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ABSTRACT

Advanced Sun-Sensor Processing and Design for Super-Resolution
Performance

Master of Applied Science 2006, Godard

School of Graduate Studies, Ryerson University

The performance of conventional and parametric super-resolution algorithms for
estimating sun position in a spacecraft sun-sensor was analyzed. Widely employed in
other applications, parametric algorithms were examined to evaluate increase in system
performance without affecting the cost of the sensor system. Using a simplified model of
detector illumination simulations provided quantitative comparisons of algorithm
performance. Simple sensor re-design was examined by using genetic algorithms as a
heuristic to optimize the illumination pattern for a single axis digital sun-sensor. Findings
show that, multiple narrow peak patterns provide subpixel accuracy in resolving the sun-
angle. The optimal illumination pattern can be implemented by fabricating a replacement
aperture mask for the sensor and this change can be made at a minimal cost. The super-
resolution algorithms were tested with a component noise model and image degradation
due to Earth albedo effects were examined. Parametric algorithms display very good
performance throughout the test regime. The improvements are substantial enough to

validate this approach worthy of future study.
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Chapter 1

INTRODUCTION

Sun-sensors represent an essential component of the attitude control systems on modemn
spacecraft. These compact, low-power devices provide coarse- to medium- resolution
measurements of the spacecraft’s attitude with respect to the sun. Due to their low cost, low
mass, and low power-consumption, multiple units are frequently employed to give 4n-
steradian coverage around the satellite. These same characteristics allow these sensors to be
widely deployed in different classes of missions from nano-satellites of a few kilograms to
large missions of several tons. Many space-hardware manufacturers have recently introduced
new models of sun-sensors, however, the basic operation and processing of these devices has

not changed substantially in the last thirty years.

Innovative microsatellite designs have pioneered many advances in satellite technology.
Therefore, there is an increasing demand for performance and capability of attitude sensors
onboard microsatellites. The traditional high-performance attitude control system (ACS)

sensors are not affordable. The purpose of this research is to demonstrate that the performance

of digital sun-sensors can be improved by,

1. Intelligent processing strategies that can extract information more efficiently

from raw sensor data.

2. Simple low/no cost component changes to the sensor design that can yield

substantial performance gains.
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The recent flood of successful Commercial-Off-The-Shelf (COTS) component parts allows
for rapid developfnent of sensors that have low cost, low power consumption, and low mass,
but they do not always provide the required performance. This study focuses on increasing the
angular accuracy of digital sun-sensors by developing intelligent algorithms that can provide
encouraging gains when compared to existing processing techniques. Other ways to re-design
the sensor for increased performance can then be implemented based on the accuracy of the

new processing routines.

1.1 Sun-Sensor Operation

Sun-sensors are the single most commonly used attitude acquisition sensors on modern
spacecraft. A spacecraft’s sun-sensors measure the relative angular position of the sun. The
Sun is the most easily identified object in the spacecraft sky because its brightness makes it
easy to distinguish it from other stellar objects. Therefore, it is an important aspect of the
attitude determination and control (ADC) system onboard a spacecraft. Many sensor models
exist: some sensors make only a single-angular measurement, others, two '(e.g. azimuth and
elevation). Rotations around the satellite-sun vector are not observable — to obtain three-axis

attitude information, a spacecraft must use another type of navigation sensor.

Most sun-sensors share a common operating principle. Light from the sun strikes a patterned
mask. Common mask elements are slits [Chen & Lerner, 1978] and pinholes [Liebe et al,
2002]. The patterned light which strikes the detector is first converted into an electric signal
and then into an attitude reading after it is processed. Broadly speaking, sun-sensors come in

two varieties: analog and digital.

1.1.1 Analog Sun-sensors

Analog sensors compare the variable output from a small number of photo-sensors to
determine the sun angle. These devices are quite robust and can be calibrated to achieve good
angular accuracy (0.05°) [Falbel & Paluszek, 2001]. Analog sensors generally display better
angular accuracy than their digital counterparts, however, they are significantly affected by
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stray light. Analog sensors, while very sensitive, operate by calculating the centroid of all the
light passing through the optical mask. Thus, the presence of the earth or the moon in the
field-of-view will distort the sun position estimate. If uncorrected, this can result in an error of
up to 20° [Appel, 2003]. The impact of these effects can be reduced for spacecraft in sun-
synchronous orbits with judicious placement of sensors and baffles, but arbitrary Earth-Sun-

Spacecraft orientations remain problematic.

1.1.2 Digital Sun-sensors

Digital sensors replace the small number of photo-sensors with a linear or rectangular array of
pixel sensors. The sensitivity of an individual pixel is less than that of an analog sensor, but a
larger number of sensing regions improves the spatial selectivity of the device; each pixel
only ‘sees’ a portion of the sky. One advantage of digital sensors is their relative immunity to
effects of stray light. By implementing an active pixel array intead of solar cells, digital Sun-
sensors are mostly insensitive to albedo light. Some configurations result in errors in the least
significant bits of the digital Sun-sensors. The field-of-view of a single pixel on a digital sun-
sensor is small, and the light intensity of the Sun is several orders higher (magnitude) than the
intensity of the light reflected from the Earth. Hence, the reflected light does not deteriorate of
measurement unlike in the case of analog sensors where the reflected light can be seen at very
large field-of-view by a single photo-sensitve element. Since spatial selectivity is inherent in
the pixel readout, once the sensor identifies those pixels that have no view of the sun, it can
exclude those pixels from its attitude calculations. Thus, digital sensor performance is heavily

influenced by the effectiveness of the sensor processing routines.

1.2 Array Processing and Super-Resolution

Although variations exist in detector technologies, most digital sensors operate in a similar
manner. Each pixel in the sensor responds to the incoming radiative flux and produces an
analog output proportional to the number of photons collected during a specific integration

period. This value is proportional to the intensity of the irradiance observable by that pixel.
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The analog intensity measurement is then converted to a digital value by using an analog-to-

digital converter (ADC) integrated with the sensor array.

Most sensors display peak sensitivity in the visible spectrum and employ relatively coarse
discretization (8-bit). Each pixel in the sensor array yields an intensity reading and the
ensemble of the pixels in the array can be considered an imagel. The processing algorithm for

this sensor must then extract the sun-direction from the digitized image.

To be efficient, the processing algorithms must:
1. Identify the portion of the image illuminated by direct sunlight, and;

2. Associate that illumination with a specific part of the field of view.

The former point reflects the selectivity of an algorithm and, consequently, its resistance to

stray light. The second, is a measure of its angular accuracy.

The above definition is purposefully oblique, however, a concrete example can provide a
useful illustration. Rays traced from the sun passing through a narrow slit and then onto a
linear array (Fig 1.1), will provide illumination over several pixels. Although geometric optics
may not completely capture the optical behaviour of the device, it is clear that moving the sun

within the field-of-view will illuminate different pixels on the sensor array.

Since each pixel responds to light originating from a restricted part of the sensor’s field-of-
view, there is an equivalence between isolating the sun’s light to a single pixel and isolating
the sun to a particular angular range of the field-of-view. The sensor’s ability to locate the sun
in the sensor image is directly related the accuracy of its sun-angle estimate. Although two-
dimensional effects and sensor-geometry may complicate the relation to some degree, this
basic reasoning still holds. The spacing between pixels and hence the spacing between the

associated solid regions of the field-of-view defines the native resolution of the sensor.

1. Unless otherwise stated the term image will refer to the ensemble output of either a rectangular or linear array.
Although, this is not strictly an image in the traditional sense, the nomenclature is convenient.
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|t —

Figure 1.1 One Dimensional, Single Slit Sun-sensor. Spacing between

the aperture mask and the array plane denoted z_ and slit half-width is

w. Sensor geometry relates sun angle, 6,,,, to finear displacement, <,

of sensor image from boresight pixel.
Since the sun is a bright, symmetric object, a very simple method of estimating sun-angle is to
find the peak reading from the sensor array and calculate the angle corresponding to that pixel.
While this method achieves the two heuristic criteria identified above, intuitively it seems to
ignore a lot of information (i.e. all the other pixels illuminated by sunlight). In most sensors
the resulting accuracy is quite coarse. A sensor that resolves the sun-angle to better than one

pixel is said to have sub-pixel accuracy. Another term for this property is super-resolution.

Improving a sensor’s overall accuracy can be approached from two directions. The first
involves enhancing the inherent resolution with a larger number of smaller pixels. If the
overall sensor geometry remains the same, smaller pixels will produce better angular
resolution. A significant drawback of this approach is that high resolution arrays are generally

more expensive. A different approach is to improve the sensor’s sun-localization ability

through changes in the processing techniques.
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1.3 Scope of Redesign

Improving sun-sensor performance requires the redesign of several aspects of the sensor
system. Most changes will incur costs that can affect the commercial viability of the sensor.
Direct component costs are important, however, changes that increase demand for volume,
mass, power, or processing must also be carefully scrutinized. We can enumerate four

categories of sensor design changes:

1. Algorithms: Improved routines can extract information more effectively from
raw sensor data. With the help of intelligent processing strategies like super-
resolution techniques, the angular accuracy of digital sun-sensors can be
improved. Revised algorithms may not require any direct component changes,
however, increased demand for processing power must be borne by the host

spacecraft or through additional electronics.

2. Passive Components: Direct substitution of passive components (e.g. lenses,
filters, and masks) may improve sensor accuracy, provided the replacements are
of similar size and function to the original components. The costs of these
changes are generally confined to the component that is replaced. Changing the
detector illumination pattern by altering the sensor aperture is of particular

interest.

3. Geometry: Modifications to volume and mass of sensor will affect the sensor
performance characteristics. The cost impact of this type of change is generally
proportional to the magnitude of the change requested. Care must be taken to

avoid compramising other desirable properties such as the sensor field of view.

4. Active Components: The replacement of any electronic components such as the
detector array can alter the native acéuracy of the sensor. Direct costs and power
requirements may increase substantially with these changes. Secondary effects
such as radiation tolerance may also be affected. Some components can be very

sensitive to noise.
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In the balance between system performance and cost, the first two categories seem most
promising. Although changing the geometry and other electronic components can provide
substantial performance gains, these new designs cannot be implemented at minimal-cost.
Therefore, the main focus of this study is to develop intelligent processing algorithms and
changing the detector illumination pattern to improve the effective accuracy of digital sun-

Sensors.

1.4 Objectives

The main goal of this thesis is to analyze several approaches that can improve the angular
accuracy of digital sun-sensors onboard a spacecraft through intelligent processing strategies

and simple component changes. The main focus is on:

1. Using explicit knowledge of the illumination pattern in the processing
algorithms. Some processing techniques derive greater advantage from a priori
knowledge of the expected illumination pattern at the detector. The algorithms
must be tolerant to random noise and interfering signals. Consequently, these
algorithms will be able to permit precise localization of the Sun in the sensor

image.

2. Making simple changes to the aperture geometry to provide an illumination
pattern that can improve performance of the sensor. Changes to the detector
illumination pattern can be implemented by altering the sensor’s aperture mask.

Since this is a superficial change, manufacturing costs will not increase.

A mathematical model of sun-sensor peformance is necessary to evaluate the impact of
processing and mask pattern changes. A basic sensor model would allow tests as depicted in

Fig 1.2.

The sensor model takes an input sun position, and with the help of sensor geometry

description and noise, it generates an image. The algorithm under test interprets this simulated
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Sensor
Description

iti imulated I
Sun Position |Sensor| Simulated Image »]Algorithm |———»
Model Attitude Estimate

Figure 1.2 Testing procedure using a sun-sensor model.

image, producing an attitude estimate. Comparisons of the true and estimated postions then

provide a measure of system performance.

Linking the sensor model and different processing techniques yields a system capable of
estimating the displacement of sun illumination pattern. Using a baseline illumination pattern,
the initial focus of this study is to examine whether intelligent processing techniques can
increase system performance without drastically increasing the cost of the sensor system. The
algorithm performance will be evaluated as a function of noise stength. The algorithms will
also be tested with simple mask changes. The work will be further extended to evaluate

different mask trends like, multiple slit patterns and changes to the native sensor resolution.

After comparing the performance of different illumination patterns, a methodical redesign of
the sensor mask will be analyzed. The main objective is to determine an illumination pattern
that resolves the sun-angle to better than one pixel. The final phase of this study will focus on
developing a high fidelity noise model to demonstrate the effect of various noise sources on
the performance of new processing techniques. The evaluation of the enhanced noise model

will also include analyzing the effect of image artefacts on system performance.
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1.5 Outline

The theoretical background of super-resolution algorithms and other methods of increasing
the accuracy of sun-sensor is discussed in Chapter 2. A mathematical model of the digital sun-
sensor is developed in Chapter 3. This includes the design of various super-resolution
algorithms and also the development of a performance metric to evaluate the improvement in
sun-angle estimation. Chapter 4 presents the performance of parametric and conventional
super-resolution techniques on different illumination patterns. Simpel changes to detector
illumination pattern against the performance of processing techniques will be evaluated to
observe different mask trends. The detector mask optimization using Genetic Algorithms will
be discussed in Chapter 5. High fidelity component noise models and the impact of image
artefacts on system performance will be evaluated in Chapter 6. Finally, Chapter 7 includes

conclusions and provides suggested directions for future research.
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Chapter 2

BACKGROUND

Accurate orientation of a spacecraft or some of its onboard systems with respect to the Sun,
the Earth, a star, or one of the planets is a challenging area in space technology. The Sun
represents an excellent reference target and a sun-sensor is capable of high accuracy. The
presence of the Sun cannot be ignored for eccentric orbits and space flight, and therefore, it is
important to use it as an attitude reference. This chapter compares the advantages and
drawbacks of different attitude sensors used in the ACS onboard a spacecraft, leading to an
understanding of why sun-sensors were chosen as the major area of study in this thesis. In
order to acheive greater accuracies, parametric algorithms could play a vital role in modern
digital sun-sensors as image-processing techniques in estimating the sun-displacement. This
chapter also provides the theoretical background and implementation of conventional and

parametric algorithms used in this study.

2.1 Attitude Estimation

Attitude measurement is typically one of the major cost-drivers for the spacecraft bus.
Multiple sensors are often employed because of the need to maintain 3-axis attitude
information, depending on the requirements of different mission phases. This provides added
accuracy and redundancy. Attitude sensor evolution is proceeding very rapidly, largely
because of the availability of on-orbit processing. Microsatellites, nanosatellites, and

picosatellites are making progress in moder space technology that holds major promise for
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BACKGROUND

future explorations. Therefore, modern sensors should be smaller, lighter weight, and, at the

same time more accurate.

