
 

 

 

 
 
 

HYBRID PD SLIDING MODE CONTROL FOR ROBOTIC 
MANIPULATORS 

 

by 

 

John Michael Acob, B.Eng 
Aerospace Engineering 

Ryerson University, 2011 
 
 
 

A thesis presented to Ryerson University 

 

in partial fulfillment of the 

requirements for the degree of 

Master of Applied Science 

in the Program of 

Aerospace Engineering 

 

 

Toronto, Ontario, Canada, 2015 

 

© John Michael Acob 2015 

  



ii 
 

AUTHOR'S DECLARATION 

 

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 

any required final revisions, as accepted by my examiners.  

I authorize Ryerson University to lend this thesis to other institutions or individuals for the 

purpose of scholarly research. 

I further authorize Ryerson University to reproduce this thesis by photocopying or by other 

means, in total or in part, at the request of other institutions or individuals for the purpose of 

scholarly research. 

I understand that my thesis may be made electronically available to the public. 

  



iii 
 

ABSTRACT 
 

 

Hybrid PD Sliding Mode Control for Robotic Manipulators 

John Michael Acob, Master of Applied Science 

Aerospace Engineering 

Ryerson University, Toronto 2015 
 
 

This thesis proposes a new control law for the purpose of providing improved tracking 

and contouring performance of robotic manipulators. The rationale behind the development of 

this controller involves the hybridization of existing proportional-derivative (PD) and sliding 

mode control (SMC) laws. The new control law retains similar ease of implementation as 

traditional PD/PID controllers with the added benefit of a nonlinear switching component 

inherent from sliding mode control systems. In addition, it eliminates the need for a priori 

knowledge of the system dynamics that are required in standard SMC laws. The stability analysis 

of the proposed control law is conducted through the Lyapunov method. Simulations using linear 

and nonlinear contours, and under varying dynamic conditions are performed in order to 

compare its performances to existing control schemes. The proposed hybrid PD-SMC control 

law is proven to provide good, robust tracking and contouring performance. 
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Chapter 1 :      INTRODUCTION 

1.1 BACKGROUND 

Development of early industrial robots occurred in the 1960s as a result of the 

convergence of two technologies: numerical control (NC) machines for precise manufacturing, 

and tele-operated machines for the remote handling of hazardous material. Compared to its 

predecessors, the first robot manipulators were characterized by their versatility, adaptability, 

positioning accuracy, and execution repeatability (Siciliano, Sciavicco, Villani, & Oriolo, 2009). 

In the following decades, industrial robots gained widespread popularity as essential components 

for the realization of automated manufacturing systems. The increasingly wide range of 

applications in the manufacturing industry to where robotics technology is being applied is the 

result of several factors, including the reduction of manufacturing costs, the increase in 

productivity, improvement of production quality, and the reduction or the elimination of harmful 

tasks for the human operator.  

In recent years, following an interruption caused by the global financial crisis in 2009, the 

trend towards automation continued. In fact, 2011 was the most successful year for industrial 

robots since 1961 (International Federation of Robotics, 2013). In that year, industrial robot sales 

increased by 38% to 166,028 units. This was by far the highest level ever recorded for a single 

year.  According to the IFR Executive Summary, the predominant user of industrial robots is the 

automotive/motor vehicle industry. 
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Figure 1.1: Estimated worldwide annual shipments of industrial robots (International Federation of Robotics, 2013). 

 

 

Figure 1.2: Estimated worldwide annual supply at year-end by industries (International Federation of Robotics, 2013). 
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In light of the continued trend towards automation over a wide range of applications, 

industrial robots display significant characteristics of versatility and accuracy. By virtue of their 

programmability, industrial robots remain essential components to many automated systems, see 

Figure 1.2. 

Industrial robots are a subset of the broader category of robotic systems. A robotic system 

is composed of several subsystems, including a mechanical subsystem of rigid or deformable 

bodies, a sensing subsystem, an actuation subsystem, a controller, and an information-processing 

subsystem, see Figure 1.3. These subsystems communicate among themselves via interfaces, 

whose function is decoding and transmitting data between mediums. Robots with a fixed base 

are classified as robot manipulators (Siciliano, Sciavicco, Villani, & Oriolo, 2009).  

 

Figure 1.3: General Architecture of a Robotic Mechanical System (Angeles, 2007). 

The manipulator’s sequence of rigid bodies (links) is interconnected by means of 

articulation (joints). The fundamental structure of a manipulator is a serial, or open kinematic 
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chain. Alternatively, a manipulator can contain closed kinematic chains when a sequence of links 

forms a loop. Robotic manipulators can have several different geometries with varying levels of 

dexterity and stiffness. Serial manipulators have good dexterity and have straightforward 

dynamics while closed chain manipulators, of particular interest those with parallel geometries, 

have the fundamental advantage of high structural stiffness with respect to serial manipulators at 

the cost of reduced workspaces. The industrial application of the robotic manipulator is a factor 

that determines its geometry. 

In all robot applications, the completion of a generic task requires the execution of a 

specified prescribed motion. This execution is entrusted to the control system. Due to the 

significance of programmable robots in industry, the research and development of effective 

control laws is important. Each control law is designed to compensate for the inherent 

imprecisions, disturbances, and other errors presented in the system. The causes for these 

imprecisions include unmodeled friction and vibrational dynamics, hardware deficiencies, 

process-generated disturbances, and other inaccuracies of the system dynamics (Slotine & Li, 

1988). 

For many industrial applications, good trajectory tracking control is very important. 

Depending on the specific application or environment, the uncertainty or parameter fluctuation 

may call for increased robustness of the controller. It is important to take each of these factors as 

well as the previously mentioned imprecisions into account when designing or implementing a 

control law. 

The scope of this thesis involves the proposal of a hybrid controller that employs PD 

control as well as the nonlinear switching component of sliding mode control. It will demonstrate 
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that this proposed PD-SMC law is a powerful and robust control law for improving the trajectory 

and contour tracking performance of robot manipulators. This is a crucial area of research since 

the increasing trend in automation calls for control laws that provide more accurate and robust 

performance. 

1.2 MOTIVATION AND OBJECTIVES 

The motivation behind this research is to improve the tracking performance of robotic 

manipulators and, through the reduction of tracking error, seek to improve contour tracking 

performance as well. This thesis will propose a new hybrid control law based on PD and sliding 

mode control theory to provide a powerful and robust control law. By providing accurate control 

on the joint level, the overall tracking performance of the manipulator will be improved.  The 

overall goals of the proposed hybrid PD-SMC law are: 

1. To provide an alternative to standard PID/PD control laws. 

2. To incorporate the advantages of nonlinear control into an easily implemented control 

law. 

3. To improve performance by reducing joint tracking errors in comparison to traditional 

PD control. 

4. To provide robust tracking performance for systems with imprecisely modeled dynamics 

or fluctuations in parameters. 

5. To provide a model-free alternative to sliding mode control laws that require knowledge 

of the dynamics of the system. 

In this thesis, the proposed hybrid PD-SMC law will be verified through simulations for 

linear and nonlinear contours. To demonstrate the performance and improvements, standard PD 



6 
 

and SMC laws will also be simulated and the tracking and contour errors will be compared for 

various motions and loading cases. To fulfill these goals, the following objectives will be 

achieved: 

1. Model the dynamics of a simplified RRR serial planar manipulator and a five-bar planar 

parallel manipulator. 

2. Formulate a hybrid PD sliding mode control law. 

3. Verify the stability of the proposed controller using the Lyapunov method. 

4. Perform a comparison of the proposed hybrid PD-SMC law and the conventional PD and 

SMC laws at the joint and end-effector level. 

5. Extend the comparison to high-speed and payload cases in order to verify the robustness 

of the proposed controller. 

1.3 ORGANIZATION OF CONTENTS 

The remainder of the thesis is organized as follows: 

Chapter 2 is a literature review of previous research on the control of robotic manipulators. It 

will summarize the various methods employed in improving performance through the reduction 

of tracking error and contour error. It will also give a brief inspection on some advanced control 

techniques and the methodology behind the hybridization of control laws. 

Chapter 3 presents the mathematical formulation of the dynamics of the manipulators that will be 

simulated. From these dynamics models, the standard SMC law will be formulated for each 

manipulator. This chapter will also contain the realization of the proposed hybrid PD-SMC law 
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and the fulfillment of stability analysis of the proposed PD-SMC controller using the Lyapunov 

method. 

Chapter 4 contains the simulation results comparing the performance of the PD, SMC and the 

proposed PD-SMC law for various linear and nonlinear trajectories. It also provides a guideline 

for the selection of the control parameters of the PD-SMC law. 

Chapter 5 provides a summary of results, conclusions, and proposals for future academic 

endeavors with the hybrid control law. 
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Chapter 2 :      LITERATURE REVIEW 
If the dynamic model of a controlled system is known perfectly, an idealized controller 

may be implemented in order to achieve very good system performance. Practically, however, 

system parameters may be difficult to determine and are never known perfectly. In addition, the 

external payloads and disturbances introduced to the system can make it very difficult to 

implement an ideal controller. One of the reasons why adaptive and robust controllers are 

developed is to overcome these dynamic model uncertainties and external disturbances (Sage, De 

Mathelin, & Ostertag, 1999).  

On the other hand, there exists some control methods that do not require previous 

knowledge of system dynamics, which makes them easily implemented. However, they often do 

not account for nonlinearities in the dynamics of the system. In applications that require more 

precise tracking performance, these control laws may not be sufficient. Therefore, different types 

of control systems were developed for different applications. In this chapter, some popular and 

commonly applied control systems are reviewed. 

2.1 PD/PID CONTROL 

Because of its simple structure, the clear physical meaning of each control gain, and easy 

implementation, PID control (as well as PI and PD control) has garnered widespread popularity 

amongst engineers, with more than 90% of all control loops using some form of PID (Åström & 

Hägglund, 2001). PD/PID has been very widely employed in many industrial applications, such 

as robotic control, process control, and automatic systems.  
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2.1.1 General PID Control 

A typical PID controller has the following form: 

 
𝑇(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 � 𝑒(𝜏)𝑑𝜏

𝑡

0
+ 𝐾𝐷𝑒̇(𝑡) (2.1) 

where 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 are the proportional, integral, and derivative gain matrices of the control 

system, respectively, and 𝑇(𝑡) is the torque.  

The tracking error, which can be a vector, is defined as: 

 𝑒(𝑡) = 𝑞𝑑 − 𝑞 (2.2) 

Although the basic structure of the PID controller is quite simple, as shown in Figure 2.1 

, it has been shown that with appropriately selected control gains, a simple linear and decoupled 

PD controller may have acceptable tracking performances for many applications (Qu, 1994). 

 

Figure 2.1: Block Diagram of Ideal PID Control 

PID control has been applied for the tracking control of robotic manipulators (Hsu, Chiu, 

& Tsai, 2011; Pervozvanski & Freidovich, 1999) and although PID is effective when 

𝑲𝑷𝒆(𝒕) 
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𝒕

𝟎
 

𝑲𝑫𝒆̇(𝒕) 

Σ Σ Process 
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- 
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implemented as a position controller, care must be taken into the tuning of the control gains 

through the use of a theoretical backing. 

A theorem proposed by Kawamura et al. proves that a robot equipped with a linear PD 

feedback loop at each joint can track a desired trajectory described by time functions if the 

velocity feedback gain is set sufficiently large (Kawamura, Miyazaki, & Arimoto, 1988). There 

have been several other research endeavors for PD control on its global stability for trajectory 

tracking with robotic manipulators (Qu, 1994; Chen, Chen, Wang, & Woo, 2000). The high 

control gains of PD control, however, may cause vibration problems due to overreaction and 

amplification of the measurement noise. Also, there are still certain cases for which standard PID 

control is inappropriate due to its inability to adjust to system dynamics. 

2.1.2 PD with Desired Gravity Compensation 

Although the use of PID control is extensive for the control of robotic manipulators, the 

choice of PID gains relies on relatively complex formulae in order to ensure global asymptotic 

stability (Arimoto & Miyazaki, 1984; Qu & Dorsey, 1991). The landmark work of Takegaki and 

Arimoto (1981) provided a robust position control that is easily tuned for global asymptotic 

stability. The PD control law with desired gravity compensation for setpoint control proposed by 

Takegaki and Arimoto (1981)can be written as: 

 𝜏 = 𝐾𝑃𝑒 − 𝐾𝐷𝑞̇ + 𝑔(𝑞𝑑) (2.3) 

where 𝜏 represents the torque in this formula and 𝑔(𝑞𝑑) is the vector of gravitational torques of 

the system at the desired joint angles. Graphically, this control law is represented in Figure 2.2 

and 𝐾𝑣 = 𝐾𝐷. 
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Figure 2.2: PD control with desired gravity compensation (Kelly, 1997). 

 The PD with desired gravity compensation control law is able to drive the manipulator in 

such a way that the robot joints are asymptotically placed at their desired values. It does this 

independently of the initial position and velocity. Although this controller has a simple structure, 

it still requires knowledge of the system dynamics in order to calculate the gravitational torque 

vector terms. This desired gravity component can be seen as a feedforward term that helps the 

control law compensate for the system dynamics. 

2.1.3 Nonlinear PD/PID Control 

One of the weaknesses of standard PD/PID control is that it may suffer in performance 

due to the linearity of the control law and its poor compensation for the inherent nonlinearity of 

many practical dynamic systems (and sensors).  One method of refining the PID control law was 

proposed by Rugh (1987), where he designed a law by the extended linearization technique in 

which the assumed nonlinear plant and sensor, as shown in Figure 2.3, are linearized about every 

closed-loop set point with the appropriate PID controller. In his proposed design, the gains of the 

controller in the form of PID are appropriately defined functions of the error state. 
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Figure 2.3: Nonlinear Closed-Loop System (Rugh, 1987). 

This Nonlinear PD (NPD) control is, in general, a control where the gains are functions 

of tracking errors. Consider the general system equation: 

 𝑥̈ + 𝑐(𝑥̇, 𝑥) = 𝑢 (2.4) 

where 𝑥̇ and 𝑥 are system states and 𝑐(𝑥̇, 𝑥) is a nonlinear, state-dependent term. According to 

Xu et al., for force control of a setpoint task, we have the NPD control in the form: 

 𝑢 = 𝐾𝑒𝑓 + 𝐵𝑒̇𝑓 + 𝑓𝑑 + 𝑐̂(𝑥̇,𝑥) (2.5) 

where 𝐾  and 𝐵  are gains, 𝑓𝑑  is the desired force, 𝑒𝑓 = 𝑓𝑑 − 𝑓 , and 𝑐̂(𝑥̇, 𝑥) is the estimate of 

𝑐(𝑥̇, 𝑥). The NPD’s control action depends on whether the system is moving towards or away 

from the desired setpoint as follows (Xu, Hollerbach, & Ma, 1995): 

• Moving away from setpoint: increase gains to stop the system 

• Moving toward setpoint: decrease gains to minimize the residual energy at the goal 

This can be illustrated graphically in Figure 2.4. Although the study presented by Xu et 

al., was for force control, their methods are equally applicable to position control. Several other 

previous studies were conducted involving NPD control, however many were applied only to 
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point-set control of linear systems (Armstrong & Wade, 2000; Seraji, 1998). Ouyang (2005) 

extended NPD to a form of adaptive NPD learning control designed for repetitive tasks of 

robotic mechanisms. 

 

Figure 2.4: Illusatration of NPD Control (Xu, Hollerbach, & Ma, 1995). 

The NPD control laws provide a method of compensation for the nonlinear system 

dynamics of many mechanical systems, but may demand some involved stability requirements. 

Also, as with other forms of control with feedforward terms, knowledge of the system dynamics 

is required for this approach. 

2.2 OTHER CONTROL METHODS 

The previous section introduced some of fundamental control concepts used for robotic 

manipulators over the course of study in industry. This section furthers the discussion to some 

more advanced methods of control, including event-driven control (EDC), adaptive control, and 

learning control. 
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2.2.1 Event-Driven Control 

The majority of research in control theory and engineering considers time-triggered or 

periodic control systems where signals are acquired at a fixed sample rate in an attempt to 

represent a continuous time signal (Heemels, Sandee, & Van Den Bosch, 2008). There are cases, 

however, where it is of interest to consider event-driven control systems where instead of time-

triggered sampling, samples are acquired at the occurrence of an event. The traditional time-

triggered control methods have the controller performing a new control action at the prescribed 

time interval even when there is nothing happening in the system. This can lead to the 

unnecessary utilization of system resources (Årzén, 1999). 

Årzén (1999) proposed a simple event-based PID controller that consists of two parts: (1) 

an event detection part that uses time-triggered sampling on a sampling interval that is the same 

as the sampling interval of the corresponding time-triggered PID controller, and (2) an event-

triggered PID controller that uses the output of the event detection part. This output sends a 

request to the PID control algorithm that a new control signal should be calculated. This is 

represented graphically in Figure 2.5. 

 

Figure 2.5: Event-Driven PID Structure (Årzén, 1999). 
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Typically, an embedded controller on a real-time operating system uses available central 

processing unit (CPU) time that is shared between independently running tasks. Using CPU 

resources when there is nothing of significance happening in the process is clearly a waste of 

resources. Experiments conducted by Årzén with this control structure indicate significant 

reduction in CPU utilization with only a minor control performance penalty. In work conducted 

by Wang et al. (2011), event-driven controllers are shown to have practical application to motion 

control, including vehicle longitudinal control and quadrotor control. In their study, the use of 

event-triggered controllers yielded strong robustness with the need for only few computing 

resources. Additionally, small system vibrations in the quadrotor were eliminated while the 

number of actuation steps was diminished. 

 

2.2.2 Adaptive Control 

From looking at the previous section, we can generally see that for a given form of 

controller (i.e. PID), there is a trend for better performance with a more intimate knowledge of 

the plant dynamics. In fact, there are many current techniques that rely on having a good 

understanding of the plant under study in some form or another (Sastry & Bodson, 1989). 

However, there are a number of instances where either the system to be controlled is far too 

complex, or the basic physical processes of the system are not fully understood. Adaptive control 

compensates for this by obtaining a progressively better understanding of the plant dynamics to 

be controlled. Thus, adaptive control can be viewed as being composed of two parts (Craig, 

1988):  
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1. an identification portion that identifies the parameters that appear in the controller of the 

plant, or the parameters of the plant itself and; 

2. a control law portion, which implements the control law that is in some way a function of 

the identified parameters. 

If the identification of the plant is periodically updated on the basis of previous estimates 

and new data, then the system identification is said to be recursive and the identification and 

control may be performed concurrently to one another. From the above discussion, it can be said 

that adaptive control is designed to compensate for the time-varying parameters of the controlled 

system. It should also be noted that system identification can also be targeted at the 

determination of whether the plant is linear or nonlinear, finite or infinite dimensional, and has 

continuous or discrete event dynamics (Sastry & Bodson, 1989). If these have already been 

determined, then the adaptive control law will be limited to the parametric system identification 

or parametric adaptive control, as was discussed. 

In common frameworks there are three schemes for parametric adaptive control: (1) gain 

scheduling, (2) model reference adaptive control (MRAC), and (3) self-tuning regulators (STC) 

(Åström K. J., 1983). Gain scheduling was one of the earliest and most intuitive approaches to 

adaptive control. With gain scheduling, auxiliary process variables, other than those from the 

plant used as feedback, were found that correlate well with process dynamics. The advantage of 

this type of control is that the parameters can be changed as quickly as the auxiliary 

measurement. Although gain scheduling was popular in practice, it does have the drawback of 

being an open-loop adaptation scheme with no real intelligence. Also, the extent of design that is 

required may be enormous, depending on the system. Gain scheduling is represented graphically 

in Figure 2.6. 
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Figure 2.6: Gain Scheduling Controller (Sastry & Bodson, 1989). 

There are two types of MRAC laws: series high gain scheme and parallel scheme, both 

represented schematically in Figure 2.7. For each of these schemes, the desired performance of 

the closed-loop system is specified through a reference model and the adaptive system attempts 

to make the plant output match the reference model. With the parallel scheme, however, the 

inner or regulator loop acts as an ordinary control loop consisting of the plant and regulator, and 

the outer adaptation loop adjusts the parameters of the regulator in such a way to drive the error 

between the model and plant output to zero.  

