, the Craig-Bampton component mode transformation matrix, WCB,i, for the ith 

module with redundant interfaces can then be determined as: 
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 , ,

BB

CB i IB K i IE

 
   

I 0 0

W Ψ Φ Ψ  

,EE e i
  0 0 I

(6.19) 

 

Note that the natural component BCs in the system assembly should be accounted for. That is, 

node 1 in Fig. 6-1 is naturally fixed to the ground, and node n+2 on the nth module is naturally 

free. Therefore, for the first and last modules (each have a single interface), Eq. (6.19) is 

determined as follows: 

,
,1 ,

,,1

,    BBK i IE
CB CB n

IB K iEE e ,e n

  
    
   

I 0Φ Ψ
W W

Ψ Φ0 I
 (6.20) 

It is important to note that this method was not initially developed with the intentions of 

ntal testing [82, 95], since it is difficult to

odules exhibit changes in dynamic behavior with changing joint 

angular positions, then an adjustable fixture is required to measure the fixed-interface normal 

modes. Therefore, the next section describes a hybrid CMS reduction method where the 

omponent BCs are fixed-free, thereby enabling the joint to f

positions to allow for experimental testing of the joint dynamics. 

with Hybrid Interface Conditions 

 The hybrid interface CMS method assumes that the interface coordinates at the tip of a 

odule have free BCs, while the connecting interface nodes at

module have fixed BCs. Therefore, the normal modes for each component are computed using 

fixed-free BCs, which can allow joint output motions for experimental tests. For the ith 

in Eq. (6-9)), which coincides with the node 

i+1c” in Fig. 6-1, have free BCs. The fixed-free ith component norm

solving the following eigenvalue problem: 

 (6.21) 

experime  measure the constraint modes. Also, for serial 

modular robots, if the joint m

c reely move to different angular 

6.2.2  Component Model Reduction 

m  the base of the next successive 

component in Fig. 6-1 with redundant interfaces, the fixed-free interface normal modes are 

computed by fixing the B interface coordinates (XB in Eq. (6-9)), which coincides with the node 

“ic” in Fig. 6-1. The E interface coordinates (XE 

“ al modes are obtained by 

 ,2
,

I rII IE II IE
n r

        
         

K K M M Φ 0
,( )

,,

,   1,  2,  , dof I E
E rEI EE EI EE e i

r n 
       K K M M Φ 0
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where ndof,(I+E) denotes the total number of interior and free-interface (excess boundary) 

oordinates. In Eq. (6.21), the rth mass-normalized normal m

according to the respective internal coordinates (ΦI,r) and free-interface coordinates (ΦE,r). In a 

 (6.22) 

he above equation has dimensions of ndof,(I+E) × ndof,(I+E). In Eq. (6.2

number of normal modes are retained in order to reduce the size of the full FE component model. 

c ode shape vectors are partitioned 

similar fashion to Eq. (6.13), the ndof,(I+E) normal modes are assembled as column vectors in the 

mode shape matrix, ΦN,i: 

 
,( ),1 ,2 , ,,  ,  ,  ,  ,  

dof I EI I I K I n 
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E E E K E n
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Φ
Φ Φ Φ Φ 

T 2), only a pre-specified 

Therefore, the reduced mode shape matrix with partitioned normal modes corresponding to the 

internal and free-interface coordinates can be expressed as: 
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I I I KIK

K i
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Φ
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 (6.23) 

 For the fixed-interface (B coordinate set in Eq. (6.9)), constraint modes are required to 

restrain the component’s rigid-body motion. For the hybrid method, the constraint modes 

(partitioned according to the interior and free-interface DOFs) are determined from the 

following: 

 

, , ,

BB BI BE BB BB

IB II IE IB

EB EI EE EBe i e i e i

     
          
          

K K K I

K K K Ψ 0

K K K Ψ 0

R

 (6.24) 

The constraint modes are then obtained by solving the lower two row/column partitions of the 

stiffness matrix in Eq. (6.24), which yields: 

 1
, ,

,

BBBB

B e i IB II IE IB

EB e i ,EI EE EB e i



  
                      K K K

II

Ψ Ψ K K K

Ψ

 (6.25) 

 For the free-interface (E coordinate set in Eq. (6.9)), to complement the normal and 

onstraint mode sets, residual flexibility attachment modes relative to the fixed-in

employed. To improve the accuracy of free-interface (non-hybrid) methods, the use of residual 

c terface are 
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flexibility attachment modes were first explored by MacNeal [83]. Essentially, an attachment 

mode is defined as a component displacement vector obtained from applying a unit force on the 

free-interface DOFs and zero forces elsewhere [89]. In other words, the attachment modes are 

specified columns of the component’s flexibility matrix, with all DOFs fixed except for the free-

interface DOFs [95]. Residual flexibility attachment modes account for the effects of the 

truncated normal mode set in Eq. (6.23) by removing these associated normal mode 

ontributions that are present in the component’s flexibility mat

contributions of the higher modes are instead used to determine the residual flexibility 

 
,

c rix [84]. Therefore, the 

attachment modes. Rubin [84] showed greater improvements in accuracy using the residual 

flexibility attachment modes over those found from the full flexibility matrix. The flexibility 

matrix for the ith component with the B interface fixed is given by: 

1

,

,

II IE II IE
e i

EI EE EI EEe i e i


  

   
  

G G K K
G

G G K K





 (6.26) 

Using the orthogonal properties of the mass-normalized mode shape matrices in Eq. (6.22), Eq 

, as obtained from the eigenvalue problem in Eq. 

(6.21). Eq. (6.27) can further be decomposed using the kept and omitted modal contributions, 

nd their corresponding eigenvalue matrices: 

 ,  (6.28) 

O denotes omitted modes. The 

residual flexibility matrix can then be obtained as: 

,  (6.29) 

Afterwards, the residual flexibility attachment modes can be determined by imposing a unit force 

(6.26) can be alternatively expressed as: 

 1 T
, , , ,e i N i N i N i

G Φ Λ Φ  (6.27) 

where ,N iΛ  ,( )

2 2 2
,1 ,2 ,,  ,  , 

dof I En n n ndiag   
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where the subscript K denotes kept modes and the subscript 

1 T
, , , ,e i e i K i K i K i

 G G Φ Λ Φ 

on the E interface coordinates as follows: 
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Using a combination of the retained normal modes from Eq. (6.23), the constraint modes from 

Eq. (6.25) and the attachment modes from Eq. (6.30), the Ritz coordinate transformation in Eq. 

(6.10) can be expressed as: 

 *
, , , , , , , , , ,( )e i B e i B e i K i K i E e i E i   Ψ Φ GX X P P  (6.31) 

It is important to note that the attachment modes in Eq. (6.30) have units of m/N, unlike the 

constraint modes which are unitless. Therefore, the Ritz vector terms coinciding with the free-

interface are in generalized coordinates, P*
E,i. Expanding Eq. (6.31) gives: 
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 (6.32) 

T S, it would be beneficial to o assemble the reduced module component models using CM

convert all interface generalized coordinates to physical coordinates. Research by Majed et al.  

y CMS transformation matrix in order to convert all 

interface DOFs to physical coordinates. The advantage of the hybrid CMS method for modular 

bots over free-interface methods is that the flexibility

 since it is non-singular (fully constr

further adjustments such as inertia-relief modes [95] for free-free component BCs. From the third 

 

[93] and Dieker et al. [94] suggest using a non-singular flexibility matrix for free-interface 

attachment modes to obtain a secondar

ro  matrix in Eq. (6.26) can be readily 

inverted ained at the B interface DOFs) and does not require 

row in Eq. (6.32), P*
E,i can be solved as: 

 * 1
, , , , ,E i EE e i E e EB B e EK K

  G Ψ Φ
i

P X X P  (6.33) 

The generalized coordinate vector, P*  in Eq. (6.32) can then be expressed as: 

 
,X

i

,B e BB  
  

I 0X
*

2,
* 1 1 1

B e

i K KK K H i

E EE EB EE EK EEi e i i

  

 
       

       

0

0 I 0 W

G Ψ G Φ G ,,

i

E e
 
 

P P P

P   
P  (6.34) 

X

Substituting Eq. (6.34) into Eq. (6.32) gives the following form of Eq. (6.10) with interface 

DOFs in physical coordinates: 
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,B e

   (6.35) 
1 1 1

,

B BB BB

I IB IK IE KK

E EB EK EE EE EB EE EK EE E e
  

     
          
              

I 0 0 I 0 0

Ψ Φ G 0 I 0

Ψ Φ G G Ψ G Φ G

X X

X P

X X


   

, , ,e i e i e i i

Using the result in Eq. (6.35), the hybrid component mode transformation matrix for the ith 

module can written explicitl

K

y as: 

 1 1 1
, 1, 2,

BB

H i IB IE EE EB IK IE EE EK IE EE H i H i
  


    

I 0 0

W Ψ G G Ψ Φ G G Φ G G W W     



,EE e i
  0 0 I

Note that for the first module, Eq. (6.36) reduces to that for free-interfaces

 (6.36) 

 (since the natural BC 

at the base of the first module is fixed) which is identical to the method found in [84]: 

11

,1

,

IK IE EE EK IE EE
H

EE e i

 
  
 

Φ G G Φ G G
W

0 I

   
  (6.37) 

For the last module, since the interface node (node n in Fig. 6-1) is fixed and the last node, n+2 

is free (natural BC), Eq. (6.36) reduces to that of the Craig-Bampton method: 

 ,

,

BB
H n

IB IK e i

 
  
 

I 0
W

Ψ Φ
 (6.38) 

 The main advantage in using the hybrid CMS method over the Craig-Bampton or free-

interface methods is the simplicity in performing experimental tests on the joint modules to 

determine the normal modes. For the hybrid CMS method, only one fixture is required to test 

each module (if the fixture has the same interface connectivity for all modules), whereas the 

Craig-Bampton method requires a separate fixture for each module connection interface. Also, 

sing fixed-free BCs of modules allows for testing the joint substr

fixed BCs require 

separate or adjustable fixtures to achieve this. Furthermore, with traditional free-interface CMS 

methods, the joints are usually considered to be rigid, and experimental evaluations of the joint 

ynamics are difficult to perform since the components (which are usually separa

output shafts) need to mimic the free-free BCs experimentally by hanging them with bungee 

u uctures in different poses to 

experimentally evaluate the joint stiffness and/or damping, whereas fixed-

d ted at the joint 
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cords (or cables). This may present difficulties since the dynamic effects of different joint poses 

may cause out of plane motions when hanging from cords. 

.3  Component Coordinate Frame Transformation 

 To reduce the components using either the Craig-Bampton method or the hybrid interface 

ced equations of motion for the i  component in the local 

coordinate frame: 

T

6

method, Eqs. (6.19) or (6.36) are substituted into Eq. (6.10), which is then substituted into Eq. 

(6.4) to yield the following redu th

T T
, , , , , ,

, , , , , ,

( ) ( ) ( ) ( )

or  ( ) ( ) ( ) ( )
S i e i S i i S i e,i S i e i

S e i i S e i S e i

  

   

 

 

W Z W W W

Z

P F F'

P F F'
 


 (6.39) 

inate sets. 

In Eq. (6.39), F’e,i is the vector of adjacent component connection forces, ZS,e,i is a modal-

duced dynamic stiffness matrix, and FS,e,i, and F’S,e,i are modal

convenience, the component reduction in Eq. (6.39) is usually performed individually for Me,i,  

 

To assemble reduced substructures to one another, each

be transformed to a common global reference frame. Using the component mode matrices (WCB,i 

where WS,i is chosen based on the selected CMS method (WCB,i in Eq. (6.19) or WH,i in Eq. 

(6.36)), since the interface coordinates for both methods share the same physical coord

re -reduced force vectors. For 

Ke,i,  DV,e,i,  and DH,e,i, in Eq. (6.4) such that ZS,e,i can be computed more efficiently for a selected 

number of frequency points.  

  of the terms in Eq. (6.39) must first 

in Eq. (6.19) or WH,i in Eq. (6.36)) in the local frame, and an unknown set of generalized 

coordinates in the global frame, the Ritz coordinate transformation in Eq. (6.10) can be 

expressed as: 

 T
, , ,( ) ( )e i S i R i i  W TX P  (6.40) 

where TR,i is a reduced coordinate transformation matrix with square dimensions equal to the 

number of columns in either WCB,i or WH,i. The generalized coordinate vector in the global frame 

can be represented as: 

  T

, ,i B G k E G i
P X P X  (6.41) 
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It is important to note that the reduced set of modal coordinates, Pk, do not need to be rotated to 

the global frame since the local mass-normalized truncated mode shape vectors, ΦK,i, produce 

equivalent modal-reduced system sub-matrices in any pose. Therefore, only the boundary nodes 

need to be rotated. This is accomplished using the following reduced physical coordinate 

transformation matrix: 

 
,

,

,

B i

R i KK

E i

 
   
  

R 0 0

T 0 I 0

0 0 R

 (6.42) 

where R  and RB,i E,i are block-diagonal matrices containing the individual rotation matrices for 

each of the boundary nodes, which are dependent on the initial configuration of the module and 

otion occurs (analogous to R0i in Eq. (3.16)), and KK

ltiplying

its orientation after m I  is a K×K identity 

matrix for K retained normal modes. Substituting Eq. (6.40) into Eq. (6.9) and pre-mu  

both sides by T

, ,R i S iT W  gives the reduced form of the equations of motion for the ith component in 

the global reference frame: 

 
T

, , , , , , , , ,

, ,

( ) ( ) ( )

or   ( ) ( ) ( ) ( )

R i S e i R i i R i S,e,exp i R i S e i

S G i i , , , ,S G,exp i S G i

  

   

 

 

T Z T T T

Z




P F F'

P F F'
 (6.43) 

6.4  System Assembly in Global Frame 

 

 To assemble the reduced component matrices using a common global frame, the “primal 

formulation” is used, which eliminates the interface connection forces as unknowns using the 

interface equilibrium equations [88]. The displacement compatibility and force equilibrium 

equations are introduced as the following constraint equations: 

T T

S

S G 

BW

L W

P = 0

F' 0
 (6.44) 

is

g 

and P̃ is a vector of the unattached generalized coordinates for each 

component, with interface coordinates in the physical global frame. In Eq. (6.39), it can be 

where B  a signed Boolean matrix relating displacement compatibility at the interfaces, WS is a 

block-diagonal matrix containin the component mode matrices for each component from either 

Eq. (6.19) or (6.36), 

 137



sh relates the substructure generalized own that L acts as a Boolean connectivity matrix which 

Ritz coordinates to a unique set of generalized coordinates for the assembled system in the 

following form: 

 CMSLP = u  (6.45) 

where uCMS represents the vector of CMS-assembled generalized coordinates. Substituting Eq. 

(6.45) into the first part of Eq. (6.44) will lead to: 

 ,S CMS CMS BW Lu 0   u  (6.46) 

The above equation means that L must span the nullspace of (BWS) to satisfy the compatibility 

condition. Therefore, only the L matrix is required for the system assembly. The B matrix in the 

first part of Eq. (6.44) for three substructures a, b and c (which can represent three successive 

modules, for example) can be expressed as: 

 
, , , , , , ,I a B a B b I b E b E c I c

 
   

        

0    I  I    0    0    0    0
B

0    0    0    0    I  I    0

p p p p p p p      

 (6.47) 

The compatibility constraints in the above equation are enforced at the boundary coordinates (B 

E) for each module in the form P̃B,a = P̃B,b and P̃E,a = P̃E,b. Also, Eq. (6.45) can be 

represented as the following: 

and 

,

,

I a

B a

  

 
,,

,,

,,

,,

,

B abB b

I bI b

E bcE b

I cE c

I c

,I a

CMS

   
                   

    
    
      
     

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 I 0

0 0 0 0 I







uP

uP

uP

uP

P

 (6.48) 

I 0 0 0 0

0

P
u0 I 0 0P

It (6.48) is equal to null(BWS) [88]. The  can be shown that the L Boolean matrix in Eq. 

equations of motion in the global frame for each component in Eq. (6.43) can then be expressed 

in block-diagonal form as: 

 , , ,( ) ( ) ( ) ( )S G S G S G    Z P F F'  (6.49) 
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Eq. (6.45) is substituted into Eq. (6.49), then each side in the resulting equation is pre-multiplied 

by LT. Also, to eliminate the connection forces (F’S,G), the following condition holds from Eq. 

(6.44): 

 T T T
,S G S G L W LF' F' 0  (6.50) 

bled equations of motion for the system



Afterwards, the CMS assem  becomes: 

 
 

T T
,

or   ( )

S G   

 
,( ) ( ) ( )

( ) ( )

S G

CMS CMS CMS  

L Z L L

F



Z

u F

u
 (6.51) 

From Eqs. (6.48) and (6.51), it can realized that the generalized component boundary coordinates 

 Antiresonances 

 To determine the resonance frequencies of a CMS assembled model in the global frame, the 

llowing free-vibration eigenvalue problem with reduced stiffness, 

is to be solved: 

 frequency and ΦCMS,l is the corresponding eigenvector containing 

the complex mode shapes. The quadratic eigenvalue problem in Eq. (6.52) can be solved by 

assuming a state-space solution in the following form [167]: 

  (6.53) 

hich is a system of 2ndof,CMS equations, instead of ndof,CMS (n

assembly) as found in Eq. (6.52). In Eq. (6.53), the X and Y matrices can be represented by: 

 

for the assembled system are equal to the physical coordinates [88, 89]. Therefore, the assembly 

process is identical to the FE method with connectivity occurring at the component interfaces. 

6.5  CMS Model Resonances and

fo mass and damping matrices 

 2
, , , , ,n l CMS n l V CMS H CMS CMS CMS lj j      M D D + K Φ 0  (6.52) 

where ωn,l is the lth resonance

X Yw + w = 0

w umber of DOFs after CMS 

 ,   
j HV CMS CMS

  
        

-M 00 M
X Y

0 KM D D
 (6.54) 

and w is the state variable represented by: 
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,n l l  Φ

 (6.55) ,
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( ) ( )
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l n l lCMS CMSCMS CMS
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t t




    
          

       

Φx x
w w

Φx x Φ

 




where λn,l = jωn,l and Φl is the corresponding mo e shape. Afterwards, Eq. (6.52) can be 

rewritte

d

n using Eqs. (6.53) and (6.54) as: 

 ,n l l   
  ,n l

H V l CMSCMS
j


    

     
Φ 0

 (6.56)              

-M 0 0 M

0 K M DD Φ 0

In Eq. (6.56), λn,l is a complex eigenvalue pair corresponding to the lth mode, and the resonance 

equency, ωn,l, is taken from its imaginary part. By solving th

(6.56), det(Y - λ(-X)) = 0, the resulting eigenvector matrix will be composed of the derivatives of 

fr e eigenvalue problem in Eq. 

the modal vectors, along with the desired mode shapes: 

 
       

,dof CMS
            Φ

Φ Φ Φ Φ

Φ Φ Φ Φ

 

 
 (6.5

,

1 2 2

1 2 2 dof CMS

n n n nl n

CMS l n
CMS 

Φ
7) 

neral damped assemblies. For 

 eigenvectors for ndof,CMS equations instead of 2ndof,CMS equations found from the 

quadratic eigenvalue problem for general damped systems. Also, the eigenvectors for 

roportionally damped systems are equal to those of the undamped 

Eqs. (6.52) to (6.57) are particularly useful for highly damped or ge

proportionally damped assemblies, the solving the eigenvalue problem of the equivalent 

undamped system is sufficient and can greatly reduce the computational effort by solving the 

eigenvalues and

p system, with slight 

differences in the eigenvectors [91]. The eigenvalue problem for the proportionally damped 

CMS assembly can be expressed as: 

 2
, ,CMS n l CMS CMS l   K M Φ 0  (6.58) 

he resulting mode shapes from Eq. (6.58) lead to t

 

The antiresonance frequencies for a particular FRF are depende

(motion) and output (force) coordinates, and can identify where the receptance FRFs approach 

 produce different antiresonance frequencies. For full 

T he orthogonality conditions found in Eq. 

(6.14), but for the entire CMS assembly, which can be used to uncouple the reduced system’s 

stiffness, mass and damping matrices. 

 nt on the selected input 

zero. Each set of input/output coordinates
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FE models, the antiresonances can be determined by solving the eigenvalue problem by 

oving the pth row (output/motion coordinate) and qth column (input/force coordinate) from 

the M  and K  matrices of an undamped model [165, 168]. However, because either of the input 

so straight forward as removing the corresponding 

ns from the assembled CMS model. To determine the antiresonances of a CM

reduced assembly, the process first involves removing the pth rows and q  columns 

(corresponding to input and output coordinates) from each matrix in Eq. (6.4) in the local frame 

e,i,

V,e,i H,e,i e,i ponent. Afterwards, noting 

e pth row and qth column were removed from the unassembled components and thus

oved from the full FE model, the reduced component models are then assem

method in Eqs. (6.44) to (6.51). The eigenvalue problem for the mth antiresonance frequency, 

rem

G G

and output coordinates (or both) may be lost during the CMS reduction process, the 

determination of antiresonances is not 

rows/colum S 
th

of each component. Then, the rows and columns of the component mode transformation matrices 

(WCB,i from Eq. (6.19), or WH,i from Eq. (6.36)), and coordinate transformation matrices (TR,i 

from Eq. (6.42)) which are multiplied by the corresponding pth rows and qth columns of the M  

D , D , and K  matrices should also be removed for each com

that th  

rem bled using the 

ωar,m, can be stated as: 

  2
, , , , , ,ar m CMS ar m V CMS H CMS CMS ar CMS m pqpq

j j      M D D + K Φ 0  (6.59) 

where the subscript pq denotes that the pth row and qth column of the unreduced stiffness, mass 

and damping matrices are removed. Eq. (6.59) can be solved for systems that are highly damped 

or have general damping using a similar procedure from Eqs. (6.52) to (6.56). If the damping is 

proportional or negligible, Eq. (6.59) can be reduced to a regular eigenvalue problem as follows: 

 2
, , ,CMS ar m CMS ar CMS m pqpq

   K M Φ 0  (6.60) 

, for drive-point measurements (p = q), all 

KCMS,pq and MCMS,pq matrices are symmetric. Also, 

It is important to note that for cross-point measurements (p ≠ q), the antiresonance solutions may 

yield complex roots due to the loss of matrix symmetry, thus the antiresonances only occur at the 

positive real roots for these cases. Conversely

antiresonances are positive and real since the 

when two consecutive imaginary FRF peaks are in the same direction, an antiresonance exists 

between those modes [168]. In the case of drive-point measurements, all imaginary peaks are in 

the same direction. Therefore, it can be shown that drive-point measurements yield a larger 
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number of antiresonances (where each resonance is separated by an antiresonance), while cross-

point measurements give “saddle-points” in the absence of antiresonances [165].  

