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ABSTRACT

Real Time Autonomous Collision Avoidance for Unmanned Aerial Vehicle

Min Prasad Adhikari, Master of Applied Science, Aerospace Engineering

Ryerson University, Toronto, 2015

GeoSurv II is a jointly funded project of Sander Geophysics Limited (SGL) and NSERC to

develop a �xed-wing Unmanned Aerial Vehicle (UAV), capable of autonomously performing

high resolution geophysical surveys at low �ight altitudes over poorly known terrain. This

thesis is in support of achieving this objective.

In order to achieve such a level of autonomy, the UAV must be capable of avoiding stationary,

pop-up and moving obstacles while �ying at low altitude. Such obstacles may include power

lines, communication towers, trees, unknown �ight vehicles encountered while at �ight or

uneven terrains which creates the situation of the pop-up obstacles. In addition to that the

UAV must be able to �y as close as possible to the reference trajectory for a given geophysical

survey. The development and testing of a method capable of performing such an autonomous

mission is the objective of this thesis.

In this thesis, a method is developed based on a spectral method known as Legendre Pseu-

dospectral Optimal Control, because of its capability to directly incorporate all of the mission

objectives, while respecting the UAV constraints (which other methods in the literature are

not capable of). The method accounts the aircraft and obstacle constraints there by capable

of avoiding obstacles with feasible maneuvers for the aircraft. The objective to remain as

close to the reference trajectory is ful�lled by setting the area between the �ight trajectory

and reference trajectory as the cost of optimization of the optimal control problem. Five

di�erent scenarios presented in this thesis show the developed method's capability to avoid

the stationary, pop-up and the moving obstacles successfully while remaining close to the

reference trajectory.
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Chapter 1

Introduction

1.1 Introduction

Aerospace has always challenged nature, since the very beginning. After the controlled �ight

by the Wright brothers in 1903 [4], the feasibility of aircraft to carry weights heavier than

air in a controlled manner was demonstrated. Even today, we seek new possibilities either

driven by a new need, or simply because we can. The type of aircraft discussed in this thesis

is an Unmanned Aerial Vehicle (UAV). Unmanned Aerial Vehicles, also known as drones, are

�ying machines without any human pilot on board. They are either controller autonomously1

by computers on board or remotely piloted.

UAVs have several advantages and have been proven to be useful in di�erent tasks such as

domestic policing [5], disaster relief [6], scienti�c research [7], conservation [8] and many other

up to our imagination. Among these many possible applications, is their use in geophysical

surveys [9]. Because of their ability to �y at lower altitudes than manned �ight [10], they

become ideal for performing high resolution surveys. Moreover, driven by advancements in

computer processing power, UAVs have made signi�cant progress within the last 10 years [11].

In terms of aerial surveys, the use of UAVs in aerial surveillance has become more common

these days [12,13,14,15]. While UAVs being ideal for aerial surveillance, they are mostly used

by military personnel. Apart from that, UAVs are more attractive to di�erent types of users

for several reasons. Among them, �rst is the use of UAVs to operate in situations dangerous

for human pilots. Next, due to the absence of an on board pilot, small-scaled aircraft can be

used decreasing the cost of manufacturing and fuel consumption, compared to larger piloted

aircraft.

UAVs are of di�erent types based on their size and the tasks that they perform. In addition,

1Autonomy is, namely the ability of the UAV to �y without human intervention.
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features such as range, maneuverability, autonomy determine the UAV's capabilities. Among

them autonomy determines the UAV's capability to operate without human interference. At

a primary level of autonomy the UAVs are able to complete the �ight mission based on pre

uploaded �ight plans. UAVs with the ability to avoid obstacles and potential collision scenes

have an even higher level of autonomy. Also, the level of autonomy can be even higher, such

as in the case of forest �re monitoring [16]. For example, in the case of forest �re monitoring,

a camera attached to the UAV along with an image processing system passes an image of

the �re's edge points indicating the burning side. These points are further approximated by

straight lines creating a perimeter around the �re area. The path planning algorithm then

places waypoints along the approximated �re perimeter and �nally the autopilot is used

to determine the control sequence required to maneuver the UAV to the waypoints. The

motivation for the study in this thesis is the GeoSurv II project, which is described in more

detail in next sub-section.

1.2 GeoSurv II Project

GeoSurv II is a jointly funded project of Sander Geophysics Limited (SGL) and NSERC with

the objective to develop a small UAV, capable of performing high resolution geophysical

surveys at low �ight altitudes [9]. The designed aircraft is a twin-boom pusher aircraft

with a wingspan of 4.9m, and two magnetometers installed on its wing tips to measure the

magnetic �eld of the terrain the UAV is �ying over. Research has been conducted to reduce

the interference of ferromagnetic sources of the aircraft on the survey [17] and also on the

development of low cost composite structure for the airframe [18]. Figure 1.1 from [9] shows

the GeoSurv II prototype.
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Figure 1.1: GeoSurv II prototype

Currently, Sander Geophysics Ltd. requires four crew members (pilot, co-pilot, maintenance

engineer and geophysicist) to perform such surveys and the objective of the GeoSurv II

project is to develop a UAV with the level of autonomy where the maintenance engineer and

the geophysicist would be able to perform the survey without the pilots [9]. The autonomous

system thus developed would be able to avoid obstacles detected without operator interven-

tion. Basically the system has two separate areas: Obstacle Detection (OD) and Obstacle

Avoidance (OA); this thesis is focussed on OA.

Thus, the autonomy is an essential feature of the GeoSurv II aircraft. This thesis examines

the trajectory planning aspect of obstacle avoidance (OA) for the GeoSurv II project. The

Obstacle detection (OD) aspect is not covered. The next paragraphs cover the mission

scenario for GeoSurv II.

Survey Area and Potential Obstacles

A typical GeoSurv II mission pro�le involves the survey of a given area. The required �ight

path consists of equally spaced lines over the area of interest. To obtain high-resolution

measurements of the magnetic �eld, it is desired to �y below 50m AGL (Above Ground Level)

[9]. As such, the UAV might face di�erent problems, such as a-priori unknown small hills

or other unforeseen obstacles. Consequently this thesis addresses the autonomous collision

avoidance2 technique for such a UAV. In particular, moving, stationary and pop-up3 obstacles

2Here collision avoidance means obstacle avoidance, where as in the literature collision avoidance means
avoiding other UAVs/aircraft [19, 20, 21, 22] .

3Obstacles that appear suddenly ahead of UAVs

3



are considered.

Any structure or object that comes in the way of the UAV is a potential obstacle. They may

range from stationary obstacles like power line towers with power lines, telecommunication

towers, trees and industrial chimneys to moving obstacles such as birds, and unknown �ight

vehicles [23]. Pop-up obstacles become of increasing signi�cance if the UAV is to operate

in environments with uneven terrain . For example, if a small hill is encountered, the UAV

cannot see what lies behind it. In cluttered environments, pop-up obstacle can be any

object which is hidden by a visible obstacle and is encountered suddenly after the obstacle

is avoided.

The objective for GeoSurv II, is for an operator to upload a �ight plan onto the UAV, which

the UAV will autonomously carry out. Any encountered obstacles are to be avoided, while

staying as close as possible to the original �ight plan, so as to minimize gaps in the resulting

survey.

1.3 Existing Approaches to Obstacles Avoidance

Obstacles avoidance (OA) has been a topic of research required in autonomous operation.

It was �rst researched in the �eld of robotics. Details of some of these approaches may be

found in references [24, 25, 26, 27, 28]. Obstacles avoidance methods were later applied to the

UAVs with the desire of autonomous operation [29, 30, 31]. UAVs have di�erent properties

and constraints compared to non-aerial robotics. Because of this, the methods developed in

robotics often cannot be directly applied to UAVs, and need to be modi�ed. For example,

mobile robots can come to complete stop to undertake a maneuver, while �xed-wing UAVs

need to maintain a minimum �ight speed. Moreover, UAVs have minimum turning and

pull up radii which further constrain possible UAV maneuvers. These constraints should be

accounted for when designing obstacle avoidance methods for �xed-wing UAVs.

There are generally two classes of methods for obstacle avoidance:

(1) When a complete map of the environment (map with all obstacles) is known prior to the

start of the mission, such method of avoiding obstacles is known as Trajectory Planning (TP).

Trajectory Planning methods have also been called path planning, global path planning or

global guidance.

(2) When obstacles are unknown prior to the start of the mission and are encountered during

�ight, the method is called Reactive Obstacle Avoidance (ROA) or local path planning [9].

Obstacles avoidance methods at local and global levels, have di�erent characteristics and

are applicable in di�erent situations. In the global approach of obstacle avoidance (Trajec-

4



tory Planning), the computation time is not of concern. Since the method is run prior to

the mission, it can run on a powerful computer with signi�cant computational power. Due

to the lack of a computational time constraint, optimality is of greater focus in Trajectory

Planning. In contrast, computation time of the method in Reactive Obstacle Avoidance is

of great importance, since a delay in response might lead to collision. Since, Reactive Ob-

stacle Avoidance is performed in real-time4 on board, memory resources and computational

power are limited by the available on-board computational resources. In Reactive Obstacle

Avoidance, robustness is of greater concern than optimality since there is very little chance

to correct any errors that may have occurred in the obstacle avoidance computations.

Various obstacle avoidance methods have been developed and continue to evolve with im-

provement. Details of some of these approaches may be found in references [32,33,34]. These

techniques include arti�cial potential �elds, cell decompositions, road maps and pseudospec-

tral optimal control methods, among others. Each method has advantages and disadvantages

on the basis of completeness, optimality, computational complexity and scalability [35,32,34].

Completeness refers to the method's ability to �nd a successful solution if it exists and report

if no solution exits. Optimality refers to the method's ability to select the path that best

�ts the given criteria. Computational complexity refers to the time taken by method to �nd

the solution, and scalability refers to the method's ability to extend to higher dimensional

complex systems [35]. OA methods are discussed in further details in the subsections below.

1.3.1 Cell Decomposition Method

In cell decomposition methods, the operational area is divided into similar shaped small

regions called cells, which are non-overlapping. Possible routes are then generated using

search algorithms like A*, that pass through adjacent free cells. Cells that share a common

boundary are referred to as adjacent and free cells are ones that are not occupied by obstacles.

Figure 1.2 shows the route selected based on the cell decomposition method. Starting and

�nish points are connected by straight lines which are free from obstacles. Cells containing

obstacles are shaded (cross-hatched) while the actual obstacles are solid black. Those cell

containing obstacles are excluded from path development as the vehicle cannot travel through

them while the free cells are traversable cells. The optimality of the solution is based on

the resolution of the cell grid. Higher resolution results in improved optimality, but at

the expense of increased computational burden. This increased computational burden can

be overcome by implementing quad-tree or octree data structures [36]. Despite these new

data structures, the inability to incorporate the vehicle constraints limits the usefulness of

4online or while at �ight
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this method for �xed-wing UAVs. Furthermore, this method is more suited for Trajectory

Planning than Reactive Obstacle Avoidance, since it requires the generation of an entire

path.

Figure 1.2: Cell Decomposition from reference [1]

1.3.2 Road Map Method

A road map is a network of straight lines, which connect the vehicle's initial and target points,

without passing through any obstacles. The method work in con�guration space, where the

robot is treated as a point mass and the space is adjusted to accommodate the physical size

of vehicle. A search algorithm is used to generate the shortest and safe route (route without

intersecting obstacles) between the initial and goal points. Figure 1.3 from [1] illustrates the

method. First, a map is de�ned as a work space (example: Cspace). Next, the space is split

into free space and obstacles. Then, a network of straight lines are generated connecting

a set of points in the free space forming polygonal shapes in Cspace. These connected lines

must not intersect obstacles. The graph produces a network of possible collision free routes.

Finally search algorithms like A* are used to select a route between the initial and �nal

points based on merit.
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Figure 1.3: The road map method

Other road maps methods used in the literature are visibility graphs and voronoi diagrams.

Visibility Graphs

In this method, paths are formed by connecting networks of a non-directed graph of straight

lines. This method consider only obstacles with polygonal shapes [1]. In the graph, vertices

of polygonal obstacles are connected by straight lines called edges. The edges should not

intersect obstacles. Edges that connect vertices are drawn such that each vertex can be seen

from the other. Finally using a search algorithm based on some metric, a route is found

connecting the start and end points. Figure 1.4 shows a visibility graph.

Figure 1.4: Visibility graph from [1]
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Voronoi Diagrams

In Voronoi diagrams, a set of polygonal fences are constructed around each of the obstacles,

by drawing lines perpendicular to the lines connecting the centers of the obstacles. The

polygonal fences are then adjusted to meet at a minimum number of vertices [1]. Considering

the resulting polygonal fences as connected graphs, a search algorithm can be used to �nd a

connected route between the initial and �nal positions.

obstacle

obstacleVirtual forces
masses

springs and

dampersUAV

Target
Location

Figure 1.5: �radar site� obstacles from [2]

The use of Voronoi diagrams in reference [37] to produce paths for a UAV shows that the

method does not directly account for kinematic constraints. Another approach for path

generation using Voronoi diagrams is shown in Figure 1.5. In this paper, an initial path

connecting the initial and �nal points is generated using a Voronoi diagram. The resulting

path consists of a series of connected straight lines. This path is used as the starting point

for generating a more smooth path. In particular, the UAV's path is modeled as a chain

of point masses, between the initial and �nal points, connected by springs and dampers,

with the idea that the tension in the springs act to shorten the path. Each obstacle is

assigned a virtual repulsive force acting on the chain. The �nal generated path is the

equilibrium condition of the chain of point masses. However, the complexity in solving the

resulting ODEs limits the use of this method in Reactive Obstacle Avoidance. Furthermore,

for these types of methods, adequate global information is needed, further limiting their

applications to Reactive Obstacle Avoidance. So road maps are e�cient for a-priori known

static environments. In the case of dynamic environments, road map implementation is more

challenging. In brief, road map methods are suited for static environments and Trajectory

Planning.
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1.3.3 Arti�cial Potential Fields Method

First proposed by Khatib in 1985 [38], the arti�cial potential �eld technique treats the goal

point as an attractive potential and obstacles as repulsive potentials. An arti�cial potential

force is then computed, which is applied to the vehicle as a control input. The vehicles

moving in the workspace are attracted towards the goal and repelled by the obstacles. In

this approach the vehicle follows the path towards the lowest potential. This method is

suitable for online path generation in robust manner with local information, since no global

path planning is required.