 

Figure 2.7: MRAC Laws (a) Series High-Gain Scheme  (b) Parallel Scheme (Sastry & Bodson, 1989). 

Self-tuning regulators, as shown in Figure 2.8, have an identifier or estimator that 

produces a set of estimated parameters based on past plant inputs and outputs. The controller 

then uses these to produce the current control input for the plant. 
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Figure 2.8: Self-Tuning Controller (Sastry & Bodson, 1989). 

With regard to improving trajectory tracking performances of robotic manipulators, there 

has been significant research on the basis of adaptive control, including the control for direct-

drive SCARA robots (Dessaint, Saad, Hébert, & Al-Haddad, 1992). Furthermore, Tomei (1991) 

and Kuc & Han (2000) have employed adaptive control laws to PD and PID loops, respectively.  

This implementation of adaptive control laws with existing laws owes to the flexibility of 

adaptive controls. Slotine (1991) gives further details of the advantages and drawbacks of 

adaptive controls. 

2.2.3 Learning Control 

Learning control is similar to adaptive control where it uses gathered information from 

the past processes in order to determine its control performance for the future. The difference is 

that adaptive control depends on very recent history and reacts only to the current state, while a 

learning controller depends on long term history and remembers previous states with their 

appropriate responses (White & Sofge, 1992).  

Learning control operates in the context of an objective function and receives 

performance feedback. This feedback is used to determine how appropriate the current behaviour 

is in the context of the objective function. It is not necessary to have a parametric model for the 

system with learning control. In addition, the uncertainty can be compensated since the system 
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“learns” as it is propagated through trials. Both adaptive control and learning control are used to 

simplify the process of implementing the controller and to improve system performance by 

improving reliability of the system. 

2.3 HYBRIDIZATION OF CONTROL LAWS 

The previous section established some details for a few methods of advanced control. For 

several of them, it involved PID or other types of controllers in its implementation. This can be 

seen as the hybridization of several control laws in order to achieve a more desirable 

performance than that of which the individual control law is capable. This section will review in 

more detail the concept of control hybridization on iterative learning control (ILC), which can be 

used as a hybrid control system. Some specific hybrid control systems are reviewed including 

switching control, and the sliding mode control associated with the thesis. 

2.3.1 Iterative Learning Control 

Iterative learning control is based on the idea that the performance of a system can be 

improved by learning previous executions of the same task over and over again. Through these 

repeated actions, the properties of unknown dynamics may be revealed during the completion of 

a task. Although ILC emulates human learning, ILC differs from other learning-type control 

algorithms, such as adaptive control. Adaptive control modifies the controller, a system, where 

ILC modifies the control input, a signal (Bristow, Tharayil, & Alleyne, 2006). 

Arimoto et al. (1984) defined ILC as class of control algorithms to achieve asymptotic 

zero tracking error by an iterative process. Therefore, the objective of ILC is to incorporate error 

information into the control for subsequent iterations, thereby improving performance. In doing 

so, low transient tracking error and high performance are achieved in spite of model uncertainties 
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and disturbances. A typical ILC in the time domain is under a simple closed-loop or open-loop. 

These two types of ILC can be classified as either off-line or on-line, respectively, represented 

schematically in Figure 2.9. ILC can be further classified into P-Type, D-Type, and PID Type 

(Ouyang, 2005). Several research papers have proposed controllers of these types including an 

adaptive PID learning control for the control of robotic manipulators where the control gains are 

functions of not only previous iterations, but are also complex functions of the errors of the 

current iteration (Kuc & Han, 2000). This is an example of creating a hybrid control algorithm 

by taking explicitly the characteristics of several different algorithms. 

 

Figure 2.9: Two types of Iterative Learning Control (a) Off-line ; (b) On-line (Ouyang, 2005). 
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Ouyang (2005) proposed a hybrid PD-type online learning control (PD-OLC) for the 

tracking of a class of nonlinear time-varying systems. This control was demonstrated to be robust 

with respect to uncertainties and disturbances on the controlled system. He also formulated a 

hybrid adaptive nonlinear PD learning control (NPD-LC) which incorporated both feedback plus 

feedforward control, while classical ILC is only feedforward control. Because adaptive NPD-LC 

is an on-line learning control it is expected to have faster convergent speed than classical ILC. 

2.3.2 Switching Control 

Switching control systems are those that have discrete event dynamics as well as 

continuous time dynamics. It should be noted that in the field of controls research, switching 

control systems are also called hybrid control systems. The distinction should be made that the 

thesis uses the term hybrid control systems to denote control systems in general that include two 

or more contributing control laws. 

Switching control systems are characterized by the interaction of continuous parts, 

governed by differential equations, and discrete parts that are described by finite states machines, 

if-then-else rules, and propositional and temporal logic (Ouyang, 2005). The interface between 

the components is shown in Figure 2.10, where DES stands for discrete event system, 𝑟 is the 

input, 𝑧 is the output and ℎ𝑖 means the “hybrid” part of the system. The index i is analogous to a 

time index for the discrete system in that it specifies the order of states or events in the system 

(Stiver & Antsaklis, 1992). 



22 
 

 

Figure 2.10: Interactions in a switching control system (Stiver & Antsaklis, 1992). 

These types of controllers produce switches between a countable, possibly finite, number 

of fixed controllers until stability is detected. As such, they are theoretically attractive for 

providing performance with asymptotic stability for a wide array of various plants. They do, 

however, require a long time to search for stabilizing feedback and as such, provide poor 

transient properties (Antsaklis & Nerode, 1998). 

2.3.3 Sliding Mode Control 

Sliding mode control has been studied to extent in order to handle the problems of 

nonlinear dynamic control systems with modeling uncertainties, time-varying parameter 

fluctuations, and external disturbances (Slotine & Li, 1991). For this control law, a sliding mode 

surface is defined for an 𝑛𝑡ℎ -order dynamic system as: 

 
𝑠 = �

𝑑
𝑑𝑡

+ 𝜆�
𝑛−1

 (2.6) 

where 𝜆 is strictly a positive constant. With this definition, following the process outlined by 

Slotine & Li (1991), it can be seen that an 𝑛𝑡ℎ-order tracking problem can be replaced by a first-

order stabilization problem of keeping 𝑠 at zero. By choosing an appropriate control law, the 

system trajectories can be constrained to point to the time-varying surface 𝑆(𝑡). In other words, it 
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makes the surface an invariant set. Once on the surface the system is said to be in sliding mode. 

If the dynamics of the system are exactly known, then by solving the dynamics while in sliding 

mode (𝑠̇ = 0), an expression for the control force 𝑢, called the equivalent control 𝑢𝑒𝑞, can be 

obtained and is interpreted as the continuous control law that would maintain perfect tracking 

𝑠̇ = 0. 

 

Figure 2.11: Chattering about the sliding surface (Slotine & Li, Applied Nonlinear Control, 1991). 

Because of inherent uncertainty in the system model, only the best estimate for equivalent 

control is obtained, denoted 𝑢� . Perhaps one of the most intriguing aspects of SMC is the 

discontinuous nature that arises from this. In order to satisfy the sliding condition, a term that is 

discontinuous across the surface 𝑠 = 0 is added to obtain the control law: 

 𝑢 = 𝑢� − 𝑘𝑠𝑔𝑛(𝑠) (2.7) 
 
where 𝑘 is a control parameter and 𝑠𝑔𝑛() is the sign function. It can be interpreted that since the 

control system deliberately switches between distinctively different structures based on the state 

of the system and some predefined rules, that SMC is a kind of switching or hybrid control 

(Ouyang, 2005).  
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Ideally, the switching of the controller happens instantaneously, resulting in a system 

trajectory that stays in sliding mode, as desired. However, in reality the finite sampling rate will 

cause the trajectory to oscillate about the sliding surface, as shown in Figure 2.11. This so-called 

chatter is in general undesirable since it can excite high-frequency dynamics of the system for 

which the control is unaccounted. The introduction of a boundary layer can smooth the trajectory 

(Slotine & Li, 1991). In addition to general SMC, there has been research on advanced control 

strategies involving SMC including using genetic algorithms to optimize control gains (Li et al., 

1996) and fuzzy chatter-free control (Allamehzadeh & Cheung, 2002). 

2.4 TRACKING AND CONTOUR ERROR 

2.4.1 Tracking and Contour Error 

The performance of industrial manipulators is often related to two parameters: tracking 

error and contour error. Tracking error is the result of the individual axial tracking performance 

of each actuator. Another way to describe this is how well the controller for each axis can track 

the desired reference position or other state variable. 

Mathematically, the tracking error can be expressed as 

 𝑒 = 𝑅 − 𝑃 (2.8) 

where 𝑅 is the reference, or desired, position, and 𝑃 is the actual position. 

 



25 
 

 

Figure 2.12: Tracking and Contour Error (Yeh & Hsu, 2003). 

Contour error, however, can be defined as the component of error that is orthogonal to 

the desired path or contour. In conventional multi-axis contouring systems, contour errors arise 

from the differences in loop parameters, disturbance loads, and the complexity of the contour 

shape. Additional error sources due to mechanical hardware can include backlash and friction 

(Koren & Lo, 1991). 

2.4.2 Contour Error Calculation 

 

Figure 2.13: Error model for a linear contour (Koren & Lo, 1991). 

For many simple contour shapes, such as lines and circles, contour error is easy to 

determine. For linear contours, the contour error 𝜀 is given by: 
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 𝜀 = −𝑒𝑥 sin𝜃 + 𝑒𝑦 cos 𝜃 (2.9) 

where 𝑒𝑥 and 𝑒𝑦 are the tracking error at the actual position 𝑃, and 𝜃 is the angle formed by the 

contour and the x-axis at the desired position 𝑃∗. Note that Figure 2.13 uses capitals to denote 

tracking error. 

For circular contours, the Cartesian equation of a circle can be used to find the contour 

error as follows 

 
𝜀 = �(𝑃𝑥 − 𝑥0)2 + �𝑃𝑦 − 𝑦0�

2
− 𝑅 (2.10) 

where 𝑅 is the radius of the circle, (𝑥0,𝑦0) is the corresponding center of the circle and (𝑃𝑥,𝑃𝑦) 

are the actual coordinates. For general free-form contours the determination of contour error 

requires a more involved method. Cheng & Lee (2005) give a detailed algorithm for obtaining 

free-form contour errors. A simple method of approximating free–form contours is done by 

locally approximating the contour as a circle and if the axial errors are much smaller than the 

instantaneous radius of curvature, a contour error can be found by Eq. (2.10). It should be noted 

also that improving tracking performance does not necessarily guarantee good contouring 

performance (Koren & Lo, 1991). 

2.5 REMARKS 

This chapter presented various control algorithms that are designed with the intent of 

improving system performance. It was shown that virtually all of the presented control systems 

could be applied to the tracking control of robotic manipulators. The purpose of this chapter was 

to provide some insights into different control design methodologies and to outline key 

advantages and drawbacks of each. It was shown that if improved tracking performance is 
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desired then in general it requires some a priori knowledge of system dynamics. However, 

control laws that feedforward system dynamics behaviour can become difficult to implement.  

Thus, some advanced control methods such as ILC offer ways to reduce the amount of 

required knowledge of the system while also improving performance. However, there may still 

exist issues regarding stability or ease of implementation. Progressing further, the notion of 

hybrid control systems was introduced. It was shown that combining two or more control laws 

by their desirable traits can significantly improve system dynamic response. To further the notion 

of hybrid control systems, the next chapter will contain formulation for a hybrid PD sliding mode 

control law. The main motivation for this research is to improve tracking and contouring 

performance over standard PD/PID control schemes while maintaining a similar level of ease of 

implementation by hybridizing with sliding mode control’s discontinuous property to account for 

system nonlinearities. 
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Chapter 3 :      HYBRID PD SLIDING MODE CONTROL 
In this chapter the dynamics of a general robotic manipulator is presented. The 

formulation for PD control of the manipulator is presented and a general SMC law with included 

dynamic model uncertainties is formulated. A hybridization of PD and SMC is discussed along 

with the rationale and methodology behind it. Finally, the stability analysis of the proposed 

control law is conducted for the control of robotic manipulators with the Lyapunov method. 

3.1 DYNAMIC MODEL 

The dynamic equations of motion of a robotic manipulator embody the relationship 

between the torques/forces applied by the actuators and the resulting motion of the manipulator 

(Craig, 2005). The dynamics can be mathematically represented by the following nonlinear 

differential equation for an 𝑛-link rigid manipulator: 

 𝑀(𝑞)𝑞̈ + 𝐶(𝑞̇, 𝑞)𝑞̇ + 𝐺(𝑞) + 𝐷(𝑡, 𝑞̇, 𝑞) = 𝜏(𝑡) (3.1) 
 
where: 

• 𝑞 = 𝑞(𝑡), 𝑞̇ = 𝑞̇(𝑡), 𝑞̈ = 𝑞̈(𝑡) are functions of time and are 𝑛 × 1 vectors representing 

the joint position, velocity, and acceleration, respectively. 

• 𝑀(𝑞) is an 𝑛 × 𝑛 inertia matrix. 

• 𝐶(𝑞̇, 𝑞) is an 𝑛 × 𝑛 matrix containing the centrifugal-Coriolis terms. 

• 𝐺(𝑞) is an 𝑛 × 1 vector of gravitational torques or forces. 

• 𝐷(𝑡, 𝑞̇, 𝑞) is an 𝑛 × 1 vector representing friction, uncertainty, disturbance terms. 

• 𝜏(𝑡) is an 𝑛 × 1 vector of the joint torques or forces. 
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3.2 PD CONTROL FORMULATION 

Defining the tracking errors of the system as follows: 

 
�
𝑒(𝑡) = 𝑞𝑑(𝑡) − 𝑞(𝑡)
𝑒̇(𝑡) = 𝑞̇𝑑(𝑡) − 𝑞̇(𝑡)
𝑒̈(𝑡) = 𝑞̈𝑑(𝑡) − 𝑞̈(𝑡)

 (3.2) 

  
where 𝑞𝑑(𝑡) , 𝑞̇𝑑(𝑡) , 𝑞̈𝑑(𝑡)  are the vectors of desired joint position, velocity, and 

acceleration, respectively. By submitting Eqs. (3.2) into Eq. (3.1) the dynamic model can be 

rewritten in terms of tracking error as follows: 

 �𝑀
(𝑞)𝑒̈ + 𝐶(𝑞̇, 𝑞)𝑒̇ = 𝜏𝑑(𝑡) − 𝜏(𝑡)

𝜏𝑑(𝑡) = 𝑀(𝑞)𝑞̈𝑑 + 𝐶(𝑞̇,𝑞)𝑞̇𝑑 + 𝐺(𝑞) + 𝐷(𝑡, 𝑞̇, 𝑞) (3.3) 

  
where 𝜏𝑑(𝑡)  is the desired input torque. For trajectory tracking control of rigid robotic 

manipulators a PD controller can be implemented as 

 𝜏(𝑡) = 𝜏𝑃𝐷(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑𝑒̇(𝑡) (3.4) 
  
where the positive definite matrices 𝐾𝑝  and 𝐾𝑑  are the proportional and derivative gains, 

respectively. It is seen that PD control is easy to implement as it does not require any previous 

knowledge of the specific system dynamics and requires only the tracking error of the system in 

order to compute the control torque. As such, it provides model-free linear feedback control for 

the system and is well-known to obtain acceptable tracking performance. 
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3.3 SMC FORMULATION 

For standard sliding mode control, the tracking errors are redefined as follows: 

 
�
𝑒(𝑡) = 𝑞(𝑡) − 𝑞𝑑(𝑡)
𝑒̇(𝑡) = 𝑞̇(𝑡) − 𝑞̇𝑑(𝑡)
𝑒̈(𝑡) = 𝑞̈(𝑡) − 𝑞̈𝑑(𝑡)

 (3.5) 

 
Note that this is essentially the opposite of the tracking error defined for standard PD/PID 

control. Using Eq. (3.5) as the definition of tracking errors, define the sliding surface and its time 

derivative as: 

 �
𝑠(𝑡) = 𝑒̇(𝑡) + 𝜆𝑒(𝑡)
𝑠̇(𝑡) = 𝑒̈(𝑡) + 𝜆𝑒̇(𝑡) (3.6) 

 
where 𝜆 = 𝑑𝑖𝑎𝑔[𝜆1, … , 𝜆𝑛] is a matrix containing the vector of slopes of the sliding surface, 

known as bandwidths, of the SMC and 𝜆1, … , 𝜆𝑛 are strictly positive constants. 

Define reference states as: 

 �
𝑞̇𝑟(𝑡) =  𝑞̇(𝑡) − 𝑠(𝑡) =  𝑞̇𝑑(𝑡) − 𝜆𝑒(𝑡)
𝑞̈𝑟(𝑡) =  𝑞̈(𝑡) − 𝑠̇(𝑡) =  𝑞̈𝑑(𝑡) − 𝜆𝑒̇(𝑡) (3.7) 

 
By submitting Eq. (3.5) to Eq. (3.7), into Eq. (3.1), the dynamic model can be rewritten in terms 

of the newly defined vector 𝑠: 

 𝑀(𝑞)𝑠̇ + 𝐶(𝑞, 𝑞̇)𝑠 = 𝜏(𝑡) −𝑀(𝑞)𝑞̈𝑟 − 𝐶(𝑞, 𝑞̇)𝑞̇𝑟 − 𝐺(𝑞) − 𝐷(𝑡, 𝑞, 𝑞̇) (3.8) 
 

Eq. (3.8) represents the system dynamics if the dynamic parameters are known exactly. 

Since in practice, the system dynamics parameters can never be defined exactly, the SMC law 

must take the deviations from the actual dynamics into account. 
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Define: 

 Δ𝑀(𝑞) = 𝑀�(𝑞) −𝑀(𝑞) (3.9) 
 
 𝛥𝐶(𝑞, 𝑞̇) = 𝐶̂(𝑞, 𝑞̇) − 𝐶(𝑞, 𝑞̇) (3.10) 
 
 𝛥𝐺(𝑞) = 𝐺�(𝑞) − 𝐺(𝑞) (3.11) 

 
where 𝑀�(𝑞), 𝐶̂(𝑞, 𝑞̇), and 𝐺�(𝑞) are the estimations of the dynamic properties of the system 

𝑀(𝑞), 𝐶(𝑞, 𝑞̇), and 𝐺(𝑞), respectively. Submitting Eq. (3.9) to Eq. (3.11) into Eq. (3.8), the 

dynamic equation is rewritten as: 

 𝑀(𝑞)𝑠̇ + 𝐶(𝑞, 𝑞̇)𝑠 = 𝜏 − 𝑓 + Δ𝑓 − 𝐷(𝑡, 𝑞, 𝑞̇) (3.12) 
 
where 

 𝑓 = 𝑀�(𝑞)𝑞̈𝑟 + 𝐶̂(𝑞, 𝑞̇)𝑞̇𝑟 + 𝐺�(𝑞) (3.13) 
 
 Δ𝑓 =  Δ𝑀(𝑞)𝑞̈𝑟 + 𝛥𝐶(𝑞, 𝑞̇)𝑞̇𝑟 + 𝛥𝐺(𝑞) (3.14) 
 

From this formulation, a standard SMC law can be written using the estimated system 

dynamic parameters in the form of Eq. (2.7) as: 

 𝜏𝑆𝑀𝐶(𝑡) = 𝑀�(𝑞)𝑞̈𝑟 + 𝐶̂(𝑞, 𝑞̇)𝑞̇𝑟 + 𝐺�(𝑞) − 𝐾𝑠𝑠𝑔𝑛(𝑠) (3.15) 
 
where the positive definite matrix 𝐾𝑠  is a control parameter and 𝑠𝑔𝑛()  is the sign function 

defined as: 

 
𝑠𝑔𝑛(𝑠) = �

−1 𝑖𝑓 𝑠 < 0
0 𝑖𝑓 𝑠 = 0
1 𝑖𝑓 𝑠 > 0

 (3.16) 

 
An ideal sliding mode controller for a system of second-order is graphically represented 

in a block diagram, Figure 3.1. 
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Figure 3.1: Block Diagram of ideal sliding mode control for a second order system. 