2.1.1 Attitude Sensors

There are two categories of attitude sensors, and they are commonly used to complement each
other in a measurement system [Fortescue, et al 2003]. The reference sensor (Sun-sensor,
Star-sensor, Earth-sensor, Magnetometer, etc.) provides attitude data by measuring the
direction of an object such as the Sun or a star, but during periods of eclipse they are unable to
provide necessary information. Inertial sensors (Gyroscopes) measure continuously, but they
measure changes in attitude, relative to a gyroscope rotor. They are useful for precise attitude

sensing between inputs from reference sensors.

Magnetometers

Magnetometers are light weight, low power devices that measure both the direction and
magnitude of the magnetic field. However, attitude measurements are not very accurate, since
the magneitc field of the Earth is not precisely known. The limited accuracy can be attributed
to the geomagnetic storms and magenetic fields in the satellite itself. The most common types
of magnetometers are: Flux-Gate Magnetometers (FGM), Vector Helium Magnetometers
(VHM), and Search Coil Magnetometers (SCM). FGMs are usually used for DC and very low
frequency magnetic field measurements. They are used in all spacecraft either for orientation
or for scientific purpose [Fortescue, et al 2003]. VHM instruments give better resolution and
stability when compared to FGMs. However, FGMs are used widely due to lower mass,
power, and relatively low cost. SCMs are mainly used to study the magnetic field variations in

space plasma.

Magenetometers commonly suffer from two sources of error; one type resulting from slight
sensor misalignements with respect to the coordinate axis, and the other from drifts in the
quiescent point of the electronic components [Farrell et al, 1995]. These errors are typically
seen in spinning spacecraft. Ongoing research in Imperial College! have shown that space

borne magnetometers are designed to work over quite large magnetic field intensity ranges.
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For Earth oribiting satellites, the magnetic field may approach thousands of nT, whereas in the
solar wind the ambient field can be typically sub nT. To resolve such low fields, the
magnetometer sensors are mounted on rigid booms away from the spacecraft to minmize

magnetization effects from spacecraft materials and currents.

Earth Sensors

Earth-sensors are the primary means for determining the attitude of a spacecraft relative to the
Earth. They are mainly used in communications, weather, and Earth resources satellites.
Earth-sensors are also known as horizon sensors because they detect the transition between
space and Earth, which occurs at the horizon. The common types of Earth sensors are: Earth

albedo sensors, Horizon scanning sensors, and Horizon tracking sensors.

Earth albedo sensors rely on detecting sunlight reflected from Earth for thier operation. These
sensors are not the most accurate because of the non-uniformity in the reflectance. This
depends on the spacecraft-Earth-Sun angle ( or phase angle). Changes to the phase angle vary
the area of the illuminated Earth visible to the spacecraft. Horizon scanning sensors are
generally used onboard a spacecraft to determine the nadir vector. Typically a scanning sensor
sweeps across the Earth horizon to detect any abrupt change in infra-red signal between deep
space and Earth. If the Sun does not interfere with the horizon crossings, then a single scan
can provide an estimate of rotations, both roll and pitch, relative to the oribiting frame for the
spacecraft [Wertz, 2001]. This type of sensor is useful over a wide range of spacecraft
altitudes. They are operationally characterized by wide acquisition angles and fast response
times [Coldrick, 1972]. Horizon tracking sensors are mostly used in geosynchronous orbits.
They usually have one or more fixed fields-of-view that determine where the horizon lies
along one sensitive axis. The angle between the line-of-sight of the tracker and a reference

axis is measured and the roll and pitch attitude are computed.

1. Space and Atmospheric Physics, Imperial College, London, England - http://www3.imperial.ac.uk/spat/
research/space_magnetometer_laboratory
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The design of an earth-sensor and an evaluation of its capabilities and limitations require a
knowledge of the spectral radiance emitted by the Earth. These sensors are usually coupled

with sun-sensors to provide better accuracy.

Star Trackers

Stars provide the most accurate attitude reference for a spacecraft because they are point
sources of light with a well-known angular position. Accuracies of 1 arc-second or better can
be obtained [Fortescue, et al 2003]. Therefore, Star-sensors are used in most space systems
that require high accuracy. With the introduction of low cost Chardged Coupled Devices
(CCD) arrays and processors that are capable of providing efficient softwares, Star sensor

technology is evolving very rapidly.

Typically, the attitude of a 3-axis stabilized spacecraft is determined by a Star tracker. The
basic concept of the CCD Star tracker is very simple. Using a sensed image of the portion of
the sky, stars can be located and identified by determining the transformation matrix (i.e. the
attitude) which transforms the image to a known angular position of stars in the Star catalog.
An estimate of the accuracy in locating stars is determined by the computing the star centroid.
The implementation is however complex. Firstly, stars a point sources of light. Therefore, if
the star images are smaller than the size of a pixel in the CCD array, the accuracy will be
limited to the pixel size [Wertz, 2001]. The images are often defocused to spread them over a
number of pixels and then the centroid of the star image can be computed accurately. Work
done by [Liebe, 2002] proved that, an Active Pixel Sensor (APS) can help determine the
centroid of a Star to approximately 1/10 of a pixel. The results coupled with low power
consumption, simplified operation, and potentially better radiation robusteness, are the

strengths of APS technology.

Gyroscopes

Gyroscopes use the conservation of angular momentum to sense and respond to changes in
their orientation with respect to inertial space. One major disadvantage of this system is that it

cannot sense the absolute attitude [Fortescue, et al 2003]. Consequently, a spacecraft using
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star-sensors and gyros frequently use Earth-sensors and Sun-sensors for adequate operation
during a fail-safe mode and attitude acquisition. Recent years have seen the development and
introduction of gyroscopic sensors without moving mechanisms [Wertz, 2001]. Some
common types of gyroscopes are: Ring Laser Gyroscope (RLG), Dynamically Tuned Gyro
(DTG), Fibre Optic Gyroscope (FOG), and Hemispherical Resonator Gyroscope (HRG). Each

of these gyros have the potential to improve the performance relative to the traditional ones.

2.1.2 Comparison

The performance and applications of typical attitude sensors are summarized in Table 2.1. The
extent to which the ultimate accuracy is realized in given sensor depends upon its design, and
this is related to its intended use. Each sensor has a typical FOV, and beyond this it does not

provide any information.

TABLE 2.1 Typical Attitude Sensor Applications®

Sensor Application Accuracy | Cost

Magnetometer Control momentum unloading Low Low
using magnetic torquers

Sun-sensor Attitude acquisition, yaw sensing | Medium Low

Earth-sensor Measure pitch and roll on earth Medium | Medium
oriented spacecraft

Star-sensor Systems that require high accuracy High High

Gyroscopes Used with Star-trackers to measure High High
change in orientation

a. Adapted from [Wertz, 2001]
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2.2 Super-Resolution Algorithms

Super-resolution is often used as a time delay estimation technique in radar and sonar
processing. With minor alterations, algorithms designed for these applications can be used to
estimate displacement rather than delay. Thus, temporal detection becomes a problem of

spatial localization and the array illumination pattern replaces a time-series signal.

The processing techniques can be divided into two main classes:

1. Conventional Methods: These algorithms utilize little explicit information about
what the signal or image should look like. They may include information about
peak width and implicit assumptions about symmetry, however, it is rare that
they include anything more than this. Some examples include, Peak Detection,

and Centroiding.

2. Parametric Methods: These algorithms derive greater advantage from the a
priori knowledge of the signal shape. Some examples are: MUSIC (MUltiple
SIgnal Classification), ESPRIT (Estimation of Signal Parameters via Rotational

Invariance Techniques), ML (Maximum Likelikood), Phase-correlation, etc.

Four algorithms are evaluated in this study out of which two of them are conventional
algorithms common to spacecraft sensors while the other two are parametric algorithms
employed in other fields of signal processing. This section provides some theoretical
background of the different super-resolution algorithms used in sun-sensor processing. The

implementation of peak-detection algorithm will be examined in Chapter 3

2.2.1 Centroiding Algorithms

In order to achieve improved performance in attitude estimation, the trend in measuring
techniques have evolved from the use of analog centroiding devices towards digitized image
data with a chosen centroiding algorithm. Star trackers utilize subpixel centroiding to increase
the accuracy. In a survey paper by [Liebe, 2002], an algorithm for calculating centroids of a

star image was examined. In the focussed image of a star, all photoelectrons from a star are
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generated in a single pixel. But if the optics is defocussed, then the star will occupy several

pixels which facilitates the use of centroiding method to achieve subpixel accuracy.

Consider a star image given by “image(x, ). The image is shifted for pixels above a given
threshold. A region of interest (ROI) window is aligned with the detected pixel in the centre.
Then, the average pixel value on the border is calculated and subtracted from all pixels in the
ROI window. The centroid (x,,,y,.,)! and DN (brightness) are then calculated from the
subtracted pixels in the ROI.

ROlend—1  ROlend-1

DN = Z z image(x, y) 2.1)

x = ROIstart+ 1y = ROIstart + |

ROIend—-1 ROlend -1 .
= - 1mage(x
Xem = D, > L——E—LﬂD o 2.2)
x = ROIstart+ 1y = ROIstart + 1
ROlend -1 ROlIend -1 .
_ - 1mage(x,
Vem = > > Lg—ﬁ—ﬂD e (2.3)

x = ROIstart+ 1y = ROIstart + 1

The centroiding accuracy is proportional to the number of photons generated by the star.

Different centering techniques were investigated by [Stone, 1989] which includes, Gaussian
functional fit, moment, median, and derivative search. The model chosen for a star image
consists of a two-dimensional circular Gaussian with a flat sky background and smeared with

Poisson noise. The adjustable parameters are:
* Animage position described by /(x_, y,) within the scan box.
* The rectangular scan box dimensions given by (n,, ny) .

* The aperture size a in arc-seconds.

1. Equations taken from [Liebe, 2002].
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Symmetric Gaussian

The Gaussian method consists of fitting a symmetric Gaussian function with a flat sky
background to each of the coordinate marginal distributions. An array of count data I(x, y)
can be reduced to a one-dimensional distribution by forming marginal distributions in each
coordinate directions. Marginal distribution in the x coordinate can be defined as [Stone,

1989]:

M(x) = Y I(x,) (2.4)
y
A similar expression for y can be developed. The basic equation for the Gaussian function is
given by,
2
M(x) = B+H exp[—(x xzc) ] (2.5)
2R

where B is the background level defined by B = nyb (n, is the array cross dimension, and 5 |
is the sky-background level expressed in units of counts arcsec™®). H is the central image
height in the marginal distribution which is expressed in terms of total number of counts »,

and R is the rms half width of the image.

— N
H 172

- 2.6
@n) *R @0

This algorithm requires a solution for the four parameters expressed in (2.5), which can be

easily linearized with a first-order Taylor’s expansion and solved by iterative least squares.

Moment

In this method, the image centroid is set equal to the first moment of the marginal distribution.
The mean of outer marginal endpoints can be used to calculate the background level B. The

basic equation is given by,
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3 x[M(x) - B]
Y M) - B]

Xc

@.7)

The moment algorithm, as defined above, was investigated by [Auer & van Altena, 1978), and
found to be less accurate than the functional fit to a symmetric Gaussian. This method was
found to be sensitive to count levels in the background and performed badly for centred star
images. Since the points located far away from the image centre are weighted in the solution

by the square of their distance from it, the centering process underwent serious degradation.

Median

In this technique, the centre of an image x, is defined to be a value of x that divides the
starcount data into two equal halves. After the background level is subtracted from each
element of the marginal distribution, a cumulative distribution of counts Q(x) is formed and

the median is defined as the value of x for which,
0(x) = 30(¥nar) @8)

Interpolation was used to define the value of the median since this distribution function was
defined empirically. This centering method is not sensitive to wild points in the marginal data
and performed better with faint star images [Chui, 1977]. A weakness of this method was that
the interpolation was found to be sensitive to the size of the pixel spacing and the amount of

noise associated with the count data in the central part of the image.

Derivative Search

For the derivative search method, once the marginal is formed, a smooth derivative G(x) is

determined at each marginal grid points by,

G(x) = %[M(x+ 1)-M(x-1)]+ ‘-1‘-[M(x+ 2) = M(x-2)] (2.9)
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This array is searched for its minimum and maximum values and a line is fit by the least
squares to the points in these two limits. Since this method only uses the central part of the
image, it was found to be less accurate than the gaussian method [Chui et al, 1979]. This
method cannot be used for centering saturated images. The greater speed of this technique

allows it to be used for the preprossesing of large amounts of image data.

The following important observations were made by [Stone, 1989] when all the above

mentioned methods were tested:

 The derivative search technique is significantly less accurate than other methods
and performs worse when considering high sky-background levels. This method

is very sensitive to noise in the central part of the image.

* The moment method is an inferior centering technique when compared to other

centering algorithms with increasing sky-background levels.

e For high S/N images or low sky-background levels, gausian and median
methods display similar accuracy. The Gaussian method is the standard method
used in image processing applications for astrometry, and the observations made
by [Stone, 1989] suggested that it was not necessarily the best method for all
conditions. For centering weak stellar images subjected to high sky-background

levels, the Gaussian method can be very slow.

» For increased sky levels, median routine is less accurate. Increased sky-count
levels add noise to the marginal distributions which inturn degrades the

centering process.