Despite its bene�ts in local path planning, this method has several drawbacks. One of them

is, the vehicle may get trapped at a local minimum point. For example, in the case of

a C shaped obstacle, the potential has a minimum at the focal point of the curvature of

C. Hence, a vehicle trapped at the focal point cannot come out of it, which is problem in

the completeness of the method. This has been addressed by combining the potential �eld

with a distance transform method, where the distance transform method is used to generate

a global path from initial to goal point, while the potential �eld method is used to avoid

obstacles in the immediate vicinity of the vehicle [39]. However, this method seems to handle

vehicle constraints poorly. In addition, there have been other approaches for handling local

minima. For example, in reference [40], this was addressed by imposing random motion

and escape force at local minima. This is not appropriate for air-vehicles. Reference [33]

discusses the development of navigation functions5 containing only one minimum, at the goal

point. However, this can only be done in presence of global information hence sacri�cing the

method bene�ts for Reactive Obstacle Avoidance.

Optimality of the APF method can be slightly improved by placing tunable gains on the

repulsive forces of the obstacles [41]. However, it lacks portability. In summary, this method

can be useful to avoid obstacles in presence of local information, that is well suited to reactive

obstacle avoidance (ROA) in robust manner, but it is di�cult to manage vehicle constraints

and also it lacks optimality.

1.3.4 Potential Flow Method

Potential �ow method is based on the concept that a uniform �uid �ow creates a natural path

around an obstacle. Unlike the Arti�cial Potential Field (APF) method, Potential Flow does

not generate an arti�cial force (acceleration), rather a velocity vector is generated, which

gives a direction the UAV needs to follow. Reference [9] uses the potential �ow method

5function de�ned such that only the goal point has minimum potential
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for Reactive Obstacle Avoidance (ROA). In addition, potential �ow avoids the problem of

local minima, since the �ow potential is harmonic. Figure 1.6 shows the method developed

to maneuver the UAV around the obstacle [9]. The actual obstacle is bounded by a box

with wedges at the front and rear. The wedges were designed speci�cally to shape the �ow

in order to account for the aircraft turning and pull-up constraints for a single obstacle as

shown in the Figure 1.6. The method works well if there are few obstacles which are far

enough apart.

Obstacle

Assumed Obstacle
Modeled Obstacle Wedge height

Path Resulted with OA

Nominal Path

Initial
Point Goal

Point

Fluid Particle Velocities / Course Commands

Figure 1.6: Obstacle avoidance using potential �ow

The drawbacks in this method are, �rst, obstacles are two-dimensional, so it can either make

the UAV �y around or over the obstacle. This leads to the need for heuristic rules, which

become very complicated if there are many closely spaced obstacles. Second, it cannot handle

moving obstacles.

1.3.5 Rapidly Exploring Random Tree

Rapidly Exploring Random Tree (RRT), is a probabilistic method. Probabilistic methods

tend to form path by random selection of neighborhood points with some metric such as

path safety.

In RRT, starting with a 'tree' generated from a point (initial point), random points are

generated and nodes on the tree nearest to each point are established. Then new nodes are

created along the lines connecting these points to the nearest nodes. At last these new nodes

are added to the 'tree' if they do not hit obstacles. Figure 1.7 shows the RRT method for

path planning in an urban environment.
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Figure 1.7: RRT method used for path planning from [3]

In reference [30], path planning achieved by RRT was added to the Dijkstra search algorithm,

successfully �nding a route for a UAV �ying among known static obstacles. Also in reference

[42], RRT was used for path planning with positional uncertainty of threat regions. In the

latter, the lines joining points were adjusted with arcs to make a path �yable by a UAV.

These methods are computationally intensive while checking every node for obstacles. Hence,

it is more Trajectory Planning oriented than Reactive Obstacle Avoidance.

1.3.6 Pseudospectral Optimal Control Method

The optimal control method is a logical way of solving path planning problems with objective

functions (that need to be minimized/maximized), constraints and boundary conditions

(that need to be strictly satis�ed). This method in general solves for a control history

that satis�es the problem. Due to the di�culty in solving these optimal control problems

analytically they are solved numerically. Despite its bene�t for optimal path planning, the

possible dimension and complexity of the problems and the available solution methods have

in the past created heavy computational burdens with long computational times. With the

advancement in computer technology and algorithmic advancements, the issue of computing

burden has been reduced. Also improvements in problem formulation have further improved

computation time [43].

There are various important intermediate steps before the problem can be solved numerically.

It is important to correctly formulate the problem at �rst. Next, a proper discretization
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scheme for the problem is important. The type of discretization scheme, number of dis-

cretization points, proper scaling and balancing of the problem determines the correctness

of the numerical solution. Details of scaling and balancing can be found in reference [43].

The problem is posed as a non-linear programming problem and �nally solved using an NLP

(Non Linear Program) solver.

Recent improvement in the optimal control method was made by the introduction of a

discretization scheme called Legendre Pseudospectral discretization, developed by Fariba

Fahroo and I. Michael Ross of the Naval Postgraduate School [44].

The Legendre Pseudospectral optimal control method has been used in o�ine trajectory op-

timization [45,46,47]. Recent applications shown in references [11,48,44,49,50] have demon-

strated the implementation of the Legendre Pseudospectral optimal control method in online

trajectory planning in feedback form, also accounting for disturbances. In reference [11] path

planning for a multi-UAV problem has been solved successfully. The method was used for

the development of collision-free multi-UAV trajectories. In this paper, a concept of spacing

constraint was used between the UAVs to prevent collision. Reference [48] applies the Leg-

endre Pseudospectral optimal control method to trajectory planning for a UGV (Unmanned

Ground Vehicle). The method's potential in online trajectory planning is highlighted in

reference [44]. This paper highlights the relatively low computational power needed for

the Pseudospectral optimal control method. It shows that if the problem be solved fast

enough, then the method can solve the problem of local path planning, thereby accounting

for environmental changes. In reference [49], the method was able to solve the problem of

autonomous trajectory planning for an unmanned ground vehicle (UGV), while avoiding ob-

stacles. It shows that the method was able to avoid obstacles autonomously provided there

was su�cient computational power to solve each trajectory planning problem quickly enough.

In [35] the method was applied to the UAV obstacle (stationary) avoidance problem. The

method was highly successful in real-time implementation for UAVs thereby demonstrating

its utility for both Trajectory Planning and Reactive Obstacle Avoidance.

Reference [50] shows an implementation of the method to a re-entry and landing problem.

In addition the system thus developed was able to compensate for large uncertainties and

disturbances such as hurricane-force wind gusts.

1.4 Approach, Objective and Thesis Structure

Given the above discussions about the di�erent methods for obstacle avoidance, the approach

taken in this thesis will be based upon the pseudospectral optimal control method.
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Unlike previous applications of the pseudospectral optimal control method to the collision

avoidance problem, the objective in this thesis is not just to get from a starting point to a

goal point, but rather to stay as close as possible to a pre-de�ned path, which is suitable

for a survey6 while avoiding stationary, moving and pop-up obstacles. Since the method

is developed for the �xed wing UAVs, this thesis uses di�erent constraints than reference

[35], such as minimum pull-up and turning radii. The method developed is expected to be

computationally e�cient so that it could be implemented on board.

The remainder of the thesis is organized as follows.

Chapter 2 contains an introduction to the optimal control problem and the theory behind

the Legendre Pseudospectral discretization method. Problem identi�cation and formulation

is covered in Chapter 3. Chapter 4 shows the results of di�erent �ight scenarios with air-

craft constraints in real-time. Finally, conclusions and recommendations for future work are

contained in Chapter 5.

6Survey area is partitioned with equally spaced lines, these lines acts as path for UAV.
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Chapter 2

Pseudospectral Optimal Control Theory

2.1 Overview

This chapter presents an overview of the pseudospectral optimal control method and dis-

cusses advantages over conventional methods. In classical methods closed-form solutions can

only be found in the most simple of cases. There are numerous di�culties in solving a state

and control constrained nonlinear optimal control problems analytically, hence numerical

methods are widely accepted and used. In particular, the Legendre pseudospectral method

is able to solve complex nonlinear optimal control problems successfully with exponential

convergence rates. Therefore, this method is selected for solving the problem of autonomous

trajectory generation and obstacle avoidance for UAVs in this thesis.

The Legendre pseudospectral method is a spectral-based algorithm for solving nonlinear op-

timal control problems. It was developed by Fariba Fahroo and I. Michael Ross of Naval

Postgraduate School [43]. Using Lagrange interpolating polynomials, this method discretizes

the state and control trajectories, transforming the in�nite-dimensional optimal control prob-

lem into a �nite-dimensional nonlinear programming problem. Finally, a nonlinear program-

ming (NLP) solver is used to solve the resulting �nite-dimensional optimization problem.

The pseudospectral method is commercially available in a MATLAB based software package

called DIDO [51], which uses an NLP solver called SNOPT (Sparse Nonlinear OPTimizer)

[52]. The DIDO software will be used to solve the di�erent optimal control problems posed

in this thesis.

Ultimately, the pseudospectral method is a means to solve optimal control problems. As such,

the resulting solutions must satisfy the associated necessary conditions for optimality, given

in Pontryagin's minimum principle [53]. The optimal control problems under consideration

in this thesis, and the corresponding Pontryagin's minimum principle are discussed next.
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2.1.1 Nonlinear Optimal Control Problem (NL OCP)

Nonlinear optimal control problems consist of a cost function, a dynamic equation, path

and control constraints, and end point constraints. The cost function can consist of a Mayer

term, E(·), which depends on the endpoint and/or the �nal time, a Lagrange term,
∫ tf
ti
F (·)dt,

which depends on the entire history of the state and control, or a combination of both of

them, in which case the cost function is said to be in Bolza form. The dynamic equation adds

a dynamic constraint to the optimal control problem, since it gives a di�erential equation

that the state-control pair must satisfy. The problem is then solved by �nding an optimal

state-control function pair, {x(·), u(·)} that minimizes the objective function, while satisfying

all of the constraints. Such an optimal control problem is described mathematically as in

equations (2.1) and (2.2) below.

Consider the optimal control problem, where it is desired to �nd a state-control pair (x(t), u(t)) ∈
RNx × RNuand �nal time τf > τ0 to minimize the cost function

J(x(τ), u(τ), τf ) = E(τf ) +

∫ τf

τ0

F (x(τ), u(τ), τ)dτ, (2.1)

subject to

ẋ(τ) = f(x(τ), u(τ), τ),

0 ≤ g(x(τ), u(τ), τ),

0 ≤ h(x(τ), τ),

x(τ0) = x0,

x(τf ) = xf .

(2.2)

It is assumed that the functions

E : R→ R,
F : RNx × RNu × R→ R,
f : RNx × RNu × R→ RNx ,

g : RNx × RNu × R→ RNg ,

h : RNx × R→ RNh ,

are all continuously di�erentiable in their arguments. These functions are often referred to

as the problem data. De�ne the admissible control set,

Ω(x, τ) =
{
u ∈ RNu : g(x, u, τ) ≥ 0

}
. (2.3)

15



and de�ne the control Hamiltonian

H(x, u, λ, τ) = F (x, u, τ) + λTf(x, u, τ), (2.4)

and the Lagrangian of the Hamiltonian

L(x, u, λ, µ, ν, τ) = H(x, u, λ, τ) + µTg(x, u, τ) + νTh(x, τ), (2.5)

where λ(τ) are co-states and µ(τ), ν(τ) are Lagrange multipliers. Then Pontryagin's neces-

sary condition for an optimal solution to (2.1) and (2.2) is as follows [54].

Suppose that the triple (x∗(τ), u∗(τ), τf ) are a minimizing solution of the problem described

by equations (2.1) and (2.2). Then, there exist piecewise continuous co-state and multiplier

functions λ∗(τ), µ∗(τ), ν∗(τ), a vector η∗(τi) for each point τi of discontinuity of λ∗ and

vectors β∗, γ∗ such that:

1. λ∗(τ) satis�es

λ̇∗(τ) = −∂L
∂x

(x∗(τ), u∗(τ), λ∗(τ), µ∗(τ), ν∗(τ), τ), (2.6)

with Terminal Time Transversality condition

λ∗(τf ) = β∗ +

(
∂h

∂x
(x∗(τ), τ)

)T
γ∗, (2.7)

and jump conditions at the discontinuity points

λ∗(τ−i ) = λ∗(τ+
i ) +

(
∂h

∂x
(x∗(τ), τ)

)T
η∗(τi). (2.8)

2. At every point in the interval τ ∈ [τ0, τf ], u
∗(t) satis�es the Hamiltonian

Minimization Condition

u∗(τ) = argminu∈Ω(x∗(τ),τ)H(x∗(τ), u, λ∗(τ), τ), (2.9)

which has the associated Karush-Kuhn-Tucker (KKT) minimization

condition
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∂L

∂u
(x∗(τ), u, λ∗(τ), µ∗(τ), ν∗(τ), τ) =

∂H

∂u
(x∗(τ), u, λ∗(τ), τ) +

(
∂g

∂x
(x∗(τ), u, τ)

)T
µ∗(τ) = 0.

(2.10)

3. The Lagrange multipliers µ∗(τ) and ν∗(τ) satisfy the complementarity condi-

tions

µ∗(τ) ≥ 0, µ∗T (τ)g(x∗(τ), u∗(τ), τ) = 0, ν∗(τ) ≥ 0, ν∗T (τ)h(x∗(τ), τ) = 0,

(2.11)

at every point in the interval τ ∈ [τ0, τf ], and at the terminal time, γ∗ satis�es

the complementarity condition

γ∗ ≥ 0, γ∗Th(x∗(τf ), τf ) = 0. (2.12)

4. Denoting the optimal Hamiltonian by H∗(τ) = H(x∗(τ), u∗(τ), λ∗(τ), τ), it

satis�es

dH∗

dτ
=
∂L

∂τ
(x∗(τ), u∗(τ), λ∗(τ), µ∗(τ), ν∗(τ), τ) (2.13)

with terminal condition

H∗(τf ) = −∂E
∂τ

(τf )− γ∗T
∂h

∂τ
(x∗(τf ), τf ). (2.14)

together with the jump conditions at the points of discontinuity

H∗(τ−i ) = H∗(τ+
i )− η∗T (τi)

∂h

∂τ
(x∗(τi), τi). (2.15)

Finally, discontinuity points, τi, can only occur when the solution x∗(τ) touches

the boundary of the set
{
x ∈ RNx : h(x, t) ≥ 0

}
.

