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Abstract

Fault Tolerant Control of Spacecraft

Godard, Doctor of Philosophy, Aerospace Engineering

Ryerson University, Toronto, April 2010

Autonomous multiple spacecraft formation flying space missions demand the development

of reliable control systems to ensure rapid, accurate, and effective response to various atti-

tude and formation reconfiguration commands. Keeping in mind the complexities involved

in the technology development to enable spacecraft formation flying, this thesis presents

the development and validation of a fault tolerant control algorithm that augments the

AOCS on-board a spacecraft to ensure that these challenging formation flying missions

will fly successfully. Taking inspiration from the existing theory of nonlinear control, a

fault-tolerant control system for the RyePicoSat missions is designed to cope with actuator

faults whilst maintaining the desirable degree of overall stability and performance.

Autonomous fault tolerant adaptive control scheme for spacecraft equipped with redun-

dant actuators and robust control of spacecraft in underactuated configuration, represent

the two central themes of this thesis. The developed algorithms are validated using a

hardware-in-the-loop simulation. A reaction wheel testbed is used to validate the proposed

fault tolerant attitude control scheme. A spacecraft formation flying experimental testbed

is used to verify the performance of the proposed robust control scheme for underactuated

spacecraft configurations. The proposed underactuated formation flying concept leads to

more than 60% savings in fuel consumption when compared to a fully actuated spacecraft

formation configuration. We also developed a novel attitude control methodology that

requires only a single thruster to stabilize three axis attitude and angular velocity compo-

nents of a spacecraft. Numerical simulations and hardware-in-the-loop experimental results

along with rigorous analytical stability analysis shows that the proposed methodology will

greatly enhance the reliability of the spacecraft, while allowing for potentially significant

overall mission cost reduction.
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Chapter 1

Introduction

Autonomous on-orbit position maintenance and attitude control of spacecraft is one

of the most rapidly-growing innovative field that can implement cross-cutting tech-

nologies to significantly enhance future Earth and space-observing missions. The Attitude

and Orbit Control System (AOCS), the heart of spacecraft, consists of various types of

sensors, actuators, and control electronics (on-board computer). The control electron-

ics process attitude and orbit information of the spacecraft from sensors and based on

available on-board algorithms, control signals are generated for actuators to correct any

attitude and/or orbit errors. Most of the earlier and current spacecraft AOCS generally

employ redundant actuators and sensors to achieve required reliability utilizing various

control algorithms. These conventional feedback control designs may result in unsatisfac-

tory performance and instability, in the event of unexpected malfunctions in actuators. To

prevent fault induced losses and to minimize the potential risks associated with mission

failure, new control techniques need to be designed to cope with actuator faults whilst

maintaining the desirable degree of overall stability and performance. A control system

that possesses such a capability is often known as a Fault Tolerant Control System.

Future spacecraft will be expected to achieve high-precision pointing, formation fly-

ing, and optimal slew maneuvers from large initial conditions and in the presence of large

environmental and non-environmental disturbances, measurement noise, large modeling un-

certainties, actuator failures, and hardware as well as software constraints. With increasing

demand for performance and capability, and an increasing awareness about risks associ-

ated with system malfunction, fault tolerance is becoming an essential concern in spacecraft

AOCS design. Redundancy is a widely used approach for integrating mission safety with

control hardware failures. Due to increasing mission demands and stringent constraints

on weight, power, and cost of small satellites, providing full hardware redundancy for all
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actuators is difficult. In order to overcome these limitations, this thesis investigates the

methodologies required to design and incorporate a fault tolerant control (FTC) system

that performs its functions autonomously despite failures. An efficient design framework

that accepts the inevitability of failures and counteracts the effect of failures through func-

tional redundancy is proposed for autonomous fault recovery of small satellites.

1.1 Rationale Behind Fault Tolerant Control Design

Anomalies categorized by spacecraft subsystems show that Guidance, Navigation, and Con-

trol (GN&C) subsystems have higher number of anomalies that result in a mission critical

failure when compared to other subsystems [Robertson & Stoneking 2003, Hall 2003]. A

mission critical failure is defined as a premature loss of a spacecraft or loss of its ability

to perform its primary mission during its design life. Two examples where minor actuator

faults have lead to complete loss of spacecraft are stated below:

1. NASA’s Earth orbiting Lewis Spacecraft was launched on August 23, 1997, for mea-

suring changes in Earth’s land surfaces. Contact with the spacecraft was lost on

August 26; it then reentered the atmosphere and was destroyed on September 28

[NASA 1998]. The investigation board report stated that the spacecraft failed mainly

due to a technical flaw in the attitude control system design causing excessive thruster

firings that lead to the shutdown of all thrusters, leaving the spacecraft in an uncon-

trolled attitude draining most of its battery charge [NASA 2007].

2. The US Department of Defense developed the NAVSTAR GPS constellations that em-

ployed 24 satellites in orbit around the Earth to provide weather and navigation capa-

bilities for military. All satellites were 3-axis stabilized, nadir pointing, using reaction

wheels. One spacecraft, GPS BII-07, suffered a reaction wheel failure that lead to

3-axis stabilization failure and total loss of spacecraft [Robertson & Stoneking 2003].

Tables 1.1 and 1.2 summarize various on-orbit failures of thruster assemblies and momen-

tum/reaction wheels. More than half a century into the Space Age, actuators on-board

spacecraft are still prone to failures. One question that can be drawn from the above ex-

amples is that - “While some degree of random failure is inevitable, could something have
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been done to minimize the consequences of failure or, at least, their severity (in terms of

economic losses, control dexterity, etc.)?”

Given the fact that only limited time and information may be available, the nature and

location of actuator faults could be detected and diagnosed in many cases. This provides

an opportunity to reconfigure the control system so that sufficient degree of attitude and

orbit control dexterity is introduced to ensure overall spacecraft stability. A cost effective

way to obtain increased reliability and safety in automated systems is to introduce FTC.

The basic implementation strategy of FTC involves the design of an ‘intelligent’ software

that monitors behavior of components such that local faults are prevented from developing

into failures that can lead to total mission loss. Many FTC algorithms have been developed

in practice and applied to real spacecraft.

1. Far Ultraviolet Spectroscopic Explorer (FUSE) satellite was at the peak of its scien-

tific productivity when hardware problems caused the loss of two of its four reaction

wheels required for attitude control. The pitch and yaw wheels despun due to ex-

cessive friction between the rotors and wheel housings [Kruk et al. 2002b]. Engineers

reprogrammed the control software by developing a new control law, integrating the

Magnetic Torquer Bars in the control loop along with the remaining two reaction

wheels, and fine pointing capability was reestablished [Roberts et al. 2004].

2. After one year of perfect operation in space, controllers at the Surrey Space Centre

observed a sudden change to the attitude dynamics of the CERISE microsatellite

as it tumbled rapidly after collision with a piece of space debris in its 700 km polar

Earth orbit. The ground engineers analyzed the collision dynamics and reprogrammed

the on-board computers with novel magnetic control algorithms to re-stabilize the

microsatellite and regain full operational mission capability [Sweeting et al. 2004].

With increasing emphasis placed on reliability and safety, examples described above clearly

motivate the need for development of robust FTC algorithms capable of overcoming actu-

ator faults to prevent mission failure. AOCS are becoming more and more sophisticated

with increasingly complex system configurations. Controlling these systems under a wide

variety of operating conditions autonomously is a challenging task.
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1.2 Ryerson University Small Satellite Program

Micro and small satellite designs have revolutionized space engineering techniques to com-

plement the interests of both academic institutions and industry partners. Pressure on

financial budgets, coupled with rapid advancement of micro-technology, has catalyzed the

development of small specialized satellites that are faster and cheaper to produce despite

the limitations they place on the mission [Ludwig 1967]. Anticipating further advances in

miniaturization, the Space Systems Dynamics and Control (SSDC) laboratory at Ryerson

University, established in September 2005 under the supervision of Dr. K.D. Kumar, fo-

cusses primarily on the design and development of small satellites to pursue an active space

initiative. The overall objective is to advance research on miniature satellite design with

the ultimate goal of developing formations of autonomous small satellites to realize space

missions - complementing the conventional large satellites that perform large-scale space

science missions.

The RyeSat program includes the design and development of the following miniature

satellites: (1) 350 gm can-sized satellite (RyeCanSat), (2) 1 kg pico-sized satellite (RyePi-

coSat), and (3) 100 gm femto-sized satellite (RyeFemSat). The design of RyeCanSat has

been completed and it has undergone flight testing using a balloon and a rocket to an

altitude of 3000 ft [Alger & Kumar 2008]. RyePicoSat is an effort to bring knowledge

gained thus far from the RyeCanSat into a modular university satellite, allowing for the

continuous improvement of individual subsystems while retaining the ability to utilize older

space-qualified components. RyePicoSat is proposed for Ryerson Pico-satellite Formation

Flying Experiment missions.

The primary objective of this thesis is to augment the RyeSat AOCS design by develop-

ing FTC algorithms that provides autonomous recovery from actuator faults. We approach

this goal by systematically categorizing RyeSat based on actuator configurations as follows:

1. Redundant Actuator Configuration: For high performance space missions, the total

number of actuators used may be greater than the number of states to be precisely

controlled. Control redundancy is typically preferred to ensure optimality with re-

spect to control effort. Also, the spacecraft attitude and orbit can be precisely con-
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trolled even if some of the actuators fail, as long as the number of active actuators

are greater than or equal to the number of states to be controlled.

2. Underactuated Configuration: Failure of more than one actuator can make the space-

craft underactuated. These spacecraft are characterized by the fact that they have

fewer actuators than the degrees of freedom to be controlled. The objective is to

utilize the dynamic coupling between the directly actuated states and unactuated

states to develop a control algorithm that counteract the effects of actuator failure.

Consider the following class of systems having a state model nonlinear in the state vector

x and linear in the control vector u,

ẋ = f(x, t) + B(x, t)u (1.1)

where x ∈ Rn is the state vector, f(x, t) ∈ Rn represents the nonlinearity of the system,

B(x, t) ∈ Rn×m is the input matrix, and u ∈ Rm is the control vector. The dynamical

system described by Eq. (1.1) can be classified based on actuator configuration as follows:

• Redundant actuation: If m > p, the number of control inputs regulating the system

in Eq. (1.1) is more than the number of degrees of freedom to be controlled (p).

• Underactuated: If m < p, then for the system in Eq. (1.1) with p degrees of freedom,

only m states are actuated, and p−m degrees of freedom are unactuated.

The system given by Eq. (1.1) represents a nonlinear plant model that is affine in the

control input vector u, that is, characterized by u appearing linearly in the state equation.

Based on actuator configurations and affine nature of the control input, we classify the

RyeSat AOCS design goals as follows:

1. Orbit Control. The translational dynamics of two RyeSat (point masses) are exam-

ined in a leader-follower formation configuration. First objective is to develop a FTC

algorithm for demonstrating high precision orbit maintenance and formation recon-

figuration in the presence of actuator faults. Next, the RyeSat formation is examined

in an underactuated configuration to control the relative positions between spacecraft

using reduced inputs.
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Redundant Actuator

Configuration

Underactuated

Configuration

RyeSat Formation Control

RyeSat Attitude Control

Control Affine 

Systems

Figure 1.1: Classification of RyeSat AOCS framework based on actuator configuration.

2. Attitude Control. The rotational dynamics of RyeSat (rigid body) are examined to

develop a fault tolerant attitude control algorithm to demonstrate rapid attitude

acquisition, tracking, and pointing capabilities using a redundant reaction wheel con-

figuration. The spacecraft is also evaluated in an underactuated configuration where

the attitude control objectives have to be achieved using less that three control inputs.

The inter-link between formation control and attitude control based on underactuated and

redundant actuator configurations are shown using a schematic diagram in Fig. 1.1. The

problem of controlling spacecraft characterized by models that are non-affine in the control

input is a difficult one. Consider the following class of systems having a state model

nonlinear in the state vector x and nonlinear in the control vector u,

ẋ = f(x, t) + Bg[u(t)] (1.2)

where x ∈ Rn is the state vector, f(x, t) ∈ Rn represents the nonlinearity of the system,

B ∈ Rn×m is the input matrix, u ∈ Rm is the control vector, and g[u(t)] is the nonlinear

control input function. The main difficulty in determining the control input for this case

arises from the fact that u(t) appears in Eq. (1.2) in a nonlinear fashion.

Scope of this thesis also includes investigating the attitude control problem of RyeSat

driven by nonlinear actuators. Within this classification of non-affine control models the

main contributions are: (i) a novel attitude control methodology using a single thruster is

proposed, and (ii) fault tolerant control of RyeSat in tethered configuration is investigated.

Using a single thruster for attitude control by changing the thruster gimbal angles consti-

tutes a non-affine system in underactuated configuration. The tethered RyeSat controlled
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RyeSat Attitude Control

Control of Tethered

RyeSat Systems 

Control of RyeSat Using 

Single Thruster 

Control Non-Affine 

Systems

Figure 1.2: Classification of RyeSat AOCS framework based on non-affine control models.

using tether attachment points is a non-affine system in redundant actuator configura-

tion. This classification is shown in Fig. 1.2. Finally, the classifications outlined in Figs.

1.1 and 1.2 can be combined to provide a schematic of RyeSat AOCS design framework

from the perspective of this dissertation. The overall framework relating the system inter-

connections to actuator configurations and control models (affine and non-affine) is shown

in Fig. 1.3.

Redundant Actuator

Configuration

Underactuated

Configuration

RyeSat Formation Control

RyeSat Attitude Control

Control of Tethered

RyeSat Systems 

Control of RyeSat Using 

Single Thruster 

Control Affine 

Systems

Control Non-Affine 

Systems

Figure 1.3: Schematic of RyeSat AOCS design framework.
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1.3 Literature Review

Recent advances in micro and nanotechnology have succeeded in changing the focus of

aerospace industry toward smaller, lower-cost spacecraft design [Rycroft & Crosby 2001].

Scientific payloads onboard a spacecraft for Earth observation and space monitoring rely

on the AOCS to orient the spacecraft towards a prescribed direction with high accuracy.

As a consequence, AOCS actuator failure still represents one of the most serious threats

to spacecraft operations. Control reconfiguration in the event of actuator faults depends

entirely on the mode of spacecraft operation, namely, (i) orbit control, and (ii) attitude

control. This section places the objectives of this thesis in perspective with state-of-the-art

control techniques available in the current literature for spacecraft formation control using

thrusters, and spacecraft attitude control using reaction wheels, thrusters, and tethers.

1.3.1 Spacecraft Formation Control

Spacecraft formation flying (SFF) has been identified as an enabling technology for many

future space missions [Neeck et al. 2005]. The functionality of a single, complex spacecraft

can be distributed between a cluster of smaller, closely flying spacecraft. Formation flying

typically involves active, real-time, closed-loop control of multiple, cooperating satellites in

autonomous formation [Folta et al. 2002]. Thus, unlike station-keeping, where a satellite’s

position is controlled relative to a desired orbit, formation-keeping involves the control of

one or more satellites relative to another satellite. Over the past decade, several theoretical

investigations pertaining to accurate SFF relative motion models, formation trajectory

generation, and formation control have been reported in the literature.

Dynamics and Modeling

The design of control methodologies for SFF relies heavily on the dynamics of relative

motion of satellites within a cluster. Several investigations have considered linearized rela-

tive motion equations in a Cartesian coordinate frame, called the Hill’s equations [Hill 1878]

or the Clohessy-Wiltshire (CW) equations [Clohessy & Wiltshire 1960]. The Hill’s equa-

tions have also been extended to elliptic Keplerian orbits discarding orbital perturbations.

These models are called the Lawden equations [Lawden 1954] or Tschauner-Hempel equa-
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tions [Tschauner 1967]. Other approaches for modeling spacecraft formations are orbit

element differences [Schaub et al. 1999] and Theona theory [Golikov 2003].

To design formation flying architectures for LEO it is important to consider relative

effects caused by nonlinearity of the model, eccentricity effects, and the disturbance forces

(Earth’s gravitational field, atmospheric drag, and solar radiation pressure). For LEO,

the most significant perturbation arises from the second zonal harmonic (J2) of the Earth’s

non-spherical geopotential [Chobotv 2002]. Ignoring these perturbations leads to formation

designs that require more frequent corrections, and thus more fuel [Schaub & Junkins 2003].

Several analytical and numerical solutions to achieve relative orbit periodicity can be

found in the current literature. Spacecraft formation initialization for eccentric reference

orbits [Inalhan et al. 2002] and conditions accommodating corrections due to nonlinearity

as well as eccentricity [Vaddi et al. 2003, Gurfil 2005, Xing et al. 2007] result in naturally

periodic relative orbits. Schaub and Alfriend [Schaub & Alfriend 2001] developed J2 invari-

ant relative orbits for formation flying using differences in mean orbit elements. Coupled

linearized differential equations with constant coefficients capturing the effects of J2 poten-

tial was presented by Schweighart and Sedwick [Schweighart & Sedwick 2002]. Third-order

analytical solutions to describe nonlinear periodic motions in Hill’s frame has been consid-

ered in [Richardson & Mitchell 2003]. An iterative shooting approach (numerical) based

on the Newton method has been utilized to formulate "almost" periodic [Damaren 2007]

and quasi-periodic [Eyer & Damaren 2009] closed relative trajectories for SFF under the

influence of J2 − J6 gravitational perturbations.

Controller Design - Fully Actuated

Several control algorithms based on traditional linear and nonlinear control methods

have been utilized for precise tracking of spacecraft formations. Control schemes related

to linear feedback theory are not within the scope of this thesis and readers are referred to

[Kristiansen & Nicklasson 2009] and [Scharf et al. 2004] for a consolidated literature review

on various linear and nonlinear control techniques applied to formation control. Within

the nonlinear control framework, several techniques such as robust control [Hu & Ng 2007,

Xu et al. 2007], Lyapunov based nonlinear feedback control [Vaddi & Vadali 2003,

Yan et al. 2000, Vignal & Pernicka 2006], sliding mode control (SMC) [Yeh et al. 2002,
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Massey & Shtessel 2005, Liu et al. 2006], state-dependant Riccati equation (SDRE) control

[Stansbery & Cloutier 2000, Won & Ahn 2003], and adaptive control [Hadaegh et al. 1998,

de Queiroz et al. 2000, Wong et al. 2002, Pongvthithum et al. 2005] have been proposed to

deal with system nonlinearities, model uncertainties, and external disturbances.

As yet, only very few research papers account for unexpected actuator faults

[Ren & Beard 2004, Lim & Bang 2009]. Precise control of relative positions and velocities

of several spacecraft in formation is a challenging task when considering actuator failures

that can destabilize the formation geometry. For autonomous coordinated control during

formation flying, robust performance and fault tolerance of the controllers are key issues

that need to be addressed.

Controller Design - Underactuated

SFF can be evaluated as an underactuated system if the configuration of thrusters (char-

acterized by the failure of one or more pair of thrusters) cannot provide three independent

control thrusts in the radial, along-track, and cross-track directions, respectively. Vadali et

al. [Vadali et al. 2008] have shown that a 50% reduction in along-track control acceleration

can be achieved without the use of radial thrust, for circular reference orbits. Spacecraft

formation flying using no radial thrust has been examined previously based on linearized

Hill’s equations. The feasibility of using only along track input in the form of differential

drag between two spacecraft as the means for controlling their relative positions was exam-

ined in [Leonard et al. 1989]. This method was improved by [Bevilacqua & Romano 2008]

by proposing a two-phase control method using differential drag for rendezvous maneuvers.

LQR with no radial axis inputs using thrusters was implemented by [Starin et al. 2001a].

A novel proportional linear controller using only along track thrust has been developed to

achieve bounded relative position errors [Kumar et al. 2007].

Theoretical proofs that are important for investigating the underlying system dynam-

ics and establishing closed-loop stability conditions has not been developed in the current

literature. If the relative orbit chosen is large enough to create substantial errors between

the linear and nonlinear relative equations of motion, linear control algorithms guaran-

tees only local stability. External perturbations will produce a differential force along the

uncontrolled axis which cannot be compensated using linear control algorithms.
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1.3.2 Spacecraft Attitude Control

The low-cost microsatellite paradigm requires the design of attitude control systems capa-

ble of providing rapid attitude acquisition, tracking, and pointing capabilities, while the

equations that govern large-angle maneuvers are highly coupled and nonlinear. Scientific

payloads onboard a spacecraft for Earth observation and space monitoring rely on the

attitude control system to be oriented towards a prescribed direction with high accuracy.

Controller Design - Fully Actuated

Precise attitude control in the presence of environmental disturbances, uncertain nature

of spacecraft dynamical systems, and actuator saturation have attracted considerable re-

search interest in the existing literature. Several control methodologies have been proposed,

such as nonlinear feedback control [Wen & Kreutz-Delgado 1991, Xing & Parvez 2001],

variable structure control (VSC) [Vadali 1986, Crassidis & Landis Markley 1996], adap-

tive VSC [Boskovic et al. 2004, Wallsgrove & Akella 2005], inverse optimal control

[Bharadwaj et al. 1998, Krstic & Tsiotras 1999, Luo et al. 2005], and robust control

[Ahmed et al. 1998, Li et al. 2010].

With respect to attitude actuator failures, control reconfiguration techniques existing

in the current literature rely on fault detection and isolation (FDI). Several attitude con-

trol algorithms that implement a retrofit FDI component have been proposed for coun-

teracting faults in thrusters [Bošković et al. 1999, Chen & Saif 2007] and reaction wheels

[Tudoroiu & Khorasani 2007, Jin et al. 2008]. FDI approaches that require system redesign

are fairly complex and depends strongly on the efficacy of the fault detection algorithm.

Also, explicit failure identification requires substantial onboard computational resources.

An alternative approach to reconfigurable ACS design is based on adaptive control theory

where the controller parameters are constantly updated based on adaptive estimates of the

altered dynamics after failure [Tandale & Valasek 2006]. An adaptive approach to attitude

tracking control of spacecraft was presented by Cai et al. [Cai et al. 2008] to account for

various thruster faults. Jiang et al. [Jiang et al. 2010] proposed an adaptive FTC scheme

for attitude tracking of flexible spacecraft to counteract the effects of reaction wheel failures.

Although various nonlinear and adaptive control schemes have been proposed for fault-

tolerant attitude control of spacecraft, none of the literature discussed above have experi-
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mentally validated the performance of the algorithms on a reaction wheel assembly (RWA)

or thrusters. It is important to include high fidelity mathematical models of actuators to

understand the effects of actuator parameters on overall system performance.

Controller Design - Underactuated

Real-time FDI algorithms and passive FTC approaches for spacecraft attitude control

are modeled based on the assumption that the spacecraft is equipped with redundant actu-

ators. Despite the failure of actuators, adaptive control techniques can be used to generate

three independent control torques using the remaining functional actuators. Therefore, it is

still possible to efficiently track the attitude of the spacecraft using a reconfigurable control

methodology. However, the problem becomes more challenging if the control system can

deliver torque components about two axes only due to failure of one or more actuators.

Assuming that the failure can be detected, 3-axis stabilization is still possible by re-

configuring to a control algorithm that utilizes only two torque components. Researchers

have treated this problem in the Earth Centered Inertial (ECI) frame of reference. In this

case, Brockett’s theorem [Brockett 1984] must be addressed and control methods that can

avoid Brockett’s condition is necessary. If the problem is treated in the ECI frame, the

spacecraft undergoes attitude motion without considering its orbital motion around the

Earth. Therefore, the angular velocity components would converge to zero if the spacecraft

is 3-axis stabilized. Several control algorithms have been proposed for attitude control of

rigid spacecraft using only two control torques.

The initial focus attributed only to the stabilization of angular velocities of

a rigid spacecraft with less than three control torques [Brockett 1984, Aeyels 1985,

Sontag & Sussmann 1988, Morin 1996, Shen & Tsiotras 1999]. The objective is to null the

angular velocity vector of the spacecraft. Stabilization of the complete set of attitude

system, i.e., dynamics combined with kinematics is a much more difficult problem, and

it has been addressed in [Byrnes & Isidori 1991, Krishnan et al. 1994, Tsiotras et al. 1995,

Coron & Keraï 1996, Morin & Samson 1997, Han & Pechev 2009]. The objective is to sta-

bilize a spacecraft about a desired attitude using control torque components about two

axes only. Readers can refer to [Tsiotras & Doumtchenko 2000] for a complete literature

survey of spacecraft attitude control methods using reduced inputs.
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Most of the existing literature on spacecraft attitude control using reduced inputs do

not consider the torque due to Earth’s gravity and the effects of external disturbances and

modeling uncertainties. The gravity gradient torque can significantly effect the motion of

the spin axis of a non-symmetric spacecraft in a precessing LEO [Harding 1966]. For low-

cost missions the possibility of handling actuator failures without the need for redundant

elements is even more appealing; the actuator system remains minimal and, assuming that

the failure can be detected, a sufficient degree of attitude dexterity may be available at

the negligible cost of a control law reconfiguration, provided that the resulting maneuver

accuracy is compatible with mission constraints.

1.3.3 Tethered Spacecraft Systems

Spacecraft often require reaction wheels, control moment gyros, and reaction control jets as

means of actuators for the ACS, to meet 3-axis pointing requirements. The idea of utilizing

lightweight deployable tether can alleviate the requirement for other attitude control sys-

tem elements. The Smithsonian Astrophysical Observatory and the Italian space industry

Alenia Spazio conducted a study to test the use of tethers as a backup concept for stabiliz-

ing the attitude of a large space station for NASA. They claimed that the main benefits of

the system are: (1) simplicity, (2) relatively low cost, and (2) reusability [van Pelt 2009].

The dynamics and control aspects of single tether systems have been studied extensively

by several researchers in the last two decades [Beletsky & Levin 1993]. The control of two

tether systems has received little focus compared to that of single tether systems, mainly

due to the added complexity of having two-reel mechanisms. However, the ability to provide

superior control of the motion of the subsatellite using two tethers, coupled with the benefit

of redundancy in case of tether severance suggests that a two tether system may present

some significant advantages and unique mission opportunities.

An excellent review of the dynamics and control aspects of TSS is available in

[Kumar 2006b]. A comprehensive review of the earlier work on tethered satellites

was treated by Misra and Modi, focusing primarily on single-tether two-body systems

[Misra & Modi 1983, Misra & Modi 1986]. In the presence of an offset between the

tether attachment point and the mass center of the end satellite, termed the tether
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offset, the satellite experiences additional moments, and its attitude motion becomes

coupled to that of the tether librational motion [Modi 1990]. Several linear and

nonlinear control algorithms have been developed for regulating tether attachment

points to enable attitude control [Fan & Bainum 1988, Kline-Schoder & Powel 1993,

Kumar & Nakajima 2000, Modi et al. 1991, Modi et al. 1992, Pradhan et al. 1999,

Grassi & Cosmo 1996, Modi et al. 1998, Kumar & Kumar 2001]. The choice of tether

offset has a significant effect on the system transient response [Bainum et al. 1985]. The

effectiveness of offset control scheme was also validated by [Modi et al. 1990] through a

ground-based experiment.

Several interesting space applications of tethers have been proposed and several mis-

sions have been flown [Cosmo & Lorenzini 1997]; some missions were successful and others

were unsuccessful. The major successful missions include the Canadian Space Agency’s

observation of Electric-Field Distributions on the Ionospheric Plasma-A Unique Strategy

(OEDIPUS) missions: OEDIPUS-A in 1989 [Tyc & Han 1995] and OEDIPUS-C in 1995

[Tyc et al. 1997], NASA’s Small Expendable Deployer System (SEDS) missions: SEDS-1

in 1993 and SEDS-2 in 1994 [Smith 1995], NASA’s Plasma Motor Generator (PMG) ex-

periment in 1993 [Jost & Chlouber 1995], and the U.S. Naval Research Laboratory’s tether

physics and survivability (TiPS) in 1996 [Purdy et al. 1997].

Despite of the significant achievements, there are still many open problems of the-

oretical and practical importance to realize a reliable and efficient TSS. Some of the

unsuccessful missions were the NASA and Italian Space Agency’s (ASI) TSS-1 in 1992

[Tomlin et al. 1995] and NASA’s Advanced Tether Experiment (ATEx) in 1998 [Zedd 1997].

The major causes of failure of these missions were found to be associated with tether de-

ployment and tether breakage. Researchers have tried to solve these problems using high

performance tether deployment system and multi-strand tethers; however, the problems of

tether deployment and breakage still exist. Therefore, it is very important to emphasize

the challenges associated with the attitude stabilization of a tether system when tether

deployment suddenly stops and tether breakage occurs. The applications of fault-tolerant

adaptive nonlinear control methodologies that circumvent the problem of tether severance

has not been studied by researchers.
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1.4 Fault-Tolerance in Spacecraft Systems

The basic premise of autonomous FTCS presented in this thesis is that it tolerates failures in

actuators and enhances the reliability and life of the spacecraft by providing uninterrupted

acceptable performance. For systems equipped with more actuators than the degrees of

freedom to be controlled, it is important to design a control reconfiguration mechanism

that can autonomously substitute the redundant actuators in place of faulty units. This

prevents faulty actuators from further deteriorating the performance of the spacecraft.

1.4.1 Fault Classification

Actuator faults can be classified as, (1) additive faults, and (2) multiplicative faults, based

on the way faults are modeled and added to the system (Figure 1.4). Additive faults

are usually associated with reaction wheels used for attitude control. Changes in friction

between stator and rotor due to aging, temperature etc. could lead to increased/decreased

generated reaction torque when compared to the commanded value. Malfunctioning of

the actuators may also continuously generate reaction torque (reaction wheel) or forces

time
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Figure 1.4: Fault classification based on representation and time characteristics.
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(thrusters) due to stuck control surfaces. Such faults are modeled as an abrupt change

of the nominal control action and therefore classified as multiplicative faults. Actuator

degradation is also a class of multiplicative fault.

Faults are also classified based on fault forms or their time characteristics as, (1) abrupt,

(2) incipient, and (3) transient. Abrupt faults occur instantaneously as a result of hardware

damage. This leads to total failure of the actuator and such faults remains until the faulty

unit is repaired or replaced. Incipient faults (drift-like, due to wear and tear of the motor)

represent slow variations in the actuator performance, often as a result of aging. Tolerating

incipient faults is crucial in AOCS problems where early reconfiguration of worn actuators

is required. Finally, transient faults represent temporary malfunctions of an actuator.

Repeated occurrences of transient faults is termed as intermittent faults.

1.4.2 Failure Modes in Reaction Wheels and Thrusters

The actuators considered in this thesis are mainly reaction wheels (attitude control) and

thrusters (orbit control, attitude control). The nature of failures in reaction wheels and

thrusters, and their effects on system performance are described in this subsection.

1.4.2.1 Reaction Wheel Failure Modes

A reaction wheel consists of a flywheel driven by an electric motor and the associated

bearings and drive electronics. With regards to stabilizing the attitude of a spacecraft,

reaction wheels are sensitive devices that are vulnerable to different sources of faults

[Murugesan & Goel 1987].

1. Failure to respond to control signals : This type of failure causes the wheel to decelerate

slowly or hold its speed, without any response to control signals due to faulty drive

electronics, drive motor, and power supply.

2. Decreased reaction torque: The generated reaction torque could be less than the

commanded value by the controller due to increased friction between stator and rotor,

marginal failure of bearings, and decreased motor torque and current drive. These
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factors effect the rate of change of the wheel speed and consequently decrease the

generated reaction torque.

3. Increased bias torque: When the external disturbances are negated and the demanded

reaction torque by the ACS is zero, the reaction wheel should hold its speed and

generate no torque. Incipient faults can occur based on changes in friction due to

aging, time-varying temperature etc., that may accelerate or decelerate the wheel,

thereby generating a bias torque, even when the commanded torque is zero.

4. Continuous generation of reaction torque: Faults in the bus voltage and intermit-

tent time-varying faults in the motor current might result in continuous increase

or decrease in wheel speed, thereby generating reaction torque, independent of the

commanded torque by the controller.

1.4.2.2 Thruster Failure Modes

A thruster consists of a flow control valve and a combustion chamber. When propellant

passes through the combustion chamber, chemical reaction takes place generating thrust

through the nozzle. Thrusters are used during various phases of a mission for spacecraft

attitude control, orbit correction (station-keeping), and momentum dumping operations.

To avoid single point failures, generally, two set of functionally redundant thrusters are

used in spacecraft.

1. Stuck-open failure is a type of failure that is very common with thrusters where

the flow control valve is stuck open causing large leakage and depletion of propel-

lant. This leads to large constant thrust delivered by faulty thrusters causing rapid

attitude/station-keeping error build-up and reducing the life of the mission.

2. Stuck-close fault occurs when the flow control valve remains closed and thereby the

thruster does not generate thrust/torque when required. Intermittent occurrence

of this fault can cause large deviations to the orbit of the spacecraft. Abrupt or

permanent closure of the flow control valve requires transferring control authority to

the redundant system via control reconfiguration algorithm.
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All of the above mentioned failures in thrusters and reaction wheels can result in large

attitude/station-keeping errors and/or attitude loss. If these faults are not negated us-

ing a control reconfiguration mechanism, the consequences can range from complicated

reacquisition of spacecraft attitude/orbit to catastrophic ending of the mission.

1.4.3 Controller Reconfiguration

The proposed fault-tolerant architecture for spacecraft ACS to accommodate for actuator

and faults is shown in Figure 1.5. The shaded region projects the main focus of this thesis.

Our objective is to improvise the design of ‘Controller’ subcomponent to achieve fault-

tolerance in a spacecraft control system. The nominal controller is redesigned by adding

an adaptive retrofit component. There are two main steps in the proposed control flow: (1)

The plant parameters are assumed to be unknown, and therefore the control parameters

have to be provided by an adaptation law, Adaptive Parameter Estimation Scheme. (2)

Adaptive Fault Tolerant Control Mechanism is used to adjust the estimated parameters

in the control input computation. As a result, the adaptive control design provides new

Figure 1.5: Schematic of the proposed fault tolerant attitude control system.
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torque/force commands to compensate for actuator faults by autonomous reconfiguration

of the control algorithm. The schematic of the FTCS for orbit control would be the same

as Figure 1.5 with the input to controller being the trajectory tracking errors.

Based on the fault classification provided in Section 1.4.1, the actuator failures com-

monly encountered in spacecraft systems can be termed as: (1) Lock-In-Place (LIP), (2)

partial Loss of Effectiveness (LOE), and (3) Float. In lock-in-place type failures, the ac-

tuator freezes at a certain condition and does not respond to subsequent commands. In

this case, the remaining operating actuators must not only compensate for the lack of the

desired control effort of the failed actuator, but must also cancel the undesired control effect

produced if the actuator freezes at any position other than zero. Partial loss of effectiveness

may occur due to physical damage of the control effector. Float-type failure occurs when

the actuator contributes zero force/torque to the control authority.

A basic actuator fault structure that differentiates commanded control and applied

control is shown in Figure 1.6. The preceding control failures can be modeled for each

control by the following mathematical model:

uai = uci + σ[ūi − uci] (1.3)

σ−

σ−

σ−

σ

σ

σ

Figure 1.6: Schematic of a control system with actuator faults.
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For a case in which the control is a vector, σ = diag{σ1, σ2, σ3} is the actuator failure

indicator, ūi, i ∈ {1, 2, 3} represent uncertain actuator failures, uci, i ∈ {1, 2, 3} is the

desired control force/torque commanded by the controller, and uai, i ∈ {1, 2, 3} is the

control that can actually be applied by the actuators.

• No failure: In the absence of failure, uai = uci and the values of σ and ūi are repre-

sented as zero vector, respectively.

• Lock-in-Place fault: For LIP fault (stuck-open fault), the value of σ goes to 1 and ūi

going to the constant value at which the actuator has frozen leading to uai = ūi.

• Loss of Effectiveness: In the case of LOE, if it is assumed that there is 50% degradation

in the control actuation, σ takes a value of 0.5 and ūi is represented as a zero vector.

• Float: Float type failures can also be accounted for, with σ = 1 and ūi = 0.

By augmentation of the adaptive fault-tolerant control scheme with this control failure

model (Figure 1.6), a framework is created that accommodates actuator failures and damage

as changes in the parameters of the system.

1.5 Problem Statement

An overview of the fault tolerant spacecraft control discipline based on classification of

faults, failure modes in reaction wheels and thrusters, and control law reconfiguration was

presented in the previous section. Assessing this in perspective with the literature review

presented in Section 1.3 gives a clear picture of the subsequent developments that have

taken place in spacecraft attitude and formation control discipline. More interestingly,

it is important to identify the scarcity of work essentially in autonomous FTC strategies

for spacecraft AOCS that can be implemented during various phases of a mission. Our

retrospect is on how passive control methods fit conceptually into the autonomous AOCS

framework and how to improve pointing accuracy and establish precise orbital and attitude

maneuvers even with the failure of control actuators onboard a spacecraft. Many significant

challenges must be overcome before an autonomous FTCS for spacecraft can be realized.

The problem statements for this dissertation can be classified as:
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[PROB1] Nonlinear spacecraft models. The inherent nonlinearity in the attitude and

formation dynamics of spacecraft is identified as one of the technological bridges to be

crossed for successfully developing a fault tolerant controller. A linear representation

of the mathematical model does not accurately describe the dynamic behavior of

spacecraft for a wide range of operating conditions.

[PROB2] Model uncertainties and external disturbances. In space applications, controllers

designed based on nonlinear spacecraft models can also be imprecise due to unknown

values of some physical parameters, disturbance models, etc. The resulting mismatch

between the model and the real system is referred to as model uncertainty. The

problem of disturbance rejection is particularly pronounced for spacecraft that operate

in the altitude ranges where their dynamics is affected by various environmental and

non-environmental disturbances.

[PROB3] Control input saturation. Saturation is very critical for space systems be-

cause continued control operation in the presence of actuator saturation (wheel speed

saturation, maximum thrust) can lead to substantial performance degradation and

instability. For the case of tracking maneuvers, input saturation can contribute sig-

nificantly to tracking errors along with parameter uncertainties and various sources

of internal and external disturbances.

[PROB4] Actuator faults. Most actuator faults in the AOCS introduce constant or state-

dependant disturbances into the overall closed-loop system causing the spacecraft

dynamics to deviate largely from its nominal operational regime. Actuator failure

can also force the remaining operational and redundant actuators to function with

maximum control authority leading to control input saturation.

It should be noted that the challenges described above are correlated to each other and

the development of a robust controller can be only accomplished if these problems are

taken into account explicitly. If an actuator fault occurs, the controller’s command will not

be applied properly to the spacecraft. To avoid this situation, one needs to design a FTC

algorithm capable of overcoming the above mentioned challenges with explicit consideration

of actuator faults while developing any theoretical framework.
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1.6 Research Objectives

In response to the problem statement described above, this dissertation focusses on the

design of adaptive FTC algorithms for spacecraft with redundant actuators and robust

control algorithms for spacecraft in an underactuated configuration. In addition, efficacy

of the developed control methodologies are illustrated for RyeSat formation control, RyeSat

attitude control, and control of tethered RyeSat configurations.

From practical viewpoint, our goal is to design a control system that can achieve high

precision pointing, fast slewing, and large maneuvers in the presence of large disturbances,

model uncertainties, and actuator faults. The following objectives are identified.

[OBJ1] Adaptive FTC for redundant actuator configurations: Develop a recon-

figurable control strategy based on adaptive control theory, in which the adaptive

control structure implicitly reconfigures the control algorithm using adaptive esti-

mates of altered spacecraft dynamics after failure. Instead of using an explicit FDI

algorithm, this methodology allows the controller to constantly update its parameters

using an adaptation mechanism. The objective is to provide autonomous fault recov-

ery using a reliable and const-effective control algorithm that accounts for modeling

uncertainties, external disturbances, and actuator failures simultaneously.

[OBJ2] Robust control for underactuated configurations: For small spacecraft

with high precision operational requirements, cost and weight penalties associated

with actuator redundancy may be unacceptable. Hence, if the spacecraft becomes

underactuated due to actuator failures, a cost reducing alternative is to design a

robust control technique that can achieve control objectives using only the remaining

healthy actuators. We utilize the nonlinear dynamic coupling between the directly

actuated degrees of freedom and the unactuated degrees of freedom to develop a

robust nonlinear control algorithm that can stabilize all degrees of freedom.

[OBJ3] Validation: Failure analysis should be conducted to determine the effect of actu-

ator malfunction on the performance and flight-worthiness of the control system. We

approach the validation of the proposed control algorithms from three perspectives:
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conventional theoretical analysis, numerical simulation study, and real-time experi-

mental testing. Analytical studies are performed using adequate nonlinear control

theory to demonstrate AOCS performance and stability. Simulation studies are used

as a design tool to demonstrate system performance, compliance with design require-

ments, and validate established theoretical framework. Finally, we utilize the reaction

wheel hardware and spacecraft formation test-bed for real-time testing of the control

algorithm. This ensures that the control profile demanded by the AOCS can actually

be achieved using real hardware.

[OBJ4] Applications: Implementation and validation of the developed fault tolerant and

robust control techniques using a closed-loop control experiment permits the verifi-

cation of a system-level integration of the controller with actuators. To complement

this effort, a number of application studies were conducted to assess the performance

and usability of the proposed control algorithms. In particular, we focus on underac-

tuated and redundant actuator configuration with emphasis on spacecraft formation

and attitude control. For systems that are non-affine in control, an adaptive FTC

algorithm is proposed to stabilize the attitude of a tethered RyeSat configuration and

a robust control scheme is developed for RyeSat attitude stabilization using a single

gimballed-thruster.

Innovative small satellite designs have pioneered many advances in satellite technology.

Recent years witnessed a substantial progress in the design of new sensing and actuation

devices for spacecraft, thereby, increasing the demand for performance and capability of

attitude sensors and actuators onboard nanosatellites. The development of practically

viable control algorithms has not kept pace with new capabilities enabled by novel hardware

designs and increased computational power for spacecraft.

Researchers have often sought to ‘fault-avoidance’ techniques such as enhancements in

design and fabrication, and elaborate and intensive testing to improve the reliability of

spacecraft ACOS. However, failures do occur in control actuators during their long opera-

tional life leading to malfunction of the entire control system. Therefore, it is important to

design an autonomous FTC algorithm that operates satisfactorily not only in the absence

but also in the presence of actuator failures.
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1.7 Main Contributions

Autonomous fault tolerant adaptive control scheme for spacecraft systems equipped with

redundant actuators and robust control of spacecraft systems in underactuated configura-

tion, represent the two central themes of this thesis. Specifically, the following contributions

are identified, and expanded based on objectives stated in Section 1.6.

1. Fault-tolerant Control of Spacecraft Formations (OBJ1, OBJ3, Chap. 2)

This dissertation presents a novel control scheme capable of achieving high precision

station-keeping and formation geometry reconfiguration for multiple spacecraft in for-

mation flying by explicit consideration of model uncertainties, external disturbances,

and actuator faults simultaneously. In particular, we propose a fault-tolerant forma-

tion flying concept, identify the possible types of actuator faults, and derive a novel

adaptive control scheme based on existing variable structure control theory. A high

fidelity computer simulation model is developed to validate the proposed algorithm.

Although there is a plethora of control designs available in the current literature for

spacecraft formation control, the technique presented in this dissertation is the first

to consider faults in thrusters and provide an autonomous fault recovery scheme.

2. Control of Underactuated Spacecraft Formations (OBJ2, OBJ3, Chap. 3)

Feasibility of achieving reliable formation control without the need for thrust in the

radial or along-track direction is explored in this paper. For configurations associated

with no radial axis input, the control laws available in the current literature are

based on linearized relative motion dynamics and only work in a sufficiently small

neighborhood of the origin. The configuration based on the exclusion of along-track

force, not examined in the literature previously, is challenging because it fails the

linear controllability test and hence requires the use of nonlinear control techniques.

This dissertation introduces a new concept of formation control without the use of

force in along-track direction and the stability of the underactuated configuration

is proved using nonlinear control theory. We developed a comprehensive numerical

simulation model and a hardware test best to facilitate testing and validation of the

proposed underactuated configuration and control algorithm.
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3. Fault-tolerant Attitude Control of Spacecraft (OBJ1, OBJ3, Chap. 4)

Attitude control in the presence of environmental disturbances, model uncertainties,

and actuator/sensor faults have attracted considerable research interest in the existing

literature. Although various methodologies have been developed for fault tolerant

attitude control of spacecraft, it is rare that the performance of the adaptive nonlinear

algorithms are experimentally validated on a reaction wheel assembly (RWA).

The main contributions of Chapter 4 can be stated as follows. An adaptive FTC

algorithm is proposed for precise 3-axis attitude control for miniature satellites using

reaction wheels as attitude effectors. Two configurations of RWA are examined in this

work, (1) three wheels in orthogonal configuration combined with one oblique wheel;

and (2) four wheels in a pyramid configuration. When a reaction wheel failure or fault

occurs, the control signals are autonomously redistributed to the remaining healthy

wheels using an adaptive gain that is updated on-line based on the attitude tracking

error. Experimental results are compared with numerical simulations to demonstrate

the successful implementation of the proposed fault-tolerant algorithm.