A modified moment method, when compared to the traditional moment method, can be less
sensitive to noise in the sky-background level. In this method, most of the counts in the
background are eliminated by defining a threshhold. Therefore, by only considering count
levels above the threshold in the centering process, the inaccuracies introduced by noise can
be eliminated. This offers a very significant improvement over that of the traditional moment
method.
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Centroid calculation is a common super-resolution technique in spacecraft sensor processing.
This processing technique is currently used in most of the digital and analog sun-sensors. The
centroiding method used in this study is similar to that of the modified moment method.
Assuming that the illumination on the detector is symmetric about the displacement t, and
that light from the sun falls on several pixels in the array, the centroid calculation improves
the estimate of the peak location. The centroid is calculated over a user-defined window

surrounding the peak value (Fig 2.1).
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Figure 2.1 Windowing of peak image for centroid calculation

To estimate the displacement of i[x], the index of the brightest pixel is first found using a
simple peak-detection algorithm. The centroid is then calculated from the neighbouring

pixels:

npeak +k

>, (A%

~—l=n,u—-k
T T (2.10)

Y 1

I= npeak_k
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The centroiding algorithm can also be modified to estimate the displacement of multiple peak
illumination patterns. As a first measure, the centre of the pattern is found using the peak-
detection algorithm. One of the N, peaks is expected to be found at each of the locations given
by:

n

Hd; @2.11)

i npea

The centroid of each peak r, is then calculated individually from ((2.10)). Finally the results
are averaged to yield a displacement estimate for the entire pattern:

p
T =

(F;—dAY) 2.12)

M

i=1

For any particular illumination pattern, some hand tuning is necessary to select an appropriate
window size. If the hand tuning is not done properly, it can bias the estimate of T. The
implementaion of this algorithm for sun-sensor processing and proper selection of the

centroid window size will be examined in Chapter 3.

2.2.2 Phase Based Algorithms

Phase Correlation Method

The ability to detect and estimate lateral shifts between similar images is an integral part of
many image processing applications. The phase-correlation method is a popular choice
[Foroosh & Zerubia, 2002] due to its robust performance and computational simplicity. The
phase-correlation method is based on the Fourier shift property. Specifically, a shift in the
coordinate frame of two functions results in a linear phase differences in the Fourier transform

of the two functions.

Phase correlation method can be applied to both two-dimensional and one-dimensional

images. For a two-dimensional case, this method can be described as follows:

Let fi(x,y) and f,(x,y) be two functions that are given by,
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(%) = fi(x—x0y=¥0) (2.13)
According to the Fourier shift property,
fo(u,v) = fi(u, v)exp(—j(uxy +vy,)) (2.14)

Hence the normalized cross power spectrum is given by

AGAC)
ACRACR

= exp(~i(uxg +vyy) 2.15)

where * indicates the complex conjugate, (%, v) are the Fourier domain coordinates, and x
and y, are the magitude of the horizontal and vertical shifts that occur between f; and f,.
One way to solve (2.15) for (x;, y,) is to first inverse Fourier transform the normalized cross
power spectrum. The result would be 8(x —x, ¥ —y,) which is a Dirac delta function centred
at (xg, yo) - Replacing the Fourier transform by the Discrete Fourier Transform (DFT) and the

Dirac delta function by a unit impulse, these results still hold and work remarkably well.

PCM is very robust to types of noise that are correlated to the image function, e.g., uniform
variations of illumintation, offsets in average intensity, and fixed gain errors due to
calibration. This property also makes PCM suitable for sub-pixel registration across different
spectral bands [Foroosh & Zerubia, 2002]. Some of the noise sources mentioned above can be

found in sun-sensor images as well.

Linear-phase Algorithm

In this study, however, a different method was developed to improve the accuracy of sun-
sensor image processing. The method is called Linear-phase Algorithm. This method is quite
similar to PCM, but will be applied to one-dimensional sun-sensor illumination patterns. The

linear-phase algorithm is also based on the fundamental principles of DFT.

Since a signal sampled in space can be substituted for the conventional time-sampled signal,

the time delay in Digital Signal Processing (DSP) can be considered to be analogous to the
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displacement 1 of the signal received by the sun sensor. The linear-phase algorithm is an

efficient method for estimating the effective resolution of the sensor.

Consider a discrete signal and its Discrete Fourier Transform (DFT):

DFT (2.16)
I[n] & S[k]
A linear shift in the discrete signal can be represented using the properties of DFT as shown

below:

DFT  _j=ko (2.17)
I[n-a] < S[kle Y

In the second case, the illumination pattern has been shifted by o samples. Therefore, a shift
in the space domain is equivalent to a multiplication by a linear-phase term in the frequency

domain. It is significant to notes that this interpretation holds good even if a is not an integer.

Defining Sy[n] as DFT of the zero shift signal and S [#] as the DFT of the shifted version,

the exponential term can be isolated as follows:

S [ ] _j27tka
n N
Y[k] = 22— =c¢ (2.18)
Soln]
If y is the phase angle of Y[k], then it can be shown that:
yk] = 27k 2.19)

N

The estimate of t can be obtained from the calculated slope and the sample number » as
follows: First, perform a least-squares fit using a sub-set of y[k] to get an estimate a. of the

slope. An estimate of the displacement T can then be calculated using:

T=a-AX (2.20)
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2.2.3 Eigenanalysis

A popular group of parametric time-delay estimation (TDE) techniques exploit the eigen-
structure of the system covariance matrix to achieve super-resolution estimates. These
techniques divide the cross-correlation matrix of the array signals into signal and noise
subspaces using eigen-value decomposition (EVD). Originally formulated for direction-of-
arrival (e.g. MUSIC [Schmidt, 1986]) and spectral (e.g. RELAX [Li & Stoica, 1996])
estimation, these techniques have also been used to estimate signal time delays. One of the
main advantage of these techniques is their tolerance of random noise and interfering signals.
Other applications of eigenanalysis techniques include sonar, radar, radio-astronomy,
seismology, and array processing. The illumination displacement problem encountered in
sun-sensor processing is analogous to the time-of-arrival (or time-delay-of-arrival) problems
in radar/sonar processing. The scope of this study does not allow an exhaustive comparison of
the various extant eigenanalysis techniques. Instead, the selection of the algorithm is purely

based on how well these algorithms can perform.

This particular algorithm is based on the Eigenanalysis and Sequential Quadratic
Programming (ESQP) technique proposed by [Ge et al, 2004]. Since the sun-displacment
estimation problem is simpler than that addressed by the ESQP algorithm, only the
eigenanlysis and not the Sequential Quadratic Programming parts of the algorithm is
necessary in this study. The main advantage of this algorithm is that it does not demand the

presence of a large number of samples for the estimation of linear shift in the signal.

Following [Ge et al, 2004] with some modifications to nomenclature, the continuous

reference signal and the delayed signal are modeled as:

ryX) = a;-s(X)

(2.21)
ry(X) = a, - S(X—-1) + w(X)

where r () is the ideal signal and r,(X) is the delayed signal, a, and q, are the corresponding
signal amplitudes, + is the unknown delay of the received signal, and w(x) is the AWGN

process. When these signals are sampled at a sampling spacing Ax, they can be written as
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ri[n] =- a; - s(nAX)

n=01,.,N-1 2.22)
ry[n] = a, - s(nAX—-1) +w(nAX)

where ¥ is the length of the sequences.

Zero-padding r,[n] and r,[n] to length K, = 2N~ 1, the cross-correlation function between r,[n]

and r,[x] can be evaluated using circular correlation as

K.~1
Rl = Y ri(n=1)-ry*(n)
k=0
K.-1 ks 2 .29
= Z(alaz*lS[k]Ize g +alS[k]W*k)e *
k=0

where S[k] and wik) are the discrete Fourier transforms of s[»] and w[n] respectively. The
cross-correlation function helps reject the effects of noise. This ensures good time-delay

resolution [Knapp & Carter, 1976].

To estimate + for any particular trial, the cross-correlation series R, ,[k] is further zero padded
to length 2&,-2, and the correlation function &,[7] is found based on (2.23) according to

Wiener-Khinchine theorem:
R[N = DFT"'[|R,,,[K]]*1, (k1= 0,1,...,2K,-2) (2.24)
The truncated covariance matrix Ry,;_, is then,

[ R[0] R[] ...R*[N-1]

ksub_x = Rx!:I] Rx!:O] Rx* [1.V_2] (2.25)

_Rx[]\;— 1] R [N-2] th0] |

Solving for the eigenvectors of the covariance matrix in (2.25), the noise subspace matrix

Eyup,» can be evaluated corresponding to izs,,,,_, from the noise eigenvectors.
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The vector function b(r) can then be formed from the squared magnitude of s and a complex

exponential term:

27 27 T

ZT J= (K -1t
b(z) = {lS[O]Iz ISte ™ L ISk, - 1]%

(2.26)
This expression represents a model of the useful component of received signal; it should have
little projection onto the noise sub-space. Note the similarity to (2.17). Therefore, this can be
truncated to length ~ to form the sub-vector b,,,(x). This noise subspace is then used along
with the known properties of the ideal zero-delay signal to estimate t based on the following

criterion
i= mgmin{||bgb(x)ésub,n||2} (2.27)
T

Any suitable algorithm can be used to solve this minimization problem and estimate the

illumination displacement.

2.3 Summary

Detailed analysis of various centroiding algorithms used in Star sensors were investigated. It
was established that certain centering algorithms when slightly modified to suppress the sky
background below a prechosen threshold level can significantly improve the accuracy of star
image processing. The theoretical background of centroiding algorithm was also introduced.
Parametric algorithms play a vital role in estimation of lateral shift in two similar images. The
linear-phase algorithm was introduced in this section. It was found to be similar to the Phase
correlation method used widely in image processing for subpixel registration. Another
parametric algorithm was also examined, eigenanalysis. Therefore, the four algorithms that

will be used in this study are: Peak-detection, Centroiding, Linear-phase, and Eigenanalysis.
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Chapter 3

DESIGN EVALUATION FRAMEWORK

A mathematical model of sun-sensor performance is necessary to evaluate the impact of
processing and mask pattern changes. As a starting point, a commercially available sensor
made by Sinclair Interplanetary is chosen to provide the baseline parameters for the sensor
model used in this study. Since the initial objective of this study is to demonstrate a proof-of-
concept that evaluates the performance of super-resolution algorithms, rather than a complete
solution to the sensor redesign question, the model need not replicate the hardware
performance precisely. The derived sensor model will provide a qualitatively similar output
by using the geometric parameters of the real sensor. This observation permits a series of

simplifying assumptions.

3.1 The Sinclair Interplanetary SS-256 Digital Sun-Sensor

The Sinclair Interplanetary SS-256 is a modern digital sun-sensor. This device measures the
angular position of the sun within a 70> half-angle field-of-view. It cosists of an aperture
mask, also known as an Optical Mask, which is made from a disc of mirrored glass with fine
slits cut into it using a high-power laser. Behind the mask is a natural density filter, and a
detector array. When the sunlight hits the sun-sensor, the opaque portions of the aperture
mask blocks the incoming light. The sunlight which passes through each of the slits intersects
the linear array creating a series of bright spots. The task of the processing algorithms is to
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detect and identify the bright peaks in the sensor image to help determine the position of the

Sun.

Each slit is of width, w = 0.025mm . The natural density filter has a moderate index of refraction
ngiass = 1.51. The filter thickness, z,, is 2.37mm . The detector is a single 16mm -long linear array
of 256 pixels. As mention earlier, SS-256 will be used to provide baseline sensor geometry.
SS-256 is a two-axis sensor. The model developed for this study will only have slits along

one-axis. Therefore, here is a description of what a one-dimensional version would look like:

The general character of the optical propagation from the mask to the detector can be obtained

by calculating the Fresnel Number ~,. of one of the slits:

N = L (3.1

Taking into account the index of refraction, the Fresnel Number for any particular free-space
wavelength A, is then:
wn
N = —sglass (3.2)
Az,
The detector sensitivity peaks at A, = 700nm. At this wavelength ». = 0.14. This value
indicates that the optical characteristics near the sensor boresight lie between the Fresnel and

Fraunhofer regimes.

The non-dimensional distance X, can be calculated from the actual distance x [Goodman,
1996]:

X=-2 (3.3)

Thus, the limits of the SS-256 pixel array can be calculated giving, [X,ai| =250 . Based on these

values the illumination pattern for the sensor model will be derived.
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3.2 Model Design

A general test scheme was presented in Chapter 1. An ideal sensor model would allow tests of
the sort depicted in Fig 3.1. The model takes an input sun angle 6 and along with the sensor
mask and geometry it generates a discrete intensity map (), indexed by pixel number ». The
algorithm under test interprets this image producing an estimate of the sun angle 8.

Comparisons of the true and estimated angles then provide a measure of system performance.

Exact replication of the SS-256 behaviour was unnecessarily complex for the proof-of-

concept nature of this study. Using the characteristic parameters from the SS-256 sensor

Mask and Geometry

6 I[n] 8
—1 Sensor Model Algorithm ———

Sun Angle Image Angle Estimate

Figure 3.1 Testing using an ideal sensor model

derived above, a simple and computationally tractable model was developed to evaluate
algorithm performance. These assumptions are consistent with the simple device shown

earlier in Fig 3.1.

To simplify the model and the array illumination calculations, the aperture patterns considered
in this study will consits of slits in one-axis only. This change makes the modelling and
estimation tasks easier but the modelled device is still physically realizable. Subsequent
assumptions further simplify the image synthesis. These changes involve more substantial
compromises in the model’s quantitative accuracy but the resulting images are still

qualitatively similar to those generated by the real sensor.

e Monochromatic Illumination. Light propagating through the sensor is

considered to consist of a single wavelength. The wavelength chosen
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corresponds to the peak sensitivity of the imaging array (this could be physically
approximated by substituting a band-pass filter for the natural-density filter).

e Plane-Wave Illumination. Although the Sun is an extended source, treating the
incoming light as uniform plane waves makes propagation calculations
substantially easier. Although this change makes the model less accurate, it does

not necessarily make the estimation process easier.

» Linear displacement replaces angular rotation. Instead of specifying an
incidence angle explicitly, the sun position is characterized by shifting the array
illumination pattern through a linear displacement <. Performance is
characterized by the ability to resolve small displacements, rather than small
angles. From Fig 1.1, 0 is the angle between (z-x) projected sun vector and the
z-axis. The incidence angle can be estimated from the displacement t by,
® = atan{ = }. This does not restrict the Sun to one-dimension. Only the

z
s) . ] . .
measurement will be restricted to one-dimension.

 Pixel detectors approximated by sampling of illumination pattern. Each pixel in
a physical sensor counts photons incident on a finite collection area. The
inaccuracy in modelling due to a sampling rather than intergrating the array
illumination is a function of the spatial-frequency content of the illumination

pattern. Provided spatial aliasing is not significant, the errors will be minor.

As a result of these assumptions the testing process slightly deviates from the procedure

discussed above. A revised diagram of the process is shown in Fig 3.2.