A few more points can be noted. First, di�erentiating the control Hamiltonian in (2.4) with

respect to λ, and using the dynamic equation in (2.2) gives
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ẋ∗(τ) =
∂H

∂λ
(x∗(τ), u∗(τ), τ). (2.16)

In this thesis, the functions are all independent of time. Then, from equations (2.13), (2.14)

and (2.15), the optimal control Hamiltonian will be constant with value

H∗(τ) = −∂E
∂τ

(τf ),∀τ ∈ [τ0, τf ]. (2.17)

The constancy of the Hamiltonian in (2.17) will be very useful to provide a check of optimality

of a given solution.

2.1.2 Feasibility and Optimality of the Solution

The above sub-section shows the necessary conditions for the solution of the problem to be

optimal. In this sub-section we see the methods of testing the feasibility and checking the

optimality of the solution.

Feasibility

A solution is said to be feasible if it satis�es the system's dynamic equation, as well as

the constraints. In the pseudo-spectral method, both the state and control trajectories are

discretized, and a �nite-dimensional problem approximating the original continuous optimal

control problem is solved. Of primary concern for the feasibility of the solution is that

the obtained discretized solution approximates a continuous-time solution that satis�es the

system dynamics. To check feasibility then, the original state equations are numerically

integrated (using a 4th order Runge-Kutta (RK) scheme) using the obtained discretized

control solution as input. The resulting state trajectory is then compared to the discretized

state trajectory. If they match to within a given tolerance, the solution is considered to be

feasible. This idea is illustrated in Figure 2.1. Satisfaction of the constraints can be checked

directly from the discrete pseudospectral solution.
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x

time (t)

Feasible Solution

Infeasible Solution

Pseudo-spectral Solution

Figure 2.1: Feasibility test: pseudo-spectral solution state history, Propagated state and
infeasible propagation

Optimality

In general, there is no test that can readily be performed to guarantee optimality of the

obtained solution. However, there are some tests that can be performed, and can give a

good indication of whether or not a solution can be trusted. The �rst test has already

been identi�ed in the statement of Pontryagin's minimum principle in the previous section.

Namely, the Hamiltonian must be constant, with a value speci�ed by the terminal cost. An

additional test that can be performed is a check of Bellman's principle of optimality. This can

be performed regardless of whether or not an obstacle �eld is stationary. Bellman's principle

of optimality states: let there be an optimal trajectory from point A to B and consider any

point C on that trajectory between points A and B. Then the optimal trajectory generated

with same initial condition at A from A to C and the optimal trajectory generated with

initial condition of C from C to B are equivalent to original optimal trajectory from A to B.

In particular, the cost of optimal trajectory from A to B is equal to the sum of the optimal

cost from A to C and C to B. Figure 2.2 shows the idea of Bellman's Principle test.
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Cost(A to B) = Cost(A to C) + Cost(C to B)

A

B

C

Figure 2.2: Bellman's Principle test of optimality

2.2 Legendre Pseudospectral Discretization

This section introduces the basic idea behind the theory of Pseudospectral discretization.

Further details can be found in [55] and [56].

The key steps for pseudospectral discretization are contained in the following four points:

1. Select the discretization points (also known as grid or node),

2. Approximate the state and control functions by polynomials,

3. Approximate the di�erential equation (derivative of approximating polyno-

mial),

4. Approximate the cost function and constraints.

These steps result in a �nite-dimensional constrained optimization problem which can be

solved by standard NLP solvers. The above steps are now elaborated on in some detail.

A. Node Spacing

Node selection is an important step for optimal control problems by discretization. Approx-

imation theory suggests that optimal node placement occurs when the nodes are the roots

of orthogonal polynomials such as Legendre or Chebyshev (also known as Tschebysche�)

polynomials [55][56]. One such set of points is the set of Legendre-Gauss-Lobatto (LGL)

points [57]. The Legendre-Gauss-Lobatto points have very important characteristics which

�concentrate� nodes at end points and spread out nodes in the middle of the domain. Figure

2.3 shows the polynomial approximation of x(t) associated with Legendre-Gauss-Lobatto
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node distribution. The Legendre-Gauss-Lobatto points are de�ned on the interval [−1, 1] as

follows:

t0 = -1

tj = roots of L′N(t) (j = 1.., N − 1)

tN = 1

X
X

X

t t t

0
1

N0 1

N

LGL node Points

Figure 2.3: Polynomial approximation of x(t) associated with Legendre-Gauss-Lobatto node
distribution

where N+1 is the number of Legendre-Gauss-Lobatto points, and Li(t) denotes the Legendre

polynomial of order i, for i=1,...,N. These points must be computed numerically. However,

for a �xed number of nodes, they can be computed o�-line beforehand and stored on-board

for use in a real-time implementation. Since the Legendre-Gauss-Lobatto points are de�ned

on the interval [−1, 1], a mapping is needed from the interval of de�nition of the optimal

control problem [τ0, τ f ] to [−1, 1] and vice versa. The former mapping is given by equation

(2.18)[58].

tLGLi
=

2(τi − τ0)− (τf − τ0)

τf − τ0

(2.18)

where

tLGLi
= the ith Legendre-Gauss-Lobatto time point
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τi = the ith real time point

τ0 = the initial real time point

τf = the �nal real time point

Conversely, the Legendre-Gauss-Lobatto time domain can be mapped to the real time domain

given by

τi =
(τf − τ0)tLGLi

+ (τf + τ0)

2
(2.19)

Furthermore, this mapping has derivative

dτ

dtLGL
=
τf − τ0

2
(2.20)

Equations (2.19) and (2.20) are used in the discretization of the Optimal Control Problem.

After the node spacing is chosen, the problem is set, and this spacing de�nes the accuracy

of the solution.

B. Approximation of the States and Controls

Given the N+1 Legendre-Gauss-Lobatto points, the state x(t) and control u(t) are approx-

imated by N th order polynomials as described in this section. First, the Lagrange interpo-

lating polynomials of order N + 1 are for j=0,...,N as

φj(t) =
N∏

m = 0

m 6= j

(t− tm)

(tj − tm)
(2.21)

As each Legendre-Gauss-Lobatto point, ti, the numerator of φj is zero except when i = j.

The denominator normalizes the value of φj(t) to 1 when i = j. So, the following is the

result at the node points:

φj(ti) = δij =

 1, i = j

0, i 6= j
(2.22)

where δij is the Kronecker delta.
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Having de�ned the Lagrange interpolating polynomials, the N + 1th order polynomial ap-

proximations for the state and control are given by

xN+1(t) :=
N∑
j=0

x(tj)φj(t) (2.23)

uN+1(t) :=
N∑
j=0

u(tj)φj(t) (2.24)

C. Approximation of the Di�erential Equation

After approximating state and control with (N + 1)thdegree polynomials, we approximate

their derivatives at the node points. The derivative of the approximation in (2.23) is given

by

ẋN(t) :=
N∑
j=0

x(tj)φ̇j(t) (2.25)

For the discretization, we only require derivatives at the node points. So,

ẋN(ti) =
N∑
j=0

xjφ̇j(ti) =
N∑
j=0

Dijxj (2.26)

where

Dij = φ̇j(ti) (2.27)

and

xj=x(tj)

Equation (2.26) can now be written in matrix-vector form.

~̇xN = DN~x
N (2.28)

where,

xN = {x0, x1, x2, ......xN}, at the Legendre-Gauss-Lobatto node points
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DN=



D00 D01 . . . . . . D0N

D10
. . .

...
...

. . .
...

...
. . .

...

DN0 . . . . . . . . . DNN


, N+1×N+1 Pseudospectral di�erentiation

matrix

Thus, di�erentiation is approximated by matrix multiplication. From reference [58], the

elements of DN matrix is given by equation (2.29):

Dij =


LN (ti)
LN (tj)

. 1
(ti−tj)

i 6= j

−N(N+1)
4

i = j = 1
N(N+1)

4
i = j = N

0 otherwise

(2.29)

Utilizing the time transformation in equation (2.20), the di�erential equation in (2.2), with

substitution of equation (2.26) is approximated at the Legendre-Gauss-Lobatto points as :

τf − τ0

2

(
N∑
j=0

Dijxj

)
= f(xi, ui, τi) (2.30)

where

ui = u(ti)

for i = 0, ..., N

D. Approximate the Cost Function and Constraints

Given the polynomial approximations for x(t) and u(t) in equations (2.23) and (2.24), the

cost function in (2.1) is �rst approximated as

JN := E(τf ) +

∫ τf

τ0

F (xN(τ), uN(τ), τ)dτ (2.31)

First, the physical time domain [τ 0, τ f ] needs to be mapped to the time-domain [−1, 1]

according to (2.19) and (2.20), yielding
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τf∫
τ0

f(τ)dτ =
τf − τ0

2

1∫
−1

f(τ(t))dt (2.32)

Now, the cost function in (2.31) may be discretized. In general, Gaussian quadrature rules

are expressed as [59]:

∫ 1

−1

f(t)dt ≈
N∑
j=0

wjf(tj) (2.33)

where wj are the weights associated with the node spacing scheme.

For the Legendre-Gauss-Lobatto node-spacing scheme, the cost function is discretized as

JN := E(τf ) +
τf − τ0

2

N∑
j=0

F (xN(τj), u
N(τj), τj)wj (2.34)

Finally, the path and control constraints in (2.2) are enforced at the Legendre-Gauss-Lobatto

node points and the overall discretized optimization problem becomes

JN := E(τf ) +
τf − τ0

2

N∑
j=0

F (xj, uj, τj)wj

τf−τ0
2

(
N∑
j=0

Dijxj

)
= f(xi, ui, τi),

0 ≤ g(xi, ui, τi),

0 ≤ h(xi, τi),

x(τ0) = x0,

x(τf ) = xN .

(2.35)

After discretization a nonlinear programming solver such as SNOPT [60] is used to solve the

problem. As mentioned previously, the software package DIDO performs the aforementioned

discretization, and contains the solver SNOPT. For convenience, DIDO is used to solve the

optimal control problems posed in this thesis.
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2.3 Real-time Trajectory Planning

The advancement in computer technology and numerical problem solving has brought a

turning point in the use of optimal control in nonlinear feedback control laws. Pseudospectral

optimal control laws have been successfully implemented in feedback form in a number of

guidance, navigation and control problems, including observers for nonlinear systems [61],

nonlinear feedback guidance of Reentry Vehicles [62], autonomous trajectory planning [49]

and other evolving implementations. The use of this idea in feedback control for realtime

trajectory generation is introduced below. In fact, this section summarizes the concept of

realtime trajectory generation used in this thesis.

Feedback control implies that the control system has regularly updated (ideally continuous)

information related to the system's states. In the case of state feedback (as in this thesis),

this information consists of the states themselves. The concept of closed-loop control using

the pseudospectral-optimal control method (PS-OCM) is based in the idea that the open-

loop control, can be recomputed very quickly using current state information such that it

is equivalent to continuous feedback. This has been done by the introduction of �C1 −
Caratheadory� conditions [63]. In [63], it was proved that the concept is possible if the

computation time for an open-loop solution is very small.

Hence, successful implementation of feedback on PS-OCM relies on the fact that the open-

loop control be generated fast enough. References [64],[44],[65] show that the pseudospectral-

method is capable of generating open-loop controls in fractions of a second even in legacy

hardware running MATLAB.

PS-Feedback Implementation

Figure 2.4 shows the pseudospectral-feedback concept utilized in this thesis.
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Cost and Constraints

x∗0(t
∗)

Online, Closed-loop

Trajectory Generation
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Real-Time Optimal Control

Autopilot
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Autonomous Control Architecture for Fixed-Wing UAV

UAV in realtime

Autopilot

Real-Time Optimal Control

to control
surfaces

(states/ obstacles updates)

local information
state/ environment

via sensors

x(ti)

Target information
Cost and Constraints

Open-loop Trajectory Generation
Initial map of the environment

xi−1
PS (t) t >= tifor

Figure 2.4: Control Architecture for Online Trajectory Generation

Information such as the mission objective, initial terrain and environment maps, cost, con-

straints, vehicle dynamics, initial and �nal conditions are given to the mission planner, which

generates a mission trajectory o�ine. This trajectory provides a nominal �ight path that

needs to be stayed as close to as possible. That is, it is a target trajectory.

As shown in Figure 2.4, the online trajectory generator uses the current state information

as initial condition to generate a new optimal trajectory using the pseudospectral method

and the available obstacle information. This trajectory is then sent as a command to the

autopilot to track. The optimal trajectory is regenerated at each sample instant using new

state and obstacle information. In this way, the scheme is robust to changes in obstacle

information, as well as disturbances acting on the UAV. Due to the �nite amount of time

taken to compute each new trajectory, the trajectory command sent to the autopilot is based

upon the trajectory generated using state information from one previous sample time. This

can be thought of as a predictor scheme to correct for process delays. Figure 2.5 shows the

successive process of solving the OCP. In the �gure, OC1 means ONLINE CONTROL 1

and so on. In theory, each initial condition (IC) will begin at �nal condition of the previous
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trajectory segment.