4. Attitude Control of Underactuated Spacecraft (OBJ2, OBJ3, Chap. 5)

Spacecraft attitude stabilization in the local vertical and local horizontal frame

(LVLH) using control torques supplied by gas jet actuators about only two of its

principal axes is examined in this chapter. Based on this underactuated dynamics,

we propose a time-invariant continuous feedback control scheme capable of achieving

attitude stabilization for cases where there is no control available on either roll or yaw

axis of the spacecraft. The results obtained forms the basis of developing an attitude

control system for pico-satellites using a novel single-thruster based control strategy.

5. RyeSat attitude control using a single thruster (OBJ2, OBJ3, Chap. 6)

A single-thruster control concept, either by design or in a contingency, is challenging

because the thruster exerts both force and torque on a satellite. Torques are gen-

erated using a thruster orientation mechanism with which the thrust vector can be

tilted on a two axis gimbal. With recent renewed interest to return to the Moon,

NASA has proposed a new series of Crew Exploration Vehicle capable of carrying as-
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tronauts to the Moon. The control concept using a single-thruster can be conceived

as a last-ditch emergency backup system, in the absence of nominal control capac-

ity, to execute attitude maneuvers during de-orbit and descent phases (for descent

to the lunar surface, or, attaining a heat-shield-forward attitude trajectory during

atmospheric reentry). For low-cost missions using pico-satellites, the possibility of

handling actuator failures without the need for redundant elements is even more ap-

pealing. The proposed control method is capable of achieving complete three-axis

spacecraft attitude stabilization using a single thruster.

6. Fault-tolerant Attitude Control of Tethered Spacecraft (OBJ1, Chap. 7)

Based on the complexity of the model and various attractive potential applications in

space, a Tethered Spacecraft System was chosen to analyze the advantages of offering

a fault-tolerant attitude control framework. Several missions have already been flown

to verify the TSS concept. Some of the unsuccessful missions were the NASA and

Italian Space Agency’s TSS-1 in 1992 and NASA’s Advanced Tether Experiment

(ATEx) in 1998. The major causes of failure of these missions were found to be

associated with tether deployment and tether breakage. In this chapter, a novel

fault-tolerant adaptive control scheme is proposed to control the attitude motion of a

two-tether subsatellite system using coordinated movement of the tether attachment

points. Specifically, we consider the case where tether deployment suddenly stops and

one of the tethers is severed. An abrupt blockage of the tether attachment point and

a fault in the actuator that can reverse the motion of the attachment point is also

simulated to validate the effectiveness of the proposed control scheme when subjected

to un-anticipated actuator faults. To date, the approach presented in this paper is

the only control technique available in the literature that is capable of providing

autonomous control for tethered satellite systems in the event of tether severance.

The approach for designing a fault tolerant spacecraft control system has undergone a

fundamental shift in philosophy in the last five to eight years. Initially, the concept was

to design a control law robust enough to guarantee system stability in the face of the full

range of potential failures. Then, upon the event of a failure, the system would identify the

fault, isolate the failure mode, estimate new system parameters, and select new control law
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gains and/or control input distribution to regain some level of performance. The tuning of

gains in control algorithms is not straightforward because the resulting closed-loop error

dynamics are nonlinear; moreover, it may not be possible to find constant gains that yield

desirable performance for all operating conditions. Therefore, the only means of obtaining

a stabilizing control law with good performance is to use an algorithm that can constantly

update its parameters.

The control methodology proposed in this thesis minimizes complexities in the control

reconfiguration stage by employing a novel adaptive control retrofit scheme. Therefore,

with the help of adaptive online parameter estimation, the method removes the toil of

FDI, and thus, the time required to cope with faults is reduced. A robust adaptive control

algorithm is designed where the uncertainties on constant or slowly-varying parameters due

to actuator fault is reduced by parameter adaptation and other sources of uncertainties and

disturbances are handled by inherent robustness of the controller.

1.8 Thesis Outline

We begin with the spacecraft formation flying problem in Chapter 2. A fault-tolerant

adaptive control algorithm is developed to cope with thruster faults by considering cases

of formation-keeping and formation reconfiguration. Chapter 3 presents the formation

control problem in the underactuated configuration. Complete loss of control authority

in along-track or radial direction is considered. Results obtained from implementing the

proposed control algorithm on a hardware test-bed are also presented in this chapter. The

numerical and experimental results of implementing the FTC scheme for attitude tracking of

spacecraft using reaction wheels as actuators are detailed in Chapter 4. The underactuated

configuration for spacecraft attitude control is addressed in Chapter 5 and the results of

attitude stabilization using two control inputs are supplemented by introducing a novel

single-thruster attitude control strategy for pico-satellites (Chapter 6). In Chapter 7 an

approach is presented for control of two-tether satellite systems that encounter faults during

tethered attachment point actuation and complete failure of one tether. We conclude with

a summary of our accomplishments (Chapter 8) and suggestions for future work.
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Figure 1.7: Thesis outline: The main chapters are represented by shaded boxes.



Chapter 2

Fault Tolerant Control of Spacecraft

Formations

Multiple spacecraft formation flying is one of the key technologies of current and

future space missions. Due to limitations on launch vehicle allowance size, in con-

cordance with the challenges associated with precision control of large space structures,

flying a collection of spacecraft in formation would be the only viable approach to enable

vast improvements in angular resolution for future space telescopes and interferometers.

The main challenge is to control the relative positions of spacecraft in formation when

the external disturbances from gravitational perturbation, atmospheric drag, solar radia-

tion pressure, electromagnetic forces, and Earth’s oblateness (differential J2) cause drifts of

both the relative positions of the spacecraft and the formation center. In this chapter, we

address the nonlinear problem of formation flying in low Earth orbits and develop a control

methodology that yields sub-millimeter formation-keeping. Our main focus is to counteract

the effects of onboard thruster faults and failures by utilizing a reconfigurable approach to

control algorithm design. To prevent thruster faults and environmental disturbances from

causing the spacecraft in formation to drift apart, a closed-loop nonlinear control algorithm

is developed based on sliding mode control that incorporates a novel adaptive parameter

update scheme to enable autonomous fault recovery.

The chapter is organized as follows: Section 2.1 introduces the mathematical model of

the spacecraft formation system. Adaptive FTC algorithms are formulated with detailed

proof of closed-loop system stability in Section 2.2. For a detailed assessment of the system

performance under the proposed control strategies and validation of the established theoret-

ical framework, the results of numerical simulations incorporating different fault scenarios

are presented in Section 2.3. Finally, some brief conclusions are provided in Section 2.4.
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2.1 SFF Mathematical Model

The investigation is initiated by formulating the complete nonlinear equations of motion of

the SFF system to develop a mathematical model that facilitates the design of nonlinear

control methodologies. The proposed system comprises of a leader spacecraft in an elliptical

planar trajectory with the Earth’s center at one of its foci and a follower spacecraft moving

in a desired relative trajectory about the leader spacecraft.

2.1.1 Cartesian Coordinate Frames

The coordinate frames used to represent the dynamics of the leader and follower spacecraft

are shown in Fig. 2.1. An Earth centered inertial (ECI) frame is denoted by I−XY Z, has

its origin located at the center of the Earth, with ZI-axis passing through the celestial North

pole, XI-axis directed towards the vernal equinox, and YI-axis completes the right-handed

triad. The orbital motion of the leader spacecraft is defined by ~rl ∈ R3, ~rl
∆
= [ rl 0 0 ]T ,

and true anomaly θ.

The motion of the follower spacecraft is described relative to the leader spacecraft using

a relative local vertical local horizontal (LVLH) frame B − xyz fixed at the center of the

leader spacecraft with the x-axis pointing along the local vertical, the z-axis taken along

normal to the orbital plane, and the y-axis representing the third axis of the right-handed

S−xyz frame. ~ρ ∈ R3, ~ρ
∆
= [ x y z ]T , defines the relative position vector of the follower

spacecraft from the origin of the leader spacecraft coordinate frame. Both, ~rl and ~rf are

expressed in the LVLH frame. In this dissertation, the motion along x, y, and z will be

referred to as radial, along-track, and cross-track motion, respectively. It is important to

note that the leader position need not be necessarily occupied by a physical spacecraft,

but can merely be used as an orbit reference point for all follower spacecraft. In a circular

orbit, the y-axis is parallel to the leader spacecraft velocity vector, and the leader orbit

frame rotates relative to the ECI frame with an angular velocity,

n =

√
µe

r3
l

(2.1)

where µe is the geocentric gravitational constant of the Earth and rl is the distance from

the frame origin to the center of the Earth. Two spacecraft in circular orbits with the same
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Figure 2.1: Geometry of orbit motion of leader and follower spacecraft.

altitude will have the same orbital velocity, and this velocity will be constant throughout

the orbit in the absence of orbital perturbations. If they are separated in the along-track

direction, the separation distance would remain constant since orbital velocities are equal.

For the case of elliptical orbits, the spacecraft closer to the Earth will have higher orbital

velocity. Therefore, the separation distance will contract and expand, depending on whether

the formation is approaching the orbit apogee or perigee.

2.1.2 Coordinate Frame Rotations

The rotation from the ECI frame to the leader orbital frame (TIB) is dependent on the

orbital elements of the leader spacecraft orbit, and are expressed based on three rotations

[Kristiansen & Nicklasson 2009]. The first rotation is about the inertial ZI-axis with the

right ascension of the ascending node of the orbit, Ωl. The second rotation is about the
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x-axis in the rotated frame with the orbit inclination, il. The final rotation accounts for

the orbit perigee and the location of the spacecraft (ωl + θ) about the new z-axis.

T3(Ωl) =




cos(Ωl) − sin(Ωl) 0

sin(Ωl) cos(Ωl) 0

0 0 1


 and T1(il) =




1 0 0

0 cos(il) − sin(il)

0 sin(il) cos(il)




T3(ωl + θ) =




cos(ωl + θ) − sin(ωl + θ) 0

sin(ωl + θ) cos(ωl + θ) 0

0 0 1




The rotation matrix to transform from the ECI frame to the leader frame is given by

TIB = T3(Ωl)× T1(il)× T3(ωl + θ) (2.2)

2.1.3 Equations of Motion

The orbital equations of motion for the leader spacecraft and the full nonlinear translational

dynamics of the follower spacecraft relative to the leader spacecraft taking into account the

thrust and disturbance forces can be written as [Schaub & Junkins 2003]:

r̈l − rlθ̇
2 +

µe

r2
l

= 0 (2.3)

rlθ̈ + 2θ̇ṙl = 0 (2.4)

mf ẍ− 2mf θ̇ẏ −mf

(
θ̇2x + θ̈y

)
+ mfµe

(
rl + x

r3
f

− 1

r2
l

)
= ufx + Fdx (2.5)

mf ÿ + 2mf θ̇ẋ + mf

(
θ̈x− θ̇2y

)
+ mf

µe

r3
f

y = ufy + Fdy (2.6)

mf z̈ + mf
µe

r3
f

z = ufz + Fdz (2.7)

where rf = [(rl + x)2 + y2 + z2]1/2 is the absolute position of the follower spacecraft, Fdj

is the net relative perturbations acting on the SFF system, and ufj are the components

of the control input vector, for j = x, y, z. The equations of motion given by Eqs. (2.3)-

(2.7) involves ten states, Xa = [rl, ṙl, θ, θ̇, x, ẋ, y, ẏ, z, ż]T , and the combined effects of

nonlinearity and eccentricity are accounted for, thus providing a generalized framework.

This mathematical model for SFF is also referred to as the “true model” [Vaddi 2003].
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2.1.4 Desired Formation Geometry

Formation flying guidance is defined as the generation of any reference trajectories used as

a input for a formation memeber’s relative state tracking control law [Scharf et al. 2004]. In

the present investigation, two formation flying designs are considered. They are circular and

projected circular formations. The circular formation is one in which the satellites maintain

a constant distance from each other. The formation can be derived from Hill’s equations

analytically or geometrically [Sabol et al. 2001]. Spacecraft in projected circular formation

maintains a fixed distance in the along-track/cross-track (y/z) plane. This characteristic

has applications for ground observing Synthetic Aperture Radar (SAR) missions. Since

most SAR applications target objects on the surface of the Earth, it is desirable to achieve

a formation plane perpendicular to the radial vector in order to have a field of view that

has its target on the Earth.

The desired or commanded states (xd, ẋd, yd, ẏd, zd, żd) are taken as the solution of the

linearized form of the relative equations of motion when Fdj = 0, j = x, y, z. The following

desired trajectories are considered:

1. Circular Formation: In this formation, the leader and the follower spacecraft maintain

a constant separation from each other in three-dimensional space and the formation is

mathematically defined as x2 +y2 +z2 = r2
dc. The relative motion in the radial/along-

track (x/y) plane is fixed in eccentricity [Sabol et al. 2001]. The equations of desired

circular trajectory are given as follows,




xd

yd

zd





=
rdc

2




sin (nt + φ)

2 cos (nt + φ)
√

3 sin (nt + φ)


 (2.8)

2. Projected Circular Formation: In this formation, the leader and the follower space-

craft maintains a fixed relative distance when the formation is projected onto the

along-track/cross-track (y−z) plane, and is mathematically defined as y2 +z2 = r2
dpc.





xd

yd

zd





=
rdpc

2




sin (nt + φ)

2 cos (nt + φ)

2 sin (nt + φ)


 (2.9)



36 Chapter 2. Fault Tolerant Control of Spacecraft Formations

where rdc and rdpc are the circular and projected circular formation sizes (radius) respec-

tively, φ is the in-plane phase angle between the leader and the follower spacecraft (the

initial phase angle is defined, at the time of equator crossing of the leader spacecraft, in the

local horizon y− z plane), and n is the mean angular velocity and equals to
√

µe/a3
c (µe is

the gravitational parameter of the Earth; ac is the semi-major axis of the leader spacecraft)

[Yan et al. 2009]. In this chapter, we only deal with these two formation types, though the

control algorithms developed are applicable to any formation types (in-plane and in-track)

and multiple spacecraft configurations.

2.1.5 External Disturbances

The disturbances in Eqs. (2.5)-(2.7) are time-varying quantities attributed to gravitational

field, solar radiation pressure, and third body perturbations. For spacecraft in LEO, the

second zonal harmonic (J2) of the oblate Earth’s potential distribution is by far the most

dominant perturbation. The disturbance accelerations due to J2 are at least an order of

magnitude larger than the other perturbations such as third-body gravitational effects,

drag due to residual atmosphere, and solar radiation pressure [Sabol et al. 2001]. Earth’s

oblateness affects the formation geometry in two ways, 1) differential changes in the right

ascension of the ascending node due to precession of the orbital plane, and 2) secular

changes in the argument of perigee and mean anomaly due to rotation of the line of apsides

in the orbital plane. Next, we show the steps involved in obtaining the relative acceleration

components due to J2 perturbation in the LVLH frame.

The leader (~rl) and follower spacecraft (~rf ) positions in the LVLH frame are given by

~rl =
[

rl 0 0
]T

and ~rf =
[

rl + x y z
]T

(2.10)

and the transformation matrix, TIB required to convert these positions from the relative

frame to the Earth-centered inertial frame of reference is obtained by using the following

rotation sequence

TIB = T3(Ωl)× T1(il)× T3(ωl + θ) (2.11)

Using the transformation matrix, TIB, along with Eq. (2.10),

~Rl = TIB ~rl and ~Rf = TIB ~rf (2.12)
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we obtain the positions of the leader spacecraft (~Rl = [Xl, Yl, Zl]
T ) and follower spacecraft

(~Rf = [Xf , Yf , Zf ]
T ) in the ECI frame. The perturbations due to J2 in the ECI frame for

the leader and follower spacecraft are given by [Schaub & Junkins 2003]

~J2l = −3µeJ2Re
2

2‖~Rl‖5




{1− 5Zl
2

‖~Rl‖2
}Xl

{1− 5Zl
2

‖~Rl‖2
}Yl

{3− 5Zl
2

‖~Rl‖2
}Zl




(2.13)

~J2f = −3µeJ2Re
2

2‖~Rf‖5




{1− 5Zf
2

‖~Rf‖2
}Xf

{1− 5Zf
2

‖~Rf‖2
}Yf

{3− 5Zf
2

‖~Rf‖2
}Zf




(2.14)

where µe is the Earth’s gravitational parameter, Re is the radius of the Earth, and J2 is

second zonal gravitational coefficient, J2 = 1.08263×10−3. The full effects of differential J2

can be added to the nonlinear relative mathematical model by transforming the disturbance

forces from the Earth-centered inertial frame to the relative frame. Therefore, the external

disturbance components in Eqs. (2.5)-(2.7) is given by

~Fd = T−1
IB [ ~J2f − ~J2l] (2.15)

Figure 2.2 shows the nature of differential J2 acceleration acting on the follower space-

craft in a projected circular formation (rdpc = 0.5 km) around a leader spacecraft in a

500 km orbit with the following orbital parameters, Ωl = 0
◦ , il = 45

◦ , and ωl = 0
◦ .

Remark 2.1 : We make the following assumptions, 1) the leader spacecraft remains in

an unperturbed elliptical reference orbit, 2) all spacecraft in formation have the same

ballistic coefficients and area-to-mass ratio and therefore the perturbing accelerations due

to aerodynamic drag and solar radiation pressure have negligible effects on the relative

translational dynamics, 3) mass of the follower spacecraft and the external disturbances

are quantities unknown to the controller.
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Figure 2.2: Relative J2 disturbance (rp = 6878 km and Rd = 0.5 km).

2.2 Design of Control Laws

In this section we present the theoretical basis for developing adaptive nonlinear control

algorithms for the SFF mathematical model. First, the methods and analysis tools of Vari-

able Structure Control (VSC) which is robust to nonlinear model errors are developed. The

formulation of the nominal VSC algorithm is then improved using adaptive approximation

in the presence of nonlinear model uncertainties. The main idea behind VSC approach is

to design a high speed control algorithm that can drive the state trajectory of the nonlinear

system onto a sliding or switching surface and maintain the system’s state trajectory on

the sliding surface. The property of remaining on the switching surface once intercepted

is called a sliding mode where the behavior of the system is dominated by the lower-order

dynamics and is inherently insensitive to external disturbances and model uncertainties.
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External perturbations can deviate an uncontrolled spacecraft from its nominal orbit

thereby dispersing the desired formation. Similarly, the formation spacecraft may not be

placed in its desired orbit initially causing an offset in the relative position. These factors

can increase the magnitude of the reaching phase to the sliding mode from the SFF control

system’s perspective. As the magnitude of the reaching phase grows larger, the effect of

both external disturbances and internal parameter uncertainties also increases. Therefore,

compared to linear hyperplane based sliding modes, terminal sliding mode (TSM) based on

nonlinear switching surfaces offers superior properties such as fast, finite time convergence

[Feng et al. 2002] making it very useful for high precision SFF control.

2.2.1 Basics of Variable Structure Control

VSC systems are a class of systems where the ‘control law’ is deliberately changed during

the control process based on predefined rules which depend on the state of the system. For

the purpose of illustration consider the following linear time-invariant system in state-space

form (adapted from [Edwards & Spurgeon 1998]):

 Ẋ1

Ẋ2


 =


 0 1

0 0





 X1

X2


 +


 0

1


 U (2.16)

where X ∈ R2 = [X1, X2]
T is the state vector, and U is a scalar control input. Next, define

a linear sliding surface given by

S = X2 + pX1 (2.17)

where p is a positive design scalar. Consider the VSC control law given by

U = −η sgn(S) =




−η if S > 0

η if S < 0
(2.18)

where η is a positive design scalar that has a direct effect on the rate at which the sliding

surface can be reached. The expression given by Eq. (2.18) is used to control the double

integrator given by Eq. (2.16). The phase portrait of the closed-loop system obtained

from using the control law given by Eq. (2.18) with p = 1 and η = 2 and different initial

conditions is shown in Fig. 2.3. The inclined line (S = X2 + pX1) in Fig. 2.3 represents
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Figure 2.3: Phase portrait of the double integrator under VSC.

the set of points for which S = 0; in this case a straight line through the origin of gradient

−p. This line divides the phase plane into four regions given by

I : X1 > 0, S > 0 and II : X1 > 0, S < 0

III : X1 < 0, S < 0 and IV : X1 < 0, S > 0
(2.19)

For a given initial state, the control input U drives the system trajectory towards the line

S = 0. For values of X2 satisfying the inequality p |X2| < η,

S Ṡ = S[pX2 − η sgn(S)] < |S|(p|X2| − η) < 0

Therefore,

lim
S→0+

Ṡ < 0 and lim
S→0−

Ṡ > 0 (2.20)

Consequently, when p |X2| < η the system trajectories on either side of the line S = 0

point towards the line. This is demonstrated in Fig. 2.3 which shows the phase portraits

intercepting the line S = 0 from different initial conditions. The condition given by S Ṡ < 0

is referred to as the reachability condition.
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The trajectory of the system confined to the sliding surface, S = 0, satisfies the differ-

ential equation obtained from rearranging the terms in Eq. (2.17) for S = 0.

Ẋ1 = −pX1 (2.21)

This represents a first-order decay and the trajectories of the system will ‘slide’ along the

line S = 0 to the origin. Such dynamical behavior is described as an ideal sliding mode and

the line S = X2 + pX1 is termed the sliding surface. During sliding motion, lower-order

dynamics dominate the behavior of the system independent of the control. Therefore, the

control action only ensures that the sliding surface is reached and the conditions given by

Eq. (2.20) are satisfied. The dynamic performance of the system is governed by the choice

of the parameter p in the sliding surface.

The finite-time (tr) convergence of the system trajectories to the sliding surface (reaching

time) can be shown by recalling that

S Ṡ ≤ −η|S| (2.22)

Dividing by |S| and integrating both sides of Eq. (2.22) between 0 and tr gives

tr∫

0

S

|S| Ṡ dτ ≤
tr∫

0

η dτ

|S(tr)| − |S(0)| ≤ −η tr (2.23)

Since |S(tr)| = 0, the reaching time is given by

tr ≤ |S(0)|
η

(2.24)

2.2.2 Control Problem

The control algorithms are designed based on a generalized framework. The eccentric

nature of the leader spacecraft orbit is assumed to be unknown to the controller. We make

the following modifications to Eqs. (2.5)-(2.7) assuming the leader spacecraft in a circular

reference orbit, (1) θ̈ = 0, and (2) θ̇ = n =
√

µe/rp
3, where rp is the orbital radius of the

leader spacecraft. Thus, Eqs. (2.3) and (2.4) are neglected for controller synthesis.
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To facilitate the control design procedure, we re-formulate the relative dynamics of the

SFF model [Eqs. (2.5)-(2.7)] in a state-dependent parameterized form as follows,




ẋ

ẏ

ż

ẍ

ÿ

z̈




=




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0







x

y

z

ẋ

ẏ

ż




+




0

0

0

µ( 1
r2
l
− (rl+x)

r3
f

)− 2n2x

n2y − µy
r3
f

n2z − µz
r3
f




+
1

mf




0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1











ufx

ufy

ufz


 +




Fdx

Fdy

Fdz








(2.25)

or in a more general state space form as

Ẋ = AX + E(X) +
1

mf

B[Uf + Fd] (2.26)

where X ∈ R6 = [x, y, z, ẋ, ẏ, ż]T is the state vector, A ∈ R6×6 is the linear component of

the relative equations of motion, E ∈ R6 represent the lumped nonlinearities, B ∈ R6×3 is

the input matrix, and UF ∈ R3 = [ufx, ufy, ufz]
T is the vector of control inputs. The total

control input is assumed to be subjected to saturation limit defined by

ufj =





N

ufj

−N

if

if

if

ufj > N

−N < ufj < N

ufj < −N

j = x, y, z (2.27)

Fd = [Fdx, Fdy, Fdz]
T is the vector of external disturbances with an unknown bound. Al-

though the SFF dynamics described by Eqs. (2.5)-(2.7) considers external time-varying

perturbations on the follower spacecraft (relative forces), for controller synthesis we as-

sume that the perturbation is unknown. The upper bounds of the disturbances on x, y,
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and z are not considered to be the same and we define

Fd(t) ∈ Sf = {Fd : |Fdj| ≤ gj → G} (2.28)

where G = [gx, gy, gz]
T . The property that UF > G holds to ensure that the control available

from Uf ∈ Su = {ufj : −N 6 ufj 6 N, j = x, y, z} is sufficient to reject any disturbance

from Sf . The disturbances, Fd, may also be constant.

Based on the mathematical model presented in the previous section, we define the

relative state vector and the desired relative trajectory as X(t), Xd(t) ∈ R6, respectively.

The performance measure is defined as the tracking error e(t) ∈ R6,

e(t)
∆
= X(t)−Xd(t) (2.29)

Remark 2.2 : As discussed earlier, the follower spacecraft mass, mf , is assumed to be

unknown, and the external perturbations are time-varying and periodic with an unknown

upper bound, G. These unknown variations are estimated on-line by the adaptation laws

that provide the estimated parameters to the controller. The parameter estimation errors

are given by,

m̃f (t) = mf − m̂f (t) (2.30)

G̃(t) = G− Ĝ(t)

where m̂f (t) ∈ R denotes the estimate of the follower spacecraft mass mf and Ĝ(t) ∈ R3

denotes the estimate of the external disturbance bound G. For the closed-loop system,

the estimated parameters do not converge to their true values. The update laws are only

introduced for robustness purposes.

Our objective is to develop a control algorithm for the SFF mathematical model, Eqs.

(2.5)-(2.7), such that ufj, j = x, y, z, belonging to Su, drives the relative states of the

system to its desired relative trajectories as t →∞, so that the tracking errors converge to

zero.

lim
t→∞

X(t) = Xd(t) (2.31)

The desired trajectories for formation keeping considered in this study are, (1) Circular

formation [Eq. (2.8)] with formation size rdc, and (2) Projected circular formation [Eq.

(2.9)] with formation size rdpc.
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2.2.3 Adaptive Sliding Mode Control

In this section, we present the design procedure to implement adaptive SMC for SFF

control. Adaptive control deals with situations where some of the parameters are unknown

or slowly time-varying. The basic idea is to estimate these unknown parameters online and

then use the estimated ones in place of the unknown ones in the feedback control law.

2.2.3.1 Sliding Manifold

SMC design starts with building a sliding surface in the system state space. The motion

of the system along the sliding mode is expected to meet the control requirements with

desired robustness to bounded disturbances and parametric uncertainties. For the SFF

control problem, we utilize the vector containing the trajectory tracking errors, Eq. (2.29),

to design a sliding surface S given by,

S = C e (t) (2.32)

The sliding surface S is a 3 dimensional manifold, S ∈ R3×1where C ∈ R3×6 is a constant,

strictly positive gain matrix, and e(t) ∈ R6×1 is the error vector

e (t) =
[

x− xd ẋ− ẋd y − yd ẏ − ẏd z − zd ż − żd

]T

C =




C1 1 0 0 0 0

0 0 C2 1 0 0

0 0 0 0 C3 1




(2.33)

where Ci is determined such that when the system is in sliding mode (dominated by lower-

order dynamics), the closed-loop eigenvalues of the system are stable.

2.2.3.2 Controller Design

The objective is to alter the system dynamics along the sliding surface such that the

trajectory of the system is steered onto the sliding manifold described by S = 0. Next,

we derive the control laws based on Lyapounov’s second method. After premultiplying Eq.

(2.26) with mF , it can be restated as

mf Ẋ = mf AX + mf E(X) + B[Uf + Fd] (2.34)



2.2. Design of Control Laws 45

To examine the convergence properties of the trajectory errors, consider a Lyapunov func-

tion candidate defined as follows:

V =
1

2
ST mf S +

1

2γ1

m̃2
f +

1

2
G̃T W−1 G̃ (2.35)

where γ1 is a positive constant, and W ∈ R3×3 is a constant, diagonal, positive-definite,

adaptation gain matrix. Taking the derivative of V along its trajectory gives,

V̇ = ST mf Ṡ − 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G

= ST C mf ė − 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G

= ST C
[
mfẊ −mfẊd

]
− 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G (2.36)

Substituting for mf Ẋ from Eq. (2.34), we get

V̇ = ST C
[
mf [AX + E(X)] + B[Uf + Fd]−mfẊd

]
− 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G(2.37)

As stated in the previous section in Eq. (2.28), the disturbances are assumed to be bounded

and therefore we can define {V̇1 : V̇ < V̇1} from Eq. (2.37) given by

V̇1 = ST C
[
mf [AX + E(X)] + B Uf −mfẊd

]
+ ST CB|Fd| − 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G

= ST C
[
mf [AX + E(X)] + B Uf −mfẊd

]
+ ST CBG

− 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G (2.38)

To replace mf and G with its estimated values for the control algorithm, we add and

subtract the following terms: (1) m̂f AX, (2) m̂f E(X), (3) m̂f Ẋd, and (4) ST CBĜ, and

collect the common terms to re-formulate V̇1 in Eq. (2.38) as

V̇1 = ST C
[
m̂f [AX + E(X)] + B Uf + BĜ− m̂fẊd

]
+ m̃fS

T C
[
AX + E(X)− Ẋd

]

+ ST CBG̃− 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G (2.39)

Based on Eq. (2.39) the control law is defined as,

Uf = −(CB)−1
{

m̂fC[AX + E(X)− Ẋd] + CBĜ + η sgn(S)
}

(2.40)
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where η = diag{ηx, ηy, ηz} for all {ηi : ηi > 0}, and sgn(S) = [sgn(Sx), sgn(Sy), sgn(Sz)]
T .

The adaptive laws for unknown mass and external disturbances are chosen as,

˙̂mf = γ1S
T C

[
A(t)X + E(t)− Ẋd

]
and

˙̂
G = W (CB)T S (2.41)

2.2.3.3 Stability Analysis

Here, we present the proof for closed-loop system stability to show that the control law

defined by Eq. (2.40), and the adaptation laws given by Eq. (2.41) guarantees global

asymptotic stabilization of the relative states of the spacecraft to any desired formation.

Lemma 2.1. Barbalat’s lemma [Popov 1973]: If Ψ : R → R is a uniformly continuous

function for t ≥ 0 and if lim
t→∞

t∫
0

|Ψ(τ)|dτ exists and is finite, then lim
t→∞

Ψ(t) = 0.

Theorem 2.1: For the SFF mathematical model in Eq. (2.25) if, the sliding manifold is

chosen as Eq. (2.32), the control law is defined as Eq. (2.40), and the parameter adaptation

laws are defined as Eq. (2.41), then the system tracking error e(t) will converge to zero as

time approaches infinity.

Proof : Consider the SFF equations of motion in the parameterized form as shown in

Eq. (2.26) and multiplying the entire equation with BT we get the following open-loop

dynamics using the bounds of disturbances,

mf BT Ẋ = mf BT AX + mf BT E(X) + Uf + G (2.42)

Substituting the control law given by Eq. (2.40) in the open-loop dynamics we get,

mf BT Ẋ = mf BT AX + mf BT E(X)− {m̂fC[AX + E(X)− Ẋd]

+ CBĜ + η sgn(S)}+ G (2.43)

From Eq. (2.43), the following closed-loop error dynamics can be derived,

mf Ṡ = m̃f C [AX + E(X)− Ẋd] + G̃− η sgn(S) (2.44)

Now consider the following Lyapunov function

V1 =
1

2
ST mf S +

1

2γ1

m̃2
f +

1

2
G̃T W−1 G̃ (2.45)
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Taking the first derivative along the trajectory of the system we get,

V̇1 = ST mf Ṡ − 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G (2.46)

Substituting Eq. (2.44) in Eq. (2.46) we get,

V̇1 = ST
[
m̃f C [AX + E(X)− Ẋd] + G̃− η sgn(S)

]
− 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G

= ST [−η sgn(S)] + m̃f

{
ST C[AX + E(X)− Ẋd]− 1

γ1

˙̂mf

}

+G̃T [S −W−1 ˙̂
G] (2.47)

Finally, by substituting Eq. (2.41) in Eq. (2.47) we conclude

V̇1 = ST [−η sgn(S)] ≤ −
∑

ηi|Si| < 0 for i = x, y, z (2.48)

Since V̇1 is negative-definite and as stated before V̇ < V̇1, it is proven that V̇ is also

negative-definite. Based on the inequality that
∑ |Si| ≥ ‖S‖ and defining λmin(η) > 0 as

the minimum eigenvalue of the positive-definite matrix η, we can show that

V̇ ≤ −λmin(η)‖S‖ (2.49)

Defining |Ψ(t)| = λmin(η)‖S‖ > 0, and integrating both sides of Eq. (2.49) yields the

following expression

V (0) ≥ V (t) +

t∫

0

|Ψ(τ)| dτ ≥
∞∫

0

|Ψ(τ)| dτ (2.50)

From Eq. (2.50) we obtain that S ∈ L∞. According to the proven condition from Eq.

(2.48) we have V̇ < ∞ from which we can deduce the fact that Ṡ ∈ L∞. Taking the limit

as t →∞ on both sides of Eq. (2.50) gives

∞ > V (0) ≥ lim
t→∞

t∫

0

|Ψ(τ)|dτ (2.51)

Now, using Barbalat’s lemma (see Lemma 1) we obtain

lim
t→∞

|Ψ(τ)| = lim
t→∞

λmin(η)‖S‖ → 0 (2.52)
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which implies that S → 0 as t → ∞. Since V ∈ L∞, we can infer from Eq. (2.35) that

m̃f , G̃ ∈ L∞. Therefore, the adaptive control law described by Eqs. (2.40) and (2.41)

ensures global asymptotic convergence of the position and velocity tracking errors, and all

adaptive parameters associated with the closed-loop system are bounded. ¤
Next, we prove that the SFF error trajectories can converge to the linear sliding surface

S in finite-time. First, we introduce the following assumption,

L(·) = m̃f C [A(t)X + E − Ẋd] + G̃ and ‖L‖ ≤ d̄ (2.53)

Note that L(·) is the lumped term containing three parts: 1) system nonlinearities (de-

pending on desired trajectories, spacecraft parameters, and nonlinear terms in equations of

motion), 2) external disturbances (time-varying and state-dependent), and 3) parameter

uncertainties. We assume that the term L(·) is bounded with an upper-bound of d̄.

Theorem 2.2: For the SFF mathematical model in Eq. (2.25), if the control law is defined

as Eq. (2.40), then the trajectories, e(t), of the closed-loop system will reach the sliding

manifold, Eq. (2.32), S = 0 in finite-time.

tr ≤ mf‖S(0)‖
λmin(η)− d̄

(2.54)

Proof : Consider the following candidate Lyapunov function,

Vf =
1

2
ST mf S (2.55)

Taking the time derivative of Eq. (2.55) we get,

V̇f = ST mf Ṡ (2.56)

Substituting the closed-loop system given by Eq. (2.44) into Eq. (2.56) we obtain,

V̇f = ST
[
m̃f C [A(t)X + E − Ẋd] + G̃− η sgn(S)

]
(2.57)

Based on the assumption given by Eq. (2.53) we obtain the following inequality,

V̇f ≤ ST
[
d̄− η sgn(S)

]

≤ d̄ ‖S‖ − λmin(η) ‖S‖ ≤ − [
λmin(η)− d̄

] ‖S‖ (2.58)
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By choosing η > d̄ we prove that V̇f < 0. Also,

V̇f ≤ − [
λmin(η)− d̄

]
√

2Vf

mf

(2.59)

Thus, we prove that the SFF error trajectories reach the sliding surface in finite-time.

Integrating both sides of Eq. (2.59) from 0 to tr we get,

tr∫

0

dVf√
V f

≤ − [
λmin(η)− d̄

]
√

2

mf

tr∫

0

dt (2.60)

2

(√
Vf (tr)−

√
Vf (0)

)
≤ − [

λmin(η)− d̄
]
√

2

mf

tr (2.61)

When the sliding surface is reached, S(tr) = 0 and therefore, V (tr) = 0. Using this property

and the fact that
√

2Vf (0)/mf = ‖S(0)‖ in Eq. (2.61), we obtain

tr ≤ mf‖S(0)‖
λmin(η)− d̄

This completes the proof. ¤

2.2.4 Adaptive Nonsingular Terminal SMC

In this sub-section, an adaptive nonsingular terminal sliding mode control algorithm is de-

signed for SFF. It is well known that the dynamic performance of a sliding mode controller

relies heavily on the chosen sliding manifold or switching surface. We presented a conven-

tional sliding mode controller based on linear sliding manifold in the previous sub-section.

Nonlinear hyperplane based sliding modes offer a wide variety of design alternatives with

fast and finite time convergence. Recently, a terminal sliding mode (TSM) control method

was proposed and used in the control of rigid manipulators [Yuqiang et al. 1998].

The SMC schemes based on TSM were found to be very effective but singularity prob-

lems may occur if the initial conditions are not selected properly resulting in an infinite con-

trol law [Zhihong et al. 1994]. Based on the work presented by Feng et al. [Feng et al. 2002]

we develop a nonsingular terminal sliding mode (NTSM) controller for SFF. The control

algorithm is extended by adding a novel adaptive retrofit scheme to compensate for uncer-

tainties in mass of the spacecraft, external disturbances, and actuator faults.
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2.2.4.1 Design of Sliding Manifold

The objective is to improve the transient performance of the system substantially by de-

signing nonlinear switching manifold. We reformulate the nonlinear SFF relative motion

equations defined by Eq. (2.26) by multiplying with BT , and the resulting equation can be

represented in the following dynamical form

mf q̈ = mfM (q, q̇) + Uf + Fd (t) (2.62)

M (q, q̇) = BT [AX + E(X)]

where q ∈ R3 = [x, y, z]T is a vector of relative positions, and M (q, q̇) ∈ R3 is a 3 × 1

vector containing the nonlinear terms. Let qd ∈ R3 be the vector of desired positions for

the follower spacecraft and q̇d ∈ R3 be the derivative of qd. We now define, ε(t) = q − qd,

ε̇(t) = q̇ − q̇d, and thus the error vector is described as follows:

e(t) = [ε, ε̇]T (2.63)

The nonlinear sliding manifold is defined as

S = ε + Cε̇p/q (2.64)

where C ∈ R3×3 is a constant, diagonal, positive-definite, control design matrix. p and q

are positive odd integers which satisfy the following condition

p > q (2.65)

Remark 2.3 : It is important to note that one of the vectors has fractional power in the

nonlinear sliding surface given by Eq. (2.64). The vector ε̇p/q is defined as

ε̇p/q = [(ẋ− ẋd)
p/q, (ẏ − ẏd)

p/q, (ż − żd)
p/q]T

2.2.4.2 Controller Design

The design of a suitable control algorithm is the second phase of any VSC design procedure

as mentioned earlier. Our objective is to derive a control law that can drive the the SFF

error trajectories to the nonlinear switching surface defined in Eq. (2.64) and maintain
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a sliding mode condition. In this section we derive the control law based on Lyapunov

stability theorem. The candidate Lyapunov function is defined as follows:

V =
1

2
ST mf S +

1

2γ1

m̃2
f +

1

2
G̃T W−1 G̃ (2.66)

where γ1 is a positive constant, and W ∈ R3×3 is a constant, diagonal, positive-definite,

adaptation gain matrix. Taking the derivative of V along its trajectory gives,

V̇ = ST mf Ṡ − 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G

= ST [ mf ε̇ +
p

q
C ε̇p/q−1mf ε̈ ] − 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G (2.67)

Substituting for mf q̈ from Eq. (2.62) into Eq. (2.67) we get

V̇ = ST [mf ε̇ +
p

q
C ε̇p/q−1{mfM (q, q̇) + Uf + Fd(t)−mf q̈d} ]− 1

γ1

m̃f
˙̂mf − G̃T W−1 ˙̂

G

= ST [mf ε̇ +
p

q
C ε̇p/q−1{mfM (q, q̇) + Uf −mf q̈d}]− 1

γ1

m̃f
˙̂mf

+
p

q
ST C ε̇p/q−1Fd(t)− G̃T W−1 ˙̂

G (2.68)

Since the disturbances are assumed to be bounded, we can define {V̇1 : V̇ < V̇1} given by

V̇1 = ST [mf ε̇ +
p

q
C ε̇p/q−1{mfM (q, q̇) + Uf −mf q̈d}]− 1

γ1

m̃f
˙̂mf

+
p

q
ST C ε̇p/q−1G− G̃T W−1 ˙̂

G (2.69)

Adding and subtracting, (1) m̂f [ε̇+(p/q) C M(q, q̇)ε̇(p/q−1)−q̈d], and (2) (p/q) ST C ε̇(p/q−1)Ĝ,

we can replace the unknown terms in controller with the estimated parameters m̂f and Ĝ.

The new form of V̇1 is as follows:

V̇1 = ST

[
m̂f ε̇ +

p

q
C ε̇p/q−1

{
m̂fM (q, q̇) + Uf + Ĝ− m̂f q̈d

}]
(2.70)

+m̃fS
T

[
ε̇ +

p

q
C ε̇p/q−1 {M(q, q̇)− q̈d}

]
− 1

γ1

m̃f
˙̂mf +

p

q
ST C ε̇p/q−1G̃− G̃T W−1 ˙̂

G

Based on Eq. (2.70) the control law is defined as,

Uf = −m̂f [M(q, q̇) +
q

p
C−1 ε̇ 2−p/q − q̈d]− Ĝ− η sgn(S) (2.71)
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where η = diag{ηx, ηy, ηz} for all {ηi : ηi > 0}, and sgn(S) = [sgn(Sx), sgn(Sy), sgn(Sz)]
T .

The adaptive laws for the unknown mass and external disturbances are chosen as,

˙̂mf = γ1S
T [ε̇ +

p

q
Cε̇ p/q−1{M(q, q̇)− q̈d}] (2.72)

˙̂
G =

p

q
W (Cε̇p/q−1)T S

Remark 2.4 : ε̇p/q−1 is a 3× 3 diagonal matrix of the form

ε̇(p/q−1) =




(ẋ− ẋd)
(p/q−1) 0 0

0 (ẏ − ẏd)
(p/q−1) 0

0 0 (ż − żd)
(p/q−1)


 (2.73)

Remark 2.5 : Since p and q are positive odd integers, for the control law given by Eq.

(2.71) to be non-singular, p and q must satisfy the inequality given by

1 <
p

q
< 2 (2.74)

2.2.4.3 Stability Analysis

In this section, we provide stability proof to show that the adaptive NTSM control law

given by Eq. (2.71) guarantees global asymptotic stabilization of the tracking error.

Theorem 2.3: For the SFF model given by Eq. (2.62) if, the control laws are defined by

Eqs. (2.71) and (2.72), then the error trajectories will converge to zero and the parameter

estimation errors m̃f and G̃ will remain bounded as t →∞.

Proof : Now consider the following Lyapunov function

V =
1

2
ST mf S +

1

2γ1

m̃2
f +

1

2
G̃T W−1 G̃ (2.75)

Taking the first derivative of Eq. (2.75), substituting for mf q̈ from Eq. (2.62), and following

the steps described by Eqs. (2.67)-(2.69), we get

V̇1 = ST [m̂f ε̇ +
p

q
C ε̇p/q−1{m̂fM (q, q̇) + Uf + Ĝ− m̂f q̈d}]

+ m̃fS
T [ε̇ +

p

q
C ε̇p/q−1{M(q, q̇)− q̈d}]− 1

γ1

m̃f
˙̂mf

+
p

q
ST C ε̇p/q−1G̃− G̃T W−1 ˙̂

G (2.76)
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Substituting the control law given by Eq. (2.71) and the parameter adaptation laws given

by Eq. (2.72) in Eq. (2.76), and then canceling out the common terms we get,

V̇1 = ST [−p

q
C ε̇p/q−1 η sgn(S)]

≤ −p

q

∑
Ci ε̇

p/q−1
i ηi|Si| for i = x, y, z (2.77)

Applying the property given by Eq. (2.74) to Eq. (2.77), we obtain V̇1 < 0. Since

V̇1 is negative-definite and as stated before V̇ < V̇1, it is proven that V̇ is also negative-

definite. Therefore, V is a non-increasing Lyapunov function in the S-space. This implies

that V ∈ L∞ and we can establish that S, m̂f , Ĝ ∈ L∞. Therefore, the proposed NTSM

control law ensures global asymptotic convergence of the SFF error trajectories to zero,

and all adaptive estimation errors, m̃f and G̃, are bounded as t →∞. ¤
Although it is shown using Theorem 2.3 that S → 0 as t →∞, we can utilize a different

Lyapunov function to show that the SFF trajectories will reach S = 0 in finite-time, tr.