Note that the block diagram shows an ideal SMC without the presence of model 

uncertainties or external loads and disturbances. The difference between the estimated systems 

dynamics and the actual system dynamics, Δ𝑓, as well as the friction and other disturbances, 

𝐷(𝑡, 𝑞, 𝑞̇) are unaccounted for in the SMC law given in Eq. (3.12) and serve as sources of 

tracking error. 

3.4 HYBRID PD SLIDING MODE CONTROL FORMULATION 

From the previous sections, one can see that both PD control and SMC have their 

advantages and drawbacks. The problem, then, is combining these two different control methods 

in order to obtain a new control system. This section details the development of the new 

proposed hybrid control system. 

3.4.1 Principle for Hybridization 

There are two principles for the hybridization of two control systems: the complementary 

principle and the compatibility principle (Ouyang, 2005). The complementary principle states 

that two control systems can be integrated when the strengths of one of them correspond to and 
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will address the weaknesses of the other. The converse also applies with the strengths of the 

other one corresponding to the weaknesses of the first. 

The compatibility principle states that the two control systems must be adjusted to 

minimize their side effects. Here lies the integration and stability problem. From this discussion 

one can see that the complementary principle gives a necessary condition for two control systems 

to be integrated while the compatibility principle gives a sufficient condition for the integration. 

3.4.2 Formulation 

The strengths and weaknesses of PD controllers and SMC can be summarized as follows. 

Standard PD controllers are very easy to implement since they use a model-free approach, yet 

they yield relatively low tracking performance due to their linear nature. On the other hand, SMC 

has high tracking performance but requires that the dynamics of the system be known a priori. 

The dynamic parameters of a system, however, may not be readily available or are difficult to 

obtain. As such, it is also sensitive to the unmodeled dynamics of the system. In order to solve 

the inherent drawbacks of both systems, the following PD sliding mode control (PD-SMC) law is 

proposed for the trajectory tracking control of rigid robotic manipulators: 

 𝜏𝐻(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑𝑒̇(𝑡) + 𝐾𝑠𝑠𝑔𝑛(𝑠) (3.17) 
 

𝑠 = 𝜆𝑒(𝑡) + 𝑒̇(𝑡) 

where for an 𝑛-link manipulator: 

• 𝑒(𝑡) and 𝑒̇(𝑡) are the 𝑛 × 1 vectors of position and velocity errors, respectively. 

• 𝑠 is the 𝑛 × 1 vector of sliding surfaces. 
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• 𝐾𝑝 and 𝐾𝑑 are the positive definite  𝑛 × 𝑛 diagonal matrices containing the proportional 

and derivative gains, respectively. 

• 𝐾𝑠 is a positive definite 𝑛 × 𝑛 diagonal matrix containing what are referred to as “SMC 

gains”.  

 

Figure 3.2: Block diagram of an ideal second order PD-SMC system. 

 

Remark 1: The tracking errors for the proposed hybrid system are defined the same way 

as the tracking errors for PID control, Eq. (3.2). The definition of the sliding surface, 𝑠, is the 

same as Eq. (3.6), but also uses the tracking error definition of PID control, Eq. (3.2). 

Remark 2: Comparing Eq. (3.17) to Eq. (3.15) and Eq. (2.7), as well as Figure 3.2 to 

Figure 3.1, it can be seen that the model-based equivalent control components in SMC is 

replaced by PD control in the proposed hybrid PD-SMC. Therefore, the proposed PD-SMC is 

model-free. Also, PD-SMC is a nonlinear feedback controller due to the switching term of the 

SMC. 
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Remark 3: The proposed PD-SMC law has the advantages of both PD control and SMC. 

First, it is has the ease of implementation of PD control since it is only feedback control. This 

strength directly corresponds to the weakness of SMC that it is model-based. Second, it contains 

the nonlinear switching term contributed by SMC to provide improved tracking performance. 

This corresponds directly to the weakness of PD control that it only has a simple linear nature. 

Also, it is robust in that it handles uncertainties and external disturbances well as will be 

demonstrated through simulation verification. 

Remark 4: Since in the PD-SMC law the strengths and weaknesses of one of the 

contributing control laws correspond to the weaknesses and strengths, respectively, of the other 

contributing control law, it satisfies the complementary principle for the hybridization of two 

control systems. 

3.4.3 Properties of the Dynamic Model 

A list of properties of a rigid robotic manipulator that are associated with Eq. (3.1) are 

used for the proposed hybrid PD-SMC law (Craig, 2005). These properties are used in the 

stability analysis in the following section. The properties are described as follows: 

P1) The inertia matrix 𝑀(𝑞) is symmetric positive definite. 

P2) The matrix 1
2
𝑀̇(𝑞) − 𝐶(𝑞, 𝑞̇) is a skew symmetric matrix. 

P3) The inertial and the centrifugal-Coriolis matrices satisfy the following relationship: 

 𝑀̇(𝑞) = 𝐶(𝑞, 𝑞̇) + 𝐶𝑇(𝑞, 𝑞̇) (3.18) 
 

P4) 𝑀(𝑞), 𝐶(𝑞̇, 𝑞), 𝐺(𝑞), and 𝐷(𝑡, 𝑞̇, 𝑞) are all bounded for bounded inputs. 
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3.5 STABILITY ANALYSIS 

3.5.1 Notations and Theorem 

To facilitate the stability analysis, the following notations are introduced. 

Let 𝜆𝑚(𝑀)  and 𝜆𝑀(𝑀)  represent the smallest and largest eigenvalues of a positive 

definite matrix, 𝑀. If a square matrix 𝑀 is positive definite, then it is denoted as 𝑀 ≻ 0. If a 

square matrix 𝑀 −𝑁 is positive definite, then it is denoted as 𝑀 −𝑁 ≻ 0. 

For positive definite matrices, the following properties will be used (Boyd & 

Vandenberghe, 2004). 

P5) If 𝑀 ≻ 0, then 𝑀−1 ≻ 0. 

P6) If 𝑀 ≥ 𝑁 ≻ 0, then 𝑁−1 ≥ 𝑀−1 ≻ 0. 

P7) If 𝑀 ≻ 0 and 𝜆 > 0 is a real number, then 𝜆𝑀 ≻ 0. 

P8) If 𝑀 ≻ 0 and 𝑁 ≻ 0, then 𝑀 + 𝑁 ≻ 0, 𝑀𝑁𝑀 ≻ 0, and 𝑁𝑀𝑁 ≻ 0. Also if 𝑀𝑁 =

𝑁𝑀, then 𝑀𝑁 ≻ 0. 

Theorem: For a rigid robotic manipulator described in Eq. (3.1), if the proposed hybrid 

PD-SMC law in Eq. (3.17) is applied to control a trajectory tracking of the robotic manipulator, 

and the following conditions in Eqs. (3.19) are satisfied, then the controlled robotic manipulator 

is globally asymptotically stable for the trajectory tracking and the tracking errors converge to 

zeros. 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝜆 > 0

𝐾𝑠 > ‖𝜏𝑑‖

𝐾 + 𝐶𝑇 ≻ 0

𝜆𝑚(𝐾𝑑) > 𝜆 ∙ 𝜆𝑀(𝑀)

𝜆𝑚�𝐾𝑝� > 𝜆2 ∙ 𝜆𝑀(𝑀)

𝜆𝑚(𝐾𝑑) >
1
2
∙ 𝜆𝑀(𝐾 + 𝐶𝑇)

𝜆𝑚(𝐾𝑑 − 𝜆𝑀) >
𝜆
2
∙ 𝜆𝑀(𝐾 + 𝐶𝑇)

 (3.19) 

 
where 𝐾 is a user-selected constant positive definite matrix. 

3.5.2 Proposition 

Let us introduce the following. 

Proposition: Assume a matrix 𝑄 is a symmetric matrix expressed as: 

 𝑄 = � 𝐴 𝐵
𝐵𝑇 𝐶� (3.20) 

 
Let 𝑆 be the Schur complement (Bristow, Tharayil, & Alleyne, 2006) of matrix 𝐴 in Q, 

that is, 

 𝑆 = 𝐶 − 𝐵𝑇𝐴−1𝐵 (3.21) 
 

Then the matrix 𝑄 is positive definite if and only if the matrices 𝐴 and 𝑆 are both positive 

definite. This means that if 𝐴 ≻ 0 and 𝑆 ≻ 0, then 𝑄 ≻ 0. 

Proof: See reference (Boyd & Vandenberghe, 2004). 

To prove the stability of the proposed hybrid PD-SMC law, the following matrix 𝑄 must 

first be proved to be positive definite. 

 
𝑄 = �

𝐾𝑝 𝜆𝑀
(𝜆𝑀)𝑇 𝑀

� (3.22) 
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Proof: 

As PD control gains are symmetric diagonal matrices with positive constant elements, 𝐾𝑝 

is a positive definite matrix 𝐾𝑝 ≻ 0. From property P1, we know that the matrix 𝑀 is symmetric 

positive definite, i.e. 𝑀 = 𝑀𝑇 and 𝑀 ≻ 0. Therefore, the matrix 𝑄 is a symmetric matrix. 

From conditions Eqs. (3.19), we have: 

 𝜆𝑚�𝐾𝑝� > 𝜆2 ∙ 𝜆𝑀(𝑀) > 0 (3.23) 
 

As 𝐾𝑝 and 𝑀 are positive definite, from Eq. (3.23) we can conclude: 

 𝐾𝑝 − 𝜆2𝑀 ≻ 0 (3.24) 
 

As 𝐾𝑝 ≻ 0 and 𝑀 ≻ 0, then according to properties P5 – P7, we obtain: 

 𝑀−1 ≻ 𝜆2𝐾𝑝−1 > 0 (3.25) 
 

According to the definition of a positive definite matrix, then Eq. (3.25) can be written as: 

 𝑀−1 − 𝜆2𝐾𝑝−1 ≻ 0 (3.26) 
 

Furthermore, based on Eq. (3.26) and 𝑀 ≻ 0, then according to property P8, we have: 

 𝑀�𝑀−1 − 𝜆2𝐾𝑝−1�𝑀 ≻ 0 (3.27) 
 

According to the property P1 and reorganizing Eq. (3.27) we have: 

 𝑆 = 𝑀 − (𝜆𝑀)𝑇𝐾𝑝−1(𝜆𝑀) ≻ 0 (3.28) 
 

Therefore, according to the Proposition and Eq. (3.21), we have proven that the matrix 𝑄 

in Eq. (3.22) is symmetric and positive definite. 
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3.5.3 Proof of Stability 

For the proposed hybrid PD-SMC law, we define the following Lyapunov function: 

 
𝑉 =

1
2

(𝑒𝑇 𝑒̇𝑇)𝑄 �𝑒𝑒̇� +
𝜆
2
𝑒𝑇(𝐾 + 𝐾𝑑)𝑒 

=
1
2

(𝑒𝑇 𝑒̇𝑇) �
𝐾𝑝 𝜆𝑀

(𝜆𝑀)𝑇 𝑀
� �𝑒𝑒̇� +

𝜆
2
𝑒𝑇(𝐾 + 𝐾𝑑)𝑒 

(3.29) 

 
Since 𝑄, 𝐾, and 𝐾𝑑 are symmetric positive definite matrices, the Lyapunov function in 

Eq. (3.29) is a positive definite function for all 𝑒 and 𝑒̇: 

 𝑉�𝑒(𝑡), 𝑒̇(𝑡)� > 0 (3.30) 
 

The time derivative of the Lyapunov function in Eq. (3.29) along the tracking errors can 

be written as: 

 
𝑉̇ = (𝑒𝑇 𝑒̇𝑇) �

𝐾𝑝 𝜆𝑀
(𝜆𝑀)𝑇 𝑀

� �𝑒̇𝑒̈�

+
1
2

(𝑒𝑇 𝑒̇𝑇) �
0 𝜆𝑀̇

�𝜆𝑀̇�
𝑇

𝑀̇
� �𝑒𝑒̇� + 𝜆𝑒𝑇(𝐾 + 𝐾𝑑)𝑒̇ 

= (𝑒𝑇 𝑒̇𝑇)

⎝

⎛
𝐾𝑝𝑒̇ +

𝜆𝑀̇
2
𝑒̇ + 𝜆𝑀𝑒̈

𝜆𝑀̇
2
𝑒 + 𝜆𝑀𝑒̇ +

𝑀̇
2
𝑒̇ + 𝑀𝑒̈⎠

⎞ + 𝜆𝑒𝑇(𝐾 + 𝐾𝑑)𝑒̇ 

(3.31) 

From Eq. (3.3), Eq. (3.6), and Eq. (3.17) we have: 

 𝑀𝑒̈ = 𝜏𝑑 − 𝐶𝑒̇ − 𝐾𝑝𝑒 − 𝐾𝑑𝑒̇ − 𝐾𝑠𝑠𝑔𝑛(𝑒̇ + 𝜆𝑒) (3.32) 
 

According to property P2, we have: 

 
𝑥𝑇 �

𝑀̇
2
− 𝐶�𝑥 = 0 (3.33) 
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From the properties of skew symmetric matrices, Eq. (3.33) holds true for all 𝑥. Applying 

Eq. (3.33) and Eq. (3.32) into Eq. (3.31) and using property P3 we obtain the following: 

 𝑉̇ = −𝜆𝑒𝑇𝐾𝑝𝑒 − 𝑒̇𝑇(𝐾𝑑 − 𝜆𝑀)𝑒̇ +  𝜆𝑒̇𝑇(𝐾 + 𝐶𝑇)𝑒
+ (𝜆𝑒𝑇 + 𝑒̇𝑇) �𝜏𝑑 − 𝐾𝑠𝑠𝑔𝑛�𝑒 + 𝜆𝑒̇ �� 

(3.34) 

 
According to the conditions in Eq. (3.19), we have 𝐾 + 𝐶𝑇 ≻ 0 , then the following 

inequality holds: 

 0 ≺ 𝐾 + 𝐶𝑇 ≺ 𝜆𝑀(𝐾 + 𝐶𝑇) (3.35) 
 

From Eq. (3.35), we have: 

 
𝑒̇𝑇(𝐾 + 𝐶𝑇)𝑒 ≤ 𝑒𝑇

𝜆𝑀(𝐾 + 𝐶𝑇)
2

𝐼𝑒 + 𝑒̇𝑇
𝜆𝑀(𝐾 + 𝐶𝑇)

2
𝐼𝑒̇ (3.36) 

 
Submitting Eq. (3.36) into Eq. (3.34) and simplifying, we obtain the following: 

 
𝑉̇ ≤ −𝜆𝑒𝑇 �𝐾𝑝 −

1
2
𝜆𝑀(𝐾 + 𝐶𝑇)𝐼� 𝑒 − 𝑒̇𝑇 �𝐾𝑑 − 𝜆𝑀 −

𝜆
2
𝜆𝑀(𝐾 + 𝐶𝑇)𝐼� 𝑒̇

+ (𝜆𝑒𝑇 + 𝑒̇𝑇)�𝜏𝑑 − 𝐾𝑠𝑠𝑔𝑛(𝑒̇ + 𝜆𝑒)� 
(3.37) 

According to the conditions in Eq. (3.19) we have: 

 

�
𝐾𝑝 −

1
2
𝜆𝑀(𝐾 + 𝐶𝑇)𝐼 ≻ 0

𝐾𝑑 − 𝜆𝑀 −
𝜆
2
𝜆𝑀(𝐾 + 𝐶𝑇)𝐼 ≻ 0

 (3.38) 

 
Therefore, we can prove that: 

 

�
−𝜆𝑒𝑇 �𝐾𝑝 −

1
2
𝜆𝑀(𝐾 + 𝐶𝑇)𝐼� 𝑒 ≤ 0

−𝑒̇𝑇 �𝐾𝑑 − 𝜆𝑀 −
𝜆
2
𝜆𝑀(𝐾 + 𝐶𝑇)𝐼� 𝑒̇ ≤ 0

 (3.39) 
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Also, according to condition Eq. (3.19) and the property P4, we have: 

 (𝜆𝑒𝑇 + 𝑒̇𝑇)𝐾𝑠𝑠𝑔𝑛(𝑒̇ + 𝜆𝑒) = |𝜆𝑒𝑇 + 𝑒̇𝑇|𝐾𝑠 
≥ |𝜆𝑒𝑇 + 𝑒̇𝑇|‖𝜏𝑑‖ 
≥ (𝜆𝑒𝑇 + 𝑒̇𝑇)𝜏𝑑 

(3.40) 

 
From Eq. (3.40), we have: 

 (𝜆𝑒𝑇 + 𝑒̇𝑇)�𝜏𝑑 − 𝐾𝑠𝑠𝑔𝑛(𝑒̇ + 𝜆𝑒)� ≤ 0 (3.41) 
 
 

Taking Eq. (3.41) and Eq.(3.39) and submitting them into Eq. (3.37), we finally 

conclude: 

 𝑉̇ ≤ 0 (3.42) 
 
 

The only instance that 𝑉̇ = 0  is when 𝑒 = 𝑒̇ = 0 . Since the Lyapunov function 𝑉  is 

positive definite and 𝑉̇ is negative definite, the robot manipulator represented in Eq. (3.1) and 

controlled by the proposed hybrid PD-SMC law Eq. (3.17) is globally asymptotically stable 

based on the Lyapunov method, and the tracking error and its derivative are zeros. This means 

that: 

 
�

lim
𝑡→∞

𝑒 = 0

lim
𝑡→∞

𝑒̇ = 0
 (3.43) 

 

3.6 REMARKS 

It should be noted that the switching term in the hybrid PD-SMC law Eq. (3.17) is 

discontinuous and could introduce chatter in the system. In order to avoid this, a method of 
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smoothing the controlled input torque will be used by introducing a boundary layer (𝜙) along 

with a saturation function (Slotine & Li, 1991). The modified control law is: 

 𝜏𝐻(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑𝑒̇(𝑡) + 𝐾𝑠𝑠𝑎𝑡 �
𝑠
𝜙
� (3.44) 

 
The saturation function is defined as: 

 

𝑠𝑎𝑡 �
𝑠
𝜙
� = �

𝑠
𝜙

𝑖𝑓 �
𝑠
𝜙
� ≤ 1

𝑠𝑔𝑛 �
𝑠
𝜙
� 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.45) 
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Chapter 4 :      SIMULATION AND RESULTS 
In this chapter, a number of simulations for trajectory tracking control of robot 

manipulators will be performed based on the proposed hybrid PD-SMC law. To do this, two 

virtual robotic manipulators will be used. The first manipulator is a three-DOF serial planar 

manipulator with a 3R configuration. The second manipulator is a two-DOF closed-chain planar 

manipulator in a parallel 5R configuration. In addition to establishing the mechanisms required 

for simulation, detailed trajectory planning is performed to ensure smooth motions in all active 

joints.  