Generated Control

State

t−1

t0 t1 t2 t3 t4
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ONLINE

OC1
OC2 OC3 OC4

OC5

IC0

IC1
IC2

IC3

controls
rejected

controls
applied

IC0

used for
OC2

Figure 2.5: Online/Realtime Propagation

Bellman's principle provides an advantage for online trajectory generation using pseudospec-

tral methods, in that a low accuracy solution can be de-aliased to provide a high-accuracy

solution without creating a large-scale optimization problem [49],[66]. Reference [49] shows

an example where an online-generated trajectory using a 15 node solution at each sample

time, yields an accuracy equivalent to an o�-line generated 60 node solution. This is because

the Legendre-Gauss-Lobatto points are concentrated at the end points of each time interval

under consideration. Thus, the accuracy of the solution is higher at the end points. In

real-time implementation, only the higher accuracy initial portion of each generated control

is used, and then a new control is generated. Along with that this method provides other ad-

vantages such as avoiding the need of a disturbance rejection system and no prior knowledge

of the environment is required. De-aliasing Bellman (a2B)algorithm applied in this thesis is

stated below.

a2B algorithm: [66]

1. Solve the problem for a low number of nodes, n. This generates a discrete-time

solution, {xi, ui}ni=0 corresponding to discrete time {ti}ni=0.
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2. Partition the time interval [t0, tn] into NB Bellman segments, t0 < t1 < · · · <
tNB = tn. These segments need not be uniformly spaced.

3. Propagate the di�erential equation from t0 to t
1 using x0 as the initial condition

and any method of continuous-time reconstruction of the controls, u1(t), t ∈
[t0, t

1] based on {ui}ni=0. That is, solve the initial value problem,

ẋ = f(x, u1(t)), x(t0) = x0 (2.36)

This step generates a continuous-time trajectory, x1(t), t ∈ [t0, t
1]. This propaga-

tion is done numerically via some high-precision propagator, say the standard

4/5 Runge-Kutta Method.

4. Set x0 = x1(t1) and t0 = t1 and go to step 1; that is, set a new initial condition

as the value of the integrated state at the end of the period [t0, t
1] and solve

the problem again for n (which continues to be low). This generates a new

sequence {xi, ui}ni=0 corresponding to new discrete times {ti}ni=0, etc.

5. The algorithm stops at the NBth sequence when the �nal conditions are met.

The candidate optimal trajectory is given by the Bellman chain
{
x1(t), t ∈ [t0, t

1];x2(t), t ∈ [t1, t2]; · · ·xNB(t), t ∈ [tNB−1, tNB ]
}

:=

xB(t), t ∈ [t0, tf ]. Similarly, the corresponding controls are given by{
u1(t), t ∈ [t0, t

1];u2(t), t ∈ [t1, t2]; · · ·uNB(t), t ∈ [tNB−1, tNB ]
}

:= uB(t), t ∈ [t0,tf ].

Hence this thesis uses the above concept for realtime autonomous trajectory generation to

be implemented on UAVs and its analysis in Chapter 4.
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Chapter 3

Problem Formulation and Vehicle

Dynamics

3.1 Introduction to Autonomous Control Architecture

This chapter includes the introduction to the thesis problem, the detailed problem formu-

lation and the steps chosen for solution. The concept of realtime optimal control has been

explained in general terms in Chapter 2. This chapter further explores the concept and

specializes it for autonomous realtime trajectory generation to be used on the UAV, which

has been introduced in Chapter 1.

The UAV is being designed to autonomously survey large poorly known areas. While per-

forming a geo-physical survey of an area, the UAV is required to �y at a minimal altitude

to maximize the survey resolution (50 meters above the ground level [9]). A typical survey

�ight path is made by connecting lines as shown in Figure 3.1. At the low �ight altitude,

these paths can have a number of natural (small hills or tall trees) or arti�cial obstacles

(power lines, communication towers) on its path. Figure 3.1 shows some examples. In order

to avoid these obstacles in autonomous �ight mode, the UAV must have an obstacle detec-

tion and avoidance feature. This thesis focuses on the obstacle avoidance capability once

the obstacles have been detected. The obstacle detection capability is beyond the scope of

this thesis. It is assumed that the obstacle detection system is available providing current

obstacles' sizes, shapes and positions at regular sample intervals
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Figure 3.1: Aerial Path Designed for UAV.

The UAV under consideration this thesis is the GeoSurv II prototype, as described in Chapter

1 and once again shown in Figure 3.2 with the control surfaces indicated. The UAV with

a wingspan of 4.9m, has three directional control surfaces; Aileron, Elevator and Rudder,

and a Flap which is a high lift device. Overall, the aircraft has �ve control parameters,

namely Aileron, Elevator, Rudder, Flap and the throttle. However, for the purpose of this

thesis, it is assumed that the UAV is equipped with �ight control laws capable of tracking a

commanded trajectory. That is, it is assumed that the inner loop in Figure 2.4 has already

been closed. The focus of this thesis is purely on the real-time trajectory generation for

obstacle avoidance.
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Figure 3.2: GeoSurv II Prototype with labeled control parts.

Referring to Figure 3.1, to minimize gaps in the aerial survey, the UAV is desired to stay

as close as possible to the prede�ned path, while avoiding any encountered obstacles. With

this in mind, the autonomous control architecture is developed as shown in Figure 2.4. The

mission planner executes each line segment one by one. According to the control architecture

shown in Figure 2.4, the mission planner creates the UAV's mission from initial point to �nal

point of �ight. Figure 3.1 shows only a typical �ight plan over the survey area but in reality,

the UAV takes o� from a given base and �ies to the survey area. It then completes the

survey and �ies back to base and lands. The entire �ight plan is stored in the mission

planning block. The mission planner keeps track of position and possibly other required

states, for the duration of the mission. Each line segment in the nominal �ight plan is

passed from the mission planner block to the Real Time Optimal Control (RTOC) block for

realtime trajectory generation, which will be expanded upon shortly. The RTOC generated

trajectory is sent to the autopilot block as a commanded trajectory for the UAV to follow.

As shown in Figure 2.4, the RTOC regularly updates the commanded trajectory based upon

new state and obstacle information.

The obstacle avoidance method explained above needs to be tested in simulation before it

can be implemented on a real aircraft. This thesis presents several simulation results for

obstacle avoidance in di�erent scenarios that may be encountered in a typical survey. The

remainder of this chapter contains the details of the mathematical problem formulation.
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3.2 Vehicle Kinematics

So as to avoid the need for a dynamic model of the UAV, the RTOC trajectory planning

works with a kinematic model of the UAV. As illustrated in Figure 3.3, the UAV kinematics

can be purely represented in terms of two angles (ξ and γ) and the UAV ground speed (V ),

which together specify the UAV velocity vector. The angles ξ and γ physically represent the

vehicle heading and climb angles, respectively.

Representing the position of the UAV by the cartesian coordinates [x, y, z]T , the UAV kine-

matics are given by

ẋ = V cos(γ)cos(ξ) (3.1)

ẏ = V cos(γ)sin(ξ) (3.2)

ż = V sinγ (3.3)

As can be seen from equations (3.1) to (3.3), the kinematics are completely governed by ξ,

γ and V . As such, they can be considered to be control inputs to the kinematics. However,

the RTOC generated trajectory must be feasible for a UAV to �y. Therefore, limitations

must be placed upon these variables as follows:

a. There is no limitation on the heading, ξ, but its rate of change will be limited,

as discussed in below.

b. The climb angle, γ, must be limited. For example, it is impossible for GeoSurv

II to �y vertically upwards. Therefore, we restrict γ to the range γmin ≤ γ ≤
γmax. In addition, the rate of change of γ (the pull-up rate) will be limited,

as discussed in below. For simplicity, it is assumed that the γmax and γmin

are independent of speed.

c. The UAV's speed is limited below and above by the stall speed and the max-

imum speed allowed by the airframe, respectively. Consequently, we restrict

Vmin ≤ V ≤ Vmax. In addition, the rate of change of V (the acceleration) will

be limited as discussed below.1

1

Strictly speaking, the limits should be on the air speed, but we assume that the UAV will only
operate in calm conditions, such that the air and ground speeds are similar.
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Figure 3.3: Flight Angles.

Let ωγ, ωξ and a represent the rates of change of γ, ξ and V , respectively. As mentioned

above, these rates need to be constrained. Consequently, the kinematic equations in (3.1) to

(3.3) are augmented with the rates to obtain

Ẋ =



ẋ

ẏ

ż

γ̇

ξ̇

V̇


=



V cos(γ)cos(ξ)

V cos(γ)sin(ξ)

V sinγ

ωγ

ωξ

a


⊂ R6 (3.4)

Equation (3.4) contains the full set of state equations used for the purpose of trajectory

planning. In particular, it is to be noted that γ, ξ, and V are now treated as states, while

ωγ, ωξ and a become the control variables.

The control variables, ωγ and ωξ are limited by aircraft's maximum pull-up and turning rates,

which will be discussed in Section 3.3, while the acceleration, a, is limited by the engine and

airframe capabilities. Consequently, we de�ne the control limits as.

C =


ωγ : (ωγ)min ≤ ωγ(t) ≤ (ωγ)max

ωξ : (ωξ)min ≤ ωξ(t) ≤ (ωξ)max

a : amin ≤ a(t) ≤ amax

 ⊂ R3 (3.5)
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3.3 Constraints and Cost

In this section, the constraints for the trajectory optimization problem are fully developed,

and a cost function is formulated appropriate to the control objective. In optimal control,

constraints can be of di�erent types according to the nature of the problem under consider-

ation. For the obstacle avoidance problem in this thesis we have two kinds of constraints:

UAV constraints and obstacle constraints. UAV constraints arise due to UAV limitations,

while obstacle constraints arise due to the presence of the obstacles. UAV constraints are

typically a mix of path and control constraints, while obstacle constraints are purely path

constraints.

UAV Constraints

The aircraft dynamics themselves place constraints on the aircraft's maneuvering capabili-

ties. At the fundamental level, these constraints result from the aircraft aerodynamics and

limitations on the throttle and control surface de�ections. However, since we do not wish

to deal with the aircraft dynamics directly, we must instead incorporate these constraints

into the trajectory planning process. Two of the resulting constraints have already been ad-

dressed, namely path angle and velocity constraints. In addition, as has been alluded to in

equation (3.5) there are constraints on the minimum turning and pull-up rates, as explained

in [9]. These translate directly into constraints on the rates of the control variables γ and ξ.

It should be noted that the constraints on turning and pull-up rates are obtained under the

assumption of steady-�ight conditions. As such, they are somewhat conservative. However,

they are simple to implement, and hence will be used.

From reference [9], the minimum turning radius is:

RT
min =

V 2

g
√
n2 − 1

(3.6)

and the maximum turning rate is

ωTmax =
g
√
n2 − 1

V
(3.7)
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φ

(b) Front view of an UAV at tightest
turn possible with φ as bank angle

Figure 3.4: Turning Flight

where,

g=9.81 m/s2 is the Earth's gravitational acceleration

nis the load factor of the aircraft de�ned as

n =
L

W
, (3.8)

L is lift produced (Newton)

W is the weight (Newton)

RT
min is minimum turning radius in meter (meter)

ωTmax is maximum rate of change of angle in turning (radian per second)

In case of turning �ight, it can be shown that,

n =
1

cos(φ)
(3.9)

φ being the banking angle of the UAV.
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From equation (3.6), it can be seen that if the load factor, n, is �xed, the minimum turning

radius increases with aircraft speed. On the other hand, the load factor, n, also increases

with aircraft speed (more lift can be generated at higher speeds). Since the load factor,

n, appears in the denominator of (3.6), this mitigates the increase in the minimum turning

radius to an extent. To avoid the need to know the relationship between the load factor

and aircraft speed, we shall simply compute the minimum turning radius based upon the

maximum aircraft speed, Vmax, and keep it �xed for all aircraft speeds. To compute the

maximum load factor, we shall take the maximum bank angle to be 65 2. Hence from

equation (3.9), we get

n = 2.4 (3.10)

Therefore, while turning with maximum velocity of Vmax and load factor (n) of 2.4, from

equation (3.6) we get the minimum turning radius,

RT
min =

V 2
max

21.0
(3.11)

Similarly, the minimum pull-up radius and maximum pull up rate can be calculated from [9]

Rp
min =

V 2

g(n− 1)
(3.12)

and

ωPmax =
g(n− 1)

V
(3.13)

Rp
min

Figure 3.5: UAV at it's tightest pull-up turn possible

2Note that the actual GeoSurv II parameters are unknown so this bank angle is assumed as a place holder
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where,

Rp
min is minimum pull-up radius

ωPmax is maximum pull-up rate

For minimum pull-up radius, we take the value of n = 2.4 from equation (3.10) and with

maximum velocity of V max, equation (3.12) gives,

Rp
min =

V 2
max

13.4
(3.14)

And, these two major concept of turning and pull-up radius of the UAV will be implemented

as constraints of UAV system. These constraints are incorporated as path constraints. It is

important that the generated path satis�es these constraints, such that it is feasible for the

UAV to �y.

Assuming the pure turn, the turning radius RT satis�es

1

RT
=
ωξ
V

(3.15)

Consequently, �xing the minimum turn radius obtained in (3.11), we obtain the constraint

− 1

RT
min

≤ h(ωξ, V ) ≤ 1

RT
min

(3.16)

where, h(ω, V ) = ω/V represents a path constraint as function of control and state.

Similarly, assuming a pure pull-up maneuver, the pull-up radius, RP satis�es

1

RP
=
ωγ
V

(3.17)

Consequently, �xing the minimum pull-up obtained in (3.14), we obtain the constraint

− 1

RP
min

≤ h(ωγ, V ) ≤ 1

RP
min

(3.18)

and h(ω, V ) is as de�ned previously. Note that for simplicity we assume same minimum push-

down radius as pull-up radius, but this can be adjusted when more aircraft information is

available.

Finally, the control limits given by equation (3.5) are updated as

38



C =


ωγ : − 1

RP
min
≤ h(ωγ, V ) ≤ 1

RP
min

ωξ : − 1
RT

min
≤ h(ωξ, V ) ≤ 1

RT
min

a : amin ≤ a(t) ≤ amax

 ⊂ R3 (3.19)

Obstacle Constraints

Obstacles act as path constraints, and path constraints are generally continuous algebraic

functions in states and possibly time. With this in mind, the p-norm was introduced in [35]

for the purpose of modeling obstacles. The modeling of an obstacle's exact shape is complex

and unnecessary, since for the purposes of path planning, we can bound each obstacle with

simpler generic shapes such as spheres, cubes, or ellipsoids. Each of these shapes are readily

obtained by use of an appropriate p-norm. Two-dimensional obstacles representable by a

p-norm are described by equations of the form h(x, y) = 0, where.

h(x, y) =

∣∣∣∣∣
(
x− xc
a

)p∣∣∣∣∣+

∣∣∣∣∣
(
y − yc
b

)p∣∣∣∣∣− 1 (3.20)

where,

(xc, yc) are the coordinates of the center of the obstacle

a is the half-length of the obstacle measured along the x axis

b is the half-length of the obstacle measured along the y axis

p is the degree of norm chosen,

Points strictly outside the obstacle are those satisfying h(x, y) > 0.