6.6  Recovery of FRF Physical Coordinates from CMS Model 

 To directly compare the CMS methods in sections 6.2 to 6.5 with experimental FRF data (or 

a separate full FE model) for modular robot assemblies in random poses, a method is presented 

in this section to recover the physical coordinates from the reduced CMS models (from Eqs. 

(6.43) or (6.51)), which correspond with experiment test locations for force inputs and motion 

outputs. These experimental test locations may coincide with internal (reduced modal) 

coordinates of assembled CMS models, which are not in the physical coordinate domain. For 

typical CMS test-analysis models (TAMs), measurement locations are retained as physical 

coordinates, usually at model interfaces, or by placing physical coordinates at measurement 

locations coinciding with internal CMS DOFs [109]. Note that these methods can possibly 

increase the size of the reduced CMS model when considering additional physical coordinates. 

Instead, the method presented in this section can be used to recover the physical measurement 

coordinates directly from the original CMS model with retained (modally reduced) dimensions. 

his is essential if there are strict requirements to retain the dimensions of the 

matrices for later virtual testing, and can enable a direct comparison with experimental data. 

 Typically, for experiments with non-movable components, the FRF in Eq. (6.8) is measured 

T analytical CMS 

Also, this method avoids the condensation of unmeasured physical coordinates using methods 

such as Guyan reduction [96] or improved reduced system (IRS) [169], which may risk further 

error propagation in the CMS model when combined with the Craig-Bampton or hybrid 

reduction methods. 

 

with transducer coordinate frames aligned with a common global frame. However, for testing 

interconnected components with different orientations, cross-point measurements taken in local 

coordinate frames of separate components must be converted to a common global frame for a 

direct comparison between analytical and experimental models. Moreover, an additional 

transformation from the CMS generalized coordinates to physical FE coordinates is required to 

directly compare the analytical CMS model with experiment data. To illustrate the required 

coordinate transformations, consider the ith and jth components in different orientations in Fig. 6-
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3. An accelerometer is placed on the bottom surface of component i at physical node p, and 

component j is excited with a force at node q. For this scenario, typical FFT spectrum analyzers 

would give a false readout of Eq. (6.8) if the local sensor coordinate systems cannot be adjusted 

ensors would for alignment with the global coordinate frame in the analyzer software. What the s

actually read is a pseudo-receptance term, given by the equation: 

 , ,
,

, ,

( )
H ( )

( )

p
e exp ipq

e exp q
e exp j

X

F





  (6.61) 

where , ,
p

e exp iX  is an experimental displacement at node p on the ith component (usually obtained 

from an accelerometer reading converted to displacement units) and , ,
q

e exp jF is the experimental 

input force at node q on the jth component (obtained from an impact hammer strike, or a shaker). 

Note that Eq. (6.61) contains displacement and force measurements in different local coordinate 

systems.  

 

 

Figure 6-3:  Component coordinate frames for assembly experimental tests 

 
 The forthcoming method assumes that the measured experimental force is also used to excite 

the analytical CMS model, thereby enabling a direct comparison of measured and analytical 

motion responses. In instances where an impact hammer is used to excite the experimental 

structure, a perfect impact is difficult to achieve. Therefore, when the experimental force is 

transformed to the frequency domain, it is not constant, whereas a perfect impact would yield a 

constant frequency domain force. To convert the measured input force signal at node q, from the 
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local coordinate system of component j to the global frame of the reduced CMS assembly, the 

following transformation is performed: 

 T
, , ,( ) ( )CMS, j R j S j e,exp j  T WF F  (6.62) 

Eq. (6.62) is substituted into the CMS reduced assembled model (at the corresponding nodal 

locations in FCMS from Eq. (6.51)) for an assembly’s experimental test setup. Afterwards, the 

nalytical displacement vector containing the generalize

determined as: 

a d CMS global coordinates can be 

 1( ) ( ) ( )CMS CMS CMS   Zu F  (6.63) 

model to the local experimental displacements in physical coordinates for substructure i at node 

p in Fig. 6-3, Eq. (6.40) can be expressed in terms of u  for the ith substructure as follows: 

In order to directly compare the analytically obtained displacements from the CMS reduced 

CMS

  (6.64) 

where the vector uCMS,i contains all of the reduced generalized displacement coordinates of 

component i, as found from uCMS in Eq. (6.63), Xr,e,i contains the corresponding physical 

displacement local coordinates recovered from the CMS assembly’s displacements (in 

generalized coordinates), and 

,
T T

, , , , , , , ,

, ,

( ) ( )
B hi

r e i S i R i CMS i S i R i I i

E ij CMS i

 
 
   
 
 

W T W T

u

X = u u

u

p
r,e,iX  at output node p is contained in the vector Xr,e,i. In general, 

Xr,e,i does not yield the exact same result as Xe,i obtained from the full FE model in Eq. (6.4) 

since there are expected errors due to the CMS reduction. Also, Xr,e,i may contain coupled 

displacement c tures, h and j, 

 the test bed. Therefore, this method is synonymous with the loaded-interface CMS methods of 

ontributions at the interfaces of component i from adjacent substruc

in

[101] and [104], but the deflections here contain additional contributions due to deflections from 

the internal nodes of the adjacent testing components. To determine the local pseudo-receptance 

FRF terms (as in Eq. (6.61)) for the analytical CMS model in the respective local coordinate 

systems of components i (containing output node p) and  j (containing input node q), the results 

from Eq. (6.64) can be used in the following equation: 
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  (6.65) 

o determine the global experimental input forces, and theT  CMS reduced global analytical 

deflections, the coordinate frame transformations in Eq. (6.5) can be applied to the local 

experimental force, and to Eq. (6.64) in the form of: 

 
   , , , ,r G i i r e i 

   , , , ,G exp j i e exp j  TF F

 TX X
 (6.66) 

A at their corresponding nodes in Eq. fterwards, by extracting the pth displacements and qth forces 

(6.66), the analytical receptance FRF terms in the global frame can be determined as: 

 , ,

, ,

( )
H ( )

( )

p
r G ipq

G q
G exp j

X

F





  (6.67) 

Thus, the more suitable form of the receptance in a common global frame can be alternatively 

sed to compare an analytical model to an experiment. Overall, the me

fully capable of incorporating the analytical experimental transducer physical coordinates with 

To com

 links and when joint 

motion occurs, these output links move relative to the adjacent hinged joint yokes. The joint 

output links and the module links were modeled as hollow Timoshenko beams, while the joint 

u thod described so far is 

different component configurations, in either the local or global coordinate frames, thus enabling 

direct comparisons between the experiment and reduced CMS model. 

6.7  Case Study 

 pare the hybrid CMS method developed in this chapter to the Craig-Bampton method 

and a full FE model, a forced vibration analysis was conducted with the goals of obtaining the 

FRFs, natural frequencies and antiresonances of a planar motion serial modular robot with three 

hinged joint modules, three link modules and a locked wrist module for four different robot 

poses. The FE discretization of each component is shown in Fig. 6-4. The material and geometric 

properties of the link modules, as well as the rigid wrist are the same as those found for the 

example in section 3.5. Also, it is assumed that the rigid wrist is combined with link 3 to form a 

single component using a rigid offset link. Each hinged joint module is modeled as two separate 

components. The revolute joint motors are housed within the joint output
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yokes were modeled as solid Timoshenko beams. Moreover, the distance between the joint yokes 

odeled as rigid links with connection nodes at their mwere m id-lengths as shown in Fig. 6-4. The 

rigid offset distances between the joint yokes were 0.065 m for the first joint, and 0.0475 m for 

the remaining joints.  

 

 

Figure 6-4:  Component FE discretization for hinged modular robot example with interface conditions shown 
for hybrid CMS method 

 

Each motor’s stiffness and gearing system were modeled using massless linear virtual springs, 

and were attached to the joint output link elements to form separate component substructures. 

The lateral and torsional joint virtual stiffness terms for each joint's motor were assumed to be kx 
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= ky = 2×109 N/m and kψ = 3×1010

a), and ρ = 2700 kg/m3). The geometric and material properties for the 

ints are given in Table 6-1. Note that there was no payload mass attached to the end effector 

for this case study.  

Table 6-1:  Model parameters for joint components 

Geometric Parameters 
Material 

Parameters 
Proportional Damping 

Parameters 

 N·m/rad. The motor mass for the base joint was 2 kg, while 

the remaining motor masses were 1.5 kg, and the end-effector mass was 1.25 kg (with a rigid 

wrist offset of 0.035 m). All links had the same structural material properties (E = 69 GPa, υ = 

0.33 (G = 25.9398 GP

jo

Joint 
Component  L 

[mm] 
bo 

[mm] 
bi 

[mm] 

ho 

[mm] 
hi 

[mm] 
ρ 

[kg/m3] 
E 

[GPa] 
α 

[1/s] 
β 

[s] 
η 

1(2×) 45 10 - 45 - 2770 72 20 7×10-6 - 
2 - - - - - - - - - 0.01 
3 45 60 50 60 50 2770 72 20 7×10-6 - 

5,9(2×) 35 9 - 35 - 2770 72 20 5×10-6 - 
6,10 - - - - - - - - - 0.01 
7,11 35 42.5 33.5 42.5 33.5 2770 72 20 5×10-6 - 

 *Note: Poisson's ratio, ν, is 0.33 for components 1, 3, 5, 7, 9 and 11 

 

 It was assumed that all link and joint structural elements had proportional viscous damping, 

while the joint virtual springs had structural proportional damping (stiffness proportional). It was 

also assumed that all of the links had proportional viscous damping coefficients of α = 30 s-1 and 

β = 1×10-6 s. The proportional damping parameters for all of the joint components are given in 

Table 6-1. For the CMS assembly, the nodes located at the base of joint 1 are naturally fixed to a 

rigid support, and the tip of the end-effector is naturally free. When component model reduction 

is performed using the hybrid interface method, the interface BCs are shown in Fig. 6-4 for each 

component. On the other hand, when the Craig-Bampton method is used, all component interface 

BCs in Fig. 6-4 remain fixed. In this example, the FRFs, natural frequencies and antiresonances 

of interest are in the XG-YG plane and it is assumed that the structure is only excited in this plane. 

Because joint motion only occurs in this plane, the model can be also be further simplified using 

yokes and joint output links were discretized usi ents (due to their 

s relative to the links). The test poses include the initial configuration pose and three 

2-D elements. Each link module was discretized using 16 evenly spaced elements, while the joint 

ng two evenly spaced elem

short length

poses after moving from the initial configuration pose as shown in Fig. 6-5. 
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Figure 6-5:  Poses for case study (a) Initial configuration, (b) Pose #1, (c) Pose #2, (d) Pose #3 

 

 The full FE model contained 189 DOFs (with the first node attached to joint 1 having fixed 

BCs), and numerical tests for the hybrid and Craig-Bampton CMS methods were conducted by 

reducing the joint models and retaining one mode for each test, while varying the number of kept 

modes for each link module (1, 4 and 16, respectively). Therefore, the reduced system contains 

33, 42, and 78 DOFs for the respective test cases. When one mode is kept for each component, 

this represents the minimal order CMS case. The local joint input angles for the initial 

onfiguration are all set to zero degrees, the joint inputs for pose #1 are q1 = [-60°,15°,45°], for 

pose #2 are q2 = [45°,-90°,45°], and for pose #3 are q3 = [0°,-75°,-105°]. Afterwards, the drive-

c
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point FRFs were obtained by assuming a single-axis accelerometer was placed at the tip of the 

third link module (at the node connecting the rigid wrist) in the local Ye-direction of the link, and 

a constant force of -1 N (in the Ye-direction) in the frequency domain to emulate a perfect 

impact. These were obtained by following the FRF recovery method in Section 6.6 for 6401 

frequency points in the 0 to 2000 Hz range. The drive-point FRFs were also used to compute the 

antiresonances (as opposed to cross-point references which will yield a lower number of 

antiresonances). The local accelerance FRF phase angles (tan-1(Im(Ha)/Re(Ha))) and magnitudes 

are shown in Figs. 6-6 to 6-9 for each test case with 33 and 42 DOFs for the reduced CMS 

models.  

 

 

Figure 6-6:  Drive-point FRFs for initial pose (a) 33 DOF test case, (b) 42 DOF test case 

  

 The visible differences in analytical FRFs indicate a degree of correlation between the 

respective CMS models and full FE model. It is demonstrated that for each pose tested, the 
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minimal-order test case with 33 DOFs (one retained mode for each component) contains large 

FRF errors in the 700 Hz to 2000 Hz frequency range using either Craig-Bampton method or the 

hybrid method. When the number of kept link modes are increased to three per link (42 DOF test 

case), the differences between the full FE model and both CMS models are reduced drastically 

within the 0 to 2000 Hz frequency range, and there are small differences between each model. 

By observing the phases for each test case, it can be noticed that for low-damped modes, the 

phase angle drops by 180°, and at antiresonances with low damping, the phase angle increases by 

180°. However, once modes or antiresonances are moderately damped, the phase shift occurs, 

but at angles less than 180°. 

 

 

Figure 6-7:  Drive-point FRFs for pose #1 (a) 33 DOF test case, (b) 42 DOF test case 
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Figure 6-8:  Drive-point FRFs for pose #2 (a) 33 DOF test case, (b) 42 DOF test case 

 
 To provide a better level of correlation between the models, the relative errors between the 

CMS models and the full FE model’s resonance and antiresonance frequencies are observed. 

These are computed as: 

 100%CMS full
error

full

abs
 




 
   

 
 (6.68) 

The first ten in-plane natural frequencies and antiresonances obtained for the full FE model are 

given in Table 6-2. These coincide with a frequency range of interest from 0 to 2000 Hz, plus an 

additional mode and two additional antiresonances. The frequency values in Table 6-2 act as

references f  the 

Craig-Bampton and hybrid CMS models. The relative errors for the resonances and 

antiresonances are shown in Figs. 6.10 and 6.11. 

 

or the nominal full FE model in order to compare the frequencies obtained from
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Figure 6-9:  Drive-point FRFs for pose #3 (a) 33 DOF test case, (b) 42 DOF test case 

 

Table 6-2:  Full FE model resonances and antiresonances for each test case 

2-D Full F
2-D Full FE Model Drive-point Antiresonance 

E Model Resonance Frequencies 
Frequencies Resonance (or 

Antiresonance) Initial 
Mode # Config. 

[Hz] 

Pose #1 
[Hz] 

Pose #2 
[Hz] 

Pose #3 
[Hz] 

Initial 
Config. 

[Hz] 

Pose #1 
[Hz] 

Pose #2 
[Hz] 

Pose #3 
[Hz] 

1 15.8946 16.5854 22.2831 22.8393 48.6133 37.5519 28.2855 22.9254 
2 74.1573 69.0992 41.0233 47.3219 140.9581 131.0745 96.7120 73.4102 
3 186.5786 170.9720 153.7458 127.6274 583.6016 528.3796 628.6044 625.8168 
4 583.6016 535.0701 630.2252 629.4471 659.7134 711.4247 772.7406 840.5431 
5 663.9424 712.7255 791.2456 841.6717 923.7975 931.3320 976.6598 970.3796 
6 1018.9805 1038.3475 1049.2071 1129.1220 1170.6130 1125.4725 1105.0588 1148.5411 
7 1501.8279 1316.4834 1405.6240 1377.7995 1531.8176 1413.4864 1595.2469 1467.1845 
8 1548.8578 1562.1562 1650.1780 1496.8270 1548.8578 1951.6016 1854.0250 1850.2133 
9 1559.3813 1964.3440 1868.3081 1899.4318 2282.4489 2292.3830 2290.8677 2322.9777 

10 2285.7478 2292.7618 2301.2267 2331.9900 2727.3111 2706.0712 2674.6659 2624.4675 
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Figure 6-10: , (d) Pose #3 

 

 th anc nt ce ncies in Table 6-2, as well as the n 

Figs. 6  to 6-9, be  th ain nc so are not visible in the 

FRF p ks/phas h es .6 ) 1   t al 

configu tion p th  a an th l  a s 8 

effectiv y canc . i s e n  

to 3, the FRF pe g 6 e s e  

presen f clos t o a h n  

zero, it can be noted that those amplitudes for the 4th mode increase significantly. Therefore, due 

to the combination of damping and a close antiresonance frequency, these modes have lower 

amplitudes, and may not be visible during experimental tests (these modes may appear in regions 

  Resonance frequency relative errors (a) Initial pose, (b) Pose #1, (c) pose #2

Observing e reson e and a iresonan  freque  FRFs i

-6  it can  noticed at cert  resona es/antire nances 

ea es, suc as mod 4 (583 016 Hz and 8 ( 548.8578 Hz) for he initi

ra ose. In is case, ntireson ces at e same ocations s mode 4 and 

el el those FRF peaks  In other nstances, uch as th  4th mode for pose umbers 1

aks in Fi s. 6-7 to -9 at thos  location  have low amplitud s, mainly due to the 

ce o e antiresonance frequencies a  those res nance loc tions. W en dampi g is set to
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of noise from the experimental FRF results, and are thereby difficult to detect). In other 

instances, such as the 9th mode (1559.3813 Hz) for the initial configuration, the FRF peaks are 

not visible in the magnitude, phase, or real and imaginary parts. These modes are likely found in 

rotational receptances and may not be detected if only linear motion is measured.   

 

 

Figure 6-11:  Antiresonance frequency relative errors (a) Initial pose, (b) Pose #1, (c) pose #2, (d) Pose #3 

 
 From the resonance and antiresonance frequency errors in Figs. 6-10 and 6-11, it is shown 

that the Craig-Bampton method performs better than the hybrid method with lower relative 

errors when the model is reduced to 33 DOFs (minimal-order model). However for both CMS 

methods, the relative errors for the 33 DOFs models are above 1% after the 5th resonance and 

after the 4th antiresonance (> 841 Hz). These errors are drastically reduced (far below 1%) when 
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the number of kept modes are increased for the 42 and 78 DOF cases, however at a cost of higher 

computational times. Note that for the higher-order models, the hybrid CMS method outperforms 

the Craig-Bampton method for all cases in Figs. 6-10 and 6-11. In fact, the 42 DOF cases for the 

hybrid method computes a few resonances and antiresonances with lower errors than the 78 DOF 

raig-Bampton method. Therefore, the hybrid method is numerically superior when more than 

one mode is retained for each link. The higher accuracy may be contributed to the use of residual 

flexibility attachment modes at the free-interface coordinates, as opposed to unadjusted 

attachment modes obtained from the flexibility matrix [84]. Overall, for an accurate minimal-

order CMS model, computational tests can be conducted where the number of kept modes should 

be gradually decreased until desirable accuracy is achieved for each resonance or antiresonance 

frequency within the frequency range of interest. Table 6-3 lists the computation times for 

solving the FRFs and resonance eigenvalue problems associated with each model used for the 

example in this section. 

Table 6-3:  Computation times for case study example 

Average Time for Solving Resonances [s] Average Time for Solving FRF Terms [s] 

C

# of 
Retained 
DOF for 

CMS 
Models 

Full FE 
Model 

(189 DOF) 

Craig-
Bampton 

CMS 

Hybrid 
CMS 

Full FE 
Model 

(189 DOF) 

Craig-
Bampton 

CMS 

Hybrid 
CMS 

33 3.1431×10-3 3.1697×10-3 0.8193 0.8157 
42 1.6718×10-2 1.5314×10-2 1.6872 1.7629 
78 

0.2065 
2.2322×10-2 2.1968×10-2 

36.7513 
3.9041 4.1136 

 

 In terms of computation times, both CMS methods performed similarly since the same 

number of reduced DOFs were used for concurrent tests. If a high fidelity model in terms of 

accuracy for higher-order resonances is required for the workspace searches in Chapter 4, then 

the CMS models used in this chapter can greatly reduce computation times. However, since only 

the first resonance frequency was required in Chapter 4, a low number of elements for a regular

FE g 

omponent normal modes and FRFs), the hybrid CMS method is superior in the sense that it 

 

 model should prove to be sufficient. In terms of experimental practicality (for determinin

c

allows testing for pose-dependent components such as hinged joints and requires only one 

fixture, whereas the Craig-Bampton method is limited since all component boundaries are 

required to be fixed. 
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6.8  Summary 

 This chapter presented a new approach for the structural dynamic model reduction of serial 

modular robot components using a hybrid-interface CMS method. The physical coordinate 

recovery method developed in this chapter is useful for determining FRFs based on different 

force excitation and motion measurement locations on different components. This procedure 

essentially avoids the common methods of retaining required measurement locations by dividing 

individual component models into several reduced components with multiple interfaces (since 

the interfaces for the CMS methods in this chapter remain in physical coordinates). Therefore, 

the original CMS models presented in this chapter can be retained with interface coordinates 

coinciding with component connection points. Based on the case study, it is demonstrated that 

the hybrid CMS method is numerically superior when compared to the Craig-Bampton method if 

a minimal-order CMS model is not required (which is usually the case if high accuracy for 

computing higher resonances/antiresonances is needed). Although the computation times are 

similar for both metho al for testing separate 

components experim

joint -con moto

 

 

ds, the hybrid CMS method is more practic

entally, and can allow testing for pose-dependent modules such as hinged 

s with self tained rs.  
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7. Pose-Based Component Vibration Testing and 

 the shortcomings in research related to the component model 

pdating of modular robots (as well as other mechanisms), a new framework is developed in this 

hapter. The main goal here is to avoid testing the entire assembled structure by obtaining 

ccurately updated CMS reduced component models which mimic their natural interface 

oundaries with adjacent components in experimental FRF tests. Likewise, the assembled CMS 

odel must be able to perform accurately in any random pose. This is accomplished using a 

building block approach where the physical FE arameters of each CMS reduced component in 

eir local element coordinate frames are updated. By constructing CMS matrices using updated 

E parameters, the requirement to experimentally derive the modes required for CMS (such as 

onstraint or attachment modes) is completely avoided.  