Mask and Geometry
T I[n) T
—— Sensor Model Algorithm ——
Pattern Image Displacement
Displacement Estimate

Figure 3.2 Testing using the simplified sensor model
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3.3 Analytical Sensor Model

As discussed in Section 3.2, the simplified sensor model must take the specified displacement
= and calculate the resulting discrete image I1[n]. Treating the aperture as an infinite narrow
slit, [Goodman, 1996] treatment of a square aperture to derive the exact Fresnel solution to
diffraction through the slit is adapted. Using the non-dimensional distance, X, presented in
((3.3)) and the Fresnel Number »,. of the slit from ((3.1)), the continuous intensity pattern at

the image plane is given by:
100 = 2{C(ap) - C(ap)] +[S(or) - S(ap)]’) (3:4)

where C(a) and S(a) are the Fresnel Cosine and Sine integrals:

o = —A/Q(A/IVF"'X)

(3.5)
ay = S2(JNp=X)
The pixel spacing Ax in the N -pixel array is given by:
2X
AX = —Z2& 3.6
N (3.6)

since the array extends from -x, . to X, . Shifting the illumination pattern by t, sampling

the illumination pattern and adding noise gives:

I[n] = I(nAX—1)+w[n] 3.7
where w[n] represents a sensor noise process with mean p , and variance cf’, .

Although several noise sources are typically considered when using pixel sensors [Healey &
Kondepudy, 1994], the sensor model used to evaluate the performance of different super-
resolution algorithms includes only an Additive White Gaussian noise (AWGN) term with

zero mean, and variance 0,2, . A realistic noise model will be discussed in Chapter 6.
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In laboratory testing, the observed image-to-image standard deviation with the SS-256 sensor
was approximately 0.3% of the peak intensity. Since this characteristic level is quite low, the
inaccuracy introduced by using a single AWGN noise term rather than component noise
models, was judged to be negligible. Tests performed at high noise levels (Chapter 4) are less

representative of true sensor images but could represent generic image degradation.

Some refinement of sensor parameters (¥, and X,, ) was required to produce images
matching those of the SS-256 sensor (Fig 3.3.(a)). Reducing x,_ to 50, widens the simulated
illumination pattern and this modification compensates for the extended size of the sun

(Fig 3.3.(b)). Increasing ¥, to 1.0 improved the representation of peak shape (Fig 3.3.(c)).
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Figure 3.3 Variations in illimination patterns. (a.) SS 256 sensor paramters (N and X,,,, ) , (b.) Reducing to 50,

and (c.) Increasing N to 1. “
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A pattern with N, peaks can be described by a vector,

D = {d,, d,, “"de} (3.8)

which specifies the offset, in pixels, from the centre of the pattern to each peak. For evaluating
the performance of multiple peak illumination patterns, the narrow one-peak pattern is
retained and different illumination patterns are produced by altering the number of peaks.
Multiple peak patterns are formed by superimposing shifted single-peak patterns. Provided
the peaks are not so close that they correspond to overlapping slits in the aperture, this
superposition is valid. This study mainly considers only two types of patterns: narrow peak

patterns, and wide peak patterns.

TABLE 3.1 Baseline Parameters of Illumination Patterns

Reference X max N F
Narrow peak pattern 50 1
Wide peak pattern 25 1

A sensor model used to evaluate the effect of one-peak illumination pattern is shown in
Fig 3.4. The narrow peak pattern was developed using X,,,, = 50 and the wide peak pattern
was synthesized using x,,,. = 25. A second sensor model was derived to evaluate the effect of
the number of peaks in the illumination pattern on sensor performance. A sample pattern with

the narrow and wide two peak cases is shown in Fig 3.5.

TABLE 3.2 Identifier for Illumination Patterns

Identifier Reference
N1 Narrow, one-peak pattern
W1 Wide, one-peak pattern
N2 Narrow, two-peak pattern
w2 Wide, two-peak pattern
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Figure 3.4 One peak illumination pattern (no noise), showing narrow (N1) and wide (W1)
peaks.
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Figure 3.5 Two peak illuminaton patterns (no noise), showing narrow (N2) and wide
(W2) peaks.

The peak spacing is somewhat arbitrary, however, the selection was guided by the principle

that an illumination pattern similar to the SS-256 was desirable.
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3.4 Implementing Super-Resolution Techniques

The theoretical framework of the Centroiding, Linear-phase, and Eigenalaysis algorithms
were discussed in Chapter 2. This section provides a detailed description of how each of these
algorithms are implemented for sun-sensor processing. Some of the algorithms require
manual and automatic tuning to deal with multiple peak patterns. The theory behind peak-

detection algorithm will also be examined.

3.4.1 Peak Detection

Peak-detection is a baseline conventional algorithm. This algorithm is computationally trivial;
it simply searches the sensor image for the brightest pixel and calculates sun position from the

location of that pixel:

N N
n = argmax(I[n]) n=-=..=-
peak ' 22 (3.9)
T = MpeakAX

For single-peak patterns the implementation of this algorithm is very simple. In the case of
multiple peak patterns, this algorithm can be modified to search for a set of bright pixels with
a specified spacing. A pattern with ~, peaks can be described by a vector given in (3.8),

which specifies the offset, in pixels, from the centre of the pattern to each peak.

The pattern in the image can then be located in a max-min fashion:

= argmax(argmin(I[n+d.])) (3.10)

npeak !
n 1l

This algorithm is not very sophisticated, however, it can be useful as a comparison for other

methods of delay estimation.
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3.4.2 Centroiding

For any particular illumination pattern, some hand tuning is necessary to select an appropriate

window size. The effect of not selecting an accurate window size can lead to discrepancies in

the final results.Fig 3.6 explains this effect in detail.

x10*
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-
T
1

Centroid Error
o

o
«
T

)

[+] 5 10 15 20 25
K

Figure 3.6 Inaccuracies in selecting the appropriate centroid window size.

Values in the x-axis represents the number of samples in one particular centroid window, &. It
is clearly visible from Fig 3.6 that, there is an optimal centroid window which gives the
minimum centroid error. The super-resolution performance of this algorithm is highly
sensitive to the choice of window width «. If the window chosen is too wide, the extra points
simply add noise. Conversely, if the window chosen is too narrow, we may capture the peak
asymmetrically. This introduces a bias in the estimate of . Therefore, in the presence of
increased noise amplitude, the position of the peaks will be distorted and these noise spikes
can influence the algebraic computation of the centroid. This algorithm requires some hand-
tuning to find the best window size for any given illumination pattern. In practice, this is
usually a minor drawback. In a low-noise environment, centroiding is an effective and
computationally efficient method of estimating the displacement in the signal received by the

sun sensor.
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3.4.3 Linear-Phase

In Section 2.2.2 it was shown that, an estimate of t can be obtained from the phase angle

2nko
k = e o——— b S
y[k] T

1. Perform a least-squares fit using a sub-set of y[k], to get an estimate of o of

the slope
2. Estimate of the displacement 1t can then be calculated using
T=a-AX 3.11)

Fig 3.7 shows a plot of y[k], for a zero noise illumination pattern, and for a pattern degraded

with 1.5% noise.

i e Zero Noise Case r il
2;; ----- 1.5% Noise I
] HEN
i HE:
1~:§~'E : I
o If
2 o} i i
< $ 3
L ]
A
50 100 B 150 200 250

Figure 3.7 Phase angle for a zero noise pattern, and a noisy pattern.

Zeros in the spectrum of I;[n] cause severe distortions in the phase function. In Fig 3.7, for
the illumination pattern degraded with 1.5% noise, distortions in the phase function can be
seen in the areas of higher frequency (extreme right and left regions). The zero-noise
illumination pattern represents the case of ideal y[k]. Therefore, this distortions must be
avioded while estimating the slope of w[k]. To maintain good performance, the least-squares

fit must be performed using a sub-set of y[k]. This selection process requires a combination
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0 %0 100 110 15: 10 140 150 160
Figure 3.8 Restricting the calculations to a linear-region (a.), and thresholding the spikes (b.).

of manual and automatic tuning. For a given illumination pattern, the user must first identify
the region of ‘relatively’ linear phase near zero frequency as shown in Fig 3.8.(a). Some
distortions would still exist. Therefore, automatic thresholding can further eliminate these
localized distortions (Fig 3.8.(b)). The calculations can then be restricted to the linear region
of y[k]. No further modifications to the algorithm are needed to deal with multiple-peak

patterns.

3.4.4 Eigenanaylsis

No modifications or tuning of this algorithm was necessary between trials or with different

illumination patterns. The eigenanalysis algorithm can be summarised as follows:

1. Compute the cross-correlation function between r,[n] and r,[n] by using

circular correlation.

2. Zero pad the squared envelope of the cross-correlation series R,;,[k], and
compute the IDFT of |R,]2[k]|2. Then form the estimate of the covariance

matrix Rgyp .
3. Compute the noise subspace matrix E,; , from the noise eigenvectors.

4. Using a simple minimization routine in MATLAB to solve for

T = argmin{ "bz‘b(t)}:‘,}ub_n"} , and estimate T.
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3.5 Performance Metric

Linking the analytical sun-sensor model and one of the processing algorithms, yields a system
capable of estimating the displacement of sun illumination pattern. In order to quantitatively
assess the results of these simulations, a suitable performance metric is required. To rate each

algorithm’s performance, a quantity called the effective resolution is derived.

In order to evaluate an algorithm’s performance, the true displacement t is treated as a
random variable. Since these algorithms are memoryless, each displacement estimate is based

on a single sensor image. Therefore, it is possible to impose a uniform distribution on 1, i.e.:
T = UlinTmax) 3.12)

The accuracy of the displacement estimate 7 is of primary importance when evaluating sensor

performance. Defining T,,, as the error in the measurement:

I =i-1 (3.13)

err

the performance of the system can then be gauged by looking at the statistics of t,,,. To
measure the statistics of the estimate error, an appropriate range of 1 values is first chosen.

Correct implementation of the algorithms ensures:
* First, the estimate is unbiased (i.e. zero mean, or 7, = 0), and

* Secondly, in the absence of noise, the estimates will lie in a range of one sample

spacing, i.e. AX, of the true value.

The basic modelling approach focuses on small excursions from the boresight, hence it is

sufficient to consider that t is uniform on [—%, % .

The variance, however, provides a quantity that is useful for comparing performance. The

. 2
variance of the error o, can be calculated as:

2
err}

}+1,,.. = E{

err

(3.14)
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Therefore, the primary performance metric, the effective resolution 3, is evaluated as

follows:

(o

S = A% (3.15)

This quantity normalizes the standard deviation of the error by the pixel size. Thus, the
performance of the sensor is expressed in terms of the number of pixels worth of
displacement that can be resolved. The smaller the value, the greater the super-resolution

performance.

Another useful metric for comparison is performance gain G. This can be used to make a
qualitatively meaningful comparison of algorithms, illumination patterns, and noise levels, or
a combination of the above. The performance gain of trial B with respect to trial 4 is defined

as:

)
Gy = gelf—A (3.16)
eff
Please note the subscripts in this expression. This definition was chosen to ensure that the
quantity represented by it matches the intuitive understanding that a high gain represents good

performance.

3.6 Summary

The analytical sun-sensor model that can be used for processing the displacements in
illumination pattern was developed. The baseline parameters for the model was derived by
comparing it to the SS-256 sensor. The implementation of different super-resolution
techniques for specific peak-patterns and situations of noise was analyzed. A performance
metric called the effective resoltuon was derived in this section to quantitatively assess the
performance of super-resolution algorithms in estimating the displacement of sun illumination

pattern.
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Chapter 4

PERFORMANCE EVALUATION

In this chapter the performance of super-resolution processing techniques are evaluated. One-
slit and two-slit detector illumination patterns are examined in the presence of increasing
system noise. A comparitive study on different illumination patterns are conducted to observe
various mask design trends. These tests can be helpful in providing quantitative comparisons
of algorithm performance and assess how simple sensor redesign can improve the net system

performance. The main goal of this chapter is to evaluate:

* Performance gain of parametric algorithms relative to conventional methods, in

improving the angular accuracy of digital sun-sensors.

« Simple changes to the illumination pattern that can help redesign the aperture

mask of the sensor.

4.1 Effects of System Noise

The first set of tests evaluated algorithmic performance as a function of noise strength for
different illumination patterns. In laboratory testing, the observed image-to-image standard
deviation with the SS-256 sensor was approximately 0.3% of the peak intensity. Since this
characteristic level is very low, the analytical sun-sensor model includes only an AWGN term
with zero mean and variance, o>. The pixel noise was varied from 0% to 3% of the peak
illumination. Tests performed at noise levels near 3% may be unrealistic in true sensor

images, but they are useful in the analysis of generic image degradation.
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4.1.1 Baseline Pattern

The narrow, single-peak pattern is considered as the baseline pattern. The effective resolution

L2y

(5.4) values of peak-detection, centroiding, linear-phase and eigenanalysis processing

techniques against increasing noise levels are shown in Fig 4.1.
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Figure 4.1 Variation of effective resolution with increasing noise for narrow, single-peak
illumination. (a.) Full view, (b.) Detailed view.

The invariant performance of peak-detection algorithm (Fig 4.1.a) may be puzzling, but the

result is entirely consistent with the definition of 5, in Section 3.5. Considering a noise-free

case, an expression for 3, i can be made directly:

AX72

I deX
AX/2 AX 1
Seff = AX = '/1_2 = 0.28

@4.1)



Effects of System Noise

This is the value observed during the tests. The simplicity of the algorithm confers the
observed noise immunity. Moving away from the central peak creates a sharp drop in the pixel

illumination. Hence, it becomes increasingly unlikely that random noise will cause the

algorithm to mis-identify the peak.

The other algorithms are very effective at low noise levels, and the performance of parametric
methods is particularly compelling (Fig 4.1.b). Eigenanalysis yields the best results when
compared to any of the other algorithms over the entire range of noise values. Although noise
causes the performance of the linear phase algorithm to degrade faster than eigenanalysis and
centroiding, its low-noise performance is excellent. The combination of modest

computational cost and good performance makes this algorithm attractive.