4.1 SIMULATION SETUP 

4.1.1 Serial Manipulator 

The serial robotic manipulator used for the simulation consists of 𝑛 = 3  links of length 

𝐿𝑖  that are actuated about three revolute joints where the subscript 𝑖 denotes the link or joint 

number. The motion of the manipulator is planar and the links are rigid with centers of mass at a 

distance 𝑟𝑖  from the preceding joint along its length. The angle of each link relative to the 

preceding one is denoted by 𝑞𝑖 . The end-effector Cartesian coordinates are denoted (𝑥𝑒𝑒 ,𝑦𝑒𝑒) 

while the pose of the end-effector, 𝑞, is denoted without a subscript and is the sum of the joint 

angles of the manipulator. A diagram of the basic 3R configuration is shown in Figure 4.1 and 

the specific structural parameters used for the manipulator in the simulations are listed in Table 

4.1. 
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Figure 4.1: Serial 3R Robotic Manipulator 

 

Table 4.1: Structural Parameters of the 3R Serial Manipulator 

Link 
𝑬 

Mass 
𝒎𝑬 (𝒌𝒔) 

Length 
𝑳𝑬 (𝒎) 

Distance to Mass 
Center 𝑪𝑬 (𝒎) 

Inertia 
𝑰𝑬 (𝒌𝒔𝒎𝟐) 

1 1.00 0.50 0.25 0.10 
2 1.00 0.50 0.25 0.10 
3 0.50 0.30 0.15 0.05 

Also integrated into the dynamic model of the 3R manipulator are the moment of inertia 

and viscous damping of a servomotor at each controlled joint. The integrated model of the 

manipulator then is represented by: 

 𝑀�(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐵𝑞̇ + 𝐺(𝑞) = 𝜏(𝑡) (4.1) 
 
where 𝑀� = 𝑀 + 𝐽, 𝐽 is a 3 × 3 matrix containing servomotor inertias and 𝐵 is a 3 × 3 matrix 

containing the servomotor viscous damping coefficients. Each motor has 𝐽𝑖 = 0.05 𝑘𝑔𝑚2 and 

𝐵𝑖 = 0.07 𝑁𝑚𝑠. The detailed dynamic parameters for the 3R manipulator are located in the 

Appendices. 
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4.1.2 Parallel Manipulator 

The parallel manipulator used for the simulation consists of 𝑛 = 5  links of length 𝐿𝑖  

with two degrees of freedom. The scheme of the manipulator and its workspace are shown in 

Figure 4.2. The active angles of the manipulator are  𝑞1 and 𝑞2, actuated about points 𝑂1 and 𝑂2. 

The numbering conventions for the link masses, joints, centers of mass, and moments of inertia 

are the same as those for the serial manipulator. Also like the serial manipulator, the links are 

assumed to be rigid and the motion of the manipulator is planar. The specific structural 

parameters for the parallel manipulator used in the simulations is are listed in Table 4.2. The base 

link, whose joints are located at 𝑂1 and 𝑂2, is denoted as Link 5. 

 

Figure 4.2: Parallel 5R Robotic Manipulator 

Because this is a two-DOF mechanism, 𝑞3 and 𝑞4 are written as functions of 𝑞1 and 𝑞2 . 

The dynamic model of the mechanism is derived using the reduced model method given by 

(Ghorbel, 1995) and is derived as: 
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�
𝑀�(𝑞′)𝑞̈ + 𝐶(𝑞′, 𝑞̇′)𝑞̇ + 𝐵𝑞̇ + 𝐺(𝑞′) = 𝜏(𝑡)

𝑞̇′ = 𝜌(𝑞′)𝑞̇
𝑞′ = 𝜎(𝑞)

 (4.2) 

 
where 

𝑞 = [𝑞1 𝑞2]𝑇,  𝑞′ = [𝑞1 𝑞2 𝑞3 𝑞4]𝑇 

𝑞̇ = [𝑞̇1 𝑞̇2]𝑇,  𝑞̇′ = [𝑞̇1 𝑞̇2 𝑞̇3 𝑞̇4]𝑇 

and the dynamic parameter coefficients are defined the same way as for the serial manipulator 

except are 2 × 2 instead of  3 × 3 because of the change in the number of degrees of freedom. 

Each motor has 𝐽𝑖 = 0.05 𝑘𝑔𝑚2 and 𝐵𝑖 = 0.05 𝑁𝑚𝑠. The definitions of 𝜌(𝑞′), 𝜎(𝑞), as well as 

the detailed dynamic parameters of the 5R manipulator are given in the Appendices. 

Table 4.2: Structural Parameters of the 5R Parallel Manipulator 

Link 
𝑬 

Mass 
𝒎𝑬 (𝒌𝒔) 

Length 
𝑳𝑬 (𝒎) 

Distance to Mass 
Center 𝑪𝑬 (𝒎) 

Inertia 
𝑰𝑬 (× 𝟏𝟎−𝟐 𝒌𝒔𝒎𝟐) 

1 0.91 0.080 0.006 0.847 
2 0.28 0.100 0.028 0.630 
3 0.38 0.250 0.125 4.002 
4 0.38 0.250 0.125 4.002 
5 − 0.250 − − 

 
These link lengths ensure that the input links of the parallel manipulator have full 

rotatability (Ting, 1989). 

4.2 TRAJECTORY PLANNING FOR SIMULATIONS 

The desired trajectories for each link of the mechanisms are composed of a number of 

path segments. The mechanisms exhibit stop-and-go motion for each segment. In order to ensure 

smooth trajectories for each joint, a fifth order polynomial is used to parametrically establish 



47 
 

segment’s position, velocity, and acceleration as a function of time (Craig, 2005). A constraint is 

applied that ensures the initial and final velocities and accelerations for each path segment are 

zero. The fifth-order polynomial is given as: 

 
𝑠𝑐(𝑡) = 6 �

𝑡
𝑇
�
5
− 15 �

𝑡
𝑇
�
4

+ 10 �
𝑡
𝑇
�
3
 (4.3) 

 
The first and second derivative are used for define the desired velocities and accelerations, 

respectively, of each segment and are given as: 

 

⎩
⎪
⎨

⎪
⎧ 𝑠̇𝑐(𝑡) =

1
𝑇
�30 �

𝑡
𝑇
�
4
− 60 �

𝑡
𝑇
�
3

+ 30 �
𝑡
𝑇
�
2
�

𝑠̈𝑐(𝑡) =
1
𝑇2

�120 �
𝑡
𝑇
�
3
− 180 �

𝑡
𝑇
�
2

+ 60 �
𝑡
𝑇
��

 (4.4) 

 
where 𝑡 is the amount of time elapsed into the current segment and 𝑇 is the total duration of the 

current path segment. A sampling rate of 500[𝐻𝑧] was sufficient for contours for the serial 

manipulator, while a higher sampling rate of 5000 [𝐻𝑧] was used for the parallel manipulator 

contours in order to smooth the control torque. 

4.2.1 Linear Contours 

Using the parameters defined in Eqs. (4.3) and (4.4), a contour composed of linear 

segments is defined on the end-effector level. The end-effector Cartesian coordinates are defined 

by the vector 𝑃, where 𝑃 = (𝑥𝑒𝑒 ,𝑦𝑒𝑒 ,𝑞) for the serial manipulator and 𝑞 is the pose angle. For 

the parallel manipulator, 𝑃 = (𝑥𝑒𝑒,𝑦𝑒𝑒). Each segment is defined as follows: 

 𝑃𝑑(𝑡) = (𝑃𝑓 − 𝑃𝑖)𝑠𝑐(𝑡) (4.5) 

 



48 
 

where 𝑃𝑑(𝑡) is the desired contour segment vector as a function of time, and 𝑃𝑖 and 𝑃𝑓 are the 

initial and final values of the contour segment vector, respectively. A series of linear translation 

segments of the end-effector’s Cartesian coordinates comprise the diamond and zigzag contours 

of the manipulators. Given the desired trajectory of the end-effector, the desired trajectories in 

the joint space are calculated using the inverse kinematics in the Appendices. The endpoints for 

each segment of the zigzag and diamond contours for the serial manipulator in the task space are 

listed in Table 4.3. It should be noted that each segment for the linear contours has a duration of 

2 seconds. The joint space positions and velocities for the serial manipulator are listed in Table 

4.4. For the parallel manipulator, the contour endpoint information is listed in Table 4.5 for the 

task space and in Table 4.6 for the joint space.  Figure 4.3 to Figure 4.14 show the joint space 

and task space positions and velocities for both manipulators. 

 

Table 4.3: Linear Contour Segment End-effector Endpoints for Serial Manipulator 

 Segment 1 Segment 2 Segment 3 Segment 4 
 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 
Zigzag         
𝒙𝒆𝒆(𝒎) −0.50 −0.25 −0.25 0 0 0.25 0.25 0.50 
𝒚𝒆𝒆(𝒎) 0 0.50 0.50 0 0 0.50 0.50 0 
𝒒(𝑪𝑬𝒅) −0.75𝜋 −𝜋 −𝜋 −0.50𝜋 −0.50𝜋 0 0 −0.25𝜋 

Diamond         
𝒙𝒆𝒆(𝒎) −0.15 0 0 0.15 0.15 0 0 −0.15 
𝒚𝒆𝒆(𝒎) 0 −0.70 −0.70 0 0 0.70 0.70 0 
𝒒(𝑪𝑬𝒅) 0 −0.50𝜋 −0.50𝜋 −𝜋 −𝜋 −1.5𝜋 −1.5𝜋 −2.0𝜋 
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Table 4.4: Linear Contour Segment Joint Position Endpoints for Serial Manipulator 

 Segment 1 Segment 2 Segment 3 Segment 4 
 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 
Zigzag         
𝒒𝟏(𝑪𝑬𝒅) 7.585 6.710 6.710 6.588 6.588 6.909 6.909 5.713 
𝒒𝟐(𝑪𝑬𝒅) −3.873 −4.195 −4.195 −3.751 −3.751 −4.195 −4.195 −3.873 
𝒒𝟑(𝑪𝑬𝒅) −6.069 −5.657 −5.657 −4.408 −4.408 −2.715 −2.715 −2.626 

Diamond         
𝒒𝟏(𝑪𝑬𝒅) 2.038 3.553 3.553 5.179 5.179 6.695 6.695 8.321 
𝒒𝟐(𝑪𝑬𝒅) 2.208 2.319 2.319 2.208 2.208 2.319 2.319 2.208 
𝒒𝟑(𝑪𝑬𝒅) −4.246 −7.442 −7.442 −10.53 −10.53 −13.73 −13.73 −16.81 

 
Figure 4.3: Zigzag Contour Task Space Positions and Velocities for Serial Manipulator 
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Figure 4.4: Zigzag Contour Joint Positions and Velocities for Serial Manipulator 

 
Figure 4.5: Desired Zigzag End-effector Contour for Serial Manipulator 
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Figure 4.6: Diamond Contour Task Space Positions and Velocities for Serial Manipulator 

 

Figure 4.7: Diamond Contour Joint Positions and Velocities for Serial Manipulator 
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Figure 4.8: Desired Diamond End-effector Contour for Serial Manipulator 

Table 4.5: Linear Contour Segment End-effector Endpoints for Parallel Manipulator 

 Segment 1 Segment 2 Segment 3 Segment 4 
 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 
Zigzag         
𝒙𝒆𝒆(𝒎) 0.10 0.13 0.13 0.16 0.16 0.19 0.19 0.22 
𝒚𝒆𝒆(𝒎) 0.18 0.22 0.22 0.18 0.18 0.22 0.22 0.18 

Diamond         
𝒙𝒆𝒆(𝒎) 0.10 0.16 0.16 0.22 0.22 0.16 0.16 0.10 
𝒚𝒆𝒆(𝒎) 0.20 0.26 0.26 0.20 0.20 0.14 0.14 0.20 

 

Table 4.6: Linear Contour Segment Joint Position Endpoints for Parallel Manipulator 

 Segment 1 Segment 2 Segment 3 Segment 4 
 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 𝑃𝑖 𝑃𝑓 
Zigzag         
𝒒𝟏(𝑪𝑬𝒅) 3.063 2.381 2.381 2.366 2.366 1.772 1.772 1.682 
𝒒𝟐(𝑪𝑬𝒅) 0.746 0.706 0.706 0.161 0.161 0.255 0.255 −0.389 
𝒒𝟑(𝑪𝑬𝒅) −2.295 −1.661 −1.661 −1.847 −1.847 −1.170 −1.170 −1.269 
𝒒𝟒(𝑪𝑬𝒅) 1.931 1.766 1.766 2.265 2.265 1.993 1.993 2.472 

Diamond         
𝒒𝟏(𝑪𝑬𝒅) 2.849 1.727 1.727 1.562 1.562 2.616 2.616 2.849 
𝒒𝟐(𝑪𝑬𝒅) 0.845 0.768 0.768 −0.142 −0.142 −0.269 −0.269 0.845 
𝒒𝟑(𝑪𝑬𝒅) −2.063 −0.918 −0.918 −1.062 −1.062 −2.205 −2.205 −2.063 
𝒒𝟒(𝑪𝑬𝒅) 1.772 1.507 1.507 2.255 2.255 2.681 2.681 1.772 
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Figure 4.9: Zigzag Contour Task Space Positions and Velocities for Parallel Manipulator 

 

Figure 4.10: Zigzag Contour Joint Positions and Velocities for Parallel Manipulator 
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Figure 4.11: Desired Zigzag End-effector Contour for Parallel Manipulator 

 

 

Figure 4.12: Diamond Contour Task Space Positions and Velocities for Parallel Manipulator 
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Figure 4.13: Diamond Contour Joint Positions and Velocities for Parallel Manipulator 

 

 

Figure 4.14: Desired Diamond End-effector Contour for Parallel Manipulator 
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4.2.2 Nonlinear Contours 

Nonlinear contours are constructed parametrically as a function of time using an angular 

parameter defined as: 

 𝜃𝑑(𝑡) = (𝜃𝑓 − 𝜃𝑖)𝑠𝑐(𝑡) (4.6) 

where 𝜃𝑖 and 𝜃𝑓 are the initial and final values of this parameter, respectively. For both the serial 

and parallel manipulators, circular and elliptical contours are used for the simulation composed 

of a single movement segment. For each contour, 𝜃𝑖 = 0[𝑟𝑎𝑑] and 𝜃𝑓 = 2𝜋 [𝑟𝑎𝑑], indicating a 

single end-effector revolution with smooth joint motion, as ensured by the definition of 𝑠(𝑡). 

A circular end-effector contour is defined parametrically as a function of time by: 

 �
𝑥𝑒𝑒(𝑡) = 𝑥0 + 𝑅 cos(𝜃𝑑(𝑡))
𝑦𝑒𝑒(𝑡) = 𝑦0 + 𝑅 sin(𝜃𝑑(𝑡))  (4.7) 

 
where the coordinates (𝑥0,𝑦0) are the coordinates of the center of the circle and 𝑅 represents the 

radius. 

The parametric representation of an elliptical contour as a function of time and centered 

at (𝑥0,𝑦0)  is similar to that of a circular contour: 

 
�
𝑥𝑒𝑒(𝑡) = 𝑥0 + 𝑅𝑥 cos(𝜃𝑑(𝑡))
𝑦𝑒𝑒(𝑡) = 𝑦0 + 𝑅𝑦 sin(𝜃𝑑(𝑡)) (4.8) 

where 𝑅𝑥 is the radius of the ellipse along the 𝑥-axis and 𝑅𝑦 is the radius of the ellipse along the 

𝑦-axis. Eq. (4.8) reduces to the parametric equation of a circle when 𝑅𝑥 = 𝑅𝑦 = 𝑅. 

The circular contour parameters for the serial manipulator are shown in Table 4.7 while 

the elliptical contour parameters are shown in Table 4.9. The initial and final coordinates and 

poses for serial manipulator circular and elliptical contours are given in Table 4.8, where the 
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pose is determined in the same manner as Eq. (4.5). The contour information for the serial 

manipulator in both the task and joint spaces are shown graphically in Figure 4.15 to Figure 4.20. 

 
Table 4.7: Circular Contour Parameters for Serial Manipulator 

𝒙𝟎 (𝒎) 𝒚𝟎 (𝒎) 𝑹 (𝒎) Duration (𝒔𝒆𝑷) 
0 0.1 0.4 5 

 
 

Table 4.8: Circular Contour Initial and Final Positions for Serial Manipulator 

 Initial Value Final Value 
𝒙𝒆𝒆(𝒎) 0.4 0.4 
𝒚𝒆𝒆(𝒎) 0.1 0.1 
𝒒(𝑪𝑬𝒅) 0 0 

 

 

Figure 4.15: Circular Contour Task Space Positions and Velocities for Serial Manipulator 
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Figure 4.16: Circular Contour Joint Positions and Velocities for Serial Manipulator 

 

Figure 4.17: Desired Circular End-effector Contour for Serial Manipulator 

 
 

0 1 2 3 4 5
-10

-5

0

5

10

15

Time (sec.)

Po
si

tio
n 

(ra
d)

Joint Position

 

 

q1

q2

q3

0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (sec.)

Ve
lo

ci
ty

 (r
ad

/s
)

Joint Velocity

-0.4 -0.2 0 0.2 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x-Position (m)

y-
P

os
iti

on
 (m

)

Desired Circular Contour



59 
 

Table 4.9: Elliptical Contour Parameters for Serial Manipulator 

𝒙𝟎 (𝒎) 𝒚𝟎 (𝒎) 𝑹 𝒙(𝒎) 𝑹 𝒚(𝒎) Duration (𝒔𝒆𝑷) 
0 0 0.2 0.5 8 

 
 

Table 4.10: Elliptical Contour Initial and Final Positions for Serial Manipulator 

 Initial Value Final Value 
𝒙𝒆𝒆(𝒎) 0.2 0.2 
𝒚𝒆𝒆(𝒎) 0 0 
𝒒(𝑪𝑬𝒅) -π π 

 

 

Figure 4.18: Elliptical Contour Task Space Positions and Velocities for Serial Manipulator 
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Figure 4.19: Elliptical Contour Joint Positions and Velocities for Serial Manipulator 

 

Figure 4.20: Desired Elliptical End-effector Contour for Serial Manipulator 
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for end-effector of the parallel manipulator are given in Table 4.12 and Table 4.14. The task and 

joint space positions of the parallel manipulator for nonlinear are shown in Figure 4.21 to Figure 

4.28. 

 
Table 4.11: Circular Contour Parameters for Parallel Manipulator 

𝒙𝟎 (𝒎) 𝒚𝟎 (𝒎) 𝑹 (𝒎) Duration (𝒔𝒆𝑷) 
0.16 0.20 0.06 10 

 
 

Table 4.12: Circular Contour Initial and Final Positions for Parallel Manipulator 

 Initial Value Final Value 
𝒙𝒆𝒆(𝒎) 0.22 0.22 
𝒚𝒆𝒆(𝒎) 0.20 0.20 

 
 

 

Figure 4.21: Circular Contour Task Space Positions and Velocities for Parallel Manipulator 
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Figure 4.22: Circular Contour Joint Positions and Velocities for Parallel Manipulator 

 

 

Figure 4.23: Desired Circular End-effector Contour for Parallel Manipulator 

 

Table 4.13: Elliptical Contour Parameters for Parallel Manipulator 

 𝒙𝟎 (𝒎) 𝒚𝟎 (𝒎) 𝑹 𝒙(𝒎) 𝑹 𝒚(𝒎) Duration (𝒔𝒆𝑷) 
Horizontal Ellipse 0.16 0.20 0.06 0.01 6 
Vertical Ellipse 0.16 0.20 0.02 0.06 4 
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Table 4.14: Elliptical Contour Initial and Final Positions for Parallel Manipulator 

 Initial Value Final Value 
Horizontal Ellipse  

𝒙𝒆𝒆(𝒎) 0.22 0.22 
𝒚𝒆𝒆(𝒎) 0.20 0.20 

Vertical Ellipse  
𝒙𝒆𝒆(𝒎) 0.18 0.18 
𝒚𝒆𝒆(𝒎) 0.20 0.20 

 

 

Figure 4.24: Horizontal Elliptical Contour Task Space Positions and Velocities for Parallel Manipulator 
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Figure 4.25: Horizontal Elliptical Contour Joint Positions and Velocities for Parallel Manipulator 

 

Figure 4.26: Vertical Elliptical Contour Task Space Positions and Velocities for Parallel Manipulator 

 

0 2 4 6
-3

-2

-1

0

1

2

3

Time (sec.)

P
os

iti
on

 (r
ad

)

Joint Position

 

 

q1

q2

q3

q4

0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec.)

V
el

oc
ity

 (r
ad

/s
)

Joint Velocity

0 1 2 3 4

0.16

0.18

0.2

0.22

0.24

0.26

Time (sec.)

P
os

iti
on

 (m
)

Task Space End Effector Position

 

 
xee

yee

0 1 2 3 4
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Time (sec.)