Since it is impossible to directly measure joint FRFs, the experimental substructure BCs are 

ade to mimic natural joint-link connectivity by enabling flexible-hinged boundaries and testing 

links with joint hinges in multiple arbitrary orientations. This exploits the fact that experimental 

FRFs obtained away from the joints can contain information about the joint dynamics which 

result in resonance frequency shifts. Also, the testing of multiple joint-link poses can allow one 

Model Updating Method  

 This chapter presents a practical and effective framework for the updating of mechanism FE 

component models such that the updated reduced-order CMS model of the entire assembled 

system can provide accurate structural dynamic results in any possible pose/configuration. 

Typically, initial models of large mechanism assemblies are created using inexpensive beam or 

shell elements. In the aerospace industry, these simple models are commonly referred to as 

“stick” models [170]. However, the accuracy of these initial models is questionable, especially 

when they are further reduced using CMS methods, and experiments are usually performed only 

for validation purposes. Unlike immovable stationary structures, the experimental testing and 

model updating of robots/mechanisms present a more complicated scenario due to the infinite 

number of possible poses. With different poses, the component orientations change relative to 

one another, thereby affecting the modal properties of the entire assembly. Therefore, the 

updated parameters for robots must provide good correlations with experimental test data for all 

possible poses. To address some of

u

c

a

b

m

p

th

F

c

 

 

m
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to determine if the joint dynamics are pose-dependent, or if the joints behave like rigid bodies

The model updating of each component in multiple possible poses is performed using a GA with

bounded inequality constraints on the updating param

. 

 

eters and nonlinear constraints on FRF 

n typical modular robots). Otherwise, if 

e joints are passive, fixed-fixed BCs are required to prevent rigid-body motion of the joint. 

parameters (natural frequencies, antiresonances and fixture motion). Then, the reduced 

component models are adjusted to include (or remove) additional mass and stiffness effects at the 

interface locations analytically. These additional terms may coincide with unmeasured portions 

of components that are considered entirely fixed or the effects of fixture motions (which should 

be removed from the updated models). Afterwards, the effectiveness of the proposed framework 

is demonstrated with experimental case studies. The first case study is an adjustable modular 

linkage system made to resemble the MRR with hinged joints from the case study in Section 6.7 

using the hybrid CMS method, and the second case study is on a simplified landing gear model 

using the Craig-Bampton method. Overall, the framework presented in this chapter can enable 

further structural dynamic testing of complete robotic (or mechanism) systems in a virtual 

environment, thus reducing the requirement for extensive experimental testing on entire 

assemblies. 

7.1  Component Model Updating for Multiple Poses 

 To facilitate FE model updating for each component, the frequency response function 

method (FRFM) is utilized, which directly uses experimental FRF data to evaluate errors existing 

in analytical models [134, 138]. The goal here is to minimize these errors by correcting the 

analytical model parameters of each component. Referring to the example in Section 6.7, the 

links can be experimentally tested alone using fixed-free BCs, and the joints (which contain 

multiple components) can be tested as separate substructures in multiple poses. Note that the use 

of fixed-free BCs for joint modules are only applicable if the joints are active (self-driven) and 

their motors can be independently controlled (as found i

th

Furthermore, if the joint geometry does not permit the placement of sensors, or impact hammer 

locations, then the adjacent link module can be attached to the respective joint, and tests can be 

performed in multiple poses. The substructure test setup is shown in Fig. 7-1 for a single link and 

joint module in nθ = 3 different test poses. 
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Figure 7-1:  Substructure experiment setup with component BCs for hybrid CMS method (a) Link module 
test, (b) Joint and link module tests for three poses 

 
 As shown in Fig. 7-1(a), the link m

shapes do not change. This is be

odules only need to be tested in a single pose since their 

cause the link natural frequencies and mode shapes remain the 

S method is that only one 

ested when testing joints 

ultiple substructure poses are considered, such as the 

setup in Fig. 7-1, the equations of motion can be expressed as: 

same for any component orientation. The advantage of the hybrid CM

fixture is required, thereby easily permitting multiple poses to be t

together with links as substructures. If the Craig-Bampton method is applied experimentally, a 

separate fixture is required at the excess substructure interface, which needs to be adjusted (or 

replaced with other fixtures) when testing multiple joint poses. For both of the mentioned 

methods, the normal modes required for CMS reduction can easily be obtained from vibration 

tests with the appropriate component BCs. However, the measurement of static constraint modes 

(by applying a unit displacement on a free-interface, while fixing the motion of all other 

coordinates), or static attachment modes (by applying a unit force on the free-interface and fixing 

the remaining coordinates) may prove to be difficult to implement experimentally, requiring 

complicated fixtures. Furthermore, since rotational modal displacements cannot be directly 

measured, the approximation of normal mode shape vectors usually requires curve-fitting 

techniques, which may lead to large errors. Therefore, the use of FRF data is preferred here for 

updating the models, and the correlation of partially measured component normal modes can be 

checked in a post-processing stage. When m
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where ε(ω,θ) is the system error vector at a particular frequency, ω, caused by discrepancies in 

the analytical model, HG(ω,θ). The individual orientations of each component in the 

substructure’s test assembly with respect to a common global frame can be defined by θ = [{θ}1, 

...,{θ}i, ..., {θ}n]. Note that the global orientation vectors {θ}i used in this chapter are different 

from the local joint input motion variable vectors used in Chapter 4, to prevent confusion with 

the force input coordinate locations, q, which coincide with column entries o e receptance 

F  

resonances and antiresonances will exhibit signif st poses. To 

f th

RF matrix HG(ω,θ). If the hinges are flexible relative to the links, then HG(ω,θ), along with the

icant differences with changing te

directly compare the analytical FRF terms from a reduced CMS model to the experimental FRF 

measurements, a more suitable scalar form of Eq. (7.1) is presented, which includes the 

possibility of multiple test poses: 

           
1 1 1

,, log , log ,
n n nFq

pq pq
FRF G exp G

q q

e abs H H


 

  
  

  
θ

θ

θ θ

θ θ θ  (7.2) 

The summed differences in Eq. (7.2) occur for a known number of frequency points of interest, 

nω, a number of force excitation locations, nF, and a given number of different substructure test 

poses, nθ. The analytical receptance column vectors in the global frame,   ,pq
GH  θ , are 

determined from the FRF recovery method in Section 6.6 (from Eq. (6.67)). If particular DOFs 

are not experimentally measured, then their corresponding entries in   ,pq
GH  θ , can be 

omitted. The receptance magnitudes in Eq. (7.2) are found by taking the Euclidean norm of each 

measured column, q. Also, taking the base-10 logarithms of FRFs reduces the dominant error 

contributions of resonant peaks while increasing the effects of antiresonances [123].  
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7.1.1  Model Updating Parameters 

The physical parameters of each component that are initially uncertain are requir

updated using the experimental data from the joint and link substructure tests. The vector of 

updating parameters for the ith component is defined as: 

 ed to be 

  1,  ..., ,  ..., 
ui k n i

a a aa  (7.3) 

with nu updating parameters. These updating parameters may include material properties, 

geometry, virtual spring stiffness, and damping terms. The geometric parameters do not include 

changing the lengths of any component in order to preserve the kinematic structure of the 

assembled system. Also, the dependent terms found in the stiffness, mass or damping matrices 

need to be updated accordingly. For example, updating the cross-section dimensions will also 

change the area moment of inertia in the component matrices. It is further assumed that there is 

zero structural damage in the components, and that neighboring elements of the same size and 

material will have equivalent updated parameters. This measure will provide a physically 

realistic updated model by avoiding possible parameter fluctuations with neighboring elements 

and also reduce the number of updating parameters, instead of updating each individual element 

of a component. When the component physical parameters are updated, they can be represented 

s the original parameter value with an added perturbation in the form: a

 , ,k i o i ia a a    (7.4) 

The nu updated parameters for a single component, ai, are directly substituted into the local FE 

stiffness, mass and damping matrices in Eq. (6.6) during the updating process and new CMS 

matrices are recalculated for each updating iteration. For example, if the cross-section length and 

Young’s modulus are to be updated for a square cross-section, an updated linear axial stiffness 
2

direct search optimization method to perform the parameter updating, it would be more 

beneficial to directly substitute discrete values for Ek,i and bk,i to the avoid the extra addition 

computations. This approach can also avoid the added computations of rebuildin

term would become (Eo,i + ΔEi)(bo,i + Δbi)  / Li, with Ek,i = Eo,i + ΔEi and bk,i = bo,i + Δbi. Using a 

g separate 

perturbation matrices for every updating parameter change, as found in [121] and [129]. 
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7.1.2  Constrained Optimization Approach 

pe errors, which require accurate mode 

ations, the objective is to minimize the FRF errors found in Eq. (7.2). Since tests on 

higher frequency ranges than a fully assem

 To update the reduced component models, a direct search method is presented which 

involves a genetic algorithm (GA) with linear and nonlinear bounded constraints. Rather than 

minimizing the resonance frequency errors, or mode sha

shape estim

separate substructures produce resonances at bled 

model, it is beneficial to perform the FRF optimization for a given number of frequency points 

across the entire measurement range. Furthermore, testing individual hinged assemblies of 

components reduces the number of updating parameters and lessens the chances of non-unique 

parameter estimations. Likewise, the advantage of testing multiple poses allows more data to be 

obtained to aid in updating the local element parameters since they should remain the same for 

various poses. Evidently, this model updating problem becomes an overdetermined system if 

more than one pose is considered. Therefore, an exact analytical solution does not exist and an 

optimization method must be applied. Thus, the optimization problem in this chapter is stated as: 
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1 2

, , ,    1, 2, ...
ci n

LB i i UB i i  a a a  , cn

where a  contains all of the updating parameters for nc components undergoing a hinged test, 

aLB,i and aUB,i are vectors containing the lower and upper bound limits for each updating 

parameter in the ith component. The optimization problem is further subjected to the following 

nonlinear constraints: 
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 (7.6) 

The number of experimentally captured resonance and antiresonance frequencies for each pose 

are denoted as nωn,exp and nar,exp, respectively; eωn.l and eωar.m are tolerances placed on the lth 

resonance frequency and mth antiresonance for each pose tested, θ. The last constraint in Eq. 
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e interface with a pre-specified tolerance, eX,F. (7.6) is to restrain the motion at an analytical fixtur

This constraint can be expressed as: 
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 (7.7) 

where ,
p
F GX  is the updated analytical coupled response at the fixture interface for a given 

excitation at node q, and the experimental response is found from , , , ,
p pq q
F G exp G exp G expX H F . Eq. 

(7.7) is calculated at frequencies ranges away from experimental resonances and antiresonances, 

as well as noisy regions. The pose-dependent absolute resonance and antiresonance frequency 

errors between the analytical model and experimental values in Eq. (7.6) are computed from: 
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 (7.8) 

, ,ar m exp 

Eq. (7.8) is computed at drive-point measurements only, to account for the maximum number of 

ntiresonances possible. From observing Eq. (7.2) during the updati

resonance (or antiresonance) frequency is far from the experimental value, small changes in the 

objective function might occur since the base-10 logarithm is used. This is especially true for the 

cases of highly damped modes, or if nω used in Eq. (7.2) is low and the modes have low damping 

 may be inaccurate due to the resolution of measurements or highly 

damped modes. Thus, the constraints in Eq. (7.8) can have tolerances based on the level of 

ental data. Also, constraining the errors at discrete resonance 

frequencies is opposed to traditional methods that constrain the average of all the resonance 

frequency errors, which may not account for individual resonance frequency shifts in the 

a ng process, if an analytical 

(sharp peaks). Therefore, the constraints in Eq. (7.8) are used to enforce a trust region for 

acceptable resonance and antiresonance errors, as well as improve FRF matching using the GA.  

 Typically, resonance errors are also minimized in objective functions. However, measured 

resonance frequencies

uncertainty in the experim

analytical model. This measure can essentially improve GA stability for the solutions of updated 

FRFs. Furthermore, the phase difference is not accounted for in the objective function in Eq. 

(7.2) since the experimental phase angle is extremely sensitive to small noise fluctuations found 
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in the complex parts of the experimental FRFs as shown in Fig. 7-2. Therefore, the phase of the 

updated FRF may either tend to approach perfect phase correlation, or approach a ±180° phase 

difference from the experimental FRF. In the latter case, the updated FRF is deemed 

nacceptable, and newly updated FRFs should be re-computed. A ±180°

between experimental and updated FRFs may also indicate that the input/output coordinates for 

lytic

u  phase difference 

the ana al FRFs may have incorrect signs with respect to the experimental input/output 

coordinates. This can instead be observed in the signs of the imaginary FRF peaks, which will be 

different from the experimental imaginary FRF peaks. 

 

 

Figure 7-2:  Large phase angle oscillations due to small noise regions after FRF smoothing (a) Magnitude, (b) 
Real part, (c) Phase, (d) Imaginary part 

 
 The solution of the constrained optimization problem described in Eqs. (7.2) to (7.8) is 

depicted in Fig. 7-3 to update the uncertain physical model parameters with experimental FRF 

data.  
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Figure 7-3:  Updating process for hinged components with constrained genetic algorithm 

 
First, the uncertain FE model parameters, test poses, and initial estimations for the constraints in 

Eqs. (7.5) and (7.6) are defined. Afterwards, an initial population containing the initial guesses of 

the updated parameters, ai, for each component is created using a random number generator 
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bounded by aLB,i and aUB,i. The fitness function in Eq. (7.2) and the constraints in Eqs. (7.5) and 

(7.6) are then evaluated for each individual in the population. Then, the individuals are ranked 

according to the smallest values produced from Eq. (7.2) whether or not the constraints in Eq. 

(7.6) are violated. For each iteration (or GA generation) in the updating process, the genetic 

operations in Fig. 7-3 (selection, crossover, mutation, and migration [159]) are then computed. 

The final stage of the GA involves combining the best ranked individuals from the newly formed 

population (children) with the previous population (parents). The GA termination criteria 

includes a tolerance on the averaged values for the relative change in each of the best-fit 

solutions for Eq. (7.2), and a feasibility check for constraint violations in Eqs. (7.5) and (7.6). If a 

converged solution is not found after a pre-specified maximum number of generations, then the 

constraints are relaxed by either by enlarging the lower and upper bounds for the updating 

parameters in Eq. (7.5), or increasing the tolerances in Eq. (7.6), and the process is then repeated. 

If convergence is still not attained, then the number of updating parameters can also be 

increased. 

7.2  Detection of Analytical Resonances and Antiresonances 

 One note of concern when solving the resonance or antiresonance eigenvalue problems 

during model updating is that the is that the analytical CMS model may produce additional 

resonances or antiresonance frequencies that are not observable in the experimental data. Such 

instances may arise when the resonance or antiresonance dynamic contributions of unmeasured 

experimental DOFs (such as rotational hinge DOFs) are present in the CMS model within the 

frequency range of interest, but are not present in  ,
pq

G expH . The problem is further affected by 

the presence of highly damped resonances or antiresonances in the experiment data, where the 

experimental imaginary and real FRF peaks (at the resonances) or the minimum FRF magnitudes 

(at the antiresonances) can lie within the noise levels, which makes the experimental 

identification of these frequencies difficult. Also, the existence of out-of-plane modes might be 

present i , or if a n the experimental data if a single-axis accelerometer is not positioned correctly

hammer impact is out of the plane of interest. These issues may lead to incorrect pairing of 

analytical CMS and experimental resonances/antiresonances for Eq. (7.8). 
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 In order to avoid an additional coordinate reduction in the CMS model to remove rotational 

DOFs (which may lead to further modeling errors), one method to overcome this situation is to 

detect the experimentally measurable resonances and antiresonances from the analytical CMS 

model using the multivariate mode indicator function (MvMIF) [171] for each GA individual. 

The goal here is to match the number of analytical resonances/antiresonances with those that are 

experimentally available in order to correctly apply Eq. (7.8). The MvMIF is found by solving 

the following eigenvalue problem for given analytical FRF columns: 

             T T H
Re Re Re Re Im Impq pq pq pq pq pq

G G MIF G G G GH H H H H H   (7.9) 

where Re{} and Im{} denote the real and imaginary parts of the analytical FRF column vectors, 

and the superscript H denotes the Hermitian transpose. Here, the analytical FRF columns only 

contain entries which coincide with experimentally measured FRF coordinates. The MvMIF is 

plotted over a range of frequencies in Fig. 7-4 for an example with three different excitation 

locations and a fixed output coordinate (for roving hammer tests). During the updating process, 

the analytical CMS resonances and antiresonances for each GA iteration are arranged in 

ange of interest ascending order. All resonances and antiresonances that are out of the frequency r

are discarded. Then, to determine if the lth analytical CMS resonance can be experimentally 

captured, given the input/output coordinates p and q, the minimum eigenvalue found from Eq. 

(7.9), min(λMIF), is determined by setting ω = ωn,l in the vector  pq

G
H . This avoids solving the 

MvMIF through the entire frequency range since the only locations of interest are the 

resonances/antiresonances. If min(λMIF) approaches 0, a measurable resonance is detected using 

the FRFs in  pq

G
H , and if min(λMIF) approaches 1, the resonance cannot be detected (is highly 

damped, out-of-plane, or is equal to an antiresonance frequency). Because antiresonance 

frequencies change with each input-output coordinate, Eq. (7.9) is instead solved for a single 

input-output FRF location, H pq
G  which coincides with an experimental measurement location, at 

ω = ωar,m, to detect if the mth CMS antiresonance can be captured from the FRF term. Therefore, 

to check for antiresonances using the MvMIF, Eq. (7.9) becomes: 

 
 

   

2
Re H pq

G   (7.10) 2 2
Re H Im H

MIF
pq pq
G G
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The MvMIFs from Eq. (7.10) are plotted for a drive-point, and two cross-point measurements for 

the example in Fig. 7-4 (labeled MVMIF11, MVMIF12, and MVMIF13). Because the number of 

antiresonances is greater at drive-point measurements (p = q), it would be more beneficial to 

compute the antiresonances used in Eqs. (7.8) and (7.10) at drive-points. The overall process is 

repeated until the number of detected resonances and antiresonances in the analytical FRFs 

matches those captured by the experimental FRFs (within the frequency range of interest), and 

their values are then paired for Eq. (7.8). Analytical resonance/antiresonance pairs that are not 

detected by any MvMIF can then be omitted for the frequency constraints in Eq. (7.8). 

ect frequency pairs for Eq. (7.8) can aid in GA Nevertheless, this process of identifying the corr

convergence, though it does not guarantee that the current iteration’s updated parameters are 

feasible if the constraints in Eq. (7.8) are violated. 

 

Figure 7-4:   for an FRF column with three excitation points 

 

7.3  Overview of Component Updating and Testin

MvMIF

g Method 

To implement the updating of serial modular robot component models using experimental FRF 

ata, a building block procedure is  proposed, and is described i

1. Detach all link and modules from their connection interfaces. 

d n the following steps: 
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2. Perform vibration experiments on the links alone with fixed-free experimental BCs to 

obtain FRFs from a single pose. Identify the experimental resonance and antiresonance 

frequencies for Eq. (7.6). 

3. Create FE models using the methods from Chapter 6 to match the experimental test 

conditions. Update the uncertain FE model parameters for each link to satisfy Eqs. (7.2) 

to (7.8) for reduced component models. 

4. Perform vibration experiments on the joints alone (with one end fixed, the other end 

free), testing each joint in multiple poses. If the joint geometry is too complex and does 

not permit the placement of accelerometers or locations for force impacts, attach the 

tested link module to its respective joint module, then attach the sub-assembly at the base 

of the joint to a fixture (or a rigid base). Afterwards, obtain experimental FRFs with 

input/output points along the sub-assembly for multiple poses to identify structural 

dynamic pose-dependencies in the joints, and identify experimental resonance and 

antiresonance frequencies for Eq. (7.6). 

5. Create reduced CMS models of the experimental joint-link assembly, then update all 

remaining unknown FE model parameters to satisfy Eqs. (7.2) to (7.8). 

6. Repeat steps 4 and 5 for the remaining joints and links. Joint components that are shared 

with other adjacent links only need to be updated once and their updated models can be 

included when updating adjacent substructures. 

7. With all component models updated, CMS assembly of the components in any required 

pose can be performed for further virtual testing if required. 

7.3.1  Assembled Model Correlation 

 After each component’s model parameters are updated using the above procedure, to 

compare the initial FE model estimates and updated CMS models with experimental data for 

tead of local DOF) correlation tools are utilized. Since the 

presented model updating method mainly uses FRF data, the primary correlation criterion used is 

 cosine between 

each test, two global model (ins

the frequency domain assurance criterion (FDAC) [172] which is defined by the

complex analytical and experimental FRFs : 
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H

,Re
,

pq pq
G a G exp x

a x pq pq

H H
FDAC

H H

 
 

 
  (7.11) 

,G a G exp x

pecific frequencies across the full spatial domain 

where ωa corresponds to the frequency where the analytical complex FRF vector  is calculated, 

and ωx is the frequency where the experimental FRF was measured. In general, the FDAC is a 

measure of shape correlation between FRFs at s

and its values can vary between -1 and 1. When ωa = ωx, if all FDAC values are equal to 1 across 

a given frequency range, then the FRFs are perfectly correlated and in phase with each other. An 

FDAC value of -1 indicates perfect correlation with a 180° phase lag and FDAC values near zero 

indicate little or no correlation.  

 

 In order to measure the correlation between the analytical and partially measured 

experimental modal vectors, the partial modal assurance criterion (PMAC) [173] is utilized: 

 
   

2H

       HH

CMS expr r
r

CMS CMS exp expr r

Φ Φ
PMAC

Φ Φ Φ Φ
  (7.12) 

r r

easured and analytical modal 

lerometer motions were only observed in a single 

plane. The goal here is to update all uncertain FE parameters for hybrid CMS reduced models 

with experimental FRF data from link fixed-free and joint-link fixed-free component tests. 

where the rth modal vectors for the analytical model, {ΦCMS}r, only contain terms coinciding with 

the measured modal contributions. Unlike the regular MAC, the PMAC uses only a subset of 

each modal vector to check the linear proportionality between m

vectors. In Eq. (7.12), the resulting coefficients vary between 0 and 1, with 0 indicating no 

correlation, and 1 indicating perfect correlation. 