Considering the centroiding algorithm as the conventional ‘smart’ approach, the relative
advantage of using one of alternate algorithms can be examined. This effect is shown in
Fig 4.2. This plot shows a ratio of 5, values of the centroiding algorithm to the other three
candidates. Using the equation of gain in (3.16), the relative gain of peak-detection, linear

phase, and eigenanalysis algorithm with respect to centroiding can be calculated.
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Figure 4.2 Performance gain for narrow, single-peak illumination pattern, relative to the

centroid algorithm. Values over unity represent performance better than the centroiding
algorithm.
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The performance of the centroiding and parametric algorithms changes at similar rates.
Therefore, as the denominator term increases, the relative advantage of the parametric
processing approach is gradually reduced. With zero-noise, the estimation accuracy of
parametric algorithms is nearly perfect. These points have been omitted from the graph to
preserve a meaningful vertical scale. At 0.3% noise the parametric algorithms demonstrate
gains of around 4.9-6.5. Laboratory experience with the SS-256 sensor suggests that low noise
(~0.3%) operating conditions are typical. Therefore, a relative improvement of more than

four, is substantial.

4.1.2 Comparative Trends

The tests performed in this section considered the four permutations of narrow or wide, and
one or two-peak detector illumination patterns. Each test can be assigned an identifier as

explained in Table 4.1.

TABLE 4.1 Definition of Comparative Illumination Patterns

Identifier - Reference Ximax
N1 Narrow, one-peak pattern 25
N2 Narrow, two-peak pattern 50
Wi Wide, one-peak pattern 25
W2 Wide, one-peak pattern 50

Treating the narrow, single-peak (N1) performance of the four algorithms as a baseline, the
effect of the different illumination patterns can be examined. Therefore, with the help of
(3.16), the relative gain of N2, W1, and W2 with respect to N1 pattern can be calculated for

peak-detection, centroiding, linear-phase, and eigenanalysis algorithm.

The performance gain plots for each algorithm are shown in Fig 4.3.
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Figure 4.3 Illumination pattern effects on performance gains for peak-detection (a.), centroiding (b.), linear-
phase (c.), and eigenanalysis (d.). Each algorithm is compared to its narrow, one-peak results.

The following observations can be made about these results:

1. Peak-detection shows little variation in performance with changing illumination

patterns. This was also observed when the illumination patterns were tested

separately with increasing noise.
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2. Throughout the test regime, from Fig 4.3.(b), the centroid algorithm appears to
favour wide peaks compared to narrow peaks. This could be attributed to the
performance of centroiding algorithm for narrow, one-peak illumination pattern

(N1). It was shown earlier that the centroiding method performed the worst for

the N1 test,

3. In the case of parametric algorithms (linear-phase and eigenanalysis), the narrow
peak patterns outperform wide peak patterns by a factor of two (approximately).
This shows that, these algorithms are worth considering since they demonstrate
gains significant enough to justify the added computational requirements over

the conventional centroiding processing technique.

4. Generally, N2 test exhibited the best performance, followed by N1, W2, and
finally W1. Thus, the narrow peaks outperform wide peaks, and double peak
detector illumination patterns perform better than single peak illumination
patterns of the same width. This suggests that “good” patterns are good for any
algorithms.

This preliminary exploration of illumination pattern and algorithm performance provides
insight into possible sensor redesign strategies. First, it is observed that parametric algorithms
promise substantial performance gain over traditional algorithms under favorable conditions
of noise. Next, it is clearly visible that the peak width and number of peaks, both, affect the
effective sensor resolution. Of these, the latter seems to be the more important factor in
improving sun-sensor performance. Overall, it was observed that the performance gains for
the four algorithms are fairly flat; they are not very sensitive to increasing noise. This
suggests, albeit weakly, that illumination patterns do not have to be optimized with respect to

noise.

The final observation is,

N2>N1>W2> Wl 4.2
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4.2 Mask Design Trends

In this section, the purpose of the tests are to elaborate on the general trends uncovered in the
previous sections (Section 4.1). A rigorous optimization of sun-sensor illumination patterns
will be discussed in Chapter 5. In Section 4.1.2, it was shown that the N2 trial performed
better than the N1, and that the N1 usually performs better than W1. Therefore, three set of

tests will be considered in this section:
1. Effect of the number of peaks.
2. Effect of varying peak-width for one-slit illumination patterns.

3. Effect of changing the native resolution of the sensor.

4.2.1 Peak-width Variation - One Slit Illumination Pattern

The effective resolution of each algorithm relative to a single peak of varying width, is shown
in Fig 4.4. The width of the peaks was varied from about 2% of the field to 35%, and 0.3%

sensor noise was used in the simulation.

The peak-detection performance is unchanged for relatively narrow peaks. As the peak width
increases, the relatively broad extent of the peak increases the likelihood that noise will
disturb the algorithm’s estimate of the peak location. Fig 4.4.(b) highlights the performance of
the centroiding, linear-phase and eigenanalysis algorithms. The narrow-peak cases from the

previous section are reflected in the left-most points on the graph.

The centroiding algorithm shows better performance for narrow-peaks; starting quite low and
gradually worsening as the width increases. The most remarkable changes occur with the
parametric algorithms. For narrow peaks, almost perfect localization is achieved. The
eigenanalysis algorithm and linear-phase demonstrates similar width sensitivity (i.e. lowest

slope), when compared to other algorithms under consideration.

The performance of each of these algorithms worsens as the peaks widen. From the

perspective of the centroiding algorithm, wide peaks will have more noise content in the
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Figure 4.4 Effective resolution as function of Slit Width, o, = 0.003.

calculations and therefore the effective resolution will increase when the peak window is

wide. For the linear-phase algorithm, wide peaks will have narrow transforms, hence the

linear region of the phase function will shrink.

Considering the performance of centroiding algorithm as the conventional “smart” approach,
the relative advantage of using one of the alternate algorithms can be examined (Fig 4.5). This
plot shows the performance gain of the algorithms with respect to centroiding. Although the
data is erratic!, there is a suggestion of local minima for both eigenanalysis and linear-phase
algorithms. This high gain near the very narrow and very wide extremes is caused by a drop in

the centroid performance, and not by an improvement in these algorithms.

For narrow peaks, the centroid algorithms does not get enough samples to work with in the

centroid window. This causes a bias in the estimates of . For wide peaks patterns, as more

1. This fluctuation is caused by sensitivity to centroid window size, k.
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Figure 4.5 Performance gain as a function of peak width, relative to

centroiding.
pixels are included in the localization, more noise is introduced into the calculations. This
affects the performance of the algorithm. Therefore, this algorithm performs at its relative best

in the middle region.

Fig 4.6 shows the performance gains of each algorithm with respect to the narrow-peak

resolution. It can be clearly seen that wide peaks generally degrade performance.
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From the plots shown above, it can b

width on the illumination pattern.

e observed that there is little reason to alter the peak-
Although a very wide peak seems to offer good

performance gain, the absolute performance suffers. Narrow peaks offer superior performance

for the algorithms under consideration

4.2.2 Multiple Peaks

In this section, a complementary trend to the previous set of simulations is explored. The

narrow-peak detector illumination pattern is retained, and the tests are conducted by altering

the number of peaks. Symmetric ill

umination patterns were generated for values of N,

between one and ten, and the sensor noise was normalized to 0.3%.
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Figure 4.7 Effective resolution as a function of number of peaks.

The effective resolution obtained from the multiple peak analysis is shown in Fig 4.7(a). The

effective peak-detection resolution remains constant as the number of peaks increases. Since
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the algorithm uses a very simple approach, it gains little from the additional peaks. The
centroiding algorithm shows consistent improvements in performance as N, increases. The
two parametric algorithms remain close together in performance (Fig 4.7(b)). Eigenanalysis

remains the best choices in terms of raw precision.
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Figure 4.8 Resolution gain (relative to centroid algorithm) as a function
of number of peaks.

Fig 4.8 shows performance gains with respect to the centroid algorithm. The performance
gain plot for the algorithms shows that the linear-phase and eigenanalysis algorithms

outperform the centroid algorithm by about the same factor, regardless of the number of peaks

in the illumination pattern.
Finally, the effective resolution of each algorithm relative to its own one-peak performance is
considered in Fig 4.9. Two important observations can be made.

« First, the move to a ten-peak pattern yields a gain of about two for each of the

algorithms except for peak-detection.

» Second, the linear-phase algorithm seems to benefit a little more than the others

from this change.
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Figure 4.9 Effect of number of peaks on algorithm performance. The
relative gain of each algorithm is calculated with respect to the
algorithm’s single-peak resolution.

4.2.3 Native Sensor Resolution

In the previous section, wide-peak illumination patterns were found to degrade performance.
Despite the lacklustre performance, it is useful to investigate how the more modest changes in
peak-width will effect sensor performance. Changing the native resolution of the sensor is
another way of increasing the peak-width. A sensor capable of creating such an illumination
pattern on the detector would require non-trivial changes to the geometry (i.e. z, must
increase). If z, increases substantially, the field-of-view will shrink. In a real sensor, altering
the peak width is difficult to do without compromising on other performance characteristics
like sensor field-of-view. One method does remain that may help capitalize on the potential of
parametric algorithms: improving the native resolution of the sensor. Changes to the detector

array could alter the perceived width of the illumination pattern.

Altering the native sensor resolution requires the replacement of the detector array. Thus, a
detector of the same physical dimensions will house a greater or lesser number of pixels. This
results in a change to Ax, but ¥, ,, remains the same. As the number of pixels rises (and the

pixel size shrinks), the narrow peak will be imaged with a greater number of samples. This
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change is made with greater reluctance than earlier changes to the processing algorithm and

sensor geometry since the costs involved will generally be higher.

Adding pixels to the narrow pattern sensor gives the results shown in Fig 4.10.a. Each time
the pixel size is halved, the peak is resolved by double the number of pixels. Over this range
of pixel sizes, the effective resolution of centroiding, linear-phase and eigenanalysis all
improve with increased peak definition (their performance is similar as well). Not only is the
native resolution improved by using smaller pixels, but the illumination displacement can be
measured to a smaller fraction of a pixel. Since the peak-detection algorithm uses only a
single pixel to generate 7, its performance remains constant. For other algorithms, increasing
pixel size (lower resolution sensors) impairs the effective resolution, but decreasing the pixel

size before unity has little effect.
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Figure 4.10 Effective resolution as function of pixel size (¢, = 0.003, narrow pattern).
Pixel size has been normalized to that of 256-element array. Note that the points to the
right indicate detectors with fewer pixels.
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There seems to be a shallpw optimum (Fig 4.10.b) for the parametric algorithms for pixel
sizes between 0.25 and 0.50, but the effect is not very pronounced. Thus, reducing the pixel
size allows to resolve smaller absolute shifts, but the sub-pixel performance remains relatively
unchanged. Increasing the pixel size is doubly harmful since it is possible to see a degradation

in both sub-pixel resolution, compounded by the increase in pixel size.
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Figure 4.11 Relative performance as function of pixel size
(o, = 0.003, narrow pattern). Effective resolution for each
algorithm is normalized to the algorithm’s 256-pixel result.

Fig 4.11 shows the algorithm’s performance relative to its 256-pixel trial. The parametric
algorithms demonstrate an increase in performance as the pixel size increases. Peak-detection
and centroiding algortihms fare worse when compared to parametric algorithms. Continually
increasing the number of pixels in the array was impractical. Besides running up against the
limits of detector technology, certain algorithms were detected to be significantly slower

when operating on longer data signals.

Fitting 2048 pixels into a 16mm array requires a pixel pitch of less than 8 um; this is close to
the limit of current commercial technology!. In such cases, it is also possible to just window
the data around the peak. The pixels that contain no data can be eliminated. Nevertheless, it

was important to evaluate the limits of the performance trend.

1. For a comprehensive, but somewhat dated example, [Eid et al, 2001] provides many examples of radiation
tolerant sensors. An informal survey of contemporary cameras and pixel arrays revealed few with pixel pitch
finer than 8pum.
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Some noise sources (e.g. reset noise, amplifier noise, and quantization noise) do not scale with
pixel size. Therefore, changes to the array may require adjustments of the sensor integration
time or the use of a different natural-density filter to maintain an equivalent signal-to-noise
ratio (SNR). If it is unable to compensate for these effects and the SNR drops with pixel size,
then the system performance is expected to degrade with smaller pixels. In this situation the

optimal pixel size may be more significant.

4.3 Performance Conclusions

In this chapter, it was shown that under low-noise operational conditions, linear-phase and
eigenanalysis algorithms yield sizeable improvements in sun displacement estimates.
Provided that these improvements hold across to the full sensor field-of-view, parametric
algorithms represent a promising avenue for greatly improving sensor performance at the cost
of modestly increasing computational requirements. The current standard approach,
centroiding, requires next to nothing in terms of processing power. However, the gains from
the parametric algorithms are substantial enough to validate this approach as a concept worthy
of further study.

The results presented in this chapter suggested that parametric algorithms have the potential to
greatly enhance the effective resolution of the modelled sensors. In a laboratory experiment,
these algorithms were applied to image data collected from the SS-256 sensor, and the tests
proved that these improvements were physically realizable and not simply a product of the
simulation or modeling process [Enright & Godard, 2005]. The agreement in results suggests

that despite simplifying assumptions, the sensor model is sufficiently accurate for predicting

algorithm performance.

Although this chapter demonstrated some variation of performance with illumination pattern,
the pattern selection process has been ad hoc. The mask design trends observed are promising
enough to promote further evaluation of sensor re-design. Systematic optimization of the

aperture pattern will be evaluated in Chapter 5.
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Chapter 5

MASK OPTIMIZATION

Performance of a sun-sensor can be increased by redesigning several aspects of the sensor
system. In Chapter 4, it was shown that changes to the illumination pattern in a digital sun-
sensor can dramatically improve the resolution of the device. In this chapter, Genetic
Algorithms (GAs) will be used as a heuristic to optimize the illumination pattern for a single-
axis digital sun-sensor. Thus, the optimized pattern will be selected based on the degree to
which it improves sensor resolution. Changes to the detector illumination pattern can be
implemented by altering the sensor’s aperture mask. Since this is a superficial change to a

passive component, manufacturing costs will not increase.

After providing some background information on GAs, design of the optimizer algorithm will
be explained, including a description about specific genetic operators used for mask
optimization. Following a discussion of results obtained from GA optimization procedure, the

effect of super-resolution algorithms on the performance of the optimized pattern will be

examined.

5.1 Fundamental Approach

Genetic Algorithms are a class of searching processes based on the laws of natural selection
and genetic evolution. GAs were first proposed by John Holland [Jackson & Carpenter, 2004],
as a means to find good solutions to problems that were otherwise computationally

intractable. Because of its simplistic implementation procedure, GA is used widely in Al-
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hybrid systems for real-world applications [Goldberg, 1989], direction-of-arrival estimation
[Li & Yi, 2004], and many other practical problems in science, engineering and industry.
Genetic Algorithms differ from other traditional optimization procedures in several ways

[Jackson & Carpenter, 2004]:

* GAs work on the coding of problem parameters, not on the parameters them-

selves.