Figure (3.6) shows examples of a rectangle and circle, which are created using p = 10 and

p = 2, respectively.
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Figure 3.6: Rectangle and Circle are created by setting the exponent to 10 and 2 respectively.

Similarly for three dimensional space, obstacles can be de�ned as those points satisfying

h(x, y, z) = 0, where

h(x, y, z) :=

∣∣∣∣∣
(
x− xc
a

)p∣∣∣∣∣+

∣∣∣∣∣
(
y − yc
b

)p∣∣∣∣∣+

∣∣∣∣∣
(
z − zc
d

)p∣∣∣∣∣− 1 (3.21)

with,

(xc, yc, zc) the center of the obstacle

d is the half-length of the obstacle measured along the z axis.

and a, b and p have the same meaning as in the two-dimensional case.

As before, points strictly outside the obstacle satisfy h(x, y, z) > 0, which leads to a path

constraint for the trajectory generation problem.

The path constraint corresponding to the ith three-dimensional obstacle can be written equiv-

alently as

hi(x, y, z) := ln

[∣∣∣∣∣
(
x− x{c,i}

ai

)pi∣∣∣∣∣+

∣∣∣∣∣
(
y − y{c,i}

bi

)pi∣∣∣∣∣+

∣∣∣∣∣
(
z − z{c,i}

di

)pi∣∣∣∣∣
]
> 0 (3.22)

An example of a three-dimensional obstacle is shown in Figure 3.7. This obstacle was

generated with the parameters:

xc = 30; a = 10; p = 100

yc = 30; b = 20;

zc = 30; d = 30;
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Figure 3.7: Box representing obstacle.

Cost

The cost function in an optimal control problem is de�ned to re�ect the desired performance.

As discussed previously, the objective of the control problem in this thesis is to stay as

close as possible to the prede�ned path for the duration of the �ight, while avoiding any

encountered obstacles. This can be done by minimizing the area between the �ight path and

the prede�ned path as shown in Figure 3.8.

Each segment of the prede�ned path consists of a straight line at a �xed altitude. Therefore,

there are two path deviations that need to be addressed, namely the horizontal and vertical

deviations. An example is shown in Figure 3.8, where the prede�ned �ight path is given by

the equations x = y and z = 50. Note that there is no loss in generality of this choice, since

by a simple translation and rotation of coordinates, any straight horizontal �ight path can

be mapped to this line.
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Figure 3.8: Figure showing the line x = y and h = 50 with respective �ight path and area
between them.

Corresponding to the desire to minimize the area between the �ight path and the prede�ned

path (x = y, z = 50), two integrals are de�ned

A1 =

∫ tf

t0

0.5(x− y)2 dt (3.23)

and

A2 =

∫ tf

t0

0.5 (z − 50)2dt (3.24)

These two integrals will form part of the cost function.

For added robustness, the obstacles are additionally penalized within the cost function. This

is accomplished by the addition of a robustness function r(x, y, z), given by [49]

r(x, y, z) = w

n∑
i=1

(ee
−hi(x,y,z) − 1) (3.25)

where w > 0 is a weighting factor. Clearly, from (3.25), r(x, y, z) increases as (x, y, z)

approach an obstacle.

Finally we can assemble the cost function, in terms of an end point cost (tf ) and a running

cost (r(x, y, z) + A1 + A2) in the form of equation (2.1).
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J(X(·), U(·), tf ) =tf + A1 + A2 +

∫ tf

t0

[r(x, y, z)]dt (3.26)

where

U = [ωγ, ωξ, a]T

Note that the inclusion of the �nal time tf in the cost function is optional, and re�ects

whether or not it is desired to minimize the �nal time as well as the deviation from the

prede�ned trajectory.

3.4 Problem Summary

Combining all of the developments so far, the trajectory optimization problem can be posed

as the following optimal control problem, which is of the same form as that given in equations

(2.1) and (2.2) in Chapter 2.
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Minimize :

where,

J(X(·), U(·), tf ) =tf + A1 + A2 +
∫ tf
t0

[r(x, y, z)] dt

U = [ωγ, ωξ, a]T

Subject to : Ẋ =



ẋ

ẏ

ż

γ̇

ξ̇

V̇


=



V cos(γ)cos(ξ)

V cos(γ)sin(ξ)

V sinγ

ωγ

ωξ

a


and X(t0) = X0

t0 = 0

X(tf ) = Xf

x(t) ∈ R
y(t) ∈ R
z(t) ∈ R

γmin ≤ γ(t) ≤ γmax

ξ(t) ∈ R
Vmin ≤ V (t) ≤ Vmax

amin ≤ a(t) ≤ amax

− 1
RP

min
≤ h(ωγ, V ) ≤ 1

RP
min

− 1
RT

min
≤ h(ωξ, V ) ≤ 1

RT
min

hi(x, y, z) > 0

where, i = 1...n

(3.27)

The speci�c parameters used in the thesis for the GeoSurv II problem are:

xmin = 0m xmax = 1200m

ymin = 0m ymax = 1200m

zmin = 0m zmax = 200m

γmin = −45 γmax = 45

ξmin = −180 ξmax = 180

Vmin = 15m/s Vmax = 30m/s

amin = −3m/s2 amax = 3m/s2

RT
min = V 2

max

21.0375
= 43m Rp

min = V 2
max

13.4024
= 67m

(3.28)

and from (3.28) turning and pull up constraints becomes,
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−1.4925m−1 ≤ h(ωγ, V ) ≤ 1.4925m−1

−2.3256m−1 ≤ h(ωξ, V ) ≤ 2.3256m−1
(3.29)

The remainder of this section presents a brief overview of di�erent obstacle scenarios that will

be considered in this thesis. Figure 3.9 shows di�erent types of obstacles at di�erent strategic

positions with all dimensional units in meters (m). Three di�erent types of obstacles, namely

stationary, pop-up and moving obstacles, will be used to analyze the capability of RTOC

using the Legendre Pseudospectral method for autonomous trajectory generation for �xed-

wing UAVs such as GeoSurv II. As stated in Chapter 2, the software package DIDO will

be used to perform the analysis. From Figure 3.9, obstacles placed at di�erent strategic

positions will create di�erent scenarios for the UAV to perform. The straight line joining

points (0, 0, 50) m and (1000, 1000, 50) m shown in Figure 3.9 is the prede�ned path for the

UAV to �y. While �ying at height of 50 m the UAV will encounter di�erent obstacles based

up on the scenario under consideration. A cylindrical shaped obstacle with the center of its

base at (350, 300, 0) m, diameter of 100 m and height of 80 m remains stationary through

out the analysis, and is assumed to be known prior to the start of the mission. A pop-up

obstacle, as its name suggests, suddenly appears in front of the UAV with two di�erent

scenarios, one when the distance between the UAV and the obstacle is 50 m and second,

4 s prior to estimated collision with the obstacle (note that the pop-up obstacle appears

sooner in the �rst case). This pop-up obstacle is not known prior to the start of the mission

and only becomes known in real-time when it appears. The pop-up obstacle is taken to be a

cuboid shaped obstacle with center of its base at (600, 650, 0) m and dimension 100×100×60

m3. Finally, a spherical shaped structure with radius of 30 m and center at an altitude of

50 m is taken to be a moving obstacle. This obstacle has been given two di�erent motion

scenarios. First, the obstacle moves in a straight line which crosses the UAV's pre de�ned

path at (800, 800, 50) m. Second, the obstacle moves in a circular path crossing the UAV's

prede�ned path at around (836, 836, 50) m. In any case, it is assumed that the obstacle

detection subsystem can only provide the obstacle's position at each sample time. As such,

for the purpose of real-time trajectory generation, at any time instant, the optimal trajectory

is generated as if the moving obstacle is stationary at its latest known location.
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Figure 3.9: Obstacle Con�gurations

The UAV's task will be to �y from the initial point (0, 0, 0) m to the �nal point (1000, 1000, 0)

m as close as possible to the prede�ned path at height of 50 m, avoiding obstacles such as

stationary, pop-up and/or moving obstacles either in combination or separately based on

the scenario under consideration. The UAV will start and end every autonomous mission

facing towards x-axis with γ = 0, ξ = 0 and V = 15 m/s (minimum speed that UAV

can �y without stalling). These numerical values are chosen to check the method's ability

to incorporate constraints while generating trajectory. Based on Figure 3.9, �ve di�erent

obstacle scenarios are considered. They are:

1. Without Obstacles

2. With Stationary Obstacles

3. Moving Obstacle
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4. Pop-up Obstacle

5. Stationary, Pop-up and Moving Obstacles

Chapter 4 contains detailed analyses of the �ve scenarios based on the optimal control prob-

lem formulation as shown in equation (3.27). Any changes to the optimal control formulation

depending on the given scenario will be discussed where necessary.
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Chapter 4

Results And Analysis

This Chapter presents the numerical results for the �ve di�erent scenarios listed in Chapter

3. Moreover each scenario presented in the sections below has its own obstacle constraint

that will be de�ned in that section. Equation (3.27) forms the basic optimal control prob-

lem formulation for all �ve scenarios. The path constraint for each obstacle de�ned by

hi(x(t), y(t), z(t)) ≥ 0 and the cost function de�ned by J(X(·), U(·), tf ), will be discussed if

necessary.

Among the �ve scenarios, Scenario I and II are the only two cases that allow for a full

open-loop solution, since full obstacle information is available beforehand (it is not updated

in real time). Therefore, these two cases are solved in two ways. In the �rst, they are solved

open-loop. In the second, they are solved in real-time. The resulting open-loop solutions are

then veri�ed and validated to ensure that they are in fact optimal. These optimal solutions

are then used for comparison with the corresponding real-time solutions. Scenarios III to

V represent more realistic scenarios where obstacle information is obtained and updated in

real-time. Thus, for these cases, only real-time solutions are possible.

4.1 Scenario I. Without Obstacle

The obstacle free case represents an ideal scenario to see if the solution makes sense and if

the method is capable of generating a trajectory to follow a nominal path, before considering

the more complicated cases with obstacle present. In terms of trajectory generation for a

UAV such as GeoSurv II, which is designed for a geophysical survey, �ight duration is not

of critical importance. The trajectory generated should be feasible and implementable in

real time there by ful�lling the mission objectives. While the �ight duration is not critical,

it will be useful if it can be reduced, so as to potentially save fuel. To accomplish this, the
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�nal time can be added to the cost function in the trajectory optimization problem. To see

if there is any bene�t to doing this, Scenario I is further sub categorized into two cases

namely, time optimal and non-time optimal. Furthermore, both sub-cases are tested in both

open-loop and real-time (closed-loop) implementations. Figure 4.1 shows Scenario I.
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Figure 4.1: Scenario I

IA. Open-loop, time optimal

The term time optimal in this thesis means that the �nal time is explicitly included in the

cost function, as in the problem formulation in equation (3.27).

In Scenario I, there is no obstacle, and therefore the robustness factor, r(x, y, z), is not

included in the cost. Therefore, for Scenario IA the cost function in equation (3.27) reduces

to

J(X(·), U(·), tf ) =tf + A1 + A2 (4.1)

The optimal control problem de�ned for Scenario IA is solved using DIDO [43] with 100

nodes. It gives tf = 50.3 s as the total maneuver time at the total cost of J = 51.1. Figures
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4.2-4.5 show the complete maneuver of the UAV in three-dimensional space. The states and

controls shown in Figures 4.6 and 4.7 are within the given bounds as speci�ed in equation

(3.28) respectively.
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Figure 4.2: Isometric View of Total Maneuver
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Figure 4.3: View in XZ Plane

0 200 400 600 800 1000
0

50

100  
 

y (m)

 

z 
(m

)

Flight Trajectory
Reference Trajectory
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Figure 4.5: View in XY Plane
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Figure 4.6: States [γ,ξ,V] vs time (t)
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Figure 4.7: Control Trajectory

Feasibility Check:

The �rst step in veri�cation is to show the feasibility of the generated solution. This can

be done by control trajectory interpolation and state propagation using a Runge-Kutta

algorithm as explained in subsection 2.1.2. The initial conditions and system dynamics of

the UAV state variables were propagated using the control solution shown in the Figure 4.7.

Then, the propagated state variables were superimposed on the DIDO generated solution,

which demonstrates the feasibility of the solution if they are close. Figures 4.8-4.14 show

the propagated states versus the DIDO generated states for the feasibility check.
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Figure 4.8: Isometric View of Complete Maneuver
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Figure 4.9: Feasibility Check (x vs t)
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Figure 4.10: Feasibility Check (y vs t)
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Figure 4.11: Feasibility Check (z vs t)
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Figure 4.12: Feasibility Check (γ vs t)
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Figure 4.13: Feasibility Check (ξ vs t)
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Figure 4.14: Feasibility Check (V vs t)

The Runge-Kutta propagated states deviate slightly from the DIDO generated states. Figure

4.11 shows increase in error as it propagates to the end. This is because the PS (DIDO)

generated states and controls only enforce a discretization of the dynamic equation at the

node points. However, the deviation of the Runge-Kutta propagated solution from the DIDO

solution is small, giving con�dence in the feasibility of the DIDO generated solution.

Hamiltonian Value Condition:

Pontryagin's principle does not give su�cient conditions for optimality, just necessary ones.