7.4  Case Study - Adjustable Modular Linkage System 

 To assess the effectiveness of the proposed method, the procedure in Sections 7.1 to 7.3 was 

carried out for a small experimental modular linkage system with adjustable joints and separable 

links, intended to simulate the example serial modular robot in Section 6.7 in a cost-effective 

manner. When the linkage is assembled, all joint axes are parallel, thus only planar motion poses 

are considered. Also, force impacts and acce
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7.4.1  Analytical Component Model Description 

The assembled modular linkage system’s CAD model  is shown in F

are 17 components, including added virtual springs at the interfaces of each component, to 

with threaded ends connected to a coupling link (components  4 

 6, 10 to 12, and 16 & 17). By tightening the shoulder screws at high torques, the friction 

 for 

vibration tests, the torques on the shoulder screws were kept close to 10 N-m (~7.4 lb-ft) using a 

all torque wrench. To change the joint angular positions, the shou

and the desired angle was adjusted using a protractor as a reference, as well as a measurement of 

 behavior. 

 

 ig. 7-5(a). In total, there 

account for connection flexibility. The connection interfaces for each component are identical 

and are accomplished using M6×1 threads. The assembly is mounted on a heavy breadboard 

table, which matches the connection interface threading for the components. As a result, the 

individual components can be tested directly on the breadboard table with their natural 

connectivity conditions. Each joint substructure consisted of a rod eye secured to a joint clevis 

using a precision shoulder screw (components 1 to 3, 7 to 9, and 13 to 15 in Fig. 7-5(a)). The link 

substructures were made of rods 

to

forces between the inner faces of the joint yokes and outer faces of the rod eye are sufficient to 

hold the linkage system in place for low-impact testing. Each time the joints were tightened

sm lder screws were loosened, 

the link(s) height (due to a lack of available high-precision position sensors). Also, the threaded 

ends of the links and joint clevis yokes were wrapped with five layers of Teflon thread sealing 

tape for tightening and easy removal (instead of using thread-locking fluid). It is important to 

note that tightly fastened threads suppress the nonlinear behavior of joints/connections [174]. 

Therefore, the connections exhibit linear stiffness
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Figure 7-5:  (a) CAD model of assembled modular linkage system, (b) Close-up view of joint 

 
 For FE modeling, all links were modeled as Euler-Bernoulli beams (with no geometric 

nonlinearities, due to low impact testing loads), and all other structural parts (couplings, rod eyes 

and clevis yokes) were modeled as Timoshenko beams, due to their higher thickness to length 

ratios. All shoulder screws and nuts were modeled as non-structural lumped masses. Also, the 

onnections between the rod eyes and joint yokes were assumed to be rigid, since the joints were 

tightly fastened. The additional rod eye at the end of link 3 is modeled as a rigid link. The FE 

discretization is for each component shown in Fig. 7-6. To include connectivity stiffness at the 

rod eye/link interfaces, and the coupling/joint yoke interfaces, a linear virtual spring was 

attached at the threaded portions of the of the links and joint yokes (components 1, 4, 7, 10, 13 

and 16). These virtual springs included uncoupled local translational stiffness (ky) and torsional 

stiffness (kψ), while the axial stiffness terms (kx) were assumed to be rigid. Also, the virtual 

spring stiffness values were assumed to be constant over the frequency range. It is further 

assumed that all structural elements have stiffness proportional viscous damping, and all virtual 

springs have proportional structural damping.  

c
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 When testing the separated link and joint substructures, the threaded portions that are secured 

to the breadboard table exhibit flexibility due to the virtual springs, and are therefore included in 

the B stiffness partition of Eq. (6.9) at the component’s interface. However, when computing the 

normal modes during substructure tests with fixed-free BCs, the effects of the added mass at the 

threaded regions (as shown for components 7 and 10 in Fig. 7-7, for example) are assumed to be 

negligible at the B interface coordinate sets since these regions are completely fixed to the 

breadboard table. Also, at the free nodes of the link couplings during substructure tests (E 

coordinates), the effects of the added mass from the adjacent threaded regions of the next joint’s 

clevis yoke are not present. Therefore, the component mass matrices are initially partitioned in 

the same form of Eq. (6.9) during the substructure tests, but need to be modified before CMS 

assembly to include the added effects of the untested masses due to the threaded regions of the 

adjacent connecting components.  

 

 
Figure 7-6:  Component FE discretization 

 

To include the added (previously untested) masses to the ith component before CMS assembly 

occurs, the following modified local mass matrix is used: 

 
, , , , , ,

, , , , , , ,

, , , , , , , , 1

BB e i BI e i BE e i

e i IB e i II e i IE e i

EB e i EI e i EE e i BB e i

 
   
   

M M M

M M M M

M M M M

 (7.13) 

where ΔMBB,e,i is the previously untested mass (at the threaded regions) for the next consecutive 

component. Eq. (7.13) must be applied for components 3, 6, 9 and 12 before CMS assembly. The 
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m ss of the untested threaded regions can be determined by weighing the components, then 

using a solid CAD model to estimate the volume. By doing this, the mass of the threaded regions 

of the joint yokes were determined to be 4.34×10-3 kg, and 8.62×10-4 kg at the fixed portions of 

the rod ends. Also, the masses of the joint shoulder screws were measured to be 0.0067 kg 

(including the M5 hex nuts), and the M6 hex nuts attached to the ends of the rods were measured 

to be 0.0021 kg. Because the accelerometer is large relative to the components being tested, it 

was modeled as a rigid link with an offset mass (measured to be 0.0076 kg) located at its CG (as 

determined from a CAD model and manufacturer drawings), and can be added or removed from 

the models in a similar fashion to Eq. (7.13). For all tests, the orientation the rigid accelerometer 

was measured relative to the local coordinate system of the component it was attached to. 

 

a

 
Figure 7-7:  Substructure tests for components 7 to 12, (a) Link and coupling, (b) Joint, link and coupling in 

different link poses 

 

For model reduction purposes during component tests, the three lin

10 to 12, and 16 & 17) can be reduced to three individual substructures since the orientations of 

their adjacent components do not change relative to one another. When a joint is added for 

 k component sets (4 to 6, 

testing (as shown in Fig. 7-7(b)), these substructure sets also include the rod eye components (3 

to 6, 9 to 12, and 15 to 17), while the joint yokes remain as separate substructures (1 & 2, 7 & 8, 
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and 13 & 14). Therefore, when CMS assembly occurs, there are six separate substructures, which 

are numbered accordingly in Table 7-1. The assembled full FE model contains 234 DOF and the 

hybrid reduced CMS assembly contains 51 DOF. The initial analytical model parameters for the 

structural components are given in Table 7-2. For this initial model, it is assumed that the virtual 

springs are rigid. Also, the densities of each component were obtained by weighing them, then 

estimating the their volumes from a CAD model. 

Table 7-1:  FE parameters for each substructure 

Component 

# of Full 
Model 

Elements 
for Each 

Component 

# of DOFs 
for Each 

Unassembled 
Component 
(No BC's) 

# of DOFs 
for Full FE 

Model 
(BC's 

Included) 

# of Kept 
Modes for 

Hybrid 
CMS 

Reduction 

# of DOF 
After CMS 
Reduction 

(BC's 
Included) 

Substructure 
# 

1 1 6 
2(2×) 2 9 

9 4 7 
1 

(Joint 1) 
3 2 9 
4 1 6 
5 20 63 
6 4 15 

84 10 16 
2 

(Link 1) 

7 1 6 
8(2×) 2 9 

12 4 10 
3 

(Joint 2) 
9 2 9 

10 1 6 
11 16 51 
12 4 15 

72 7 13 
4 

(Link 2) 

13 1 6 
14(2×) 2 9 

12 4 10 
5 

(Joint 3) 
15 2 9 
16 1 6 
17 16 51 

60 7 10 
6 

(Link 3) 

Totals: 78 285 234 36 51 - 
 

Table 7-2:  Initial analytical model parameters 

Geometric Parameters 
Material  

Parameters 

Proportional 
Damping 

Parameters Component 
L 

[mm] 
bo 

[mm] 
ho 

[mm] 

ro 

[mm] 

ρ 
[kg/m3] 

E 
[GPa] 

β 
[s] 

2(2×) 17.5 3 205 1×10-5 12 - 7496.96 
3 16 6 8 5* 2766.71 69 3×10-5 
5 181 - - 2.65 7784.94 207 1×10  -5

6 37 20 15 - 2711.27 69 3×10-5 
8(2×) 17.5 3 12 - 7496.96 205 1×10-5 

9 16 6 8 5* 2766.71 69 3×10-5 
11 106 - -- 2.65 7823.98 207 1×10-5 
12 38 6** - - 7947.37 205 1×10-5 

14(2×) 17.5 3 12 - 7496.96 205 1×10-5 
15 16 6 8 5* 2766.71 69 3×10-5 
17 120 - - 2.65 7828.70 207 1×10-5 

 *Located at rounded part of rod eyes, **Denotes hexagonal side length, Poisson’s ratio is 0.33 for aluminum     
 and  0.29 for steel 
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7.4.2  Component Experiments and Updating 

7.4.2.1  Experiment Setup and Component Tests 

 For all experiments in this example, roving hammer and accelerometer tests (single-input, 

single-output) were performed. An adhesive was used to mount the accelerometer. Details of the 

equipment used, the test parameters, and data processing are given in Appendix C. Throughout 

all tests, it was ensured that the hammer impacts remained less than 40 N, to prevent the tightly 

fastened joints from becom overloads. Also, a higher 

than usual frequ ge z se st ual mechanism 

com od an  fre s. At easu or he 

results of ten im ec hec rit ata  the average of at 

least f pacts we  used to ge rate the FRFs with the H  method in Appendix C to reduce 

accelerometer noise (since the hammer noise was mostly eliminated using a force window). 

Also, additional smoothing of the real and imaginary FRFs was conducted for each data set in 

separate frequency ranges where noise was still prevalent. 

 

 The first components to be tested were the link substructures (2, 4, and 6 in Table 7-2) with 

fixed-free BCs, shown in Fig. 7-8. For these tests, the threaded rod en were se  the 

breadboard table, and excited at four locations. For the links with couplings (components 6 and 

12), the accelerometer was placed at a quarter of their lengths from their base. Th ed 

ith the first interior node for those components, and drive-point measurements were taken in 

the opposite direction.  Aft ed to the bases of the link 

substructures and tests were performed for three poses, based on the relative tions (at 

0°, 45 ith resp dinate fram 7. For ink tests, 

the accelerometer locations were e sam  as those for the link onent tests. Overall, for 

each sepa omponent test, four FRF ere ob ined se t int-link 

tested in th  poses, e tests yielded  FRF

 

ing loose and also to avoid accelerometer 

ency ran

uce reson

pacts were r

(0-2000 H

ces at higher

orded to c

) was cho

quencie

k for linea

n since te

 each m

y and repe

ing individ

rement co

bility, and

ponents pr dinate pair, t

ive im re ne 1

ds cured to

is coincid

w

erwards, the respective joints were attach

 link orienta

these joint-l° and 90°) w ect to the global coor e in Fig. 7-

th e  pcom

rate c s w ta . Becau he jo components were 

ree  thes 12 s. 
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Figure 7-8:  Fixed-free experimental tests, (a) Components 4 to 6, (b) Components 10 to 12, (c) Components 
16 and 17 

 
 

 

Figure 7-9:  Joint-link fixed-free experimental tests, (a) Components 1 to 6 (joint 1 & link 1), (b) Components 
7 to 12 (joint 2 & link 2), (c) Components 13 to 17 (joint 3 & link 3) 
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7.4.2.2  Component Parameter Updating 

 For all components, the stiffness and damping parameters are to be updated, since they are 

directly unmeasurable. For the virtual springs, these include the translational and rotational 

spring terms, along with structural (hysteretic) proportional damping constants. For the 

remaining components, the updating parameters consisted of Young’s modulus (E) and the 

stiffness-proportional damping constants (β). The upper and lower bounds for each of the 

updating parameters in Eq. (7.5) are given in Table 7-3. For the link tests, eωn in Eq. (7.8) was set 

to ≤ 2% for each resonance frequency, and for the hinged substructure tests, eωn set to ≤ 3%. All 

antiresonance frequency constraints, eωar were set to ≤ 5% and the number of frequency 

increments in Eq. (7.2) was set to nω = 200 for each test case. These points were evenly 

distributed throughout each FRF curve in separate ranges at least 10 Hz away from resonance 

frequencies. Because the antiresonance frequencies change with different measurement points, 

o  

nce the experimental antiresonances are mainly found in noisy regions of FRFs, their 

orresponding error constraints were set higher than those of the resonances. 

Table 7-3:  Upper and lower bounds for updating parameters 

Components 
Updating 

Parameter 
Lower 
Limit 

Upper 
Limit 

nly the antiresonances at drive-point measurements were used in the updating process. Also,

si

c

E [GPa] 170 220 
2,5,8,11,12,14,17 

β [s] 1×10-7 1 
E [GPa] 65 75 

3,6,9,15 
β [s] 1×10-7 1 

ky [N/m] 1×105 1×1012 
kψ [N-m/rad] 1×102 1×1010 1,4,7,10,13,16 

η 1×10-4 10 
 

 The GA parameters used for this case study are found in Table 4-1, with the exception that 

the initial population was set to 50, and an additional tolerance of 10-7 was added for the 

nonlinear constraints in Eq. (7.8). Due to the variability in converged GA solutions, a total of ten 

converged GA runs were computed for each test case. Afterwards, each solution was ranked 

from 1 (best) to 10 (worst) for the lowest eFRF in Eq. (7.2) and highest FDAC and PMAC values 

in Eqs. (7.11) and (7.12), respectively. The ranked solutions were then added, and the final 

solution was chosen as the one with lowest combined ranking score. Using the data from the link 

fixed-free tests, th ere updated first. 

fterwards, using the data from the joint-link tests in multiple poses, the remaining joint 

e parameters for substructures 2, 4, and 6 in Table 7-1 w

A
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components were updated. The average GA computation times for the link tests, and joint-link 

tests were 282 s and 376 s, respectively. Table 7-4 gives the updated component parameters for 

the hybrid CMS model. 

Table 7-4:  Updated FE model parameters adjustable linkage case study 

Material  
Parameters 

Virtual Spring 
Parameters 

Proportional Damping 
Parameters 

Component 
E 

[GPa] 
ky 

[N/m] 
kψ 

[N-m/rad] 
β 

[s] 
η 

1 - 5.4357×105 915.9897 - 1.2784×10-3 
2(2×) 175.3526 - - 2.6819×10-5 - 

3 68.5431 - - 1.6457×10-5 - 
4 - 1.2928×107 1.4873×103 - 8.0754×10-4 
5 190.5239 - - 4.8913×10-6 - 
6 65.8349 - - 9.3647×10-5 - 
7 - 4.8462×105 1.1841×103 - 1.5875×10-3 

8(2×) 187.9652 - - 1.4651×10-5 - 
9 66.1740 - - 9.9238×10-5 - 

10 - 9.4959×106 1.3395×103 - 3.8362×10-3 
11 203.7814 - - 2.2630×10-6 - 
12 217.4572 - - 6.6595×10-6 - 
13 - 6.2758×105 991.1080 - 4.3674×10-3 

14(2×) 172.6921 - - 3.4154×10-5 - 
15 69.8782 - - 5.5572×10-4 - 
16 6177×10-3 - 1.3982×107 2.0212×103 - 5.
17 194.3489 - - 9. 4033×10-6 - 

 

 Fig. 7-10 shows the results of the updated hybrid-reduced com ent models for selected 

drive-point accelerance m e FRFs  link al coo ate frames, |Ha(ω)|e = 

|(jω)2H(ω)|e, compared to those of the init l es  and imental data. In Fig. 7-

10(a) to (c) the drive-poi how sts he l ne, and in Fig. 7-10(d) 

to (e), cross-point measurements (with excitations at the middle node of each link) are shown for 

pon

agnitud  in the  loc rdin

ial mode timates  exper

nt FRFs are s n for the te  with t inks alo

each joint-link test in selected poses. 
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Figure 7-10: Comparisons of initial model, updated model and experimental FRFs for component tests, 
Drive-point FRFs: (a) Link 1, (b) Link 2, (c) Link 3, Cross-point FRFs: (d) Joint 1 & 1ink 1 (90°), (e) Joint 2 

& link 2 (45°), (f) Joint 3 & Link 3 (0°) 
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 Fig. 7-10(d) shows the joint-link test with the lowest overall first natural frequency and 

shows the joint-link test with the highest first natural frequency of all poses tested. It can be 

observed that for all test cases, the updated FRFs yield significant improvements over the initial 

model FRFs for the entire frequency range, due to the fact that the imposed nonlinear constraints 

aided the GA in obtaining feasible, yet accurate solutions. For the individual link (alone) tests, 

the differences between the updated and analytical drive-point FRFs are more profound near the 

last captured resonance frequency for each case. Tables 7-5 and 7-6 compare the measured 

resonances (obtained from the real parts of the experimental FRFs, for proportional damping) 

and antiresonances (from experimental FRF magnitudes) for each component test case. 

Table 7-5: Comparison of component experimental resonances with initial and updated models 

In-Plane Resonance Frequencies 
Substructure Test 

Case 
Mode # Experiment 

[Hz] 

Initial 
Model 
[Hz] 

Relative 
Error % 

Updated 
Model 
[Hz] 

Relative 
Error % 

1 39.04 41.65 6.69 38.64 -1.02 
2 383.31 418.78 9.25 386.95 0.95 1) Link 1 alone 
3 1151.42 1232.56 7.05 1138.74 -1.10 
1 70.34 76.55 8.83 70.71 0.53 

2) Link 2 alone 
2 726.26 780.01 7.40 722.30 -0.55 
1 102.44 119.06 16.22 101.98 -0.45 

3) Link 3 alone 
2 785.92 945.82 20.35 784.92 -0.13 
1 37.72 39.31 4.22 36.69 -2.73 
2 365.68 392.90 7.44 361.01 -1.28 
3 954.87 1133.80 18.74 970.45 1.63 

4) Joint 1, link 1 (0°) 

4 1161.54 1631.02 40.42 1180.79 1.66 
1 36.81 39.23 6.57 36.51 -0.81 
2 358.63 389.37 8.57 352.29 -1.77 
3 951.92 1112.31 16.85 967.16 1.60 

5) Joint 1, link 1 (45°) 

4 1338.87 1841.17 37.52 1372.37 2.50 
1 35.94 39.20 9.07 36.44 1.39 
2 355.69 388.05 9.10 350.34 -1.50 
3 946.90 1104.67 16.66 962.35 1.63 

6) Joint 1, link 1 (90°) 

4 1674.06 1993.40 19.08 1718.84 2.67 
1 62.26 73.32 17.76 61.73 -0.85 
2 621.73 725.10 16.63 617.69 -0.65 7) Joint 2, link 2 (0°) 
3 1209.41 1777.84 47.00 1188.83 -1.70 
1 60.52 73.04 20.69 61.28 1.26 
2 606.02 712.09 17.50 599.30 -1.11 8) Joint 2, link 2 (45°) 
3 1415.30 1853.78 30.98 1373.32 -2.97 
1 60.19 72.92 21.15 61.08 1.48 
2 587.95 708.65 20.53 595.90 1.35 9) Joint 2, link 2 (90°) 
3 1580.93 1915.04 21.13 1547.53 -2.11 
1 88.44 97.08 9.77 89.04 0.68 

10) Joint 3, link 3 (0°) 
2 692.47 754.80 9.00 678.91 -1.96 
1 86.68 96.75 11.62 87.84 1.34 

11) Joint 3, link 3 (45°) 
2 648.41 742.50 14.51 636.24 -1.88 
1 85.93 96.62 12.44 87.36 1.66 

12) Joint 3, link 3 (90°) 
6 612.09 -1.78 2 623.20 731.99 17.4
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Table 7-6: Comparison of component experimental antiresonances with initial and updated models 

In-Plane Drive-Point Antiresonance Frequencies 
Substructure Test 

Case 

In-Plane 
Anti-

resonance 
# 

Experiment 
[Hz] 

Initial 
Model 
[Hz] 

Relative 
Error % 

Updated 
Model 
[Hz] 

Relative 
Error % 

1 381.86 414.40 8.52 384.59 0.71 
1) Link 1 alone 

2 1064.02 1147.38 7.83 1079.70 1.47 
2) Link 2 alone 1 682.81 744.49 9.03 670.34 -1.83 
3) Link 3 alone 1 748.44 888.82 18.76 753.16 0.63 

1 365.00 392.81 7.62 360.64 -1.19 
2 948.44 1088.97 14.82 935.42 -1.37 4) Joint 1, link 1 (0°) 
3 1105.94 1616.14 46.13 1145.21 3.55 
1 354.44 389.08 9.77 350.51 -1.11 
2 940.13 1070.61 13.88 928.40 -1.25 5) Joint 1, link 1 (45°) 
3 1305.31 1792.86 37.35 1333.37 2.15 
1 352.95 387.87 9.89 347.91 -1.43 
2 933.13 1062.00 13.81 922.83 -1.10 6) Joint 1, link 1 (90°) 
3 1610.94 1975.34 22.62 1636.28 1.57 
1 617.19 706.67 14.50 608.19 -1.46 

7) Joint 2, link 2 (0°) 
2 1201.56 2 -1.75 1735.83 44.46 1180.5
1 599.69 695.39 15.96 591.32 -1.40 

8) Joint 2, link 2 (45°) 
2 1  341.88 1756.14 30.87 1334.36 -0.56 
1 580.13 588.17 692.26 1  9.33 1.39 

9) Joint 2, link 2 (90°) 
  1  2 1420.94 1785.71 25.67 457.91 2.60 

10 °) ) Joint 3, link 3 (0 1 648.13 732.84 13.07 654.34 0.96 
11) Joint 3, link 3 (45°) 1 600.63 720.38 19.94 612.59 1.99 
12) °)  Joint 3, link 3 (90 1 571.88 710.62 24.26 590.35 3.23 

 

 For these component tests and respective analytical models, the updated results show good 

resonance and antiresonance frequency c ions spec max bso rrors of 

2.97% and 3.55%, compared to those of the initia tical el ( d 4 ). It is 

shown f ests in different poses that se-de ency  joi fect the 

first resonance frequencies slig ly, as c d to her anc ther 

each joi t test re attem with reduced resonance error constraints to ≤ 1%, 

but the after ten attempts, the  did n essfu ver  ea . Ho r, since 

the resonance errors of the e sting u  mod owe rov  ov  initial 

models, they were deemed acceptable for this study. Note that amplitude correlations at the 

resonan in thi tudy since the amplitudes of per  res es with 

low dam by th hosen f cy in nts ( 5 H le 7 ows the 

PMAC and mean FDAC correlation values, computed between the analytical models and the 

experim easu d DOF partia rime mode shapes were extracted 

from the imaginary FRF e m  coordinates on the links and comp to those 

from th OFs the ana moda rs. T sult ble 7 ow that 

the first partial mode shape for both models are well correlated. However, the updated models 

orrelat with re tive imum a lute e

l analy  mod 47% an 4.46%

or the joint-link t the po pend  of the nts af

ht ompare  the hig  reson es. Fur GA runs for 

nt-link componen we pted 

GA ot succ lly con ge for ch case weve

xi pdated els sh d imp ements er the

ces were omitted s s the ex imental onanc

ping are limited e c requen creme 0.312 z). Tab -7 sh

ental data at the m re s. The l expe ntal 

 peaks of th easured ared 

e corresponding D in lytical l vecto he re s in Ta -7 sh

 182



have d at 

ωa = ωx  fre range, i a significant 

improvement over the initia . The est m ests is 

0.7347 for odel, co pared to 0.9462 for date  

more reliable correlation tool for this study than the  sin is co d at quency 

points, rather than the resonance frequencies alone. 