V
el

oc
ity

 (m
/s

)

Task Space End Effector Velocity



65 
 

 

Figure 4.27: Vertical Elliptical Contour Joint Positions and Velocities for Parallel Manipulator 

 

 

Figure 4.28: Desired Parallel Manipulator End-effector Contours for (a) Horizontal Elliptical (b) Vertical Elliptical 
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as an index to measure the relative performance of the manipulator for each parameter variation. 

For the simulations, each axis uses equal values to one another for any given control parameter, 

which means each control parameter is a constant diagonal matrix. The baseline control 

parameters for this simulation are: 

𝐾𝑝 = �
5000 0 0

0 5000 0
0 0 5000

�  𝐾𝑑 = �
1000 0 0

0 1000 0
0 0 1000

�  

𝐾𝑠 = �
5 0 0
0 5 0
0 0 5

�  𝜆 = �
10 0 0
0 10 0
0 0 10

�  

 
A boundary layer of 𝜙 = 0.5 is used for each axis. Table 4.15 shows the ranges of values that 

were used for each control parameter for the simulations. The increment of each parameter for 

the following calculation depends on the current value of the parameter. For gains between 0 and 

10 the increment is 1, between 10 and 100 the increment is 10, between 100 and 1000 the 

increment is 100, and between 1000 and 10000 the increment is 1000. 

Table 4.15: Control Parameter Variation Ranges 

Control Parameter Minimum Value Maximum Value 
𝐾𝑝 10 10000 
𝐾𝑑 0 10000 
𝐾𝑠 1 200 
𝜆 0 200 

 
The effects of the variation of the proportional gain (𝐾𝑝) are shown in Figure 4.29 and 

Figure 4.30. It is evident that an increase in the proportional gain results in a decrease in the 

magnitude of joint and end-effector tracking error (𝑒), and a decrease in magnitude of contour 

error (𝜀). As 𝐾𝑝 becomes large, the decrease in mean contour error and contour error boundaries 

stabilize. In the case of the serial manipulator for a linear contour, the mean contour error falls 
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below 10−4 [𝑚]  at proportional gain values above 𝐾𝑝 ≈ 6000 . For the nonlinear contour, 

although the mean contour error stabilizes quickly, the error boundaries continue to decrease at 

values over 𝐾𝑝 ≈ 8000. 

 

Figure 4.29: Errors for Varying Proportional Gains for a Linear Contour 

 

Figure 4.30: Errors for Varying Proportional Gains for a Nonlinear Contour 

Figure 4.31 and Figure 4.32 show that an increase in the derivative gain (𝐾𝑑) also results 
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performance is only slightly improved for values larger than 𝐾𝑑 ≈ 2000. It shows that relatively 

small derivative gains are sufficient to achieve good contour tracking performance. 

 

Figure 4.31: Errors for Varying Derivative Gains for a Linear Contour 

 

Figure 4.32: Errors for Varying Derivative Gains for a Nonlinear Contour 

The effect of varying the SMC gain (𝐾𝑠) are shown in Figure 4.33 and Figure 4.34. It can 

be seen that the tracking and contour errors decrease with increasing SMC gain. While the error 

boundaries show a reasonable decrease with larger values of 𝐾𝑠, the mean contour error does not 

change significantly and falls below 10−4 [𝑚] at values of SMC gain above 𝐾𝑠 ≈ 50 for these 

control parameter values. 
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Figure 4.33: Errors for Varying SMC Gains for a Linear Contour 

 

Figure 4.34: Errors for Varying SMC Gains for a Nonlinear Contour 

Finally, the effects of varying the bandwidths (𝜆) of the controllers are shown in Figure 

4.35 and Figure 4.36. Although there is a decrease in mean contour error resulting from an 

increase in bandwidth, the effect is relatively small. The error boundaries, however, are shown to 

decrease in magnitude until a certain point at which the change in error stabilizes. 
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Figure 4.35: Errors for Varying Bandwidths for a Linear Contour 

 

Figure 4.36: Errors for Varying Bandwidths for a Nonlinear Contour 

Although equal gains are used for all the active joints, in practice the gains for each joint 

may differ from one another and may be tuned for individual performance. In this case, it is 

expected that the gains for axis 2 and axis 3 of the serial manipulator will be smaller than those 

of axis 1 since the added masses and inertias for the latter axes will require larger control gains 

for axis 1, the base joint. 

It should be noted that the behaviour of the system with varying proportional and 

derivative gains is similar to that of a PD-controlled system. A difference in interpretation, 
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however, should be noted in that 𝐾𝑝 and 𝐾𝑑 serve to replace the equivalent dynamics of a pure 

SMC system. In this regard, instead of the controller being tuned to produce zero tracking error 

directly, the proportional and derivative gains can be seen as “pushing” the system onto the 

sliding surface such that 𝑠̇ = 0. Also, from the definition of the sliding surface Eq. (3.6), the 

bandwidth can be interpreted as a scaling factor for the joint position and velocity errors. As 

such, 𝜆 should initially be selected such that the position and velocity errors are of roughly the 

same magnitude. 

Based on the observed behaviour of the hybrid control law, the following algorithm can 

be used for simple tuning of the hybrid PD-SMC law: 

1. Set 𝐾𝑠 = 0, and select 𝐾𝑝 and 𝐾𝑑 by trial and error or employing an algorithm for PD-

type controllers. 

2. Select 𝜆 such that the position errors are scaled to roughly the same magnitudes as the 

velocity errors. 

3. Increase 𝐾𝑠 until desired contour performance is achieved. 

4. Select a boundary layer thickness, 𝜙, to smooth the control torque input, as desired. 

5. Fine tune control parameters, as needed. 

4.3 SERIAL MANIPULATOR SIMULATION RESULTS 

The control parameters used for the serial manipulator in the following simulations are 

listed in Table 4.16. Boundary layer thicknesses were applied to smooth the control torque inputs 

for the SMC and the hybrid PD-SMC controllers, as desired, and are also listed in the table. 
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Table 4.16: Control Parameters for Serial Manipulator Simulations 

Controller 
Type 

Linear Contours Circular Contour Elliptical Contour 

PD 
𝐾𝑝 = 𝑑𝑖𝑎𝑔{7700,7500,2100} 
𝐾𝑑 = 𝑑𝑖𝑎𝑔{2000,1200,1200} 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{9200,8300,2200} 
𝐾𝑑 = 𝑑𝑖𝑎𝑔{2400,1600,1400} 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{8200,8200,1800} 
𝐾𝑑 = 𝑑𝑖𝑎𝑔{1800,1100,1100} 

SMC 

𝐾𝑠 = 𝑑𝑖𝑎𝑔{65,30,20} 

𝜆 = 𝑑𝑖𝑎𝑔{25,15,10} 

𝜙 = 𝑑𝑖𝑎𝑔{0.25,0.3,0.25} 

𝐾𝑠 = 𝑑𝑖𝑎𝑔{55,35,25} 

𝜆 = 𝑑𝑖𝑎𝑔{22,15,10} 

𝜙 = 𝑑𝑖𝑎𝑔{0.25,0.3,0.25} 

𝐾𝑠 = 𝑑𝑖𝑎𝑔{45,20,18} 

𝜆 = 𝑑𝑖𝑎𝑔{25,20,10} 

𝜙 = 𝑑𝑖𝑎𝑔{0.25,0.3,0.25} 

PD-SMC 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{7700,7500,2100} 
𝐾𝑑 = 𝑑𝑖𝑎𝑔{2000,1200,1200} 
𝐾𝑠 = 𝑑𝑖𝑎𝑔{65,30,20} 

𝜆 = 𝑑𝑖𝑎𝑔{25,15,10} 

𝜙 = 𝑑𝑖𝑎𝑔{0.25,0.3,0.25} 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{9200,8300,2200} 
𝐾𝑑 = 𝑑𝑖𝑎𝑔{2400,1600,1400} 
𝐾𝑠 = 𝑑𝑖𝑎𝑔{55,35,25} 

𝜆 = 𝑑𝑖𝑎𝑔{22,15,10} 

𝜙 = 𝑑𝑖𝑎𝑔{0.25,0.3,0.25} 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{8200,8200,1800} 
𝐾𝑑 = 𝑑𝑖𝑎𝑔{1800,1100,1100} 
𝐾𝑠 = 𝑑𝑖𝑎𝑔{45,20,18} 

𝜆 = 𝑑𝑖𝑎𝑔{25,20,10} 

𝜙 = 𝑑𝑖𝑎𝑔{0.25,0.3,0.25} 

 
For the standard SMC simulations, the uncertainties of the dynamic models are applied 

by using the following estimations of parameter matrices: 

𝑀��(𝑞) = 0.9𝑀�(𝑞)  𝐶̂(𝑞, 𝑞̇) = 0.9𝐶(𝑞, 𝑞̇)    𝐺�(𝑞) = 1.1𝐺(𝑞) 
 

4.3.1 Zigzag Contour 

Using the controller gains listed in Table 4.16, good axial tracking performance was 

achieved for all three control schemes: PD, SMC, and PD-SMC in the simulation of the zigzag 

contour. It should be noted that the means and standard deviations (S.D.) recorded for each of the 

simulations were calculated from the absolute values of the errors. From the results displayed in 

Table 4.17, it can be seen that both the SMC and hybrid PD-SMC controller achieve better axial 

tracking performances than the standard PD controller. Although the PD-SMC controller 

achieved 44.1% (axis 1), 16.6% (axis 2), and 24.8%  (axis 3) smaller mean axial tracking errors 

than the PD controller, the SMC controller was able to outperform the PD-SMC controller in 
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both axis 1 and axis 3. The SMC controller, however, achieved an 18%  lower mean axial 

tracking error in axis 2. The joint space tracking errors can also be seen in Figure 4.37. 

Table 4.17: Mean and Standard Deviation of Axial Tracking Errors for Zigzag Motion of Serial Manipulator 

 Axis 1 Axis 2 Axis 3 
 Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) 

PD 0.0005401 0.0002137 0.0005415 0.0001434 0.0002236 8.349(10−5) 
SMC 0.0001287 5.159(10−5) 0.0005503 0.0001393 0.0001420 7.418(10−5) 

PD-SMC 0.0003020 0.0001169 0.0004515 0.0001204 0.0001682 6.053(10−5) 
 
 

 
Figure 4.37: Axial Tracking Error for Zigzag Motion of Serial Manipulator 

 

Also of interest is the tracking error of the end-effector in the task space. The means and 

standard deviations of these errors for the zigzag contour are listed in Table 4.18. From the 

displayed results it can be seen that the PD-SMC controller achieves better task space tracking 

performance of the end-effector than both the standard PD and SMC controllers. The hybrid PD-

SMC controller yielded 8.5% better total tracking performance than the SMC controller and 

24.2% better performance than the PD controller. The end-effector performance in the task 

space as well as the end-effector pose tracking error is shown in Figure 4.38. 
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Table 4.18: Mean and Standard Deviation of End-Effector Task Space Tracking Errors for Zigzag Motion of Serial 
Manipulator 

 x-axis y-axis Total Error Magnitude  
 Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) 

PD 0.0001230 5.215(10−5) 0.0003978 0.0001208 0.0003978 0.0001180 
SMC 8.503(10−5) 6.756(10−5) 0.0003138 0.0001534 0.0003295 0.0001588 

PD-SMC 7.003(10−5) 7.001(10−5) 0.0002896 9.47(10−5) 0.0003015 9.952(10−5) 
 

 

Figure 4.38: End-Effector Task Space Tracking Error for Zigzag Motion of the Serial Manipulator 

 

The contour errors of each of the three controllers are displayed in Figure 4.39. Table 

4.19 also lists the contour tracking performance of the controllers. From the results shown in 

Table 4.19, it can be seen that the hybrid PD-SMC controller achieves better contour tracking 

performance than both the PD and SMC controllers. The PD-SMC controller produced 19.8% 

smaller contour errors than the PD controller and 13.2% smaller contour errors than the SMC 

controller.  
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Figure 4.39: Contour Error for Zigzag Motion of the Serial Manipulator 

 

Table 4.19: Magnitude of Contour Tracking Performance for Zigzag Motion of Serial Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟐(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0001928 0.0001427 42.71% 

SMC 0.0001781 0.0001142 65.28% 
PD-SMC 0.0001546 0.0001013 75.96% 
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Figure 4.40: Zigzag Contour Tracking of PD, SMC, and PD-SMC Controllers for Serial Manipulator1 

 

To further illustrate the relative performance of the control laws, the amount of the 

motion that falls within a boundary of error of 2(10−4) [𝑚] was also recorded. That is, the 

percent of the motion that the magnitude of contour error is smaller than 2(10−4) [𝑚] is also 

listed in Table 4.19. While only 42.7% and 65.3% of the points traced along the zigzag contour 

fall within this boundary of error for the PD and SMC controllers, respectively, 76.0% of the 

contour errors for the PD-SMC controller are shown to be within this bound. Plots of the desired 

and actual contours are shown in Figure 4.40. 

The torque results listed in Table 4.20 show that for axis 1 and axis 3, the SMC controller 

produced the smallest maximum values of input torque, while the PD-SMC controller produced 

the largest maximum torques. For the second axis, the maximum input torques remained 

approximately equal for all three controllers. The torques produced by each of the controllers for 

each axis is shown in Figure 4.41. 

 

                                                 
1 Plots include an error magnification factor of 100 
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Table 4.20: Maximum Input Torques for Zigzag Motion of Serial Manipulator 

 𝝉𝟏 (𝑵𝒎) 𝝉𝟐 (𝑵𝒎) 𝝉𝟑 (𝑵𝒎) 
PD 9.075 5.558 0.8275 

SMC 8.875 5.762 0.7708 
PD-SMC 10.44 5.725 0.8796 

 
 
 

 
Figure 4.41: Input Torques for Zigzag Motion of Serial Manipulator 

 

4.3.2 Diamond Contour 

Similar to the zigzag contour, the results of the axial tracking performance for the 

diamond contour were good for all three simulated controllers. Once again the PD-SMC 

achieved better axial tracking results than the standard PD controller, as shown in Table 4.21. 

The PD-SMC yielded lower mean axial tracking errors than the PD controller by 43.7% (axis 1), 

16.4% (axis 2), and 23.6% (axis 3).  The SMC controller produced the best axial tracking results 

in axis 1 and axis 3 again, but was outperformed by the PD-SMC controller by 17.4% in axis 2. 

The standard deviations of the mean errors observed the same trend as the mean error 

magnitudes. Figure 4.42 shows the tracking errors in the joint space for the diamond contour. 
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Table 4.21: Mean and Standard Deviation of Axial Tracking Errors for Diamond Motion of Serial Manipulator 

 Axis 1 Axis 2 Axis 3 
 Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) 

PD 0.0005707 0.0002213 0.0003579 0.0002009 0.0001857 0.0001194 
SMC 0.0001453 5.528(10−5) 0.0003260 0.0002039 0.0001231 7.248(10−5) 

PD-SMC 0.0003211 0.0001231 0.0002991 0.0001680 0.0001419 9.346(10−5) 
 
 
 

 

Figure 4.42: Axial Tracking Error for Diamond Motion of Serial Manipulator 

From the results listed in Table 4.22, it is seen that the PD-SMC controller achieved the 

best end-effector task space tracking performance for the diamond contour as well. The hybrid 

controller produced 28.3% smaller total tracking error magnitudes than the PD controller and  

17.6% smaller tracking error magnitudes than the SMC controller. The PD-SMC also produced 

a smaller standard deviation for the total tracking error magnitude, outperforming the PD 

controller by 22.1% and the SMC controller by 46.6% in this field. The end-effector tracking 

errors are shown in Figure 4.43. 

Table 4.22: Mean and Standard Deviation of End-Effector Task Space Tracking Errors for Diamond Motion of Serial 
Manipulator 

 x-axis y-axis Total Error Magnitude  
 Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) 

PD 0.0001196 5.461(10−5) 0.0001750 7.720(10−5) 0.0002197 7.483(10−5) 
SMC 0.0001164 6.294(10−5) 0.0001458 9.889(10−5) 0.0001913 0.0001092 

PD-SMC 6.199(10−5) 5.625(10−5) 0.0001376 6.768(10−5) 0.0001576 5.833(10−5) 
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Figure 4.43: End-Effector Task Space Tracking Error for Diamond Motion of the Serial Manipulator 

In terms of contour tracking performances, the PD-SMC controller once again 

outperforms both of the other control schemes. The mean contour error magnitude for the PD-

SMC controller was more than  40% lower than those of the PD and SMC controllers. The 

standard deviation of these errors for the PD-SMC controller was also lower than the other two 

controllers by 38.2% and 53.4% for the PD and SMC controllers, respectively. These results 

indicate that the percent of the motion that the contour error magnitude is smaller than 

2(10−4) [𝑚] along the diamond contour for the PD-SMC controller is 100%. The corresponding 

percentages for the PD and SMC controller are 93% and 81%, respectively. The contour error 

for this simulation can be seen in Figure 4.44 while the plots of the desired and actual contours 

are shown in Figure 4.45. 

Table 4.23: Magnitude of Contour Tracking Performance for Diamond Motion of Serial Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟐(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0001163 5.619(10−5) 92.82% 

SMC 0.0001177 7.469(10−5) 80.79% 
PD-SMC 6.518(10−5) 3.472(10−5) 100% 
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Figure 4.44: Contour Error for Diamond Motion of the Serial Manipulator 

 

Figure 4.45: Diamond Contour Tracking of PD, SMC, and PD-SMC Controllers for Serial Manipulator2 

From the results shown in Table 4.24  and Figure 4.46, it is seen that all three controllers 

exhibit similar torque requirements for the diamond contour. The largest deviation in input 

                                                 
2 Plots include an error magnification factor of 100 
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torques is for axis 3, where both the PD and PD-SMC controllers produce about 10%  less 

maximum torque than the SMC controller. 

Table 4.24: Maximum Input Torques for Diamond Motion of Serial Manipulator 

 𝝉𝟏 (𝑵𝒎) 𝝉𝟐 (𝑵𝒎) 𝝉𝟑 (𝑵𝒎) 
PD 7.797 5.310 1.040 

SMC 7.965 5.346 1.164 
PD-SMC 7.679 5.304 1.009 

 

 
Figure 4.46: Input Torques for Diamond Motion of Serial Manipulator 

 

4.3.3 Circular Contour 

The simulations for the circular contour produced good axial tracking results for each 

controller, as indicated in Table 4.25. The same trend in relative axial tracking performance is 

once again present as the SMC controller yielded the best results for both axis 1 and axis 3. 

While the PD-SMC controller produced an estimated 30% smaller mean error magnitude and 

standard deviation of this error than the standard PD controller in these axes, the SMC controller 

yielded 30% and 20% smaller mean error magnitudes than the PD-SMC controller in axis 1 and 

axis 3, respectively. However, the PD-SMC controller once again had the best performance in 

axis 2, producing 16.4%  and 26.6%  smaller mean error magnitudes than the PD and SMC 

controllers, respectively. The axial tracking errors for the three controllers are displayed in 

Figure 4.47. 
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Table 4.25: Mean and Standard Deviation of Axial Tracking Errors for Circular Motion of Serial Manipulator 

 Axis 1 Axis 2 Axis 3 
 Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) 

PD 0.0005136 0.0002821 0.0003145 0.0001535 0.0002520 6.296(10−5) 
SMC 0.0002312 7.856(10−5) 0.0003585 0.0001651 0.0001436 3.267(10−5) 

PD-SMC 0.0003485 0.0001932 0.0002630 0.0001273 0.0001806 4.260(10−5) 
 
 

 
Figure 4.47: Axial Tracking Error for Circular Motion of Serial Manipulator 

 

The results for the magnitude of tracking error in the task space for the simulations are 

shown in Table 4.26. The PD-SMC controller produced better end-effector tracking results than 

the PD controller in both the 𝑥 and 𝑦 axes by 33.9% and 22.5%, respectively, in terms of the 

mean error magnitudes. The SMC controller, however, yielded better results than the PD-SMC in 

these fields by about 2% and 9% in the 𝑥 and 𝑦 axes, respectively. In terms of total task space 

tracking error magnitude, the PD-SMC controller produced a 24.5% smaller mean than the PD, 

while the SMC produced a 7.9% smaller mean than PD-SMC. The PD-SMC, however, yielded a 

6.5% smaller standard deviation of error magnitudes than the SMC controller. The task space 

tracking errors for the three controllers are displayed in Figure 4.48. 
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Table 4.26: Mean and Standard Deviation of End-Effector Task Space Tracking Errors for Circular Motion of Serial 
Manipulator 

 x-axis y-axis Total Error Magnitude  
 Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) 

PD 0.0001032 8.594(10−5) 0.0002655 0.0001053 0.0002970 0.0001068 
SMC 6.684(10−5) 5.257(10−5) 0.0001882 8.812(10−5) 0.0002065 8.798(10−5) 

PD-SMC 6.818(10−5) 7.672(10−5) 0.0002059 8.173(10−5) 0.0002242 8.224(10−5) 
 
  

 
Figure 4.48: End-Effector Task Space Tracking Error for Circular Motion of the Serial Manipulator 

 
It should be noted that for all nonlinear contours, the contour error was estimated by 

locally approximating the curve as a circle and using Eq. (2.10). The results listed in Table 4.27 

indicate that the contour tracking performance of the PD-SMC controller is superior to both the 
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than 15%  smaller standard deviation of contour error magnitudes than the standard PD 
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simulations are displayed in Figure 4.49 while the desired and actual plots are displayed in 

Figure 4.50. 