Based on the sliding manifold described by Eq. (2.64) we obtain,

mf Ṡ = mf ε̇ +
p

q
C ε̇

p
q
−1(mfM (q, q̇) + Uf + Fd −mf q̈d) (2.78)

Substituting for Uf from Eq. (2.71) into Eq. (2.78) yields

mf Ṡ = mf ε̇ +
p

q
C ε̇

p
q
−1





mfM (q, q̇) + Fd −mf q̈d − Ĝ− η sgn(S)

−m̂f

[
M (q, q̇) +

q
pC−1ε̇2− p

q − q̈d

]




=
p

q
C ε̇

p
q
−1

[
m̃f M (q, q̇)− m̃f q̈d + Fd − Ĝ− η sgn(S) + m̃f

q

p
C−1ε̇2− p

q

]

Carrying out further simplifications and collecting terms we obtain the following closed-loop

error equation for the SFF system.

mf Ṡ =
p

q
C ε̇

p
q
−1

{
m̃f

[
M (q, q̇) +

q

p
C−1ε̇2− p

q − q̈

]
+ Fd − Ĝ− η sgn(S)

}
(2.79)

Since m̃f and G̃ are bounded, the following assumption is valid.
∥∥∥∥m̃f

[
M (q, q̇) +

q

p
C−1ε̇2− p

q − q̈

]∥∥∥∥ + ‖G̃‖ ≤ ∆ (2.80)
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Theorem 2.4: For the SFF mathematical model in Eq. (2.62), if the control law is defined

as Eq. (2.71), then the trajectories, ε, of the closed-loop system will reach the nonlinear

sliding manifold, Eq. (2.64), S = 0 in finite-time.

tr ≤ mf‖S(0)‖
ks

(2.81)

Proof : Consider the following candidate Lyapunov function,

Vf =
1

2
ST mf S (2.82)

Taking the time derivative of Eq. (2.82) and substituting the closed-loop error system given

by Eq. (2.79) we obtain,

V̇f =
p

q
ST C ε̇

p
q
−1

[
m̃f

(
M +

q

p
C−1ε̇2− p

q − q̈

)
+ Fd − Ĝ− η sgn(S)

]

≤ ‖S‖ ‖C ε̇
p
q
−1‖

[∥∥∥∥m̃f

[
M (q, q̇) +

q

p
C−1ε̇2− p

q − q̈

]∥∥∥∥ + ‖G̃‖ − λmin(η)

]

≤ −ks‖S‖ < 0 for ‖S‖ 6= 0 (2.83)

where ks = λmin(η)−∆ > 0. Therefore, based on Lyapunov stability criterion, the NTSM

manifold S in Eq. (2.64) converges to zero in finite-time

tr ≤ mf‖S(0)‖
ks

(2.84)

If S = ε + Cε̇p/q = 0 is reached, then, from Theorem 2.4 it can be obtained that the SFF

error trajectories ε and ε̇ will converge to zero in finite time. This completes the proof. ¤
When the sliding mode S = 0 is reached the system dynamics is described by the

following nonlinear differential equation

S = ε + Cε̇p/q = 0 (2.85)

The finite time ts taken for the system to travel from ε(tr) 6= 0 to ε(tr + ts) = 0 can be

derived as the solution to the first-order differential system in Eq. (2.85). This is given by

tsi = −Cq/p

εi(tri+tsi)∫

εi(tri)

dεi

ε
q/p
i

= −Cq/p p

p− q

[
|εi (tri + tsi)|1−q/p − |εi (tri)|1−q/p

]

= Cq/p p

p− q
|εi(tri)|1−q/p (2.86)
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2.3 Performance Evaluation

To study the effectiveness and performance of the proposed formation control strategies, the

detailed response is numerically simulated using the set of governing equations of motion

[Eqs. (2.3)-(2.7)] in conjunction with the proposed control laws [Eqs. (2.40) and (2.71)].

The leader spacecraft is in an elliptic orbit with perigee altitude 500 km and an eccentric-

ity of 0.2. The simulations were performed with the following parameters, mf = 10 kg,

Ωl, ωl, il = 0◦, and µe = 398600 km3s−2. The net disturbance force acting on the system

is considered to be time-varying [Pongvthithum et al. 2005] given by (in N),



Fdx

Fdy

Fdz


 = 1.2× 10−3




1− 1.5 sin(nt)

0.5 sin(2nt)

sin(nt)


 (2.87)

The control gains used in all simulations for adaptive sliding mode control (ASMC) and

adaptive nonsingular terminal sliding mode control (ANTSMC) are shown in Table 2.1.

First, we present the effectiveness of the control strategies for a fault-free case of station-

Table 2.1: ASMC and ANTSMC parameters

Control Gains ASMC ANTSMC

Ci, (i = 1, 2, 3) 1 10−3

{p, q} −− {11, 9}
γ1 0.08 0.08

Wi, (i = 1, 2, 3) 10−7 10−7

ψi, (i = x, y, z) 0.8 0.8

ηi, (i = x, y, z) 0.1 0.1

Ni, (i = x, y, z)[mN ] 10 10

keeping and formation maneuvering. We then examine the effects of actuator degradation,

actuator stuck fault, and short-term actuator failure on the performance of the proposed

control strategies. Lastly, we illustrate some quantitative analysis on fuel consumption and

steady-state stabilization errors.
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2.3.1 Nominal Case

The desired relative motion considered for ideal formation-keeping is a projected circular

formation, described by Eq. (2.9), with a 1 km formation radius. The phase angle (φ)

between the leader and follower spacecraft is assumed to be 0 deg. The initial states for the

numerical simulation are computed by substituting t = 0 in Eq. (2.9) and adding a 1 km

position offset on x, y, and z. The initial velocity components for all states are calculated

by taking the time derivative of Eq. (2.9) and substituting t = 0. The initial conditions

for the parameter estimates are

m̂f (0) = 10 and Ĝ(0) = [0, 0, 0]T (2.88)

Figure 2.4 shows relative position errors and thrust demand for formation-keeping when

there is a 1 km position offset on all three relative states. The objective is to stabilize the
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Figure 2.4: Relative position errors and thrust demand for formation keeping.
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Figure 2.5: Adaptive parameter estimates for formation keeping.

formation when there is an initial misalignment, while positioning the follower spacecraft

in orbit. The control forces are saturated at 10 mN. The advantage of using a nonlinear

sliding surface can be seen in the error convergence plots in Fig. 2.4. Although a 1 km

position offset is very high, it was used to examine the effects of control input saturation.

ANTSMC requires less control input when compared to fuel consumed using ASMC and it

can be seen that the control forces are saturated early in the transient period. The adaptive

parameter estimates are shown in Fig. 2.5.

Next, we demonstrate the effectiveness of the proposed control strategies for multiple

formation maneuvers. With the same initial conditions used for the formation keeping

case, the follower spacecraft moves from a 1 to 10 km radius projected circular formation

after two orbits and then after six orbits, the follower spacecraft maneuvers to a circular

formation of 20 km radius. Figure 2.6 shows the relative position errors and thrust demand
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Figure 2.6: Tracking errors and thrust demand for formation reconfiguration.

for multiple formation maneuvers. It is clearly evident that Uy of ASMC saturates for a

longer time after the second maneuver, which explains the bad performance of the controller

in tracking the 20 km desired circular formation (y− yd). This can also be observed in the

3D trajectory of the follower spacecraft, plotted in Fig. 2.7. ANTSMC ensures that the

follower spacecraft maintains the desired geometry throughout the control process. Varying

the control gains for ASMC can improve its performance, but it is important to keep the

gains same (as shown in Table 2.1) for all simulation cases to establish a fair comparison

between two control algorithms. Overall, the performance of both ASMC and ANTSMC,

based on the formation maneuver criteria mentioned above, was very similar. The main

differences were that, for the same maneuver sequence, the ANTSMC scheme was able

to move the follower spacecraft with greater speed and more more directly to the target

reference orbit with less control saturation.
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Figure 2.7: Three-dimensional trajectories of the entire formation maneuver.

2.3.2 Fault Case

In this section, we demonstrate the performance of the proposed control strategies when

an abrupt actuator fault occurs. Our goal is to achieve the same formation objectives in

the presence of actuator faults. We consider the following fault scenarios:

1. The first case considered is thruster degradation. In this case the effectiveness of the

thrusters is decreased (LOE) after a certain time period, and it can be characterized

by a decrease in actuator gain with respect to its nominal value given by, uFi = k̄uFi,

where 0 < k̄ < 1, after failure.

2. We then assess the case for which all three thrusters are stuck at a particular position

for a certain time period. This type of fault is called LIP and is given by uFi = ūFi(tf )

where ūFi denotes the control input value at the time instant tf of failure.

3. The third case presented is short-term failure of all three thrusters.
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Figure 2.8: Relative position errors and thrust demand for formation keeping when

thrusters degrade by 90% after 0.02 orbit.

For all the previously mentioned cases, the controller is never given any information of

the faults, and therefore the proposed control algorithms accommodate the system faults

without the process of fault detection and isolation.

Figure 2.8 shows the controlled position errors and control input required for formation-

keeping when all three thrusters can only supply 10% of the actuation power after the

time instant t = 0.02 orbit. The initial conditions for this case are given by, X(0) =

[0, 0, 0, 0, 0, 0]T . We consider the case where the leader spacecraft and the follower spacecraft

are at the same location initially. It is seen that high control precision and smooth trajectory

tracking are still obtained even when thrusters have encountered severe degradation. As

evident in Fig. 2.8, the control inputs remain saturated for longer periods when compared

with the case of no fault in Fig. 2.4. The degradation also has an effect on the error

convergence of (x− xd) for the case of ASMC.
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Performance of the proposed control algorithms to the LIP fault case is illustrated

in Fig. 2.9 for the case of formation maneuvering from a 1 to 10 km projected circular

formation after 2 orbits. All three control forces encounter an abrupt blockage between 1

and 2.2 orbits. Because the formation maneuver sequence starts after 2 orbits, the ASMC

controller exhibits poor performance in tracking the desired trajectory. ANTSMC ensures

that the errors accumulated during the fault period can be stabilized at a faster rate when

compared with ASMC. This illustrates the fast convergence property of ANTSMC.

Figure 2.10 presents the relative position errors and control force for the case where

all three thrusters fail between 0.5 and 1.5 orbits. This case can also be considered to

simulate the scenario where the thrusters had to be switched off due to failure of the relative

navigation sensors. With no control for an entire orbit, the follower spacecraft cannot track
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Figure 2.9: Relative position errors and thrust demand for formation maneuvering when

thrusters ’jam’ between 1 and 2 orbits.
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Figure 2.10: Relative position errors and thrust demand for formation keeping when

thrusters ’fail’ between 0.5 and 1.5 orbits.

its desired states satisfactorily whilst accumulating large errors. When the control input

gets back into operation, within the same range of position errors, the adaptive NTSM

controller dictates faster error convergence. It is seen that fairly good control performance

is achieved under this severe scenario with limited thrust. In the case of ASMC, the system

takes a longer time to settle to the desired formation.

2.3.3 Quantitative Analysis

Based on the performance analysis results detailed in this section, we compare the proposed

control methodologies in terms of control precision and fuel consumption perspective. In

assessing the effectiveness of the ASMC and NTSM controllers, the accuracy with which

the formation can be maintained is an important criteria. Future missions of SFF for high-
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resolution interferometry and stereographic imaging of the Earth demand high resolution

and precision requirements for station-keeping. The maximum steady-state stabilization

errors for all three directions for ASMC and NTSM techniques are compared in Table 2.2.

Table 2.2: Steady-state stabilization errors

Circular Reference Orbit Elliptic Reference Orbit

Tracking Adaptive Adaptive Adaptive Adaptive

error, km SMC NTSMC SMC NTSMC

|ex| 2.4× 10−5 5.6× 10−8 7.8× 10−4 1.5× 10−7

|ey| 1.1× 10−5 2.8× 10−8 4.2× 10−4 0.5× 10−7

|ez| 6.3× 10−5 3.5× 10−8 1.5× 10−4 1.3× 10−7

Table 2.3: Fuel-consumption per orbit

Fuel Circular Reference Orbit Elliptic Reference Orbit

Consumption, Adaptive Adaptive Adaptive Adaptive

m/s (per orbit) SMC NTSMC SMC NTSMC

∆Vx 0.0409 0.0231 0.1382 0.1211

∆Vy 0.1183 0.0374 0.1541 0.0734

∆Vz 0.0555 0.0235 0.3050 0.2627

We considered an initial misalignment position offset of 100 m in all three directions

and external disturbances for cases where the leader spacecraft is in a circular and el-

liptic reference orbit (e = 0.2). Both controllers are extensively tuned for fair compari-

son. The adaptive NTSM controller provides much better results when compared to any

VSC based control algorithm present in current literature [Yeh et al. 2002, Lim et al. 2003,

Massey & Shtessel 2005, Wang & Zhang 2007, Liu et al. 2006]. It is clearly evident from

the values of largest steady-state errors that ASMC and NTSM control schemes satisfies

the requirement of submillimeter precision in formation keeping.

The fuel consumption for all three thrusters are calculated for the same simulations

described previously, and their respective ∆V requirements are shown in Table 2.3. The
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∆V is calculated based on the average budget obtained over a period of 10 orbits. The

adaptive NTSM controller requires less fuel to correct for an initial position offset of 100m

in 0.2 orbits when compared with the ASMC technique. For an elliptical orbit (e = 0.2),

the corresponding fuel costs in terms of ∆V for both controllers are also shown in Table

2.3. Overall, it is very clear from the numerical simulation results that the proposed forma-

tion control scheme is mainly responsible for rejecting disturbances, maintaining formation

stability, and commanding the formation.

2.4 Summary

In this chapter, we proposed two control strategies for efficient formation control using a

novel adaptive framework. An adaptive nonsingular terminal sliding mode control scheme

derived based on a nonlinear sliding manifold, and an adaptive sliding mode control al-

gorithm formulated based on a conventional linear sliding manifold, was presented for a

multiple spacecraft formation flying system comprising of a leader and a follower space-

craft. Uncertainties in the mass of the follower spacecraft and external disturbances with

an unknown bound were employed to develop a novel adaptive parameter update scheme.

The performance of the algorithms developed were through numerical simulation studies.

The main objective was to develop a fault tolerant control scheme capable of providing

submillimeter formation precision in the event of unexpected thruster faults.

The next chapter explores the feasibility of deploying only two pairs of thrusters in

orthogonal directions to control multiple spacecraft formations. The dynamics of the SFF

system examined in this chapter have the property that even if no control is exerted parallel

to the radial direction or along-track direction, the resultant control configuration can

ensure long-term formation-keeping and reconfiguration maneuvers. The advantages of this

underactuated configuration is examined in Chapter 3. This is followed by experimental

validation of the proposed technique on a hardware-in-loop (HIL) formation flying test-

bed. Taking advantage of the nonlinear coupling in the radial and along-track equations of

motion, an underactuated SFF configuration can be synthesized.



Chapter 3

Control of Underactuated Spacecraft

Formations

FEASIBILITY of achieving reliable formation control without the need for thrust

in the radial or along-track direction is explored in this chapter. Control algorithms

developed in Chapter 2 were capable of achieving high precision formation maintenance and

reconfiguration in the presence of time-varying uncertainties, disturbances, and thruster

faults. These algorithms were developed based on the assumption that the formation

geometry is maintained with a sufficient number of thrusters equal to, or larger than, the

number of degrees of freedom to be controlled. Thus, the actuator configuration is still

capable of providing control forces along three orthogonal directions despite the occurrence

of thruster faults. In this chapter, we consider the case of complete failure of a pair

of thrusters such that the AOCS onboard a follower spacecraft is no longer capable of

providing control thrust in one of the three orthogonal directions.

We propose a nonlinear control scheme that requires either radial axis or along-track

thrust, combined with force in the cross-track direction to control the motion of the follower

spacecraft from any arbitrary initial condition to a closed stable relative orbit around the

leader spacecraft. A design based on this framework must be precise, reliable, and simple

enough to allow onboard implementation. Using fewer thrusters in an underactuated SFF

configuration also offers reduced fuel expenditure. The benefits of the proposed controller

are validated using numerical simulations to show that precise formation maintenance can

be achieved in the presence of nonlinearities, variations in initial conditions, external dis-

turbances, and control force saturation. Formation maintenance capability of the proposed

algorithm is also validated on a hardware testbed using the Satellite Airbed Formation

Experiment platform developed at Ryerson University.



66 Chapter 3. Control of Underactuated Spacecraft Formations

The chapter is organized as follows: Nonlinear control algorithm based on sliding mode

technique is formulated with detailed proof of stability for the closed-loop system in Section

3.1. For a detailed assessment of the system performance under the proposed control

strategy, the results of numerical simulations incorporating different mission scenarios are

presented in Section 3.2. The results of the HIL simulation using the SAFE system in

underactuated configuration is presented in Section 3.3. Finally, the conclusions of the

present study are stated in Section 3.4.

3.1 Design of Control Laws

The proposed system comprises of a leader spacecraft in an elliptical planar trajectory

with the Earth’s center at one of its foci and a follower spacecraft moving in a desired

relative trajectory about the leader spacecraft (see Fig. 2.1). The mathematical model of

the SFF system has been presented in Chapter 2, Section 2.1. These equations will not

be reproduced in this chapter for brevity. Readers are requested to refer to equations of

motion in Section 2.1 as prompted when developing control algorithms in this section. The

control objective is to compute the thrust required to drive the follower spacecraft to a

desired formation trajectory [Eqs. (2.8)-(2.9)] with respect to the leader spacecraft in the

presence external perturbations. This task will be accomplished based on two important

cases considered in this study, (1) No thrust along radial axis (ufx = 0), and (2) No thrust

available in the along-track direction (ufy = 0). The desired trajectories for formation

keeping considered in this study are, (1) Circular formation [Eq. (2.8)] with formation size

rdc, and (2) Projected circular formation [Eq. (2.9)] with formation size rdpc. To implement

a formation maneuver from one type of formation to another, we study a combination of

both circular and projected circular formations with different formation sizes.

3.1.1 System Controllability

In order to check the controllability, we derive a linear system model from the given non-

linear system equations of motion [Eqs. (2.5)-(2.7)] assuming the leader spacecraft in a

circular orbit and taking first order perturbations for system variables x, y, and z. Thus,
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the C-W equations follow their natural closed trajectory solutions (circular or projected

circular formations) when the nonlinear model is linearized with respect to the leader space-

craft orbit. The state-space representation of the C-W equations is given by

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In general the above representation is expressed as Ẋ = AX + BUF , where X ∈ R6×1

is the state vector, A ∈ R6×6, B ∈ R6×3, and UF ∈ R3 = [ufx, ufy, ufz]
T is the vector of

actual control inputs generated by the thrusters. As evident, the motion of the system

in the orbital plane (radial/along-track or x/y) is decoupled from the out of plane motion

(z). The cross-track component of the system has open-loop eigenvalues of λ5,6 = ±nj

exhibiting a simple harmonic oscillator (Lyapunov stable but not asymptotically stable)

[Starin et al. 2001b, Vassar & Sherwood 1985]. Therefore, under the influences of external

perturbations and initial offset errors, a closed-loop control for the cross-track subsystem

is necessary. The in-plane dynamics of the linear system can be represented in state-space

form as follows:
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The open-loop eigenvalues of the in-plane system are λ1 = 0, λ2 = 0, and λ3,4 = ±nj.

Utilizing the linear representation and assuming the system outputs to be x and y, the

input-output transfer function based on control inputs ufx and ufy can be computed using

G(s) = Y (s)/U(s) = C(sI − A)−1B.

Y (s) =
1

s2(s2 + n2)




s2 2ns

−2ns (s2 − 3n2)


 U(s) (3.3)
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From the transfer function it is clearly evident that the associated modes are: (1) a pair

of purely imaginary poles at the orbital frequency n, and (2) one double integrator. This

implies that the system is conservative (imaginary modes), but unstable because of the

double integrator. Therefore, the open-loop spacecraft relative translational dynamics are

inherently unstable [Demourant & Chretien 2008]. Considering external disturbances and

errors in initial conditions along with no control authority, the follower spacecraft will drift

away from the leader spacecraft thereby dispersing the desired formation. With control

available on both radial and along-track directions, the system in Eq. (3.2) is fully state

controllable with rank = 4.

We now evaluate the controllability of the SFF system based on underactuated con-

figuration candidates, no radial-axis or along-track input using the famous Kalman rank

condition for controllability. Determining the controllability rank of the in-plane SFF lin-

ear system relative to the individual components of its input (radial or along-track) is very

useful if one or more of the thrusters were to fail.

3.1.1.1 No radial axis control

The in-plane dynamics with control authority available only in the along-track direction

can be expressed in standard state-space form as

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where Xa ∈ R4×1 = [x, y, ẋ, ẏ]T is the state vector with Āa ∈ R4×4 and B̄a ∈ R4×1 =

[0, 0, 0, 1]T denotes the underactuated in-plane system with thrust available only in the

along-track direction. The controllability matrix for the LTI system in Eq. (3.4) can be

computed using the formula Cy = [Ba AaBa A2
aBa A3

aBa]

Cy =




0 0 2n 0

0 1 0 −4n2

0 2n 0 −2n3

1 0 −4n2 0




(3.5)
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The controllability matrix in Eq. (3.5) has full rank 4 and is nonsingular since det(Cy) =

12n4. The row and column vectors of Cy are linearly independent. Therefore, the entire

state Xa is controllable using only along-track input if the radial thruster ufx fails.

3.1.1.2 No control in the along-track direction

The state-space representation of the in-plane SFF dynamics given by Eq. (3.2) is modified

to examine the case where only radial axis input (ufy = 0) is considered to stabilize the

system. The state vector, Xa ∈ R4×1, and the system matrix, Āa ∈ R4×4, remain the

same as in Eq. (3.4), but the new control matrix with no along-track input is given by

B̄b ∈ R4×1 = [0, 0, 1, 0]T . The resulting controllability matrix has the following form

Cx =




0 1 0 −n2

0 0 −2n 0

1 0 −n2 0

0 −2n 0 2n3


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(3.6)

Based on Eq. (3.6) it is clearly evident that the vectors of rows 1 and 4 of Cx are linearly

dependent and det(Cx) = 4n4−4n4 = 0, with rank Cx = 3 < 4 = n. Therefore, the in-plane

SFF system is not completely state controllable with radial thruster (ufx) alone if the along-

track thruster (ufy) were to fail. Before we conclude that the linear approximation is not

stabilizable, it is important to determine the eigenvalue associated with the uncontrollable

mode. Rearranging terms in Eq. (3.4) to represent the in-plane dynamics of the SFF

system with only radial-axis input gives,
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Let Āb ∈ R4×4 and B̄b ∈ R4×1 = [0, 0, 0, 1]T be the representations for the state matrix and

control matrix, respectively. Since the pair (Ab, Bb) is not completely state controllable,

the nominal system in Eq. (3.7) can be decomposed into controllable and uncontrollable
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parts using a transformation matrix, T [Zohdy et al. 1992]. The new state vector is given

by Zb = T Xb and the open-loop system in the new coordinates has the form,

Żb = Āb Zb + B̄b ufx (3.8)

where

Āb = T Ab T−1 =


 Āuc 0

Ā21 Āc


 and B̄b = T Bb =


 0

B̄c


 (3.9)

The pair (Āc, B̄c) are controllable and all the eigenvalues of Āuc are uncontrollable. Based

on Eq. (3.9), consider an orthogonal transformation matrix given by

T =


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2n 0 1 0

0 1 0 0

1 0 −2n 0

0 0 0 −1


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(3.10)

Since the rank of Cx = 3 < 4 = n, the system given by Eq. (3.7) has 3 controllable modes

and 1 uncontrollable mode. Thus Eq. (3.8) can be written in the form:
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=




0
... 0 0 0

· · · ... · · · · · · · · ·
1

4n2+1

... 0 − 2n
4n2+1

0

0
... 0 0 −4n2 + 1

−2n(1+3n2)
4n2+1

... 0 n2

4n2+1
0







zb1

· · ·
zb2

zb3

zb4




+




0

· · ·
0

0

−1




ufx (3.11)

where the open-loop eigenvalues of Āb are {0, 0, ±j n}. Based on the definitions provided

in Eq. (3.9), the uncontrollable mode is given by żb1 = 0 and the eigenvalue associated

with the uncontrollable mode is 0. Therefore, if the system is formulated with no along-

track input, the linearized SFF dynamics possesses one uncontrollable critical mode. An

eigenvalue is critical if it lies on the imaginary axis.

Two critical cases exists, when the linearization has an (1) uncontrollable zero eigen-

value, (2) an uncontrollable complex conjugate pair of purely imaginary eigenvalue. For

critical cases, as noted by Isidori [Isidori 1995], the linear controllability analysis becomes

inconclusive and a smooth stabilizing feedback designed using nonlinear considerations is
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required to guarantee asymptotic stability. Critical cases have also been solved by lin-

ear methods and bifurcation theory for an adequate margin of stability [Fu & Abed 1993].

Most of these methods are associated with large gains and therefore nonlinear controllers

with low gains are preferable to stabilize the system. Therefore, in this paper we synthesize

a nonlinear control strategy with no control force in the along-track direction, capable of

precise formation keeping and formation reconfiguration in the presence of time-varying

and state-dependent external disturbances.

In the following sections, we present the design procedure to implement SMC for space-

craft formation control. The overall design can be divided into two main steps. Step 1

involves the construction of an exponentially stable sliding surface as a function of tracking

errors to ensure that once the system is restricted to the defined manifold, the follower

spacecraft precisely tracks the desired trajectory. Step 2 entails the derivation of feedback

control algorithm that can drive the relative states to the sliding surface in finite time and

maintain it in the manifold.

Before we develop a nonlinear control law for the underactuated SFF configuration, the

equations of motion [taken from previous chapter Eq. (2.25)] are rewritten in state-space

form as follows:




ẋ

ẏ

ż

ẍ

ÿ

z̈




=




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0







x

y

z

ẋ

ẏ

ż




+




0

0

0

µ

(
1
r2
l

− (rl + x)
r3
f

)
− 2n2x

n2y − µy
r3
f

n2z − µz
r3
f




+




0 0 0

0 0 0

0 0 0

b1 0 0

0 b2 0

0 0 b3







ufx

ufy

ufz


 +




0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1







Fdx

Fdy

Fdz


 (3.12)



72 Chapter 3. Control of Underactuated Spacecraft Formations

The state vector X ∈ R6x1 = [x, y, z, ẋ, ẏ, ż]T can be split into two parts as X = [x1, x2]
T

where x1 and x2 represents the unactuated and actuated states, respectively. The unactu-

ated states can be further transformed to x1 = [x10, x11]
T , where x10 ∈ R3×1 = [x, y, z]T .

We now consider the two main cases of actuation failure to determine the state x11:

Case I : (ufx = 0, b1 = 0, b2, b3 = 1) No control force available in the radial direction (x)

and complete control authority available in the along-track (y) and cross-track (z)

direction. For this case x11 = ẋ, x2 = [ẏ, ż], and U ∈ R2×1 = [ufy, ufz]
T .

A11 =




0 0 0 1

0 0 0 0

0 0 0 0

3n2 0 0 0




; A12 =




0 0

1 0

0 1

2n 0




; A21 =


 0 0 0 −2n

0 0 −n2 0




E1(X) =




0

0

0

µ( 1
r2
l
− (rl+x)

r3
f

)− 2n2x




; E2(X) =


 n2y − µy

r3
f

n2z − µz
r3
f




Case II : (ufy = 0, b2 = 0, b1, b3 = 1) No control force available in the along-track

direction (y) and complete control authority available in the radial (x) and cross-

track (z) direction. For this case x11 = ẏ, x2 = [ẋ, ż], and U ∈ R2×1 = [ufx, ufz]
T .

A11 =




0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0




; A12 =




1 0

0 0

0 1

−2n 0




; A21 =


 3n2 0 0 2n

0 0 −n2 0




E1(X) =




0

0

0

n2y − µy
r3
f




; E2(X) =


 µ( 1

r2
l
− (rl+x)

r3
f

)− 2n2x

n2z − µz
r3
f



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3.1.2 Design of Sliding Manifold

The characteristics of underactuated systems pose numerous challenges to researchers,

ranging from controller design to establishing stability margins. In particular, the non-

linear dynamics of the SFF system [Eqs. (2.5)-(2.7)] clearly indicates the presence of

unmatched disturbances (relative J2 accelerations in x or y direction) if the control force

in the radial (ufx) or along-track (ufy) direction were to fail. Hence, the sliding sur-

face function for the underactuated SFF system should be designed such that not only

the stability of the closed-loop system is guaranteed in the presence of unmatched per-

turbations, but also the desired dynamic behavior should be exhibited once the error

trajectory of system is confined to the sliding surface. In terms of robustness, the con-

ventional sliding surface design [Yeh et al. 2002, Lim et al. 2003, Massey & Shtessel 2005,

Wang & Zhang 2007, Liu et al. 2006] has a major disadvantage because the sliding system

is sensitive to unmatched uncertainties and disturbances due to unexpected actuator failure

which will directly affect the dynamic performance.

3.1.2.1 Case I - Complete failure of radial axis thruster

The linearized HCW model [Eq. (3.1)] in the previous section can be represented in terms

of new coordinates x1 ∈ R4 and x2 ∈ R2 as follows

 ẋ1

ẋ2


 =


 A11 A12

A21 A22





 x1

x2


 +


 0

B2


 U (3.13)

where x1 and x2 are as defined in Case I, and B2 ∈ R2×2 = I2×2. Carrying out a similar

transformation on the desired trajectory equations [Eqs. (2.8)-(2.9)] gives,

 ẋd

1

ẋd
2


 =


 Ad

11 Ad
12

Ad
21 Ad

22





 xd

1

xd
2


 (3.14)

Based on Eq. (3.13) and Eq. (3.14), the error dynamics are given by,

ė1 = A11e1 + A12e2 + Ā11x
d
1 + Ā12x

d
2

ė2 = A21e1 + A22e2 + B2U + Ā21x
d
1 + Ā22x

d
2

(3.15)
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where Āij = Aij + Ad
ij for i, j = 1, 2, and ei = xi− xd

i . By exploiting the coupling between

directly actuated and unactuated states, we define the sliding surface, S, as a function of

the tracking errors and desired states.

S = {e1 ∈ R4×1, e2 ∈ R2×1 : e2 + K e1 = 0} (3.16)

where K ∈ R2×4 is the weighting matrix. When the system reaches the sliding surface,

S = 0 ∀ t > tr, where tr is the reaching time after which sliding motion starts,

e2 = −K e1 (3.17)

It is important to note that Eq. (3.17) holds only on the sliding surface and substituting

this relation to the reduced order system in Eq. (3.15) gives

ė1 = (A11 − A12K)e1 + Ā11x
d
1 + Ā12x

d
2 (3.18)

During an ideal sliding mode behavior, e2 can be considered as a control signal to

stabilize e1. Therefore, the choice of sliding surface, S, clearly affects the dynamics of the

reduced order system through the selection of weighting matrix K. The weighting matrix K

prescribes a desired closed-loop behavior for the system [Eq. (3.18)] and can be determined

using any classical approaches which provides a full state feedback control scheme for a

system represented in state-space form. Since (A,B) is, by definition a controllable pair

it follows directly that the matrix pair (A11, A12) is also controllable. To facilitate the

stability analysis, we rewrite the sliding surface in the following form:

S = {e ∈ R6×1 : Λ e = 0} (3.19)

Λ = [K I2×2] =


 K11 K12 K13 K14 1 0

K21 K22 K23 K24 0 1


 (3.20)

3.1.2.2 Case II - Complete failure of along-track thruster

Linear controllability analysis of the in-plane dynamics with no along-track input shows

that the controllability matrix is rank deficient [Eq. (3.6)]. Also, the pair (A11, A12) is not

completely state controllable if linear system for Case II is expressed in the form given by
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Eq. (3.13). Therefore, a sliding surface designed based on the approach used for Case I

can lead to unstable reduced order dynamics. Based on the error dynamics in Eq. (3.15)

and the complete linear model [Eq. (3.1)], the reduced order system for Case II (excluding

the desired trajectory terms - Ā11x
d
1 + Ā12x

d
2) is given by




ėx

ėy

ėz

ëy




=




0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0







ex

ey

ez

ėy




+




1 0

0 0

0 1

−2n 0





 ėx

ėz


 (3.21)

The uncontrollable mode is extracted by representing the reduced order system with a new

set of coordinates. In order to facilitate the analysis, linear change of coordinates for Eq.

(3.21) can be obtained using the transformation matrix

T1 =




2n 0 0 1

0 −1 0 0

0 0 −1 0

−1 0 0 2n




(3.22)

By a change of basis using, (1) z = T1 e1, (2) Ā = T1A11 T−1
1 , and (3) B̄ = T1A12, Eq.

(3.21) is transformed into the following lower order system

 ż1

ż2


 =


 Āuc 0

Ā21 Āc





 z1

z2


 +


 0

Bc





 ėx

ėz


 (3.23)

where

Āuc = 0; Ā21 =



−1

0

0


 ; Āc =




0 0 −2n

0 0 0

0 0 0


 ; Bc =




0 0

0 −1

−1 0




with (Āc, Bc) a controllable pair. The uncontrollable mode is given by ż1 = 0 which

implies z1 is a constant. Based on the transformation matrix given by Eq. (3.22), z1 =

ėy +2 n ex. Our objective is to develop a sliding surface that can eliminate the effect of this

uncontrollable mode. Hence, using the properties of linear state-space theory, there exists
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a linear feedback control with the gain matrix K ∈ R2×3 such that Ac −BcK is Hurwitz.

e2 = −K z2 = −K T̂1e1 (3.24)

where T̂1 = T1(2 : 4, :). This result can be utilized to define a sliding surface based on the

pair (Ac, Bc) which is stable as opposed to a manifold designed based on (A11, A12). The

time-invariant switching function for Case II with a robust component added to alleviate

the effect of matched part of the reduced order system and the uncontrollable mode is

defined as,

S = {e1 ∈ R4×1, e2 ∈ R2×1 : e2 + K T̂1e1 = 0} (3.25)

Therefore, asymptotic stabilization of the tracking errors can be guaranteed if the weight-

ing matrix K is appropriately chosen to suppress the influence of the uncontrollable mode.

Sufficiently fast error decay when sliding can be ensured by placing the closed-loop eigen-

values of (Ac − BcK) in the far left-hand half of the complex plane. The error dynamics

are represented in the exact same manner as Eq. (3.15) with e1 = [ex, ey, ez, ėy]
T and

e2 = [ėx, ėz]
T . To facilitate the stability analysis, we rewrite the sliding surface in the

following form:

S = {e ∈ R6×1 : Γ e = 0} (3.26)

Γ = [K T̂1 I2×2] =


 −K13 −K11 −K12 2nK13 1 0

−K23 −K21 −K22 2nK23 0 1


 (3.27)

3.1.3 Nonlinear Control Formulation

The design of a suitable control algorithm that can steer the system trajectories to the

sliding manifold is the second phase of any VSC design procedure. Our objective is to im-

prove the transient performance of the system by employing a continuous, nonlinear control

algorithm that can reduce the reaching phase and maintain the closed-loop trajectory on

the sliding surface. The effects of both matched and unmatched uncertainties are pertinent

when the motion is not constrained to the sliding surface.

 ẋ1

ẋ2


 =


 A11 A12

A21 A22





 x1

x2


 +


 E1(X)

E2(X)


 +


 04×2

I2×2


 Uf +


 Fd1

Fd2


 (3.28)
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To generalize the control design procedure for cases I and II, the nonlinear equations of

motion can be represented by Eq. (3.28) in terms of transformed coordinates [based on the

classification outlined in Section 3.1.1 after Eq. (3.12)], where E1(X) and E2(X) are the

nonlinear terms decomposed from E(X) in Eq. (3.12), Uf ∈ R2×1 = [ufi, ufz]
T is the vector

of control inputs, and Fd1 ∈ R4×1 = [0, 0, 0, Fdi]
T , Fd2 ∈ R2×1 = [Fdj, Fdz]

T , ∀ i, j = x or y

(depending on Case I or Case II), are the differential perturbations.

One of the major challenges in trajectory tracking for multiple spacecraft in formation

stems from the presence of uncertainties and differential perturbations. With no control

force available in the radial or along-track direction, achieving precise formation-keeping

and reconfiguration of desired formation geometry becomes a difficult task in the presence

of uncertain and perturbing terms in the formation dynamics. A simple approach to extract

the core information of uncertainties and perturbations is to utilize the estimate of its upper-

bound in the controller design. This technique has been widely used for spacecraft attitude

tracking control in the presence of time-varying disturbances [Singh 1987, Cai et al. 2008].

We assume that the desired reference trajectory, Xd, and the nonlinear component, E(X),

in the equations of motion are bounded as

‖Xd‖ ≤ ρ1

‖E(X)‖ ≤ ρ2‖X‖ (3.29)

where ρ1 > 0, and ρ2 is the Lipschitz constant of the nonlinear vector field associated

with E(X). Vaddi [Vaddi 2003] showed that the Lipschitz constant can be determined

by computing the ratio ‖E(X)‖
‖X‖ for a particular region of interest (varying formation disc

size 1 km − 150 km) and choosing its maximum value. As stated earlier, differential per-

turbations due to solar radiation pressure and aerodynamic drag can be neglected in this

study since we assume that all spacecraft in formation have the same ballistic coefficients

and area-to-mass ratio. Other types of uncertainties such as relative J2 (modeled in Sec-

tion 2.1.5), magnetic forces, luni-solar perturbations, dynamics of thrusters, perturbations

due to thruster misalignment, etc. are assumed to be included in the following chosen

uncertainty bound (with scalar constants ρ3, ρ4 > 0).

‖Fd‖ ≤ ρ3‖X‖+ ρ4 (3.30)
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We now develop the control scheme to ensure that the sliding manifold is reached and

sliding on the manifold occurs. Based on the sliding manifolds given by Eqs. (3.19) and

(3.26), the general structure of the surfaces are identical for cases I and II, and therefore

the formulation of control scheme will be the same. Then, considering Eq. (3.19), we have

Ṡ = Λ ė = Uf + Λ A X + Λ[E(X) + D Fd]− ΛẊd (3.31)

Due to the form of the aforementioned uncertainties given by Eqs. (3.29) and (3.30), a

second order polynomial function that bounds the lumped term containing nonlinearities

and disturbances in the system can be expressed as follows:

γ(t,X,Xd) = Λ[E(X) + D Fd − Ẋd]

‖γ(t,X, Xd)‖ ≤ [(ρ3 + ρ2)‖X‖+ (ρ4 + ρ1)] ‖Λ‖ ≤ ρ Φ

Φ = 1 + ‖X‖
(3.32)

Carrying out some algebraic manipulations based on Eqs. (3.31) and (3.32), the nonlinear

control law capable of precise formation-keeping and reconfiguration is given by

Uf = −
[
η

ϕ2S

‖S‖+ δ
+ Λ AX

]
(3.33)

where δ is a small positive scalar specifying the boundary layer thickness that will eliminate

chatter if appropriately chosen so that the unmodeled high frequency dynamics are not ex-

cited [Edwards & Spurgeon 1998]. This choice has no effect on the closed-loop trajectories,

except when sliding along the sliding surface Su, in which case the deadband will strongly

influence the high frequency chatter in the control input. The scalar function ρ depends

on the magnitude of the disturbances and uncertainties,

η =
ϕ1

ϕ2

(ϕ3 + ϕ4) ∀ [0 ≤ ϕ2 < 1 and ϕ1, ϕ3, ϕ4 ≥ 0] (3.34)

for some positive constants ϕ1, ϕ2, ϕ3, and ϕ4. The steps involved in adequately deter-

mining these nonnegative constants are detailed in the next section. It is also important

to note that Eq. (3.32) is true regardless of any external disturbance, types of formation,

and other uncertainties that arise due to changing spacecraft parameters or operating con-

ditions. In this dissertation, ‖ · ‖ denotes the Euclidean norm for vectors and the induced

spectral norm for matrices.
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3.1.4 Stability Analysis

In this sub-section we present stability conditions for the SFF system in underactuated

configuration, focussing primarily on robustness against disturbances. First, we show that

the control law, Eq. (3.33), is capable of driving the closed-loop trajectory of the system

towards a boundary layer on the sliding surface in finite time (Hitting Phase). Once the

sliding surface is reached, the system enters into the sliding regime. We show that the

sliding mode is robust to unmatched disturbances and uncertainties that mainly affects

the unactuated states (Sliding Phase).

Theorem 3.1: For the underactuated spacecraft formation flying mathematical model in

Eq. (3.28) if, the sliding manifold is chosen as Eq. (3.19) or Eq. (3.26), the control law

is defined as Eq. (3.33), and the bounds on the external disturbances and uncertainties on

the system is assumed as given by Eq. (3.32) then the system reaches the sliding surface in

finite time for a sufficiently small δ > 0.

Proof : Consider the Lyapunov function

V (S) =
1

2
ST S (3.35)

Taking the first derivative of V (S) along the trajectory of the closed-loop system,

V̇ (S) = ST
[
Λ (Ẋ − Ẋd)

]
(3.36)

Substituting the SFF model, Eq. (3.28), and the control law given by Eq. (3.33), we get

V̇ (S) = ST
[
Λ (AX + E(X) + D Fd) + Uf − Λ Ẋd

]

= ST

[
−η

ϕ2S

‖S‖+ δ
+ γ(t,X, Xd)

]
(3.37)

Based on Eq. (3.32) and setting ϕ3 = ρ Φ, the first derivative of V (S) can be expressed as

V̇ (S) ≤ ‖S‖
[
−η

ϕ2‖S‖
‖S‖+ δ

+ ‖γ(t,X, Xd)‖
]

≤ ‖S‖
[
−η

ϕ2‖S‖
‖S‖+ δ

+ ϕ3

]
(3.38)
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Expressing ϕ3 in terms of η, ϕ1, ϕ2, and ϕ4 from Eq. (3.34) and substituting in Eq. (3.38),

V̇ (S) ≤ −‖S‖
[
η ϕ2

‖S‖
‖S‖+ δ

− η ϕ2

ϕ1

+ ϕ4

]

≤ −ϕ4‖S‖ − η ϕ2 ‖S‖
[ ‖S‖
‖S‖+ δ

− 1

ϕ1

]
(3.39)

It is readily obtained from Eq. (3.39) that, if:

‖S‖
‖S‖+ δ

− 1

ϕ1

≥ 0

‖S‖ ≥ δ

ϕ1 − 1
(3.40)

then V̇ (S) < 0. The condition in Eq. (3.40) is only satisfied if

V (S) >
1

2

(
δ

ϕ1 − 1

)2

= ε1 (3.41)

From Eq. (3.38), where ‖S‖
‖S‖+ δ

≤ 1 (∀ δ ≥ 0), we derive conditions for selecting gains

η ϕ2 − ϕ3 > 0

ϕ1 >
ϕ3

ϕ3 + ϕ4

(3.42)

Using this fact it can be shown that V̇ (S) ≤ −ε2

√
2V (S) for some ε2 > 0. This implies

that the sliding boundary layer is reached in finite time. For the case where a small (δ) is

chosen, then every solution will eventually enter the set < = {S : V (S) ≤ ε1} and will

be globally uniformly ultimately bounded with respect to the ellipsoid ε1. Thus, we have

shown that the continuous control input given by Eq. (3.33) forces the solutions of the

system towards a boundary layer surrounding the sliding surface S in the state space, and

the system remains in it thereafter. ¤
During sliding phase, the system is completely insensitive to disturbances and uncer-

tainties acting within the channels implicit in the control inputs (matched perturbations).

However, the sliding surface is sensitive to unmatched uncertainties and disturbances which

will effect the dynamic performance of the closed-loop error system. Therefore, it is im-

portant to evaluate the properties of the system once the closed-loop error dynamics are

constrained to S. To this end, we first introduce Shyu’s stability criterion[Shyu et al. 1998]

of the reduced-order system with unmatched uncertainties in Lemma 1.
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Lemma 3.1: Consider the following reduced order system with uncertainty

ẋ1 = (A11 − A12K)x1 + f̄(x1) (3.43)

where f̄(x1) is the unmatched uncertainty. Then, if f̄(x1) satisfies the uniform Lip-

schitz condition ‖f̄(x1
1) − f̄(x2

1)‖ ≤ b‖x1
1 − x2

1‖ where 0 ≤ b ≤ 0.5λmin(Q̄)/‖P̄‖ with

P̄ , Q̄ ∈ R(n−m)×(n−m) which are symmetric, positive-definite matrices satisfying the

Lyapunov equation (A11 − A12K)T P̄ + P̄ (A11 − A12K) = −Q̄, then the uncertain system,

Eq. (3.43), on the sliding surface is asymptotically stable.

The nonlinear error dynamics of relative motion between a leader spacecraft in cir-

cular reference orbit and a follower are repeated here for the reader’s convenience.