* GAs search a population of points in the solution space, not a single point. Thus
it could avoid being trapped in a local minimum. GA is also free of assumed

starting point.

* GAs use objective function metrics to guide the search process, not derivatives

or other auxiliary knowledge of the solution space.
* GAs use probabilistic (stochastic) transition rules to traverse the solution space,

not deterministic rules.

A simple GA consists of three basic operations: Selection, Genetic Operation, and

Replacement. A typical GA cycle is shown in Fig 5.1

Population
llromosomf

<

ating Pool

Genetic
pertation

Phenotype

Objective
Function

.....

Phenotype

ubpopulation
(Offspring)

L S PWIYRY Ll

Figure 5.1 GA Cycle [Tang et al, 1996].
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The basic process begins by a randomly generated population of chromosomes, which are fed
into the objective function through which GA carries out a fitness-based selection and
recombination to a new generation of successor population. During recombination, the
genetic material in the parent chromosomes are selected based on the fitness score and
recombined to form a subpopulation or child chromosomes, and these are passed on to the
successor population. This is an iterative process through which various generations are
evolved until some stopping criterion is specified, and an optimal solution is reached based on

increasing fitness score.

A GA is constructed from a number of distinct components. The main components are

chromosome encoding, fitness function, selection, recombination, and the evolution scheme.

5.1.1 Chromosome Encoding

The population comprises of a group of chromosomes from which candidates can be selected
for the solution of a problem. A particular position in a chromosome is referred to as a gene
and the value occurring at that point in the chromosome is referred to as the allele value. The
classical GA uses a bit-string (Discrete) representation to encode solutions. Bit-string
representation consists of a string of genes whose allele values are characters from the
alphabet {0, 1}. The interpretation of this string is entirely dependant on the specifications of
the problem. The GA toolbox in MATLAB also allows the use of real numbers in vector form
(Continuous representation). The exact meaning of any chromosome for a particular

application is encoded only in the second part of the GA, the fitness function.

5.1.2 Fitness Function

Given a specific problem to solve, the input to the GA is a set of potential solutions -
“chromosomes” - to that problem encoded in some fashion, and a metric called a fitness
function that allows each candidate to be quantitatively evaluated. The fitness values of all the
chromosomes are evaluated by calculating the objective function in a decoded form

(phenotype). The objective function (or fitness function) is the main source for providing the
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mechanism that evaluates the performance of each chromosome. Basically the fitness function
takes a chromosome as iﬁput and produces a number, or set of numbers, as a measure to the
chromosome’s performance. A genetic algorithm is only as good as its fitness metric. Without
this component, there would be no other way for the algorithm to differentiate the good

solutions from the poor ones.

5.1.3 Parent Selection

Parent selection uses the fitness values to select the chromosome in a GA population that
provides the best solution. The chromosomes with higher fitness value are prone to be
selected against those with lower fitness score because they tend to receive higher number of
offsprings. Thus, these individuals have a higher chance of surviving in the subsequent
generation. This selective procedure evolves highly fit solutions. Even the highly fit
chromosomes could be selected more than once and also can be recombined with themselves.
Effective selection is achieved by many ways, but the most famous among them is the
Roulette Wheel Selection, which is based on proportionate scheme [Goldberg, 1989]. The

procedure is as follows:
» Sum the fitness of all population members, named as total fitness.
» Generate a random number between 0 and total fitness n.

» Return the first population member whose fitness added to the fitness of the pre-

ceeding population members is greater than or equal to n.

There are many different selection schemes. Tournament Selection first selects two
chromosomes with uniform probability and then chooses the one with highest fitness.
Truncation Selection simply selects at random from the population having first eliminated a
fixed number of the least fit chromosomes [Back et al, 1997]. Random Stochastic Selection
explicitly selects each chromosome a number of times equal to its expectation of being

selected based on the fitness proportional method.
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5.1.4 Genetic Operation

Genetic operation or recombination, is the process by which chromosomes selected from a
source population are recombined to form members of a successor population. This stage
involves two components, Crossover and Mutation. Crossover operator combines subparts of
two parent chromosomes to produce offspring that contain some parts of both parents’ genetic
material. A single point crossover (Fig 5.2) defines a single cross point where the two parent
chromosomes can be split and the two chromosomes beyond this point are exchanged to form
the offspring. A multipoint crossover (Fig 5.3) is similar to single point crossover, except that
m cross points are chosen at random and the child chromosomes are constructed from the

allele values of the two parents, interchanging at each crossover point.

1Crossover Point
[ 1 ] C—— .
- -
] [
]
Parents Offspring

Figure 5.2 Example of single-point crossover.

Crossovqr Points
1 )
O L1 ] N T
-—
] [ ——— |
I [ | .
Parents Offspring

Figure 5.3 Example of multipoint crossover (m = 3).

Mutation is an operator that introduces variations into the chromosome. These variations can
be global or local. Basically it acts on an individual chromosome and flips one or more allele
values. In the case of bit-string chromosomes, a normal mutation operator randomly alters the

value of the string position. An example of mutation on the fourth bit is shown in Fig 5.4.

Original
Chromosome

New
Chromosome

Figure 5.4 Example of bit mutation on the 4'" bit .
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5.1.5 Evolution

The genetic operations helps recombination and the resultant chromosomes are passed into
the successor population. The processes of selection and genetic operation are iterated until a
complete successor population is obtained. This leads to the formation of a new source
population or the next generation. The GA is then iterated through a number of generations
until a stopping criteria specified is reached. Two representative strategies are used for old
generation replacement, Generational Replacement and Steady State Reproduction [Tang et
al, 1996]. In generational replacement, each population of size n generates an equal number of
new chromosomes to replace the entire old chromosome. In steady state reproduction, only a
few chromosomes are replaced once in the population to produce the succeeding generation.
These are called the evolutionary schemes and they form a very important aspect of GA

design.
In general, a top-level description of simple GA will be as follows:

* Step 1 - Randomly generate an initial population X(0) = (x,, x5, x5, ..., xy) ;

* Step 2 - Compute the fitness F(x;) of each chromosome x,, in the current popula-

tion X(r);

* Step 3 - Create new chromosomes x,(s) by mating current chromosomes, apply-

ing mutation and crossover during mating;

* Step 4 - Delete numbers of population that provide low fitness scores, to make

room for the new chromosomes;

* Step 5 - Compute the fitness of the new set of chromosomes x (s) and insert

these into the population;
 Step 6 - Check for stopping criteria;

 Step 7 - If stopping criteria met, then stop and return the best chromosome, or

else go to Step 3 and re-iterate.
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5.2 Optimizer Algorithm Design

A mathematical model of sun-sensor performance is necessary to evaluate the impact of
illumination pattern changes. A standard data model for optimizing the illumination pattern
can be formulated based on the design of an analytical sensor model (Section 3.3). A few

practical observations can be made about the image synthesis.

5.2.1 Chromosome Pattern

In this study, a binary sequence (0-1 sequence) is used to represent the chromosome, P,,. The
peak-position and peak-width was encoded in a single chromosome. A pattern with » peaks

can be denoted by pr,,, where p,, is the tuple:

Py = {kysWiseekp oWy} 5.1)

The elements of the tuple that define the pattern are:
* Peak Position k. This defines array index of the centre of the peak i.

* Peak Half-width w,. This quantity is the half-width, in pixels where the peak

intensity falls to 10% of the maximum value.

These variables represent the population that will be optimized by GA.For the initial case of a
one-peak illumination pattern, there are a total of 11 bits in a chromosome string. The first 8
bits are used to calculate the peak-position, and the consequent 3 bits corresponds to peak-
width. Therefore, for a ten-peak illumination pattern, there will be a total of 110 bits to

evaluate the ten peak-positions and their respective peak-widths.

A separate optimization was performed for each value of a. This removes the need for the
chromosome to represent the number of peaks explicitly. This approach improves solution

coverage and convergence.
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S.2.2 Fitness Scaling and Selection

The linear-phase parametric algorithm will be used to evaluate the performance of each
candidate illumination pattern. Parametric super-resolution techniques derive an advantage
over conventional processing techniques from a priori knowledge of the expected
illumination pattern at the detector. One of the main advantage of these algorithms is their
tolerance of random noise and interfering signals. Consequently, these algorithms permit
precise localization of the sun in the sensor image. The performance of the sun-sensor is
expressed in terms of the number of pixels worth of displacement that can be resolved. This is
also called the effective resolution 8,7 This will be the quantity minimized by GA, to

optimize the illumination pattern.

A Rank-based fitness scaling is used for this proposed model. This is preferred over other
methods because of its ability to produce successive generations with the best individual
chromosomes [Goldberg, 1989]. Rank-based fitness scaling also helps converge to an optimal

solution faster than other fitness schemes.

A Stochastic Uniform parent selection scheme is used for this model to emulate the survival of
the fittest mechanism. This allows the fitter chromosome to receive higher number of
offspring and thus a higher chance for that chromosome to survive in subsequent generations.
Roulette wheel selection was not used for this model, since it is mainly used to implement a

proportionate scheme.

5.2.3 Crossover and Mutation

A Scattered Crossover operation was proposed for this model so that the operator generalizes
the scheme to make every locus a potential crossover point. A crossover probability of

P, = 038 is used for this model.

The variations into the chromosome was introduced using a Uniform Mutation function. Since
the number of genes in a chromosome in this case range from 11 to 110, a mutation

probability of 7, = 0.5 was used. This number is relatively high compared to typical mutation
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rates, but with a large population size of 500, the probability of mutation needs to be high

enough for better results and faster convergence.

5.2.4 Termination Criteria

The convergence criteria was set by the maximum number of generations. Considering a
population size of 500 and a maximum chromosome size of 110 bits, the GA is expected to
converge within 800 generations. Therefore a G,,,, = 1000 was employed in this GA. The
algorithm was also set to terminate if the cumulative change in the fitness function value over
stall generations (100) is less than 1x107°. This is an important criteria because if GA finds the

minimum value long before G,,,,, then the simulation time can be minimized.

max >

5.3 Optimization Performance Evaluation

This section examines the convergence results of the Genetic Algorithm Optimizer. A set of
bounds on the w, and &, quantities defines the optimization case. In this study, two cases are

considered. These are shown in Table 5.1.

TABLE 5.1 Optimization Cases

Case Min. w, Max. w, Min. &, Max. &,
I 1 6 25 235
I 1 6 70 180

To avoid losing peaks off the end of the array as the sun-angle increases, the peaks must be
confined to the central region of the array. These two optimization cases consider different
sized changes. Case I allows greater generality in the illumination pattern at the expense of a
restricted sun-sensor field-of-view (x30°). Case II restricts the optimization, but does not
compromise the sensors’s field-of-view (£70°). The allowable peak widths are the same in

both cases.

67



MASK OPTIMIZATION

The test cases for this study varied the number of peaks in an illumination pattern from 1 to
10. Therefore, the role of GA is to find optimal patterns for each of the ten test cases. Two
factors must be examined before making a decision on the best detector pattern among the
ones selected from the above mention test cases. Of primary concern, the optimal illumination
pattern must resolve the sun-angle to the best effective resolution value. A secondary
consideration is that, the diffuculty in fabricating the aperture mask of the digital sun-sensor
must be considered. To fabricate a single slit mask is easier when compared to manufacturing
a ten slit aperture mask. The optimized illumination pattern will then be tested to evaluate the

performance of other super-resolution algorithms with increasing system noise.

5.3.1 GA Results

To efficiently evaluate the performance of GA in optimizing the illumination pattern, the
optimization results are compared with a two-peak pattern (Section 4.1) similar to that
employed on a Sinclair Interplanetary SS-256 digital sun-sensor. This two peak pattern has an
effective resolution, 8, = 0.0483. This value is compared with the fitness scores of the
optimized patterns to evaluate the performance gain. Results of the optimizations are shown in

Fig 5.5 and Table 5.2.

o
-

Effective resolution (Pixels)
o
8

T I A T
Number of Peaks in the lllumination Pattern

Figure 5.5 Effective resolution obtained from GA for the two test
cases.
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TABLE 5.2 Comparison of Optimal Patterns with SS-256 Pattern

Casel Case 11

Sy  Gain | S  Gain
0.14577 03 | 0.14641 03
0.03795 1.3 | 0.03841 13
0.01641 2.9 | 0.01698 2.8
0.01431 33 | 0.01338 3.6
0.01167 3.5 | 0.01234 3.9
0.01365 4.0 | 0.01244 3.8
0.01217 4.1 | 0.01096 4.4
0.01010 4.8 | 0.01255 3.8
0.00994 49 | 0.01209 4.0
0.00955 5.1 | 0.01338 3.6

S 0V ® N L e WX

It is clear that the optimization provides an improvement in performance. The optimal two-
peak pattern performs similarly to the SS-256 sensor and the performance gain can be
attributed to the use of narrower peaks in the optimized pattern. Between one and three peaks,
the performance increases dramatically and the two cases are quite similar. From three to six
peaks, the performance improvements are smaller, and the two cases continue with similar
performance. For patterns containing more than six peaks, the two curves begin to diverge
with Case I outperforming Case II. For these patterns, the permitted peak-placement region

becomes too crowded.

The three-peak patterns represents a point of diminishing returns. Adding more peaks to the
illumination pattern creates progressively smaller improvements in performance. Since the
main objective of this study was to minimize changes to the sensor, these three peak patterns
were selected as the best candidates for sensor redesign. Since the projected performance
gains are very similar, there is little reason to select a pattern that would compromise on the

sensor’s field-of-view. Thus, the Case II results are most promising.