Table 7-7: PMAC and an FDA  for i d up  com mod

Initi ted M

 better mode shape correlations for the higher modes. The mean FDAC values, compute

 over the entire quency 

l models

ndicate that the updated mo ow dels sh

 low ean FDAC value for the component t

 the initial m m  the up d model. Overall, the FDAC is a

PMAC ce it mpute all fre

Me C s value n nitial a dated ponent els 

al Model Upda odel 
Substructure Tes ase 

M
n 
C 

C 
t C

ode 
# PMAC 

Mea
FDA

PMA
Mean 
FDAC 

1 0.9911   0.9927
2 0.9289   0.99241) Link 1 alo

.9031 
4 

 
ne 

3 0
0.896

0.9908
0.9867 

1 0.9892   0.9934
2) Link 2 alo

.9044 
3 

 
ne 

2 0
0.919

0.9947
0.9879 

1 0.9391   0.9992
3) Link 3 alo

.8933 
6 

 
ne 

2 0
0.909

0.9956
0.9812 

1 0.9936   0.9964
2 0.8433  0.9948
3 0.9854  0.9957

4) Joint 1, link 1 °) 

.6678 

0 

 

 (0

4 0

0.744

0.9896

0.9892 

1 0.9989 0.9983 
2 0.8395 0.9933 
3 0.9353 0.9912 

5) Joint 1, link 1 (45°) 

4 0.6950 

0.7347 

0.9805 

0.9854 

1 0.9993 0.9981 
2 0.8171 0.9920 
3 0.9001 0.9910 

6) Joint 1, link 1 (90°) 

4 0.6253 

0.7493 

0.9879 

0.9827 

1 0.9904 0.9988 
2 0.9345 0.9941 7) Joint 2, link 2 (0°) 
3 0.5222 

0.7978 
0.9754 

0.9622 

1 0.9835 0.9990 
2 0.9242 0.9977 8) Joint 2, link 2 (45°) 
3 0.5234 

0.7875 
0.9765 

0.9647 

1 0.9947 0.9992 
2 0.9233 0.9962 9) Joint 2, link 2 (90°) 
3 0.6014 

0.7754 
0.9722 

0.9690 

1 0.9911 0.9990 
10) Joint 3, link 3 (0°) 

2 0.9764 
0.7803 

0.9891 
0.9483 

1 0.9988 0.9920 
11) Joint 3, link 3 (45°) 

2 0.9641 
0.7841 

0.9914 
0.9599 

1 0.9910 0.9984 
12) Joint 3, link 3 (90°) 

2 0.9783 
0.7762 

0.9877 
0.9462 

 

7.4.3  Assembly Verification Experiments 

 Assembly tests for the linkage system were conducted to validate the updated component 

models for four different poses, as shown in Fig 7-11. These tests were conducted to check the 
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pose-based dependencies for the assembled components and to validate whether or not the local 

CMS parameters for each component were updated effectively. Four FRFs were obtained for 

each pose by exciting the midpoints of each link, as well as a drive-point measurement opposite 

the accelerometer.  

 

 

Figure 7-11: Linkage asse verification in different poses, ose #2, (c) Pose #3, 
(d)  

 
 Fig. 7-12 show e cro -po ele FR cal frame 

of the accelerometer with force excitations at the midpoint of  For each test, resonances 

and antiresonances that were over 10  H  highly d  and difficult to capture 

experimentally. T  modes can also fi th ytical models by 

computing MvMIF values close to 1  the ance and onance frequencies. The 

updated model results in Fig. 7-12 show clear vem odel between 200 

and 1000 Hz for a anc nd on eq  er e given in Tables 

7-8 and 7-9. It is s ted odel has min re e a iresonance errors 

of 0.52% and 0.4  err  of % 13 pe . This is a major 

provement over the initial model which has minimum resonance and antiresonance errors of 

of 46.19% and 25.05%. Note that the last 

est updated model error. However, all modes 

mbly tests in for  (a) Pose #1, (b) P
Pose #4

s the results of th ss int acc rance F magnitudes in the lo

link 3.

00 z were amped

he highly damped be veri ed for e anal

at  reson antires

impro ents over the initial m

ll poses. The reson e a antires ance fr uency rors ar

hown that the upda  m imum sonanc nd ant

0%, and maximum ors  13.89 and 4. %, res ctively

im

1.12% and 6.94%, and respective maximum errors 

captured resonance for pose #1 contained the high

within 1000 Hz have relatively low errors. For acceptable vibration model correlation, NASA 

recommends resonance frequency deviations of <5% for all modes of interest, while the 
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European Cooperation of Space Standards (ECSS) recommends a more stringent requirement of 

<3% [175]. Although the updated model failed to meet the ECSS requirement for six resonances, 

the initial model satisfied this requirement for only one resonance. 

 
 

 
Figure 7-12: Comparisons of initial model, updated model and experimental cross-point FRFs for hybrid 

CMS method (a) Pose #1, (b) Pose #2, (c) Pose #3, (d) Pose #4 
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Table 7-8: Comparison of assembly experimental resonances with initial and updated CMS models 

In-Plane Natural Frequencies 
Assembly 

Configuration Test 
Case 

Mode 
# Experiment 

[Hz] 

Initial 
Model 
[Hz] 

Relative 
Error % 

Updated 
Relative 

Model 
[Hz] 

Error % 

1 7.08 8.17 15.48 7.26 2.61 
2 48.01 52.30 8.94 46.60 -2.94 
3 130.36 151.07 15.89 131.48 0.86 
4 226.82 252.65 11.39 224.48 -1.03 
5 457.93 519.55 13.46 468.72 2.36 
6 968.60 1095.42 13.09 948.86 -2.04 

Pose #1  
(θ = [90°,90°,90°]) 

7 1912.06 1890.63 -1.12 1646.39 -13.89 
1 7.42 8.72 17.54 7.75 4.46 
2 41.73 47.06 12.77 42.23 1.20 
3 126.98 145.56 14.63 125.95 -0.81 
4 230.45 258.03 11.97 224.56 -2.56 
5 432.73 497.69 15.01 442.96 2.36 
6 711.26 807.20 13.49 695.94 -2.15 
7 849.77 1042.93 22.73 871.28 2.53 

Pose #2 
(θ = [30°,45°,90°]) 

8 1019.93 1491.06 46.19 993.47 -2.59 
1 9.68 10.40 7.44 9.26 -4.34 
2 29.12 32.39 11.23 28.65 -1.61 
3 104.73 120.02 14.60 105.40 0.64 
4 279.66 306.21 9.49 274.65 -1.79 
5 489.02 579.69 18.54 493.17 0.85 
6 697.92 858.75 23.04 701.57 0.52 

Pose #3 
(θ = [135°,45°,0°]) 

7 898.09 1015.16 13.04 874.82 -2.59 
1 10.14 11.05 8.97 9.81 -3.26 
2 33.17 36.47 9.95 32.26 -2.74 
3 92.47 109.93 18.88 95.69 3.48 
4 271.30 291.97 7.62 260.39 -4.02 
5 518.15 613.55 18.41 522.66 0.87 
6 714.37 859.44 20.31 731.46 2.39 

Pose #4 
(θ = [90°,15°,-90°]) 

7 868.03 973.22 12.12 850.14 -2.06 

 

Table 7-9: Comparison of assembly experimental antiresonances with CMS models 

In-Plane Drive-Point Antiresonance Frequencies 
Assembly 

Configuration Test 
Case 

In-Plane 
Anti-

resonance # 
Experiment 

[Hz] 

Initial 
Model 
[Hz] 

Relative 
Error % 

Updated 
Model 
[Hz] 

Relative 
Error % 

1 34.69 37.81 9.00 33.44 -3.60 
2 116.56 131.62 12.92 114.43 -1.83 
3 212.50 236.29 11.20 210.91 -0.75 
4 444.06 508.14 14.43 457.22 2.96 

Pose #1  
(θ = [90°,90°,90°]) 

5 918.44 1083.06 17.92 936.90 2.01 
1 22.81 26.24 15.02 23.49 2.97 
2 107.81 122.80 13.90 106.90 -0.85 
3 222.50 245.67 10.41 213.43 -4.08 
4 428.75 489.79 14.24 435.

 

87 1.66 
5 708.13 806.90 13.95 695.60 -1.77 

Pose #2 
(θ = [30°,45°,90°]) 

6 839.38 1025.34 22.16 856.90 2.09 
1 17.19 19.38 12.74 16.88 -1.80 
2 78.75 90.17 14.50 78.44 -0.39 
3 267.19 287.85 7.73 260.05 -2.67 
4 472.50 572.80 21.23 484.43 2.52 
5 678.44 848.42 25.05 685.94 1.11 

 
Pose #3 

(θ = [135°,45°,0°]) 

6 819.69 996.93 21.62 850.36 3.74 
1 10.00 11.25 12.50 10.04 0.40 
2 59.69 70.93 18.84 61.25 2.62 
3 262.19 280.38 6.94 251.37 -4.13 
4 519.38 605.63 16.61 514.43 -0.95 
5 742.19 844.12 13.73 713.72 -3.84 

Pose #4 
(θ = [90°,15°,-90°]) 

6 859.06 959.10 11.65 834.11 -2.90 

 186



Tabl The 

updated mode  exce PMAC correlati lthough this is still 

lower than the PMAC values ob m PMAC 

value of 0.9049 indicates that the updated m he updated 

model’s m  

lowest FDAC value occurs for pose #4 (0.93 -point FRF 

correlation.  

e 7-10 lists the PMAC and FDAC values for the hybrid CMS assembled test poses. 

l shows llent ons for the lower modes. A

 tained from he ut pdated component tests, the minimu

odel’s mode shapes are well correlated. T

ean FDAC values show large improvements over those for the initial models and the

17), which represents good point-to

Table 7-10: PMAC and Mean FDAC values for initial and updated CMS models 

Initial Model Updated Model Assembly 
Configuration Test 

Case PMAC 
an 
C 

C 
 
 

Mode 
# Me

FDA
PMA

Mean
FDAC

1 0.9719 74  0.97
2 0.7324 30 0.96
3 0.7270 18 0.99
4 0.8147 42 0.98
5 0.8256 37 0.98
6 0.6541 09 0.99

Pose #1
0°,90° °]) 

0.6020

92 

07 

 
  

(θ = [9 ,90

7  

0.70

0.91

0.9454

1 0.9597 38  0.96
2 0.8003 24 0.97
3 0.9674 53 0.98
4 0.7922 65 0.95
5 0.6557 93 0.94
6 0.4218 67 0.94
7 0.6892 86 0.92

 
ose #2
0°,45° °]) 

0.3371 

49 

49 

 P
(θ = [3

 
,90

8 

0.69

0.90

0.9366

1 0.9819 0.9936 
2 0.7482 0.9910 
3 0.8358 0.9686 
4 0.8289 0.9305 
5 0.4505 0.9113 
6 0.

 
Pose #3 0.6573 0.9390 

7825 0.9311 
(θ = [1 ) 

7622 

35°,45°,0°]

7 0. 0.9668 
1 0.9310 0.9889 
2 0.7968  0.9905
3 0.7212  0.9492
4 0.7159  0.9578
5 0.6797  0.9182
6 0.6538   0.9319

Pose #4 
,1 90°]) 

0.4942 

93 

 

0.
(θ = [90° 5°,-

7 

0.64

0.9454

9317 

 

 Overall, the obvious decrease in a ly mo rrelat  thoug ll, ar st likely 

contributed to error propagation when assembling the updated component models, since the 

updated components themselves are not perfectly correlated. Also, unavoidable experimental 

errors su ned im act strik noticeable data leakage or la ounts of noise in 

the FRFs may contribute to  level o ertainty in the test- sis cor ions. 

ssemb del co ions, h sma e mo

ch as misalig p es, un rge am

the f unc analy relat
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7.5  Case Study - Landing Gear Assembly 

 To convey the versatility of the testing and updating method in this chapter, experiments 

were carried out for a simplified landing gear model with two separable links. Because the links 

are connected by passive joints (instead of active, or lockable joints as in MRR modules), the 

experimental BCs involve fixing the joints at opposing ends of the link. Because of this, the 

hybrid CMS method is inapplicable for comparing the analytical model using the experiment 

BCs. Therefore, the Craig-Bampton method is used instead. Also, to test for pose dependencies 

of the link, t  adjustable. 

Furthermore, the eff fl it ha the ed l’s results. Thus, the 

fixture stiffness terms should be inclu d a itional updating parameters, then removed for 

CMS assembly. 

7.5.1 - Analytical Component Model Description 

 A CAD model of the experimental landing gear is shown in Fig. 7-13 in an inverted position 

for mounting on a heavy breadboard table situate the d bration testing. For 

simplicity, there were no additional sh k s r actuators. Each component (labeled 1 to 11) 

is assembled to form a beam stick mod  as  in Fig. 7-1 rlaying the CAD model). To 

change the configuration of the landing gear, the four bolts securing the adjustable hinge 

(component 11) are the h ge ositioned to another location and re-secured to 

the breadboard table, thus changing the dis between the es, r1 in Fig. 7-13, while the 

other hinge (component 1) remains fi d t base. There ade to 

resemble slider-cra  configurations. The main strut substructure in Fig. 7-13 

consists of a bushing (component 2) which is connected to the base hinge, lower main strut 

omponent 3), upper main strut (component 4), wheels, axle (component 5) and middle hinge, 

nt Rayleigh 

proportional viscous damping. Because the simplified test model in Fig. 7-13 was not designed 

with additional lateral support beams (side braces) for stability in the XG-ZG plane, experimental 

he height of one of the fixtures, as well as the base distance needs to be

ects of fixture exibil y may mper  updat mode

de s add

d on  groun for vi

oc truts o

el  shown 3 (ove

removed and in is rep

tance  hing

xe o the fore, the structure can be m

nk mechanism

(c

which is subdivided into two components (components 6 & 7) since this part is shared with the 

drag brace for the hinged tests. Components 3 and 4 are actually parts of a single beam. The drag 

brace assembly consists of two bushings (components 8 and 10) situated within the ends of the 

drag brace (component 9). Each of the structural metallic components (axle, links, and joint 

hinges) were discretized using Timoshenko beam finite elements with equivale
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excitations and measurements were only conducted in the XG-YG plane. In this case, the FE 

model of the setup in Fig. 7-13 can be reduced to an equivalent 2-D model by directly 

eliminating the terms related to the translational and rotational DOF that are outside of the XG-

YG plane. This leads to each node containing one rotation and two translational DOF. 

 

 

Figure 7-13:  Stick model of assembled experimental landing gear 

 

 For the movable rotary joints (middle joint shown in Fig. 7-14), two flange-sleeve polymer 

bushings were press-fit into the ends of each link and were supported with precision-machined 

shoulder screws acting as pins. The shoulder screw in Fig. 7-14(a) also had transitional 

interference fits with the hinge and bushings. Also, the middle joint hinge was secured to the 

main strut link using two screws with full threads cut through the link. For FE modeling, the 

non-structural masses (screws and wheels) were modeled as lumped masses. The mass of each 

screw connecting the middle hinge to the main strut was 0.0065 kg, the joint shoulder screws 
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were 0.0125 kg each, and each wheel was 0.298 kg. The zero-clearance bushings were modeled 

as a series of equivalent radial/torsional springs and dampers, as shown in Fig. 7-14(c). The local 

radial and torsional stiffness terms of the bushings are given by [176]: 

 
   2 2

2 2
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7 3
2 2
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ln o o i

i o i

x bushing y bushing r r r
r r r

k k






 


 (7.14) 
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Figure 7-14:  (a) Polymer bushings embedded in link, (b) CAD model of middle joint assembly, (c) Bushing 
stiffness model 

 

To simplify the bushing damping problem, it is assumed that the bushings have stiffness 

proportional structural damping for each of their DOF. From a material standpoint, this case 

holds true for the translational DOF as the bushing material comp sses under applied loads, but 

the rotational DOF tations. However, 

nce this study is only concerned with the vibration of the stationary structure, it is assumed that 

re

may experience friction damping if there are large elastic ro

si

the friction effects are minimal for small linearly elastic rotary deflections. 

 

 For FE discretization, each of the base hinge components (1 and 11) contain 6 DOF, the main 

strut assembly (components 2 to 7) contains 162 DOF, and the drag brace assembly (components 

8 to 10) contains 105 DOF. Therefore, the full assembled FE model contains 270 DOF with BCs 

applied. When Craig-Bampton reduction is performed, the main strut assembly is reduced to 24 
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DOF (18 kept normal modes), and the drag brace assembly is reduced to 18 DOF (12 kept 

modes). Thus, the entire model after CMS assembly is reduced to 45 DOF, which includes the 12 

DOF from both of the base hinges (3 kept modes each). The initial FE model parameters for each 

component are given in Table 7-11. 

Table 7-11: Initial landing gear analytical model parameters 

Geometric Parameters 
Material  

Parameters 
Proportional Damping 

Parameters 
Component 

L 
[mm] 

bo 

[mm] 
ho 

[mm] 

ri 

[mm] 

ro 

[mm] [k
ρ 

g/m3] 
E 

[GPa] 
α 

[1/s] 
β 

[s] 
η 

1(2×) 12.7000 7.9375 25.4000 - - 7870 205 30 1×10-5 - 
2 9.5504 - - 3.1115 4.7625 1400 2.41 - - 0.06 
3 260.3500 15.8750 15.8750 - - 7870 205 30 1×10-5 - 
4 129.7889 15.8750 15.8750 - - 7870 205 30 1×10-5 - 

5(2×) 46.0000 - - - - 7870 205 30 1×10-5 - 
6 17.4625 19.0500 25.4000 - - 7870 205 30 1×10-5 - 

7(2×) 12.7000 7.9375 25.4000 - - 7870 205 30 1×10-5 - 
8 9.5504 - - 3.1115 4.7625 1400 2.41 - - 0.06 
9 313.9382 15.8750 15.8750 - - 7870 205 30 1×10-5 - 

10 9.5504 - - 3.1115 4.7625 1400 2.41 - - 0.06 
11(2×) 12.7000 7.9375 25.4000 - - 7870 205 30 1×10-5 - 

*Note: Poisson's ratio, ν, is 0.29 for the metallic components and 0.4 for polymer bushings 

 

7.5.2  Component Experiments and Updating 

7

 The experimental equipment used in t ere the same as the case study in Section 

settings and data processing steps given in Appendix C. Though 

 

y beside the clamp), thereby producing ten measured FRFs. 

.5.2.1  Experiment Setup and Component Tests 

his example w

7.4, with the signal analyzer 

unlike the previous case study, a magnet was used to mount the single-axis accelerometer, and 

their combined mass was 0.024 kg. The first component to be tested was the drag brace 

(component 9, without embedded bushings) using a bench vise clamp mounted on the 

breadboard table as a fixture to mimic cantilevered BCs. The exposed length of the link was 285 

mm and five evenly spaced excitation points were distributed along the link, normal to its 

surface. Of the five excitation locations, the accelerometer was placed at two locations: the tip

and base of the link (directl

Afterwards, the drag brace assembly (which includes components 6 to 11) was then mounted on 

the breadboard table and connected to one of two vise clamps in order to test two different global 

z-axis link orientations: -21.37° for the tall clamp pictured in Fig. 7-15(a) and -7.00° using a 

short clamp (pictured in Fig. 7-15(b) with the main strut assembly). The exposed portion of the 
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middle hinge included component 7, while component 6 was fully clamped. The accelerometer 

was first placed at the middle of component 9, at the bottom surface. Then, the excitations in Fig. 

7-15(a) were repeated with the accelerometer moved to the bottom of the middle hinge when it 

was attached to the tall clamp to measure fixture motion. However, when using the short clamp, 

the accelerometer wa ere was not enough 

clearance below the hing easuremen ture t 

scenario. Overall, the hing  exper ents fo the dr  brace RF

 

s placed on the upper surface of the hinge since th

e; thus, no drive-point m t of the fix  could be made in tha

ed im r ag  yielded 22 F s. 

 

Figure 7-15: Hinged experiment test setup, (a) Drag brace assembly with tall fixture, (b) Main strut assembly 
with short fixture 

 

 For the main strut fixed-free tests, a similar procedure was conducted as the drag brace. 