ė1 = A11e1 + A12e2 + f̄ru(X)

ė2 = A21e1 + A22e2 + B2U + f̄rm(X)
(3.44)

where f̄ru(X) ∈ R4 and f̄rm(X) ∈ R2 are the lumped terms containing the unmatched

(E1(X), Fd1, Ā11x
d
1, and Ā12x

d
2) and matched components (E2(X), Fd2, Ā21x

d
1, and Ā22x

d
2) of

uncertainties in the system, respectively. When in sliding mode the system is insensitive to

the matched uncertainty,f̄rm(X). The unmatched uncertainties are assumed to be unknown

but bounded and satisfies, ‖f̄ru(X)‖ ≤ w1 + w2‖X‖. During the sliding motion we know

that e2 = −K e1 [from Eq. (3.16)], and therefore

e = X −Xd =


 e1

e2


 =


 e1

−K e1


 ⇒ X =


 1

−K


 e1 + Xd

‖X‖ ≤
√

1 + ‖K‖2 ‖e1‖+ ‖Xd‖
(3.45)

Consequently the bound on the unmatched uncertainty can be written as

‖f̄ru(X)‖ ≤ ϕ2 + w̄2‖e1‖ (3.46)

where ϕ2 = ρ1 [from Eq. (3.29)] and w̄2 = w2

√
1 + ‖K‖2. The equation representing the

error dynamics confined to the sliding surface is obtained by substituting S = 0 in Eq.

(3.44), giving the following closed-loop equation

ė1 = (A11 − A12K)e1 + f̄ru(X) (3.47)
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In the following theorem, based on the sliding surface defined by Eq. (3.16), a stability

criterion for the reduced order system [Eq. (3.47)] is presented. Several cases of asymptotic

stabilization of the reduced order system in the presence of unmatched uncertainties,

where the vector fields have a special form, have been studied in the literature. We utilize

the procedure outlined in the book by Edwards and Spurgeon [Edwards & Spurgeon 1998]

and Shyu’s stability criterion (see Lemma 3.1) to present Theorem 3.2.

Theorem 3.2: For the motion constrained to the sliding surface, the trajectory of the

reduced-order system [Eq. (3.47)] starting from any initial condition will enter a compact set

= containing the origin in finite time and the tracking error e1 will be uniformly ultimately

bounded with respect to the ellipsoid

= =

{
e1 ∈ R4 : ‖e1‖ ≤ 2ϕ2

ξ − 2w̄1

}
(3.48)

Then, the reduced-order system is globally asymptotically stable if ξ > 2w̄1, with ξ ,
λmin(Q̄)/λmax(P̄ ), where P̄ , Q̄ ∈ R4×4 are positive-definite matrices satisfying the Lya-

punov equation

(A11 − A12K)T P̄ + P̄ (A11 − A12K) = −Q̄ (3.49)

Proof : Consider the Lyapunov function

V (e1) = e1
T P̄ e1 (3.50)

The first derivative of V (e1) along the motion of Eq. (3.47) is given by

V̇ (e1) = e1
T P̄ ė1 + ėT

1 P̄ e1

= e1
T P̄

[
(A11 − A12K)e1 + f̄ru(X)

]
+

[
(A11 − A12K)e1 + f̄ru(X)

]T
P̄ e1

= e1
T

[
P̄ (A11 − A12K) + (A11 − A12K)T P̄

]
e1 + 2eT

1 P̄ f̄ru(X)

≤ −e1
T Q̄ e1 + 2‖P̄ e1‖ ‖f̄ru(X)‖ (3.51)

Using the Rayleigh principle we know that

λmin(Q̄)‖e1‖2 ≤ e1
T Q̄ e1 ≤ λmax(Q̄)‖e1‖2 (3.52)
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In particular, if λmin(Q̄) ≥ 0 then it follows that e1
T Q̄ e1 ≥ 0 for all e1. Using Eq. (3.52)

and Eq. (3.46), Eq. (3.51) can be expressed as

V̇ (e1) ≤ −λmin(Q)‖e1‖2 + 2λmax(P̄ )‖e1‖ ‖f̄ru(X)‖
≤ −λmax(P̄ )

[
ξ‖e1‖ − 2‖f̄ru(X)‖] ‖e1‖

≤ −λmax(P̄ ) [ξ‖e1‖ − 2 w̄1‖e1‖ − 2ϕ2] ‖e1‖ (3.53)

Therefore, it is clearly evident from Eq. (3.53) that V̇ (e1) < 0 when e1 is outside of the set

= =

{
e1 ∈ R4 : ‖e1‖ ≤ 2ϕ2

ξ − 2w̄1

}
(3.54)

Analytical estimate of λmin(Q) is not needed for numerical simulations because the proposed

control law is independent of this parameter. When norm of the unactuated states, ‖e1‖ >
2ϕ2

ξ − 2w̄1
, then V̇ (e1) decreases; but once the states (e1) enters the set = they cannot go out

of it and hence the unactuated states will be confined to the set =. For every e1(t0) ∈ =
then e1(t) ∈ = for all t ≥ t0. Since V̇ (e1) < 0, it also follows that if e1(t0) /∈ = then the

trajectory will reach = in finite time tr [Spurgeon & Davies 1993]. The system is therefore

uniformly ultimately bounded with respect to the ellipsoid =. ¤

3.2 Performance Evaluation

To study the effectiveness and performance of the proposed formation control strategies,

the detailed response is numerically simulated using the set of governing equations of mo-

tion [Eqs. (2.5)-(2.7)] in conjunction with the proposed control law [Eq. (3.33)]. The

SFF system parameters and the orbital parameters for the leader spacecraft used in the

numerical simulations are shown in Table 3.1. For all numerical examples presented in

this section, the net disturbance force, Fd(t), acting on the system is considered to be dif-

ferential J2 based on the formulation presented in Section 2.1.5. The leader spacecraft is

assumed to be in an unperturbed circular reference orbit and the differential force on the

follower is calculated relative to the leader spacecraft orbit. The control gains (K ϕi) and

the boundary layer (δ) used in all simulations for Cases I and II are shown in Table 3.2.

The desired relative motion considered for ideal formation keeping is a projected circular

formation described by Eq. (2.9), with rdpc = 1 km formation radius. The in-plane phase
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Table 3.1: Leader spacecraft orbital parameters

Parameters Values

µe (km3s−2) 398600

rp (km) 6878

Ωl (deg) 0

il (deg) 45

ωl (deg) 0

Table 3.2: Controller parameters for underactuated SFF

Control Gains Case I Case II

[ϕ1, ϕ2, ϕ3, ϕ4] [2.0, 4.0, 1.0, 0.5] [1.5, 1.5, 0.5, 0.2]

[K11, K12, K13, K14] [4, −2, 0, 18] [−0.0013, 0, 0.0028, · · · ]
[K21, K22, K23, K24] [0, 0, 2, 0] [0, 0.0013, 0, · · · ]

δ 10−5 10−5

angle (φ) between the leader and follower spacecraft is assumed to be zero degree. The

initial relative positions for the numerical simulation are computed by substituting t = 0 in

Eq. (2.9). The initial velocity components for all states are calculated by taking the time

derivative of Eq. (2.9) and substituting t = 0. The initial state vector is:

X(0) = [ 0, rdpc, 0, 0.5 n rdpc, 0, n rdpc]
T (3.55)

Figure 3.1 shows the uncontrolled response for projected circular formation initial con-

ditions with no external perturbations. The radial and cross-track errors remain bounded

over 30 orbits, while the along-track error has a secular drift, increasing at a rate of 3.08 m

per orbit. We now illustrate the efficacy of the proposed control schemes in eliminating this

secular drift and achieving precision tracking performance. The results presented are: (1)

Controlled performance demonstrating formation-keeping with perfect initial conditions,

(2) Effects of initial condition errors and performance during formation maneuvers, and (3)

Quantitative analysis on fuel consumption and steady-state stabilization errors.
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Figure 3.1: Deviation of the relative position errors with no control (no J2).

3.2.1 Ideal Formation-keeping

Figure 3.2 shows relative position errors and thrust demand for formation keeping with

no control available in the radial direction (Case I). No external disturbance is considered.

The application of the proposed control scheme for this underactuated configuration results

in a bounded along-track error with its maximum absolute value of 5 mm. The steady

state error on the unactuated radial-axis is bounded by |x − xd| = 2 mm. Near perfect

tracking is achieved in the cross-track direction. The effect of relative J2 perturbations on

the system response is shown in Fig. 3.3 for case I. With no control force available in the

radial-direction, the proposed control scheme successfully transforms an unstable formation

(without control input) into a stable one with bounded in-plane relative position errors of

|x − xd|max < 0.03 m, and |y − yd|max < 0.05 m. When control force is only available in

the radial and cross-track directions (Case II), the proposed control scheme yields similar
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Figure 3.2: Controlled response for Case I (no external disturbances).
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Figure 3.3: Controlled response for Case I (with relative J2 disturbance).
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Figure 3.4: Controlled response for Case II (no external disturbances).
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Figure 3.5: Controlled response for Case II (with relative J2 disturbance).
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results as discussed above. Figure 3.4 shows the controlled response of the system with no

control available in the along-track direction. Although the linear approximation of this

case states that the system is not completely state controllable, the proposed nonlinear

control scheme efficiently tracks the desired trajectories. Performance of the control law in

the presence of relative J2 perturbations is shown in Fig. 3.5.

3.2.2 Initial Errors and Formation Reconfiguration

The performance evaluation discussed thus far mainly addresses the formation-keeping

objectives to compensate for differential perturbations based on varying orbiting conditions.

It is also important to examine the effectiveness of the proposed control scheme to perform

orbital corrections. First, we consider the system response in the presence of errors in the

initial state conditions for a projected circular formation. Autonomous control algorithms

must be capable of correcting initial condition misalignment problems since there is no

guarantee that the spacecraft in formation are initially placed exactly into the desired orbit.

For an illustration, we assume that there is a 1 km initial offset in the radial, along-track,

and cross-track positions.

Figure 3.6 shows the relative position errors and thrust demand for formation-keeping

(Case I) when there is a position offset on all three relative states. With no control force

available in the radial direction, it can be seen that the output forces in the along-track

direction saturates early in the dynamic transient period.

For case II, we assume that there is no position offset in the radial direction and initial

error of 1 km in the along-track and cross-track directions. The thrust constraint is reduced

to 1 mN for this case. The relative position errors and the required control input forces are

shown in Fig. 3.7. Radial and cross-track thrusts saturate during the initial short time

period due to large initial errors. The time taken for formation stabilization also increases

as we limit the control force to 1 mN.

Next, we demonstrate the effectiveness of the proposed control strategies for multiple

formation maneuvers. With the same initial conditions as given by Eq. (3.55), the follower

spacecraft moves from a 0.5 km to a 1.5 km (radius) projected circular formation after 5

orbits. Three-dimensional trajectories of the entire formation maneuver without radial axis
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Figure 3.6: Case I with relative J2 disturbance and initial offset errors.
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Figure 3.7: Case II with relative J2 disturbance and initial offset errors.
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input (Case I) and no along-track control force (Case II) are shown in Figs. 3.8 and 3.9,

respectively. We also illustrate a scenario where the desired geometry is changed from a

0.5 km projected circular formation to a 2 km circular formation. The trajectories of the

relative states in three-dimensional space are projected on to the (y, z) plane and shown

in Figs. 3.10 and 3.11 for cases I and II, respectively. The simulation of extreme cases of

initial errors and formation reconfiguration clearly indicate the proposed control scheme is

indeed robust to changing operating conditions and ensures precise formation acquisition

during reconfiguration maneuvers. It is also important to note that all these scenarios

were simulated with the same control gains presented in Table 3.2. Hence, only one global

control algorithm is required to execute the different tasks considered in this study.
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Figure 3.8: Case I - Formation reconfiguration from Rd = 0.5km to Rd = 1.5km.
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Figure 3.9: Case II - Formation reconfiguration from Rd = 0.5km to Rd = 1.5km.
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3.2.3 Quantitative Analysis

Based on the simulation results presented above, we examine the control precision and fuel

consumption properties of the proposed control scheme. We simulate the following scenario

where, (1) the desired reference orbit is a projected circular formation with rdpc = 1 km,

(2) the leader spacecraft is in an unperturbed circular reference orbit, and (3) the follower

spacecraft is positioned correctly into the desired orbit [Eq. (3.55)]. In assessing the ef-

fectiveness the proposed control scheme, the accuracy with which the formation can be

maintained is an important criteria. Future missions of SFF for high-resolution interfer-

ometry and stereographic imaging demand high resolution and precision requirements for

station-keeping. The maximum steady-state stabilization errors for all three directions for

cases I and II are compared in Table 3.3. The proposed control scheme is capable of ac-

complishing sub-millimeter tracking precision when no external disturbances are considered,
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Table 3.3: Formation-keeping steady-state errors

Errors, m
No Disturbance Differential J2

Case I Case II Case I Case II

|ex|max 1.8× 10−3 7.2× 10−3 2.2× 10−2 2.0× 10−1

|ey|max 5.0× 10−3 5.0× 10−4 5.0× 10−2 1.8× 10−2

|ez|max 2.0× 10−10 1.2× 10−9 8.0× 10−6 5.0× 10−8

while the tracking capability reduces to the order of 10−2m in the presence of differential

J2 perturbations. Among cases I and II, there is no great variation in performance based

on the maximum steady-state errors. By eliminating either radial axis input or along-track

input, precision formation maintenance can be achieved.

The fuel consumption for cases I and II are calculated for the same scenario described

above, and their respective ∆V requirements are shown in Table 3.4. The ∆V is calculated

based on the average budget obtained over a period of 10 orbits. For the case of no

disturbance, eliminating radial-axis input (Case I) seems to be beneficial in terms of fuel cost

when compared to eliminating along-track input (Case II). In the presence of differential J2

perturbations, cases I and II provide similar results as seen in Table 3.4. We also calculate

the cost required for formation keeping as the result of the integral

J =

τ∫

0

(u2
fx + u2

fy + u2
fz)dτ (3.56)

where τ = 10 is the number of orbits of the leader spacecraft. Figure 3.12 shows the

comparison of fuel cost (no external disturbances) over a period of 10 leader orbits for the

Table 3.4: Fuel consumption comparison

Fuel Cost No Disturbance Differential J2

m/s (per orbit) Case I Case II Case I Case II

∆Vx · · · 4.3× 10−4 · · · 8.6× 10−3

∆Vy 6.1× 10−5 · · · 8.5× 10−3 · · ·
∆Vz 1.9× 10−4 1.9× 10−4 5.5× 10−3 5.5× 10−3
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Figure 3.12: Comparison of fuel consumption (disturbance free case).

proposed control scheme (cases I and II) along with the results obtained for using a fully

actuated system (control force available in radial, along-track, and cross-track directions).

The control gains for the fully actuated case are chosen such that similar performance in

terms steady-state errors are obtained in comparison to cases I and II. As shown in Fig.

3.12, the formation-maintenance cost for case I is lower than that for case II. Eliminating

control force in any one of the orthogonal in-plane directions (either radial or along-track)

reduces the formation-maintenance cost when compared to using control forces in all three

orthogonal directions.

Figure 3.13 shows the fuel cost comparison when differential perturbations due to J2

are taken into account. With no control authority in the radial direction, the formation-

maintenance cost is slightly better when compared to the fully actuated case. In the

presence of external disturbances, eliminating control force in the along-track direction
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Figure 3.13: Comparison of fuel consumption (with relative J2 disturbance).

does not provide any superior performance over the fully actuated case in terms of fuel

consumption. Based on the comparison of control precision and fuel requirements, it is

clearly evident that the proposed control scheme is very efficient in precisely tracking the

desired formation with minimal fuel expenditure. The proposed control scheme can be

used as a replacement option during the failure of thrusters in the radial or along-track

direction. Also, the underactuated configurations proposed in this study can be used to

account for fuel savings during station-keeping and formation reconfiguration maneuvers.

Advanced formation control algorithms are critical for realizing robust and autonomous

precision formations. These algorithms must maintain precision control performance, pro-

vide autonomous recovery from thruster faults, and tailor the formation to science objec-

tives through formation reconfigurations.
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3.3 Hardware-in-the-Loop Simulation

Formation testbeds are essential for designing formation architectures and validating the

performance of closed-loop control algorithms to achieve various formation objectives. The

laboratory equipment used to test the proposed concept of underactuated SFF is called

the Satellite Airbed Formation Experiment (SAFE) platform. This is developed to provide

a design environment that can investigate the feasibility of formation control solutions

presented in this chapter under given hardware limitations.

3.3.1 SAFE Overview

The SAFE platform replicates a frictionless environment using a two dimensional (2-D)

glass table. This allows for simulated effects of microgravity while in a 1g environment.

For friction exclusion, air-bearings are used. Air is transmitted through porous material of

the air-bearings, under application of pressure, to create an air layer between the glass table

and the spacecraft. The glass table provides three degrees of freedom: two translational

and one rotational. The underactuated SFF concept is validated via Hardware-in-the-Loop

(HIL) simulation, with the SAFE platform floating above the glass surface, commanded by

the proposed control algorithm in MATLAB.

The major components that constitute the HIL test setup are as follows: 1) Satellite

Airbed Formation Experiment (SAFE) platform, 2) Pneumatic actuation system, 3) Vision

based position determination system, 4) Wireless communication unit, 5) Matlab/Simulink

UMG96/XM
Radio 

transceiver

dsPic30 

Microcontroller

Thruster 

Management

SAFE Platform

Glass Table

Basler 

Firewire 

Camra

Desktop PC 

running 

Simulink

UMG96/XM

Radio 

transceiver

Figure 3.14: Block diagram representation of the SAFE test-bed.



3.3. Hardware-in-the-Loop Simulation 97

Control 

Law

Video 

Processing

  SAFE Platform

Thruster Actuation

Video Image

Desired 

Position

Figure 3.15: Block diagram representation of MATLAB and SAFE interface.

processing the control algorithm. Position and orientation of the SAFE platform is deter-

mined using the image tracking system and passed to the control algorithm for estimating

the required thrust. Figures 3.14 and 3.15 shows the block diagram of the HIL setup. Table

3.5 gives the details of the key subsystems and its corresponding model used in the test

setup. The glass table has a dimension of 3m × 2m, dsPIC30 is a 16-bit microcontroller

from Microchip and the Basler Firewire-400 camera has a resolution of 25mm.

Table 3.5: SAFE Subsystem

Subsystem Model

Radio transceiver UMG96XM

Microcontroller dsPIC30

Pneumatic valve Clippard

Vision System Basler Firewire Camera

3.3.2 SAFE System and Mathematical Model

The system architecture and various subsystems of the SAFE platform are descried in this

section. Three air bearings mounted at the bottom of the SAFE platform minimizes its

contact with the glass table and helps it to float on the glass table. Eight pneumatic

thrusters attached on the sides of the platform provide smooth translational motion along
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the glass table. These thrusters are controlled by electronic solenoid valves and can only

be in either of the two states: ON or OFF. The platform is configured to be controlled in

a ’push’ configuration, i.e., the thrusters can push the platform to the desired position on

the glass table. Figures 3.16 and 3.17 illustrates the configuration of the thrusters and the

positioning of the thrusters on the SAFE platform respectively. The red arrows indicate

the direction of thrust.

Figure 3.16: Configuration of thrusters on the SAFE platform.

 

Figure 3.17: Positioning of thrusters on the SAFE platform.
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The system also includes a 0.91 L storage tank on the SAFE platform. The wireless

radio unit onboard the SAFE platform provides the means for communication between

the computer executing the Simulink system model and the microcontroller controlled

pneumatic actuation system operating the valves of the thrusters. LEDs are mounted on

top of the platform to allow the vision system to continuously track the position of the

platform. The vision system mounted on an elevated position above the glass table is

hardwired to the computer. The measured position is then used in the control law to

compute the sequence of actuation required to maintain the desired trajectory.

3.3.2.1 Equations of Motion

The relative system equations of motion are derived under the assumption that the leader

satellite is a virtual point in the center of the glass table. The follower satellite is moving

in a relative trajectory about the leader satellite. Its motion is described by the reference

frame S − xy , Fig. 3.18. S −XY is the inertial reference frame. To derive the equations

xy

S

X

Y

r
r

θ

S

Figure 3.18: Reference frames for SAFE platform.

of motion in the body frame S−xy, the position vector of the SAFE platform with respect

to S −XY frame expressed in S − xy frame can be written as follows:

~rxy = x î + y ĵ (3.57)
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Differentiating with respect to time leads to

~̇rxy = ẋ î + x ˙̂i + ẏ ĵ + y ˙̂j (3.58)

Substituting for ˙̂i = ~ω × î and ˙̂j = ~ω × ĵ in Eq. (3.58), we have

~̇rxy =
(
ẋ î + ẏ ĵ

)
+ ~ω ×

(
x î + y ĵ

)
(3.59)

where ω is the angular velocity vector if the S−xy frame. Eq. (3.59) represents the inertial

velocity of the SAFE platform from a given position and velocity in the S−xy frame. Next

we derive an expression for inertial acceleration. Differentiating Eq. (3.59) gives,

~̈rxy = (ẍ î + ÿ ĵ) + 2(~ω × ~̇rxy) + ~ω × (~ω × ~rxy) + ~̇ω × ~rxy (3.60)

The term 2(~ω × ~̇rxy) is called coriolis acceleration and the term ~ω × (~ω × ~rxy) is known as

centripetal acceleration. Taking ~ω = θ̇k̂ and~̇ω = θ̈k̂, the acceleration is given by

~̈r =
[
ẍ− 2θ̇ẏ − θ̇2x + θ̈y

]
î +

[
ÿ + 2θ̇ẋ + θ̇2y + θ̈x

]
ĵ (3.61)

Based on Newton’s 2nd law, the relative translational equations of motion are given by

ẍ− 2θ̇ẏ − θ̇2x− θ̈y = fx/ms (3.62)

ÿ + 2θ̇ẋ− θ̇2y + θ̈x = fy/ms (3.63)

where fx, fy are the control forces, and ms is the mass of the spacecraft. In the following

section, we formulate controllers for the fully actuated and underactuated configurations.

3.3.2.2 Design of Control Laws

Next, the control algorithm developed in Section 3.1 is reformulated to incorporate the

mathematical model of the SAFE platform and to manage the switching of the thrusters.

The vision system provides the inertial positions X, Y and θ. The inertial position error

can then be written as X̃ = X − Xd and Ỹ = Y − Yd, where Xd and Yd are the desired

states. By choosing the desired states to be a particular position in the coordinate axes, we

can simulate the formation acquisition procedure where the follower spacecraft is required

to acquire a specific orbit with respect to the leader spacecraft.
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Tracking errors, X̃ and Ỹ are expressed in the body frame using the following relation:

x̃ = X̃ cos θ + Ỹ sin θ and ỹ = −X̃ sin θ + Ỹ cos θ (3.64)

Fully Actuated Configuration

The first step in developing a feedback control algorithm based on VSC theory entails the

design of a sliding manifold. A two-layer linear sliding surface based on tracking errors for

the SAFE satellite in fully actuated configuration is defined as follows:

Sx = ˙̃x + c1x̃ and Sy = ˙̃y + c2ỹ (3.65)

The control law is given by

fx =





Ueqx − ηxsgnSx if |Sx| > δ

0 if |Sx| < δ
(3.66)

fy =





Ueqy − ηysgnSy if |Sy| > δ

0 if |Sy| < δ
(3.67)

where Ueqx and Ueqy are the equivalent control terms that are obtained by solving Ṡx = 0

and Ṡy = 0, respectively, for the control terms. The thrusters are activated based on a

tracking error dead-band defined by δ.

Underactuated Configuration

The sliding manifold for the underactuated configuration is developed based on the reduced

order dynamics. We linearize the nonlinear translational dynamics [Eqs. (3.62) and (3.63)]

based on the assumption that the spacecraft is rotating about its center of mass at a

constant rate (θ̈ = 0). The linearized equations of motion in state-space form with control

authority available only in the along-track direction (y) is given by

 ẋ1

ẋ2


 =


 A11 A12

A21 A22





 x1

x2


 +


 03×1

1


 fy (3.68)

where x1 ∈ R3 = [x, y, ẋ]T represent the unactuated states and x2 = ẏ is the actuated
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state. The elements of the A matrix are obtained from Eqs. (3.62) and (3.63) with θ̈ = 0:

A11 =




0 0 1

0 0 0

θ̇2 0 0


 ; A12 =




0

1

2θ̇


 ; A21 =

[
0 θ̇2 −2θ̇

]
; A22 = 0 (3.69)

Based on the reduced order error dynamics, ˙̃x1 = A11x̃1 + A12x̃2, the sliding manifold

that couples the actuated and unactuated states is chosen as:

Sxy = x̃2 + Px̃1 (3.70)

where P ∈ R1×3 is chosen such that during sliding motion, Sxy = 0, the reduced order error

dynamics is stable. Solving for Sxy = 0 gives x̃2 = −Px̃1 that yields the error dynamics

˙̃x1 = (A11 − A12P ) x̃1 (3.71)

Thus, the choice of surface Sxy from Eq. (3.70) clearly affects the dynamics in Eq. (3.71)

through the design of P in Eq. (3.70). For θ̇ = 0.0033 rad/s and P = [0.005 −0.001 1.470],

the closed-loop eigenvalues of [A11 − A12P ] are:

λ1,2 = −0.0037± 0.0015i and λ3 = −0.0010 (3.72)

indicating a stable dynamics that governs the sliding motion. Next, the control algorithm

that ensures the sliding manifold is reached and motion on Sxy is maintained, is given by

fy =





Ueq − ηxysgnSxy if |Sxy| > δ

0 if |Sxy| < δ
(3.73)

where ηxy is a positive scalar. The control law ensures that the sliding manifold is reached

and whilst sliding, the system behaves as a reduced order motion which does not depend

on the control signal fy.

Thruster Firing Scheme

The thrusters are fired according to the following sequence (Fig. 3.17): when fx is positive,

the thrusters Lt, Lb, are switched ON and Rt and Rb are switched OFF. While fx is

negative Lt, Lb are switched OFF and Rt and Rb are switched ON. Similarly when fy is

positive the thrusters Bl, Br, are switched ON and Tl and Tr are switched OFF, and while

fy is negative Bl, Br, are switched OFF and Tl and Tr are switched ON.
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3.3.3 Experimental Results

The results obtained from the HIL simulations on the SAFE platform are described in this

section. The following controller parameters were chosen: c1 = 0.1, c2 = 0.2, ηx = 1, ηy = 2,

ηxy = 5, and P = [0.0051, −0.0014, 1.4702]. The performance of the HIL system was first
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Figure 3.19: Tracking errors - Fully actuated configuration (Xd = 0,Yd = 0).

evaluated in the fully actuated configuration. The methodology to control the thrusters is

based on control laws given by Eqs. (3.66) and (3.67). Here the SAFE platform was placed

at an arbitrary initial location, (0.06, −0.08) and commanded to traverse towards a desired

location (0, 0) and maintain its position. Figure 3.19 shows the X and Y trajectory tracking

errors that was traced by the platform on the glass table. The disturbances observed on

the system performance can be attributed to the external disturbances due to the tether

being used as an air supply mechanism.
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Next, the performance of the system in the underactuated configuration is examined.

Without radial axis thrust (fx = 0) and using thrust only in the along-track direction, the

control scheme given by Eq. (3.73) is used to control the translational dynamics of the

SAFE platform. An arbitrary initial position (0.06, −0.08) is chosen and the spacecraft

is commanded to move to the desired location, (0, 0). Figure 3.20 shows the X and Y

trajectory tracking errors that was traced by the platform on the glass table. From Figs.

3.19 and 3.20, it can be seen that the platform moves to and maintains its position at the

desired location with reasonable accuracy (±̃0.1 m).
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Figure 3.20: Tracking errors - Underactuated configuration (Xd = 0,Yd = 0).

The experimental results presented in this section clearly demonstrates the efficacy of

the proposed control algorithm for achieving precision spacecraft positioning in underactu-

ated configuration. The fully actuated system stabilizes to the desired location with less

error as compared to the underactuated system.
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3.4 Summary

In this chapter, we developed a nonlinear control strategy capable of precision formation

control to study two configurations of reduced inputs, where no control force is available

in the (1) radial direction, or (2) along-track direction. In particular, the second case, not

examined in the literature previously, is challenging because it fails the linear controllability

test and hence requires the use of nonlinear control techniques. External disturbances due to

differential J2 is effectively attenuated using the proposed technique and the nonlinearities

due to system dynamics are not required in the controller design. Quantitative analysis of

the simulation results show that eliminating the radial axis thrust reduces the fuel cost for

formation maintenance.

The underactuated configuration (no control authority in the radial direction) was

demonstrated using a HIL simulation performed on a formation testbed simulating for-

mation acquisition. The theoretical and experimental results presented in this chapter

clearly indicate that the proposed control scheme represents a practical design approach

for multiple spacecraft formations to deal with the problem of formation maintenance and

reconfiguration maneuvers for the case where the radial or along-track thrusters fail. In

chapters 2 and 3, the spacecraft were assumed to be point masses and hence the attitude

motion was neglected. In the next chapter, we treat the spacecraft as a rigid body and

examine the effects of actuator faults on the performance of the attitude control system of

the spacecraft. In Chapter 5, we implement the control strategy proposed in this chapter

for attitude control in underactuated configuration.



Chapter 4

Fault Tolerant Attitude Control of

Spacecraft

Spacecraft mission success is highly dependent on the performance and robustness

of the attitude control system. Scientific payloads onboard a spacecraft for Earth

observation and space monitoring rely on the attitude control system to be oriented towards

a prescribed direction with high accuracy to increase the operational envelope and efficiency

of miniature spacecraft. Actuation methods used to control the orientation of a spacecraft

fall into three main categories [Schaub & Lappas 2009]: 1) reaction control thrusters, 2)

internal momentum exchange devices like reaction wheels and control moment gyros, and 3)

external environmental influences such as the gravity gradient, atmospheric, solar radiation

pressure, or magnetic torques. With increasing demands in the context of agile mission

scenarios and stringent physical size constraints, the development of low-cost customizable

attitude actuators for small spacecraft is a difficult task.

Attitude control systems (ACS) are required to provide the spacecraft with attitude

maneuver, tracking, and pointing capabilities. Loss of critical control actuators like re-

action wheels can lead to spacecraft pointing control accuracy degradation and for some

cases, the spacecraft may completely lose its stabilization capability. The ability of the

spacecraft to attain sufficient degree of attitude dexterity after losing two reaction wheels

has been practically demonstrated for several missions like TOPEX [Lam et al. 2001], and

FUSE [Kruk et al. 2002a]. Three-axis stabilization using two remaining reaction wheels

was accomplished by integrating other torque generating actuators like reaction control

thrusters and magnetic torquer bars (MTB). Thruster assisted approach is not desirable

because they consume a lot of propellant while MTBs are only applicable for spacecraft in

LEO. In this chapter, we present an adaptive fault-tolerant control algorithm capable of
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providing highly accurate 3-axis attitude tracking for miniature spacecraft using reaction

wheels as actuators. The aim is to develop a comprehensive computer simulation model

and a hardware test-bed to facilitate testing and validation of the proposed fault-tolerant

control algorithm. A high-fidelity numerical model of the spacecraft is integrated with a

reaction wheel assembly developed for pico-satellites using a hardware-in-the-loop test-bed

interfaced via MATLAB.

The chapter is organized as follows: Section 4.1 introduces the nonlinear mathematical

model of the spacecraft. The proposed fault-tolerant control algorithm is formulated in

Section 4.2 along with detailed proof of stability for the closed-loop system in the presence of

fading actuation and complete wheel failure. The hardware model and configuration of the

reaction wheels are presented in Section 4.3. The numerical simulation results incorporating

different fault scenarios are presented in Section 4.4. The HIL simulation results are detailed

in Section 4.6. Finally, the conclusions of the present study are stated in Section 4.6.

4.1 Spacecraft Mathematical Model

The investigation is initiated by formulating the complete nonlinear equations of motion of

the rigid spacecraft to develop a mathematical model that facilitates the design of nonlinear

control methodologies. Our focus is on testing and validating the proposed fault-tolerant

control algorithm for spacecraft ACS with reaction wheels as actuators. The proposed

system consists of a rigid body spacecraft in a circular orbit around the Earth (Figure 4.1).

4.1.1 Coordinate Frames

The coordinate frames used to represent the dynamics of the spacecraft are shown in

Figure 4.1. An Earth centered inertial (ECI) frame is denoted by I − XIYIZI , has its

origin located at the center of the Earth, with ZI-axis passing through the celestial North

pole, XI-axis directed towards the vernal equinox, and YI-axis completes the right-handed

triad. Next, we define a local vertical local horizontal (LVLH) orbital reference frame

L − xo yo zo fixed at the center of the spacecraft with the xo-axis along the direction of

motion, the yo-axis opposite to the direction of the angular velocity (normal to the orbit
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Figure 4.1: Geometry of orbit motion of rigid spacecraft.

plane), and the zo-axis pointing towards the Earth. The nodal line represents the reference

line in orbit for the measurement of the true anomaly (eccentric orbit) or reference angle θ

(circular orbit). The corresponding principal body-fixed coordinate axes of the spacecraft

are denoted by B − x y z with its origin located at the center of mass of the spacecraft.

The notation [Fragopoulos & Innocenti 2004] used for representing the relative velocity

vector, v, of frame L relative to frame I, expressed in the coordinates of B is: vB
LI . The

cross-product of vectors a× b is defined as [a×]b where [a×] is a skew-symmetric operator.

4.1.2 Spacecraft Dynamics

Consider a rigid spacecraft with a 4-wheel cluster installed to provide internal torques. The

rotational equations of motion for the spacecraft actuated by reaction wheels are given by

[Tsiotras et al. 2001]

ḢB
BI + ωB

BI ×HB
BI = τe (4.1)
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where ωB
BI is the angular velocity of the spacecraft relative to the inertial frame I, expressed

in the B frame, and τe ∈ R3×1 represents the external torque acting on the system. HB
BI is

the total angular momentum of the spacecraft relative to I and expressed in B, given by

HB
BI = JωB

BI + AHw (4.2)

where A is the 3× 4 project matrix whose columns represent the influence of each reaction

wheel on the angular acceleration of the spacecraft. We define a matrix J = Js − AJwAT ,

where Js ∈ R3×3 is the moment of inertia of the spacecraft, including the wheels, and

Jw ∈ R4×4 = diag([Jw1, Jw2, Jw3, Jw4]) denotes the axial moment of inertia of the reaction

wheels. The axial angular momentum of the reaction wheels, Hw, can be expressed as

Hw = Jw(Ω + AT ωB
BI) (4.3)

where Ω ∈ R4×1 denotes the axial angular velocity of the reaction wheels.

Combining Eqs. (4.1)-(4.3), the attitude dynamics of a rigid spacecraft controlled by

reaction wheels can in general be described the following nonlinear differential equation:

Jω̇B
BI = −ωB

BI × (Jsω
B
BI + AJwΩ) + Aτrw + τe (4.4)

The torques generated by the reaction wheels (τrw) are given by

τrw = Ḣw = Jw(Ω̇ + AT ω̇B
BI) (4.5)

During validation of the control algorithms using computer simulations, the angular ve-

locity of the reaction wheels are obtained by numerically integrating Eq. (4.5). For HIL

simulations, each wheel module is equipped with a tachometer that measures the wheel

speed which is differentiated to compute the torque applied to the spacecraft.

4.1.3 Attitude Kinematics

The spacecraft attitude kinematic equations relate the time derivatives of the attitude

coordinates to the angular velocity vector. Euler angles, Cayley-Rodrigues parameters,

modified Rodrigues parameters, and quaternion (also called Euler parameters) are some of
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the parameterization methods available in the literature to represent the kinematic equa-

tions of motion of the spacecraft. In this study, we adopt the unit quaternion[Wie 1998] to

describe the attitude of the spacecraft. The unit quaternion q̄ is defined by

q̄ =


 ē sin(Φ/2)

cos(Φ/2)


 =


 qv

q4


 (4.6)

where Φ denotes the principal angle, and ē = [e1, e2, e3]
T denotes the principal axis associ-

ated with Euler’s Theorem (e2
1 + e2

2 + e2
3 = 1). q4 ∈ R and qv ∈ R3×1 = [q1, q2, q3]

T denote

the Euler parameters that represent the orientation of the spacecraft body frame, B, with

respect to the orbital frame, L, and satisfy the constraint qT
v qv + q4 = 1. The nonlinear dif-

ferential equations governing the kinematics of the spacecraft in terms of Euler parameters

can be expressed as 
 q̇v

q̇4


 =

1

2


 q4I + [q×v ]

−qT
v


 ωB

BL (4.7)

where I ∈ R3×3 represents the identity matrix, and [q×v ] denotes a skew-symmetric matrix

which is given by

[q×v ] =




0 −q3 q2

q3 0 −q1

−q2 q1 0


 (4.8)

The angular velocity of the body-fixed reference frame, B, with respect to the inertial

frame, I, can be expressed as

ωB
BI = ωB

BL + ωB
LI (4.9)

The direction cosine matrix CB
L that describes the orientation of the spacecraft body-fixed

frame, B, with respect to the LVLH reference frame, L defined in terms of Euler parameters

is given by

CB
L = (q2

4 − qT
v qv)I + 2qvq

T
v − 2q4[q

×
v ] (4.10)

The orbital angular velocity expressed in the B frame, ωB
LI , can be obtained by rotating

the angular velocity in L using the transformation matrix CB
L as follows:

ωB
LI = CB

L

[
0 −ω0 0

]T

(4.11)
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where ω0 = θ̇ is the magnitude of orbital angular velocity of the LVLH frame. For a circular

orbit, θ̇ =
√

µe/R3
c , where µ represents the gravitational parameter of the Earth, and Rc

defines the distance of the spacecraft measured from the center of the Earth.

4.1.4 External Disturbances

The external torques (τe) are assumed to include gravity gradient torque (τg) and other

disturbance torques (τd) acting on the spacecraft, τe = τg + τd. The gravity gradient torque

is given by [Schaub & Junkins 2003]

τg = 3ω2
0 [ĉ×3 ]Jsĉ3, ĉ3 = CB

L [0 0 1]T (4.12)

The disturbance torque considered in this study is of the form [Cai et al. 2008]

τd =

(
1

2
+ ‖ωB

BL‖2

)



sin(0.8t)

cos(0.5t)

cos(0.3t)


 (4.13)

4.1.5 Attitude Tracking

In the case of tracking a desired rotational motion, the target attitude of the spacecraft

in the desired reference frame Bd with respect to the LVLH frame L is described by the

orientation (qdv, qd4) ∈ R3 × R that satisfies the constraint qT
dvqdv + q2

d4 = 1. Let ωd ∈ R3

denote the angular velocity of Bd with respect to L, expressed in the frame Bd. We assume

that there exists known, finite constants, c1 > 0 and c2 > 0 such that ‖ωd‖ ≤ c1 and

‖ω̇d‖ ≤ c2 for all t ≥ 0. To address the attitude tracking problem, we define the quaternion

tracking error (qe, q4e) ∈ R3 × R as the relative orientation between the body-fixed frame

B and the desired reference frame Bd, which is computed as

qe = qd4qv − q4qdv + [q×v ]qdv

q4e = qd4q4 + qT
dvqv

(4.14)

where qT
e qe + q2

4e = 1. The corresponding rotation matrix Ce = C(qe, q4e) ∈ SO(3) is given

by

Ce = (q2
4e − qT

e qe)I + 2qeq
T
e − 2q4e[q

×
e ] (4.15)
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where CT
e Ce = 1, ‖Ce‖ = 1, det(Ce) = 1, and Ċe = −[ω×e ]Ce. Next, we define the relative

angular velocity ωe ∈ R3 of B with respect to Bd as follows:

ωe = ωB
BL − Ceωd (4.16)

To derive the error dynamics, we first represent the attitude dynamics in Eq. (4.4) in

terms of the relative motion of B in L. Taking the first derivative of Eq. (4.9) and using

the fact that ĊB
L = −[ωB

BL
×]CB

L we obtain

ω̇B
BI = ω̇B

BL + ω̇B
LI = ω̇B

BL − ωB
BL × ωB

LI (4.17)

From Eqs. (4.4), (4.7), (4.14), (4.16), and (4.17), the equations that govern the relative

attitude error dynamics and kinematics are given by

Jω̇e = J [(ωB
BL × ωB

LI) + [ω×e ]Ceωd − Ceω̇d]− ωB
BI × (Jsω

B
BI + AJwΩ) + Aτrw + τe (4.18)

q̇e =
1

2
(q4eI + [q×e ])ωe (4.19)

q̇4e = −1

2
qT
e ωe (4.20)

4.1.6 Actuator Dynamics

Reaction wheels are widely used to perform precise spacecraft attitude maneuvers because

they allow continuous and smooth control. They are capable of changing its internal an-

gular momentum vector as each wheel spins about a body-fixed axis with variable spin

speed. The angular momentum generated by the reaction wheel is transferred to the space-

craft system and momentum generated by spacecraft rotation affects the reaction wheel

system [Schaub & Junkins 2003]. Torques are produced on the spacecraft by accelerating

or decelerating the reaction wheels.

Conventional feedback control algorithms for spacecraft attitude control are mostly

designed for control torque and the actuator dynamics of the reaction wheel are often

neglected. However, in real applications, it is important to integrate the characteristics

and actuator dynamics of the reaction wheels into the ACS dynamics. The control torque

produced on the spacecraft is dependent on the characteristics of the input voltage that,

in turn, control the actuator dynamics of the reaction wheels.
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Each reaction wheel considered in this study consists of a rotating flywheel, suspended

on ball bearings, and is driven by an electrical brushless direct current (DC) motor which

can provide an electric torque. The motor torque delivered by a DC-motor is directly pro-

portional to the armature current (ampere), ia ∈ R4×1, and can be written as [Bialke 1998]

τm = Ktia (4.21)

where Kt ∈ R4×4 = diag([kt1, kt2, kt3, kt4]) is the motor torque constant. For a constant

flux, the induced voltage in the armature (back-EMF), eb ∈ R4×1, is directly proportional

to the angular velocity of the rotor shaft. The rotor shaft of the motor will have the same

angular velocity and acceleration as the reaction wheel. Thus, based on Faraday’s law of

inductance, the back-EMF is given by

eb = KbΩ (4.22)

where Kb ∈ R4×4 = diag([kb1, kb2, kb3, kb4]) is the back-EMF constant. Using Krichoff’s

voltage law, we obtain the differential equation for the armature of the DC-motor circuit:

La
dia
dt

+ Raia + KbΩ = ea (4.23)

where La ∈ R4×4 = diag([la1, la2, la3, la4]) is the armature inductance (henry), Ra ∈ R4×4 =

diag([ra1, ra2, ra3, ra4]) is the armature resistance (ohm), and ea ∈ R4×1 is the applied

armature voltage (volt). The values of inductance in the armature circuit of the reaction

wheels considered in this study are very small and therefore neglected in the dynamic model

of the DC-motor. Thus, Eq. (4.23) can be simplified to obtain the following linear equation

ia = R−1
a (ea −KbΩ) (4.24)

The friction in a reaction wheel can be mathematically broken down into viscous friction

and Coulomb friction. The viscous friction varies with speed and the Coulomb friction is a

constant with polarity dependence on wheel direction of rotation [Bialke 1998]. A simplified

model of the friction torque as the sum of Coulomb and viscous terms is given by

τf = Ncsgn(s) + fs (4.25)
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where Nc = 7.06× 10−4 Nm is the Coulomb friction coefficient, f = 1.21× 10−6 Nm/rpm

is the viscous friction coefficient, and s is the wheel speed in revolutions per minute (rpm).

Net torque from reaction wheels is the motor torque, τm, less any frictional losses, τf :

τnet = τm − τf (4.26)

Based on Newton’s third law, the reaction torque (τrw) applied to the spacecraft is equal

and opposite to the net torque, τnet, which accelerates or decelerates the flywheel. Using

Eqs. (4.5), (4.21), and (4.24)-(4.26), we obtain

τrw = −τnet = τf − τm = Ncsgn(s) + fs−KtR
−1
a (ea −KbΩ) (4.27)

Let the torque demanded by the spacecraft be denoted as ur. The input voltage required

to control the actuator dynamics of the reaction wheel can be obtained from Eq. (4.27) as

ea = KbΩ−RaK
−1
t (ur − τf ) (4.28)

Our control objective is achieve high precision attitude tracking maneuvers in the pres-

ence of external disturbances, parameter uncertainties, and unknown reaction wheel faults.

A fault-tolerant attitude tracking control scheme is proposed in this study that can ren-

der the closed-loop system asymptotically stable with the attitude orientation and angular

velocity tracking errors converging to a small neighborhood of the origin.

4.2 Fault-Tolerant Attitude Tracking Control Law

In this section we present the theoretical basis for developing adaptive fault-tolerant con-

trol algorithms for the spacecraft mathematical model. First, the methods and analysis

tools of Variable Structure Control (VSC) are developed that are robust to nonlinear mod-

eling errors. The formulation of the nominal VSC law is then improved using adaptive

approximation in the presence of nonlinear model uncertainty. The concept behind VSC

approach is to design a high speed control algorithm that can drive the state trajectory of

the nonlinear system onto a sliding or switching surface and maintain the system’s state

trajectory on the sliding surface.
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4.2.1 Design of Sliding Manifold

The sliding manifold for the spacecraft system should be designed such that not only the

stability of the closed-loop system is guaranteed in the presence of perturbations, but also

the desired dynamic behavior should be exhibited once the error trajectory of system is

confined to the sliding surface. A linear sliding surface based on the angular velocity errors

and the quaternion attitude parameter errors is defined as follows:

σ = ωe + β sgn(q4e) qe (4.29)

where β > 0 is the sliding gain chosen by the designer and sgn(q4e) is given by

sgn(q4e) =





1 for q4e ≥ 0

−1 for q4e < 0
(4.30)

Once the error trajectory has reached the sliding surface, the system is forced to remain

in sliding mode. Thus, the convergence of the angular velocity errors and the quaternion

errors can be determined by solving σ = 0.