Table 5.4 shows the various peak-positions and peak-widths of optimal illumination patterns

for the two test cases. For test case-1, it is evident that all the peaks are spread out over the
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TABLE 5.3 Peak-positions and Peak-widths of Optimal Patterns

Test Case - 1 Test Case - 11
Number Peak - Peak -
of peaks | Peak - Positions Widths | Peak - Positions Widths
1 248 2 153 2
2 180, 33 1,2 159, 152 2,1
3 26,212,43 4,1,1 157,177, 71 1,4,1
4 223,141,127, 3,1,1,2 | 97,125,108,82 1,3,1,2
101
5 52,44,157,146, 1,2,3,1, | 89,158,90,97, 1,2,1,3,
181 1 154 1
6 237,143,229, 3,1,1,1, 134,95, 170, 1,1,1,3,
33,772,150 2,1 160, 123, 81 1,2
7 227,27,96,242, 1,2,3,2, | 146,161,166, 1,1,1,1,
37,30, 168 1,2,1 173,115, 79, 93 1,4,3
8 63, 142, 197, 1,1,1,3 148,157,169, 2,1,1,1,1,

212,107,157, 4,1,1,2 | 176,171,170, 31,1
248, 182 99, 153

9 129, 42, 102, 1,3,1,4, | 79,91,115,126, 1,1,1,4,
226,101,110, 1,2,1,1, | 85,97,70,146, 1,2,2,1,

89, 34,133 1 103 3
10 31,106,156,78, 3,1,1,1, 174, 73, 166, 1,2,2,1,
179, 225,240, 1,1,1,1, | 139,120,70,85, 2,3,1,1,

59, 188, 210 4, 97,154, 150 1,1

linear arrray and all the multi-peak patterns contain peaks that are very narrow along with

atleast one wide peak in the illumination pattern.

5.3.2 Properties of the Optimal Pattern

Qualitative Results

Table 5.4 shows the actual peak-positions and peak-widths for the two optimal three-peak
illumination patterns. The illumination patterns are shown in Fig 5.6. The pattern has two
narrow peaks and one wide peak in both test cases. This type of pattern helps move the first

zeros in the DFT toward higher frequencies.

70



Optimization Performance Evaluation

TABLE 5.4 Peak-positions and Peak-widths of Optimal Patterns

Test Case - I Test Case - 11
Number of Peak - Peak - Peak - Peak -
Peaks Positions Widths Positions Widths
3 26,212, 43 41,1 157,177,71 1,4,1
£
2

00 150 200
Sample Number - N

Figure 5.6 Three-peak illuminaiton pattern obtained from the test cases .

Fundamentally why is this pattern good? Some insight can be gained by looking at what
happens with a 3-wide, and 3-narrow peak patterns. Some information regarding this behavior

can be seen in Fig 5.7

Fig 5.7 shows the reciprocal of the magnitude of fourier transform of the pattern when all
peaks are narrow(/,,,,,,[#]). The sample numbers at which the magnitude are higher shows
the existence of zeros in the DFT of the pattern. For a better understanding of this problem, it

is good to re-cap the main components of linear-phase algorithm from Section 2.2.2.

Defining Sy[n] as DFT of the zero shift signal and S, [n] as the DFT of the shifted version,

the exponential term can be isolated as follows:

271tk
Sa[n] - eﬂ% (5.2)

Soln]

Y[k] =
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Figure 5.7 Fourier analysis of optimal, all narrow-peak, and all wide
peak patterns.

If y is the phase angle of Y[k], then it can be shown that:

_ 27nka
wik = -2 (53)

The estimate of t ‘can be obtained from the calculated slope and the sample number n as
follows: First, perform a least-squares fit using a sub-set of y[k] to get an estimate o of the

slope. An estimate of the displacement T can then be calculated using:
T=a-AX (5.4)

To maintain good performance, the least-squares fit performed using a sub-set of y[k] should

be done carefully. The presence of zeros in the spectrum of 7

narrow

[n] can cause severe
distortions in the phase function. Samples in the centre (115-140) of the pixel array constitute
the linear segment of the phase function using which the slope is calculated. The linear
displacement of the shifted signal is estimated using this slope (Section 2.2.2). It can be
observed from Fig 5.7 that, only the optimal pattern has distortions of low magnitude in the
pixels that constitute the linear region of the phase function. In the case of all wide peaks and
all narrow peaks in the pattern, the distortions are of higher magnitude which can affect the

estimate of the linear shift in the pattern (7). Therefore, the optimal pattern was found to have
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two narrow and one wider peak to help move the first zeros of the DFT towards higher

frequencies.

Quantitative Results

This section examines the effect of increased noise on the performance of each super-
resolution algorithm for the optimal illumination pattern. To justify the fabrication of the
sensor’s mask aperture, it is important to evaluate the performance of three-peak illumination
pattern with other processing algorithms as a function of noise strength. The effective

resolution values obtained from this simulation are shown in Fig 5.8.

ozsr —e— Peak Detection i
@ Controld

o ~-w=-- Linear Phase
% =~r= Eigenanalysis
£ o _
S - - LY < '\ o — a
Q 015 O @y o |
2 0158 P o a AP
2
"E o1l |
b

o.0s} — A

ecdp e ="
g L otelnie
P ~poemm—— ————— -~
L X . )

°° 0.003 0.02 0.025 0.03

0.01 0015
Normalized Noise Standard Deviation (on)

Figure 5.8 Variation of effective resolution with increasing noise for three-peak
illumination pattern.

The effective peak-detection resolution remains constant throughout the test regime. This
value is consistent with the observations made in Chapter 4. Since this algorithm uses a
simple approach, it gains little from using additional peaks in the illumination pattern. Moving
away from the peak location creates a sharp drop in the pixel illumination. Hence it becomes

unlikely that increasing noise will cause the algorithm to mis-identify the peak.

The increase in effective resolution values for the centroiding algorithm can be attributed to

the presence of two narrow peaks in the illumination pattern. For narrow peaks, the centroid
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algorithms does not get enough samples to work with in the centroid window. This causes a
bias in the estimate of 7. The performance of linear-phase algorithm is very encouraging.
Although noise causes the performance of linear-phase algorithm to degrade, it displays better

performance throughout the test regime when compared to other algorithms.

Eigenanalysis displayed the best results for most of the cases examined in Section 4.1.
Therefore, the performance of eigenanalysis for the optimal pattern may be puzzling (Fig 5.8).

Two important points to note are:

1. While optimizing the illumination pattern, the linear-phase algorithm was used
to estimate the sun displacement. The optimizer produced a pattern that
performed better only with the linear-phase algorithm. Therefore, the same
pattern cannot be expected to perform well with eigenanalysis even though both

the algorithms belong to the parametric algorithms category.

2. Eigenanalysis method had shown degradation in performance when compared to

linear-phase algorithms in Section 4.2.2.

Since N2 pattern was considered as the best pattern among N1, W1, and W2, the relative
advantage of using peak-detection, linear-phase and eigenanalysis for the optimal pattern

against N2 pattern is examined in Fig 5.9. The linear-phase algorithm demonstrates gains of