However, there were two sets of tests, one with components 3, 4, 5 and 7, and another test with 

the wheels and axle removed (component 5). For both fixed-free tests, there were a combined 24 

measured FRFs. To preserve the natural BC’s for the main strut hinged tests, a small link with 

bushings was attached to a joint pin at the end of component 7, then attached to one of the 
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fixtures, as shown in Fig. 7-15(b). For both short and tall fixtures, component 4 obstructed any 

possibilities for fixture excitations. Note that in Fig. 7-15(b), there was sufficient clearance 

between the fixture and the wheels/accelerometer such that none of these components made 

contact with the top of the fixture when an excitation was applied. The link angles for 

components 3 and 4 were 14.97° for the short clamp and 35.56° for the tall clamp. There were 18 

measured FRFs in total for the hinged main strut. Note that for all tests, the force impacts were 

kept below 70 N in order to prevent the clamped components from possible slippage. Therefore, 

e accompanying analytical models assumed bonded contact at the interfaces between the 

clamped fixtures and components. Also, the four bolts securing the base hinges to the breadboard 

table were fastened tightly to reduce the chances of any nonlinearities arising from bolt 

clearances. 

 

7.5.2.2  Component Parameter Updating 

 For all components that are required to be updated, the lower and upper bound constraints in 

Eq. (7.5) for each updating parameter are shown in Table 7-12. Along with the material 

properties, the cross-section dimensions of each component were also considered as updating 

parameters. This is because the geometric tolerances of each component may have errors, and 

since beam elements with constant cross-sections were used, they lacked specific geometric 

features like hole cut-outs at the ends of the links, and small corner fillets, thus changing the 

masses. Therefore, the link updating parameters included E, ρ and bo in order to produce 

“equivalent” beam models, assuming the masses were not previously known. For the component 

tests with fixed-free BCs, eωn in Eq. (7.6) was set to ≤ 2% for each resonance frequency, and for 

the hinged substructure tests, eωn set to ≤ 3%. All antiresonance frequency constraints, eωar were 

set to ≤ 5% and the number of frequency increments in Eq. (7.2) was set to nω = 200 evenly 

case study, and for ten converged solutio omputational times for a single GA run 

ere: 322 s for the fixed-free drag brace, 519 s for the hinged drag brace, 238 s for the fixed-free 

a

th

distributed points for each test case. The GA parameters used were the same as in the previous 

ns, the average c

w

m in strut, and 403 s for the hinged main strut. 
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Table 7-12:  Lower and upper bounds for landing gear updating parameters 

Components 
Updating 

Parameter 
Lower 
Limit 

Upper 
Limit 

E [GPa] 180 215 
α [1/s] 0.01 50 1,3,4,5,6,7,9,11 
β [s] 1×10-7 1 

bo [mm] 14 19 
3,4,9 

ρ [kg/m3] 7700 7900 
1,7,11 bo [mm] 6.5 12 

6 bo [mm] 18 35 
E [GPa] 1.5 3 

2,8,10 
η 0.001 10 

 

 Using data from fixed-free tests on the drag brace alone(component 9), the parameters for the 

drag brace were updated using a full FE model. Afterwards, the FE model of the drag brace 

hinged assembly in Fig. 7-15(a) was reduced using the Craig-Bampton method. The updating 

rocess for the reduced hinged component models were conducted using the raw experiment test 

, 8, 10 and 11 were updated simultaneously for both 

p

data and the parameters for components 7

fixtures. To account for fixture flexibility, each fixture was modeled as a single-element thick 

beam (instead of virtual spring), such that the mass of the beam is equivalent to the measured 

fixture mass. The modulus of elasticity for each fixture were then included as additional updating 

parameters, with lower and upper bounds set to 180 GPa and 500 GPa, respectively, along with a 

structural proportional damping term (0.001 ≤ η ≤ 0.05). The averaged fixture motion constraint 

in Eq. (7.7) was set to eX,F ≤ 7%, which was also applied to the main strut hinged cases. During 

updating, it was noticed that for hinged cases, the ordering of the analytical in-plane 

resonances/antiresonances corresponding to the experimentally measured resonances changed 

due to a highly damped resonance, and at times, antiresonance, present in the updated models. 

Therefore, the MvMIF method in Section 7-2 was applied to those cases in an automated fashion 

to correctly pair the computed resonances/antiresonances corresponding to those obtained from 

the experiments for the constraints in Eq. (7.8). The updated parameters for all components of 

interest are shown in Table 7-13. 
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Table 7-13: Updated landing gear FE parameters 

Geom
Param

ial  tional Damping Parameters 
etric 
eters 

Mater Parameters Propor
Component 

bo 

[m
ρ  

 
η 

m] [kg/m3] 
E 

 [GPa]
α 

[1/s] 
β

[s]
1(2×) 8.9 1  7.2710×10-5 - 633  207.792 28.7887

2   - 1.5632×10-3 1.6745 - 
3,4 14.8949 4.2622  3 5 -6 - 780 209.37 13 0.425 3.2510×10

5 (2×)     ×10-5 - 190.9373 40.9193 2.9468
6 21.4454   14.1536 4.7285×10-4 - 207.7921

7(2×) 9.4138   32.8120 5.8712×10-5 - 207.7921
8   - 1.2203×10-3 1.6991 - 
9 14.3018 8.2016 2 794  2.4559×10-6 - 775 12.4 34.0744

10   1.7342 - - 1.9531×10-3 
11(2×) 9.9237  207.7921 30.2601 3.0260×10-4 - 

*Blank spaces denote initial model parameters were used 

 

 To update the main strut, a similar procedure was followed from that of the drag brace. For 

the fixed-free test without the wheels and axle attached, the parameters for components 3, 4 and 

6 were updated, with the parameters of component 7 known from the drag brace updating tests. 

Afterwards, component 5 was updated using the fixed-free FRF test data with the wheels and 

axle attached. For the main strut hinged test, all components were reduced using the Craig-

Bampton method and components 1 and 2 were updated, along with the fixture which was later 

removed from the model. The structural properties of the bushings and shorted additional link 

connected to the fixtures were assumed to be identical to those from the updated drag brace 

setup. For CMS assembl  the added (updated) fixture terms can be directly removed from the 

reduced component models. In an additional (optional) post-processing stage, the dynamic 

effects of the fixture can then be removed from the experimental FRFs using the method in 

Appendix D to allow for a more direct comparison of the updated component models to the 

experiment conditions, albeit without parasitic fixture motions. However, because rotational 

receptances were not measured, the method in Appendix D requires expansion of the analytical 

FRFs, which may lead to more errors in the adjusted experimental data. Fig. 7-16 shows the 

results of the updated component 

y,

models for selected drive-point accelerance magnitude FRFs in 

e link local coordinate frames. In Fig. 7-16(a) and (c) the analytical models are full FE models 

nd (b) and (d) show the results of the Craig-Bampton reduced hinged models. The local y-axis 

rive-point FRFs are shown for the tip of the drag brace in Fig. 7-16(a), the middle node of the 

rag brace in Fig. 7-16 (b), the middle node of component 4 in Fig. 7-16 (c) and the middle node 

f component 3 in Fig. 7-16 (d).  

th

a

d

d

o
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Figure 7-16:  Comparisons of initial model, updated model and experimental drive-point FRFs for 
component tests, (a) Drag brace (fixed-free), (b) Drag brace (hinged, -21.37°), (c) Main strut (fixed-free with 

wheels), (d) Main strut (hinged, 14.97°) 

 
Note that large amounts of noise were present in the experimental data for the first 100 Hz in 

Fig. 7-16(c) and (d) even after FRF smoothing, possibly due to the high sensitivity of the 

accelerometer. Therefore, these ranges were not included in the updating process. However, the 

updating method was proven to be robust in the presence of noise, as shown in Fig 7-16(d), 

which contained small FRF oscillations throughout the frequency range. It was observed by 

checking the real and imaginary parts of the experimental FRFs that these oscillations were not 

resonances, and quite possibly caused by data leakage. Tables 7-14 and 7-15 compare the 

measured resonance and antiresonance frequencies from the component experiments, to the 

Craig-Bampton reduced models using the initial and updated parameter estimates. 
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Table 7-14: Comparison of component experimental resonances with initial and updated models 

In-Plane Resonance Frequencies 

Substructure Test Case 
Mode 

# Experiment
[Hz] 

Initial 
Model 
[Hz] 

Relative 
Error 

% 

Updated 
Model 
[Hz] 

Relative 
Error 

% 
1 135.18 155.45 14.36 137.19 1.48 

1) Drag brace, fixed-free 
2 905.60 988.36 9.14 896.22 -1.04 
1 355.88 389.29 9.39 357.78 0.53 2) Drag brace, hinged 

(-7.00°) 2 1357.75 1481.25 9.10 1373.36 1.15 
1 356.19 389.27 9.29 357.78 0.44 2) Drag brace, hinged 

(-21.37°) 2 1360.62 1481.12 8.86 1373.33 0.93 
1 40.56 45.70 12.67 40.23 -0.84 
2 360.10 308.85 -14.21 367.20 2.00 

4) Main strut, fixed-free 
with wheels 

3 1272.86 742.54 -41.66 1286.72 1.09 
1 125.16 122.83 -1.86 124.87 -0.23 
2 528.02 606.45 14.85 514.80 -2.50 

5) Main strut, hinged  
 (14.97°) 

3 878.32 801.49 -8.75 901.04 2.59 
1 120.91 123.63 2.25 120.42 -0.41 
2 594.32 659.24 10.92 587.91 -1.08 

6) Main strut, hinged  
(35.56°) 

3 909.08 814.16 -10.44 928.91 2.18 
 

Table 7-15: Comparison of component experimental antiresonances with initial and updated models 

In-Plane Drive-Point Antiresonance Frequencies 
Substructure Test 

Case 
In-Plane Anti-

resonance # Experiment
[Hz] 

Initial 
Model 
[Hz] 

Relative 
Error 

% 

Updated 
Model 
[Hz] 

Relative 
Error 

% 
1) Drag brace, fixed-

free 
1 748.44 793.51 6.02 736.73 -1.56 

2) Drag brace, 
hinged 
(-7.00°) 

1 1331.56 1481.20 11.24 1366.93 2.66 

3) Drag brace, 
hinged 1 1334.06 1474.47 10.52 1366.22 2.41 

(-21.37°) 
1 260.31 156.55 -39.86 249.30 -4.23 
2 796.56 622.97 -21.79 765.48 -3.90 

4) Main strut, fixed-
free with wheels 

3 1907.19 1666.60 -12.61 1851.61 -2.91 
1 134.19 127.59 -4.92 128.08 -4.55 5) Main strut, hinged  

 (14.97°) 2 713.38 746.13 4.59 733.86 2.87 
1 122.19 128.00 4.76 123.53 1.10 6) Main strut, hinged  

(35.56°) 2 815.94 762.64 -6.53 832.72 2.06 
 

The updated component test results show good resonance and antiresonance frequency 

correlations with respective maximum absolute errors amongst all component tests of 2.59% and 

4.55%, respectively, compared to those of the analytical model (41.66% and 39.86%). For the 

hinged drag brace tests, the configuration dependency of the resonance/antiresonance 

frequencies are less evident than that of the main strut hinged tests, which show higher frequency 
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differ r of 

simultaneously tested components for the main st ons  high 

relative to the other com ent Th Tab  sh t the  val  all of 

the first m ode well lated the lo  value 

occurri del a 0.982 ever tial l’s P alue riorate 

for higher modes, with a mini um PMAC of 0. omp to t C va of the 

updated model, all of which are above 0.9696. The updated model’s FDAC values in Table 7-16 

also s ove nts with all mea C v abov 16, c

0.7252 for the initial models. 

T PMAC and ean FD ues fo  and d com  mode

Ini el ated 

ences after the first resonance/antiresonance. This is due to a larger numbe

rut, and the wheel masses are c

 PMAC

iderably

pon s. e re  in sults le 7-16 ow tha ues for

odes in both initial and updated m ls are  corre  with west

ng in the initial mo t 4. How , the ini mode MAC v s dete

m 6028, c ared he PMA lues 

how significant impr me n FDA alues e 0.93 ompared to 

able 7-16: M AC val r initial update ponent ls 

tial Mod Upd Model 
Substructure st 

Case PMA
an 
AC 

C 
 Te Mode 

# C 
FD
Me

PMA
Mean 
FDAC 

1 0.9997 0.9996 1) Drag brace, fixed-
free 2 0.9032 

0.8455 
0.9987 

0.9683 

1 0.9824 0.9981 2) Drag brace, hinged 
(-7.00°) 

0.8562 0.9739 
2 0.6028 0.9940 
1 0.9955 0.9967 3) Drag brace, hinged 

21.37°) (- 6 
 0

2 0.597
0.8539

0.9952 
.9794 

1 85 0.99 0.9985 
2 0.8622 0.  9696

4) Main strut, fixed-
free 

3 612 
2 

0  
0.9

 0.6
0.725

.9994
507 

1 0.9937 0.9979 
2 28  0.65 0.9926 

5) Main strut, hinged  
 (14.97°)

3 61 
0.

 
 0.63

0.7758 
0.9871 

9316 

1 0.9944 0.9983 
2 40  0.68 0.9914 

6) Main strut, hinged  
(35.56°) 

3 0. 26 0.  
0.

64
0.7813 

9633
9347 

 

7.5. ificati  Exper

 To validate the updated CMS assemb ding odel, FRF tests were performed in 

ur diffe xperimental nding g nfigu , a own g.  The 

contact with the drag brace.  

3  Assembly Ver on im  ents

led lan  gear m

fo rent e la ear co rations s sh  in Fi 7-17.

accelerometer was placed at the middle node of component 4 and the main strut was excited on 

the opposite surface at five locations (the same locations in Fig. 7-15(b), minus the excitation 

near the base hinge) for each configuration. Note that in Fig. 9(e) when r1 = 575 mm, there was 

sufficient clearance between the accelerometer and drag brace to perform the tests for low 

amplitude vibrations (excitations below 70 N) and the wheel offsets were long enough to avoid 
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Figure 7-17: Landing ge ly tests in fere gu h  spacing between 
the hinges (a) #1 - r1 = 1 = 2  mm  r1 = 425 m  - r1 = 575 mm, (e) close-up 

 acce ome on on

 
Fig. 7-18 shows  ac lera F it lo  local y-axis of 

component 4. The FRFs  updated MS s show cle rovements over the initial 

models in all co e  f y , d RFs show good 

orrelation with respect to the experim tal  However ifferences between FRFs 

increase after 1400 Hz for the bending-dominant configurations (#1, #2 and #4), and after 1000 

of the main strut is dominant amongst all other 

ar assemb dif nt confi rations, distinguis ed by the
75 mm, (b) #2 - r

view of
00 , (c) #3 - m, (d) #4
ler ter for c figurati  #4 

the results of the ce nce FR  magn udes a ng the

 for the  C  model ar imp

nfigu  In thrations. low requenc  range the up ated F

c en  FRFs. , the d

Hz for configuration #3, where axial compression 

configurations. Note that no measurements were taken in the axial direction of the links 

throughout the tests. Therefore, the updated axial stiffness and mass terms may contain the 

largest errors. 
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Figure 7-18: Comparisons of initial model, updated model and experimental drive-point FRFs for CMS 
assembly configurations, (a) #1 - r1 = 75 mm, (b) #2 - r1 = 200 mm, (c) #3 - r1 = 425 mm, (d) #4 - r1 = 575 mm 

 
 The resonance and antiresonance frequencies from the experiment and CMS assembled 

models are shown in Tables 7-17 and 7-18. The resonance errors from the updated model are all 

below 3.32%, whereas resonance errors of the initial model remain high with a maximum error 

of 51.75%. The maximum initial model errors occur for configuration #3, which demonstrates 

the need to measure axial motion contributions of the components during testing and to utilize 

is data when updating the components. Overall, the updated resonance errors remain low up to 

ending mode which demonstrates that the component updating method was successful 

when CMS assembly was applied in different landing gear configurations. 

 

 

th

the 7th b
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Table 7-17: Comparison of assembly experimental resonances with CMS models 

In-Plane Resonance Frequencies 
Assembly 

Configuration 
Test Case 

Mode 
# Experiment

[Hz] 

Initial 
Model 
[Hz] 

Relative
Error 

% 

Updated 
Model 
[Hz] 

Relative 
Error 

% 
1 60.84 60.05 -1.30 62.85 3.31 
2 223.75 179.08 -19.97 222.21 -0.69 
3 402.54 437.08 8.58 411.06 2.12 
4 825.07 596.97 -27.65 826.75 0.20 
5 1367.41 1071.67 -21.63 1350.62 -1.23 

#1 
(r1 = 75 mm) 

6 1598.76 1493.00 -6.62 1557.52 -2.58 
1 130.53 118.33 -9.35 134.69 3.18 
2 269.91 282.23 4.57 278.43 3.16 
3 431.42 459.29 6.46 428.85 -0.60 
4 867.26 615.85 -28.99 879.48 1.41 
5 1128.32 1043.07 -7.56 1110.83 -1.55 

#2 
(r1 = 200 mm) 

6 1353.98 1478.96 9.23 1327.21 -1.98 
1 112.09 107.40 -4.19 111.47 -0.56 
2 551.62 374.39 -32.13 556.11 0.81 
3 887.17 549.08 -38.11 893.83 0.75 
4 1418.75 684.53 -51.75 1379.71 -2.75 

#3 
(r1 = 425 mm) 

5 1787.61 1021.39 -42.86 1796.36 0.49 
1 39.85 43.85 10.04 40.59 1.85 
2 282.18 233.52 -17.24 284.87 0.95 
3 413.38 442.64 7.08 418.76 1.30 
4 821.70 593.97 -27.71 811.94 -1.19 
5 1097.81 1069.25 -2.60 1103.33 0.50 
6 1384.92 1137.83 -17.84 1358.78 -1.89 

#4 
(r1 = 575 mm) 

7 1494.10 1478.35 -1.19 1545.71 3.32 
 

 For the antiresonance frequencies, the maximum error is 11.63% for the 7th antiresonance in

configuration #4, which is rela n 

c  

onfiguration with the lowest overall stiffness. Furthermore, the 8th bending mode occurs at 

 

tively high compared to the next highest error of 5.32%. I

onfiguration #4, the landing gear is near the maximum stretch limit, and is thereby the

c

2159.95 Hz in the updated model, which is just outside of the range of interest. The high error 

for the 7th antiresonance from configuration #4 was thought to be an indication of the modal 

truncation effects in the CMS model. However, by increasing the number of kept modes in the 

updated model by four times for the drag brace and main strut components, the 7th bending 

antiresonance error only decreases by 0.13%. As a result, the performance of the updated models 

did not change significantly in the higher frequency ranges with an increase in the number of 

kept modes. 
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T s 

In-Pla quencies 

able 7-18:  Comparison of assembly experimental antiresonances with CMS model

ne Drive-Point Antiresonance Fre
Ass

Co
Tes

In-Plane 
A

eson e 
# 

e 
% 

d

z] 

ve
or 

% 

embly 
nfiguration 

t Case 
r

nti-
anc Experiment

[Hz] 

Initial 
Model 
[Hz] 

Relati
Error 

v
Update
Model 

 Relati

[H
Err

1   0 23 5 213.75 150.47 -29.6 207. -3.0
2  73 4 373.75 327.60 -12.35 368. -1.3
3 4 47 4 564.06 474.15 -15.9 560. -0.6
4    .68 0  1128.44 1024.99 -9.17 1121 -0.6
5 5 1 1455.63 1468.53 0.89 1432.1 -1.6

#1 
(r1 

6  1 2 

= 75 mm) 

1714.69 1763.95 2.87 1710.9 -0.2
1 8 86 5 224.06 152.41 -31.9 213. -4.5
2 4 26 0 387.81 314.35 -18.9 367. -5.3
3 1 14 2 566.25 474.45 -16.2 536. -5.3
4    .80 8  1080.31 1008.19 -6.68 1070 -0.8
5  0 1146.56 1153.35 0.59 1167.4 1.82 

#2 
(r1 

6  4 

= 200 mm) 

1406.25 1529.23 8.75 1429.9 1.68 
1 3 65 6 336.25 165.32 -50.8 329. -1.9
2  96 2 587.81 389.46 -33.74 575. -2.0
3   .51 4  1139.38 599.75 -47.36 1102 -3.2

#3 
(r1 

4   3 
= 425 mm) 

 1432.1875 991.66 -30.76 1441.0 0.62 
1  8 0 253.44 155.57 -38.61 245.5 -3.1
2    68 4  377.50 370.33 -1.90 371. -1.5
3  22 2 586.25 486.59 -17.00 583. -0.5
4   1 .87 7  1091.88 1026.24 -6.0 1095 -0.3
5    .44 6  1153.44 1118.09 -3.06 1150 -0.2
6  7 4 1416.56 1448.15 2.23 1398.9 -1.2

#4 
(r1 = 575 ) 

7 1 3 

 mm

1622.50 1762.42 8.62 1811.2 11.6
 

The PMAC and FDAC values for the landing gear assembled configurations are given in 

ponent models, since the updated components 

emselves are not perfectly correlated. Also, unavoidable experimental errors such as 

 

Table 7-19. The lowest updated model PMAC and FDAC values (0.9116 and 0.8962) convey 

decent correlation with the experiment data, as compared to the initial model. Note that the 

updated model’s FDAC values are slightly lower than those for the linkage assembly model in 

Section 7.4.3, mainly due to the fixture complications, which introduces additional modeling 

errors during the component updating stage. In this case study, If the updated FDAC values were 

computed from 0 to 1000 Hz, the mean FDAC for configuration #2 would increase to 0.9233. 

Therefore, as a general rule of thumb for this study, the bandwidths of the individual component 

tests (which produce resonances at higher frequencies) are approximately equal to the number of 

substructures tested times the assembly’s frequency range of interest. Overall, the obvious 

decrease in assembly model correlations, though small, are most likely contributed to error 

propagation when assembling the updated com

th
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misaligned RFs may 

contribute el of ty in th

19: Mea C valu itia ted ode

Initia ed M

 impact strikes, unnoticeable data leakage or large amounts of noise in the F

 to the lev  uncertain

PMAC and 

e test-analysis correlations. 

Table 7- n FDA e ins for l and upda  CMS m ls 

l Model Updat odel Assemb  
Configur n 

Test Case 

Mo
# AC 

n 
C 

 
M
F

ly
atio

de 
PM

Mea
FDA

PMAC
ean 

DAC 
1 82   0.97  0.9755
2 41   0.87  0.9782
3 99   0.87  0.9839
4 10  0.86 0.9973 
5 54  0.51 0.9678 

#1 
(r1 = 75 mm) 

6 08 

6 0

 0.49

0.679

0.9229 

.9267 

1 63   0.71  0.9958
2 95   0.96  0.9913
3 22   0.99  0.9826
4 44  0.84 0.9823 
5 49  0.38 0.9687 

#2 
(r1 = 200 mm) 

6 38 

4 0

 0.42

0.636

0.9496 

.8962 

1 0.7383 0.9734 
2 39  0.89 0.9826 
3 85   0.90 0.9992
4 23  0.31 0.9421 

#3 
(r1 = 425 mm) 

5 81

2 

 

0.