σ = ωe + β sgn(q4e) qe = 0

ωe = −β sgn(q4e) qe

(4.31)

Next, we verify the Lyapunov stability of kinematic subsystem Eqs. (4.19)-(4.20) when the

system is confined to the sliding manifold [Eq. (4.31)]. We define a candidate Lyapunov

function as follows:

V (q) = [q4e − sgn(q4e)]
2 + qT

e qe (4.32)

Taking the time derivative of the Lyapunov function and substituting the relative attitude

error kinematics from Eqs. (4.19)-(4.20) yields

V̇ (q) = 2[q4e − sgn(q4e)]q̇4e + 2qT
e q̇e

= [q4e − sgn(q4e)](−qT
e ωe) + qT

e (q4eI + [q×e ])ωe (4.33)

Substituting Eq. (4.31) into Eq. (4.33), we get

V̇ (q) = [q4e − sgn(q4e)][β sgn(q4e) qT
e qe] + qT

e (q4eI + [q×e ])[−β sgn(q4e) qe]

= −β qT
e qe − β sgn(q4e) qT

e [q×e ]qe (4.34)
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Using the property of skew-symmetric matrices, [q×e ]qe = [0, 0, 0]T , Eq. (4.34) can be

written as

V̇ (q) = −β qT
e qe (4.35)

Since β > 0, it is obtained that V̇ (q) < 0 for qe 6= 0 such that qe converges to zero.

If q4e ≥ 0, we have limt→∞q4e(t) = 1 since for this case q̇4e ≥ 0. If q4e ≤ 0, we have

limt→∞q4e(t) = −1 since in this case q̇4e ≤ 0. From Eq. (4.31), we can easily show that

the angular velocity error ωe → 0. Therefore, by designing the sliding manifold as given by

Eq. (4.29), the stability of the system in sliding mode is guaranteed.

4.2.2 Control Law Formulation

The second phase of the design procedure is to develop a nonlinear control algorithm that

can steer the trajectories of the system, Eqs. (4.18)-(4.20), to the sliding manifold given

by Eq. (4.29). The algorithm should also be capable of maintaining the system states

on the sliding manifold for all t > tr, where tr is the sliding surface reaching time. The

main challenge is to control the attitude of the spacecraft in the presence of parameter

uncertainties, external disturbance torques. Combining Eq. (4.29) with Eqs. (4.18)-(4.20),

we have the following error model:

Jσ̇ = Aτrw − AΓτrw + ∆ (4.36)

where the matrix Γ = diag([γ1, γ2, γ3, γ4]) is comprised of scalar functions γi which satisfy

0 ≤ γi ≤ 1. This matrix is called the reaction wheel effectiveness matrix where γi being the

"health indicator" for the i-th reaction wheel. Several cases include, γi = 0 which states

that the i-th reaction wheel is fully functional, γi = 1 implies that the i-th reaction wheel

has saturated or totally failed, and 0 < γi < 1 indicates the wheel speed degradation of the

i-th reaction wheel.

∆ = J [(ωB
BL × ωB

LI) + [ω×e ]Ceωd − Ceω̇d]− ωB
BI × (Jsω

B
BI + AJwΩ)

+
β

2
sgn(q4e)(q4eI + [q×e ]) + τe (4.37)

Note that ∆ is the lumped term containing two parts (adapted from [Cai et al. 2008]):

1) system nonlinearities based on desired attitude trajectory, physical parameters, and
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nonlinear coupling terms, and 2) time-varying and state dependent external perturbation

torques due to gravity gradient and other disturbance torques. In the event of reaction

wheel failures/faults, achieving precision attitude control becomes a difficult task in the

presence of system nonlinearities, and time varying external disturbances. In this study,

we explore the nonregressor-based approach to dealing with the effect of ∆ which was used

in Cai et al.[Cai et al. 2008] for attitude tracking control considering thruster failures and

thrust limits. This indirect approach assumes that ∆ is bounded and its upper bound

can be utilized to extract core information of the system nonlinearities, uncertainties, and

distrubances in the control design. Therefore, we assume that ∆ is unknown but bounded

and satisfies the relation

‖∆‖ < p0 + p1‖X‖ = η (4.38)

where p0 and p1 are known positive constants, and X ∈ R6 = [qv, ωB
BL]T .

The proposed attitude tracking scheme comprises of two components: 1) a robust con-

trol algorithm that can stabilize the attitude orientation and angular velocity tracking

errors to a small set containing the origin, and 2) an adaptive component capable of han-

dling uncertainties due to constant or slow-varying parameters, external disturbances, and

actuator faults. The control algorithm and the adaptive law are given by

ur = −αAT σ − (ρ + 1)ηAT sgn(σ) (4.39)

ρ̇ = −b1ρ + b2η‖σ‖ (4.40)

where α, b1, b2 > 0 are scalar constants, and sgn(σ) = [sgn(σ1), sgn(σ2), sgn(σ3)]
T. In Eq.

(4.39), ur ∈ R4 is the torque required to control the spacecraft. This torque command is

used to determine the input voltage required [Eq. (4.28)] to control the actuator dynamics

of the wheel. Substituting the control algorithm, Eq. (4.39), into the error model given by

Eq. (4.36), we get

Jσ̇ = −α σ − (ρ + 1)η sgn(σ) + αAΓATσ + (ρ + 1)ηAΓATsgn(σ) + ∆ (4.41)

4.2.3 Stability Analysis

In this sub-section we present stability conditions for the proposed adaptive fault-tolerant

control algorithm, focussing primarily on robustness against uncertainties, disturbances,
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and reaction wheel faults. We show that the control law, Eq. (4.39), is capable of driving

the closed-loop trajectory of the system towards the sliding surface. Once the sliding surface

is reached, the system enters into the sliding regime. We show that the sliding mode is

robust to external disturbances, system nonlinearities, and unknown reaction wheel faults.

The stability conditions for the fading actuation and reaction wheel failure cases are shown

within the same stability proof.

The actuator effectiveness matrix Γ is defined such that it includes both decrease in

effectiveness and failure of reaction wheels. We consider a maximum of two wheel failure

for the RWA in pyramid configuration (A2) and single wheel failure for RWA in standard

3-orthogonal and 1-oblique configuration. Let 0 ≥ λmin < 1 be an unknown constant

defining the minimum eigenvalue of AΓAT , which is always less than 1 as long as no more

than two wheels lose complete power. We define the following parameter[Alwi et al. 2008]

ζ =
1

1− λmin

(4.42)

Theorem 4.1: For the spacecraft attitude dynamics model governed by Eqs. (4.18)-(4.20)

if, the sliding manifold is chosen as Eq. (4.29), the adaptive control scheme is defined

by Eqs. (4.39)-(4.40), and the bounds on the external disturbances, uncertainties, and

system nonlinearities are assumed to be governed by Eq. (4.38) then the closed-loop error

trajectories will converge to a region

B1 ,
[
σ : ‖σ‖ ≤ ε0

η

]

Proof : Consider the positive definite, continuously differentiable candidate Lyapunov

function defined as follows:

V (qe, σ) = [q4e − sgn(q4e)]
2 + qT

e qe +
1

8 α β
σTJσ +

1− λmin

8 α βb2

(ρ− ζ)2 (4.43)

Taking the first derivative of V (qe, σ) along the trajectory of the system yields,

V̇ (qe, σ) = 2[q4e − sgn(q4e)]q̇4e + 2qT
e q̇e +

1

4 α β
σTJσ̇ +

1− λmin

4 α βb2

(ρ− ζ)ρ̇ (4.44)
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Substituting the relative attitude error kinematics from Eqs. (4.19)-(4.20) gives,

V̇ (qe, σ) = −[q4e − sgn(q4e)](q
T
e ωe) + qT

e (q4eI + [q×e ])ωe +
1

4 α β
σTJσ̇

+
1− λmin

4 α βb2

(ρ− ζ)ρ̇

= sgn(q4e)q
T
e ωe +

1

4 α β
σTJσ̇ +

1− λmin

4 α βb2

(ρ− ζ)ρ̇ (4.45)

Let

V̇1 =
1

4 α β
σT Jσ̇ +

1− λmin

4 α βb2

(ρ− ζ)ρ̇ (4.46)

Now substituting Eqs. (4.40)-(4.41) into Eq. (4.46) we obtain

V̇1 =
1

4 α β
σT [−α σ − (ρ + 1)η sgn(σ) + αAΓATσ + (ρ + 1)ηAΓATsgn(σ) + ∆]

+
1− λmin

4 α βb2

(ρ− ζ)[−b1ρ + b2η‖σ‖]

≤ −σT σ

4 β
− (1− λmin)

(ρ + 1)η

4 α β
‖σ‖+

η

4 α β
‖σ‖

+
1− λmin

4 α βb2

(ρ− ζ)[−b1ρ + b2η‖σ‖] (4.47)

Note that in Eq. (4.47) we use the fact that λmin is the minimum eigenvalue of AΓAT ,
3∑

i=1

|σi| ≥ ‖σ‖, and ‖∆‖ ≤ η. Carrying out further simplifications and canceling terms in

Eq. (4.47) we have

V̇1 ≤ −σT σ

4 β
− (1− λmin)

η

4 α β
‖σ‖+ (1− λmin)

b1

4 α β b2

(ρ ζ − ρ2) (4.48)

It is well known that for any real number a > 0 and b > 0, 2ab ≤ a2 + b2. Hence we have

2 ρ
ζ

2
≤ ρ2 +

(
ζ

2

)2

(4.49)

Substituting Eq. (4.49) in Eq. (4.48), it can be readily obtained that

V̇1 ≤ −σT σ

4 β
− (1− λmin)

η

4 α β
‖σ‖+ (1− λmin)

b1

16 α β b2

ζ2 (4.50)

Using Eq. (4.50) in Eq. (4.45), we obtain

V̇ (qe, σ) ≤ sgn(q4e)q
T
e ωe − σTσ

4 β
− (1− λmin)

η

4 α β
‖σ‖+

b1(1− λmin)

16 α β b2

ζ2 (4.51)
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Based on the sliding manifold, we have we = σ − β sgn(q4e)qe. Thus we obtain

V̇ (qe, σ) ≤ sgn(q4e)q
T
e σ − βqT

e qe − σTσ

4 β
− (1− λmin)

η

4 α β
‖σ‖

+
b1(1− λmin)

16 α β b2

ζ2 (4.52)

The algebraic property introduced in Eq. (4.49) can also be utilized to establish the fol-

lowing inequality

2
√

β‖qe‖ ‖σ‖
2
√

β
≤ β‖qe‖2 +

‖σ‖2

4 β

qT
e σ ≤ βqT

e qe +
σT σ

4 β
(4.53)

Substituting Eq. (4.53) in Eq. (4.52) and if q4e > 0 we get

V̇ (qe, σ) ≤ −(1− λmin)
η

4 α β
‖σ‖+

b1(1− λmin)

16 α β b2

ζ2

≤ −(1− λmin)

4 α β

[
η‖σ‖ − b1 ζ2

4 b2

]
(4.54)

Let ε0 =
b1 ζ2

4 b2

. Therefore, it is seen from Eq. (4.54) that V̇ (qe, σ) < 0 when σ is outside of

the set

B1 ,
[
σ : ‖σ‖ ≤ ε0

η

]
(4.55)

For the case q4e < 0, substituting Eq. (4.53) in Eq. (4.52), we get

V̇ (qe, σ) ≤ −2 βqT
e qe − σT σ

2 β
− (1− λmin)

4 α β

[
η‖σ‖ − b1 ζ2

4 b2

]
(4.56)

Therefore, the solution set defined by Eq. (4.55) is also valid for the case q4e < 0. Based on

the results obtained above, it can be concluded that an appropriate choice of the gains b1,

b2, and η, close approximation to ideal sliding can be maintained even in the presence of

actuator faults. Using Barbalat’s lemma we can prove that all the states converge to zero

as time approaches infinity. ¤
Remark 4.1 : Two main factors induce multiplicative faults in reaction wheels: 1) viscous

friction variations due to unexpected changes in temperature, and 2) unexpected changes

in the motor torque values represented by changes in the motor torque constant, Kt. These

factors affect the rate of change of the wheel speed and consequently decrease the generated

reaction torque.
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4.3 Reaction Wheel Experimental Testbed

Four reaction wheels are used in two configurations; 1) three orthogonal wheels and one

skewed (Figure 4.2), and 2) pyramid configuration with the wheels at each corners of the

pyramid (Figure 4.3). Each wheel board drives a brushless DC-motor and communicates

over an I2C bus with the main controller. The control law will provide desired torques

about the x, y, and z body axes, and the input voltage ea required to control the actuator

dynamics of the wheels are estimated using Eq. (4.28).

(a) Standard 4-wheel configuration (b) RyePicoSat with reaction wheels

Figure 4.2: Schematic of traditional four wheel configuration.

The torques are distributed to each of the four wheels using the wheel distribution

matrix A. For the cluster in Fig. 4.2, the axial angular momentum of the skewed wheel is

at an angle of 45 degrees with the x, y, and z axes. Each of the wheels contributes to the

body torques according to the relation given below:




τx

τy

τz


 =




1 0 0 − cos(φ2) cos(φ1)

0 1 0 − cos(φ2) sin(φ1)

0 0 1 sin(φ2)







τw1

τw2

τw3

τw4




(4.57)

For the case of four reaction wheels mounted in pyramid configuration (Figure 4.3),

it is possible to achieve three axis attitude stabilization and control using two remaining

operational reaction wheels (if two wheels fail). Since all wheels are mounted in a skewed
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Figure 4.3: Schematic of four wheels in pyramid configuration.

configuration, the mapping matrix (A) from the RWA frame to the spacecraft body frame

can be utilized to allow two remaining operational wheels to produce three control torques in

the body frame. The contributions of each wheel torques to the body torques are obtained

using the following relation:




τx

τy

τz


 =




cφ1sφ2 −cφ1sφ2 −cφ1sφ2 cφ1sφ2

−cφ1cφ2 −cφ1cφ2 cφ1cφ2 cφ1cφ2

sφ1 sφ1 sφ1 sφ1







τw1

τw2

τw3

τw4




(4.58)

The setup for the hardware-in-loop (HIL) simulation is shown in Figure 4.4. A high-fidelity

mathematical model of the spacecraft is developed in Simulink and integrated with the

fault-tolerant control algorithm block. The Simulink control algorithm block computes the

desired control torques based on attitude errors, distributes the torques to the four wheels,

and then converts the torques to voltages (ea). The voltages are sent over a radio to the

RWA hardware and are applied to the wheels. The wheel boards outputs wheel-speeds (Ω)

back to Simulink through the radio and are then smoothed and passed to the mathematical

model. The data from MATLAB must be converted from a double (8 byte) floating point

number to a single (4 byte) floating point number and discretized at the sampling frequency

before being sent to the hardware in order to match the formatting on-board the actuator.
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Desired Trajectory
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Reaction Wheel 

Assembly

Spacecraft Dynamics
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Figure 4.4: Schematic of HIL simulation.

When the hardware returns the data to MATLAB, it must then be converted back to the

double floating point standard. Reaction wheel parameters are shown in Table 4.1.

Table 4.1: Reaction wheel parameters.

Wheel Kb (V/rad/s) Kt (N-m/A) Ra (ohm) Dead-zone (V)

1 0.0082 0.0082 0.6 ±1.10

2 0.0080 0.0080 0.6 ±1.15

3 0.0071 0.0071 0.6 ±1.20

4 0.0075 0.0075 0.6 ±1.15

4.4 Performance Analysis - Numerical Simulation

In this section, we illustrate the effectiveness of the proposed fault-tolerant control algo-

rithm for the problem of attitude control of a rigid spacecraft. The detailed response of

the system is numerically simulated using the set of governing equations of motion, Eqs.

(4.4) and (4.7) in conjunction with the proposed control algorithm, Eqs. (4.39) and (4.40).

The parameters of the spacecraft are shown in Table 4.2. The spacecraft is subjected to

the following initial attitude disturbances:

qv0 = [0.4, 0.4, 0.4]T and ωB
BL = [0, 0, 0]T (4.59)
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Table 4.2: Spacecraft model parameters.

Parameters Values

Orbit

Rc (km) 6878

µe (km3s−2) 398600

Size (m3) 0.1× 0.1× 0.1

Moment of Inertia

Ixx (kg m2) 0.0015

Iyy (kg m2) 0.0017

Izz (kg m2) 0.0020

Reaction Wheel

Moment of inertia, Jwi, (kg m2) 1× 10−3

The mapping matrix, A, that relates the reaction wheel control torques to spacecraft

body-frame torques for (A1) and (A2) configurations are given by Eqs. (4.57) and (4.58).

The constant gains for the control algorithm and adaptive update law, Eqs. (4.39) and

(4.40), are chosen as α = 0.1, β = 0.6, b1 = 0.5, b2 = 2.5, p1 = 1, and p2 = 2.

To systematically analyze the need for a fault-tolerant adaptive control algorithm for

spacecraft attitude control, we compare the control scheme proposed in this chapter with a

conventional proportional-derivative (PD) controller. The control allocation to remaining

healthy wheels after wheel failure for PD control is also executed using the mapping matrix,

A. The control input torque is formulated as

ur,PD = AT
[
ωB

BI × (Jsω
B
BI + AJwΩ)−Dωe −K qe

]
(4.60)

where K and D are the proportional and derivative gain matrices, respectively. Substituting

Eq. (4.60) into Eq. (4.18) with no fault condition and zero external disturbances, we have

Jω̇e + D ωe + K qe = 0 (4.61)

This is similar to an ideal second-order dynamic system. Asymptotic stabilizability of the
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spacecraft attitude and angular velocity errors is defined by choosing D and K such that:

D = 2ζ ωn J and K = ω2
nJ (4.62)

The settling time of the system response can be predetermined by prescribing appropriate

values for damping ratio ζ and the natural frequency ωn, ts = 4/(ζωn). For all simulations

considered in this study we choose ζ = 0.70 and ωn = 0.35.

4.4.1 Case I - Three Wheels in Orthogonal Configuration

In this section, we demonstrate the attitude stabilization capability of the ACS using a

three reaction wheel configuration that has each wheel aligned with the principal body-

fixed coordinate axes of the spacecraft denoted by B− x y z. Numerical simulation results

are presented to compare the proposed fault-tolerant control scheme given by Eqs. (4.39)

and (4.40) with the conventional PD control algorithm given by Eq. (4.60). To establish

a fair comparison framework, the controller parameters of both methodologies (proposed

control law and PD) are selected such that their settling times were the same for the fault-

free condition. The input voltage given by Eq. (4.28) is of the form ea ∈ R3 = [v1, v2, v3]
T .

Similarly, the reaction wheels’ angular speeds are given by Ω ∈ R3 = [Ω1, Ω2, Ω3]
T . The

torque mapping between the reaction wheel frame and spacecraft body axes is one-to-one

with A = I3×3.

The following fault scenario is considered in the simulation:

v1 = 0.1 + v1, for 10 ≤ t ≤ 30 s

Ω2 = 0.5Ω2, for t ≥ 10 s
(4.63)

The fault case given by Eq. (4.63) represents a bias fault that occurs at the first wheel for 20

s after t = 10 s into the simulation, and the second wheel only supplies 50% of the actuation

power at the time instant t = 10 s and, after. The comparison of attitude regulation

capability of the ACS using the proposed method and PD control law are shown in Figs.

4.5 to 4.8 for the case of non-zero initial attitude [Eq. (4.59)], no attitude commands, in

the presence of external disturbances (τe = τg +τd), and faulty reaction wheels [Eq. (4.63)].
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The evolution of the attitude quaternion errors can be seen in Fig. 4.5. For the fault-free

case, the attitude quaternion errors asymptotically approach to zero starting from non-zero

initial conditions. It can be seen that the settling time of the closed-loop ACS is about 16

s for the proposed method and PD control law. The results of the two methods become

seemingly different in the presence of reaction wheel faults given by Eq. (4.63). A bias

fault in the first wheel has a direct impact on the the quaternion error q1e. During the

faulty period q1e overshoots to a value of about −0.6 using the PD control law. The fault

tolerance capability of the proposed control method is evident in Fig. 4.5 as the adaptive

reconfigurable scheme is able to suppress the effects of a bias fault on q1e to about only

−0.1 deviation in attitude error.

Figure 4.6 depicts the spacecraft angular velocity error. The variations in the angular

rates during the transient period (for fault-free case) are due to spacecraft rotations until

it reaches a stable attitude. However, for the fault scenario, we can see the impact of a

bias fault on the response of ωe,x. The effect is more pronounced using a PD control law.

This trend is also evident in the plots of input voltage and reaction wheels’ angular speeds

in Figs. 4.6 and 4.7, respectively. While the PD control resulted in poor performance,

the proposed method did not show any deterioration of the desired performance in spite of

unknown faults in reaction wheels.

4.4.2 Case II - Traditional Four Wheel Configuration

In this section, we demonstrate the attitude stabilization capability of the ACS using the

traditional four reaction wheel set up. This redundant reaction wheel configuration has the

first three reaction wheel spin axes aligned with the principal spacecraft body axes, while

a fourth wheel is aligned diagonally with respect to the others as illustrated in Fig. 4.2a.

Numerical simulation results are presented to compare the proposed fault-tolerant control

scheme given by Eqs. (4.39) and (4.40) with the conventional PD control algorithm given by

Eq. (4.60). The input voltage given by Eq. (4.28) is of the form ea ∈ R4 = [v1, v2, v3, v4]
T .

Similarly, the reaction wheels’ angular speeds are given by Ω ∈ R4 = [Ω1, Ω2, Ω3, Ω4]
T .

The torque mapping between the reaction wheel frame and spacecraft body axes can be

described by the following matrix:
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A =




1 0 0 − cos(φ2) cos(φ1)

0 1 0 − cos(φ2) sin(φ1)

0 0 1 sin(φ2)


 (4.64)

where φ1 = φ2 = 45 deg. The following fault scenario is considered for the numerical

simulations presented in this subsection:

v1 = 0.1 + v1, for 10 ≤ t ≤ 30 s

v3 = 0, for t ≥ 10 s

Ω2 = 0.5Ω2, for t ≥ 10 s

(4.65)

The fault case given by Eq. (4.65) represents a bias fault that occurs at the first wheel for

20 s after t = 10 s into the simulation, the second wheel only supplies 50% of the actuation

power at the time instant t = 10 s and, after, while wheel 3 has completely failed or is shut

down after t = 10 s. This represents a severe case in which not only do some wheels lose

partial power with varying input voltage levels, but one wheel has also completely failed

after t = 10 s into the simulation.

The attitude response for large initial attitude errors [Eq. (4.59)] are compared for the

fault case and fault-free scenario in Fig. 4.9. High control precision and good tracking can

be observed for the proposed methodology and PD control in the fault-free case. In the

presence of additive faults and single reaction wheel failure (third wheel fails completely),

the pointing performance using PD control degrades drastically.The attitude errors stabilize

asymptotically to zero when using the proposed fault-tolerant control scheme with minor

degradation in tracking performance during the additive fault period (see Fig. 4.9). The

failure of wheel-3 does not have any impact on the control performance under the proposed

scheme while the attitude errors stabilize to non-zero values using the conventional PD

control. This can be rectified by gain-adaptation within the PD control framework and the

results observed in Fig. 4.9 suggests that a constant gain PD control scheme can lead to

instability in the presence of reaction wheel failures. Similar trend is visible in the plots of

the angular velocity errors depicted in Fig. 4.10. The proposed controller ensures effective

tracking while the PD control scheme significantly degrades the performance after actuator

faults have occurred.



4.4. Performance Analysis - Numerical Simulation 133

0
20

40
60

80
10

0
−

0.
20

0.
2

0.
4

0.
6

0.
81

1.
2

Quaternion Errors

P
D

 C
on

tr
ol

 −
 W

ith
ou

t F
au

lts

 

 
q 1e q 2e q 3e q 4e

0
20

40
60

80
10

0
−

0.
8

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

0.
6

0.
81

Quaternion Errors

T
im

e 
[s

ec
]

P
D

 C
on

tr
ol

 −
 W

ith
 F

au
lts

0
20

40
60

80
10

0
−

0.
20

0.
2

0.
4

0.
6

0.
81

1.
2

Quaternion Errors

P
ro

po
se

d 
M

et
ho

d 
−

 W
ith

ou
t F

au
lts

0
20

40
60

80
10

0
−

0.
20

0.
2

0.
4

0.
6

0.
81

1.
2

Quaternion Errors

T
im

e 
[s

ec
]

P
ro

po
se

d 
M

et
ho

d 
−

 W
ith

 F
au

lts

F
ig
ur
e
4.
9:

A
tt
it
ud

e
tr
ac
ki
ng

er
ro
rs

fo
r
C
as
e
II
.



134 Chapter 4. Fault Tolerant Attitude Control of Spacecraft

0
20

40
60

80
10

0
−

0.
14

−
0.

12

−
0.

1

−
0.

08

−
0.

06

−
0.

04

−
0.

020

0.
02

Angular Velocity Errors [rad/s]

P
D

 C
on

tr
ol

 −
 W

ith
ou

t F
au

lts

 

 
ω

e,
x

ω
e,

y

ω
e,

z

0
20

40
60

80
10

0
−

0.
4

−
0.

3

−
0.

2

−
0.

10

0.
1

0.
2

0.
3

Angular Velocity Errors [rad/s]

T
im

e 
[s

ec
]

P
D

 C
on

tr
ol

 −
 W

ith
 F

au
lts

0
20

40
60

80
10

0
−

0.
25

−
0.

2

−
0.

15

−
0.

1

−
0.

050

0.
050.
1

Angular Velocity Errors [rad/s]

P
ro

po
se

d 
M

et
ho

d 
−

 W
ith

ou
t F

au
lts

0
20

40
60

80
10

0
−

0.
25

−
0.

2

−
0.

15

−
0.

1

−
0.

050

0.
050.
1

Angular Velocity Errors [rad/s]

T
im

e 
[s

ec
]

P
ro

po
se

d 
M

et
ho

d 
−

 W
ith

 F
au

lts

F
ig
ur
e
4.
10

:
A
ng

ul
ar

ve
lo
ci
ty

er
ro
rs

fo
r
C
as
e
II
.



4.4. Performance Analysis - Numerical Simulation 135

0
20

40
60

80
10

0
−

1.
5

−
1

−
0.

50

0.
51

1.
52

Input Voltage [V]

P
D

 C
on

tr
ol

 −
 W

ith
ou

t F
au

lts

 

 
v 1 v 2 v 3 v 4

0
20

40
60

80
10

0
−

4

−
3

−
2

−
101234

Input Voltage [V]

T
im

e 
[s

ec
]

P
D

 C
on

tr
ol

 −
 W

ith
 F

au
lts

0
20

40
60

80
10

0
−

2

−
101234

Input Voltage [V]

P
ro

po
se

d 
M

et
ho

d 
−

 W
ith

ou
t F

au
lts

0
20

40
60

80
10

0
−

2

−
101234

Input Voltage [V]

T
im

e 
[s

ec
]

P
ro

po
se

d 
M

et
ho

d 
−

 W
ith

 F
au

lts

F
ig
ur
e
4.
11

:
R
ea
ct
io
n
w
he
el
s’

in
pu

t
vo

lt
ag

e
fo
r
C
as
e
II
.



136 Chapter 4. Fault Tolerant Attitude Control of Spacecraft

0
20

40
60

80
10

0
−

5005010
0

15
0

20
0

25
0

30
0

Wheel Speed [rad/s]

P
D

 C
on

tr
ol

 −
 W

ith
ou

t F
au

lts

 

 
Ω

1

Ω
2

Ω
3

Ω
4

0
20

40
60

80
10

0
−

50
00

50
0

Wheel Speed [rad/s]

T
im

e 
[s

ec
]

P
D

 C
on

tr
ol

 −
 W

ith
 F

au
lts

0
20

40
60

80
10

0
−

10
00

10
0

20
0

30
0

40
0

50
0

Wheel Speed [rad/s]

P
ro

po
se

d 
M

et
ho

d 
−

 W
ith

ou
t F

au
lts

0
20

40
60

80
10

0
−

10
00

10
0

20
0

30
0

40
0

50
0

Wheel Speed [rad/s]

T
im

e 
[s

ec
]

P
ro

po
se

d 
M

et
ho

d 
−

 W
ith

 F
au

lts

F
ig
ur
e
4.
12

:
R
ea
ct
io
n
w
he
el
s’

an
gu

la
r
sp
ee
d
fo
r
C
as
e
II
.



4.4. Performance Analysis - Numerical Simulation 137

The reaction wheels’ angular speed and motor input voltage levels required for the faulty

and fault-free cases are compared in Figs. 4.11 and 4.12, respectively. Using PD control

reduces the overall input voltage required for the fault-free case. However, PD control

demands higher input voltage in the presence of actuator faults. This observation in Fig.

4.11 is consistent with the time history of attitude errors evident in Figs. 4.9 and 4.10. The

proposed fault-tolerant solution reduces the input voltage required to actuate the reaction

wheels even during the presence of reaction wheel faults and failure. The complete failure

of wheel-3 can be seen in Figs. 4.11 and 4.12 with v3 = Ω3 = 0.

Summarizing cases I and II (Sections 4.4.1 and 4.4.2), it is noted that the proposed fault-

tolerant design method can significantly improve spacecraft attitude tracking performance

over the conventional PD control scheme in the presence of unknown reaction wheel faults

and single wheel failure. For the failure case, PD control is incapable of stabilizing the

spacecraft attitude using fixed gains.

4.4.3 Case III - Four Wheels in Pyramid Configuration

In this section, we demonstrate the attitude stabilization capability of the ACS using a four

reaction wheel assembly mounted in pyramid configuration (see Fig. 4.3). This redundant

reaction wheel configuration has each reaction wheel aligned diagonally on four corners of

the pyramid. In sections 4.4.1 and 4.4.2 we have already established that the conventional

PD control results in poor attitude tracking performance when compared to the proposed

fault tolerant control scheme for faulty actuators. Therefore, in this subsection we only

examine the performance of the proposed control technique [Eqs. (4.39) and (4.40)] to

maintain the spacecraft pointing accuracy subject to loss of two reaction wheels out of its

four wheels assembly mounted in a pyramid configuration. The input voltage given by Eq.

(4.28) is of the form ea ∈ R4 = [v1, v2, v3, v4]
T . Similarly, the reaction wheels’ angular

speeds are given by Ω ∈ R4 = [Ω1, Ω2, Ω3, Ω4]
T . The torque mapping between the reaction

wheel frame and spacecraft body axes can be described by the following matrix:

A =




cφ1sφ2 −cφ1sφ2 −cφ1sφ2 cφ1sφ2

−cφ1cφ2 −cφ1cφ2 cφ1cφ2 cφ1cφ2

sφ1 sφ1 sφ1 sφ1


 (4.66)
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Figure 4.13: Angular velocity and attitude tracking errors for Case III.

where φ1 = φ2 = 45 deg. The following fault scenario is considered for the numerical

simulations presented in this subsection:

v2 = 0.1 + v2, for 10 ≤ t ≤ 20 s

v1 = 0, for t ≥ 5 s

v3 = 0, for t ≥ 5 s

(4.67)

The fault case given by Eq. (4.67) represents a bias fault that occurs at the second wheel

for 10 s after t = 10 s into the simulation, and wheels 1 and 3 have completely failed or

are shut down after t = 5 s. The controller parameters as in the case of healthy reaction

wheels is employed with α = 0.1, β = 0.6, b1 = 0.5, b2 = 2.5, p1 = 1, and p2 = 2.

The evolution of the Euler angles, quaternion error vector, angular velocity errors, and

the adaptive parameter ρ are shown in Fig. 4.13. It is clearly evident that the angular

velocity and attitude tracking errors asymptotically approach to zero starting from non-
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Figure 4.14: Reaction wheel parameters for Case III.

zero initial conditions. The effect of intermittent additive fault can be seen in the response

of the adaptive parameter as the gain value begins to increase at the time instant of fault

and counteracts the effects of the bias voltage fault on the attitude response. This clearly

demonstrates the advantage of using a control strategy that can reconfigure its gains using

an adaptive retrofit update law. During the first 5 seconds, with all four operational wheels,

the spacecraft pointing performance is achieved quite well with no degradation. With the

loss of reaction wheels 1 and 3 after 5 seconds, the pointing performance in roll (φ), pitch

(α), and yaw (γ) axes suffer minor degradation. As the adaptive gain increases, the angular

velocity and quaternion tracking errors are suppressed and the spacecraft reaches a stable

attitude within 10 s after the fault. The failure of wheels 1 and 3 can be observed in the

plot of reaction wheels’ angular speed and input voltage depicted in Fig. 4.14.



140 Chapter 4. Fault Tolerant Attitude Control of Spacecraft

4.5 Performance Evaluation - HIL Simulation

In this section, we present the hardware-in-the-loop (HIL) results of the proposed fault-

tolerant control algorithm for the problem of attitude control of a rigid spacecraft. The

detailed response of the spacecraft mathematical model is simulated in MATLAB using the

set of governing equations of motion, Eqs. (4.4) and (4.7).

The angular velocity and attitude tracking errors are fed to the control block that aug-

ments the proposed control algorithm, Eq. (4.39), with an adaptive component, Eq. (4.40),

to determine the control torque required to stabilize the spacecraft. The input voltage for

the reaction wheel hardware is determined from the desired torque computed using the con-

trol algorithm, and is applied to the reaction wheels using a radio communication between

MATLAB interface and the RWA hardware. The specifications of each reaction wheel are

provided in Table 4.3.

Table 4.3: Reaction wheel specification sheet [Kumar & Misra 2009].

Parameter Value

Operational speed range [rpm] ±5000

Maximum stored momentum [mNms] 5.2

Maximum torque [mNm] 8.68

Control accuracy [deg] 0.1

Mass of wheel [g] 27.2

Mass of wheel module [g] 57

Power - steady state [W] < 1.0

Power - maximum torque [W] 8

Operating voltage (module) [V] 3.5− 5

The parameters of the spacecraft system are shown in Table 4.2. The spacecraft is

subjected to the same initial attitude disturbances considered for cases in Section 4.4 [Eq.

(4.59)]. The mapping matrix, A, that relates the reaction wheel control torques to space-

craft body-frame torques for (A1) and (A2) configurations are given by Eqs. (4.57) and

(4.58). The constant gains for the control algorithm and adaptive update law, Eqs. (4.39)
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and (4.40), are chosen as α = 0.1, β = 0.6, b1 = 0.5, b2 = 2.5, p1 = 1, and p2 = 2 (same

gains as considered in Section 4.4).

In the following subsections, HIL simulation results are presented for three configura-

tions of RWA examining fault-free and faulty reaction wheel scenarios: 1) three wheels

in orthogonal configuration, 2) standard four wheel configuration with three wheels or-

thogonally aligned with spacecraft body axes and one wheel skewed, and 3) four wheels

in pyramid configuration. HIL results of the proposed fault-tolerant control strategy are

presented for a fault-free condition first and then for a faulty condition.

4.5.1 Case I - Three Wheels in Orthogonal Configuration

Attitude stabilization capability of the ACS using a three reaction wheel hardware

configuration that has each wheel aligned with the principal body-fixed axes of the

spacecraft are presented in this section.

Simulations of a fault-free condition

The evolution of the Euler angles, applied control torques in spacecraft body-fixed

coordinates, angular velocity errors, and the adaptive parameter ρ for the fault-free case

can be seen in Fig. 4.15. The Euler angles asymptotically approaches to a a stable boundary

±0.5 deg starting from non-zero initial conditions. The settling time of the closed-loop ACS

is about 15 s. When compared to the stabilization results for numerical simulations depicted

in Fig. 4.5, we observe that perfect stabilization to zero equilibrium is not obtained using

the RWA hardware.

The discrepancy in the stabilization results between the HIL and numerical simulations

may be contributed to the mathematical modeling of the reaction wheel motor torque used

in numerical simulations. Also, the reaction wheels operates at a nominal speed of 0 rad/s

which causes the input voltages to drop within the deadzone (Table 4.1) once the spacecraft

is stabilized close to the equilibrium. Hence, the required torque is very less compared to

the transient phase. The time history of quaternion errors, reaction wheels’ angular speed,

input voltage, and reaction torque are shown in Fig. 4.16.
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Simulations of a faulty condition

The asymptotic stability of the spacecraft attitude in response to a non-zero initial

attitude, presence of environmental disturbances, and faulty reaction wheels is examined

in this section. The following fault scenario is considered in the HIL simulation:

v1 = 0.1 + v1, for 10 ≤ t ≤ 30 s

Ω2 = 0.5Ω2, for t ≥ 10 s
(4.68)

The fault case given by Eq. (4.68) represents a bias fault that occurs at the first wheel

for 20 s after t = 10 s into the simulation, and the second wheel only supplies 50% of the

actuation power at the time instant t = 10 s and, after. The evolution of Euler angles,

angular velocity errors, applied torque in spacecraft body-fixed axes, and the adaptive

parameter for the faulty conditions in Eq. (4.68) are shown in Fig. 4.18. When compared

to the fault-free case in Fig. 4.15, it is seen that high control precision and good tracking

process are still obtained for a faulty case (Fig. 4.18).
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Figure 4.19 shows the response curves of the attitude quaternion, the reaction torques

generated by the wheel actuators, and the speeds and input voltage of the reaction wheels.

To obtain a clear depiction of the faulty case, the differences in the control signals (input

voltage) and the wheel speeds are shown in Fig. 4.17 with the faulty signals plotted over the

ideal signals generated for the fault-free case. It is clearly evident that there is substantial

degradation in the wheel speed Ω2 after the fault has occurred at t = 10 s. Also, a phase

offset in the input voltage signal v1 for the faulty case can be observed in Fig. 4.17.

4.5.2 Case II - Traditional Four Wheel Configuration

In this section, we demonstrate the attitude stabilization capability of the ACS using the

traditional four reaction wheel set up. This redundant reaction wheel configuration has the

first three reaction wheel spin axes aligned with the principal spacecraft body axes, while

a fourth wheel is aligned diagonally with respect to others as illustrated in Fig. 4.2a.

Simulations of a fault-free condition

The evolution of the Euler angles, applied control torques in spacecraft body-fixed

coordinates, angular velocity errors, and the adaptive parameter ρ for the fault-free case

can be seen in Fig. 4.20. The Euler angles asymptotically approaches to a a stable boundary

±0.5◦ starting from non-zero initial conditions. The settling time of the closed-loop ACS

is about 15 s. The time history of quaternion errors, reaction wheels’ angular speed, and

the input voltage are shown in Fig. 4.21.

Simulations of a faulty condition

The following fault scenario is considered in the HIL simulation:

v1 = 0.1 + v1, for 10 ≤ t ≤ 30 s

v3 = 0, for t ≥ 10 s

Ω2 = 0.5Ω2, for t ≥ 10 s

(4.69)

Figure 4.22 shows the the performance of the proposed control scheme in stabilizing the

attitude of the spacecraft in the presence of reaction wheel faults described by Eq. (4.69).

The reaction wheels’ angular speed and input voltages for this case are shown in Fig. 4.23.

Failure of wheel-3 does not degrade the performance of the proposed control algorithm.
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4.5.3 Case III - Four Wheels in Pyramid Configuration

In this section, we illustrate the performance of the proposed technique using a four reaction

wheel assembly mounted in pyramid configuration (Fig. 4.3).

Simulations of a fault-free condition

The evolution of the Euler angles, applied control torques in spacecraft body-fixed

coordinates, angular velocity errors, and the adaptive parameter ρ for the fault-free case

can be seen in Fig. 4.24. The Euler angles asymptotically approaches to a a stable

boundary ±0.5◦ starting from non-zero initial conditions. The settling time of the

closed-loop ACS is about 15 s. The time history of quaternion errors, reaction wheels’

angular speed, and the input voltage are shown in Fig. 4.25.

Simulations of a faulty condition

The following fault scenario is considered in the HIL simulation:

v2 = 0.1 + v2, for 10 ≤ t ≤ 20 s

v1 = 0, for t ≥ 5 s

v3 = 0, for t ≥ 5 s

Ω4 = 0.5Ω4, for t ≥ 10 s

(4.70)

Figure 4.26 shows the the performance of the proposed control scheme in stabilizing the

attitude of the spacecraft in the presence of reaction wheel faults described by Eq. (4.70).

The reaction wheels’ angular speed and input voltages for this case are shown in Fig. 4.27.

Failure of wheels 1 and 3 has no effect on the attitude response of the spacecraft. These

preliminary results suggest that the proposed FTC approach is able to perform three axis

stabilization with a reasonable pointing accuracy with only two reaction wheels.

The HIL simulation results presented in this section, all indicate that the proposed

control methodology is robust and adaptive to external disturbances and faults in reaction

wheels. It is important to note that, the reaction wheels used for the hardware simulations

are not space qualified and have only recently been manufactured at Ryerson University.

Our objective of this study was to test the control algorithm on an actual hardware to

verify that the results predicted using the theoretical framework and numerical simulations

are indeed attainable.
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4.6 Summary

In this chapter, we presented an adaptive fault-tolerant nonlinear control scheme for atti-

tude tracking of a rigid spacecraft using reaction wheels. Although various nonlinear control

algorithms have been published in the literature for rigid spacecraft attitude control, very

few have addressed fault recovery, robustness, and adaptation using RWA hardware. We

considered several scenarios of reaction wheel faults that can introduce constant or state-

dependant disturbances into the overall closed-loop system causing the dynamics of the

spacecraft to deviate largely from its nominal regime.

To verify and validate the effectiveness of the proposed control algorithm, a numerical

model of the spacecraft attitude dynamics was developed which includes the mathematical

models of environmental disturbances acting on the spacecraft in LEO. The domains of

sliding mode and the estimates of domain of attraction along with the regions of asymp-

totic stability for the fault cases are analytically determined using nonlinear control the-

ory. Overall, the results clearly establish the robustness of the proposed adaptive control

methodologies in tracking the attitude of the spacecraft in the presence of actuator faults,

model uncertainties, and time varying disturbances.





Chapter 5

Attitude Control of Underactuated

Spacecraft

Autonomous design approach for robust attitude control is of considerable impor-

tance to meet the increasing demands for low-cost, low-mass, and low-power con-

sumption based attitude control system (ACS) design for spacecraft. Recent advances in

spacecraft control systems have succeeded in developing attitude control algorithms capable

of providing high precision pointing and optimal slew maneuvers. In the previous chapter,

a novel fault-tolerant adaptive control algorithm was developed for autonomous recovery

of spacecraft attitude in the event of actuator failures. Existing control techniques in the

literature and the adaptive scheme presented in the Chapter 4 are developed based on the

assumption that the spacecraft is actively controlled with a sufficient number of actuators

equal to, or larger than, the number of degrees of freedom to be controlled. An under-

actuated spacecraft is a system with fewer independent control actuators than degrees of

freedom to be controlled.

From a practical point of view, the need for control methodologies for underactuated

spacecraft arises due to the following reasons: (1) To stabilize spacecraft systems which are

underactuated by design. Including fewer actuators than typically required leads to lighter,

less costly designs. (2) To stabilize a spacecraft that may become underactuated due to

actuator failures. Rather than equipping the spacecraft with a redundant actuator, the

software option is a cost-reducing alternative, since it only requires switching to a control

law that utilizes the remaining actuators for 3-axis stabilization when an actuator failure

is detected. This chapter presents a nonlinear control algorithm that can provide 3-axis

attitude stabilization for a rigid spacecraft using control torques supplied by thrusters about

only two of its principal axes.
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The problem of attitude regulation of an underactuated rigid body considered in this

study is in the local vertical and local horizontal frame (LVLH). The spacecraft’s attitude

is represented with respect to the rotating orbital reference frame to take into account the

effect of spacecraft rotation around the Earth. In this case, the rigid body always rotates

around the pitch axis, thus Brockett’s condition is initially avoided. The main advantage

of this approach is that it allows smooth time-invariant continuous feedback algorithms to

be employed for 3-axis attitude using only two control inputs.

The chapter is organized as follows: Section 5.1 introduces the complete nonlinear math-

ematical model of the spacecraft orbiting the Earth. Control algorithms based on variable

structure techniques are formulated with stability conditions for robustness against un-

matched uncertainties and disturbances in Section 5.2. For a detailed assessment of the

system performance under the proposed control strategy, the results of numerical simula-

tions incorporating the effects of various system parameters are examined in Section 5.3.

Finally, conclusions are stated in Section 5.4.

5.1 Spacecraft Mathematical Model

The investigation is initiated by formulating the complete nonlinear equations of motion of

the underactuated rigid body spacecraft to develop a mathematical model that facilitates

the design of nonlinear control methodologies. The proposed system consists of a rigid body

spacecraft in an elliptical planar trajectory with the Earth’s center at one of its foci.