Table 4.27: Magnitude of Contour Tracking Performance for Circular Motion of Serial Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟐(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0001133 9.136(10−5) 84.45% 

SMC 0.0001244 7.698(10−5) 85.37% 
PD-SMC 9.422(10−5) 7.545(10−5) 88.36% 

 

 

Figure 4.49: Contour Error for Circular Motion of the Serial Manipulator 
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Figure 4.50: Circular Contour Tracking of PD, SMC, and PD-SMC Controllers for Serial Manipulator3 

 

The maximum torques required for each controller are listed in Table 4.28. The 

maximum torque required for axis 1 is largest for the PD-SMC controller, but for axis 2 and axis 

3, the SMC controller produced the largest maximum torque. For axis 1, the maximum torque 

required of the SMC controller is 20.6% lower than the maximum torque required of the PD-

SMC controller. The PD-SMC controller has a maximum torque requirement that is 23.4% 

smaller than that of the SMC controller for axis 2 and 42.8% for axis 3. The controlled torques 

for each of the three controllers is displayed in Figure 4.51. 

Table 4.28: Maximum Input Torques for Circular Motion of Serial Manipulator 

 𝝉𝟏 (𝑵𝒎) 𝝉𝟐 (𝑵𝒎) 𝝉𝟑 (𝑵𝒎) 
PD 11.91 4.979 0.8795 

SMC 10.28 5.795 1.690 
PD-SMC 12.95 4.440 0.9660 

 

                                                 
3 Plots include an error magnification factor of 100 
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Figure 4.51: Input Torques for Circular Motion of Serial Manipulator 

 

4.3.4 Elliptical Contour 

For the elliptical contour simulations, the results listed in Table 4.29 indicate good axial 

tracking performance for each controller. Once again the PD-SMC produced smaller mean errors 

than the PD controller in axis 1 and axis 3 by 34.3% and 23.3%, respectively, but the SMC 

controller produced the smallest mean errors in these axes by 43.1% and 19.7%, respectively, 

compared to the PD-SMC controller. However, the PD-SMC controller once again produced 

smallest mean errors in axis 2 by 13.7% and 34.7% relative to the PD and SMC controllers, 

respectively. The axial tracking errors for each of the controllers are displayed in Figure 4.52. 

Table 4.29: Mean and Standard Deviation of Axial Tracking Errors for Elliptical Motion of Serial Manipulator 

 Axis 1 Axis 2 Axis 3 
 Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) 

PD 0.0006194 0.0003138 0.0002745 0.0001387 0.0002459 0.0001145 
SMC 0.0002317 0.0001030 0.0003624 0.0001939 0.0001514 6.053(10−5) 

PD-SMC 0.0004070 0.0002056 0.0002368 0.0001192 0.0001885 8.571(10−5) 
 
 

0 1 2 3 4 5
-15

-10

-5

0

5

10

Axis 1 Controlled Torque
 

Time (sec.)

τ 1 (N
m

)

0 1 2 3 4 5
-6

-4

-2

0

2

4

6

Axis 2 Controlled Torque
 

Time (sec.)

τ 2 (N
m

)

0 1 2 3 4 5
0

0.5

1

1.5

2

Axis 3 Controlled Torque
 

Time (sec.)

τ 3 (N
m

)

 

 
PD
SMC
PD+SMC



87 
 

 

Figure 4.52: Axial Tracking Error for Elliptical Motion of Serial Manipulator 

The PD-SMC controller demonstrated a better performance in task space tracking errors 

than the standard PD controller in each axis as well as with total error magnitudes. It produced a 

29.3% lower mean total error magnitude than the PD controller and a 41.5% smaller standard 

deviation in these errors. The SMC controller once again yielded the best performance in these 

fields with a smaller mean total tracking error than the PD-SMC controller by 12.8%. The task 

space tracking results for the elliptical contour can be seen in Figure 4.53 and Table 4.30. 

Table 4.30: Mean and Standard Deviation of End-Effector Task Space Tracking Errors for Elliptical Motion of Serial 
Manipulator 

 x-axis y-axis Total Error Magnitude  
 Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) 

PD 0.0001789 0.0001285 0.0001968 7.179(10−5) 0.0002830 0.0001111 
SMC 8.327(10−5) 4.431(10−5) 0.0001455 4.355(10−5) 0.0001744 3.946(10−5) 

PD-SMC 0.0001199 7.441(10−5) 0.0001498 4.358(10−5) 0.0002001 6.492(10−5) 
 

 

Figure 4.53: End-Effector Task Space Tracking Error for Elliptical Motion of the Serial Manipulator 
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In terms of contour tracking performance, the PD-SMC once again demonstrates the best 

performance. The hybrid controller produced a 27.8% smaller mean contour error magnitude 

than the PD controller and a 48% smaller standard deviation of these errors. Compared to the 

SMC controller, the PD-SMC controller produced only a marginally improved mean contour 

error magnitude that was 3.6% smaller, but also yielded a 40.9% standard deviation of these 

errors. The PD-SMC controller yielded 100%  of its contour errors within a boundary of 

2(10−4) [𝑚]  for the performance of this elliptical contour. The SMC controller also yields 

100% of contour errors within this boundary while the PD controller yields only 84.6%. The 

contour tracking results can be seen in Table 4.31 and Figure 4.54, while plots of the desired and 

actual contours are displayed in Figure 4.55. 

Table 4.31: Magnitude of Contour Tracking Performance for Elliptical Motion of Serial Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟐(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0001313 5.590(10−5) 84.64% 

SMC 9.830(10−5) 4.918(10−5) 100% 
PD-SMC 9.480(10−5) 2.906(10−5) 100% 
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Figure 4.54: Contour Error for Elliptical Motion of the Serial Manipulator 

 

Figure 4.55: Elliptical Contour Tracking of PD, SMC, and PD-SMC Controllers for Serial Manipulator4 

As displayed in Figure 4.56 the input torques for all the controllers for the elliptical 

contour are quite similar. Table 4.32 also shows that the maximum torques exerted in each axis 

for every controller are similar. The largest deviation between any two corresponding maximum 

                                                 
4 Plots include an error magnification factor of 100 
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torque value between any of the controllers is less than 10%. The PD-SMC controller, however, 

does have a marginally smaller maximum torque output in axis 2 and axis 3 than the other two 

controllers. For axis 1, the SMC controller produces the lowest maximum torque.  

Table 4.32: Maximum Input Torques for Elliptical Motion of Serial Manipulator 

 𝝉𝟏 (𝑵𝒎) 𝝉𝟐 (𝑵𝒎) 𝝉𝟑 (𝑵𝒎) 
PD 9.455 4.267 0.8885 

SMC 9.085 4.370 0.8859 
PD-SMC 9.711 4.256 0.8840 

 

 

Figure 4.56: Input Torques for Elliptical Motion of Serial Manipulator 

4.4 PARALLEL MANIPULATOR SIMULATION RESULTS 

The control parameters used for the serial manipulator in the following simulations are 

listed in Table 4.33. The boundary layer thicknesses used for the SMC and the hybrid PD-SMC 

controllers are also listed. For the SMC simulations, the uncertainties of the dynamic models are 
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Table 4.33: Control Parameters for Parallel Manipulator Simulations 

Controller 
Type 

Linear Contours Circular and Horizontal 
Elliptical Contours 

Vertical Elliptical 
Contour 

PD 
𝐾𝑝 = 𝑑𝑖𝑎𝑔{220,240} 

𝐾𝑑 = 𝑑𝑖𝑎𝑔{22,35} 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{230,260} 

𝐾𝑑 = 𝑑𝑖𝑎𝑔{24,36} 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{240,280} 

𝐾𝑑 = 𝑑𝑖𝑎𝑔{28,36} 

SMC 

𝐾𝑠 = 𝑑𝑖𝑎𝑔{1,2.2} 

𝜆 = 𝑑𝑖𝑎𝑔{12,15} 

𝜙 = 𝑑𝑖𝑎𝑔{0.4,0.5} 

𝐾𝑠 = 𝑑𝑖𝑎𝑔{1.1,2.25} 

𝜆 = 𝑑𝑖𝑎𝑔{11,14} 

𝜙 = 𝑑𝑖𝑎𝑔{0.4,0.5} 

𝐾𝑠 = 𝑑𝑖𝑎𝑔{1.4,2.4} 

𝜆 = 𝑑𝑖𝑎𝑔{18,16} 

𝜙 = 𝑑𝑖𝑎𝑔{0.4,0.5} 

PD-SMC 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{220,240} 

𝐾𝑑 = 𝑑𝑖𝑎𝑔{22,35} 

𝐾𝑠 = 𝑑𝑖𝑎𝑔{1,2.2} 

𝜆 = 𝑑𝑖𝑎𝑔{12,15} 

𝜙 = 𝑑𝑖𝑎𝑔{0.4,0.5} 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{230,260} 

𝐾𝑑 = 𝑑𝑖𝑎𝑔{24,36} 

𝐾𝑠 = 𝑑𝑖𝑎𝑔{1.1,2.25} 

𝜆 = 𝑑𝑖𝑎𝑔{11,14} 

𝜙 = 𝑑𝑖𝑎𝑔{0.4,0.5} 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{250,280} 

𝐾𝑑 = 𝑑𝑖𝑎𝑔{32,36} 

𝐾𝑠 = 𝑑𝑖𝑎𝑔{1.1,1.4} 

𝜆 = 𝑑𝑖𝑎𝑔{16,18} 

𝜙 = 𝑑𝑖𝑎𝑔{0.4,0.5} 

 

4.4.1 Zigzag Contour 

It should be noted that only the errors for the controlled axes of the parallel manipulator 

are listed for the simulations. From the results shown in Table 4.34 and displayed in Figure 4.57 

it is seen that the PD-SMC controller achieved the best performance by producing the lowest 

mean axial tracking error in axis 1, while being outperformed only marginally by the SMC 

controller in axis 2 for this field. The PD-SMC controller yielded smaller mean axial errors than 

the PD controller by 11.9% (axis 1) and 21.4% (axis 2).  It outperformed the SMC controller in 

this field by 35.7% (axis 1). 

The PD-SMC further outperformed the other PD and SMC controllers in the task space 

by producing a smaller total tracking error mean by 18.2% and 15.9%, respectively. It also 

yielded smaller standard deviations than the PD and SMC for these errors by 14.8% and 26.6%. 

The task space results are shown in Table 4.35 and Figure 4.58. 
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Table 4.34: Mean and Standard Deviation of Axial Tracking Errors for Zigzag Motion of Parallel Manipulator 

 Axis 1 Axis 2 
 Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) 

PD 0.001490 0.001490 0.002032 0.0002624 
SMC 0.002040 0.0005700 0.001490 0.0001817 

PD-SMC 0.001313 0.0004215 0.001597 0.0001981 
 

 

 

Figure 4.57: Axial Tracking Error for Zigzag Motion of Parallel Manipulator 

 

Table 4.35: Mean and Standard Deviation of End-Effector Task Space Tracking Errors for Zigzag Motion of Parallel 
Manipulator 

 x-axis y-axis Total Error Magnitude  
 Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) 

PD 2.917(10−5) 2.087(10−5) 0.0002336 4.501(10−5) 0.000236362 4.494(10−5) 
SM
C 

3.391(10−5) 1.901(10−5) 0.0002265 5.235(10−5) 0.000229879 5.215(10−5) 

PD-SM  1.933(10−5) 1.985(10−5) 0.0001919 3.843(10−5) 0.000193436 3.830(10−5) 
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Figure 4.58: End-Effector Task Space Tracking Error for Zigzag Motion of the Parallel Manipulator 

In terms of contour tracking performance the PD-SMC once again achieved better results 

by producing a smaller mean magnitude of contour error by 18.1% and 13.8% than the PD and 

SMC controllers, respectively. The contour tracking results are summarized in Table 4.36. From 

these results it can be seen that for the performance of this contour, 79.0%% of the contour 

errors produced by the PD-SMC controller are smaller than 1.5(10−4) [𝑚]. The PD and SMC 

controllers only achieve 64.4%  and 41.35%  of this statistic, respectively. The contour error 

performance of the three controllers is displayed in Figure 4.59, and the desired and actual 

contours can be seen in Figure 4.60.  

Table 4.36: Magnitude of Contour Tracking Performance for Zigzag Motion of Parallel Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟏.𝟓(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0001449 4.201(10−5) 41.35% 

SMC 0.0001376 3.916(10−5) 64.39% 
PD-SMC 0.0001186 3.112(10−5) 78.95% 
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Figure 4.59: Contour Error for Zigzag Motion of the Parallel Manipulator 

 

Figure 4.60: Zigzag Contour Tracking of PD, SMC, and PD-SMC Controllers for Parallel Manipulator5 

The maximum torque data, listed in Table 4.37, indicates that the PD controller requires 

the greatest maximum torque for axis 2 for the zigzag contour, while the PD-SMC controller 

requires the largest torque for axis 1. While there are differences in the required torque, the 

                                                 
5 Plots include an error magnification factor of 20 
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variance is by less than 1% in both axes. The input torques for the controlled axes are shown in 

Figure 4.61 and it can be seen that the torque requirements are similar for all three controllers. 

Table 4.37: Maximum Input Torques for Zigzag Motion of Parallel Manipulator 

 𝝉𝟏 (𝑵𝒎) 𝝉𝟐 (𝑵𝒎) 
PD 0.5111 0.5768 

SMC 0.5083 0.5739 
PD-SMC 0.5155 0.5739 

 

 

Figure 4.61: Input Torques for Zigzag Motion of Parallel Manipulator 

 

4.4.2 Diamond Contour 

The PD-SMC controller once again yielded smaller mean axial tracking errors than the 

PD controller in each axis. Relative to the SMC controller, the PD-SMC controller maintained a 

better performance in axis 1. The axial tracking results are listed in Table 4.38 and displayed in 

Figure 4.62. 

The PD-SMC controller maintained a better performance in terms of task space tracking 

errors by yielding a smaller mean than the PD and SMC controllers by 18.4% and 14.2% , 

respectively. The task space tracking results are listed in Table 4.39 and displayed in Figure 4.63. 

Table 4.38: Mean and Standard Deviation of Axial Tracking Errors for Diamond Motion of Parallel Manipulator 
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 Axis 1 Axis 2 
 Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) 

PD 0.001314 0.0006642 0.001936 0.0003280 
SMC 0.001856 0.0005832 0.001389 0.0002092 

PD-SMC 0.001160 0.0005836 0.001519 0.0002502 
 

 

 

Figure 4.62: Axial Tracking Error for Diamond Motion of Parallel Manipulator 

 

Table 4.39: Mean and Standard Deviation of End-Effector Task Space Tracking Errors for Diamond Motion of Parallel 
Manipulator 

 x-axis y-axis Total Error Magnitude  
 Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) 

PD 4.859(10−5) 2.464(10−5) 0.0002004 4.976(10−5) 0.0002084 4.655(10−5) 
SMC 3.714(10−5) 3.019(10−5) 0.0001919 4.791(10−5) 0.0001981 4.670(10−5) 

PD-SMC 3.556(10−5) 3.571(10−5) 0.0001643 4.257(10−5) 0.0001700 3.972(10−5) 
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Figure 4.63: End-Effector Task Space Tracking Error for Diamond Motion of the Parallel Manipulator 

In terms of contour tracking performance, the PD-SMC controller achieved better results 

than the other two controllers by producing a smaller mean contour error magnitude and standard 

deviation of the contour errors. Compared to the PD controller, the PD-SMC yielded a 17.9% 

smaller mean contour error magnitude and 20.1% smaller standard deviation of these errors. The 

PD-SMC controller also produced an 11.8% smaller mean contour error than the SMC and a 

23.1% smaller standard deviation. The amount of contour errors that fall within a 1.5(10−4) [𝑚] 

error boundary for the PD controller is 55.5% while the SMC and PD-SMC yield 64.4% and 

83.8% for the same statistic, respectively. The contour error performance of the controllers is 

shown in Figure 4.64 while the desired and actual plots of the contour are shown in Figure 4.65. 

Table 4.40: Magnitude of Contour Tracking Performance for Diamond Motion of Parallel Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟏.𝟓(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0001350 4.922(10−5) 55.52% 

SMC 0.0001257 5.101(10−5) 64.35% 
PD-SMC 0.0001108 3.923(10−5) 83.79% 
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Figure 4.64: Contour Error for Diamond Motion of the Parallel Manipulator 

 

Figure 4.65: Diamond Contour Tracking of PD, SMC, and PD-SMC Controllers for Parallel Manipulator6 

Table 4.41: Maximum Input Torques for Diamond Motion of Parallel Manipulator 

 𝝉𝟏 (𝑵𝒎) 𝝉𝟐 (𝑵𝒎) 
PD 0.5655 0.6155 

SMC 0.5595 0.6107 
PD-SMC 0.5556 0.6022 

                                                 
6 Plots include an error magnification factor of 20 
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Figure 4.66: Input Torques for Diamond Motion of Parallel Manipulator 

From the maximum torque results listed in Table 4.41, it is shown that the PD-SMC 

yielded the smallest maximum torque requirement for both controlled axes. The SMC yielded the 

highest maximum torque for axis 2, while the PD yielded the highest maximum torque for axis 1. 

Input torque performance for the diamond contour is displayed in Figure 4.66 

4.4.3 Circular Contour 

For the circular contour, the PD-SMC achieved the best axial tracking performance by 

producing the smallest mean axial tracking errors and standard deviations in each of the four 

axes. From Table 4.42 it can be seen that in terms of mean axial tracking error, the PD-SMC 

outperformed the PD controller by 10% − 20%. Compared to the SMC controller, the PD-SMC 

performed marginally better in axis 2 and more than 40% better in axis 1. 

In terms of task space tracking error, the PD-SMC once again performed better than the 

PD and SMC controllers by yielding a smaller mean total tracking error by 17.5% and 16.1%, 

respectively. These results are listed in Table 4.43 while the task space tracking error 

performance can be seen in Figure 4.68. 