That is, just because Pontryagin's principle is satis�ed, it does not mean the solution is

optimal. However, if Pontryagin's principle is not satis�ed, then we know that the solution

isn't optimal. We do not check all conditions in Pontryagin's principle, instead, we only
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check the Hamiltonian condition, since this is readily done, and it gives a quick indication

of whether or not the solution can be trusted. From equation (2.17), the optimal control

Hamiltonian value for problem Scenario IA is H∗(τ) = −1. As shown in Figure 4.15,

Pontryagin's Hamiltonian value is nearly constant with value H∗(τ) = −1, as required.
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Figure 4.15: Hamiltonian Value

Bellman Principle Test:

From the Bellman's test of optimality described in subsection 2.1.2, the problem is broken

down into two halves from the 50th node of original problem. The �rst half from (0, 0, 0) m

to (508.43, 508.39, 49.93) m and the second from (508.43, 508.39, 49.93) m to (1000, 1000, 0)

m. The problem is solved by taking the �nal condition of the �rst half as the initial condition

of the second half. The cost and time taken for these two halves were noted.

These two halves were then combined to show an overall trajectory. This combined trajec-

tory is compared with the original trajectory. Figures 4.16-4.19 show the state and control

trajectories of the original problem with the 1sthalf and 2nd half problem superimposed on

the same graph. The cost of the1st half problem was J1 = 25.9719 with 50 nodes and the

cost of the 2nd half problem was J2 = 25.1770 also with 50 nodes. And on adding of 1st

and 2nd halves gives J1 + J2 = 51.1489 which almost matches the original problem cost of

J = 51.1442. The slight di�erence in cost is due to the di�erence in node distributions

between the original and split problems.
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Figure 4.16: Bellman's Test in 3D Maneuver
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Figure 4.17: Bellman's Principle Test (γ vs t)
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Figure 4.18: Bellman's Principle Test (ξ vs t)
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Figure 4.19: Bellman's Principle Test (V vs t)

This sub-section has presented the results of a time optimal open-loop UAV trajectory plan-

ning problem. Next, the non-time optimal case is examined, where the trajectory is optimized

to stay as close as possible to the desired trajectory while satisfying the UAV and obstacle

constraints, without any consideration for the total maneuver time.

IB. Open-loop, non-time optimal

As stated in subsection 4.1, non-time optimal means that the �nal time is excluded from the

cost to be minimized. As for Scenario IA, there are no obstacles, and therefore no robustness

factor. Consequently, the cost function in equation (3.27) becomes
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J(X(·), U(·)) = A1 + A2 (4.2)

The problem solved with 100 nodes gives tf = 52.9 s as the total maneuver time with a the

total cost of J = 0.65.

Removing the contribution of �nal time from the cost in Scenario IA and comparing it

to the cost in the Scenario IB shows that removing the �nal time from the cost in the

trajectory optimization, results in a 23% decrease in the cost, while only a 5.2% increase in

the �nal time.

Figures 4.20-4.23 show the complete maneuver of the UAV in three-dimensional space. The

states and controls shown in Figures 4.24 and 4.25 are within the given bounds as speci�ed

in (3.28) respectively.
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Figure 4.20: Isometric View of Total Maneuver
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Figure 4.21: View in XZ Plane
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Figure 4.22: View in YZ Plane
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Figure 4.23: View in XY Plane
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Figure 4.24: States [γ,ξ,V] vs time (t)
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Figure 4.25: Control Trajectory

Feasibility Check:

Analogous to Scenario IA, Figures 4.26 to 4.32 show the feasibility check for Scenario IB.

These �gures show that the DIDO generated solution is clearly feasible with minor error in

Figure 4.29, with similar reason to IA.
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Figure 4.26: Isometric View of Complete Maneuver
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Figure 4.27: Feasibility Check (x vs t)
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Figure 4.28: Feasibility Check (y vs t)
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Figure 4.29: Feasibility Check (z vs t)
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Figure 4.30: Feasibility Check (γ vs t)
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Figure 4.31: Feasibility Check (ξ vs t)
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Figure 4.32: Feasibility Check (V vs t)
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Hamiltonian Value Condition:

From equation (2.17), the optimal control Hamiltonian value for problem Scenario IB is

H∗(τ) = 0. As shown in Figure 4.33, Pontryagin's Hamiltonian value is nearly constant with

value H∗(τ) = 0, as required.
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Figure 4.33: Hamiltonian Value

Bellman Principle Test:

Just as in Scenario IA, the problem is broken down into two halves. The �rst half from

(0, 0, 0) m to (527.38, 527.37, 49.85) m and the second from (527.38, 527.37, 49.85) m to

(1000, 1000, 0) m. The cost and time taken for these two halves were noted.

Figures 4.34-4.37 show the state trajectories of the original problem with the 1st half and the

2nd half problems superimposed on the same graph. The cost for the 1st half problem was

J1 = 0.3272 with 50 nodes; the cost for the 2nd half problem was J2 = 0.3279 also with 50

nodes; and addition of the 1st and 2nd halves gives J1+J2 = 0.6551 which almost matches the

original problem cost of J = 0.6558. Figures 4.34, 4.35 and 4.36 show good agreement in the

UAV trajectory as well as angles ξ and γ. However, �gure 4.37 shows signi�cant di�erences

in UAV speed. This can be understood by the fact in the non-time optimal case the cost is

una�ected by the speed of the UAV once it is �ying along the reference trajectory, since the

integrands of A1 and A2 are zero during this portion. Hence, there are multiple solutions

for the UAV speed, yielding the same cost.
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Figure 4.34: Bellman's Test in 3D Maneuver
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Figure 4.35: Bellman's Principal Test (γ vs t)
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Figure 4.36: Bellman's Principle Test (ξ vs t)
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Figure 4.37: Bellman's Principle Test (V vs t)

This sub-section has presented the results of a non time optimal open-loop UAV trajectory

planning problem. In the next section, we further check the feasibility of this method in

realtime path planning.
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IC. Realtime, time optimal

Realtime path planning uses the de-aliasing principle as explained in subsection 2.3. Before

presenting the real-time results for Scenario IC, an appropriate sample rate and number

of nodes for each solution must be selected. Because of the high convergence rate of PS

methods, we simply use low node solutions for online calculation, which further lowers the

computation time [49]. Figure 4.38 shows the optimal open-loop trajectories corresponding

to Scenario IB using 15, 30, 50 and 100 nodes with 4s, 11s, 28s, 388s computation time

respectively. For real-time implementation, a lower computation time allows one to increase

the sampling frequency. In general, according to the de-aliasing principle, a lower sample

time leads to less propagation error and higher accuracy. To support this statement Figure

4.29, is considered, which shows that the error increases with increasing propagation time.
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Figure 4.38: Trajectory comparision with di�erent nodes.

Regarding the computation time, reference [49] states that, excluding the Windows plat-
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form and MATLAB overheads, the computation time can be decreased by a factor of 100,

with optimized actual code. For implementation on a real UAV, the program would be

customized excluding unnecessary platform and overheads. Hence, with this in mind, a sam-

pling frequency of 5 Hz is assumed, that is, we assume the computer on board with UAV

can compute each open-loop solution in 0.2 seconds. This is conservatively based on a 30

nodes solution, which as mentioned before was computed in 11 s. Figure 4.39 shows the

state trajectory from 0.2 to 0.4 seconds for the 30 nodes and 100 nodes solutions.
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Figure 4.39: Trajectory Propagation using controls from 0.2-0.4 second

Scenario IC uses the same problem formulation as Scenario IA, with the di�erence being

that the solution is generated in real-time with a 5 Hz sampling frequency and 30 nodes used

for the solution at each sample instant. The simulation results are shown in Figures 4.40 to

4.46. The R-K propagated, open-loop time optimal solution generated with 100 nodes from

Scenario IA is shown for comparison. The average time for computing each open-loop is

71



4.1026 s. A Computer with Intel CPU @ 2.9 GHz and 4 GB RAM was used to obtain all

the results in this thesis.
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Figure 4.40: Realtime vs Open-loop Maneuver in Isometric View
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Figure 4.41: Realtime vs Open-loop Maneuver in XZ Plane
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Figure 4.42: Realtime vs Open-loop Maneuver in YZ Plane

72



0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

 

x (m)

Time Optimal Trajectory

 

y 
(m

)

Open−loop Trajectory

Realtime Trajectory

Reference Trajectory

Figure 4.43: Realtime vs Open-loop Maneuver in XY Plane
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Figure 4.44: Realtime vs Open-loop γ angle
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Figure 4.45: Realtime vs Open-loop ξ angle
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Figure 4.46: Realtime vs Open-loop (V ) Velocity

It can be seen from the results that the real-time generated solution with 30 nodes matches

the open-loop 100 node solution very well, justifying its use for real-time trajectory genera-

tion. During realtime simulation if the realtime updates are allowed to happen until the goal

point, the �nal update may become infeasible, since it could extend beyond the required �nal

position. To prevent the in-feasibility the realtime updates are stopped 30m ahead of the

goal point and allowed to propagate with the last open-loop controls of realtime simulation.

Because of this reason the real-time updated states have propagation errors at the end which

are visible in Figures 4.46, 4.111, 4.112, 4.118 and 4.119.

ID. Realtime, non-time optimal

Scenario ID uses the same problem formulation as Scenario IB, with the di�erence being

that the solution is generated in real-time with a 5 Hz sampling frequency and 30 nodes used
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for the solution at each sample instant. The simulation results are shown in Figures 4.47 to

4.53. The open-loop optimal solution generated with 100 nodes from Scenario IB is shown

for comparison. The average time for computing each open-loop problem is 9.8170 s.
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Figure 4.47: Realtime vs Open-loop Maneuver in Isometric View

0 100 200 300 400 500 600 700 800 900 1000
0

50

100  
Non−Time Optimal Trajectory

x (m)

 

z 
(m

)

Open−loop Trajectory

Realtime Trajectory

Reference Trajectory

Figure 4.48: Realtime vs Open-loop Maneuver in XZ Plane
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Figure 4.49: Realtime vs Open-loop Maneuver in YZ Plane
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Figure 4.50: Realtime vs Open-loop Maneuver in XY Plane
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Figure 4.51: Realtime vs Open-loop γ angle
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Figure 4.52: Realtime vs Open-loop ξ angle
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Figure 4.53: Realtime vs Open-loop (V ) Velocity

From Figure 4.53 it can be seen that the realtime velocity goes higher than its upper limit,

this is due to the propagation error when controls applied are at the upper limits, similar to

that of Figure 4.29. When any of the states are out of the required range the tool (DIDO)

provides an infeasible solution with controls within the bounds given to the problem, these

controls tend to pull the values of the states within the bounds by lowering the values of

controls. This is demonstrated in Figure 4.53.

Conclusion:

Figure 4.54 compares the real-time time-optimal and non time-optimal trajectories. It can

be seen that the non time-optimal solution follows the reference trajectory closer than the

time-optimal one. Table 4.1 provides a comparison between all four scenarios. Despite the

lower computation and slightly lower maneuver time in the time optimal case, the non-time
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optimal formulation is chosen for realtime trajectory generation through out this thesis, due

to the fact that it generates a trajectory that follows the reference trajectory signi�cantly

closer.
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Figure 4.54: Comparison of the trajectory generated.
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Table 4.1: Scenario I Computational Summary.

Case Node Computation Time Cost Maneuver Time

IA 100 (o�ine) 229.8s 0.8523(without tf ) 50.2919s

IB 100 (o�ine) 388.05s 0.6558 52.8946s

IC 30, 5 Hz (realtime) 4.1026s (a.c.t)1 - 50.2512s

ID 30, 5 Hz (realtime) 9.8170s (a.c.t) - 52.7172s

4.2 Scenario II. With Stationary Obstacles

Scenario II presents the case where obstacles are stationary, and their positions and shapes

are known beforehand. The detailed scenario is shown in Figure 4.55. This section checks

the method's capability to avoid stationary obstacles while remaining close to the prede�ned

trajectory. As explained in Section 3.4, two stationary obstacles are placed with base centered

at (350, 300, 0) m and (600, 650, 0) m. These two obstacles form path constraints as explained

in Section 3.3. From equation (3.22), the path constraints due to the obstacles are given by

h1(x, y, z) := ln

[∣∣∣∣∣
(
x− 350

50

)2
∣∣∣∣∣+

∣∣∣∣∣
(
y − 300

50

)2
∣∣∣∣∣+

∣∣∣∣∣
(
z − 40

40

)8
∣∣∣∣∣
]
≥ 0 (4.3)

and

h2(x, y, z) := ln

[∣∣∣∣∣
(
x− 600

50

)8
∣∣∣∣∣+

∣∣∣∣∣
(
y − 650

50

)8
∣∣∣∣∣+

∣∣∣∣∣
(
z − 30

30

)8
∣∣∣∣∣
]
≥ 0 (4.4)

As explained in Section 3.3, when obstacles are present, the cost function includes a corre-

sponding robustness factor. The e�ect of adding the robustness factor to the cost is that the

optimal trajectory is pushed away from the obstacles, which is bene�cial from the point of

view of creating a safer trajectory. On the other hand, it means that the trajectory does not

truly minimize the area between the optimal and reference trajectories.

1average computation time per solution at a sample time
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Figure 4.55: Scenario II

IIA. Open-loop:

Equation (3.27) de�nes the problem statement for Scenario IIA with the obstacles' con-

straints given in equations (4.3) and (4.4) and the cost function given by equation (4.5).

J(X(·), U(·)) =

∫ tf

t0

[r(x, y, z)]dt+ A1 + A2 (4.5)

where, from equation (3.25), with w = 0.5, the robustness function is given by

r(x, y, z) = 0.5
[
(ee

−h1(x,y,z) − 1) + (ee
−h2(x,y,z) − 1)

]
(4.6)

The problem is solved with 100 nodes giving a total cost of J = 2.8328 and tf = 57.1669

s as the total maneuver time. Figures 4.56-4.62 show the state and control trajectories

respectively. It can be seen that the optimal trajectory stays close to the reference trajectory,

while avoiding the obstacles.
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Figure 4.56: Isometric View of Total Maneuver

Figure 4.57: View in XZ Plane

Figure 4.58: View in YZ Plane
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Figure 4.59: View in XY Plane
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Figure 4.60: States [x, y, z] vs time (t)
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Figure 4.61: States [γ,ξ,V] vs time (t)
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Figure 4.62: Control Trajectory

Feasibility Check:

Figures 4.63 to 4.69 show the feasibility check for Scenario IIA. It can be seen that the

Runge-Kutta propagated solution follows the DIDO solution very closely.
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Figure 4.63: Isometric View of Complete Maneuver
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Figure 4.64: Feasibility Check (x vs t)
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Figure 4.65: Feasibility Check (y vs t)
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Figure 4.66: Feasibility Check (z vs t)
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Figure 4.67: Feasibility Check (γ vs t)
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Figure 4.68: Feasibility Check (ξ vs t)
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Figure 4.69: Feasibility Check (V vs t)

Hamiltonian Value Condition:

Similar to that of Scenario IB, Figure 4.70 shows Pontryagin's Hamiltonian value is nearly

constant with value H∗(τ) = 0, as required.
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Figure 4.70: Hamiltonian Value

Bellman Principle Test:

The problem is broken down into two halves. The �rst half is from (0, 0, 0) m to

(8.0750, 8.0762, 0.499) m and the second from (8.0750, 8.0762, 0.499) m to (1000, 1000, 0) m.