5.1.1 Coordinate Frames

An Earth centered inertial (ECI) frame denoted by I − XI YI ZI (Figure 5.1), has its

origin located at the center of the Earth, with the ZI-axis passing through the celestial

North pole, the XI-axis directed towards the vernal equinox, and the YI-axis completing

the right-handed triad. Next, we define a local vertical local horizontal (LVLH) orbital

reference frame L − x0 y0 z0 with its origin always at the center of mass of the spacecraft.

The nodal line represents the reference line in orbit for the measurement of the true anomaly

(eccentric orbit) or angle θ (circular orbit). Here the x0-axis points along the local vertical,
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Figure 5.1: Geometry of orbit motion of rigid spacecraft.

the z0-axis is taken normal to the orbital plane, and the y0-axis along the orbit direction.

The corresponding principal body-fixed coordinate axes of the spacecraft are denoted by

B− x y z with its origin located at the spacecraft center of mass.

The most commonly used sets of attitude parameters are the Euler angles (α, φ, γ).

They describe the attitude orientation of the body-fixed reference frame, B−x y z, relative

to the LVLH reference frame, L − x0 y0 z0, by a set of three successive rotations. The

rotations may occur about any of the three orthogonal axes, but two successive rotations

about the same axis is not possible. There are 12 sets of Euler angles for such successive

rotations about the body-fixed axis.

The most commonly used rotation sequence is the (3 − 2 − 1) set of Euler angles: α

(pitch) about the z-axis (3), φ (roll) about the new y-axis (2), and finally γ (yaw) about

the resulting x-axis (1). However, Euler angles exhibit singularities whenever the roll

angle (φ) has a value of ±π
2
. The mathematical singularity is an inherent property of the

Euler representation and does not reflect the physical limitations of the rigid spacecraft.

The orientation of the body-fixed reference frame, B − x y z, with respect to the LVLH

reference frame, L − x0 y0 z0 using the (3 − 2 − 1) rotation sequence is described by the

direction cosine matrix CB/L = R1(γ)R2(φ)R3(α) = Rx(γ)Ry(φ)Rz(α).
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CB/L =




cφ cα cφ sα −sφ

sγ sφ cα− cγ sα sγ sφ sα + cγ cα sγ cφ

cγ sφ cα + sγ sα cγ sφ sα− sγ cα cγ cφ


 (5.1)

where cφ = cos φ and sφ = sin φ, Rx(γ) denotes the rotation matrix for γ rotation about

the x-axis, Ry(φ) denotes the rotation matrix for φ rotation about the y-axis, and Rz(α)

denotes the rotation matrix for α rotation about the z-axis.

5.1.2 Spacecraft Angular Velocity

Let {̂i, ĵ, k̂} and {̂i0, ĵ0, k̂0} be the sets of unit vectors associated with the reference frames

B − x y z and L − x0 y0 z0, respectively. The transformation from the L − x0 y0 z0 orbital

frame to the body-fixed frame B− x y z using (3− 2− 1) rotation sequence is given by



î

ĵ

k̂


 =




cφ cα cφ sα −sφ

sγ sφ cα− cγ sα sγ sφ sα + cγ cα sγ cφ

cγ sφ cα + sγ sα cγ sφ sα− sγ cα cγ cφ







î0

ĵ0

k̂0


 (5.2)

For a rigid spacecraft in an elliptical orbit around the Earth, the angular velocity of the

body-fixed frame B relative to the ECI frame I is given by

~ωB/I = ~ωB/L + ~ωL/I (5.3)

where ~ωB/L is the angular velocity of B relative to the orbital frame L, and ~ωL/I is the

angular velocity of the orbital frame with respect to the ECI frame. From Fig. 5.1, the

angular velocity of L relative to I is

~ωL/I = θ̇ k̂0 (5.4)

where θ̇ is the orbital rate of the spacecraft. For a circular orbit, θ̇ =
√

µ
R3

c
, where µ

represents the gravitational parameter of the Earth, and Rc is the distance of the spacecraft

from the center of the Earth. From Eq. (5.2) we have



î0

ĵ0

k̂0


 =




cφ cα sγ sφ cα− cγ sα cγ sφ cα + sγ sα

cφ sα sγ sφ sα + cγ cα cγ sφ sα− sγ cα

−sφ sγ cφ cγ cφ







î

ĵ

k̂


 (5.5)
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Substituting for k̂0 from Eq. (5.5) into Eq. (5.4) we get

~ωL/I = θ̇




− sin φ

sin γ cos φ

cos γ cos φ


 (5.6)

The angular velocity of the spacecraft with respect to the orbital frame L is given by

~ωB/L = ωx
BL î + ωy

BL ĵ + ωz
BL k̂

= α̇k̂0 + φ̇ĵ1 + γ̇î (5.7)

where α̇ is about the k0 axis in the frame L − x0 y0 z0, followed by φ̇ about the j1 axis in

the intermediate frame S − x1 y1 z1, and finally γ̇ about the i axis in the frame B− x y z.

This can be rewritten as

~ωB/O =
[
î ĵ k̂

]



γ̇

0

0


 +

[
î1 ĵ1 k̂1

]



0

φ̇

0


 +

[
î0 ĵ0 k̂0

]



0

0

α̇


 (5.8)

The unit vectors are related to each other based on rotation matrices as follows
[

î1 ĵ1 k̂1

]T

= [Rx(γ)Ry(φ)]−1
[

î ĵ k̂
]T

[
î0 ĵ0 k̂0

]T

= [Rx(γ)Ry(φ)Rz(α)]−1
[

î ĵ k̂
]T

(5.9)

Using Eqs. (5.7)-(5.9) the angular velocity of the rigid spacecraft with respect to the orbital

reference frame L can be expressed as




ωx
BL

ωy
BL

ωz
BL


 =




γ̇

0

0


 + Rx(γ)Ry(φ)




0

φ̇

0


 + Rx(γ)Ry(φ)Rz(α)




0

0

α̇




=




1 0 − sin φ

0 cos γ sin γ cos φ

0 − sin γ cos γ cos φ







γ̇

φ̇

α̇


 (5.10)
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Finally, using Eqs. (5.6) and (5.10) in Eq. (5.3) we get the angular velocity of the rigid

spacecraft relative to the ECI frame I expressed in frame B as



ωx

ωy

ωz


 =




1 0 − sin φ

0 cos γ sin γ cos φ

0 − sin γ cos γ cos φ







γ̇

φ̇

α̇


 + θ̇




− sin φ

sin γ cos φ

cos γ cos φ


 (5.11)

5.1.3 Equations of Motion

To apply the Lagrangian approach for the formulation of the system equations of motion,

the expressions for the system kinetic energy (T ) as well as the potential energy (Up) are

first obtained [Kumar 2006a]:

T =
1

2
m~̇R

2

+
1

2
~ωT I~ω (5.12)

Up = −µm

R
− µ

2R3
tr(I) +

3µ

2R3
C1

T IC1 (5.13)

where I is the inertia tensor, tr(I) is the trace of matrix I, ~ω is the angular velocity vector,

and C1 ∈ R3 = [C11, C12, C13]
T is the direction cosine vector of the local vertical ~R with

respect to the spacecraft body fixed frame S − xyz. C1 represents the first column of the

direction cosine matrix defined in Eq. (5.1)

C11 = cos α cos φ

C12 = cos α sin φ sin γ − sin α cos γ

C13 = cos α sin φ cos γ − sin α sin γ

(5.14)

The Lagrangian equations of motion corresponding to the generalized coordinates (q =

α, φ, γ) are obtained using the general relation

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+

∂Up

∂q
= Qq (5.15)

where Qq is the generalized force corresponding to the generalized coordinate q. We sub-

stitute the generalized coordinates in the preceding Eq. (5.15) and express the derivative

with respect to the true anomaly using the relations given below:

q̇ = θ̇q′ =

√
µa(1− e2)

R2
q′ (5.16)

q̈ =
µ

R3
[(1 + e cos θ)q′′ − 2q′e sin θ] (5.17)
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where the orbital radius R is replaced by the semi-major axis a and the eccentricity e, using

the relation

R =
a(1− e2)

1 + e cos θ
=

µ1/3(1− e2)

Ω2/3(1 + e cos θ)
(5.18)

The resulting governing nonlinear, coupled ordinary differential equations of motion of the

system, after carrying out considerable algebraic manipulation and nondimensionalization,

can be expressed in a general form as follows:

q′′ = N(q)[F (q, q′) + Ufa] (5.19)

where N(q) ∈ R3×3 and F (q, q′) ∈ R3×1 are matrices containing nonlinear functions, q ∈
R3 = [α, φ, γ]T , and Ufa ∈ R3 = [Uα, Uφ, Uγ]

T is the control torque. The variable of

integration t (time) is changed to θ (true anomaly measured with respect to the orbit

perigee) using Eqs. (5.16) and (5.17).

We define the following dimensionless parameters representing principal moment of

inertia ratios of the rigid spacecraft,

k1 =
Iz − Ix

Iy

and kxz =
Ix

Iz

=
1− k1

1− k1k2

(5.20)

k2 =
Iz − Iy

Ix

and kyz =
Iy

Iz

=
1− k2

1− k1k2

(5.21)

The equations of motion derived from the Lagrangian relation are given by



α′′

φ′′

γ′′


 =




N11 N12 N13

N21 N22 N23

N31 N32 N33











Fα

Fφ

Fγ


 +




Uα

Uφ

Uγ








(5.22)

where Fα, Fφ, and Fγ are the nonlinear terms given by

Fα = pα cos φ cos γ + pφ cos φ sin γ − pγ sin γ

Fφ = −pα sin γ + pφ cos γ (5.23)

Fγ = pγ

The coefficients pα, pφ, and pγ in Eq. (5.23) are

pα = [(1− kxz + kyz)(1 + α′)φ′ sin φ cos γ]− (kxz − kyz)(1 + α′)2 sin φ

cos φ sin γ + (1 + kxz − kyz)[(1 + α′)γ′ cos φ sin γ + φ′γ′ cos γ]

− 3(kxz − kyz)(cos α sin φ sin γ − sin α cos γ) cos α cos φ
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pφ = [(1− kxz + kyz)(1 + α′)γ′ sin φ sin γ]− (1− kxz)(1 + α′)2 sin φ

cos φ cos γ + (1− kxz − kyz)[(1 + α′)γ′ cos φ cos γ − φ′γ′ sin γ]

+ 3(1− kxz)(cos α sin φ cos γ + sin α sin γ) cos α cos φ

pγ = [kxz − (1− kyz) cos 2γ](1 + α′)φ′ cos φ− (1− kyz)[(1 + α′)2 cos2 φ

−φ′2] sin γ cos γ + 3(1− kyz)(cos α sin φ cos γ + sin α sin γ)

(cos α sin φ sin γ − sin α cos γ)

The elements of the matrix N in Eq. (5.22) are given by



sin2 γ + kyz cos2 γ
kyz cos2 φ

(1− kyz) sin γ cos γ
kyz cos φ

sin φ(sin2 γ + kyz cos2 γ)
kyz cos2 φ

(1− kyz) sin γ cos γ
kyz cos φ

cos2 γ + kyz sin2 γ
kyz

(1− kyz) sin γ cos γ sin φ
kyz cos φ

sin φ(sin2 γ + kyz cos2 γ)
kyz cos2 φ

(1− kyz) sin γ cos γ sin φ
kyz cos φ

sin2 φ(sin2 γ + kyz cos2 γ)
kyz cos2 φ

+ 1
kxz




5.1.4 Underactuated Rigid Spacecraft Model

The nonlinear rigid spacecraft model given by Eq. (5.22) assumes that the spacecraft is

actively controlled with a sufficient number of actuators equal to the degrees of freedom

of the system. In this case, 3 pairs of gas jet thrusters are placed on each principal axis

of the spacecraft. For U ∈ R3 = [Uj], j = α, φ, γ, failure of the j-th axis actuation occurs

when Uj = 0. Our objective is to device a control law for 3-axis attitude stabilization under

single-axis actuation failure (either yaw or roll).

Let the state vector of the system be X ∈ R6x1 = [α, α′, φ, φ′, γ, γ′]T . The state vector

can be split into two parts as X = [x1, x2]
T where x1 and x2 represents the unactuated

and actuated states, respectively. The unactuated states can be further transformed to

x1 = [x10, x11]
T , where x10 ∈ R3×1 = [α, φ, γ]T always. Based on the axis of failure, the

nonlinear equation of motion in Eq. (5.22) can be transformed to

 x11

′

x2
′


 =


 Ā11 Ā12

Ā21 Ā22









 F1

F2


 +


 0

Uua


 +


 d1

d2






 (5.24)

We now consider the cases of actuation failure to specify state x11 as follows:
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Case I : (Uφ = 0) No control authority on roll -axis (φ) and full control actuation available

on pitch (α) and yaw (γ) axes. For this case x11 = φ′, x2 = [α′, γ′)], and Uua ∈ R2×1 =

[Uα, Uγ]
T . Similarly, F (q, q′) = [F1, F2]

T where F1 = Fφ and F2 = [Fα, Fγ]
T .

Ā11 = N22; Ā12 =
[

N21 N23

]
; Ā21 = ĀT

12; Ā22 =


 N11 N13

N31 N33


 (5.25)

Case II : (Uγ = 0) No control authority on yaw -axis (γ) and full control actuation

available on pitch (α) and roll (φ) axes. For this case x11 = γ′, x2 = [α′, φ′)],

and Uua ∈ R2×1 = [Uα, Uφ]
T . Similarly, F (q, q′) = [F1, F2]

T where F1 = Fγ and

F2 = [Fα, Fφ]
T .

Ā11 = N33; Ā12 =
[

N31 N32

]
; Ā21 = ĀT

12; Ā22 =


 N11 N12

N21 N22


 (5.26)

In both cases considered above, thrusters are body-fixed to the spacecraft to perform at-

titude maneuvers. A pair of thrusters are placed on the z-axis for pitch motion control,

and depending on the considered axis of failure, either a pair of thrusters on y-axis for roll

control or a pair of thrusters on x-axis for yaw control, are active.

5.2 Design of Control Laws

In this section we present the theoretical basis for developing nonlinear control algorithms

for the rigid body spacecraft mathematical model. First, we develop a control law for

a rigid spacecraft equipped with 3 pairs of thrusters that can provide torque about all

three body-axes of the spacecraft. Then, we propose a control algorithm to stabilize the

spacecraft attitude using control torques supplied by only two pairs of thrusters.

5.2.1 Proposed Control Law for Fully Actuated Spacecraft

We first consider the case where the spacecraft is fully actuated with complete control

authority on its pitch, roll, and yaw axes. SMC design starts with building a sliding surface

in the system state space. The motion of the system along the sliding mode is expected
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to meet the control requirements with desired robustness to bounded disturbances and

parametric uncertainties. For the fully actuated case, we utilize the vector containing the

generalized coordinates (q ∈ R3×1 = [α, φ, γ]T ) and its first derivatives to design a linear

sliding surface Sc given by,

Sc = q′ + Λ q (5.27)

The sliding surface Sc is a 3 dimensional manifold, Sc ∈ R3×1, where Λ ∈ R3×3 is a constant

gain matrix,

Λ =




Λα 0 0

0 Λφ 0

0 0 Λγ


 (5.28)

The basic idea is to alter the system dynamics along the sliding surface such that the

trajectory of the system is steered onto the sliding manifold described by Sc = 0. Next,

we derive the control laws based on Lyapounov stability theorem. The Lyapunov energy

function can be defined as follows:

V =
1

2
ST

c Sc (5.29)

Taking the first derivative of V and substituting Eq. (5.19) gives,

V ′ = ST
c S ′c = ST

c {q′′ + Λ q′}
= ST

c {N(q)[F (q, q′) + Ufa] + Λ q′} (5.30)

Let N [F + Ufa] + Λ q′ = −ηc sat(Sc), where ηc ∈ R3×3 = diag{ηcα, ηcφ, ηcγ} for all {ηci :

ηci > 0}, and sat(Sc) = [sat(Scα), sat(Scφ), sat(Scγ)]
T . The saturation function is used to

suppress the control chatter. The control law for the fully actuated case can be defined as,

Ufa = −N(q)−1{ηc sat(Sc) + Λ q′} − F (q, q′) (5.31)

The control law given by Eq. (5.31) can be substituted in Eq. (5.30) to get

V ′ = ST
c [−ηc sat(Sc)]

≤ −
∑

ηci|Sci| < 0 for i = α, φ, γ (5.32)

This proves that V ′ is negative-definite. Therefore, V is a non-increasing Lyapunov function

in the S-space. This implies that as t → ∞, V (t) = V∞. Thus, we can establish that
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Sc ∈ L∞. Based on the inequality that
∑ |Sci| ≥ ‖Sc‖ and defining λmin(ηc) as the

minimum eigenvalue of the positive-definite matrix ηc,

V ′ ≤ λmin(ηc)‖Sc‖ (5.33)

Integrating both sides of Eq. (5.34) yields

∞∫

0

V ′(t) dt ≤ −
∞∫

0

λmin(ηc)‖Sc‖ dt

V (t) ≤ V (0)−
∞∫

0

λmin(ηc)‖Sc‖ dt < ∞ (5.34)

Therefore, from Eq. (5.34) we obtain that Sc ∈ L2. According to the proven condition

from Eq. (5.32) we have V ′ < ∞ from which we can deduce the fact that S ′c ∈ L∞. Now,

using Barbalat’s lemma [Slotine & Li 1991a] it can be shown that Sc → 0 as t →∞. When

the desired control torque in Eq. (5.31) is implemented the spacecraft trajectory converges

to the sliding manifold (Sc = 0) and since the spacecraft attitude motion is stable on the

sliding manifold, its trajectory converges to equilibrium (q, q′ → 0 as t → ∞). Hence,

for all initial conditions q(0) and q′(0), the control law in in Eq. (5.31) drives the system

trajectories to the origin.

5.2.2 Sliding Mode Control for Underactuated Spacecraft

The conventional SMC law derived in the previous section assume that the spacecraft is

actively controlled with a sufficient number of actuators equal to the degrees of freedom of

the system. In terms of robustness, the conventional SMC law has a major disadvantage

because the sliding system is sensitive to unmatched uncertainties and disturbances due to

unexpected actuator failure which will directly affect the dynamic performance.

In this section we present some new results for 3-axis spacecraft attitude stabilization

in the case of a single actuator failure. We develop a control algorithm which guarantees

asymptotic stability of the zero equilibrium state of the Lagrange’s equations under a max-

imum of one actuator failure. The design approach to be adopted involves a two stage

process. The first stage requires the design of a sliding manifold Su which guarantees the
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desired dynamic behavior for the nominal system [Eq. (5.24)] in the presence of uncertain-

ties and disturbances. The second stage is concerned with the development of a control

strategy that can steer the system to the sliding surface and maintain it there.

5.2.2.1 Design of Sliding Manifold

To facilitate the design of a linear sliding surface and examine its properties, the nonlinear

equations of motion of the spacecraft is linearized about its equilibrium state and repre-

sented in canonical form. From the Lagrange equations of motion described by Eq. (5.22),

we get the equilibrium state vector Xe = 0, i.e., (αe = φe = γe = αe
′ = φe

′ = γe
′ = 0).

Considering first order approximation for the system state, we have the linearized equations

of motion in state space form as follows [Wie 1998]:

X ′ = AX + BU (5.35)

where X ∈ R6x1 = [α, α′, φ, φ′, γ, γ′]T , and the matrices A ∈ R6x6, B ∈ R6x3 are described

in Eq. (5.36) with k1 = (Iz − Ix)/Iy and k2 = (Iz − Iy)/Ix.

A =




0 1 0 0 0 0

3 k2−k1

1−k1k2
0 0 0 0 0

0 0 0 1 0 0

0 0 −4k1 0 0 k1 − 1

0 0 0 0 0 1

0 0 0 1− k2 −k2 0




, B =




0 0 0

b1 0 0

0 0 0

0 b2 0

0 0 0

0 0 b3




(5.36)

When all actuators are healthy, b1, b2, b3 = 1, the controllability matrix C =

[B
...AB

... · · · ...A5B] is of rank 6. The matrix pair (A,B) defining the nominal linear system is

also fully state controllable when b2 = 0 (i.e. b1 = 1 and b3 = 1) or b3 = 0 (i.e.b1 = 1 and

b2 = 1). Therefore, the linear system is controllable even if the actuation on the roll -axis

(φ) or the yaw -axis (γ) fails. If no actuation is available for the decoupled pitch dynamics

(b1 = 0), then the system is not fully state controllable. The linear system represented in

terms of new coordinates x1 ∈ R4 and x2 ∈ R2, is given by

 x1

′

x2
′


 =


 A11 A12

A21 A22





 x1

x2


 +


 0

B2


 U (5.37)
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This representation separates the actuated and unactuated states based on the failed axis

(roll or yaw). By exploiting the coupling between the directly actuated and unactuated

states, we define the sliding surface, Su as a linear combination of the states.

Su = {x1 ∈ R4×1, x2 ∈ R2×1 : Λ1x1 + Λ2x2 = 0} (5.38)

where Λ1 ∈ R2×4 and Λ2 ∈ R2×2 are weights on the states x1 and x2 respectively. When

the system reaches the sliding surface, Su = 0 ∀ t > tr, where tr is the reaching time after

which sliding motion starts,

x2 = −Λ2
−1Λ1 x1 (5.39)

It is important to note that Eq. (5.39) holds only on the sliding surface and substituting

this relation to the reduced order system in Eq. (5.37) gives

x1
′ = (A11 − A12K)x1 (5.40)

where K = Λ2
−1Λ1 = [K1 K2] such that:

K1 ∈ R2×3 =


 K11 K12 K13

K21 K22 K23


 and K2 ∈ R2×1 =


 K14

K24


 (5.41)

During an ideal sliding mode behavior, x2 can be considered as a control signal to stabilize

x1. Therefore, the choice of sliding surface clearly affects the dynamics of the reduced

order system through the selection of weighting matrix K.

Su = {x1 ∈ R4×1, x2 ∈ R2×1 : x2 + Kx1 = 0} (5.42)

Remark 5.1 : The weighting matrix K prescribes a desired closed loop behavior of the

system [Eq. (5.40)] and can be determined using any classical approaches that provides a

state feedback controller for systems represented in state-space form. Since (A,B) is, by

definition a controllable pair it follows directly that (A11, A12) is also controllable.

5.2.2.2 Nonlinear Control Formulation

The design of a suitable control algorithm that can steer the system trajectories to the

sliding manifold is the second phase of any VSC design procedure. Our objective is to
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improve the transient performance of the system by employing a continuous, nonlinear

control algorithm that can reduce the reaching phase and maintain the attitude orientation

of the spacecraft on the sliding surface. The effects of both matched and unmatched

uncertainties are pertinent when the motion is not constrained to the sliding surface.

The developed control algorithm must be capable of achieving fast and accurate re-

sponse in the presence of bounded disturbances and parametric uncertainties. With no

control authority available in the roll or yaw axis, achieving precision attitude control

becomes a difficult task in the presence of inherent model nonlinearities (depending on at-

titude trajectory and physical parameters), moment of inertia uncertainties, and external

disturbances (changing with respect to operating conditions).

One approach is to introduce robustness against bounded uncertainties and disturbances

by extracting its core information using a known upper-bound in the controller design. The

external disturbance is related to gravity-gradient torque, solar radiation pressure, magnetic

forces, and aerodynamic drag (all could be assumed bounded). Therefore, the lumped term

containing the nonlinearities, uncertainties, and disturbances is given by

ξ(x1, x2) =
[
Ā21 + K2Ā11

]
[F1 + d1] +

[
Ā22 + K2Ā12

]
[F2 + d2] + K1x10

′ (5.43)

A feasible and practical control scheme should not be designed by including the term

ξ(x1, x2) directly. One way to account for this in the controller is to assume that the lumped

disturbances are bounded and then use the upper bound in the control algorithm design.

‖ξ(q, q′, q′′)‖ ≤ ρ1 + ρ2‖x1‖+ ρ3‖x2‖ = ϕ3 (5.44)

In order to ensure that the sliding manifold is reached and sliding on the manifold occurs,

the continuous nonlinear control law is chosen as

Uua = −(Ā22 + K2Ā12)
−1

[
η

ϕ2Su

‖Su‖+ δ

]
(5.45)

where δ is a small positive scalar specifying the boundary layer thickness that will eliminate

chatter if appropriately chosen so that the unmodeled high frequency dynamics are not ex-

cited [Edwards & Spurgeon 1998]. This choice has no effect on the closed-loop trajectories,

except when sliding along the sliding surface Su, in which case details of the dead-band
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will strongly influence the high frequency chatter in the control input. The scalar function

η depends on the magnitude of the disturbances and uncertainties,

η =
ϕ1

ϕ2

(ϕ3 + ϕ4) (5.46)

for some positive constants ϕ1, ϕ2, ϕ3, and ϕ4. The steps involved in adequately determin-

ing these nonnegative constants are detailed in the next section.

5.2.2.3 Stability Analysis

In this sub-section we present stability conditions for the spacecraft attitude motion fo-

cussing primarily on robustness against disturbances. First, we show that the control law,

Eq. (5.45), is capable of driving the closed-loop trajectory of the system towards a bound-

ary layer on the sliding surface in finite time. Once the sliding surface is reached, the

system enters into the sliding regime. Then, we show that the sliding mode is robust to

unmatched disturbances and uncertainties that mainly affects the unactuated states.

Theorem 5.1: For the underactuated spacecraft mathematical model in Eq. (5.24) if, the

sliding manifold is chosen as Eq. (5.42), the control law is defined as Eq. (5.45), and the

bounds on the external disturbances, parameter uncertainties, and system nonlinearities are

assumed to be governed by Eq. (5.44), then the closed-loop trajectories of the system will

converge in finite time to a neighborhood area of the equilibrium set F.

F ,
[
Su : ‖Su‖ ≤ δ

ϕ1 − 1

]
(5.47)

Proof : Consider the Lyapunov function

V (Su) =
1

2
Su

T Su (5.48)

Taking the first derivative of V (Su) along the trajectory of the closed-loop system,

V ′(Su) = Su
T Su

′ = Su
T [x2

′ + K1x10
′ + K2x11

′] (5.49)

Substituting the mathematical model, Eq. (5.24), and the control law, Eq. (5.45), we get

V ′(Su) = Su
T

[(
Ā21 + K2Ā11

)
(F1 + d1) +

(
Ā22 + K2Ā12

)
(F2 + d2 + Uua) + K1x10

′]

= Su
T

[
−η

ϕ2Su

‖Su‖+ δ
+ ξ(x1, x2)

]
(5.50)



174 Chapter 5. Attitude Control of Underactuated Spacecraft

Using the property defined based on Eq. (5.44) and expressing ϕ3 in terms of η, ϕ1, ϕ2,

and ϕ4 from Eq. (5.46), we get

V ′(Su) ≤ ‖Su‖
[
−η

ϕ2‖Su‖
‖Su‖+ δ

+ ‖ξ‖
]

≤ ‖Su‖
[
−η

ϕ2‖Su‖
‖Su‖+ δ

+ ϕ3

]

≤ ‖Su‖
[
−η

ϕ2‖Su‖
‖Su‖+ δ

− ηϕ2

ϕ1

+ ϕ4

]

≤ −ϕ4‖Su‖ − ηϕ2‖Su‖
[ ‖Su‖
‖Su‖+ δ

− 1

ϕ1

]
(5.51)

It is readily obtained from Eq. (5.51) that, if:

‖Su‖
‖Su‖+ δ

− 1

ϕ1

≥ 0

‖Su‖ ≥ δ

ϕ1 − 1
(5.52)

then V ′(Su) < 0 when Su is outside of the set

F ,
[
Su : ‖Su‖ ≤ δ

ϕ1 − 1

]
(5.53)

The condition in Eq. (5.52) is only satisfied if

V (Su) >
1

2

(
δ

ϕ1 − 1

)2

= ε1 (5.54)

Based on the second line Eq. (5.51), where ‖Su‖
‖Su‖+ δ

≤ 1 (∀ δ ≥ 0), a condition for selecting

the gain ϕ3 in relation to ϕ1 and ϕ4, can be derived such that:

ηϕ2 − ϕ3 > 0

ϕ1 >
ϕ3

ϕ3 + ϕ4

(5.55)

Using this fact it can be shown that V ′(Su) ≤ −ε2

√
2V (Su) for some ε2 > 0. This implies

that the sliding boundary layer is reached in finite time. For the case where a small (δ) is

chosen, then every solution will eventually enter the set F = {Su : V (Su) ≤ ε1}. ¤
The control law in Eq. (5.45) forces the solutions of the system towards a boundary

layer on the sliding surface, Su, where the behavior of the system is dominated by lower-

order dynamics. Ideally, when in the sliding mode the system is completely insensitive to
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disturbances and uncertainties acting within the channels implicit in the control inputs.

However, the linear system in Eq. (5.37) clearly indicates that unmatched disturbances

and uncertainties will affect the motion of unactuated states x1. Therefore, it is important

to evaluate the properties of the spacecraft motion constrained to Su. The linear system

can be expressed in the general form as

x1
′ = A11x1 + A12x2 + D1

x2
′ = A21x1 + A22x2 + B2U + d2

(5.56)

where x1 ∈ R4×1 and x2 ∈ R2×1 are the actuated and unactuated states, respectively,

A11 ∈ R4×4, A12 ∈ R4×2, A21 ∈ R2×4, A22 ∈ R2×2, B2 ∈ R2×2, U ∈ R2×1 is the control

input, D1 ∈ R4×1 = [0, 0, 0, d1]
T and d2 ∈ R2×1 = [d21, d22]

T are the unmatched and

matched components of nonlinear uncertainties and disturbances.

We now study the effect of unmatched component (D1) of the disturbances when the

dynamics of the system represents the dynamics of an ideal sliding mode. For convenience

we set δ = 0. To determine the spacecraft dynamics on the sliding surface, we can solve

Su = 0 for x2 using Eq. (5.42) which yields x2 = −Kx1. We have shown in Theorem 5.1

that a control law exists such that the spacecraft motion can be constrained to Su. This

result can be substituted into Eq. (5.56) to obtain the following reduced order system

x1
′ = (A11 − A12K)x1 + D1 (5.57)

Let Ac = A11−A12K. We can ensure that Ac is a stable matrix with eigenvalues containing

negative real parts by appropriately choosing K. For asymptotic stability we require that,

if P and Q are positive definite matrices, then the solution to the Lyapunov equation [Eq.

(5.58)] will exist because the matrix Ac is stable.

PAc + Ac
T P = −Q (5.58)

Theorem 5.2: For the motion constrained to the sliding surface, the trajectory of the

reduced order system [Eq. (5.57)] starting from any initial condition will enter a compact

set containing the origin in finite time and the states will be uniformly ultimately bounded

with respect to the ellipsoid

= =



x1 : ‖x1‖ ≤ 2

sup
D1∈ ε3

‖PD1‖
λmin(Q)



 (5.59)
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Proof : Consider the Lyapunov function

V (x1) = x1
T Px1 (5.60)

The first derivative of V (x1) along the motion of Eq. (5.57) is given by

V ′(x1) = x1
T (PAc + Ac

T P )x1 + 2xT
1 P D1 = −x1

T Qx1 + 2xT
1 P D1 (5.61)

Using the Rayleigh principle we know that

λmin(Q)‖x1‖2 ≤ x1
T Q x1 ≤ λmax‖x1‖2 (5.62)

In particular, if λmin(Q) ≥ 0 then it follows that x1
T Qx1 ≥ 0 for all x1. Based on these

conditions, Eq. (5.61) can be expressed as

V ′(x1) ≤ −λmin(Q)‖x1‖2 + 2‖x1‖ · ‖PD1‖
≤ −(λmin(Q)‖x1‖ − 2‖PD1‖)‖x1‖ (5.63)

It is clearly evident from Eq. (5.63) that V ′(x1) < 0 when x1 is outside of the set

= ,



x1 : ‖x1‖ ≤ 2

sup
D1∈ ε3

‖PD1‖
λmin(Q)



 (5.64)

Analytical estimate of λmin(Q) is not required for numerical simulations because the pro-

posed control law is independent of this parameter. For every x1(t0) ∈ = then x1(t) ∈ = for

all t ≥ t0. Since V ′(x1) < 0, it also follows that if x1(t0) /∈ = then the trajectory will reach

= in finite time tr [Spurgeon & Davies 1993]. The system is therefore uniformly ultimately

bounded with respect to the ellipsoid =. Explicit consideration of the actuated states (x2)

is not required because it is a well known fact that when in the sliding mode the system is

totally insensitive to matched disturbances. This completes the proof. ¤
Remark 5.2 : The Euler angles γ, φ, and α are limited to the ranges −π < γ < π,

−π
2

< φ < π
2
, and −π < α < π. Any initial condition that avoids singularities due to

φ = ±π
2
, Theorem 2 guarantees that a singularity is not subsequently encountered. Since

x1 = [α, φ, γ, (γ′ or φ′)]T , it has been shown by condition in Eq. (5.63) that any initial

condition that avoids the singularity in φ = ±π
2
will eventually converge to a neighborhood

area of the equilibrium set =.
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5.3 Performance Evaluation

To study the effectiveness and performance of the proposed nonlinear control strategies

for underactuated spacecraft, the detailed response of the system is numerically simulated

using the set of governing equations of motion [Eq. (5.24)] in conjunction with the proposed

control law [Eq. (5.45)]. The integration is carried out using the International Mathematical

and Statistical Library (IMSL) routine DDASPG based on Petzoid-Gear BDF method

[IMS 1997]. The system and orbital parameters for the spacecraft along with the initial

conditions used in the numerical simulations are shown in Table 5.1. Unless otherwise

stated explicitly, all numerical simulations are based on the parameters stated in Table 5.1

without considering the product of inertia terms, Ixy = Ixz = Iyz = 0, in the mass moment

of inertia matrix of the spacecraft.

Table 5.1: Underactuated spacecraft - Simulation parameters

Parameters Values

Orbit

rp (km) 6878

µe (km3s−2) 398600

Spacecraft MOI

Ixx (kg m2) 15

Iyy (kg m2) 17

Izz (kg m2) 20

Initial Conditions

[α0, φ0, γ0] [80◦, −40◦, 40◦]

[α0
′, φ0

′, γ0
′] [0.001, 0.001, 0.001]

Based on values of the spacecraft moment of inertia we can calculate nondimensional

parameters k1 = (Iz−Ix)/Iy = 0.3 and k2 = (Iz−Iy)/Ix = 0.2. These ratios are considered

for the design of control algorithms. Any change in the moment of inertia of the spacecraft

is unknown to the controller. The control gains (ϕi) and the boundary layer (δ) used in all

simulations for Cases I and II are shown in Table 5.2.
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Table 5.2: Controller parameters used for numerical analysis

Control Gains Case I Case II

[ϕ1, ϕ2, ϕ3, ϕ4] [0.40, 0.60, 1.50, 0.40] [0.15, 0.40, 2.00, 0.15]

[K11, K12, K13, K14] [4, 0, 0, 0] [0.5, 0, 0, 0]

[K21, K22, K23, K24] [0, −2, 2, −1] [0, 2, 2, 1]

δ 0.0001 0.0001

It is important to note that the universal gain (η) is calculated based on all ϕi using

the formula given by Eq. (5.46). The sliding plane is given by Su = x2 + K x1, where

K = [K1, K2] is determined using LQR applied to the reduced order system in Eq. (5.40).

K can be considered as a ’pseudo’ feedback matrix that prescribes the required performance

of the reduced order system (A11, A12).

Case I: For no actuation available on roll (φ) axis, the closed-loop eigenvalues of the

reduced order system [A11 − A12K] based on values of K in Table 5.2, are:

λ1,2 = −0.4± 1.0i ; λ3 = −2 ; λ4 = −4 (5.65)

Case II: For no actuation available on yaw (γ) axis, the closed-loop eigenvalues of the

reduced order system [A11 − A12K] based on values of K in Table 5.2, are:

λ1,2 = −0.4± 0.2i ; λ3 = −2 ; λ4 = −4 (5.66)

Clearly, from Eqs. (5.65) and (5.66), we can observe that the sliding manifold designed

using K in Table 5.2 leads to stable dynamics for the unactuated states once the sliding

manifold is reached. The reaching condition is ensured using the control input given by

Eq. (5.45) as stated in Theorem 5.1.

First, we present the effectiveness of the proposed control strategy in stabilizing the

spacecraft attitude by comparing the results with a fully actuated controller [Eq. (5.31)].

We then examine the effects of variations in spacecraft mass moment of inertia, orbit

eccentricity, and external disturbances.
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5.3.1 Nominal Performance

We first study the attitude motion of the spacecraft orbiting in a circular orbit (i.e. e = 0).

Figure 5.2 shows the attitude response of the spacecraft in the presence of initial attitude

disturbances (Table 5.1) for Case I when the control laws given by Eqs. (5.31) and (5.45)

are used to stabilize the system.

The nonnegative constants in the control law for the fully actuated system are chosen

as Λα = Λφ = Λγ = 4 and ηc = 0.01. With no control authority available on the φ-axis, a

control algorithm specifically designed for a full actuated spacecraft fails to stabilize the roll

motion. The proposed control law for the underactuated system [Eq. (5.45)] successfully

stabilizes 3-axis attitude of the spacecraft using only two control torques (Uα and Uγ). The

driving control torque required for 3-axis stabilization is also presented in Fig. 5.2. The

corresponding plots of sliding surfaces and angular velocity are given in Fig. 5.3.
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Figure 5.2: Comparison between the performance of the conventional control algorithm

and the proposed controller for case I.
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Figure 5.3: State space trajectories, sliding surfaces, Lyapunov derivative, and angular

velocities for case I.

With no external disturbances acting on the spacecraft, motion of the system reaches

the sliding surface Su = 0 in finite time which can be analytically determined using

tr ≤ ‖Su(t0)‖
2πη

orbits ≤ 0.5 orbit (5.67)

where η = 1.3 from Table 5.2. The angular velocity of the spacecraft is stabilized to

ωx = ωy = 0 and ωz = 0.0011 rad/s. According to the coordinate frames selected as shown

in Fig. 5.1 the spacecraft z-axis is normal to the orbit plane and therefore ωz would be

equal to the orbital rate (when e = 0).

Next, we consider the case where there is no actuation available on the yaw axis (Case

II). It is clearly evident in Fig. 5.4 that the control algorithm given by Eq. (5.31) fails

to stabilize the yaw motion motion of the spacecraft with Uγ = 0. The reason for uncon-

trollable rotation of the spacecraft about its x-axis can be analytically determined from

the zero-dynamics of the yaw equation of motion. When α = α′ = φ = φ′ = 0 the yaw
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equation of motion is given by

γ′′ + k2 sin γ cos γ = 0 (5.68)

where k2 = (Iz − Iy)/Ix. From the solution of Eq. (5.68) and taking γ0 and γ0
′ as the

initial values, the minimum value of γ′ is given by

γ ′
min =

√
γ0
′2 + k2 sin2 γ0 − k2 (5.69)

Therefore, the initial spin rate to avoid uncontrolled motion of the spacecraft about the

x-axis can be obtained from Eq. (5.69) as

γ0
′ < | cos γ0|

√
k2 (5.70)

With respect to the uncontrollable motion of γ in Fig. 5.4, determining the spin rate (γ′) at

the time when pitch and roll axes stabilize, helps us verify that γ′ > | cos γ0|
√

k2. Therefore,
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Figure 5.4: Comparison between the performance of the conventional control algorithm

and the proposed controller for case II.
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Figure 5.5: State space trajectories, sliding surfaces, Lyapunov derivative, and angular

velocities for case II.

the initial attitude disturbances and the moment of inertias have a significant effect on the

uncontrolled response of the system. The proposed control law for the underactuated

system [Eq. (5.45)] successfully stabilizes 3-axis attitude of the spacecraft using only two

control torques (Uα and Uφ). The finite time convergence of the system to the sliding

surface, state space trajectories, and the angular velocity response of the system are shown

in Fig. 5.5. The reaching time (tr) for this case can be determined using Eq. (5.68) and

the value of η from Table 5.1.

5.3.2 Variations in Spacecraft Mass Moment of Inertia

The performance evaluation of the proposed control strategy [Eq. (5.45)] presented in

this section is divided into three subcategories. First, we present the effectiveness of the

control strategy for attitude stabilization of an axially symmetric rigid spacecraft using two
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Table 5.3: Variations in spacecraft moment of inertia

Ideal Axis Symmetric Product of Inertia



15 0 0

0 17 0

0 0 20







17 0 0

0 17 0

0 0 20







15 0.5 0.9

0.5 17 2

0.9 2 20




independent control torques (Cases I and II). We then examine the efficacy of the proposed

control strategy when the spacecraft is an unstable gravity gradient configuration. Finally,

we illustrate the performance of the controller as affected by adding the product of inertia

terms (Ixy, Ixz, Iyz) in the spacecraft inertia tensor.

Figure 5.6 shows controlled performance of an axis-symmetric spacecraft undergoing

initial attitude disturbances stated in Table 5.1. The simulations are applied to an axisym-
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Figure 5.6: Controlled performance for an axis-symmetric spacecraft (k1 = k2 = 0.1765).
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metric spacecraft with inertia matrix in Table 5.3, giving k1 = 0.1765 and k2 = 0.1765. The

control law is derived based on stable moment of inertia specified in Table 5.3. Compared

to Figs. 5.2 and 5.4, there is no deterioration in the attitude response shown in Fig. 5.6.

We next examine the asymptotic convergence properties of the proposed controller on

a spacecraft model with the inertia matrix containing product of inertia terms (Table 5.3).

The control objective is still achieved despite the additional terms in the inertia matrix.

However, the spacecraft attitude angles settle to nonzero values (Fig. 5.7). Thus, the

products of inertia have an adverse effect on the satellite attitude response. When higher

products of inertia terms are considered, the steady state attitude angles increase and with

further increase in the products of inertia the spacecraft attitude may become unstable

with the constant control gains.
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Figure 5.7: Spacecraft attitude response as affected by changes in moment inertia matrix
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When the spacecraft is in an unstable gravity gradient configuration (for stable region,

k1k2 > 0), the inertia tensor chosen corresponds to k1 = 0.3, k2 = −0.2 for Case I; and

k1 = −0.2, k2 = 0.3 for Case II (Table 5.4). Selecting different ki to represent unstable

gravity gradient configuration for cases I and II is because of the following reasons:

1. With no actuation available on the roll axis (Case I), the zero-dynamics of the roll

equation of motion when α = α′ = γ = γ′ = 0 is given by

φ′′ + 4k1 sin φ cos φ = 0 (5.71)

Linearizing using small angle approximation we can determine the characteristic equa-

tion of the system

s2 + 4k1 = 0

s1,2 = ±2
√−k1

(5.72)

Hence, if k1 > 0 the system will be marginally stable (complex conjugate roots),

whereas, if k1 < 0 the characteristic equation has one positive real root which makes

the system unstable. Therefore, in order to ensure stable roll motion k1 > 0 and the

unstable gravity gradient configuration for this case is given by k1 > 0 and k2 < 0.

2. Similarly, for no actuation available on the yaw axis (Case II), the zero-dynamics of

yaw equation of motion when α = α′ = φ = φ′ = 0 is

γ′′ + k2 sin γ cos γ = 0 (5.73)

Linearizing using small angle approximation we can determine the characteristic equa-

tion of the system

s2 + k2 = 0

s1,2 = ±√−k2

(5.74)

Hence, if k2 > 0 the system will have complex conjugate roots making it marginally

stable, whereas, if k2 < 0 the system becomes unstable due to one positive real root.

Therefore, in order to ensure stable yaw motion k2 > 0 and the unstable gravity

gradient configuration is given by k1 < 0 and k2 > 0.
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Table 5.4: Unstable gravity-gradient configurations

Case I Case II



10 0 0

0 17 0

0 0 15







17 0 0

0 10 0

0 0 15




Figure 5.8 provides the attitude time history and the commanded control torque time

history for Cases I and II for a spacecraft in unstable gravity gradient configuration. As is

evident, the proposed control scheme successfully stabilizes the spacecraft attitude without

any deterioration in performance. It is important to note that, the controller is not aware

of the changes in inertia matrix since it is designed based on stable moment of inertias.
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Figure 5.8: Controlled performance for unstable gravity-gradient inertia configurations.

Controller designed based on stable moment of inertias (k1 = 0.3, k2 = 0.2) applied to a

spacecraft in unstable configuration with k1 = 0.3, k2 = −0.2 for Case I and k1 = −0.2,

k2 = −0.3 for Case II.
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5.3.3 Eccentricity and External Disturbances

A spacecraft moving in an elliptic orbit is examined and the corresponding attitude response

plots for cases I and II are shown in Figs. 5.9 and 5.10, respectively. The proposed controller

effectively negates the disturbances caused by eccentricity and stabilizes the spacecraft even

in an orbital eccentricity as high as e = 0.3. The steady state roll and yaw errors are zero

while the pitch error is bounded by |α|max = 0.015◦ for Case I (Fig. 5.9) and |α|max = 0.15◦

for Case II (Fig. 5.10). This illustrates the robustness of the control law [Eq. (5.45)] to

the simultaneous presence of different types of uncertainties and disturbances.