Table 4.42: Mean and Standard Deviation of Axial Tracking Errors for Circular Motion of Parallel Manipulator 
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 Axis 1 Axis 2 
 Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) 

PD 0.0009260 0.0006140 0.001791 0.0002711 
SMC 0.001365 0.0006702 0.001453 0.0002484 

PD-SMC 0.0008174 0.0005419 0.001445 0.0002134 
 

 

 

Figure 4.67: Axial Tracking Error for Circular Motion of Parallel Manipulator 

 

Table 4.43: Mean and Standard Deviation of End-Effector Task Space Tracking Errors for Circular Motion of Parallel 
Manipulator 

 x-axis y-axis Total Error Magnitude  
 Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) 

PD 5.511(10−5) 3.547(10−5) 0.0001602 3.192(10−5) 0.0001728 3.356(10−5) 
SMC 4.175(10−5) 3.624(10−5) 0.0001597 4.408(10−5) 0.0001697 4.110(10−5) 

PD-SMC 4.353(10−5) 4.581(10−5) 0.0001326 2.743(10−5) 0.0001425 2.757(10−5) 
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Figure 4.68: End-Effector Task Space Tracking Error for Circular Motion of the Parallel Manipulator 

From the results of the contour tracking performance listed in Table 4.44, the SMC 

controller is shown to have yielded the smallest magnitude of mean contour error. The PD-SMC 

controller has a smaller mean than the PD controller by 19.3%, but the SMC has a smaller mean 

than the PD-SMC by 3.4%. Despite having a smaller mean contour error, the SMC controller 

also yielded the largest standard deviation of these errors. The standard deviation for the PD 

controller is 14.2%  smaller than that of the SMC while the PD-SMC produced a smaller 

standard deviation than the SMC by 26.6%. Despite the smaller standard deviation of contour 

errors of the PD controller, fewer contour error magnitudes are within a 1.5(10−4)[𝑚] boundary 

of error for the SMC controller, as shown in Table 4.44. The PD-SMC controller yields the most 

amount of the motion within the error boundary. The contour errors and actual contour plots are 

shown in Figure 4.69 and Figure 4.70, respectively. 

Table 4.44: Magnitude of Contour Tracking Performance for Circular Motion of Parallel Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟏.𝟓(𝟏𝟎−𝟒) [𝒎]) 
PD 6.958(10−5) 5.533(10−5) 84.86% 

SMC 5.433(10−5) 6.451(10−5) 85.04% 
PD-SMC 5.616(10−5) 4.736(10−5) 94.46% 
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Figure 4.69: Contour Error for Circular Motion of the Parallel Manipulator 

 

Figure 4.70: Circular Contour Tracking of PD, SMC, and PD-SMC Controllers for Parallel Manipulator7 

From Table 4.45 it is seen that the SMC controller had the largest maximum torques for 

axis 2, while the PD-SMC controller had the largest maximum torques for axis 1. The difference 

in maximum torque for axis 1 was smaller than 1%, while the PD and PD-SMC controllers 

                                                 
7 Plots include an error magnification factor of 20 
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yielded smaller maximum torques than the SMC controller by more than 5% . The torque 

performance of each controlled axis is displayed in Figure 4.71. 

Table 4.45: Maximum Input Torques for Circular Motion of Parallel Manipulator 

 𝝉𝟏 (𝑵𝒎) 𝝉𝟐 (𝑵𝒎) 
PD 0.5337 0.5754 

SMC 0.5278 0.6172 
PD-SMC 0.5340 0.5806 

 

 

Figure 4.71: Input Torques for Circular Motion of Parallel Manipulator 

 

4.4.4 Horizontal Elliptical Contour 

Similar to the circular contour results, the PD-SMC produced the smallest mean axial 

tracking errors in each axis for the horizontal elliptical contours, despite producing larger 

standard deviations of this error than the SMC controller. The axial tracking error mean and 

standard deviation results are listed in Table 4.46 while the axial performance results are 

displayed in Figure 4.72. 

As shown in Table 4.47, the PD-SMC achieved a better end-effector task space tracking 

error mean than both the PD and SMC controller by about 15%. The SMC produced the largest 
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standard deviation of these errors for this contour. The task space tracking results are shown in 

Figure 4.71. 

Table 4.46: Mean and Standard Deviation of Axial Tracking Errors for Horizontal Elliptical Motion of Parallel 
Manipulator 

 Axis 1 Axis 2 
 Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) 

PD 0.001048 0.0007373 0.001913 0.0003724 
SMC 0.001528 0.0005872 0.001562 0.0001808 

PD-SMC 0.000929 0.0006477 0.001541 0.0002963 
 

 

 

Figure 4.72: Axial Tracking Error for Horizontal Elliptical Motion of Parallel Manipulator 

 

Table 4.47: Mean and Standard Deviation of End-Effector Task Space Tracking Errors for Horizontal Elliptical Motion 
of Parallel Manipulator 

 x-axis y-axis Total Error Magnitude  
 Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) 

PD 4.018(10−5) 1.994(10−5) 0.0001926 4.786(10−5) 0.0001978 4.750(10−5) 
SMC 2.996(10−5) 2.527(10−5) 0.0001895 5.483(10−5) 0.0001931 5.637(10−5) 

PD-SMC 3.111(10−5) 2.638(10−5) 0.0001598 4.160(10−5) 0.0001634 4.132(10−5) 
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Figure 4.73: End-Effector Task Space Tracking Error for Horizontal Elliptical Motion of the Parallel Manipulator 

Moderate contour performance for the horizontal ellipse was achieved by each of the 

controllers using the controller gains listed in Table 4.33. The PD-SMC controller, however, 

remained the best performer of the three controllers by achieving the smallest mean contour error 

magnitude and standard deviation, as listed in Table 4.48. Again, the PD-SMC controller yielded 

the most contour errors to fall within an error boundary of 1.5(10−4) [𝑚] for the performance of 

the horizontal elliptical. The contour performance of each of the controllers is displayed in 

Figure 4.74 while the desired and actual plots of the contour are displayed in Figure 4.75. 

Table 4.48: Magnitude of Contour Tracking Performance for Horizontal Elliptical Motion of Parallel Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟏.𝟓(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0001560 8.294(10−5) 42.14% 

SMC 0.0001460 9.190(10−5) 49.18% 
PD-SMC 0.0001290 7.051(10−5) 57.47% 
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Figure 4.74: Contour Error for Horizontal Elliptical Motion of the Parallel Manipulator 

 

Figure 4.75: Horizontal Elliptical Contour Tracking of PD, SMC, and PD-SMC Controllers for Parallel Manipulator8 

The SMC controller produced the smallest maximum torque requirements for each axis 

for the horizontal elliptical contour. From Table 4.49 the difference in maximum torque 

requirements between the PD and PD-SMC controllers appears only marginal while the 

                                                 
8 Plots include an error magnification factor of 20 
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maximum torque of the SMC controller for both axes is more about 2% smaller than those of the 

PD and SMC. The input torque performance of the controlled axes is displayed in Figure 4.76. 

Table 4.49: Maximum Input Torques for Horizontal Elliptical Motion of Parallel Manipulator 

 𝝉𝟏 (𝑵𝒎) 𝝉𝟐 (𝑵𝒎) 
PD 0.6186 0.6312 

SMC 0.6026 0.6201 
PD-SMC 0.6187 0.6332 

 

 

Figure 4.76: Input Torques for Horizontal Elliptical Motion of Parallel Manipulator 

 

4.4.5 Vertical Elliptical Contour 

The results of the vertical elliptical contour simulation listed in Table 4.50 show that 

similar to the results from the other nonlinear contours, the PD-SMC yielded smaller mean axial 

errors than the other two controllers. The SMC controller achieved a smaller standard deviation 

of axial tracking error than the PD-SMC controller by 21%, but the PD-SMC controller yielded 

the smallest standard deviations in each of the other axes. The axial tracking performance of each 

of the controllers is shown in Figure 4.77. 

In addition to the best axial tracking results, the PD-SMC also maintained the best end-

effector task space tracking results for each parallel manipulator simulation. From Table 4.51, 
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the PD-SMC is shown to outperform the SMC controller, by 12.9% and 18.8% in mean end-

effector tracking error and standard deviation, respectively. 

Table 4.50: Mean and Standard Deviation of Axial Tracking Errors for Vertical Elliptical Motion of Parallel Manipulator 

 Axis 1 Axis 2 
 Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) Mean(𝑟𝑎𝑑) S.D. (𝑟𝑎𝑑) 

PD 0.001195 0.0006349 0.001704 0.0005014 
SMC 0.001300 0.0004258 0.001478 0.0004725 

PD-SMC 0.001023 0.0005392 0.001391 0.0004003 
 

 

 

Figure 4.77: Axial Tracking Error for Vertical Elliptical Motion of Parallel Manipulator 

 

Table 4.51: Mean and Standard Deviation of End-Effector Task Space Tracking Errors for Vertical Elliptical Motion of 
Parallel Manipulator 

 x-axis y-axis Total Error Magnitude  
 Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) Mean(𝑚) S.D. (𝑚) 

PD 4.100(10−5) 3.290(10−5) 0.0001778 5.277(10−5) 0.0001871 4.624(10−5) 
SMC 3.244(10−5) 2.176(10−5) 0.0001734 5.005(10−5) 0.0001785 4.751(10−5) 

PD-SMC 3.329(10−5) 4.219(10−5) 0.0001477 4.436(10−5) 0.0001554 3.856(10−5) 
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Figure 4.78: End-Effector Task Space Tracking Error for Vertical Elliptical Motion of the Parallel Manipulator 

From the results shown in Table 4.52, it can be seen that the SMC and PD-SMC 

controllers produced similar mean contour error magnitudes and marginally different standard 

deviations for the vertical elliptical contour. Since the mean contour errors and standard 

deviations are similar for each controller, there is not a significant deviation when comparing the 

distribution of the contour errors within the 1.5(10−4) [𝑚] error boundary. However, the PD-

SMC still maintained better contour tracking performance than each other the other controllers. 

The contour errors of the controllers can be seen in Figure 4.79 while the desired and actual plots 

are displayed in Figure 4.80. 

 

Table 4.52: Magnitude of Contour Tracking Performance for Vertical Elliptical Motion of Parallel Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟏.𝟓(𝟏𝟎−𝟒) [𝒎]) 
PD 4.637(10−5) 5.698(10−5) 92.03% 

SMC 3.760(10−5) 5.054(10−5) 93.45% 
PD-SMC 3.696(10−5) 4.875(10−5) 93.98% 
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Figure 4.79: Contour Error for Vertical Elliptical Motion of the Parallel Manipulator 

 

Figure 4.80: Vertical Elliptical Contour Tracking of PD, SMC, and PD-SMC Controllers for Parallel Manipulator9 

For the vertical elliptical contour the SMC controller had the largest maximum torque 

input for axis 1 and the smallest maximum torque inputs in axis 2. Again, the maximum torque 

                                                 
9 Plots include an error magnification factor of 20 
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for each controller differs by less than 1%. The torque performance of each controlled axis is 

displayed in Figure 4.81. 

Table 4.53: Maximum Input Torques for Vertical Elliptical Motion of Parallel Manipulator 

 𝝉𝟏 (𝑵𝒎) 𝝉𝟐 (𝑵𝒎) 
PD 0.7053 0.8021 

SMC 0.7077 0.7943 
PD-SMC 0.7019 0.8021 

 

 

Figure 4.81: Input Torques for Vertical Elliptical Motion of Parallel Manipulator 
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previously tuned in order to further verify the improved performance and robustness of the PD-

SMC controller. 

4.5.1 High-Speed Movement Simulations 

For each of the simulated high-speed cases, the total duration of the movement was 

reduced to 25% of the originally simulated duration time as outlined in Section 4.2. For the 

serial manipulator this means that the total duration of the movement was reduced to 2 seconds. 

The contour tracking performance for the serial manipulator for the high-speed case is listed in 

Table 4.54 and displayed in Figure 4.82. For the parallel manipulator, the total movement 

duration was reduced to 1 second. The contour tracking results for the parallel manipulator are 

shown in Table 4.55 and Figure 4.83. 

Table 4.54: Magnitude of Contour Tracking Performance for High-Speed Motion of Serial Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟐(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0002033 0.0001564 57.81% 

SMC 0.0002009 0.0001403 53.63% 
PD-SMC 0.0001509 0.0001193 68.25% 

 
Figure 4.82: Contour Error for High-Speed Motion of the Serial Manipulator 
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Table 4.55: Magnitude of Contour Tracking Performance for High-Speed Motion of Parallel Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟏.𝟓(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0001363 0.0001947 78.52% 

SMC 0.0003430 0.0003320 38.87% 
PD-SMC 0.0001266 0.0001756 79.76% 

 
 

 

Figure 4.83: Contour Error for High-Speed Motion of the Parallel Manipulator 
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contour error of the other two controllers. 
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4.5.2 End-Effector Payload Simulations 

A simulated load of 1.5 [𝑘𝑔] was added at the end-effector for both the serial and parallel 

manipulator to simulate a change in the dynamics of the original systems. The results of the 

simulation with an added payload for the serial manipulator can be seen in Table 4.56 and Figure 

4.84. The parallel manipulator results are shown in Table 4.57 and Figure 4.85. 

Table 4.56: Magnitude of Contour Tracking Performance for Motion with a Payload of Serial Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟐(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0002082 7.323(10−5) 37.14% 

SMC 0.0002190 0.0001068 22.82% 
PD-SMC 0.0001654 6.049(10−5) 43.79% 

 

 

Figure 4.84: Contour Error for Motion with a Payload of the Serial Manipulator 

Table 4.57: Magnitude of Contour Tracking Performance for Motion with a Payload of Parallel Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟏.𝟓(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0001058 8.436(10−5) 77.14% 

SMC 0.0001246 8.842(10−5) 84.38% 
PD-SMC 9.104(10−5) 6.813(10−5) 80.88% 
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Figure 4.85: Contour Error for Motion with a Payload of the Parallel Manipulator 
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Figure 4.88 for the serial manipulator and Table 4.61 and Figure 4.89 for the parallel 

manipulator. 

Table 4.58: Magnitude of Contour Tracking Performance for Motion with High PD Gains for Serial Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟏.𝟓(𝟏𝟎−𝟒) [𝒎]) 
PD 8.749(10−5) 3.726(10−5) 89.81% 

SMC 9.830(10−5) 4.918(10−5) 83.12% 
PD-SMC 6.932(10−5) 2.334(10−5) 100% 

 

 

Figure 4.86: Contour Error for Motion with a High PD Gains for Serial Manipulator 

Table 4.59: Magnitude of Contour Tracking Performance for Motion with High PD Gains for Parallel Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟏.𝟓(𝟏𝟎−𝟒) [𝒎]) 
PD 3.098(10−5) 3.789(10−5) 98.23% 

SMC 3.760(10−5) 5.054(10−5) 93.45% 
PD-SMC 2.677(10−5) 3.432(10−5) 100% 
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Figure 4.87: Contour Error for Motion with a High PD Gains for Parallel Manipulator 

Since there are no PD gains for the SMC controller, the performance results for the SMC 

controller are identical to those of the initial simulation for this movement. The means of the 

contour error magnitudes, as well as the standard deviations for these errors, for the PD 

controller in both the serial and parallel manipulator decreased by about 33%. For the PD-SMC 

controller the mean contour errors decreased more than 25% for both the serial and parallel 

manipulator. The standard deviation of the contour errors for the serial manipulator decreased by 

20%. For the parallel manipulator, the standard deviation decreased by 30% . These results 

verify that increasing the PD gains generally improves performance for the PD and PD-SMC 

controllers, as previously indicated in Section 4.2.3. 

Table 4.60: Magnitude of Contour Tracking Performance for Motion with High SMC Gains for Serial Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟐(𝟏𝟎−𝟒) [𝒎]) 
PD 0.0001313 5.590(10−5) 84.64% 

SMC 4.317(10−5) 2.167(10−5) 100% 
PD-SMC 7.201(10−5) 1.817(10−5) 100% 
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Figure 4.88: Contour Error for Motion with a High SMC Gains for Serial Manipulator 

Table 4.61: Magnitude of Contour Tracking Performance for Motion with High SMC Gains for Parallel Manipulator 

 Mean (𝒎) S.D. (𝒎) %(|𝜺| ≤ 𝟏.𝟓(𝟏𝟎−𝟒) [𝒎]) 
PD 4.637(10−5) 5.698(10−5) 92.03% 

SMC 1.701(10−5) 2.323(10−5) 100% 
PD-SMC 2.953(10−5) 4.150(10−5) 96.54% 

 

 

Figure 4.89: Contour Error for Motion with a High SMC Gains for Parallel Manipulator 
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An increase in the SMC control parameters yielded smaller mean contour errors for the 

PD-SMC controller. For the serial manipulator the mean contour error magnitude was reduced 

by 24% and for the parallel manipulator it was reduced by 20%. For the SMC controller, the 

mean contour error magnitudes were reduced by more than 50% in each case. The PD-SMC 

controller, however, retained the best contour tracking performance for the serial manipulator. 

Although the SMC controller produced the best results for the parallel manipulator, the PD-SMC 

controller also demonstrated improved performance and the difference in performances remain 

only marginal. This large change in performance, however, shows the sensitivity of the SMC 

controller to changes in the gains. This further verifies the good contour tracking performance 

and superior robustness of the PD-SMC controller to changes and uncertainties in the dynamics 

of the system. 

4.6 REMARKS 

The simulation results indicate a general improvement in tracking and contouring 

performance of the proposed hybrid PD-SMC controller over standard PD and SMC control 

schemes. It should be noted that for the SMC controller, theoretically perfect tracking can be 

achieved if the dynamics of the system are perfectly known (Slotine & Li, 1991). However, with 

the addition of simulated estimations of the system dynamics, as well as the addition of a 

boundary layer for trajectory smoothing, the PD-SMC achieved overall better contour tracking 

performance.  

For the serial manipulator, the PD-SMC controller produced an average of 27% lower 

mean contour error magnitudes up to 44% lower than the PD controller. The PD-SMC controller 

also yielded an average of 21% smaller mean contour error magnitudes than the SMC controller. 
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In terms of the standard deviation of these errors, the PD-SMC controller produced roughly 15% 

to 50% smaller values than the standard PD controller and 10% to 50% smaller values than the 

SMC controller. For the parallel manipulator the PD-SMC controller produced up to 20% 

smaller mean contour errors than the PD controller and up to 14% smaller mean values than the 

SMC controller. Comparing standard deviations of contour error magnitudes, the PD-SMC 

controller produced an average of 20% smaller standard deviation values than both the PD and 

SMC controllers. A comparison of the mean contour errors is shown in Figure 4.90 and Figure 

4.91 for the serial and parallel manipulators, respectively. 

It was also demonstrated that the maximum torques required for the serial manipulator 

were generally lower for the PD and PD-SMC controllers than the SMC controller, with the 

exception of axis 1. For the parallel manipulator, the torque requirements were about equal for 

each controller. However, it should be noted that for the PD-SMC controller there was higher 

control activity demonstrated by a fluctuating input torque. This controller activity was smoothed 

by using a higher sampling rate and can be smoothed further by further increasing the sampling 

rate. Because the input torques, as well as the maximum torque values, were similar for each 

controller, it indicates that the power requirements for the proposed PD-SMC controller are 

similar to those standard PD and SMC controllers. 
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Figure 4.90: Serial Manipulator Mean Contour Error Magnitude Performance Comparison 

 

Figure 4.91: Parallel Manipulator Mean Contour Error Magnitude Performance Comparison 

The results from the high-speed motion, end-effector payload, and higher gain 

simulations demonstrated the robustness of the proposed PD-SMC controller. The SMC 

controller was shown to be highly sensitive to the changes in the dynamic parameters of the 

system while the PD-SMC controller maintained good contour tracking results despite the 

changes to the initial dynamics for which it was originally tuned.  
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Chapter 5 :      CONCLUSIONS AND FUTURE WORK 

5.1 GENERAL REVIEW 

In this thesis, a new control law was proposed for the control of multi-DOF robotic 

manipulators. This was done by the hybridization of two control systems: PD and SMC. By 

satisfying the complementary and compatibility principles of the hybridization of control 

systems, the weaknesses of each of the existing control systems are complemented by the 

inherent strength of the other. As a result, the proposed hybrid PD-SMC law provides an 

intuitive, model-free alternative to the SMC law as well as improved tracking performance 

relative to the standard PD controller with the introduction of a nonlinear switching term. The 

stability of the proposed PD-SMC law was demonstrated with the Lyapunov method. 

Simulations using linear and nonlinear contours were conducted using the new control 

law for a planar serial 3R manipulator and a planar parallel 5R manipulator. The tracking and 

contour performances of the PD-SMC law were compared to the performances of the PD and 

SMC control laws. By introducing simulated estimations of the system dynamics, uncertainties 

from friction and other unmodeled dynamics were added to the SMC simulations. The PD-SMC 

law demonstrated significant improvement in tracking performance relative to standard PD 

control while producing comparable performance to the SMC law. It was shown that in the cases 

where the SMC law produced smaller tracking errors, it did not necessarily result in better 

contouring performance. The PD-SMC law demonstrated consistent improvement over the other 

controllers in terms of contour tracking performance. 