The cost and time taken for these two halves were noted.

Figures 4.71-4.74 show the states trajectories of the original problem with the 1sthalf and

2nd half problem superimposed on the same graph. The cost of the 1st half problem was

J1 = 2.4670 with 50 nodes; the cost of the 2nd half problem was J2 = 0.3482 also with 50

nodes; and addition of the 1st and 2nd halves gives J1 + J2 = 2.81 which almost matches the
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original problem cost of J = 2.83. The di�erence in the costs is due to the node distribution

scheme and the dividing point of the original trajectory. Figure 4.75 shows an example of

the node distribution if the original trajectory is divided into two from the midpoint of the

interval [0, 10].

Figure 4.71: Bellman's Test in 3D Maneuver
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Figure 4.72: Bellman's Principle Test (γ vs t)
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Figure 4.73: Bellman's Principle Test (ξ vs t)
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Figure 4.74: Bellman's Principle Test (V vs t)
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Discrepancies in Figures 4.72 to 4.74 are because of the polynomial approximation of the

control in equation (2.24), which actually means that the control is required to be continuous

over the entire trajectory. This includes the acceleration. Hence, sharp changes in velocity

are not possible. However, when we break the trajectory into two, as in the Bellman test, we

introduce the possibility of a discontinuity in the controls at the break point. From Figure

4.74, this is exactly what has happened to the acceleration. This discontinuity in velocity

has allowed the 2nd half trajectory some freedom in seeking a trajectory that gives a lower

total cost. This can be seen in the costs J1 + J2 < J3.

IIA (a). Change of Robustness Factor (w)

As mentioned previously, the robustness factor pushes the resulting optimal trajectory away

from the obstacles. In this subsection, we compare the trajectory generated with one gen-

erated with a reduced robustness factor (w). The results are shown in Figure 4.76. As

expected, the trajectory generated with a reduced robustness factor stays closer to the ref-

erence trajectory. However, it also passes closer to the obstacles, and hence is less safe.
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(a) 3D Maneuver

(b) XZ Maneuver

(c) YZ Maneuver

Figure 4.76: Comparison of Trajectory with di�erent Robustness Factor (w).

IIB. Realtime, (w = 0.5):

Scenario IIB contains the real-time solution of the problem formulated in Scenario IIA. In

this case, the sampling frequency is 5 Hz, and 40 nodes are used to compute the solution at

each sample instant. Compared to Scenarios IC and ID, the number of nodes is increased,

since it was found that 30 nodes did not perform su�ciently well. Figures 4.77 to 4.83 show

the resulting real-time trajectories, with the corresponding open-loop trajectories shown for

comparison. It can be seen that spatially (x, y, z), the real-time and open-loop trajectories
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are quite similar.

The average time for solving each realtime problem is 67.3459 s.

Figure 4.77: 3D Maneuver

Figure 4.78: XZ Maneuver

Figure 4.79: YZ Maneuver

93



Figure 4.80: XY Maneuver
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Figure 4.81: γvs t

In Figure 4.81, real-time γ actually goes outside the allowable range at about 52 s, this is

due to propagation error similar to that of Figure 4.53.
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Figure 4.82: ξ vs t
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Figure 4.83: Velocity (V ) vs t

IIC. Realtime, (w = 0.3):

Scenario IIC is a case similar to IIB but with decreased robustness factor (w = 0.3).

Figures 4.84 to 4.87 compares the IIC real-time trajectory with IIB realtime trajectory.

It shows that IIC remains close to reference trajectory and also decreasing maneuver and

computation time.
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Figure 4.84: Trajectory comparison with di�erent robustness factor (3D view)

Figure 4.85: Trajectory comparison with di�erent robustness factor (XZ Plane)

Figure 4.86: Trajectory comparison with di�erent robustness factor (YZ Plane)
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Figure 4.87: Trajectory comparison with di�erent robustness factor (XY Plane)

Table 4.2 summarizes the results for Scenario II.

Table 4.2: Scenario II Computational Summary

Case Node Computation Time Cost Maneuver Time

IIA 100 (o�ine) (w = 0.5) 2228.2 s 2.8328 57.1669 s
IIA (a) 100 (o�ine) (w = 0.3) 1238.5 s 2.2659 52.7784 s
IIB 40, 5 Hz (realtime) (w = 0.5) 67.3459 s (a.c.t)2 - 54.5815 s
IIC 40, 5 Hz (realtime) (w = 0.3) 48.652 s (a.c.t) - 49.6174 s

It can be seen that with w = 0.3 the computation time was signi�cantly less. hence a way

to recover some safety while reducing computation time would be to reduce the weighting

factor, but increase the size of the modeled obstacle (make it larger than the true obstacle).

2average computation time per solution at a sample time
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4.3 Scenario III. Moving Obstacle

After the successful implementation of Legendre Pseudospectral method in Scenario I and

Scenario II, we now test the method with moving obstacles. Because the motion of the

obstacles is not known beforehand, it must be implemented in real-time. Since, this method

works on the basis of obstacles seen at each snapshot taken, it is necessary that the obstacles

be detected. Regarding the avoidance of moving obstacles, the more rapidly the obstacle is

moving and/or the later the obstacle is detected, the quicker the on-board computation of a

new trajectory and the more maneuverable the aircraft needs to be. To test this method for

moving obstacles, two di�erent cases are considered. First, the obstacle moves in a straight

line and second in a curved path as de�ned in the subsections below.

IIIA. Realtime: An Obstacle Moving in Straight Line
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Figure 4.88: Scenario IIIA

In this case the spherical shaped obstacle has its center initially stationed at (600, 900, 50)

m, and starts moving after 32.7s of simulation time to meet the UAV at (800, 800, 50) m. It
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is di�cult to predict the time that the UAV would arrive at (800,800,50) m, but from the

realtime simulation result of Scenario ID, it is assumed that the UAV reaches (800, 800, 50)

m at 40.7 s. Hence, the obstacle's path is designed in such a way that it remains stationary

till 32.7 s, and start moving towards the reference trajectory to reach (1000, 700, 50) m, after

16 s. On its way the obstacle passes through (800, 800, 50) m at 40.7 s, that is 8 s after

starting to move.

Equation (4.7) shows the obstacle constraint as the function of time.

h1(x, y, z) := ln

∣∣∣∣∣
(
x− 100(6 + (t−32.7)

4
)

30

)2∣∣∣∣∣+ . . .

∣∣∣∣∣
(
y − 100(9− (t−32.7)

8
)

30

)2∣∣∣∣∣+

∣∣∣∣∣
(
z − 50

30

)2
∣∣∣∣∣
 ≥ 0 (4.7)

32.7 ≤ t ≤ 48.7

However, it must be emphasized that the UAV is assumed to have knowledge only of the

obstacle position at each sample instant. Hence, at a given sample instant, the new trajectory

is computed with t in (4.7) held �xed at the current sample time.

With the path constraint in (4.7), the cost function for Scenario IIIA in equation (3.27)

becomes

J(X(·), U(·)) =

∫ tf

t0

[r(x, y, z)]dt+ A1 + A2 (4.8)

where, from equation (3.25), with w = 0.5, the robustness function is given by

r(x, y, z) = 0.5
[
(ee

−h1(x,y,z) − 1)
]

(4.9)

In case of moving obstacle, it was found to be necessary to increase the robustness factor

(w) because it was found that with the reduced robustness factor, each real-time trajectory

(which was obtained under the assumption that the obstacle is stationary) passed too close

to the obstacle, and since the obstacle was actually moving, collision occurred.

As for Scenario IIB, the sampling frequency is 5 Hz, and a 40 nodes are used for each

real-time solution. The resulting state trajectories are shown in Figures 4.89 to 4.98. The

average time for solving the realtime problem is 27.329 s and the total maneuver time is 55.54

s. As shown in the �gures, the UAV successfully avoids the moving obstacle. Of particular

99



interest is �gure 4.93, where the UAV is avoiding the obstacle after it has already passed.

This is because the realtime trajectory is determined based on instantaneous position of the

obstacle only, without knowledge of its motion. The robustness function acts to push the

UAV further to the left even though the obstacle has passed.
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Figure 4.89: Realtime Maneuver, �ight path at t = 32.7s
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Figure 4.90: Flight path at t = 38.7 s
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Figure 4.91: Flight path at t = 39.7s
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Figure 4.92: Flight path at t = 40.7 s
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Figure 4.93: Flight path at t = 42.7 s
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Figure 4.94: Flight path at t = 48.7s

105



0 100 200 300 400 500 600 700 800 900 1000

0

200

400

600

800

1000

0

50

100

 

x (m)

Realtime Maneuver

y (m)
 

z 
(m

)

Flight Trajectory at t=55.54 s
Reference Trajectory
Path of Moving Obstacle

(a) 3D view

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

 

x (m)

Realtime Maneuver

 

y 
(m

)

Flight Trajectory at t=55.54 s
Reference Trajectory
Path of Moving Obstacle

(b) View in XY Plane

Figure 4.95: Flight path at t = 55.54s
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Figure 4.96: γvs t
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Figure 4.97: ξ vs t
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IIIB. Realtime: An Obstacle Moving in Curve Path
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Figure 4.99: Scenario IIIB

Similar to Scenario IIIA, the obstacle is de�ned in such a way that it remains stationary

with its center at (600, 900, 50) m until 35 s and then starts moving in circular path with

center of curvature at (700, 800, 50) m reaching (800, 700, 50) m 16 s later after passing

through the reference trajectory at (836, 836, 50) m. The radius of curvature is found to be

r = 100
√

2 m. Initially the position of the obstacle in meters is given by

xip = 700 + r cos(θ)

yip = 800 + r sin(θ)

zip = 50

where,

θ = 135

Let 4θ be the angle from the center of curvature between the initial position (600, 900, 50)

m and the �nal position (800, 700, 50) m. Then, since it takes 16 s to travel from the start
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to �nish positions, the obstacle constraint is given by.

h1(x, y, z) := ln

[∣∣∣∣∣
(
x− (700 + r cos(135− (t− 35)(4θ/16)))

30

)2
∣∣∣∣∣

+

∣∣∣∣∣
(
y − (800 + r sin(135− (t− 35)(4θ/16)))

30

)2
∣∣∣∣∣+

∣∣∣∣∣
(
z − 50

30

)2
∣∣∣∣∣
]
≥ 0 (4.10)

35s ≤ t ≤ 51s

r = 100
√

2m

As in Scenario IIIA, the UAV is assumed to have knowledge only of the obstacle position

at each sample instant. Hence, at a given sample instant, the new trajectory is computed

with t in (4.10) held �xed at the current sample time.

With the path constraint in (4.10), the cost function for Scenario IIIB in equation (3.27)

becomes

J(X(·), U(·)) =

∫ tf

t0

[r(x, y, z)]dt+ A1 + A2 (4.11)

where, from equation (3.25), with w = 0.5, we get

r(x, y, z) = 0.5
[
(ee

−h1(x,y,z) − 1)
]

(4.12)

As for Scenario IIIA, the sampling frequency is 5 Hz, and a 40 nodes are used for each

real-time solution. The resulting state trajectories are shown in Figures 4.100 to 4.108.

The average time for solving the realtime problem is 74.65 s, and the total maneuver time

is 56.59 s.
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Figure 4.100: Flight path at t = 35s
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Figure 4.101: Flight path at t = 45.7 s
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Figure 4.102: Flight path at t = 46.7s
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Figure 4.103: Flight path at t = 47.7 s
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Figure 4.104: Flight path at t = 48.7 s
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Figure 4.105: Flight path at t = 56.59s
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Figure 4.106: γvs t
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Figure 4.107: ξ vs t

0 10 20 30 40 50 60
10

15

20

25

30

35

time (s)

V
el

oc
ity

 (
V

) 
(m

/s
)

Realtime Velocity (V)

 

 Velocity (V)

Figure 4.108: V vs t

From Scenarios IIIA and IIIB, it can be seen that the method is capable of generating

trajectories in real-time to avoid moving obstacles, with only information about the obstacle's
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instantaneous position. However, it can require increasing the robustness factor, which

increases the computation time, as well as the total time for the maneuver.

4.4 Scenario IV. Pop-up Obstacle

Apart from stationary and moving obstacles, it is a practical requirement that this method

can handle obstacles that are detected suddenly. This particular situation can occur for

example in crowded environments when one building is right behind the next building and

is not detected until the �rst building is passed. This situation can also be seen when

the environment is foggy and the visibility of the aircraft is very low. Thus, autonomous

avoidance of pop up obstacles is of signi�cant practical importance. In Scenario IV we

consider such a scenario. In this section the method is implemented with two sub cases.

First, when the obstacle is detected 50 m ahead of UAV and second, when obstacle appears

on the reference trajectory 4 s prior to expected collision. A cuboid shaped structure with

its base centered at (600, 650, 0) m and height of 60 m is considered as the pop-up obstacle.