The steady state roll and yaw control inputs are null while the pitch control inputs are

|uα|max = 1.5×10−5 Nm for both cases I and II. The period of the steady state control is 1

orbit; this matches the simplified steady state pitch control input, uα = 2e sin θ, obtained

from Eq. (5.45) considering the null steady state errors.
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Figure 5.9: Effects of orbital eccentricity (e = 0.3) - Case I.
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Figure 5.10: Effects of orbital eccentricity (e = 0.3) - Case II.

The angular velocity curves for cases I and II show a periodic behavior on ωz. This

can be explained using Eq. (5.11) with the steady state values of φ = γ = φ̇ = 0, we have

ωz = θ̇ + α̇. Since, for an elliptic orbit, θ̇ 6= 0, and as mentioned earlier steady state α is

bounded, ωz also remains bounded (∀t, Figs. 5.9 and 5.10).

We next examine the disturbance rejection aspects of the control scheme when applied

in the presence of environmental disturbances due to solar radiation pressure, aerodynamic

drag, and magnetic forces. The disturbances due to solar radiation pressure can be ex-

pressed as (in Nm) [Kaplan 1976],




Tsα

Tsφ

Tsγ


 = Sf




(1× 10−4) cos(θ̇t)

(2× 10−5)[1− 2 sin(θ̇t)]

(5× 10−5) cos(θ̇t)


 (5.75)
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The external torque due to aerodynamic drag [Wie 1998] can be modeled as bias plus cyclic

terms in the body-fixed control axes (in Nm),




Taα

Taφ

Taγ


 = 1.36 Af



−[4 + 2 sin(θ̇t) + 0.5 sin(2θ̇t)]

1 + sin(θ̇t) + 0.5 sin(2θ̇t)

−[1 + sin(θ̇t) + 0.5 sin(2θ̇t)]


 (5.76)

where Sf and Af are positive scaling factors. The disturbance torque simulated is of the

form Td = Ta +Ts. We choose Sf = 0.01 and Af = 2×10−6 such that the signals described

by Eqs. (5.76) and (5.75) emulates the disturbance process due to solar radiation pressure,

aerodynamic drag, and magnetic forces, ‖Td‖ ≤ 2× 10−5 Nm for a spacecraft in LEO (500

km) [Wertz & Larson 1999].

0 2 4 6 8 10
−60

−40

−20

0

20

40

60

80
Underactuated − No Control on Roll Axis

Orbits

A
ng

le
s 

[d
eg

]

 

 
α
φ
γ

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Orbits

C
on

tr
ol

 T
or

qu
e 

[N
m

]

 

 
u

α

u
γ

0 2 4 6 8 10
−60

−40

−20

0

20

40

60

80
Underactuated − No Control on Yaw Axis

Orbits

A
ng

le
s 

[d
eg

]

 

 
α
φ
γ

0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2
x 10

−5

Orbits

C
on

tr
ol

 T
or

qu
e 

[N
m

]

 

 
u

α

u
φ

Figure 5.11: Effects of time-varying external disturbances.
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Robustness of the proposed control technique to time varying disturbances is analyzed to

assess the reliability of the algorithm. Figure 5.11 shows the performance of the proposed

controller when the disturbances specified by Eqs. (5.75) and (5.76) are acting on the

system, and the gains are set at the values listed in Table 5.2. As expected under the

influence of external disturbances, the proposed controller is able to regulate the attitude

motion and stabilize the errors to within the expected neighborhood of the origin, where

they remain indefinitely.

During the initial phases the control signals counteract the large attitude errors and as

the spacecraft is stabilized the controller smoothly tracks the disturbances and eliminate

its effects as time increases. With no control on roll axis (Case I), the steady state attitude

errors are |α|max = 0.02◦, |φ|max = 1◦, and |γ|max = 1.5◦. For case II, the steady state atti-

tude errors are |α|max = 0.004◦, |φ|max = 1.5◦, and |γ|max = 1.5◦. The inherent robustness

of the proposed control scheme stabilizes the spacecraft’s attitude successfully for all cases.

5.4 Summary

In this chapter, the proposed control methodology was employed for 3-axis stabilization of

a rigid spacecraft using control torques supplied by thrusters about only two of its prin-

cipal axes. We considered two cases, (i) no control authority available on the roll axis,

and (ii) no actuation available on the yaw axis. To verify and validate the effectiveness of

the proposed control algorithm, a high-fidelity nonlinear model of the spacecraft attitude

dynamics was developed which includes the mathematical models of environmental distur-

bances acting on the spacecraft in LEO. Numerical simulation results illustrates that the

proposed control scheme can successfully regulate the attitude motion from large initial

conditions and stabilize the unactuated states to within the expected neighborhood of the

origin, where they remain indefinitely. Based on the results of underactuated spacecraft

attitude stabilization, we present a novel attitude control system in the next chapter that

utilizes only a single thruster for 3-axis attitude stabilization.



Chapter 6

Spacecraft Attitude Control Using

Single Thruster

Feasibility of achieving complete three axis attitude and angular velocity stabilization

using a novel concept - A Single Thruster - is explored in this chapter. For low-cost

missions using pico-satellites, the possibility of handling actuator failures without the need

for redundant elements is an appealing concept. The actuator system remains minimal

and complete three-axis attitude stabilization is achieved using a single thruster. A single-

thruster control concept, either by design or in a contingency, is challenging because the

thruster exerts both force and torque on a spacecraft. This coupling property, along with

appropriate sizing and positioning of the thruster, can be utilized to carry out precise three-

axis attitude maneuvers. Torques are generated using a thruster orientation mechanism

with which the thrust vector can be tilted on a two axis gimbal.

The spacecraft, controlled using the proposed concept, constitutes an underactuated

system (a system with fewer independent control inputs than degrees of freedom) with

nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the

system non-affine (control terms appear nonlinearly in the state equation). This necessitates

the control algorithms to be developed based on nonlinear control theory since linear control

methods are not directly applicable. The control concept is implemented by developing a

robust variable structure control algorithm based on the nonlinear hyperplanes.

The chapter is organized as follows: Section 6.1 introduces the mathematical model of

the proposed spacecraft system. Nonlinear control algorithm is formulated with detailed

proof of stability for the closed-loop system in Section 6.2. The results of numerical sim-

ulations incorporating different mission scenarios are presented in Section 6.3. Finally,

conclusions of the study are stated in Section 6.4.
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6.1 Spacecraft Model with Single Thruster

The main feature of this proposed attitude control method is that it requires only a single

thruster to control yaw, roll, and pitch angle. An actuator is operationally attached to the

gimballed thruster to control the angled position of the gimballed thruster in two orthogonal

directions. A position control system sends a control signal to the actuator which moves the

gimballed thruster to an angled position in response to the control signal, and the angled

position of the gimballed thruster controls the attitude of the spacecraft.

1
2

π
β

 
− 

 

1β

2β

x

y

z

F

Figure 6.1: Thruster azimuth and elevation.

We consider a double-gimbal thruster that provides constant force. For a gimballed

thruster shown in Fig. 6.1, the force components can be derived as

F̄ =




Fx

Fy

Fz


 = F




sin β1

cos β1 cos β2

cos β1 sin β2


 (6.1)

where F is the constant thrust level, β1 is the elevation angle, and β2 is the azimuth angle.

Let ~r = rxî + ry ĵ + rzk̂ be the vector representing the placement of the reaction thruster

from the spacecraft center of mass. Torque components provided by the thruster can be



6.1. Spacecraft Model with Single Thruster 193

written as follows:

τ =




τx

τy

τz


 = ~r× F̄ = F




ry cos β1 sin β2 − rz cos β1 cos β2

rz sin β1 − rx cos β1 sin β2

rx cos β1 cos β2 − ry sin β1


 (6.2)

It is clearly evident from Eq. (6.2) that, when β1 = β2 = 0, the torque components

are τx = −rz F , τy = 0, and τz = rx F . Even in the equilibrium state, we have torque

components provided the thruster is switched on. In order to avoid this phenomenon, the

single thruster attitude control methodology proposed in this study considers the thruster

to be placed with only an offset in the spacecraft y-axis (rx = rz = 0). Therefore, the

torque components of the proposed single thruster system reduces to



τx

τy

τz


 = F




ry cos β1 sin β2

0

−ry sin β1


 (6.3)

The complete mathematical model of the proposed single thruster attitude control sys-

tem, considering the kinematics and dynamics of the spacecraft combined with the dynam-

ics of the thruster gimbal mechanism can be written as follows (from Section 5.1.4):

 x11

′

x2
′


 =


 Ā11 Ā12

Ā21 Ā22









 F1

F2


 +


 0

U


 +


 d1

d2






 (6.4)

The above equations of motion are in dimensionless form. Therefore, the torques given

by Eq. (6.3) are converted to dimensionless form by introducing the parameter κ =

(F ry)/(Izz θ̇
2). The control torque in Eq. (6.4) is given by

U ∈ R2×1 =


 Uα

Uγ


 = κ


 − sin β1

cos β1 cos β2


 (6.5)

For this case x11 = φ′, x2 = [α′, γ′)], and U ∈ R2×1 = [Uα, Uγ]
T given by Eq. (6.5).

Similarly, F (q, q′) = [F1, F2]
T where F1 = Fφ and F2 = [Fα, Fγ]

T . The nonlinear terms in

the Ā matrix are given by

Ā11 =
cos2 γ + kyz sin2 γ

kyz

and Ā21 =




(1− kyz) sin γ cos γ
kyz cos φ

(1− kyz) sin γ cos γ sin φ
kyz cos φ


 (6.6)
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Ā12 =

[
(1− kyz) sin γ cos γ

kyz cos φ
(1− kyz) sin γ cos γ sin φ

kyz cos φ

]
(6.7)

Ā22 =




sin2 γ + kyz cos2 γ
kyz cos2 φ

sin φ(sin2 γ + kyz cos2 γ)
kyz cos2 φ

sin φ(sin2 γ + kyz cos2 γ)
kyz cos2 φ

sin2 φ(sin2 γ + kyz cos2 γ)
kyz cos2 φ

+ 1
kxz


 (6.8)

The nonlinear terms in F1 = Fφ and F2 = [Fα, Fγ]
T were provided in the previous chapter

[Eq. (5.23)] and are not restated here for brevity. The system in Eq. (6.4) can be written

in the following form:



M11 M12 M13

M21 M22 M23

M31 M32 M33







φ′′

α′′

γ′′


 =








Fφ

Fα

Fγ


 +




0

Uα

Uγ


 +




dφ

dα

dγ








(6.9)

where Fφ, Fα, Fγ are described in Eq. (5.23), Uα and Uγ are given by Eq. (6.5), and Mij

are described below.

M11 = kyz cos2 γ + sin2 γ and M23 = M32 = −kxz sin φ

M12 = M21 = (kyz − 1) sin γ cos γ cos φ and M13 = M31 = 0

M22 = kxz sin2 φ + kyz cos2 φ sin2 γ + cos2 φ cos2 γ and M33 = kxz

(6.10)

To facilitate the development of nonlinear control algorithms and simplify the stability

analysis, Eq. (6.9) is represented as follows

M(q) q′′ = F (q, q′) + U(β1, β2) + D (6.11)

where q ∈ R3 = [φ α γ]T , M(q) ∈ R3×3, F (q, q′), D ∈ R3, and U(β1, β2) = [0 Uα Uγ]
T .

6.2 Control Laws - Single Thruster System

In this section we present the control methodology for the single thruster attitude con-

trol system proposed earlier in Section 6.1. The system is underactuated, i.e., no control

authority available about the y-axis (roll). This case is similar to, case II presented in

Section 5.2 except for the fact that the thruster gimbal dynamics are considered along with

the equations of motion. Using thruster gimbal angles as control inputs makes the system

non-affine (control terms appear nonlinearly in the state equation).
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6.2.1 Design of Sliding Manifold

For the single thruster attitude control system considered in this study, the control signals

are the gimbal angles (β1, β2) that commands the movement of the thruster in a given

direction to provide torques about the x-axis (yaw) and z-axis (pitch). The evolution of

the gimbal angles are constrained to restrict thrust firings towards the spacecraft. The

range space of the gimbal angles are bounded by: 0 ≤ β1 < π
2
and 0 ≤ β2 < π

2
. Since the

control signals are non-affine, we develop a nonlinear control algorithm based on higher-

order sliding mode. By increasing the order of the system, the gimbal rates (β′1, β′2) can

be extracted from Eq. (6.11). The control algorithm establishes the required gimbal rates

and then employs a single-step integration process to obtain the corresponding angular

positions. This information is sent to the actuators that control the gimbal movement to

orient the thruster in the prescribed direction.

A novel nonlinear higher-order sliding surface for the single thruster attitude control

system is defined in this section. First, we introduce a lower level sliding surface given by

S1T = K̄1Mq′ + K̄2q (6.12)

where K̄1 ∈ R2×3 and K̄2 ∈ R2×3 are the weighting matrices for q′ and q, respectively. They

have the form

K̄1 =


 0 P2 0

P5 0 P6


 and K̄2 =


 0 P1 0

P3 0 P4


 (6.13)

The stability of the lower order sliding surface [Eq. (6.12)] has been previously established

in Section 5.2. Taking the first derivative of S1T yields

S ′1T = K̄1Mq′′ + (K̄1M
′ + K̄2)q (6.14)

Now, the higher-order sliding manifold is defined as a combination of the lower-order sliding

surface and its first derivative using a positive constant ζ,

σ = S ′1T + ζ S1T (6.15)
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6.2.2 Control Formulation

The second phase of the design procedure is to develop a nonlinear control algorithm that

can steer the trajectories of the system [Eq. (6.11)] to the high-order sliding manifold (Eq.

6.15). The algorithm should also be capable of maintaining the system states on the sliding

manifold for all t > tr, where tr is the sliding surface reaching time.

The main challenge is to control the attitude of the spacecraft in the presence of uncer-

tainties and external disturbance torques. With no control authority available in the roll

axis, achieving precision attitude control becomes a difficult task in the presence of system

nonlinearities, and time varying external disturbances. A simple approach is to extract the

core information of the uncertainties and disturbances by using the worst case upper-bound

of the disturbances in the controller design. We introduce the following term

ξ(q, q′, q′′) = K̄1[D
′ + F ′(q, q′)] + [K̄1M

′ + K̄2]q
′′ + K̄1M

′′q′ (6.16)

Note that ξ(q, q′, q′′) is the lumped term containing the system nonlinearities, parameter

uncertainties (moment of inertia), and external disturbances (changing operating condi-

tions). One way to account for this in the control algorithm is to assume that the lumped

disturbances are bounded and then use the upper bound in the controller design.

‖ξ(q, q′, q′′)‖ ≤ ρ1 + ρ2‖q‖+ ρ3‖q′‖ ≤ ϕ3 (6.17)

We now develop the control scheme to ensure that the sliding manifold is reached and

sliding on the manifold occurs. The objective is to force the higher-order sliding surface

given by Eq. (6.15) to follow a desired path given by,

σ′ = S ′′1T + ζ S ′1T = −
[
η1 +

η2ϕ2

‖σ‖+ δ

]
σ

= K̄1[Mq′′′ + M ′q′′] + [K̄1M
′ + K̄2]q

′′ + K̄1M
′′q′ = −

[
η1 +

η2ϕ2

‖σ‖+ δ

]
σ (6.18)

Taking the derivative of the equations of motion [Eq. (6.11)] along its trajectories and

substituting in Eq. (6.18), we get

σ′ = K̄1U
′ + K̄1[D

′ + F ′(q, q′)] + [K̄1M
′ + K̄2]q

′′ + K̄1M
′′q′ (6.19)
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K̄1U
′ =


 0 P2 0

P5 0 P6







0 0

−κ cos β1 0

−κ sin β1 sin β2 κ cos β1 cos β2





 β′1

β′2




=


 −κP2 cos β1 0

−κP6 sin β1 sin β2 κP6 cos β1 cos β2





 β′1

β′2


 (6.20)

Carrying out some algebraic manipulations based on Eqs. (6.18)-(6.20), the nonlinear

control law capable of providing gimbal rate commands for β1, β2, and in turn control the

attitude of the spacecraft is given by

U1T = −

 −κP2 cos β1 0

−κP6 sin β1 sin β2 κP6 cos β1 cos β2



−1 [

η1 +
η2ϕ2

‖σ‖+ δ

]
σ (6.21)

where U1T = [β′1 β′2]
T , and δ is a small positive scalar specifying the boundary layer thick-

ness that will eliminate chatter if appropriately chosen so that the unmodeled high fre-

quency dynamics are not excited. The scalar parameter η2 depends on the magnitude of

the disturbances and uncertainties,

η2 =
ϕ1

ϕ2

(ϕ3 + ϕ4) ∀ ϕ1, ϕ3, ϕ4 ≥ 0 (6.22)

for some positive constants ϕ1, ϕ2, ϕ3, and ϕ4. The steps involved in adequately determin-

ing these nonnegative constants are detailed in the next section. It is also important to note

that Eq. (6.16) is true regardless of any external disturbance (gravity gradient torque, solar

radiation pressure, aerodynamic drag), inherent nonlinearities, and other uncertainties that

arise due to changing spacecraft parameters or operating conditions.

6.2.3 Stability Analysis

In this sub-section we present stability conditions for the single thruster attitude control

system, focussing primarily on robustness against disturbances. We show that the control

law, Eq. (6.21), is capable of driving the closed-loop trajectory of the system towards

a boundary layer on the sliding surface in finite time (Hitting Phase). Once the sliding

surface is reached, the system enters into the sliding regime.
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Theorem 6.1: For the single thruster attitude control mathematical model in Eq. (6.11)

if, the higher-order sliding manifold is chosen as Eq. (6.15), the control law is defined as

Eq. (6.21), and the bounds on the external disturbances and uncertainties on the system is

assumed as given by Eq. (6.17) then the system reaches the sliding surface in finite time

for a sufficiently small δ > 0.

Proof : Consider a continuously differentiable Lyapunov function candidate

V (σ) =
1

2
σT σ (6.23)

Taking the first derivative of V (σ) along the trajectory of the system yields,

V ′ = σT σ′ = σT [S ′′1T + ζ S ′1T ]

= σT
[
K̄1U

′ + K̄1(D
′ + F ′) + (K̄1M

′ + K̄2)q
′′ + K̄1M

′′q′
]

= σT
[
K̄1U

′ + ξ(q, q′, q′′)
]

(6.24)

Substituting for the gimbal rates from Eq. (6.21) in the previous equation, gives

V ′ = σT

[
−η1 σ − η2

ϕ2 σ

‖σ‖+ δ
+ ξ(q, q′, q′′)

]

≤ −η1σ
T σ + ‖σ‖

[
−η2

ϕ2‖σ‖
‖σ‖+ δ

+ ‖ξ‖
]

≤ −η1σ
T σ + ‖σ‖

[
−η2

ϕ2‖σ‖
‖σ‖+ δ

+ ϕ3

]
(6.25)

Expressing ϕ3 in terms of η2, ϕ1, ϕ2, and ϕ4 from Eq. (6.22) and substituting in Eq. (6.25),

the following simplifications can be made to the first derivative of the Lyapunov function

candidate,

V ′ ≤ −η1σ
T σ − ‖σ‖

[
η2 ϕ2

‖σ‖
‖σ‖+ δ

− η2 ϕ2

ϕ3

+ ϕ4

]

≤ −η1σ
T σ − ϕ4‖σ‖ − η2 ϕ2 ‖σ‖

[ ‖σ‖
‖σ‖+ δ

− 1

ϕ1

]
(6.26)

It is readily obtained from Eq. (6.26) that, if:

‖σ‖
‖σ‖+ δ

− 1

ϕ1

≥ 0

‖σ‖ ≥ δ

ϕ1 − 1
(6.27)
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then V̇ (σ) < 0. The condition in Eq. (6.27) is only satisfied if

V (σ) >
1

2

(
δ

ϕ1 − 1

)2

= ε1 (6.28)

Based on Eq. (6.25), where ‖σ‖
‖σ‖+δ

≤ 1 (∀ δ ≥ 0), the gains can be selected as

η ϕ2 − ϕ3 > 0

ϕ1 >
ϕ3

ϕ3 + ϕ4

(6.29)

Using this fact it can be shown that V ′(σ) ≤ −ε2

√
2V (σ) for some ε2 > 0. This implies

that the sliding boundary layer is reached in finite time, tr. For the case where a small (δ)

is chosen, then every solution will eventually enter the set < = {σ : V (σ) ≤ ε1} and will

be uniformly ultimately bounded with respect to the ellipsoid ε1.

The gimbal angle rates given by Eq. (6.21) forces the attitude trajectories of the space-

craft towards a boundary layer surrounding the sliding surface σ in the state space, and

the trajectories remains in the ellipsoid ε1 thereafter. From the properties of V and V ′, we

conclude that σ ∈ L2∩L∞. Here, σ is defined as σ = S ′1T +ζ S1T . If (S ′1T +ζ S1T ) ∈ L2∩L∞,

then S1T ∈ L2 ∩L∞ and S ′1T ∈ L2 ∩L∞. From Barbalat’s lemma, we conclude that σ → 0

as t → tr. Thus, S1T → 0 and S ′1T → 0, which implies that q → 0 and q′ → 0 as t → ∞.

This completes the proof. ¤

6.3 Performance Evaluation

In this section, we give an illustrative example of the proposed single thruster scheme for

the problem of attitude control of a rigid spacecraft. The results presented in Chapter 5

examined the case of attitude control using two pairs of body-fixed thrusters capable of

providing two control torques. In contrast, the proposed attitude control algorithm using

a single thruster employs gimbal rate steering law. In this section, the complete nonlinear

equations of motion given by Eq. (6.11) and the gimbal rate steering law given by Eq.

(6.21) are used to predict and validate the performance of the proposed single thruster

attitude control methodology under realistic operating conditions.
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Table 6.1: RyePicoSat inertia and thruster parameters.

Parameters Values

Size (m3) 0.1× 0.1× 0.1

Moment of Inertia

Ixx (kg m2) 0.0015

Iyy (kg m2) 0.0017

Izz (kg m2) 0.0020

Thruster

Max. Force, F, (µ N) 8

y−axis offset, ry, (m) 0.15

Table 6.2: Higher-order SMC parameters.

Control Gains Values

[ϕ1, ϕ2, ϕ3, ϕ4] [1.5, 1.5, 0.5, 0.5]

[P1, P2, P3] [0.1, 0.1, 0.1]

[P4, P5, P6] [−0.1, 0.1, −0.1]

ζ 2

δ 1× 10−6

For precision attitude control a Micro-Electro-Mechanical System (MEMS) based col-

loidal thruster [Xiong et al. 2002] capable of delivering thrust to the order of 5 − 30µN

is selected. This thruster is mounted on a two-axis gimbal that is fixed at the end of a

moment arm extending along the body-fixed y-axis. The length of the moment arm is

ry = 0.15 m and the thruster is only offset from the spacecraft center of mass in the y-

direction (rx = rz = 0). The maximum delivered thrust is fixed at 8 µN. The proposed

attitude control system is for the RyePicoSat and Table 6.1 summarizes the spacecraft

model parameters used in all numerical simulations. Based on values of the spacecraft

moment of inertia we can calculate nondimensional parameters k1 = (Iz− Ix)/Iy = 0.3 and
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k2 = (Iz−Iy)/Ix = 0.2. The control algorithm is designed based on these moment of inertia

ratios. Results for varying spacecraft moment of inertia are examined by implementing the

changes only in the spacecraft dynamic model and therefore, the control algorithm remains

fixed for all simulations. The control gains (ϕi), sliding surface weighting matrices (K̄1, K̄2)

and the boundary layer (δ) used in all simulations for Cases I and II are listed in Table 6.2.

The spacecraft is subjected to the following initial attitude disturbances about the yaw

(x), roll (y), and pitch (z) axes:

γ0 = φ0 = α0 = 60◦

γ′0 = φ′0 = α′0 = 0
(6.30)

The thruster is initially configured with the gimbal axes at its equilibrium position, β1,0 =

β2,0 = 0. Unless explicitly stated, the spacecraft parameters specified in Table 6.1, control

gains in Table 6.2, and initial conditions given by Eq. (6.30) are used in all simulations.

6.3.1 Nominal Performance

We first study the attitude motion of the spacecraft in a circular orbit at an altitude of

500 km with an orbit period T = 5677 seconds. The attitude response for large initial

attitude errors is illustrated in Fig. 6.2. The Euler angles asymptotically approach to zero

starting from non-zero initial conditions. The variations in the spacecraft angular rates

during the transient phase are due to the attitude errors. The angular velocities eventually

converges during steady state as the spacecraft attains a stable attitude. The angular

velocity of the spacecraft about the z-axis converges to a non-zero value ωz = 0.0011 rad/s.

Based on the coordinate frames selected as shown in Fig. 5.1 the spacecraft z-axis is

normal to the orbit plane. Therefore, due to the spacecraft rotation about the Earth, ωz

would be equal to the orbital frequency of the spacecraft θ̇ =
√

µeR3, where µe (km3s−2) is

the gravitational parameter of the Earth and R = 6878 km. Substituting the steady-state

values the Euler angles are their rates (α = φ = γ = α̇ = φ̇ = γ̇ = 0) in Eq. (5.11) we

can derive that ωx = ωy = 0 and ωz = θ̇. The plots of gimbal angles and the net control

torques provided by the single thruster are also shown in Fig. 6.2. As evident, β1 is the

thruster elevation angle and therefore it is mainly used for controlling the pitch (α) motion

(out of plane) of the spacecraft.
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Figure 6.2: Controlled response for ideal attitude stabilization.

6.3.2 Variations in Moment of Inertia

The performance of the proposed control algorithm using a single-thruster for 3-axis at-

titude control is examined in this sub-section for variations in the spacecraft moments of

inertia. First, we consider the case where the spacecraft is in an unstable gravity gradient

configuration. Since there is no control input in the y-axis, the unstable gravity gradient

configuration for this case is given by k1 > 0 and k2 < 0 [derived in Eq. (5.72)]. When the

spacecraft is in an unstable gravity gradient configuration (for stable region, k1, k2 > 0),

the inertia tensor chosen corresponds to k1 = 0.3, k2 = −0.2 for the inertia matrix

I =




0.0010 0 0

0 0.0017 0

0 0 0.0015


 (6.31)
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It is important to note that the control algorithm is designed based on the stable inertia

configuration (k1 = 0.3, k2 = 0.2). Figure 6.3 illustrates the effectiveness of the proposed

control methodology in stabilizing the attitude of the spacecraft. The control objective is

still achieved despite such large change in the inertia matrix. Since the proposed method-

ology is implemented based on nonlinear higher-order sliding mode, the response profile

of the gimbal angles are very smooth. This observation is consistent with the theoretical

reasoning that high-order SMC eliminates control chattering.

Next, we present the effectiveness of the control algorithm for attitude stabilization of

an axially symmetric rigid spacecraft using a single thruster. Figure 6.4 shows controlled

performance of an axisymmetric spacecraft undergoing initial attitude disturbances stated
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Figure 6.3: Controlled response for unstable gravity gradient configuration.



204 Chapter 6. Spacecraft Attitude Control Using Single Thruster

0 0.5 1 1.5 2 2.5
−40

−20

0

20

40

60

E
ul

er
 A

ng
le

s 
[d

eg
]

 

 
α
φ
γ

0 0.5 1 1.5 2 2.5
−2

0

2

4

6

8

G
im

ba
l A

ng
le

s 
[d

eg
]

 

 
β

1

β
2

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

Orbits

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s
]

 

 
ω

x

ω
y

ω
z

0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

2

3
x 10

−8

Orbits

C
on

tr
ol

 T
or

qu
e 

[N
m

]

 

 
τ

α

τ
γ

Figure 6.4: Controlled response for an axisymmetric spacecraft.

in Eq. (6.30). The simulations are applied to a rigid spacecraft with inertia matrix




0.0017 0 0

0 0.0017 0

0 0 0.0020


 (6.32)

The nondimensional inertia ratio are k1 = 0.1765 and k2 = 0.1765. The control law is

designed based on stable moment of inertia specified in Table 6.1. When compared to Figs.

6.2 and 6.3, there is no deterioration in the attitude response shown in Fig. 6.4. Compared

with the existing techniques for attitude control, one advantage of using high-order SMC

is the tradeoff between tracking performance and control effort. Since the gimbal angle

positions are obtained by integrating the rates, the control chattering is also negated.
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6.3.3 Eccentricity and External Disturbances

A spacecraft moving in an elliptic orbit is examined and the corresponding attitude response

is shown in Fig. 6.5. The spacecraft and control parameters used in the simulation are

stated in Tables 6.1 and 6.2. The proposed controller effectively negates the disturbances

caused by eccentricity and stabilizes the spacecraft even for an orbital eccentricity as high

as e = 0.3. The steady state roll and yaw errors are zero while the pitch error is bounded

by |α|max = 0.05◦. This illustrates the robustness of the control law [Eq. (6.21)] to the

simultaneous presence of different types of uncertainties and disturbances.

To compensate for the bounded pitch motion of the spacecraft, the out of plane gimbal

angle (β1) is also bounded |β1|max = 5◦. The steady state yaw control torque is zero

while the torque generated about the pitch axis is |uα|max = 2.2 × 10−8Nm. The period
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Figure 6.5: Effects of orbital eccentricity (e = 0.3) on controller performance.
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of the steady state control torque is 1 orbit; this matches the simplified steady state pitch

control input Uα = −ryF sin β1 obtained from Eq. (5.16), considering the null steady

state errors. From the angular velocity plot, it is clearly evident that ωz profile exhibits a

periodic behavior. This can be explained using Eq. (5.11) where the steady state values of

φ = γ = φ̇ = 0, we have ωz = θ̇ + α̇. Since, for an elliptic orbit, θ̇ 6= 0, and as mentioned

earlier steady state α is bounded, ωz also remains bounded.

Table 6.3: RyePicoSat parameters for disturbance models.

Symbol Description Value

ρd Atmospheric density (kg/m3) 4.89× 10−13

υ Orbital velocity (m/s) 7613

Aa Aero contact surface area (m2) 0.01

As SRP contact surface area (m2) 0.01

c Speed of light (m/s) 3× 108

CD Drag coefficient 2.50

Cg Center of gravity 0.00

Cpa Center of aerodynamic pressure 0.07

Cps Center of solar pressure 0.07

Dres Residual dipole of RyeSat (A.m2) 0.05

Fs Solar constant (W/m2) 1367

is Sun incidence angle (deg) 0

Me Magnetic moment of Earth (T.m3) 7.96× 1015

r Coefficient of reflectivity 0.85

We next examine the disturbance rejection aspects of the control scheme when applied

in the presence of environmental disturbances due to solar radiation pressure, aerodynamic

drag, and magnetic forces. The time-varying forms of disturbance torques due to solar

radiation pressure and aerodynamic drag are given by Eqs. (5.75) and (5.76), respectively.

The positive scaling factors Sf and Af have to be chosen based on the expected worst-case

disturbance torques. For a pico-satellite in LEO, the worst case perturbing torques due to
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solar radiation pressure, aerodynamic drag, and magnetic disturbances are given in Table

6.4. The parameters used for the calculations are given in Table 6.3 [Alger 2008].

Table 6.4: Disturbance torque models for RyePicoSat.

External Torques Standard Formula Value (in Nm)

Solar Radiation τsolar = Fs

c
As(1 + r) cos is(Cps − Cg) 6.14× 10−9

Magnetic τmag = Dres
2Me

R3 2.49× 10−6

Aerodynamic τaero = 1
2
ρdυ

2AaCD(Cpa − Cg) 5.62× 10−7

Based on Table 6.4, the positive scaling factors were chosen as Sf = 6.14 × 10−9 and

Af = 1.53 × 10−6. The disturbance torque simulated is Td = Ta + Ts. Figure 6.6 shows

the performance of the proposed controller when the disturbances specified by Eqs. (5.75)
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Figure 6.6: Effects of time-varying external disturbances on RyeSat.
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and (5.76) are acting on the system, and the gains are set at the values listed in Table 6.2.

As expected under external disturbances, the proposed controller is able to regulate the

attitude motion and stabilize the errors to within the expected neighborhood of the origin,

where they remain indefinitely. During the initial phase, gimbal angles are autonomously

positioned to counteract large attitude errors. As the spacecraft is stabilized, gimbal angles

smoothly track the disturbances and eliminate its effects as time increases.

6.4 Summary

In this chapter, a nonlinear control algorithm based on sliding mode theory was developed

to stabilize the 3 axis attitude angles of a spacecraft using only a single thruster. Torques

were generated using a thruster orientation mechanism with which the thrust vector can

be tilted on a two-axis gimbal to provide the necessary framework for validating the pro-

posed nonlinear control algorithm. To verify and validate the effectiveness of the proposed

control algorithm, a high-fidelity nonlinear model of the spacecraft attitude dynamics was

developed which includes the mathematical models of environmental disturbances acting

on the spacecraft in LEO. The domains of sliding mode and the estimates of domain of

attraction along with the regions of asymptotic stability are obtained utilizing Lyapunov’s

second method. When in sliding mode, the behavior of the system is dominated by lower-

order dynamics and the effects of unmatched disturbances on the dynamic performance is

studied. Numerical simulations illustrates that the proposed control scheme can success-

fully regulate the attitude motion from large initial conditions and stabilize the unactuated

states to within the expected neighborhood of the origin, where they remain indefinitely.



Chapter 7

Fault-Tolerant Control of Flexible

Spacecraft

TETHERED satellite systems (TSS) have been proposed for a wide variety of ap-

plications ever since the first presentation of the “Shuttle-borne Skyhook” concept

[Colombo et al. 1975]: a scientific satellite extended below the Shuttle to conduct low or-

bital altitude experiments. Numerous researchers have studied the dynamic aspects of TSS

and many science missions have been flown to validate different tether models. The ad-

vantages of using an offset control scheme for attitude control and some important studies

that examined the applicability of this approach were previously listed Section 1.3.3. Al-

though this method has been used for many spacecraft systems, very few have accounted

for unexpected severance of the tether, a major problem associated with the failure of many

tethered spacecraft missions.

The initiation and process of two unscheduled events, tether severance and interference

between tether and other hardware, using a high-speed computer simulation incorporating

a nonlinear lumped-mass model was first investigated by [Trivailo et al. 1999]. Later on,

[Williams et al. 2003] developed a flexible tether model to simulate the event of tether

severance. Some of the potential problems that can occur due to tether severance include

the following [Williams et al. 2003]: (1) The loss of tension at the severance point causes the

tether to accelerate away from the platform, (2) The tether rotates around the attachment

at the subsatellite, and (3) The tether becomes entangled in itself and does not rotate

around the attachment at the subsatellite. A severed tether can also recoil and wrap

around the platform [Blanksby & Trivailo 2000]. Although tether severance is numerically

simulated in [Trivailo et al. 1999, Williams et al. 2003], the issue of attitude control using

the remaining tether has not received its due attention in the literature.
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In contrast, the purpose of this study is to propose a solution for TSS attitude control

in a critical situation, when tether deployment suddenly stops and tether breakage occurs.

For example, during stationkeeping phase of the mission, the tether might be completely

severed by a hypervelocity impact with a micrometeorite. First, a detailed mathemati-

cal model is presented that consists of two identical tethers of equal length connecting the

downward-deployed auxiliary mass to two distinct points that are symmetrically offset from

the main satellite’s mass center. An adaptive fault tolerant nonlinear control algorithm is

then proposed to control the attitude of the main satellite using coordinated movement of

the tether attachment points. Finally, several numerical examples are presented to demon-

strate the fault recovery capability of the proposed control algorithms to counteract critical

components failures and faults like tether severance, tether attachment point blocking, and

sign-reversal of attachment point motion.

7.1 Proposed Tethered Satellite System

The investigation is initiated by formulating the equations of motion of the proposed TSS

moving in a circular orbit. The proposed system model assumes a downward deployment

of a small auxiliary mass from the satellite through a two-tether system (Fig. 7.1). Two

identical tethers are attached to the satellite at two distinct points symmetrically offset from

its mass center and below the satellite’s principal Z axis. The other ends of the two tethers

are connected to an auxiliary mass. To facilitate analytical treatment of the problem, only

the case involving in-plane system motion is investigated. The coordinate frame S−X0 Y0 Z0

passing through the system center of mass represents the orbital reference frame. The right-

hand triad is formed with the X0-axis taken normal to the orbital plane, the Y0-axis taken

along the local vertical, and the Z0-axis pointing along the local horizontal. The measured

spacecraft orientation is a rotation α of the local frame about the X0-axis. Hence, the angle

α defines the librational pitching angle with respect to the local vertical. The S −X Y Z

coordinate frame is used to represent the relative motion of the spacecraft with respect to

the local orbital frame. For the variable length L joining the satellite mass center S and

tether junction E, the angle β denotes rotation about the axis normal to the orbital plane
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Figure 7.1: Geometry of the proposed tethered satellite system.

and is referred to as the in-plane swing angle. The satellite is assumed to be vertically

above the ground station while passing over the ascending node. The corresponding nodal

line represents the reference line in orbit for the measurement of the true anomaly.

Remark 7.1 : Points A and B in Fig. 7.1 denote the attachment points of tether-1 and

tether2, respectively. Subscript j = 1, 2 denotes tether-1 and tether-2, respectively. ak and

bk (for k = 1, 2) represents the horizontal and vertical offsets of tether attachment points A

and B in the satellite S−X0 Y0 Z0 coordinate frame. The stretched and unstretched tether

lengths are denoted by Lj and Lj0, respectively. The tether lengths are nondimensionalized

using a reference length, Lref =
√

Ix/m2. The nondimensional (length) parameters are:

āk =
ak

Lref

; b̄k =
bk

Lref

lj =
Lj

Lref

; lj0 =
Lj0

Lref

; l =
L

Lref

(7.1)

7.1.1 Energy Model and Equations of Motion

The satellite pitch angle α, the distance between the satellite mass center and the auxiliary

mass (L), its associated in-plane swing angle β, and the two tether strains ε1 and ε2
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constitute the chosen set of generalized coordinated that describe the motion of the system.

The preceding generalized variables are not independent and they are related through

dimensionless constraints as follows:

fj = lj −
[
ā2

j + b̄2
j + l2 + (−1)j 2 l h̄j

] 1
2 (7.2)

where h̄j (for j = 1, 2) relates the satellite pitch angle (α) and tether swing angle (β) to

the horizontal (āk) and vertical (b̄k) offsets of the tether attachment points.

h̄j = āj sin (α− β) + (−1)j+1b̄j cos (α− β)

lj = lj0 (1 + εj) , j = 1, 2
(7.3)

The major assumptions employed in the derivation of the model are:

1. The main spacecraft is considered to have much greater mass when compared to the

tether and the subsatellite, and therefore the centre of mass of the system is assumed

to coincide with the centre of mass of the main spacecraft.

2. The tether is assumed to be made of light material such as Kevlar, and, hence, is

considered to have negligible mass.

3. The damping effects and transverse vibrations of the tethers are ignored. Because of

relatively short tether lengths considered in this study (8− 20m), it is assumed that

the tether dynamics does not affect the orbital dynamics.

To apply the Lagrangian approach for the formulation of the system equations of motion,

the expressions for the system kinetic energy (T ) as well as the potential energy (V ) are

first obtained[Kumar & Kumar 2001]:

T =
1

2
M(Ṙ2 + θ̇2R2) +

1

2
m2

[
L̇2 + (θ̇ + β̇)

2
L2

]
+

1

2
Ix(θ̇ + α̇)2 (7.4)

V = − µM

R
+

1

4

µ

R3
[(Ix + Iy + Iz)− 3{Ix + (Iz − Iy) cos 2α}]

+
1

2

µ

R3
m2[1− 3cos2β]L2 +

1

2
EA

2∑
j=1

Ljoεj
2U(εj) (7.5)
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The term U(εj) in the potential energy expression is simply a unit function, the use of

which precludes any negative strain in the tether.

U (εj)|j=1,2 =





1, for εj ≥ 0

0, for εj < 0
(7.6)

The Lagrangian equations of motion corresponding to the various generalized coordinates

indicated earlier can be obtained using the general relation

d

dt

[
∂T

∂q̇

]
− ∂T

∂q
+

∂V

∂q
= Q +

2∑
j=1

Λj
∂fj

∂q
(7.7)

where q denotes the vector of generalized coordinates, Q represents the generalized force

corresponding to the generalized coordinate q, and Λj denotes the Lagrange multiplier

corresponding to the j-th constraint. Substituting the generalized coordinates in Eq. (7.7)

and carrying out the algebraic manipulation, we obtain the following governing nonlinear

coupled ordinary differential equations of motion in dimensionless form.

Satellite Pitch (α):

α′′ − 1.5 Ir sin (2α)− λ1

l1
l
[
ā1 cos (α− β)− b̄1 sin (α− β)

]

+
λ2

l2
l
[
ā2 cos (α− β) + b̄2 sin (α− β)

]
= 0 (7.8)

L - in-plane swing (β):

β′′ + 1.5 sin (2β) + 2 (1 + β′)
(

l′

l

)
+

λ1

l l1

[
ā1 cos (α− β) + b̄1 sin (α− β)

]

− λ2

l l2

[
ā2 cos (α− β) + b̄2 sin (α− β)

]
= 0 (7.9)

L - dimensionless length (l):

l′′ +
[(

1− 3cos2β
)− (1 + β′)2

]
l +

λ1

l1

[
l − h̄1

]
+

λ2

l2

[
l + h̄2

]
= 0 (7.10)

Tether Strain (ε1):

EA1 L10 ε1 U(ε1) = Λ1 l10 (7.11)

Tether Strain (ε2):

EA2 L20 ε2 U(ε2) = Λ2 l20 (7.12)
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The tether strains given in Eqs. (7.11) and (7.12) can be nondimensionalized by using the

following expression

λj =
Λj

m2Lref
2Ω2

j = 1, 2 (7.13)

Substituting Eq. (7.13) into Eqs. (7.11) and (7.12),

λ1 = C1ε1 U (ε1)

λ2 = C2ε2 U (ε2)
(7.14)

where C1 = C2 = EA/(m2LrefΩ
2) is the tether rigidity parameter, EA (in N) is the

modulus of rigidity of the tether, and Ir = (Iy − Iz)/Ix is the satellite mass distribution

parameter. In this study, a model of the tether dynamics that neglects tether flexibility is

adopted for the control law design. Such models are often used in tether control law design

because of their simplified mathematical representations and computational efficiency. The

nonlinear, coupled ordinary differential equations of motion in dimensionless form described

by Eqs. (7.8)-(7.14) being complex, numerical integration was resorted to for simulation of

the satellite’s attitude response. Tether offsets ā1 and ā2 are the control input terms which

are embedded in the equations of motion to form the closed loop system.

7.1.2 Offset Control Methodology

The attitude stabilization problem considered here is to determine a control algorithm ca-

pable of coordinating the motion of tether (offset motion) attachment points which can

stabilize the attitude of the main satellite to an asymptotically stable equilibrium point.

From Eqs. (7.8)-(7.14), it is clearly evident that offset positions ā1 and ā2 are difficult to

extract from the coupled equations to design a control law. Choosing the two offset veloc-

ities ā′1 and ā′2 as control inputs and integrating them to obtain offset positions simplifies

the control design procedure. Moreover, an offset position specification scheme may result

in velocities that are impossible to implement through conventional motors. On the other

hand, the maximum offset velocities required for control could be easily lowered by adjust-

ing the control gains within the control algorithm. In order to extract the offset velocities

from the equations of motion, we differentiate Eq. (7.8). First consider,

α′′ = 1.5 Ir sin (2α) + C1 E1 Ā1 l − C2 E2 Ā2 l (7.15)
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where Ej and Āj are given by

Ej =
[

1
lj0
− 1

lj

]
;

λj

lj
= Cj Ej; Āj = āi cos(α− β) + (−1)j b̄j sin(α− β) (7.16)

Analytical differentiation of Eq. (7.15) provides a detailed representation of the satellite

pitch dynamics and the offset velocities can be explicitly obtained.