 0.26  

0.677

0.9116

9184 

1 53   0.98  0.9654
2 60   0.87  0.9783
3 45   0.91  0.9936
4 0.8122 0.9971 
5 0.7245 0.9683 
6 0.3622 0.9845 

#4 
(r1 = 575 mm) 

0.6286 0.9097 

7 0.2058 0.9248 
 

7.6  Summary 

 A new FE updating method was presented for modular robots (and other mechanisms with 

detachable links) using experiment BCs which match, as close as possible, those of CMS 

reduced component models. The method presented in this chapter can enable testing serial robot 

modules in different poses, which can reveal the presence of pose-based dependencies in the 

substructures, as well as provide more experiment FRF data points to aid in the updating scheme. 

Additionally, by simultaneously updating the component models in different configurations 

using the GA with nonlinear constraints imposed on the resonances/antiresonances, it was 

demonstrated that feasible updated solutions can be readily achieved. Because the ordering of the 

constrained resonance frequencies may change during the optimization procedure, it was found 
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that the resonances/antiresonances can be automatically ordered using the MvMIF during each 

updating iteration, thereby avoiding the need to include unmeasurable resonances when 

updating. Th  the hybrid 

CMS method are mo e in app estin odules, since only 

one fixture is neede h test siv , g

fixed component BCs are required rigi strain the m of the joints, which requires 

adjustable fixtures for p -based t ing rm e re g method required 

the unmeasured mass contributions of com s to be added during assembly, while the fixed-

fixed testing method requires the ova xture dynam fore assembly. Overall, the 

validation experiments c ducted o the r linkage s nd landing gear assemblies 

demonstrated that t uen  ba s 0 H th tive updated CMS 

models retained a high degree of acc acy rent poses. 
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8. Conclusions and Future Work 

 This dissertation presented a framework for the kineto-elastic analysis and component 

structural dynamic model updating of serial MRRs. In particular, the methods developed in this 

dissertation focused on the worst-case kineto-elastic analysis, payload capacity analysis, module 

stiffness design, structural dynamic model reduction and model parameter updating. What links 

these methods is the dependence of the kineto-elastic performance on module configurations and 

poses. First, a modular kineto-elastic model was developed assuming low-speed quasi-static 

motion using the finite element (FE) method and recursive forward kinematics. The model 

accounted for thick (or thin) geometry using Timoshenko beam elements, as well as joint 

flexibility, module self-weights, and rigid-body offsets. Next, a combinatory search method was 

developed to determine the maximum payload capacity and perform module stiffness design. 

his search method eased the overall computational burden by reducing the configuration space 

to a smaller feasible set of configurations, then automatically scanning the workspaces of the 

onfigurations for the end goal of determining the worst-case configuration and pose. By doing 

, it was shown that the payload capacity and module stiffness design problems can be 

erformed at the worst-case configuration and pose to satisfy multiple kineto-elastic 

quirements for all remaining configurations and poses. By following this procedure, the design 

f any serial manipulator (whether it be reconfigurable or not) can be satisfied for all kineto-

lastic requirements in any feasible configuration. 

Afterwards, a new CMS model was developed specifically for serial MRR joint and link 

odules. The intention here was to preserve hybrid (fixed-free) module BCs when obtaining the 

omponent normal modes. By doing so, the natural connectivity with adjacent components at the 

ase of the joint modules can be maintained. Also, when applying these interface conditions 

xperimentally, the output shafts of the joint modules can remain free to rotate to given joint 

ngular positions (for active MRR joints), thereby allowing tests for the determination of pose-

ased dependencies in joint modules, which includes possibilities for testing the worst-case 

oses of joint-link substructures. Finally, a novel CMS model updating method was developed 

using experimental FRF data obtained from component tests in multiple poses and experimental 

BCs which match those of the CMS component models. By updating the FE parameters of the 
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components in their local frames, the case studies demonstrated 

(which may or may not include the worst-case poses) are require

that only a few joint-link poses 

d for accurate model updating. 

to directly search through the configuration 

workspaces in a computationally efficient manner in order to determine the worst-

The effectiveness of the model updating approach was further proven with experiments on 

mechanism assemblies in random poses along with the worst-case pose, and demonstrated that 

the updated CMS models are accurate, thereby avoiding the requirement to update components 

using experimental data from entire assemblies in multiple poses. Afterwards, the updated CMS 

models can be used to perform further structural dynamic testing of entire MRR assemblies in 

any random pose in a virtual environment, and can entirely avoid the requirement to 

experimentally test large MRR assemblies which require complicated and expensive setups. 

8.1  Summary of Research Contributions 

There main research contributions in this dissertation are listed as follows: 

1. A combinatorial search method for the maximum payload determination and 

stiffness design of MRR modules 

o An automated enumeration process was developed to eliminate the infeasible module 

configurations with respect to kinematic requirements and equivalent kineto-elastic 

performance between two or more configurations. Although configuration 

enumeration methods were previously created for MRR kinematic assembly 

requirements, this was previously unheard of for MRR kineto-elastic requirements. 

o A GA (and NSGA-II) was developed 

case kineto-elastic poses for each configuration. This involved searching for multiple 

worst-case scenarios including the vibration, tip deflections and base joint torques. It 

was shown in the case study (in Section 4.5) that the new workspace search method 

can greatly outperform traditional incremental-based search methods in terms of 

accuracy and computational time. Through the analysis, it was also shown that for 

joint modules with long offset distances, the worst-case kineto-elastic poses can occur 

away from the maximum stretch pose in many instances. This is mainly due to the 

change in dominant deformation modes. 
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o It was demonstrated that the lowest allowable payload capacity for all feasible 

configurations occurs at the worst-case kineto-elastic pose and configuration. 

Similarly, the module stiffness design process can be greatly simplified by 

performing the design stage at the worst-case configuration and pose.  

 

These contributions led to the following peer-reviewed journal submissions: 

 R.P. Mohamed, F. Xi, A.D. Finistauri, 2010, “Module-Based Static Structural 

Design of a Modular Reconfigurable Robot,” ASME Journal of Mechanical Design, 

131(1), p. 014501. 

 R.P. Mohamed, F. Xi, Y. Lin, 2015, “A Combinatorial Search Method for the Quasi-

econfigurable Robots”, Mechanism and 

tion testing and model updating method for 

e 

 

Static Payload Capacity of Serial Modular R

Machine Theory, Revisions submitted. 

 

2. A pose-based component vibra

mechanisms with detachable components 

o A hybrid-interface CMS method was developed specifically for serial robot modules. 

The method uses component normal modes with fixed-free interface conditions to 

mimic natural link-joint connectivity and can allow experimental testing for multiple 

joint module poses (with allowable motion at the joint output shaft, located at th

free-end). When compared to the traditional Craig-Bampton method, the new hybrid 

method is numerically superior when a minimal-order CMS model is not required. 

o A physical coordinate recovery method was developed for determining FRFs from 

CMS models with force and motion measurement locations on separate attached 

components in different orientations. The required input and output locations may lie 

on “internal” component nodes, which might be lost during the CMS reduction 

process. This method proved useful for comparing reduced CMS models to FRF data 

from physical experiments. 
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o A new vibration testing method was developed to consider the natural BCs for joint 

and link interfaces, and can allow for testing multiple joint positions. For serial robot 

modules with active or lockable joints, this process is easy to perform if the fixture 

matches the connectivity at the interfaces of the modules, and can allow movement of 

joint output shafts if fixed-free BCs are used. For mechanism links with passive 

res are required 

 joint-link poses. Because this can become an overdetermined 

rced on the resonance and antiresonance 

frequencies, as well as fixture motions (if measurable). Unlike the payload capacity 

joint-link pose during the updating process 

nd 

 

5, “A Structural Dynamic Model Updating Method for 

Serial Modular Robot Components,” Currently in preparation.  

 

 

joints, the procedure becomes more complex since additional fixtu

with adjustable lengths. 

o A novel component model parameter updating method was developed which uses 

FRF data from multiple

problem when multiple component poses are considered, a GA was developed which 

minimizes the FRF error for all poses considered. Feasible solutions are achieved 

when nonlinear constraints are enfo

and stiffness design problems, because the local FE model parameters are adjusted, it 

is recommended to use more than one 

since pose-dependent joint receptances are difficult to measure. 

o The multivariate mode indicator function (MvMIF) was modified to aid in the correct 

pairing of analytical resonance and antiresonance frequencies during the updating 

process. This is because additional rotational or highly damped receptance terms may 

appear in the analytical eigenvalue solutions of the updated models. Previously, the 

MvMIF was only used to detect analytical resonances during pre-test planning, a

did not include the possibility for detecting antiresonances. 

 

The above contributions led to the following journal submissions: 

 R.P. Mohamed, F. Xi, 2015, “Component Model Parameter Updating for Landing 

Gear Linkages with Flexible Joints,” AIAA Journal, In press. 

 R.P. Mohamed, F. Xi, 201
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During this PhD research period, two other co-authored journals were submitted: 

 Y. Lin, F. Xi, R.P. Mohamed, X. Tu, 2010, “Calibration of Modular Reconfigurable 

Robots Based on a Hybrid Search Method,” ASME Journal of Manufacturing Science 

and Engineering, 132(6), p. 061002. 

 Y. Li, J. Xi, R.P. Mohamed, K. Behdinan, 2011, ”Dynamic Analysis for Robotic 

Integration of Tooling Systems,” ASME Journal of Dynamic Systems, Measurement, 

and Control, 133(4), p. 041002-1. 

8.2  F

 

high-speed

algebraic equations with nonlinear

ma

and vibratio

search

com -elastic analysis in 

beneficial to incorporate non-symm

and m

 

 

bandwidths due to error propagation from ponents and 

a d ble experiment errors (such as noise propagation, fixture damping, and low force 

up assive joints, and would 

up  variables such as the 

spective number of kept modes per CMS model, updating parameters, FRF points in Eq. (7.2), 

nd constraint limits in Eqs. (7.5) and (7.6). The use of the MvMIF may be the lead contributing 

factor for the higher computational times for the hinged component tests, although this was a 

uture Work 

As an extension of this research, the kineto-elasto-dynamic modeling for MRRs undergoing 

 motions should be studied. Because this involves solving a set of differential 

 centrifugal and coriolis force terms (as well as a nonlinear 

ss matrix if a floating reference frame is used), the solution of an MRR’s tip displacements 

ns become more complicated. Furthermore, the number of required workspace 

es increase, as compared to the quasi-static cases, since one has to consider the different 

binations of the angular velocity directions for each joint. Also, the kineto

this dissertation was conducted only for modules with symmetric cross-sections. It would be 

etric module cross-sections for the worst-case pose searches 

odule stiffness design problems. 

In terms of model updating, the updated CMS model loses accuracy in the higher frequency 

 the combined set of updated com

un voi a

excitations). Therefore, as future work, these issues must be further investigated. In addition, the 

design of a height adjustable fixture for vibration testing, with FE parameters that can be easily 

dated independently, would prove useful in testing components with p

also be a valuable extension to this work. Also, the computational times using the GA during the 

dating stage were considerably high, and are dependent on a number of

re

a
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necessary step for correct analytical/experimental resonance pairing for the landing gear example 

fut

loa re limited to low impact excitations, which is 

im

ass tions. 

 

in Section 7.5. Therefore, a more computationally efficient search method can be the focus of 

ure work. Furthermore, due to limitations in the fixture setup and accelerometer maximum 

ds, experiments conducted in this work we

mainly useful for linear structural dynamic applications. It would be beneficial to conduct high 

pact dynamic tests for updating the components to reveal the structural nonlinearities 

ociated with collisions from high-speed mo
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List of Appendices  

Appendix A - Rotation Matrix Properties 

 In general, for a known coordinate system, A ≡ {xa, ya, za}
T and a body-fixed coordinate 

system B ≡ {xb, yb, zb}
T, the rotation matrix of B with respect to A can be defined using a set of 

three unit vectors representing the principal directions of B described in terms of the coordinate 

stem A [150]: sy

 
B A B A B A

AB AB AB AB B A B A B A

B A B A B A

x x y x z x

x y y y z y

x z y z z z

   
      
    

R x y z  (A.1) 

bserving Eq. (A.1), the orientation of coordinate system B is the projection of the components 

f B onto the unit directions of A, often termed direction cosines. Rotation matrices have the 

llowing properties [149, 150]: 

o All columns of a rotation matrix are mutually orthogonal, that is: 

 (A.2) 

o The above property states that there are six constraints on the nine elements of the 

rotation matrix. Thus the orientation of a body can be defined by three independent 

parameters. 

o The determinant of a rotation matrix is always equal to +1 (proper orthogonal). 

o Rotation matrices are orthogonal, as defined by: 

R  (A.3) 

o The multiplication of rotation matrices is not commutative: 

 

O

o

fo

T T T T T T 1,   1,   1,   0,   0,   0     x x y y z z x y x z y z 

   T 1
 AB AB BA

 R R 

AB BC BC ABR R R R  (A.4) 

or the rotation matrix defined in Chapter 3.1, the body-fixed rotations occurring first about the 

cal x-axis, then local y-axis, then local z-axis are termed “X-Y-Z” Euler angles in [150]. If the 

tations occur about a space-fixed (global) coordinate system, the sequence is defined as a 

tation first about the global z-axis, then global y-axis, then global x-axis. This rotation 

 

F

lo

ro

ro
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sequence is termed “X-Y-Z” fixed an

space-fixed frame, will give the same r

gles in [150]. The reversed sequence of rotations in the 

otation matrix as the forward sequence of rotations in the 

hen x-axes), an body-fixed frame. Using the space-fixed frame sequence of rotations (z-, then y- t

equivalent rotation matrix to Eq. (3.3) will take the form: 

      T T T T
z y x  R = R R R  (A.5) 

 To solve for the reverse problem of extracting the equivalent body-fixed “X-Y-Z” Euler 

angles from Eq. (3.3), the rotation matrix in Eq. (3.4) can be written as: 

11 12 13

21 22 23

31 32 33

r r r

r r r

r r r

 
 
 
  

R =  (A.6)  

The solutions for the X-Y-Z Euler angles are as follows: 

 2 2Atan2 ,r r r  

  
13 23 33

12 11

y

z

  

where Atan2(y,x) is a function which computes the arc tangent of (y/x) and determines which 

θx may be computed: 

 
23 33Atan2 ,

Atan2 ,

x r r

r r  

 (A.7) 

quadrant the angle lies in based on the individual signs of y and x. Note that Eq. (A.7) is only 

valid if -90° ≤ θy ≤ 90°. If θy = ±90°, a unique solution does not exist, and only the sum or 

difference of θz and 

 22Atan2 ,21z x r r    (A.8) 

 

 

 

 

 

 

 

 

 212



Appendix B - Finite Element Stiffness and Mass 
Matrices 

B.1  Beam Element Shape Functions 

 nd torsional displacements for the In Section 3.3, the shape functions for the axial, bending, a

ements can be written as 

a linear combination of the shape functions and the element’s nodal coordinates. The matrix 

ial terms related to the length

displacement functions u(x), v(x), w(x), and θ(x) can be written as: 

 

modules using the assumed displacement functions in Eqs. (3.21), (3.22), and (3.28) were 

determined using Eqs. (3.29) to (3.33). In Eq. (3.33), each of the displac

containing the polynom  variable x in Eq. (3.29) for the 

2 3

1 0 0 0 0 0 0 0

0 0 1 0 0

x

x x x
2 3

0 0 0

0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1

x x x

x

 
 
 
 
 
 

X  (B.1) 

Applying the BCs in Eq. (3.30), the matrix X̃ in Eq. (3.31) can be written as: 

 

6

6

2 3

2 3

62

62

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0













 
 0 0 1 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 2 3 0 0

0 0 0 1 2 3 0 0 0 0 0 0

y

z

z

y

y

z

y

z

EI

k GA

EI
k GA

EI

k GA

EI

k GA

L

L L L

L L L

L

L L

L L





   



X =


 
 
 
 
 
 
 
 
 
 
 
 
 

 (B.2) 

ubstituting Eqs. (B.2) and (B.3) into Eq. (3.33), the matrix of shape functions can be 

etermined as: 

0 0 0 0

S

d
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1 2
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

u u

d

N N

N N N N

 
 
 N 3 4 5

7 8 9 10

1

0 0 0 0 0 0 0

0 0 0 0 0

v v v

w w w wN N N N

N
 
 

6v








  

al displacements for a single 

two-node element with nodes numbered “1” and “2” can be expressed as: 

1
0 0 0 0 0N

  ...(B.3) 

Note that the above equation does not include the rotational (slope) shape functions due to the 

added shear contributions for ϕ(x) and ψ(x), which can be solved separately (as shown below in 

Eqs. B.9 and B.12). 

 

 Introducing a dimensionless axial coordinate, ξ = x/Le, the axi

 
1 2

1

2
u u

u
u x N N

u

       
  (B.4) 

where the axial deformation shape functions are given by: 

    
1 1

T T
1u u uN N    N  (B.5) 

 For bending in the Xe-Ye plane, about the Ze-axis, the translational deformations in the Ye 

direction can be expressed using Eq. (3.33) as: 

 
3 4 5 6

1

1

2

2

v v v v

v

v x N N N N
v





 
 
     
 
  

  (B.6) 

where the bending shape functions for the translational elastic deformations can be written as: 
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2 31
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1 3 2 1
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e
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v y

L
v y
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N

 (B.7)  

 
  6

2 3 21
1 2

e

y

L
v yN         

and where  

5

2 31
1 3 2

yv yN      

2

12 z
y 

y ek GAL

To determine the bending shape functions for the slopes (rotations) about

EI
   (B.8) 

 the Ze-axis due to the 

additional shear contributions, the coefficients c3 to c6 obtained from Eq. (3.32) are substituted 

to the displacement function for ψ(x) in Eq. (3.28) which lein ads to: 

 
2

 
3 4 5 6

1

1

v

x N N N N
v   

2






 
 
     


 (B.9) 


  

where the shape functions are: 
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1 4 3 1
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 (B.10) 

 

 For bending in the Xe-Ze plane, about the Ye-axis, the translational deformations in the Ze 

direction can be expressed as: 

4

26

y

N   
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  (B.11) 

where the bending shape functions can be written as follows: 

 

 

  
  

 
  10

2 3 21
1 2

e

z

L
w zN          

and where 

7 8 9 10

7

8

9

T

2 31
1

2 3
1

2 31
1

where

1 3 2 1

2

3 2

z

e

z

z

w w w w w

w z

L
w

w z

N N N N

N

N

N

  

  

  









     

    

   

N

 (B.12) 

 

21
2 z  

2

12 y
z

z e

EI

k GAL
   (B.13) 

Substituting the coefficients c7 to c10 obtained from Eq. (3.32) into the displacement function for 

ϕ(x) in Eq. (3.28) leads to the following:  

  
7 8 9 10

1

1

2

2

w

x N N N N
w   






 
 
     
 
  

 (B.14) 

here the shape functions for rotary inertia in the Xe-Ze plane are: w
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If the cross-section thickness of the module is slender relative to its length, then Φy and Φz 

pproaches zero, and the element would behave as an Euler-Be

shape functions, rather than a Timoshenko beam.  

 

 element, a linear torsion angle 

variation is assumed, hence the shape functions can be determined as: 

 

a rnoulli beam with Hermitian 

 For torsional deformation along the length of the beam

 
11 12

1

2

x N N 





       

 (B.16) 

here the torsional deformation shape functions are: 

 

w

   
11 12

T T
1N N      N  (B.17) 

m Element Stiffness and Mass Matrices 

 Using the method in Section 3.3.4 to obtain the stiffness matrix for a single element, which 

cludes bending, shear deformation effects and rotar

expression in the local body-fixed coordinate frame: 

B.2  Bea

in y inertia, leads to the following explicit 

11 12

21 22
e

e
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Eqs. (B.18) to (B.22) are equivalent to the stiffness matrices found in [153, 156 and 157], but for 

atial instead of planar beams. This produces an exact so

deformations [156]. Using the method in Section 3.3.5, the mass matrix for a single element, 

ncludes the shear and rotary inertia effects, can be explicitly expressed as: 

 

 (B.21) 
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sp lution with respect to forces and elastic 
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where the coefficients in Eqs. (B.24) to (B.26) are as follows: 
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B.3  Linear Joint Stiffness and Lumped Mass Matrices 

 For the ith joint module in the local frame, the motor’s linear virtual spring stiffness element 

an be expressed as: 

  (B.29) 

where  

  (B.30) 

c
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K K
K

K K

11, , , 22, , ,

, ,

0 .

0 0

0 0 0

0 0 0 0

0 0 0

x

y

z

e motor i e motor i

e motor i

k

k sym

k

k

k




 

 
 

   
 
 
 


K K
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 12, , , 21, , , 11, , ,e motor i e motor i e motor i  K K K  (B.31) 

where kx, ky, and kz, are the three translational stiffness terms in the local Xe-, Ye-, and Ze-

directions, and kθ, kϕ, and kψ, are the three rotational stiffness terms about the local Xe-, Ye-, and 

Ze- axes.  

 

 If a non-structural mass is present, such as a motor, payload or external attachments, the mass 

matrix of these components can be modeled using the method in Section 3.3.7 if there exists 

rigid offsets from the CG. Otherwise, if the CG of the non-structural mass lies exactly on an 

elastic node, the following 6×6 lumped mass matrix can be used at that node: 

 3 3
, ,e rigid i

m  
  
 

I 0
M

0 0
 (B.32) 

where I3×3 is an identity matrix. If a non-structural mass lies on an element’s Xe-axis at an 

element’s midpoint, the element’s 12×12 mass matrix becomes: 
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ote what when Eqs. (B.32) or (B.33) are added to a stru

elements, the singularity problem associated with the zero terms along the diagonal of Me,rigid,i 
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N ctural mass matrix for the beam 

disappea
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Appendix C - Vibration Experiment Setup and 
ata Processing 

C.1 - Equipment Used for Vibration Tests 

port breadboard precision grade table mounted of the floor, with a 1.2 m × 1.2 m 

rface area and 59 mm width. Due to the significantly large size and mass of the table, as 

ompared to the test specimens in Chapter 7, the table is assumed to be rigid. The vibration tests 

volved single-input, single-output measurements using roving hammer tests (with a fixed 

ccelerometer location) and when permissible, roving accelerometer tests by switching the input 

nd output locations. Because the landing gear components in Sec. 7.5 were more stiff, a metallic 

denter tip was used for the hammer, whereas a plastic indenter tip was used for testing the 

ore flexible manipulator components in Sec. 7.4. Details of the impact hammer and 

ccelerometer are given in Table C-1. 