The obstacle has equal width and length of 100 m. Equation (4.13) shows the corresponding

obstacle constraint equation.

h1(x, y, z) := ln

[∣∣∣∣∣
(
x− 600

50

)8
∣∣∣∣∣+

∣∣∣∣∣
(
y − 650

50

)8
∣∣∣∣∣+

∣∣∣∣∣
(
z − 30

30

)8
∣∣∣∣∣
]
≥ 0 (4.13)
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Figure 4.109: Scenario IV

IVA. Realtime: An obstacle appears 50 m ahead

In this case the obstacle is detected when it is 50m ahead of the aircraft. Since the reference

trajectory �rst passes through the obstacle's surface at (600, 600, 50) m, the obstacle is

detected when the UAV is 50m ahead of this point. Hence the distance from the UAV to

the obstacle along the reference trajectory is from UAV to obstacle is given by

d(x, y, z) =
√

(x− 600)2 + (y − 600)2 + (z − 50)2

and the obstacle constraint in (4.13) comes into e�ect when d ≤ 50m.

With the path constraint in (4.13), the cost function for Scenario IVA in equation (3.27)

becomes

J(X(·), U(·)) =

∫ tf

t0

[r(x, y, z)]dt+ A1 + A2 (4.14)

where, from equation (3.25), with w = 0.25, we get
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r(x, y, z) = 0.25
[
(ee

−h1(x,y,z) − 1)
]

(4.15)

Unlike Scenario III, since the obstacle is not moving, we can get away with a smaller

robustness factor (as will be seen), thereby decreasing computational time.

As for Scenario II and III, the sampling frequency is 5 Hz, and 40 nodes are used for each

real-time solution. The resulting state trajectories are shown in Figures 4.110 to 4.116.

The average time for solving the realtime problem is 44.1311 s and a total maneuver time

of 73.503 s. In this case even with decreased robustness factor it can be seen that the UAV

successfully avoids the obstacle and returns to the reference trajectory.

Figure 4.110: Pop-up Obstacle detected 50 m ahead: 3D view

Figure 4.111: Pop-up Obstacle detected 50 m ahead: view in XZ plane
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Figure 4.112: Pop-up Obstacle detected 50 m ahead: view in YZ plane

Figure 4.113: Pop-up Obstacle detected 50 m ahead: view in XY plane
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Figure 4.114: γ vs t : with pop-up obstacle detected 50 m ahead
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Figure 4.115: ξ vs t : with pop-up obstacle detected 50 m ahead
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Figure 4.116: V vs t : with pop-up obstacle detected 50 m ahead

The discrepancies seen in the Figures 4.111 to 4.113 at the end of the trajectory is due to

the propagation error as explained in subsection 4.1.
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IVB. Realtime: An obstacle appears 4s prior to expected collision

In this case the obstacle is detected 4s prior to expected collision. From Scenario ID, the

UAV reaches the point (600, 600, 50) m at 30s. Hence, with only the pop-up obstacle on

its path, we assume the obstacle is detected at 26s of simulation time. Hence the obstacle

constraint in equation (4.13) comes into e�ect after t = 26 s.

The cost function for Scenario IVB is consequently the same as for Scenario IVA, with

the only di�erence being the time at which the obstacle constraint comes into e�ect.

As for Scenario IVA, the sampling frequency is 5 Hz, and 40 nodes are used for each

real-time solution. The resulting state trajectories are shown in Figures 4.117 to 4.123. The

average time for solving the realtime problem is 47.32s and a total maneuver time of 70.6s.

It can be seen that the UAV successfully avoids the obstacle and returns to the reference

trajectory.

Figure 4.117: Pop-up Obstacle detected 4 s prior to expected collision: 3D view

Figure 4.118: Pop-up Obstacle detected 4 s prior to expected collision: view in XZ plane

122



Figure 4.119: Pop-up Obstacle detected 4 s prior to expected collision: view in YZ plane

Figure 4.120: Pop-up Obstacle detected 4 s prior to expected collision: view in XY plane
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Figure 4.121: γ vs t : with pop-up obstacle detected 4 s prior to expected collision:
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Figure 4.122: ξ vs t : with pop-up obstacle detected 4 s prior to expected collision:
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Figure 4.123: V vs t : with pop-up obstacle detected 4 s prior to expected collision:

To summarize both cases, the real-time trajectories generated for Scenarios IVA and IVB

are shown in Figures 4.124 to 4.127.
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Figure 4.124: Comparison of case IVA and IVB: 3D view

Figure 4.125: Comparison of case IVA and IVB: XZ view

Figure 4.126: Comparison of case IVA and IVB: YZ view
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Figure 4.127: Comparison of case IVA and IVB: XY view

The trajectories in both cases are similar and avoid the pop-up obstacles successfully.

4.5 Scenario V. Stationary, Pop-up and Moving Obsta-

cles

Finally, Scenario V includes stationary, pop-up and moving obstacles together, as shown

in Figure 4.128 and 4.137. In this case, the stationary obstacle with its base centered at

(350, 300, 0) m is cylindrical shaped with a height of 80 m. The path constraint due to the

stationary obstacle is given in equation (4.16). The pop-up obstacle is formed by a cuboid

shaped structure with its base centered at (600, 650, 0) m and dimension of 100× 100× 60

m. The pop-up obstacle is detected just 50 m ahead by UAV on reference trajectory similar

to Scenario IVA. Similarly, the path constraint due to pop-up obstacle is given in equation

(4.17). The moving obstacle is spherical shaped with radius of 30 m. According to the path

of the moving obstacle, Scenario V is further divided into two sub-cases. First, when the

moving obstacle's path is a straight line and second when the path of moving obstacle is a

curve.
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h1(x, y, z) := ln

[∣∣∣∣∣
(
x− 350

50

)2
∣∣∣∣∣+

∣∣∣∣∣
(
y − 300

50

)2
∣∣∣∣∣+

∣∣∣∣∣
(
z − 40

40

)8
∣∣∣∣∣
]
≥ 0; t ≥ 0 (4.16)

h2(x, y, z) := ln

[∣∣∣∣∣
(
x− 600

50

)8
∣∣∣∣∣+

∣∣∣∣∣
(
y − 650

50

)8
∣∣∣∣∣+

∣∣∣∣∣
(
z − 30

30

)8
∣∣∣∣∣
]
≥ 0; d ≤ 50m (4.17)

where,

d(x, y, z) =
√

(x− 600)2 + (y − 600)2 + (z − 50)2

VA. Realtime: Stationary, Pop-up and Moving (in straight line) ob-

stacles.
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Figure 4.128: Scenario VA

In this case, the moving obstacle remains stationary till 38 s with its center at (600, 900, 50)

m and starts moving after 38 s to reach the point (1000, 700, 50) m at 54 s passing through
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the reference trajectory at 46 s. The constraint due to moving obstacle is

h3(x, y, z) := ln

∣∣∣∣∣
(
x− 100(6 + (t−40)

4
)

30

)2∣∣∣∣∣+
∣∣∣∣∣
(
y − 100(9− (t−40)

8
)

30

)2∣∣∣∣∣+

∣∣∣∣∣
(
z − 50

30

)2
∣∣∣∣∣
 ≥ 0; 38 ≤ t ≤ 54 (4.18)

However, as before, it must be emphasized that the UAV is assumed to have knowledge only

of the obstacle position at each sample instant. Hence, at a given sample instant, the new

trajectory is computed with t in (4.18) held �xed at the current sample time.

Similarly, equation (3.27) de�nes the problem formulation for Scenario VA, with the path

constraint due to obstacles given by equations (4.16), (4.17) and (4.18), and the cost function

given by equation (4.19) implemented in realtime.

J(X(·), U(·)) =

∫ tf

t0

[r(x, y, z)]dt+ A1 + A2 (4.19)

where, from equation (3.25), with (w = 0.25) on stationary and pop-up obstacle and (w =

0.5) on moving obstacle, we get

r(x, y, z) = 0.25
[
(ee

−h1(x,y,z) − 1) + (ee
−h2(x,y,z) − 1)

]
+ 0.5

[
(ee

−h3(x,y,z) − 1)
]

(4.20)

With 5 Hz updating frequency, and 40 nodes, the realtime simulation results are shown in

Figures 4.129-4.136. The average time for solving the realtime problem is 24.32s and total

maneuver time is 62.365s.
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(a) 3D view

(b) View in XY Plane

Figure 4.129: Flight path at t = 38s
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(a) 3D View

(b) View in XY Plane

Figure 4.130: Flight path at t = 46 s
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(a) 3D view

(b) View in XY Plane

Figure 4.131: Flight path at t = 48s
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(a) 3D view

(b) View in XY Plane

Figure 4.132: Flight path at t = 54s
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(a) 3D view

(b) View in XY Plane

Figure 4.133: Flight path at t = 62.365s
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Figure 4.134: γvs t
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Figure 4.135: ξ vs t
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Figure 4.136: V vs t

As can be seen, the UAV successfully avoids all obstacles while staying close to the reference

trajectory.
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VB. Realtime: Stationary, Pop-up and Moving (in curve path) ob-

stacles.
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Figure 4.137: Scenario VB

In this case the moving obstacle changes its position in such a way that the x− position of

the UAV becomes the x− position of the moving obstacle from 31 s until 51 s of simulation

time and y − position is given by

y = 600 + rsin(n)

at height of 50 m.

where,

r = 100
√

2m

n = (90− 0.5625(t− 31)5)
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The decrease in the value of n by −0.5625 represents the change in the y − position of the

obstacle for every 0.2 s of simulation time from 31 s to 51 s. With this choice of obstacle

x − position, the obstacle tends to target the UAV as it crosses its path. This represents

a challenging obstacle for the UAV to avoid. The above expression for the y − position is

similar to Scenario IIIB. The problem formulation for Scenario VB is similar to that for

Scenario VA, with the only di�erence being the path constraint due to the moving obstacle

which is given in equation (4.21) and its associated robustness function. Similar to Scenario

IIIA, it was found that with robustness factor (w) of 0.5 the moving obstacle collided with

the UAV, hence the robustness factor (w) of the moving obstacle is further increased to 1.

h1(x, y, z, t) := ln

[∣∣∣∣∣
(
x− x

30

)2
∣∣∣∣∣+

∣∣∣∣∣
(
y − (600 + r sin(n))

30

)2
∣∣∣∣∣+ · · ·

∣∣∣∣∣
(
z − 50

30

)2
∣∣∣∣∣
]
≥ 0; 31s ≤ t ≤ 51s (4.21)

As in the previous scenarios, a 5 Hz updating frequency and 40 nodes are used for each

open-loop computation in realtime simulation. Figures 4.138 to 4.147 show the results. The

average time for solving each open-loop solution in the realtime problem is 63.72 s with a

total maneuver time of 55.43 s.
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(a) 3D View

(b) View in XY Plane

Figure 4.138: Flight path at t = 31s
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(a) 3D View

(b) View in XY Plane

Figure 4.139: Flight path at t = 36s
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(a) 3D View

(b) View in XY Plane

Figure 4.140: Flight path at t = 39s
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(a) 3D View

(b) View in XY Plane

Figure 4.141: Flight path at t = 40s
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(a) 3D View

(b) View in XY Plane

Figure 4.142: Flight path at t = 41s
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(a) 3D View

(b) View in XY Plane

Figure 4.143: Flight path at t = 51s
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(a) 3D View

(b) View in XY Plane

Figure 4.144: Flight path at t = 55.43s
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Figure 4.145: γvs t
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Figure 4.146: ξ vs t
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Figure 4.147: V vs t

As can be seen, the method can successfully avoid the stationary, pop-up and moving ob-

stacles while remaining close to the reference trajectory even in this challenging scenario.
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This scenario is even more challenging than would be expected to encounter in practice. For

example, moving obstacle would be much smaller, e.g. birds.
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Chapter 5

Conclusion

5.1 Research Conclusion

The objective of this thesis was to determine the capability of the Legendre Pseudospectral

method of optimal control for use in real-time autonomous obstacle avoidance by �xed-

wing UAVs performing geophysical surveys. The UAV is required to avoid di�erent types

of obstacles such as stationary, moving and pop-up obstacles, while remaining close to the

pre-determined nominal survey �ight path. At the same time, the method needs to respect

the aircraft's physical and dynamic limitations.

In order to solve this problem, an appropriate optimal control problem was formulated, with

the cost function de�ned so as to minimize the area between the actual �ight path and

the reference trajectory. As seen in the results, this particular de�nition directly leads to a

�ight path that remains close to the reference trajectory. A number of aircraft constraints

were incorporated into the optimal control problem, including constraints on the aircraft

turning and pull-up radii, climb and descend angles, aircraft acceleration and maximum and

minimum speeds. Obstacles were modeled as path constraints. In addition to the obstacle

path constraints, a robustness factor for each obstacle was included in the cost function,

pushing the �ight path further away from the obstacles for increased safety. Finally, the cost

function has the option of including �nal maneuver time, so as to reduce the overall amount

of time taken to perform an avoidance maneuver.

The formulated method has been tested numerically in a number of di�erent scenarios,

including stationary obstacles alone, moving obstacles alone, pop-up obstacles alone, and

a combination of all three types of obstacles considered simultaneously. In every scenario

considered, the UAV was able to successfully avoid the obstacles, while remaining close to the

reference trajectory. Thus, this work has answered a key question regarding the applicability
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of the Legendre pseudospectral method of optimal control for real-time obstacle avoidance

for the type of UAV mission under consideration. Namely, this work has demonstrated that

provided the computational requirements of the Legendre pseudospectral method can be

met on-board a UAV, it will be able to successfully guide the UAV around a number of

di�erent types of obstacles, while staying close to the nominal �ight path. This represents a

signi�cant increase in capability over previously developed methods.

5.2 Future Work

The successful implementation of the developed method of obstacle avoidance for a �xed-

wing UAV depends on the computational power on board as well as computational burden

of the method and the maneuverability of the UAV. This thesis does not develop the end

product to be implemented directly into UAV, but provides a necessary stepping stone to

build one. The next important step would be to develop a customized tool to solve the

optimal control problem. The following is a list of recommendations for future work before

this method can be actually applied on the UAVs.

1. Development of the customized tool for the UAV to solve the optimal control problem,

with a particular focus on reducing the computational burden. This would include

looking at speci�c nonlinear program solvers, and the generation of suitable initial

guesses.

2. Develop high �delity UAV simulation with Autopilot and another realistic conditions

including wind, measurement errors, obstacle detection errors and UAV limitations.

3. Integration of hardware and the customized tool to be used on the UAV

4. Test of the method in �ight.
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