α′′′ = Irf0 (x) +
2∑

j=1

(−1)j+1Cj

[
Ej Āj l′ + Ej Ā′

jl + Ej
′Āj l

]
(7.17)

The derivative terms in Eq. (7.17) can be rearranged to extract ā′1 and ā′2 using,

f0 (x) = 3 cos (2α) α′

Ā′
j = ā′j cos (α− β)− h̄j (α′ − β′)

(7.18)

Ej
′ =

[
āj + (−1)j sin(α− β)

l3j

]
ā′j +

l l′ + (−1)j(h̄j l′ + Āj (α′ − β′))
l3j

(7.19)

Based on Eqs. (7.16)-(7.19), the following nonlinear terms can be introduced

f0(x) = 3 cos(2 α) α′ (7.20)

f1(x) = E1 A1 l′ − E1 h̄1 (α′ − β′) l + Ā1
l l′ − (h̄1 l′ + Ā1 (α′ − β′))

l31
(7.21)

f2(x) = −E2 A2 l′ − E2 h̄2 (α′ − β′) l − Ā2
l l′ + (h̄2 l′ + Ā2 (α′ − β′))

l32
(7.22)

g1 (x) = Ā1

[
ā1 − l sin (α− β)

l1
3

]
l + E1 cos (α− β) l (7.23)

g2 (x) = −Ā2

[
ā2 + l sin (α− β)

l2
3

]
l − E2 cos (α− β) l (7.24)

The modified form of the pitch equation of motion explicitly showing the two offset velocities

ā′1 and ā′2 as control inputs is given by:

α′′′ = Irf0 (x) + C1f1 (x) + C2f2 (x) + C1g1 (x) ā′1 + C2g2 (x) ā2 (7.25)
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7.2 Design of Control Laws

In this section, we present the theoretical basis for incorporating TSS attitude control

using coordinated motion of tether offsets into the nonlinear control framework. Firstly,

the methods and analysis tools of sliding mode nonlinear control are developed that are

robust to nonlinear model errors. The formulation of the nominal sliding mode controller

is then improved using adaptive approximation in the presence of model uncertainties.

7.2.1 Nominal Sliding Mode Control

Sliding mode control is a robust nonlinear feedback control methodology that belongs to a

kind of variable-structure control system in which the structure between switching surfaces

is changed to achieve desired performance. Sliding mode control is insensitive to external

disturbances [Slotine & Li 1991b] and therefore one can consider it to implement the offset

control scheme for TSS. The group of state variables used to construct the sliding surface

are α, α′, and α′′. The sliding surface S is defined as

S = α′′ + p2α
′ + p1α (7.26)

where p1 and p2 are positive constants. The basic idea is to alter the system dynamics such

that the trajectory of the system is steered onto the sliding manifold described by S = 0.

Next, the control law is derived based on Lyapunov stability theorem. The control

algorithm that forces the motion of the states to be along the sliding manifold S = 0 can

be determined by choosing the Lyapunov energy function defined as follows:

V =
1

2
S2 (7.27)

Differentiating V we get,

V ′ = SS ′ = S (α′′′ + p2α
′′ + p1α

′) (7.28)

Substituting for α′′′ from Eq. (7.25) in Eq. (7.28) we get,

V ′ = S[Irf0 (x) + C1f1 (x) + C2f2 (x) + C1g1 (x) ā′1 + C2g2 (x) ā′2 + p2α
′′ + p1α

′] (7.29)
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The objective of a Lyapunov function incorporated based on sliding mode technique is to

find a control law such that S S ′ is always negative-definite (S S ′ < 0).

Irf0 (x) + C1f1 (x) + C2f2 (x) + p2α
′′ + p1α

′ + C1g1 (x) ā′1

+ C2g2 (x) ā′2 = −η sat (S)− kS (7.30)

where η and k are positive constants. The saturation function sat(S) is used to suppress

the control chatter [Fernandez & Hedrick 1987]. Substituting Eq. (7.30) into Eq. (7.29),

V ′ becomes negative-definite. Hence, the system is stable and its trajectory will approach

the sliding plane while converging toward the origin.

V ′ = −η |S| − kS2 ≤ 0 (7.31)

Rearranging the terms in Eq. (7.30), the control laws can be obtained as

ā′1 =
D1

D1
2 + D2

2D3 and ā′2 =
D2

D1
2 + D2

2D3 (7.32)

where

D1 = C1g1 (x)

D2 = C2g2 (x)

D3 = −ηsgn (S)− kS − Irf0 (x)− C1f1 (x)− C2f2 (x) − p2α
′′ − p1α

′
(7.33)

For the existence of the control inputs described by Eq. (7.32), D1
2 +D2

2 must be non-zero

in the region of interest. After carrying out some simplifications, the region ΩS (ΩS1 ∩ ΩS2)

of singularity in which D1
2 + D2

2 = 0 is given by

ΩSj
=

{
Dj

2 = Cj
2

{
1

āj

cos (α− β) +
b̄j

āj

[1− sin (α− β)]

}2

= 0

}

=

{[
1

āj

cos (α− β) +
b̄j

āj

[1− sin (α− β)]

]
= 0

}

=
{

α− β = (4n + 1)
π

2

}
(7.34)

where j = 1, 2 and n ∈ J , is a set of integers. The control law is well defined as long as

the trajectory of the closed-loop system does not enter the region Ωs. The control inputs

ā1 and ā2 are obtained by numerically integrating the expressions in Eq. (7.32), and are

then substituted in Eq. (7.8) to complete the closed-loop dynamics of the system.



218 Chapter 7. Fault-Tolerant Control of Flexible Spacecraft

7.2.2 Adaptive Sliding Mode Control

In TSS, parameter uncertainties can pose numerous problems in the control tasks, causing

inaccuracy and instability in the control system. Adaptive control deals with situations in

which some of the parameters are unknown or slowly time-varying. The basic idea is to

estimate these unknown parameters online and then use the estimated parameters in place

of the unknown parameters in the feedback control law. Two different types of adaptive

control for the TSS are considered in this section.

Case I Exact parameter representation is considered based on constant system parameters

Ir, C1, and C2. Adaptive control law is developed based on the nominal nonlinear

control law designed in Sec. 7.2.1. Although the true values of C1 and C2 are equal,

we evaluate the controller when their estimated values could differ.

Case II Modified system parameters represented as η1 = Ir

C
and η2 = 1

C
, where C = C1 =

C2, are considered. This is a valid assumption because the two tethers considered in

this study are made of the material. Hence, their respective rigidity parameters will

be approximately the same.

The tether rigidity parameters are denoted separately with subscripts 1 and 2, to induce

tether failure into the model. For example, to consider the failure of tether 2, we set

C2 = 0 in the plant. In both cases, the control laws are designed to be fault-tolerant based

on passive methods; that is, information regarding the failure of tether 2 is not detected

and passed to the control algorithm.

7.2.2.1 Fault Tolerant Adaptive Control (Case I)

In this case, Ir, C1, and C2 are considered to be unknown constant parameters. The

parameter estimation errors are given by

Ĩr = Îr − Ir, C̃1 = Ĉ1 − C1, C̃2 = Ĉ2 − C2 (7.35)

The adaptive algorithm is developed based on the same sliding surface given by Eq. (7.26).

A candidate Lyapunov function is defined as follows:

V =
1

2
S2 +

1

2γr

Ĩ2
r +

1

2γ1

C̃2
1 +

1

2γ2

C̃2
2 (7.36)
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where γr, γ1, and γ2 are positive constants. Taking the first derivative of V along the

trajectory of the system gives,

V ′ = SS ′ +
ĨrĨ

′
r

γr

+
C̃1C̃

′
1

γ1

+
C̃2C̃

′
2

γ2

(7.37)

Substituting for α′′′ from Eq. (7.25) in S ′, we get

S ′ = Irf0 (x) + C1f1 (x) + C2f2 (x) + C1g1 (x) ā′1 + C2g2 (x) ā′2 + p2α
′′ + p1α

′

= (Îr − Ĩr)f0 (x) + (Ĉ1 − C̃1)f1 (x) + (Ĉ2 − C̃2)f2 (x) + (Ĉ1 − C̃1)g1 (x) ā′1

+ (Ĉ2 − C̃2)g2 (x) ā′2 + p2α
′′ + p1α

′

The adaptive law components and control algorithm components are split as per:

Îrf0 (x) + Ĉ1[f1 (x) + g1 (x) ā′1] + Ĉ2[f2 (x) + g2 (x) ā′2]

+p2α
′′ + p1α

′ = −η sat (S)− kS (7.38)

ĨrÎ
′
r

γr

+
C̃1Ĉ

′
1

γ1

+
C̃2Ĉ

′
2

γ2

− S[Ĩrf0 (x) + C̃1f1 (x) + C̃2f2 (x)

+C̃1g1 (x) ā′1 + C̃2g2 (x) ā′2] = 0 (7.39)

Substituting Eqs. (7.38) and (7.39) in Eq. (7.37) will ensure that V ′ is negative-definite:

V ′ = −η |S| − kS2 ≤ 0. The parameter update laws are obtained by collecting terms in

Eq. (7.39) and solving them separately.

Î ′r = γr S f0(x)

Ĉ ′
1 = γ1 S [f1(x) + g1(x) ā′1]

Ĉ ′
2 = γ2 S [f2(x) + g2(x) ā′2]

(7.40)

The expressions for offset velocities can be determined by rearranging terms in Eq. (7.38).

ā′1 =
D̂1

D̂2
1 + D̂2

2

D̂3 and ā′2 =
D̂2

D̂2
1 + D̂2

2

D̂3 (7.41)

where

D̂1 = Ĉ1g1 (x) and D̂2 = Ĉ2g2 (x)

D̂3 = −ηsgn (S)− kS − Îrf0 (x)− Ĉ1f1 (x)− Ĉ2f2 (x) − p2α
′′ − p1α

′
(7.42)

The update laws in Eq. (7.40) provide an estimate of the unknown parameters Îr, Ĉ1,

and Ĉ2 which are subsequently provided to the offset velocity control schemes given by Eq.

(7.41). The offset positions are obtained by integrating Eq. (7.41).
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7.2.2.2 Fault Tolerant Adaptive Control (Case II)

For the TSS considered in this study both the tethers are made of the same material and

therefore, the assumption that C = C1 = C2 is a valid one. Hence, instead of estimating Îr,

Ĉ1, and Ĉ2 separately, we follow a modified system parameter representation for developing

a new adaptive control law for the TSS. The spacecraft pitch motion given by Eq. (7.25)

can be reexpressed in the following form

η2α′′′ = η1f0 (x) + [f1 (x) + f2 (x) + g1 (x) ā′1 + g2 (x) ā′2] (7.43)

where η1 = Ir/C and η2 = 1/C. The new system parameter estimates are

η̃1 = η̂1 − η1, η̃2 = η̂2 − η2 (7.44)

To examine the convergence property of α, consider a Lyapunov function candidate, that

includes adaptive parameters and control variables, defined as follows:

V =
1

2
|η2|S2 +

1

2
γ1 η̃2

1 +
1

2
γ2 η̃2

2 (7.45)

where γ1 and γ2 are positive constants. Of course, in this study, η2 is always positive. Taking

the derivative of V , adding and subtracting η̂1f0(x) and η̂2(p2α
′′+p1α), and collecting terms

gives,

V ′ = S[η̂1f0(x) + g1(x)ā′1 + g2(x)ā′2 + f1(x) + f2(x) + η̂2(p2α
′′ + p1α

′)]

−η̃1Sf0(x)− η̃2S(p2α
′′ + p1α

′) + γ1η̃1η̂
′
1 + γ2η̃2η̂

′
2 (7.46)

To make V ′ ≤ 0, the parameter update laws are chosen to cancel unknown terms:

η̂′1 = γ1
−1Sf0(x), η̂′2 = γ2

−1S(p2α
′′ + p1α

′) (7.47)

The control inputs are obtained by solving the preceding expression [Eq. (7.46)] for ā′1 and

ā′2, and the adaptive control laws that guarantee asymptotic stability for the system are

given by,

ā′1 =
g1 (x)

g2
1 (x) + g2

2 (x)
g0 (x) and ā′2 =

g2 (x)

g2
1 (x) + g2

2 (x)
g0 (x) (7.48)

where the adaptive system parameters are specified in the term g0(x),

g0(x) = ηsat(S) + kS + η̂1f0(x) + η̂2(p2α
′′ + p1α

′) (7.49)

For the existence of control laws in Eq. (7.48), g2
1(x)+g2

2(x) must be non-zero in the region

of interest ΩS (ΩS1 ∩ ΩS2) as formulated in Eq. (7.34).
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7.2.3 Tether Failure

In this study, we only consider the failure of tether 2, represented by L2 in the geometry

of the TSS described in Figure 7.1. Tether breakage is implemented by setting C2 = 0 in

the system equations of motion. Therefore,

β′′ + 1.5 sin (2β) + 2 (1 + β′)
(

l′
l

)
+ λ1

l l1

[
ā1 cos (α− β) + b̄1 sin (α− β)

]
= 0

α′′ − 1.5Ir sin (2α)− λ1

l1
l
[
ā1 cos (α− β)− b̄1 sin (α− β)

]
= 0

l′′ +
[
(1− 3 cos2 β)− (1 + β′)2] l + λ1

l1

[
l − h̄1

]
= 0

(7.50)

The effects of this failure on the control strategies considered in this study are:

1. For the case of nominal sliding mode control, if tether 2 fails, it is assumed that the

failure is detected and the information is passed to the control system. This method

reacts to tether failure actively by properly reconfiguring its control actions so that

the stability and performance of the entire system can still be acceptable. Hence, the

control law given by Eq. (7.32) simplifies to

ā′1 =
D3

D1

and ā′2 = 0 (7.51)

In order to achieve a successful control system reconfiguration, this methodology relies

heavily on the real-time fault detection and isolation scheme (not considered in this

study) for precise information regarding the status of the components (actuators and

sensors) and operating conditions of the system.

2. For the adaptive fault-tolerant control laws considered in cases I and II, tether fail-

ure (C2 = 0) is incorporated in the system model but the failure information is not

provided to the control laws. Instead of using an explicit failure detection and isola-

tion algorithm, this methodology is based on the adaptive control theory where the

controller is constantly updating itself.

In this study, we do not account for collision dynamics of the tether with itself or the second

tether, and hence the consequence of tether entanglement is not assessed. Similarly for the

case of tether severance, tether recoil and wrapping of the remaining tether around the

main satellite is not considered.
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7.3 Dynamical Features of Proposed TSS

An important principle governing the dynamics of TSS is the presence of changing gravi-

tational and centrifugal accelerations as the distance from the Earth’s center changes. For

two-tether systems, the net restoring force is capable of stabilizing TSS about the local

vertical and the difference in the forces experienced by the main satellite and the subsatel-

lite keeps the two tethers under tension. The combined effects of these properties tend to

keep the system in a desired configuration without the use of thrusters or other actuators.

The motion of the subsatellite can be controlled efficiently using two tethers and the added

benefit of redundancy in the case of tether severance makes this system reliable with respect

to control hardware failures. Main dynamical features of a two-tether satellite system are:

(1) Traveling Waves, and (ii) Tether Severance.

7.3.1 Traveling Waves

Traveling waves along two tethers where both tethers are aligned along the local vertical

was simulated using a VRML animation of a two-tethered system in [Williams et al. 2003].

The tension at the two attachment points cause the tethers to be pulled apart at the main

satellite end. This initiates traveling waves along each of the tethers. When these waves

reach the subsatellite, it is reflected and begins to travel back towards the main satellite.

Thus, a complex set of lateral oscillations begins to propagate, that consists of a large set

of superimposed traveling waveforms. A major drawback of this phenomenon is that the

two tethers can overlap after the traveling wave is reflected off the subsatellite. Therefore,

control schemes that can suppress these lateral modes of tether vibrations are required to

avoid the chances of tether entanglement. Since this study deals with short tethers (< 100

m), the system is not prone to the problem of entanglement of the tethers.

7.3.2 Tether Severance

Severance may occur either as a result of interference (due to tether dynamics during

retrieval), or as a result of some other event such as collision with a micrometeorite

[Trivailo et al. 1999]. Assuming that the tether mass is negligible in comparison to that
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of the subsatellite mass; then, it is plausible that, after failure, the portion of the tether

connected to the main satellite goes slack. In this case the motion is unstable and the re-

maining tether may recoil and wrap around the main satellite. The velocity field originated

after failure creates increasing tension on the tether due to tether mass and finite values of

phase speed at which the longitudinal waves propagate [Bergamaschi 1982]. Before failure,

the tether is in a stressed equilibrium due to the mass of the main satellite and its own

inertia. After failure, the elastic energy stored in part of the tether connected to the sub-

satellite is converted in kinetic energy. Therefore, it is important to ensure that the tether

is severed at points sufficiently close to the main satellite. Two solutions suggested by

[Bergamaschi 1982] are: (i) use a tether with increased cross-section in its terminal part so

that the probability of failure near the sub-satellite is as small as possible, and (ii) connect

the terminal part to the remained of the tether by means of a damper, in order to absorb

the longitudinal elastic waves propagating toward the main satellite.

7.4 Performance Evaluation

To study the effectiveness and performance of the proposed attitude control strategies,

the detailed system response is numerically simulated using the set of governing equations

of motion [Eqs. (7.8)-(7.14)] in conjunction with the proposed control laws Eqs. (7.32),

(7.41), and (7.48). The equilibrium and desired states of the system are αe = αd =

0, α′e = α′d = 0, α′′e = α′′d = 0. For simulation of the attitude response, the system

parameters are chosen in dimensionless form. This enhances the scope for application of

these results, regardless of the satellite size. The equations were nondimensionalized with

respect to the subsatellite mass m2, the tether reference length lref , and the orbital rate

Ω. The nondimensional system parameters and initial conditions considered in this study

are indicated in Table 7.1.

Figure 7.2 shows the uncontrolled response of the TSS with tether breakage and the pres-

ence of initial disturbances specified in Table 7.1. Although the trajectories stay bounded,

they experience sustained and repeated oscillations. As discussed earlier, this phenomenon

can make the system unstable. The tensile stress due to gravity gradient is large enough
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Table 7.1: TSS Simulation parameters

Parameters Values

Mass ratio, Ir 1

Unstretched tether lengths, lj0 l10 = l20 = 10

Tether rigidity parameter, Cj C1 = C2 = 2× 107

Initial offset

Local horizontal, āj0 ā10 = ā20 = 0.2

Local vertical, b̄j0 b̄10 = b̄20 = 0.5

Initial conditions {α, α′, β, β′} {0, 0.1, 0, 0.01}
Occurrence of tether breakage at 0.1 orbit
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Figure 7.2: Uncontrolled response of TSS subjected to initial errors and tether failure.
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to prevent tension loss at the main satellite end, and therefore the Coriolis force causes the

repeated oscillations in the attitude dynamics of the system. The objective is to bring the

pitch motion of the spacecraft back to its equilibrium position (αe = 0).

7.4.1 Nominal Sliding Mode Control

Figure 7.3 shows the controlled response of the system using the nominal sliding mode

offset control scheme. The controller was simulated using the following parameters:

p1 = 300n, p2 = 0.4n, η = 0.4, k = 10 (7.52)

The values of n are fine-tuned to get a good response of the satellite pitch angle. For

n = 47, 000, it is clearly evident from Fig. 7.3 that the sliding mode controller is able to

stabilize the attitude motion of the satellite. It is also interesting to note that even for high

gains used in the sliding surfaces, the tether offset variations remain within ±0.2 initially
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Figure 7.3: Controlled response of TSS with tether breakage at 0.1 orbit.
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and gradually settle down to a value of zero. The offset regulator does not return the

system to the equilibrium state corresponding to the terminal position of the attachment

point ā10 = 0.2. Due to severance of tether-2, the equilibrium position of the system will

pertain to ā10 = 0, since the offset corresponding to tether-2 does not exist. The nominal

SMC has proven to be very effective in stabilizing the pitch motion of the satellite. The

control algorithm developed in this study is also applicable to non-circular orbits. However,

it is well known for dumbbell systems that elliptical orbits do not have stable equilibrium

points [Fujii & Ichiki 1997]. The system is not stabilizable at the local vertical, but rather

enters into a controlled periodic motion about the desired equilibrium point.

We next examine the effect of adding external disturbances to the system between

specified orbit ranges. The disturbance model is described by

α′′ = g (α, α′, β, β′, l, l′, ā1, ā2) + d1 (7.53)

where d1 = 4 is a lumped disturbance which include the parameter variations and other
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Figure 7.4: Effect of external disturbances and tether breakage.
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Figure 7.5: Effect of external disturbances on linear controller.

external disturbances. This disturbance is nondimensional and is activated for a specified

time frame, 0.7 to 1.3 orbits. For a TSS constituting a microsatellite 60 kg,Ix = 18.2 kg.m2

and an auxiliary mass (m2 = 10 kg) in a 500 km circular orbit, this disturbance torque will

be approximately equal to 2× 10−4 N.m. The addition of external disturbance is expected

to cause certain variations in the response of the system, and the performance of sliding

mode controller is investigated for this scenario. Figure 7.4 shows that the proposed control

strategy is able to overcome the external disturbances and progressively reduce the attitude

errors. This is achieved with very smooth control actuation.

The advantage of using a nonlinear controller under such circumstances can only be

observed if the control responses are compared with the performance of a linear controller.

The linear controller to vary the tether offset is a proportional-derivative law:

ā1 = − (µ1α
′ + να) and ā2 = (µ1α

′ + να) (7.54)

The linear control gains are chosen as µ1 = 0.001 and ν = 20. The nonlinear control law

developed in Eq. (7.32) was linearized and compared to Eq. (7.54), and then the gains were
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selected based on p1 and p2 in Eq. (7.52). Rather than adopting a trial and error procedure,

the above mentioned method is more systematic for comparison of both the control laws.

The controlled response of using a linear controller for the TSS undergoing initial in-plane

attitude disturbances and external disturbances when the system is subjected to tether

failure at 0.1 orbit is shown in Fig. 7.5. It is clearly evident that the proposed sliding

mode controller has an advantage over the linear controller when external disturbances are

added to the system. The linear controller is ineffective in damping the pitch response of

the main satellite (α).

7.4.2 Fault-tolerant Adaptive Control

We next investigate the effect of model uncertainties on the performance of the system. For

case I, an adaptive control law proposed in Eq. (7.41) is used for simulating the attitude

response. The controller was numerically simulated with the system mathematical model

using the following sliding plane parameter values:

p1 = 300n, p2 = 0.4n, η = 0.4, k = 5 (7.55)

The value of n = 420 was chosen for the adaptive controller, compared with the large value

chosen for the nominal sliding mode controller [Eq. (7.52)]. The initial parameter estimates

are taken as follows:

Îr0 = 0.5, Ĉ10 = 2× 105, and Ĉ20 = 2× 105 (7.56)

The parameters of the plant are considered to be the same as mentioned in Table 7.1.

Figure 7.6 presents the response of the system using the adaptive control law in Eq. (7.41).

Tether 2 fails after 0.1 orbit. When compared with the controller response obtained using

the sliding mode controller in Fig. 7.3, it is clearly evident that the adaptive controller

performs better in damping the oscillations of the pitch attitude. The overshoot and

frequency of oscillations in the pitch motion is also found to be reduced considerably when

compared with Fig. 7.3. Another important point to note here is the use of low-value

gains when compared with the nominal sliding mode controller. The plot of parameter

estimates are shown in Fig. 7.7. The constants for the adaptation laws were chosen as

γr = 1.8, andγ1 = γ2 = 1.2 (7.57)



7.4. Performance Evaluation 229

0 0.5 1 1.5 2
−0.02

0

0.02

0.04

0.06

0.08

α 
[d

eg
]

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

β 
[d

eg
]

0 0.5 1 1.5 2
10.49

10.495

10.5

10.505

10.51

Orbits

l 

0 0.5 1 1.5 2

−0.2

−0.1

0

0.1

0.2

Orbits
ā
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Figure 7.6: Controlled system response using adaptive control law - Case I.
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When tether 2 fails, the estimate of the satellite mass distribution parameter, Îr, reaches

a value close to 3 and then settles to a value of 1. The values of Ĉi does not vary much,

but a much lower value is used for the controller than that used in the system. Therefore,

the control laws stabilize the pitch motion of the TSS.

For case II, an adaptive control law described by Eq. (7.48) is simulated and the results

are presented next. The following sliding plane constants and adaptive gains were used:

p1 = 4, p2 = 4, η = 0.01, k = 2, γ1 = 0.0012, γ2 = 0.08 (7.58)

The initial parameter estimates are assumed to be:

η̂1|initial = Ir0

C0
= 0.5

2×105

η̂2|initial = 1
C0

= 1
2×105

(7.59)

The controlled response of the system after undergoing initial inplane disturbances and

breakage of tether 2 is shown in Fig. 7.8. It is evident that the trajectory of α is very
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Figure 7.8: Controlled system response using adaptive control law - Case II.
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Figure 7.9: Parameter estimates η̂1 and η̂2.

smooth, unlike the responses obtained from using sliding mode control (Fig. 7.3) and case

I adaptive control (Fig. 7.6).

One can clearly see from Fig. 7.8 that the system requires more settling time, compared

with Figs. 7.3 and 7.6. The tradeoff is the use of much lower gains, compared with the

sliding mode control and adaptive control developed in case I. This is clearly visible by

comparing Eqs. (7.52) and (7.55) to Eq. (7.58). The control input ā1 clearly counteracts

for the failure of tether 2 and hence reduces its effect on the response of α. Slight distortions

in the response of α occur, although it is not very clear in Fig. 7.8. The variation of system

parameters represented by η̂1 = Îr/Ĉ and η̂2 = 1/Ĉ is shown in Fig. 7.9. These values,

although extremely high compared with the ideal case (Table 7.1), prove the robustness of

this adaptive control scheme.
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7.4.2.1 Random Initial Conditions

We next examine the results from a wider range of system parameters and initial distur-

bances to make the conclusions more generally applicable. The adaptive fault-tolerant

control scheme (case II) is tested for random system parameters. The saturation limits

for the controller is set at ā1 = ±0.4. For the random simulations, the control gains were

chosen as

p1 = 6, p2 = 6, η = 0.1, φ = 0.3, K = 3 (7.60)

Figure 7.10 shows the range of system parameters that gave successful results for two

sets of initial condition disturbances: 1) α′0 = 0.1, β′0 = 0.01, and 2) α′0 = 0.01, β′0 = 0.01.

Tether breakage at 0.1 orbit was simulated. It can be clearly observed from Fig. 7.10 that

for the case of α′0 = 0.01 and β′0 = 0.01, a wider range of system parameters were successful

in controlling the response of the system during the failure of one of the tethers. The

initial unstretched length of the tether, lj0, had no effect on the analysis. For any initial

tether length, the range of āj and b̄j remains the same. As the disturbance was increased

to α′0 = 0.1 and β′0 = 0.01, the maximum initial offset available was āj = 0.27 for b̄j = 0.6.

Keeping initial disturbances the same, we then examined the effect of control gains on

a range of system parameters. Figure 7.11 shows the range of system parameters that were

successful in controlling the response of the system for two cases: 1) K = 3, and 2) K = 5.

Using K = 5, for b̄j = 0.6, the maximum available initial offset increases to 0.32 as opposed

to the case of āj = 0.27 for K = 3. The range of system parameters for which the fault-

tolerant adaptive control provides successful results depend on the gains and the initial

disturbances considered. For larger disturbances, range of system parameters decreases.

7.4.2.2 Tether Attachment-Point Blocking

Tether attachment-point blockage was first studied by [Grassi et al. 1994] where they stud-

ied a control system that integrates a reaction wheel and a mobile attachment point on-

board each of two tethered platforms. They considered a breakdown case in which the

attachment-point control system on the mother satellite stops work and only the daughter

satellite attachment point provides the two satellite pitch and roll control. For the fault-

tolerant adaptive controller developed in case II, we next incorporate a more likely fault
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Figure 7.12: Blockage of ā2 attachment point is simulated at 0.1 orbit.

scenario in which one of the offset jams in position. An abrupt stop of the tether attachment

point ā2 at 0.1 orbit is simulated and the results are shown in Fig. 7.12. No modifications

were made to the control law in Eq. (7.48), to accommodate for offset blockage. It can

be clearly observed that ā1 overshoots to a value of 0.4 as soon as ā2 is hammed at 0.17;

ā1 eventually settles at 0.17 after controlling the pitch attitude of the main satellite in

accordance with the geometry of the system. As expected, even when one of the offsets is

stuck in position, the fault-tolerant controller proposed in this study demonstrates excellent

performance in providing pitch control.

7.4.2.3 Tether Attachment-Point Sign Reversal

We consider the case in which one of the tether attachment points starts moving with

sign reversal. Although the control laws provide the correct signal, a fault in the actuator
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Figure 7.13: Sign reversal of ā2 attachment point is simulated at 0.1 orbit.

can reverse the motion of the tether attachment point. Figure 7.13 shows the librational

motion of the main satellite for a case in which ā2 starts moving with sign reversal after 0.1

orbit. The proposed fault tolerant control methodology can effectively damp the oscillations

present in the pitch attitude even when an offset start moving with sign reversal.

The preceding results bring out powerful features of the proposed adaptive controllers

(cases I and II). The performance of the controller does not deteriorate even when the

system parameters are changing and yet provides a better attitude response, as seen in

Figs. 7.6 and 7.8. It is seen that in the closed-loop dynamics, the estimated parameters do

not converge to their true values in Figs. 7.7 and 7.9. Furthermore, the proposed controllers

perform satisfactorily even in the case of a slack tether. Overall, tether offset variations

using sliding mode control prove to be an excellent control strategy for TSS even when one

of the tether fails.
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7.4.3 Quantitative Analysis

Based on the results obtained in this section, it is important to examine whether the

maximum tether offset variations required for the fault-tolerant adaptive controllers can

satisfy the requirements of real satellites. Depending on the size of the satellite, the actual

tether offset will be a1 in dimension. The maximum tether offset a1 required for various

sizes of satellites are presented in Table 7.2.

For SPARTNIK, a diameter of 0.51m gives a maximum of 0.2m for a1 and a2. The

requirement from the simulation in dimensionless form is ā1 = 0.4, which can be converted

to a1 = 0.1m in dimensions using the satellite parameters in Table 7.2. This clearly falls

under the maximum available value of 0.2m. Similarly for nanosatellites and picosatellites,

the maximum tether offset requirements are met very comfortably. The maximum speed

requirements for the offsets vary from 0.3m/s for a microsatellite to 0.7m/s for a picosatellite

(Table 7.2). For the practical realization of the proposed control strategy, several issues,

including power and weight requirements, must be taken into account.

7.5 Summary

One advantage of employing a two-tether satellite system over a single-tether system is the

level of redundancy introduced into the system if one of the tethers were to be severed.

However, as discussed in Sec. 8.3, there are some ill effects that must be taken into

account when a tether breaks. There is a huge possibility that the remaining tether could

collide with itself and lead to tether entanglement. These cases were not considered in the

simulations. Fault-tolerant adaptive stabilization of a TSS using an offset control scheme

in the presence of tether failure was presented in this chapter.

The numerical integration of the governing nonlinear equations of motion establishes

the feasibility of the proposed tether offset variation strategy. The equations of motion were

developed using the Lagrangian approach. Based on a nominal sliding mode technique, two

different types of nonlinear adaptive controllers were designed. A nonadaptive controller

based on sliding mode technique was also developed for comparing a linear proportional-

derivative control law when external disturbance is added to the system.
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The adaptive sliding mode controller developed using modified representation of system

parameters (case II) outperforms the other control strategies developed in this study. Use

of low sliding mode gains and better adaptation to tether failure are the advantages of

this approach. The adaptive controller was also tested for cases when one of the tether

attachment point abruptly stops moving and when one of the offsets moves with sign

reversal. This control strategy demonstrated excellent performance in all the fault and

failure cases considered.

The proposed control scheme can stabilize the satellite’s attitude within a quarter of an

orbit using tether offsets to the order of one-tenth of a meter for small satellites. Overall,

the numerical results clearly establish the robustness of the proposed adaptive offset control

scheme in regulating the satellite dynamics of a two-tether system in the event of breakage

of one of the tethers.



Chapter 8

Conclusions

Spacecraft are potentially subjected to unexpected anomalies and failures of actuators

during their mission lifetime. With recent advances in computer hardware and compu-

tational techniques, fault recovery can be accomplished autonomously onboard spacecraft.

Taking inspiration from the existing theory of nonlinear control, we have developed a fault

tolerant control system for the RyePicoSat missions to cope with actuator faults whilst

maintaining the desirable degree of overall stability and performance. In this chapter we

review the contributions of the fault tolerant control techniques developed in this thesis.

We breakdown the contributions based on the techniques presented in the previous chap-

ters to outline possible future directions in fault tolerant control research for space systems.

The discussion is concluded with a few final remarks.

8.1 Summary of Contributions

Autonomous multiple spacecraft formation flying space missions demand the development

of reliable control systems to ensure rapid, accurate, and effective response to various

attitude and formation reconfiguration commands. To enable capabilities that would never

be achievable by single large spacecraft, several missions and mission statements by NASA

and other bodies such as the European Space Agency have identified formation flying as a

means of reducing cost and adding flexibility to space-based programs. Keeping in mind the

complexities involved in the technology development to enable spacecraft formation flying,

the objective of the space program initiated by Space Systems Dynamics and Control

(SSDC) laboratory at Ryerson University, is to design a fault tolerant control algorithm

that augments the AOCS on-board a spacecraft to ensure that these challenging formation

flying missions will fly successfully.



240 Chapter 8. Conclusions

8.1.1 Fault Tolerant Reconfigurable Spacecraft Formations

Spacecraft formation flying has become an important field of research in the space industry

due to cost benefits and mass savings that arise from this mode of operation. Development

and implementation of robust and reliable control algorithms for controlling the formation

are necessary to ensure that the advantages of formation flying are effectively exploited.

Autonomous coordinated control, precise formation-keeping, and reconfiguration of forma-

tion geometry in the presence of actuator faults are areas critical to the success of any

proposed mission involving spacecraft flying in formation.

Although nonlinear control algorithms have been published in the literature for for-

mation flying in LEO, very few have addressed fault recovery, robustness, and adaptation

with thruster saturation, simultaneously. We considered several scenarios of thruster faults

that can introduce constant or state-dependant disturbances into the overall closed-loop

system causing the dynamics of the follower spacecraft to deviate largely from its nominal

regime. A fault tolerant control scheme was developed to enable autonomous fault recovery

in the presence of various thruster faults. Numerical results presented in Chapter 2 clearly

establish the robustness of the proposed fault tolerant control methodology for enabling

sub-millimeter precision spacecraft formation flying in the presence of subsystem faults,

model uncertainties, and time varying disturbances.

8.1.2 Control of Underactuated Spacecraft Formations

Relative motion control of spacecraft formations using thrusters in a fully actuated configu-

ration is a well understood and an extensively studied problem. On the other hand, despite

the recent advances, very few researchers have addressed the prospects of using reduced

inputs (underactuated configuration) to illustrate formation acquisition and reconfigura-

tion maneuvers. For configurations with no radial axis input, the controllers available in

the literature are based on linearized relative motion dynamics and only work in a small

neighborhood of the origin. For controlling formations with reduced inputs, significant

investigation is required to establish the regions of asymptotic stability for the follower

spacecraft and also guarantee a closed stable relative orbit around the leader spacecraft.
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We developed a nonlinear control strategy capable of precision formation control to

study two configurations of reduced inputs, where no control force is available in the (1)

radial direction, and (2) along-track direction. In particular, the second case, not examined

in the literature previously, was challenging because it fails the linear controllability test

and hence required the use of nonlinear control techniques. The case of no control authority

in the radial direction was also demonstrated using hardware-in-the-loop simulations per-

formed on the SSDC Satellite Airbed Formation Experiment (SAFE) testbed simulating

formation acquisition. The theoretical and experimental results presented in this chapter

clearly indicate that the proposed control scheme represents a practical design approach

for multiple spacecraft formations to deal with the problem of formation maintenance and

reconfiguration maneuvers for the case where the radial or along-track thrusters fail.

8.1.3 Fault Tolerant Attitude Control of Spacecraft

Space mission to validate technology developments and new concepts are very risky and

expensive. This ultimately hinders the development of attitude and orbit control research.

The trend for spacecraft related research has been to simulate space systems in a laboratory

environment to reduce risk and cost. Simulations provide valuable knowledge for validating

concepts and missions. Many of these simulations are software-based architectures. At

Ryerson University we have developed a hardware-in-the-loop reaction wheel assembly

simulator to provide a more realistic demonstration of expected performance of the proposed

fault tolerant control techniques as compared with software-based architectures.

Hardware-in-the-loop simulation was accomplished using a reaction wheel assembly with

on-board control electronics to test actuator performance. Two configurations of reaction

wheel assembly developed by the SSDC laboratory at Ryerson University were examined: 1)

Traditional four wheel setup in which three reaction wheels are aligned with the spacecraft

principal body axes and the fourth wheel in a skewed configuration; and 2) Four reaction

wheels in a pyramid configuration. The reaction wheel testbed is primarily setup to verify

the generation of correct reaction torques as demanded by the control algorithm to get a

physical feel of attitude control. Faults of reaction wheels were modeled as additive and

multiplicative. Abrupt failure of one or two wheels in the assembly were also considered.
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The proposed control law does not require an explicit fault detection and isolation

mechanism and therefore failure time instants, patterns, and values of actuator failures

remain unknown to the designer. The stability conditions for robustness against model

uncertainties and disturbances were derived using Lyapunov theory to establish the re-

gions of asymptotic stabilization. The benefits of the control algorithm were analytically

authenticated and also validated using numerical simulations. The hardware-in-the-loop

reaction wheel simulation results clearly established the robustness of the proposed control

algorithm for precise attitude tracking in the event of reaction wheel faults and failures.

8.1.4 Attitude Control of Underactuated Spacecraft

Fault tolerant attitude control of spacecraft with redundant reaction wheels examined

in Chapter 4 required the development of a reconfigurable control scheme that can re-

distribute control actions to remaining operational wheel upon failure of one or more reac-

tion wheels (depending on the reaction wheel configuration). A constraint inherent in the

proposed methodology is that the reaction wheel configuration, after wheel failure, is still

capable of providing independent control torques in all three principal body-fixed coordi-

nates of the spacecraft. For spacecraft equipped with momentum exchange devices, like

reaction wheels or control moment gyros, three axis attitude controllability is impossible

with fewer than three devices providing torques in two orthogonal directions.

If the spacecraft is equipped with minimal set of thrusters (three pairs distributed on

three axes of the body frame of the spacecraft), complete failure of any single pair prevents

the spacecraft from performing arbitrary attitude maneuvers using a conventional control

algorithm modeled based on minimal actuator configuration. In this case, a sufficient degree

of attitude dexterity can be made available using a control law reconfiguration. With a

view to counteract the challenges posed by failure of control actuators, we developed a

control scheme that can provide three axis attitude stabilization for spacecraft using torques

supplied by thrusters about only two of its principal axes. We considered two cases, 1) no

control authority available on the roll axis, and 2) no actuation available on the yaw axis.

Numerical simulations illustrated that the proposed control scheme can successfully regulate

the attitude motion from large initial conditions and stabilize the spacecraft.
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8.1.5 Spacecraft Attitude Control Using a Single Thruster

Based on the results obtained from the proposed underactuated configurations, the most

important contribution of Chapter 6 is the formulation of a novel single thrust control

strategy for pico-satellites to achieve 3-axis attitude control. A nonlinear control algorithm

was developed to stabilize the three axis attitude angles and angular velocities of spacecraft

using a single thruster. Torques are generated using a thruster orientation mechanism

with which the thrust vector can be tilted on a two-axis gimbal to provide the necessary

framework for validating the proposed nonlinear control algorithm.

With recent renewed interest to return to the Moon, NASA has proposed a new series

of Crew Exploration Vehicle capable of carrying astronauts to the Moon. The control

concept using a single-thruster can be conceived as a last-ditch emergency backup system,

in the absence of nominal control capacity, to execute attitude maneuvers during de-orbit

and descent phases (for descent to the lunar surface, or, attaining a heat-shield-forward

attitude trajectory during atmospheric reentry). For low-cost missions using pico-satellites,

the possibility of handling actuator failures without the need for redundant elements is even

more appealing. The actuator system remains minimal and complete three-axis attitude

stabilization is achieved using a single thruster.

8.1.6 Fault Tolerant Attitude Control of Tethered Spacecraft

The advent of tethered satellite systems marks the beginning of a new era in space re-

search. Several interesting space applications of tethers have been proposed and several

mission have been flow; some missions were successful and others were unsuccessful. Some

of the major causes of failure of these missions were found to be associated with tether

deployment and tether breakage. Researchers have tried to solve these problems using a

high-performance tether deployment system and multistrand tethers; however, the prob-

lems of tether deployment and breakage still exist. The scope of Chapter 7 was to emphasize

the challenges associated with the attitude stabilization of a two-tether system when tether

deployment suddenly stops and tether breakage occurs. We examined the attitude control

of a spacecraft using two identical tethers of equal length connecting a downward-deployed
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auxiliary mass. The tethers are connected to two distinct points symmetrically offset from

the spacecraft’s mass center. The objective was to control the attitude of the spacecraft

through regulated motion of the tether attachment point. A fault tolerant adaptive sliding

mode control scheme was developed to stabilize the attitude of the spacecraft in the event of

breakage of one of the tethers. Furthermore, a likely scenario in which one of the two tether

attachment points suddenly stops moving was also incorporated to test the effectiveness of

the proposed control algorithm.

8.2 Future Work

Developing attitude and orbit control software for spacecraft to ensure operational safety

has several potential future directions. We have identified three main directions for future

research. To have a complete fault tolerant ‘intelligent’ spacecraft, it is necessary to eval-

uate the impact of sensor failures and develop methodologies that can enhance existing

attitude estimation algorithms. This provides ample scope for developing output feedback

control laws, an area virtually unexplored in the current literature. Another issue of great

practical importance is experimental validation of proposed techniques. Simulation of the

complete spacecraft with on-board control electronics is essential to verify and understand

the limitations of various subsystems. Finally, we present some further applications that

would be helpful in analyzing the performance of the proposed control scheme in this thesis.

8.2.1 Improved Fidelity Attitude Estimation

Many nonlinear filtering methods have been applied to the problem of spacecraft attitude

and orbit determination in the last two decades. Multiplicative extended Kalman filter has

been widely used in attitude estimation algorithms, but it can fail in cases that have highly

nonlinear dynamics or measurement models. Other methods available in the literature are

simple linear filter based algorithms that do not provide optimal results. When measuring

a particular state variable, a single type of sensor for that variable may not be able to meet

all the required performance specifications. The idea of blending data from various attitude

and orbit sensors using a single state estimation algorithm is known as sensor fusion.
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To increase the level of autonomy for space missions and to reduce the cost of ground

support, a method for autonomous fault detection and isolation of spacecraft sensor systems

needs to be examined. The objective is to first detect the presence and location of the faults

and then calculate the attitude estimate utilizing the remaining operational sensors by

reconfiguring the algorithm architecture. Nonlinear observers are an attractive alternative

for applications where the spacecraft is subjected to changing operating conditions and

nonlinearities of the dynamic model or measurement model are severe, or when a good a

priori estimate of the states are unavailable.

8.2.2 Experimental Validation and Prototyping

Air bearings offer one of many solutions to the problem of simulating the functional space

environment in a laboratory setup. Simulation of the spacecraft motions using a spherical

three axis air bearing platform with sensors, actuators, and control electronics mounted on

it plays a vital role in the development and testing of spacecraft attitude control systems.

This can provide a true measure of chosen controller gain parameters, on-board subsystem

malfunctions, and various interface incompatibilities. The primary objective of air-bearing

tests is precise representation of spacecraft dynamics. With the problem of accurate plant

model addressed, experimenters can use this simulator to evaluate various attitude control

schemes. Performance of the control algorithms can be verified based on three axis pointing

and tracking maneuvers.

8.2.3 Applications

Finally, we recommend other spacecraft applications that can benefit from the fault tolerant

control schemes presented in this thesis. The proposed control framework can be applied

directly to some of these applications while the others would only require some minor

changes to the control structure. The following suggestions can help the selection of future

research topics.

• Distributed Consensus Network. Spacecraft formation flying in the presence of actua-

tor faults can be made more appealing by extending the leader-follower configuration
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examined in this thesis to a distributed consensus network. Then, the proof of sta-

bility will be more challenging than simply proving the stability of the tracking error

between a leader and a follower spacecraft. An advantage of the distributed network

is that loss of one spacecraft does not represent a single point of failure for the mission.

• Coordinated attitude and orbit control. The problem of orbit control for multiple

spacecraft in formation has been investigated in this thesis with consideration of

actuator faults. Further refinement and extension to this problem is possible by

examining the synchronization of spacecraft considering the coupled effects of relative

attitude and orbit position. Synchronization performance must now be established

based on six-degree of freedom and cross-coupling concept.

• Artificial Intelligence. The concept of artificial intelligence (AI) and ‘learning/expert

systems’ could be exploited for developing autonomous on-board identification and

isolation of actuator and sensor faults. The basic framework developed in this thesis

can be adopted by adding an AI retrofit component to detect and isolate faults.

8.3 Concluding Remarks

As missions become more ambitious, spacecraft attitude control will require more versatil-

ity, which may not be realizable with conventional feedback control algorithms. In the past,

not many missions had the option of using on-board fault tolerant reconfiguration control

algorithms because of each control processor unit’s cost, performance factor, and weight.

However, with the development of smaller and cheaper micro-processors, several different

control algorithms can be combined to obtain a more precise evaluation of spacecraft atti-

tude and orbit parameters. Overall, the re-design goals set in the initial stages of the study

was successfully validated. Successful implementation of the proposed methodology will

greatly enhance the reliability of the spacecraft, while allowing for potentially significant

overall mission cost reduction.
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