With the addition of higher-speed movements and end-effector payloads, it was further 

shown that the PD-SMC maintained good contour tracking results. The robustness of the 
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proposed law was especially evident when compared to the SMC law, which showed 

significantly degraded performance quality when introduced to unmodeled dynamics. The PD-

SMC law consistently demonstrated marked improvements in both contouring performance and 

robustness over the other two control laws. 

5.2 MAIN CONTRIBUTIONS 

The following contributions are made in this thesis: 

• An alternative to standard PD control with the inclusion of a nonlinear 

switching term. 

• A model-free alternative to standard SMC law with control parameters that 

have intuitive meanings for simple tuning. 

• Easily implemented, robust control law with improved tracking and 

contouring performances for robotic manipulators for linear and nonlinear 

contours.  

5.3 FUTURE WORK 

The work presented in this thesis shows that a hybridized control law can provide 

intuitive and model-free control of robotic manipulators with improved tracking and contouring 

performance over PD control and improved robustness over SMC control. Further work should 

be carried out to demonstrate the effectiveness for different configurations of robots, such as 

spatial manipulators. Tracking of arbitrary contours should also be explored. Next, experimental 

results should be obtained to validate the practical application of the proposed control law. 

Finally, as position domain controllers increase in popularity, the proposed law may be 
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transformed into the position domain where using master axis motion as an independent 

reference instead of time can further improve contouring performance. 

  



125 
 

LIST OF APPENDICES 

SERIAL 3R MANIPULATOR KINEMATICS AND DYNAMICS 

Forward Kinematics 

 𝑥𝑒𝑒 = 𝐿1 cos(𝑞1) + 𝐿2 cos(𝑞1 + 𝑞2) + 𝐿3 cos(𝑞1 + 𝑞2 + 𝑞3) (1)  
 

 𝑦𝑒𝑒 = 𝐿1 sin(𝑞1) + 𝐿2 sin(𝑞1 + 𝑞2) + 𝐿3 sin(𝑞1 + 𝑞2 + 𝑞3) (2)  
 

 𝑞𝑒𝑒 = 𝑞1 + 𝑞2 + 𝑞3 (3)  
 

Inverse Kinematics 

Position: 

 𝑥3 = 𝑥𝑒𝑒 − 𝐿3 cos(𝑞𝑒𝑒) (4)  
 

 𝑦3 = 𝑦𝑒𝑒 − 𝐿3 sin(𝑞𝑒𝑒) (5)  
 
Then, 

 
𝑞1 = 𝑎𝑡𝑎𝑛2�

−𝑦3
�𝑥32 + 𝑦32

,
−𝑥3

�𝑥32 + 𝑦32
� ± cos−1 �

−�𝑥32 + 𝑦32 + 𝐿12 − 𝐿22�

2𝐿1�𝑥32 + 𝑦32
� (6)  

 
 

𝑞2 = 𝑎𝑡𝑎𝑛2�
𝑦3 − 𝐿1 sin(𝑞1)

𝐿2
,
𝑥3 − 𝐿1 cos(𝑞1)

𝐿2
� − 𝑞1 (7)  

 
 𝑞3 = 𝑞𝑒𝑒 − 𝑞1 − 𝑞2 (8)  

 
Velocity: 

 
𝑞̇1  =  

cos (𝑞1 + 𝑞2)
𝐿1sin(𝑞2)

𝑥̇𝑒𝑒 +
sin (𝑞1 + 𝑞2)
𝐿1sin(𝑞2)

𝑦̇𝑒𝑒 +
𝐿3sin (𝑞3)
𝐿1sin(𝑞2)

𝑞̇𝑒𝑒 (9)  
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𝑞̇2  =  −

𝐿2 cos(𝑞1 + 𝑞2) + 𝐿1 cos(𝑞1)
𝐿1𝐿2 sin(𝑞2) 𝑥̇𝑒𝑒 −

𝐿2 sin(𝑞1 + 𝑞2) + 𝐿1 sin(𝑞1)
𝐿1𝐿2 sin(𝑞2) 𝑦̇𝑒𝑒

−
𝐿3 sin(𝑞2 + 𝑞3) + 𝐿3cos (𝑞3)

𝐿1𝐿2 sin(𝑞2) 𝑞̇𝑒𝑒 
(10)  

 
 

𝑞̇3  =  
cos(𝑞1)
𝐿2 sin(𝑞2) 𝑥̇𝑒𝑒 +

sin(𝑞1)
𝐿2 sin(𝑞2) 𝑦̇𝑒𝑒 + �

𝐿3 sin(𝑞2 + 𝑞3)
𝐿2 sin(𝑞2) + 1� 𝑞̇𝑒𝑒 (11)  

 

Dynamics 

Inertia Matrix: 

 𝑀11 = 𝑚1𝑟12+𝑚2�𝐿12 + 𝑟22 + 2𝐿1𝐿2 cos(𝑞2)�
+ 𝑚3�𝐿12 + 𝐿22 + 𝑟32 + 2𝐿1𝐿2 cos(𝑞2) + 2𝐿2𝑟3 cos(𝑞3)
+ 2𝐿1𝑟3 cos(𝑞2 + 𝑞3)� + 𝐼1 + 𝐼2 + 𝐼3 

(12)  

 
 𝑀12 =  𝑀21 = 𝑚2(𝑟22 + 𝐿1𝑟2 cos(𝑞2))

+ 𝑚3�𝐿22 + 𝑟32 + 2𝐿1𝐿2 cos(𝑞2) + 2𝐿2𝑟3 cos(𝑞3) + 2𝐿1𝑟3 cos(𝑞2 + 𝑞3)�
+ 𝐼2 + 𝐼3  

(13)  

 
 𝑀13 = 𝑀31 =  𝑚3(𝑟32 + 2𝐿3 cos(𝑞3) + 2𝐿1𝑟3 cos(𝑞2 + 𝑞3)) + 𝐼3 (14)  

 
 𝑀22 =  𝑚2𝑟22 + 𝑚3�𝐿22 + 𝑟32 + 2𝐿2𝑟3 cos(𝑞3)� + 𝐼2 + 𝐼3 (15)  

 
 𝑀23 =  𝑀32 = 𝑚3�𝐿22 + 𝑟32 + 2𝐿2𝑟3 cos(𝑞3)� + 𝐼3 (16)  

 
 𝑀33 =  𝑚3𝑟32 + 𝐼3 (17)  

 
Centrifugal-Coriolis Terms: 

 
𝐶(𝑞, 𝑞̇) = �

𝐶1
𝐶2
𝐶3
� (18)  

Let: 
 

�
ℎ1
ℎ2
ℎ3
� = �

−(𝑚2𝐿1𝑟2 + 𝑚3𝐿1𝐿2) sin(𝑞2)
−𝑚3𝐿1𝑟3 sin(𝑞2 + 𝑞3)
−𝑚3𝐿2𝑟3 sin(𝑞3)

� (19)  
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Then, 

 𝐶1 = (ℎ1 + ℎ2)(2𝑞̇1 + 𝑞̇2)𝑞̇2 + (ℎ2 + ℎ3)�2𝑞̇1 + 2𝑞̇2 + 𝑞̇3�𝑞̇3 (20)  
 

 𝐶2 = −(ℎ1 + ℎ2)𝑞̇12 + ℎ3�2𝑞̇1 + 2𝑞̇2 + 𝑞̇3�𝑞̇3 (21)  
 

 𝐶3 = −(ℎ2 + ℎ3)𝑞̇12 − ℎ3(2𝑞̇1 + 𝑞̇2)𝑞̇2 (22)  
 
Gravity Vector: 

 𝐺11 = 𝑔[𝑚1𝑟1 cos(𝑞1) + 𝑚2(𝐿1 cos(𝑞1) + 𝑟2 cos(𝑞1 + 𝑞2)) + 𝑚3(𝐿1 cos(𝑞1)
+ 𝐿2 cos(𝑞1 + 𝑞2) + 𝑟3 cos(𝑞1 + 𝑞2 + 𝑞3))] (23)  

 
 𝐺12 = 𝑔[𝑚2𝑟2 cos(𝑞1 + 𝑞2) + 𝑚3(𝐿2 cos(𝑞1 + 𝑞2) + 𝑟3 cos(𝑞1 + 𝑞2 + 𝑞3))] (24)  

 
 𝐺13 = 𝑔𝑚3𝑟3 cos(𝑞1 + 𝑞2 + 𝑞3) (25)  

 

PARALLEL 5R MANIPULATOR KINEMATICS AND DYNAMICS 

Forward Kinematics 

Let: 

 𝜆 = 𝐿2 cos(𝑞2) − 𝐿1 cos(𝑞1) + 𝐿5 (26)  
 

 𝜇 = 𝐿2 sin(𝑞2) − 𝐿1 sin(𝑞1) (27)  
 

 𝑋 = 2𝐿4𝜆 (28)  
 

 𝑌 = 2𝐿4𝜇 (29)  
 

 𝑍 = 𝐿32 − 𝐿42 − 𝜆2 − 𝜇2 (30)  
Then, 
 

 𝑞4 = 𝑎𝑡𝑎𝑛2 �±�𝑋2 + 𝑌2 − 𝑍2,𝑍� + 𝑎𝑡𝑎𝑛2(𝑌,𝑋) − 𝑞2 (31)  
 

 𝑞3 = 𝑎𝑡𝑎𝑛2(𝜇 + 𝐿4 sin(𝑞2 + 𝑞4) , 𝜆 + 𝐿4 cos(𝑞2 + 𝑞4)) − 𝑞1 (32)  
 

 𝑥𝑒𝑒 = 𝐿1 cos(𝑞1) + 𝐿3 cos(𝑞1 + 𝑞3) (33)  
 

 𝑦𝑒𝑒 = 𝐿1 sin(𝑞1) + 𝐿3 sin(𝑞1 + 𝑞3) (34)  



128 
 

Inverse Kinematics 

Position: 
 
Let: 

 
𝑃 = ��−𝐿12 + 2𝐿1𝐿3 − 𝐿32 + 𝑥𝑒𝑒2 + 𝑦𝑒𝑒2��𝐿12 + 2𝐿1𝐿3 + 𝐿32 − 𝑥𝑒𝑒2 − 𝑦𝑒𝑒2� (35)  

 
 𝑄 = ��𝐿22 + 2𝐿2𝐿4 + 𝐿42 − 𝐿52 + 2𝐿5𝑥𝑒𝑒 − 𝑥𝑒𝑒2 − 𝑦𝑒𝑒2��−𝐿22 + 2𝐿2𝐿4 − 𝐿42 + 𝐿52

− 2𝐿5𝑥𝑒𝑒 + 𝑥𝑒𝑒2 + 𝑦𝑒𝑒2��
1
2 

(36)  

Then, 

 

𝑥3 =
𝐿12 − 𝐿32 + 𝑥𝑒𝑒2 + 𝑦𝑒𝑒2 − �𝐿1

2𝑦𝑒𝑒2 − 𝐿32𝑦𝑒𝑒2 + 𝑥𝑒𝑒2𝑦𝑒𝑒2 + 𝑦𝑒𝑒4 ± 𝑦𝑒𝑒𝑥𝑒𝑒𝑃
𝑥𝑒𝑒2 + 𝑦𝑒𝑒2

�

2𝑥𝑒𝑒
 (37)  

 
 

𝑦3 =
𝑦𝑒𝑒�𝐿12 − 𝐿32 + 𝑥𝑒𝑒2 + 𝑦𝑒𝑒2� ± 𝑥𝑒𝑒𝑃

2(𝑥𝑒𝑒2 + 𝑦𝑒𝑒2)  (38)  

 
 𝑥4

=
1
2

(𝑥𝑒𝑒 − 𝐿5)−1 �𝐿22 − 𝐿42 − 𝐿52 + 𝑥𝑒𝑒2 + 𝑦𝑒𝑒2

− �
𝐿22𝑦𝑒𝑒2 − 𝐿52𝑦𝑒𝑒2 + 𝑥𝑒𝑒2𝑦𝑒𝑒2 − 𝑦𝑒𝑒4 − 2𝐿5𝑥𝑒𝑒𝑦𝑒𝑒2 ± 𝑦𝑒𝑒(𝑥𝑒𝑒 − 𝐿5)𝑄

𝐿52 − 2𝐿5𝑥𝑒𝑒 + 𝑥𝑒𝑒2 + 𝑦𝑒𝑒2
�� 

(39)  

 
 

𝑦4 =
𝑦𝑒𝑒�𝐿22 − 𝐿42 + 𝐿52 + 𝑥𝑒𝑒2 + 𝑦𝑒𝑒2 − 2𝐿5𝑥𝑒𝑒� ± (𝑥𝑒𝑒 − 𝐿5)𝑄

2�𝐿52 − 2𝐿5𝑥𝑒𝑒 + 𝑥𝑒𝑒2 + 𝑦𝑒𝑒2�
 (40)  

 𝑞1 = 𝑎𝑡𝑎𝑛2(𝑦3, 𝑥3) (41)  
 

 𝑞2 = 𝑎𝑡𝑎𝑛2(𝑦4,𝑥4 − 𝐿5) (42)  
 
Use forward kinematics to calculate 𝑞3 and 𝑞4. 
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Velocity: 

 
𝑞̇1 =

𝑥̇𝑒𝑒 cos(𝑞1 + 𝑞3) + 𝑦̇𝑒𝑒 sin(𝑞1 + 𝑞3)
𝐿1(cos(𝑞1) sin(𝑞1 + 𝑞3) − sin(𝑞1) cos(𝑞1 + 𝑞3)) (43)  

 
 

𝑞̇2 =
𝑥̇𝑒𝑒 cos(𝑞2 + 𝑞4) + 𝑦̇𝑒𝑒 sin(𝑞2 + 𝑞4)

𝐿2(cos(𝑞2) sin(𝑞2 + 𝑞4) − sin(𝑞2) cos(𝑞2 + 𝑞4)) (44)  

 
 
𝑞̇3 = −

𝑥̇𝑒𝑒(𝐿1 cos(𝑞1) + 𝐿3cos(𝑞1 + 𝑞3)) + 𝑦̇𝑒𝑒(𝐿1 sin(𝑞1) +𝐿3sin(𝑞1 + 𝑞3))
𝐿1𝐿3(cos(𝑞1) sin(𝑞1 + 𝑞3) − sin(𝑞1) cos(𝑞1 + 𝑞3))  (45)  

 
 
𝑞̇4 = −

𝑥̇𝑒𝑒(𝐿2 cos(𝑞2) + 𝐿4cos(𝑞2 + 𝑞4)) + 𝑦̇𝑒𝑒(𝐿2 sin(𝑞2) + 𝐿4 sin(𝑞2 + 𝑞4))
𝐿2𝐿3(cos(𝑞2) sin(𝑞2 + 𝑞4) − sin(𝑞2) cos(𝑞2 + 𝑞4))  (46)  

Dynamics 

Inertia Matrix: 

From (Ghorbel, 1995), we have: 

 

𝜓𝑞′(𝑞′) = �

𝜓𝑞′(1,1) 𝜓𝑞′(1,2) 𝜓𝑞′(1,3) 𝜓𝑞′(1,4)
𝜓𝑞′(2,1) 𝜓𝑞′(2,2) 𝜓𝑞′(2,3) 𝜓𝑞′(2,4)

1 0 0 0
0 1 0 0

� (47)  

Where: 

 𝜓𝑞′(1,1) = −𝐿1 sin(𝑞1) − 𝐿3sin(𝑞1 + 𝑞3) (48)  
 𝜓𝑞′(1,2) = 𝐿2 sin(𝑞2) + 𝐿4 sin(𝑞2 + 𝑞4) (49) 
 𝜓𝑞′(1,3) = −𝐿3sin(𝑞1 + 𝑞3) (50) 
 𝜓𝑞′(1,4) = 𝐿4 sin(𝑞2 + 𝑞4) (51) 
 𝜓𝑞′(2,1) = 𝐿1 cos(𝑞1) + 𝐿3cos(𝑞1 + 𝑞3) (52) 
 𝜓𝑞′(2,2) = −𝐿2 cos(𝑞2) − 𝐿4cos(𝑞2 + 𝑞4) (53) 
 𝜓𝑞′(2,3) = 𝐿3 cos(𝑞1 + 𝑞3) (54) 
 𝜓𝑞′(2,4) = −𝐿4cos(𝑞2 + 𝑞4) (55) 

 
The parameter 𝜓̇𝑞′(𝑞′, 𝑞̇′) is obtained by differentiating Eq. (47) with respect to time. 
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𝜌(𝑞′) = 𝜓𝑞′
−1(𝑞′) �

0 0
0 0
1 0
0 1

� (56)  

 
 𝜌̇(𝑞′, 𝑞̇′) = −𝜓𝑞′

−1(𝑞′)𝜓̇𝑞′(𝑞′, 𝑞̇′)𝜌(𝑞′)  (57)  
 
Now, 
 

 

𝑀′(𝑞′) = �

𝑀11 0 𝑀13 0
0 𝑀22 0 𝑀24
𝑀31 0 𝑀33 0

0 𝑀42 0 𝑀44

� (58)  

Where: 
 

 𝑀11 = 𝑚1𝑟12 + 𝑚3�𝐿12 + 𝑟32 + 2𝐿1𝑟3 cos(𝑞3)� + 𝐼1 + 𝐼3 (59)  
 𝑀13 = 𝑀31 = 𝑚3(𝑟32 + 𝐿1𝑟3 cos(𝑞3)) + 𝐼3 (60) 
 𝑀22 = 𝑚2𝑟22 + 𝑚4�𝐿22 + 𝑟42 + 2𝐿2𝑟4 cos(𝑞4)� + 𝐼2 + 𝐼4 (61) 
 𝑀24 = 𝑀42 = 𝑚4(𝑟42 + 𝐿2𝑟4 cos(𝑞4)) + 𝐼4 (62) 
 𝑀33 = 𝑚3𝑟32 + 𝐼3 (63) 
 𝑀44 = 𝑚4𝑟42 + 𝐼4 (64) 

Then, 

 𝑀(𝑞′) = 𝜌(𝑞′)𝑇𝑀′(𝑞′)𝜌(𝑞′)  (65)  
 

Centrifugal-Coriolis Terms: 

Let: 

 �ℎ1ℎ2
� = �−𝑚3𝐿1𝑟3 sin(𝑞3)

−𝑚4𝐿2𝑟4 sin(𝑞4)� (66)  

Then, 
 

 

𝐶′(𝑞′, 𝑞̇′) = �

ℎ1𝑞̇3 0 ℎ1(𝑞̇1 + 𝑞̇3) 0
0 ℎ2𝑞̇4 0 ℎ2(𝑞̇2 + 𝑞̇4)

−ℎ1𝑞̇1 0 0 0
0 −ℎ2𝑞̇2 0 0

� (67)  

 
 𝐶(𝑞′, 𝑞̇′) = 𝜌(𝑞′)𝑇𝐶′(𝑞′, 𝑞̇′)𝜌(𝑞′) + 𝜌(𝑞′)𝑇𝑀′(𝑞′)𝜌̇(𝑞′, 𝑞̇′)  (68)  
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Gravity Vector: 

 

𝐺′(𝑞′) = 𝑔

⎣
⎢
⎢
⎡
(𝑚1𝑟1 + 𝑚3𝐿1) cos(𝑞1) + 𝑚3𝑟3 cos(𝑞1 + 𝑞3)
(𝑚2𝑟2 + 𝑚4𝐿2) cos(𝑞2) + 𝑚4𝑟4 cos(𝑞2 + 𝑞4)

𝑚3𝑟3 cos(𝑞1 + 𝑞3)
𝑚4𝑟4 cos(𝑞2 + 𝑞4) ⎦

⎥
⎥
⎤
 (69)  

 
 𝐺(𝑞′) = 𝜌(𝑞′)𝑇𝐺′(𝑞′)  (70)  
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