Table C-1: Accelerometer and Impact Hammer Specifications 

Device Model # 
Calibrated 
Sensitivity 

Excitation voltage 
Measurement 

Range 

D

 All components and assemblies for the vibration tests in Chapter 7 were mounted on an 

optical New

su

c

in

a

a

in

m

a

Accelerometer PCB 352C33 102.0 mV/g 18 to 30 VDC ±50 g peak 
Impact hammer PCB 086C02 11.1 mV/N 20 to 30 VDC ±444 N peak 

 
 For each impact test at a set of impact and accelerometer coordinate pairs, the signals were 

cquired using a Zonicbook/618E dynamic signal analyzer with the eZ-Analyst software 

ackage. Using the software, tests were observed in the time domain for both signal channels. 

ikewise, the acceleration and force spectra (the magnitudes of the complex single-sided Fourier 

ectra of each time signal) and the magnitudes of the accelerance FRFs were displayed to check 

e results just after an impact. Table C-2 shows the dynamic signal analyzer settings used for 

ach experiment. A large sample time was obtained by increasing the number of spectral lines 

hich can alternatively be obtained by reducing the analysis frequency). In many instances with 

w force impacts, this measure allowed the time-response to naturally decay close to zero, or 

ithin the accelerometer noise levels. For each test, a pre-trigger delay was applied using the 

gnal from the hammer input channel. The pre-trigger time acquisition percentage was set to 

2.5% of the time frame size and the trigger was set to 3% of the full-scale voltage. Therefore, 

a

p

L

sp

th

e

(w

lo

w

si
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once an impact is made, if the voltage from the hammer reaches above 3% of the full-s

voltage, the data is acquired for the entire time frame size, including the 2.5% of the data prio

the start of the trigger. 

cale 

r to 

yzer Settings 

Analysis Frequency (f=Fs/Nyq): 2000 Hz 

Table C-2: Dynamic Signal Anal

Spectral lines (S): 6400 
Nyquist factor (Nyq): 2.56 

Frame (data block) width (w=S/f): 3.2 s 
Time increment (Δt): 1.953125×10-4 s  

Sample rate (Fs=1/Δt): 5120 samples/s 
Data block size (b=S×Nyq): 16384 

Frequency increment (Δf=1/w): 0.3125 Hz 

 
  During tests, the time domain data was checked for noticeable double impact strikes, data 

leakage (if response amplitudes do not approach zero at the end of the sample time), and 

accelerometer or impact hammer sensor overloads. Also, the force time data was checked to 

ensure that the entire force pulse was captured in the time signal for each hammer strike. The 

observed frequency domain response data was checked for spurious modes (low amplitude, 

closely-spaced modes), noise attenuation, ripples in the response spectrum (in the case of a 

double impact) and also the variatio pact 

would yield a constant force in the freq ain,  to ach verall, the 

re eous gnored data sets. Each usable set of data in the time 

om

n present in the force input spectrum curve (an ideal im

uency dom which is difficult ieve). O

sults of erron  tests were i  from the 

d ain was saved to a .UNV file. Frequency domain data was not saved since further processing 

of the data was required. In particular, the eZ-Analyst software lacked any force window 

functions to minimize hammer noise, or set the hammer noise to zero in time domain regions 

where an impact did not occur.  

C.2 - Processing of Experimental Data in MATLAB® 

 Using the experimental time domain acceleration and force data, along with the information 

in Table 2, post-processing of the data was computed in MATLAB®. The data for 5-10 impact 

strikes for each set of measurement coordinates were stored from the experiments. It was 

observed during the tests that the long time frame was suitable and most measurements 

experienced minimal periodicity leakage, and the responses converged close to zero, or within 

the noise range of a stationary accelerometer, thereby indicating that the final periodic oscillation 
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is completed before 3.2 seconds. This is shown for an impact in Fig. C-1(a). For these cases, no 

exponential window [91] was used, since exponential windows can introduce artificial damping 

into the response, thus altering the FRFs. Therefore, while performing the tests, the acceleration 

time data was also checke  does not settle near zero 

amplitude, which is an age. Also, i here extremely flexible 

structures were tested, such anipulator linkages in Sec. 7.4, if any observed 

leakage was unavoida  was us  decay rate in the eZ-

Analyst software for any re same set of im

  
Afterwards, for each set of acceptable data for an impact test at specific input/output 

d for data cut-offs, where the vibration

indicator of periodic data leak n cases w

 as the assembled m

ble, then an exponential window ed w 10%ith a 

maining tests for the pacts.  

 

locations, the acceleration data was converted from g’s to m/s2. For the force data in the time 

domain, a 10% force window was applied in MATLAB® by setting all of the data points that are 

less than 10% of the maximum observed force to zero, as shown in Fig. C-1(b). In particular 

instances, the force response levels appeared to deviate far from zero, but significantly lower 

than an impact force, which may be contributed to the movement of the impact hammer before 

and after the impact. 

 

 
Fig. C-1 (a) Acceleration data in time domain, (b) Force in time domain with force window applied 

 
 A GUI was written in MATLAB® to convert the time domain data to the frequency domain, 

eliminate erroneous test cases, and filter noise present in the averaged frequency domain data. Its 

main interface is shown in Fig. C-2. The following sections describe each step used in the 

process. 
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Fig. C-2: GUI for FRF data processing 

 

C.2.1  Transformation to Frequency Domain 

 First, to transform the time domain signals to the frequency domain, the continuous forward 

integral form of the Fourier transform is given by: 

     2j ftX f x t e 






  dt  (C.1) 

The input signal in the time domain, x(t), is not useful in a continuous form since the signal 

analyzer records data at discrete time values over a preset time period. Thus, the more suitable 

form to convert the time signal in Eq. (C.1) is the discrete Fourier transform (DFT) [177] for the 

respe

d are the same as those given in Table C-1. Essentially, the DFT of the time data can 

ctive discrete kth frequency and mth time values: 

        2

0

,   0, 1, 2,..., 1 ,   m=0,1,2,..., 1k mj f t
k m

m

X f t x t e k b b



        (C.2) 

where fk = kΔf. To compute the DFT for each set of time domain force and acceleration data, the 

inputs use

1b
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be computed using the fast Fourier transform (FFT), which is the function “fft” in MATLAB® 

[178]. There are many algorithms available for the FFT, and a good literature review is given in 

[179]. The required inputs are separate force and acceleration time domain data vectors for each 

test and the data block size, b. The lines of code used to perform FFT (for example, to determine 

the acceleration spectrum in the frequency domain for the acceleration data in Fig. C-1) for a 

given number of impacts are given as: 

% FFT to determine response spectrum in frequency domain 

% ntest - test number for each set of impact data 

% acc{ntest} - vector of experimental acceleration data in time domain for a single test  

% b - data block size 

% Nyq - Nyquist factor 

acc_DFT{ntest} = fft(acc{ntest},b)/b; % divide by b to normalize for the signal length 

X_a(ntest,:) = 2*abs(acc_DFT{ntest}(1:b/Nyq+1)); % Single-sided spectrum (magnitude) 

X_a_complex(ntest,:) = 2*(acc_DFT{ntest}(1:b/Nyq+1)); % Single-sided spectrum (complex) 

Note that the “fft” function returns the double-sided spectrum, which displays half the power 

of the single-sided spectrum o e other half over the negative 

equencies. Therefore, to obtain the single-sided spectrum of the response (or force), each point 

pectral lines plus one, is multiplied by two. 

agnitude spectra for each test case at input 

coordinate p and output coordinate q can be stored as follows: 

 

ver the positive frequencies and th

fr

of the double-sided spectrum, up to the number of s

This entire process is repeated for the number of tests at a given measurement coordinate (ntest). 

Afterwards, a matrix containing the response m

 
     

     

,1 1 ,1 2 ,1 1
p p

exp exp exp S

p

X f X f

X f


 
 

         (C.3) 

e impact data tests. Likewise, the complex 

response spectrum is stored in a similar fashion. This is also done for the force magnitude and 

omplex force spectra. Afterwards, the complex FRFs for each test are computed usi

pX f

, 1 , 2 , 1test test test

exp

p p p
exp n exp n exp n SX f X f X f 

   
  

where S denotes the number of spectral lines. Each row represents the response in the frequency 

domain at an input/output coordinate pair for separat

c ng: 
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q q q
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exp

X f X f X f

F f F f F f

H f









 
 
      
 
  



   



 (C.4) 

This is also done separately for the imaginary parts of the complex-valued FRFs and the real 

parts, respectively. For example, to compute the real part of each FRF: 

   

 
    

    
  

 
    

    
  

2 1,1

1 2 1, , ,

e Re

Re Re Re

p
Sexp

q q

p p p
Sexp n exp n exp ntest test test

q q q

f X f

X f X f X f

f







  
 
 



   



 (C.5) 

ntical to each other. Also, if the 

structure can be excited with a constant force (difficult to achieve with an impact hammer), the 

corresponding force spectra should be constant. 

) Repeatability - The FRF should be the same for each measurement.  

3) Frequency shifts between tests - Indicates that the structure is not properly secured to the 

tion and 

response coordinates interchanged. The FRFs from the interchanged input/output coordinates 

should produce nearly identical results if mass-loading from the accelerometer is negligible. 

1,1 ,1

1 2 1,1 ,1 ,1

Re R

Re

p p
exp exp

q
Sexp exp exp

X f X

F f F f F f

pq
expH




 
  

1 2 1, , , Sexp n exp n exp ntest test test
F f F f F f  

C.2.2  Frequency Domain Data Checks 

 When the GUI is started, the transformation to the frequency domain is computed, and the 

response spectra and FRFs for each test case in Eqs. (C.3), (C.4) and (C.5) are then plotted in 

separate windows from the main GUI output window. The acceleration and force spectra are 

shown in Fig. C-3, while the FRF magnitudes, real parts and imaginary parts are shown in Fig. 

C-4. For all test cases, the data checks in the frequency domain include: 

1) Linearity checks - For the varying force levels from each impact at a fixed set of measurement 

coordinates, the FRFs for all test cases should be nearly ide

2

fixture in the same manner between tests. 

4) Spurious modes - Unwanted vibrations, possibly caused by sensor resonances, unsecure 

sensors, ground vibration or parasitic fixture motion. 

5) Reciprocity - Requires comparison with another set of test data with the excita
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6) Noise levels - Test cases with the highest noise levels or cases where resonance (or anti-

mation is embedded in noise should removed from the data set. resonance) infor

 
Fig. C-3: (a) Acceleration spectrum, (b) Force spectrum 

 
 

 

Fig. C-4: FRFs for each test case (a) FRF Magnitude, (b) Real part, (c) Imaginary part 
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By manually performing the specified data checks for the set of test cases, the erroneous sets of 

data can be removed from the GUI in Fig. C-2, and further processing of the remaining data sets 

can occur.  

C.2.3  FRF Averaging and Smoothing 

 The main display window in Fig. C-2 shows the resulting FRF magnitude formed from 

averaging the corresponding 10 test cases. In general, averaging methods on FRF data assumes 

that there is random noise added to the output signal alone (H1 estimator), input signal alone (H2 

estimator), or both signals have noise contamination (Hv or Hc estimators) [180]. These methods 

are common least-squares techniques used for estimating parameters in the presence of noise. To 

determine these averages, first the averaged cross-power spectra for ntest number of tests can be 

computed as: 

     , ,
1

1 testn
pq p q
XF exp k exp k

ktest

G f X f F f
n 

   (C.6) 

      , ,
1

1 testn
qp q p
FX exp k exp k

ktest

G f F f X f
n 

   (C.7) 

where the over-bar denotes the complex conjugate. The summations in Eqs. (C.6) and (C.7) 

occur for each of the rows in Eq. (C.4). Similarly, the auto-power spectra can be determined 

from: 

      , ,
1

1 testn
pp p p
XX exp k exp k

ktest

G f X f X f
n 

   (C.8) 

      , ,
1

1 testn
qq q q
FF exp k exp k

ktest

G f F f F f
n 

   (C.9) 

Since the majority of the hammer noise in this study was effectively eliminated using a force 

window, with noise still present in all of the acceleration signals, the H1 estimator was utilized in 

the MATLAB® code for the remaining sets of data under the “Data Sets” block of the GUI in 

Fig. C-2. The H1 estimator for the averaged FRF is computed using: 

    
 1H

pq
XFpq
qq
FFG f

G f
f   (C.10) 
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 Referring to the averaged FRF produced for the example in Fig. (C.2) for 10 tests, it can be 

noticed that there still remains a noticeable amount of noise after 750 Hz. Therefore, additional 

curve smoothing techniques are employed. The filters are applied using the “smooth” function 

in MATLAB® [178]. Four smoothing techniques based on linear least squares methods were 

avitzky-Golay filter uses a least squares regression 

ights assigned to any outliers in the data (labeled “Robust Weighted LLS” in the 

GUI). Greater details of these methods can be found in [178]. When one of the corresponding 

dio buttons were selected, the “Filter Controls” in the GUI chan

select a percentage of data points to be used for the selected smoothing method. It was found that 

pplying the same smoothing parameters over the entire range 

damping at sharp resonances. This was especially true if certain regions of the FRF curve 

. The same frequency and smoothing parameters were used to smooth the FRF magnitude, 

real part and imaginary part.  

 For the example in Fig. C-2, with test cases 2, 3, 5, and 8 removed (since they contained the 

e robust weighted linear least squares regression m

selected to further smooth the averaged FRF. Table C-3 shows the selected frequency ranges and 

made available in the GUI in Fig. C-2. The S

with a polynomial of user-specified degree, and frame size (odd number of data points). The 

remaining smoothing methods include locally weighted polynomial regression variations which 

fit a low-degree polynomial to the set of data points using weighted linear least squares. The first 

of these methods (labeled “Weighted LLS w/ 1st deg polynomial” in the GUI) used a single 

degree polynomial, the second method used a second degree polynomial (labeled “Weighted 

LLS w/ 2st deg polynomial” in the GUI), and the third method used a first degree polynomial 

with lower we

ra ges to a slider so the user can 

a of frequencies will introduce 

contained a greater amount of noise than other regions. Therefore, the GUI in Fig. C-2 included 

the possibility of applying different smoothing parameters over different selected frequency 

ranges

 

highest noise contributions), th ethod was 

percentage of data points used to smooth the FRF in Fig. C-2, and Fig. C-5 shows the smoothed 

FRF magnitude along with the smoothed real and imaginary parts. 
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Fig. C-5: Smoothed FRFs (a) FRF Magnitude, (b) Real part, (c) Imaginary part 

 
 
 

Table C-3: Frequency ranges used for smoothing example FRF 

Frequency 
Range [Hz] 

Percentage of 
data points for 

smoothing 
0 to 11 6% 

12.5 to 85 3% 
104 to 295 8% 
323 to 536 8% 
564 to 703 11% 
745 to 882 21% 

908 to 2000 17% 
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Appendix D - Experiment FRF Data Adjustments 
for Parasitic Loading Effects 

D.1  Mass Loading Effects 

 Assuming an accelerometer behaves as a rigid mass, and if a 2-D beam element is used to 

model the link, each node contains two local translational structural DOF along the Xe and Ye 

axes (u and v), and a rotation about the Ze axis, ψ. The kinetic energy when the accelerometer 

length is oriented along the negative Ye axis as in Fig. 6-3 (in Chapter 6) is: 

     2 2 21 1
,2 2acc acc acc acc m accT m u L v L I           (D.1) 

Substituting Eq. (D.1) into Lagrange’s equation yields the inertial mass contribution of the 

accelerometer at node p: 

 
,

2
,

                                                                   

0

. 2

acc acc acc
p
e acc acc acc acc

m acc acc acc

u v

m m L

m m L

sym I m L



 
   
  

M
 (D.2) 

To include the mass loading effects at node p, in the local mass matrix for the ith component, e,i 

becomes (Me  removed or 

positioned at any node in the analytical model. Adjusting the analytical model to include the 

ass loading effects of transducers allows for an accurate representation of the system under 

experimental condit asured if the model 

is perfectly correlated. However, th does reciprocity checks of FRFs since 

repositioning a heavy accelerometer changes the response output. Therefore, another approach is 

to remove the mass effects of transducers from the experimental FRFs. For single-input-single-

output measurements, the correcte trix entity in terms of the local accelerance, Ha = 

(jω)2H, can be determined as [91,18

M

,i + ΔMe,acc), with  ΔMe,acc signifying that the accelerometer can be later

re

m

ions, and as such, can reproduce the FRFs exactly as me

is method  not allow for 

d FRF ma

1]: 

   
 

* ,

,

,

H
H

1 H

pq
a exppq e

a exp ppe
a exp e

m



  (D.3) 
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where m is an equivalent mass or rotary inertia term which is related to the type of measurement 

coordinate used (linear or rotational) and is determined from one of the matrix entries in Eq. 

(D.2). Eq. (D.3) assumes that the accelerometer is at a fixed location and roving hammer tests are 

ement is made, then Eq. (D.3) can be used with p = q. 

ultiple-input-multiple-output measurements and roving 

It is often time consuming and costly to perform separate vibration t

especially if the fixture is adjustable or if different fixtures are used to hold different 

experiments on test articles connected to a fixture. For component or 

substructure assembly tests, if the fixture’s additional (parasitic) motion contributions are 

cluded, the experimental equations of motion in the global frame ar

  (D.4) 

endent translational and rotational DOF, then only drive-

point measurements at the interface are required to find HFF. Eq. (D.5) completely avoids the 

eed to model the fixture, thereby reducing the number of F

the connection interface is a clamp, HFF might be impossible to measure if a force transducer 

(impact hammer or shaker) is obstructed. Therefore, a method to determine the unknown coupled 

performed. If a drive point measur

Otherwise, Eq. (D.3) is invalid for m

accelerometer tests since the transducer mass locations are changed. Ref. [181] offers alternative 

forms of Eq. (D.3) for those scenarios. 

D.2  Fixture Loading Effects 

 ests on a fixture alone, 

components. It would be beneficial to obtain analytically corrected experimental FRFs when 

concurrently performing 

in e as follows: 

A AA AF A

F FA FF FG,exp G,exp G,exp

     
    

     

H H

H H

X F

X F

where the F DOF are at the interface of the fixture and adjacent component, and the A DOF refer 

to the remaining DOF of the component(s). To mathematically constrain the motion of the 

fixture, XF is set to zero, and the top row of Eq. (D.4) results in: 

 1
, , , , , ,,A G exp AA AF FF FA A G exp corr A G expG exp

    H H H H HX F F  (D.5) 

where Hcorr is the corrected experimental FRF of the test assembly with a fully rigid fixture. The 

original version of this method by Crowley et al. [182] has been implemented by previous 

researchers, including [105], to constrain fixture motions. If the connection interface can be 

represented by a single node with indep

n E updating parameters. However, if 
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interface force is described which requires cross-point measurements by observing the motion at 

the fixture interface DOF while exciting points along the remaining component(s). The first row 

of Eq. (D.5) yields: 

 , , , , , , , , , ,A G exp AA G exp A G exp AF G exp F G exp H HX F F  (D.6) 

If experimental FRF reciprocity and symmetry is not violated, then HAF = HFA
T. Rearranging Eq. 

(D.6) to solve for the unknown interface forces gives: 

F  (D.7) 

technique in 

combination with the system equivalent reduction-expansion process (SEREP/DFE) [183] may 

e employed using a separate simplified full FE model of the expe

model should only contain nodes on each component and fixture which coincide with 

o zero, the response vectors at a 

particular frequency can be represented as: 

 , ,F G exp  T

,,FA A AA A G expG exp


   H HF X

where the superscript “+” denotes the Moore-Penrose pseudo-inverse. Afterwards, if each F 

DOF motion is measured independently, the unknown interface receptance, HFF, can be 

determined as [XF,exp / FF,exp]G, and substituted into Eq. (D.5) to remove the fixture effects from 

the test article. However, in practice, obtaining enough experimental data for even a single row 

in HFA to solve Eqs. (D.5) to (D.7) may prove to be difficult, as rotational and joint receptances 

cannot be measured. To overcome this issue, the dynamic FRF expansion 

b riment setup. The simplified 

experimental measurement points. By setting the unmeasured FE model DOF as slaves (omitted, 

o) and the measured DOF as masters (active, a), the equations of motion of the simplified FE 

model can be partitioned, and if the omitted force terms are set t

     , ,1G a G dyn a G
oo oao G G


    

   -Z Z
 a   

 
I

T
X

X = X X
X

 (D.8) 

To expand the measured receptance FRFs to include the unmeasured (omitted) DOF at a 

particular frequency, the following transformation is applied [183]: 

      , ,G exp dyn G exp a
H H   T  (D.9) 

 234



This FRF expansion process can allow estimations of the individual unmeasured experimental 

receptance DOF, thus providing approximations for complete rows/columns for HFA in Eq. 

(D.7). 

 

 If there are insufficient measurements, or a highly inaccurate initial model estimate for the 

ytical dynamic stiffness at the interface of 

 component and a fixture can be expressed as ZFF = ZFF,c + ΔZF

algorithm, nonlinear constraints can be applied to the measured fixture motion to enforce 

 

 

 

 

simplified FE model, then the next available option is to include a model of the fixture 

connection DOF during the updating process. The anal

a F,fixture. Using an optimization 

displacement compatibility at the interface while updating all components in the test assembly, 

including the fixture DOF, ΔZFF,fixture, which can be removed from the model once the updating 

process is completed. Afterwards, the updated model parameters can be used in Eq. (D.9) to 

obtain a better approximation of the experimental FRF with fixture effects removed. 
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