4
B.Ef T e ¢ e e s | === Poak Detection
~~~~~~~~~~ © - Linear Phase
L ST R ~e ~-r-- Eigenanalysis
~—
gl TS g .
S~
o ‘“\,
§ 2.5 =
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S -~
g @ e i i s
1.8} n
14 >4
-] o o IE - B -] o e -}
0.5 ~ L
o 0.008 o228 0.03

0.01 0.016 0.02 o.
Normmalized Noise Standard Deviation (on)

Figure 5.9 Effective resolution improvement relative to N2 pattern with increasing noise
for three-peak illumination pattern.
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more than 2 throughout the test regime, when compared to the performance of the other
algorithms. Peak-detection, centroiding, and eigenanalysis display poor performance for the
optimal pattern. This shows that, the pattern is only good with linear-phase algorithm.

5.3.3 Sensitivity Analysis

In order to examine the optimality of the GA solutions, the sensitivity of the optimized
patterns, to changes in their chromosomes is investigated. Fig 5.10 shows the effect of varying

the peak-width and peak-position on the system performance.

Effective resolution (Pixels)
o
-]

P 8

o1} e ]
a a

" ? ] ® "3

2 3 4 s O O 0 10
Number of Peaks In the llilumination Pattern

00 0o
g

N~ oo

"
o 1

Figure 5.10 Effective resolution obtained from GA coupled with results
from sensitivity analysis.

This was accomplished by dithering elements of the patterns’ chromosomes. Separate tests
were carried out for peak-widh variation, and changing peak-positions. Variations in peak-
width from the optimal values cause considerable degradation in the system performance.
Generally narrow peaks are preferred over wide peaks. This is consistent with the
observations made in Section 4.2.1; wide peaks will have narrow transforms and hence the
linear region of the phase function will shrink. In contrast, we see that varying the peak-

position has little effect on system performance.

From Fig 5.10, the performance of the dithered patterns is nearly indistinguishable from the

optimized patterns. In Fig 5.11, the variation in effective resolution values are visible clearly
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Figure 5.11 Detailed view of peak-position variation.

for peaks ranging from 3 to 10. The magnitude of the variation is less compared to the
sensitiveness of peak-width to the optimal values. Therefore, the optimized illumination

patterns are very sensitive to peak-widths, but fairly insensitive to peak-position.

5.4 Optimization Conclusion

This chapter provided a methodology for optimizing the sun-sensor illumination pattern using
GAs. It was shown that simple changes to the illumination pattern of a digital sun-sensor can
results in a three-fold increase in performance over the baseline two-slit sensor. A three slit
illumination pattern was chosen as the most practical new pattern since it gave a good
performance with the smallest change from the original pattern. Fabrication of such a
optimized pattern is not expected to be difficult. The existing masks are laser etched and the
revised pattern can be created using the same process. The required sun-sensor slits lie in the
range of 10-30 pm with tolerances on the order of 1 pm. Redesigning the mask creates little if

any cost impact to the sensor since the only change is the pattern etched in the front surface.
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Chapter 6

IMAGE ARTEFACTS AND NOISE
MODELS

Noise modelling is essential in any photometric endeavor. Several noise sources are typically
considered when using pixel sensors. Image degradation due to different noise sources could
have an effect on the performance of parametric algorithms that require a pre-defined model
of the image. These sources can be divided into two types: internal, and external noise
sources. Internal noise sources arise due to various components within the sensor. External

sources include, effect of albedo from Earth, and other bodies in space.

In the simulations examined in Chapter 4, a simple noise model was used. The parametric
algorithms displayed good performance with the simple noise model. This model only
included an AWGN noise term. The inaccuracies introduced by using an enhanced noise
model, by considering internal noise sources must also be evaluated to demonstrate its impact
on the performance of the sun-sensor model used in this study. A realistic estimation of the
noise-level would require a very sophisticated noise model. However, in this chapter an

enhanced noise model is developed to evaluate the performance of the super-resolution

algorithms.

Although many satellites are influenced by the Earth’s albedo, few models of the effect exist.
For sun-sensors onboard a satellite, Earth albedo is often treated as noise. Digital sun-sensors
are mostly insensitive to albedo light [Hales & Pederson, 2001]. However, some
configurations result in errors in the least significant bits of the digital sun-sensors

[Brasoveanu & Sedlak, 1998]. This decreases the accuracy of these sensors when part of the
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illuminated Earth surface is present in the sensor field-of-view. Therefore, this chapter will

also evaluate the performance of super-resolution algorithms, when image artefacts due to

Earth albedo are considered.

6.1 Component Noise Model

The detector array of the SS-256 sensor consists of 256 photodiodes, arranged in a linear
array. Light energy impinging on a pixel generates photocurrent, which is then integrated by
the circuitry associated with that pixel. The ideal response from each pixel is directly
proportional to the light intensity on that pixel and the integration time. However, the actual
image intensity from a pixel deviates from this ideal linear model. There are several

independent sources of error that corrupt the photoelectronic transformation [Tsin et al, 2001].

This section presents a new model of noise for use in the syntesis of sensor images. Each
component of the noise model represents a separate physical process. Three noise sources,
namely quantization error, shot noise, and Additive White Gaussian Noise (AWGN) was

considered in this component noise model.

6.1.1 Quantization Error

Quantization error is the noise error introduced by quantization in analog-to-digital
conversion (ADC) process in the sensor system. If the value of the analog signal at a sample
point falls between two quantization levels, the ADC treats it as if it were exactly one of the

two values, thus introducing an error, known as quantization error. This is denoted by w,ln].

_ @) ) [o(n) = I(n) + wq(n)
In) ——» Ot 1y
(b) Mathematical
(a) Actual System wq() Model

Figure 6.1 Mathematical model of Quantization Noise.
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The mathematical model for the quantization error is shown in Fig 6.1. The maximum value
of this error is half the value of the Least Significant Bit (LSB) of the ADC. This error is also

referred to as quantization noise. The properties of Wouanln] are:

* Theerror w,,,,,[n] is uniformly distributed over the range -%LSB <Wouant

[n]<%LSB.
In other words, the instantaneous quantizer error cannot exceed half of the
quantization step. It is a zero mean random variable with a variance,
Ooant = éLSBz [Oppenheim & Schafer, 1975].

* The error w,,,,[n] and the error w,,,,,[m] for m=n are uncorrelated.

* The LSB for this model is taken as 1 count. Therefore,
—0.5 <Wgy0,[n]1 <0.5 6.1

A
2m+l.

Thus, for a m- bit ADC, w,,,,,,,[7] is uniform over +

6.1.2 Shot Noise

Shot noise results from the inherent statistical variation, or uncertainty, in measuring the
number of photons stored on each pixel of the detector array [Healey & Kondepudy, 1994].
The number of photons received is governed by Poisson’s statistics, and is directly
proportional to the integration time r,,. Consider the arrival of photons over one such

integration time «, ,. For a particular pixel, the mean rate of the Poisson process is the rate of

int *

electron arrival:

= Cind) (6.2)

n e

where e is the charge of the electron, and / represents a set of image data. The photon arrival
times obey Poisson statistics and the number of photons, N, , arriving within the integration

time <, , is a statistical variable determined by the Poisson distribution [McNeil et al, 2003]:

int
N, ¥,
_Nyje”

P(N,) = T (6.3)

n
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where N, = v,1,,, is the expectation for the number of photons in the interval <,,,. Shot noise is
a fundamental limitation and it cannot be eliminated. It is proportional to the integration time
and the pixel intensity. Photoelectrons generated within the device constitute the signal whose
amplitude will randomly fluctuate at each pixel. The shot noise w,,,[s], for the sensor model
used in this study can be modelled as a random variable that follows a Poisson distribution

with mean and variance, o2, , = ¥,.

6.1.3 Dark Current Noise

The dark current noise arises from statistical variation in the number of electrons thermally
generated inside the silicon structure of the detector array. This small fluctuation can be
modeled as Gaussian Noise. This can be included in the AWGN noise term of the component
noise model. Another component of dark noise arises depending heavily on the device
temperature, which often holds a constant d.c. offset added to the observed intensity [Barducci

et al, 2005]. This can be compensated for during pre-processing.

6.1.4 Secondary Noise Sources

The noise sources discussed in this section can be compensated for during processing or
calibration. One of these is the fixed pattern noise. Processing errors during the fabrication of
the pixel array can cause small variations in quantum efficiency and charge collection volume
from pixel-to-pixel [Debevec & Malik, 1997]. Therefore, if a pixel array is uniformly
illuminated, these variations will lead to a pixel-to-pixel non-uniformity in collected charge.
This phenomenon is called the fixed pattern noise (FPN). Therefore, (FPN) is basically a
distortion of the image due to variations in device parameters across the sensor. This can be
modeled by a constant multiplier associated with each pixel in the detector array. FPN can be
corrected for by calibrating each pixel individually. This calibration is obtained by taking a
large number of images using a uniform illumination and calculating the ratio of the mean
count over the whole sensitive area to the accumulated count of the individual pixel [Tlustos
et al, 2003] Amplifier noise can be modeled as AWGN term.
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6.1.5 Model Synthesis

The noise sources discussed in the previous sections form the component noise model for this

study. The standard deviation of the component noise model is as shown below:

_ 2 2 2 172
Stotal = [<c’..s'hot> + <o-quam> + (GA WGN>] (6.4)

The AWGN term now contains a number of residual effects (Dark current, amplifier noise,
etc.). The amplitude of this noise model is normalized to the maximum intensity value in the

illumination pattern.

6.2 Performance Analysis of Component Noise Model

The performance of super-resolution algorithms as a function of noise strength for different
illumination patterns were discussed in Chapter 4. The sensor model only included an AWGN
term. The component noise model derived in Section 6.1 was tested with three different
illumination patterns. (a) Narrow, single-peak image (baseline pattern, N1), (b) Narrow, two-

peak image (N2), and (c) Optimized illumination pattern.

Fig 6.2 shows the ratio of 3, values of the component noise model to the simple noise model

for all the three candidate illumination patterns. The ratio is computed as follows:

)

eff,component

e All three candidate illumination patterns display similar (approximately)
resolution gains. The effective resolution values for N1, N2, and the optimal
pattern, obtained by using a component noise model, with respect to a simple

AWGN term were found to be the same. Therefore, the ratio is close to unity.

 Thus, the inaccuracy introduced by using a component noise model rather than a

single AWGN term was judged to be negligible.
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6.3 Earth Albedo Modeling

All sun-sensors are designed based on the assumption that there is only one bright object i.e.
the Sun, is present within the sensor field-of-view. Existing sun-sensors cannot distinguish the
effect of a single light source if sever bright objects are simultaneously visible. Therefore,
Earth Albedo interference will degrade the accuracy of sun-sensors. An analysis of Solar
Maximum Mission flight data showed that fine sun-sensor measurements were affected by
Earth albedo [Ryer, 1997]. A subsequent study based on a detailed theoretical model of Earth
albedo effect on coarse sun-sensors, digital sun-sensors, and fine sun-sensors shows that
accuracy of all types of sun-sensors degrade adversely [Brasoveanu et al, 1990]. The
degradation is based on spacecraft, Earth and Sun positions, sensor boresight orientation, and
sensor design data. Most of the time digital sun-senors are not affected, but for brief periods of

time the Earth albedo can cause errors which may exceed one degree.

The main objective of this study is to evaluate some questions that are related to albedo effect

on digital sun-sensors.

» Is the accuracy of digital sun-sensors reduced by the effect of Earth albedo
interference?

 Is it possible to model and accurately analyze the effect of illuminated Earth on

digital sun-sensor measurements?

6.3.1 Reflectivity Data

To get a realistic reflectivity distribution, reflectivity data from existing measurements is
analyzed. The modeling of Earth albedo is based on the reflectivity data, measured by the
Earth Probe Satellite of the Total Ozone Mapping Spectrometer (TOMS) [Ryer, 1997]. The
satellite data are given in a resolution of A¢, = 1 deg latitude times a6, = 1.25 deg longitude,

i.e. 180 x 288 data points. Fig 6.3 shows the Earth surface divided into a set of area elements

using a map-like grid.
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Figure 6.4 Sun-sensor, Earth, and Sun geometry.
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The two dimensional data space D is defined as a grid of data points @ x ©, where

® = {0,A9,,209,, ..., 17940 }

6.6
©® = {0,40,,240,,...,287A6 } (©

To each data point (¢, 8,) € D, the mean reflectance of a cell, I A—;S and 6+ 49, , on the Earth

2
surface is available in the TOMS data product.

6.3.2 Reflection of Incident Irradiance

The modeling approach used in the section has been adapted from [Bhanderi & Bak, 2005].
The authors use the TOMS reflectivity data to derive the reflection of incident irradiance from
the Earth surface. The amount of albedo incident on the sun-sensor will be discussed in the
next section. The incident solar irradiance hits a cell on the surface of the Earth at a grid point
(4,6, , at an incident angle of «,,, to the cell normal .. It is modeled as a black body source,
and the total irradiance is the sum of the irradiances in the black body spectrum. The

irradiance! is found to be E,,,, = 1367W/m.

The amount of radiant flux reflected by a cell, at grid point (¢,,6,) € D, depends on irradiance
and the area of the cell, 4.(¢,) . Given the angle of the grid center ¢,, the grid area is given by

(6.7), where r; is the Earth mean radius.
—n 2 Ad Ad
4,(8)) = 0,7 x {cos(«bg - —28) — cos(¢, + —zﬂ)} ©6.7)

The incident irradiance on the cell is equal to the solar AMO irradiance multiplied by a cosine
term dependant on the incident angle ag,,, which is the angle between the cell normal », and
the Sun line-of-sight (LOS) vector from the grid point, 7¢,,. The intensity of the incoming

irradiance decreases as the angle of incidence increases. This is equivalent to the observed call

1. The subscript AMO states that the irridiance has passed through zero air mass.
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area as seen from the Sun. The incident radiant flux density P (¢,.8,) on a single cell at grid

point (¢,.8,), is given by -
AT A 8
Pc(¢g’eg) = EAMOAc(d)g){rSunnc} 0 (6‘8)

Note that the vectors ,, and _ are functions of data grid point (¢,.9,) . The reflection on the
Earth surface is assumed to be Lambertian [Ryer, 1997]. The reflected radiant flux density
P(4,9,) , also known as radiant exitance, is calculated as a fraction p(4,0,) of the incoming

radiant flux in (6.8)
P($595) = p(050,)P(9,.0,) (6.9)

where p(¢,.6,) is the mean reflectivity at grid point (¢ 8,) € D. The irradiance E,($56,) of the

cell, when assuming Lambertian reflectivity is related to the radiant exitence [Ryer, 1997] by
P.(,.0
E(¢4.9,) = ﬂg—gz (6.10)

The Inverse Square Law states that the intensity of the irradiance decreases with the square of

the distance from the grid point to the sun-sensor, which can be written as

E,(¢4.65)
E,(00,) = —CTEg 6.11)
I
where 7 is the sun-sensor LOS vector. Finally, the irradiance at each pixel on the detector

array of the sensor, depends on the visible area of the cell surface seen from the sun-sensor.

This will be discussed in detail in the following section.

6.3.3 Earth Albedo at Sun-sensor

The single-slit sun-sensor model was used to evaluate the performance of sensor processing
techniques under the influence of Earth albedo. The amount of Earth albedo from a single cell,
seen for each pixel in the sun-sensor can be estimated using 3-D Ray Tracing. Each cell can

contribute albedo to more than one pixel in the detector array.
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Fig 6.5 shows a detailed schematic of the ray tracing procedure adapted in this section. Rays
from an albedo cell ¢, passes through one edge of the slit and hits a particular location on the
detector array. Another ray can also pass through the second edge of the slit and hit the
detector array at a different pixel. Therefore, all the pixels between the first and the second hit

locations will receive Earth albedo from that particular cell Cy-

Hit location 1
h | Stitedge2 |

Pixel Array

Figure 6.5 Ray tracing from each albedo cell on Earth to the sun-sensor’s detector array.

The detector is a 256 pixels linear array, and (X,,.¥,,.Z,,) defines the sensor reference frame

whose origin lies at the centre of the detector. v, -axis is along the linear pixel array.

In Fig 6.5, 7 is the line along the pixel array. 7 and 7, are lines defining the two edges of the
slit. If 7, is the position vector of cell ¢, in the sensor reference frame and, 71 and 72 are any
two points on line 7, then 7, 71, and 7 can be considered as the three points which constitute

the plane of the ray from cell ¢;; to the linear pixel array.
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The lines defining the two edges of the slit can be written as

> > > >
I = lar+a(lB1—141) 6.12)

> > > >
2 =lg2+a(lg2—-142)

. . . > . . . >
where J41, Is1 , are two points in the line %, and 142, /s> are two points in the line 1. They are

defined as:

, h 5 h
a1 = |, Ig1 = |

1] 2

- (6.13)

1 [

> h > h

laz = |y, Ig2 = |y,

1] 12

where 4 is the vertical distance from the pixel array to the slit along the x-axis, and w is the
half-width of the slit. Considering 71 as the point of intersection of the first ray on one edge of

the slit 71, then:

> > B
H = In+a*(Is1-141) (6.14)

ne (?’o—)lAl)

- s— and the normal, » of the plane of the ray is given by:
ne(lB1-141)

where o* =
n 2 9 > 3
n = (V2-V0) x (V1- V) (6.15)
The line of the pixel array can be defined as

I N T
I=Va+t'(V1-12) (6.16)

The ray originating from 7, strikes a point /* on line 1, after it passes through Zi. This hit

location can be calculated as follows:

5> .
Vo+ S(E1-T0) = Ta+ (V1 - Ta) (6.17)
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Finding the value of r and substituting that in (6.16) gives the hit location of the ray
originating from 7, and passing through one edge of the slit at #: . The second hit location on
1, can be calculated in a similar manner for the ray that passes through the other edge of the
slit at 2.

The hit locations are converted to pixel numbers, that represent the hit points, within the pixel
array. After performing this calculation for the entire set of cells that are in the field-of-view
of the sun-sensor, the total albedo on each pixel in the array is calculated by summing the
albedo effect of several cells on each pixel. If 4, is the albedo contribution of cell C;, then the

total albedo 4, on a pixel £ can be shown as:
A, = Za,-j Vi, j (6.18)

Due to low resolution of data sets, the final albedo does not form a good profile. A little hand
tuning is required to interpolate between few pixel numbers to obtain a good shape of the
image of the Earth’s albedo.

6.4 Earth Albedo Performance Analysis

In this section, the results of Earth Albedo model are presented. The effect of Earth albedo on
the performance of super-resolution algorithms in estimating the sun-angle, is examined by
considering two test cases that describe different combinations of the sun-sensor orientation,

Earth, and the Sun geometry. Fig 6.6 shows a schematic representation of the test cases.

The two specific combinations that were examined are:

» Case (I) - The sun-sensor receives full illumination of the Earth albedo and the
sun-position is varied by rotating the sensor about its boresight (Fig 6.6.(I)).
Three sub cases considered are: (i) Sun-peak perfectly overlapping the broad
Earth albedo, (ii) Sun-peak at the extreme left of the pixel array, and (iii) Sun-
peak at the extreme right of the pixel array.
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» Case (II) - In this test case, the sensor pixel array receives only partial
illumination of the Earth albedo (Fig 6.6(I)). This can be attained if the
spacecraft is in a different position in its orbit, away from the full Sun-lit Earth
field-of-view. Thus, the sensor will be exposed only to a part of the Earth
albedo. This was tested with varying Sun-peak positions explained in Case (I).
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Figure 6.6 Sample image at the pixel array. Case (I) represents Sun-images with full illumination of Earth,
Case(II) Sun-images with partial Earth Albedo, Case(III) Partial overlap of Sun Image with Earth Albedo.
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Earth Albedo Performance Analysis

The results for all the six cases above are shown below in Table 6.1 to Table 6.4. tablettt

TABLE 6.1 Effect of Earth albedo for Peak-detection Algorithm

Case befﬁ no albedo 5effi albedo __ Ratio
Ia 0.2896 0.2895 1
Ib 0.2895 0.2895 1
Ic 0.2895 0.2895 1
Ila 0.2896 0.2896 1
IIb 0.2895 0.2895 1
Ilc 0.2895 0.2895 1

TABLE 6.2 Effect of Earth albedo for Centroiding Algorithm

Case beﬁ‘i no albedo 6ef)’ albedo __ Ratio
Ia 0.0142 0.028 0.51
Ib 0.0146 0.1181 0.12
Ic 0.0146 0.0394 0.37
Ila 0.0142 0.0142 1
b 0.0146 0.1008 0.14
Ic 0.0146 0.0146 1

TABLE 6.3 Effect of Earth albedo for Linear-phase Algorithm

Case beﬂi no albedo Seffi albedo Ratio
Ia 0.0067 0.0067 1
Ib 0.0071 0.0071 1
Ic 0.0066 0.0066 1
ITa 0.0067 0.0068 1
IIb 0.0071 0.0093 0.76
IIc 0.0066 0.0066 1
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TABLE 6.4 Effect of Earth albedo for EigenanalysisAlgorithm

Case beff1 no albedo 53}71 albedo  Ratio
Ia 0.0096 0.0093 1.03
Ib 0.0095 0.0077 1.23
Ic 0.0093 0.0087 1.07
ITa 0.0096 0.0096 1
IIb 0.0095 0.0231 0.4
IIc 0.0093 0.0093 1

The following observations can be made from Table 6.1 to Table 6.4:

Peak detection algorithm performs invariantly with and without the presence of
Earth albedo.

Centroiding algorithm displays poor performance when the sun-peak fully
overlaps the albedo pattern (Case - I b & II b) for both full and partial
illumination of the Earth albedo.

Linear-phase algorithm performs well with full illumination of the Earth albedo
(Case I - a,b,c). For Case II b, when sun-peak fully overlaps the narrow albedo

pattern, this algorithm shows a small degradation in performance.

Eigenanalysis demonstrate excellent performance in the presence of full
illumination of Earth albedo (Case I, a,b,c). For Case II b, it displays bad

performance with overlap of sun-peak and narrow pattern -

Looking at just the 8,4 values, in the presence of Earth albedo, linear-phase
algorithm performs better than any other algirthm under consideration in this

test.

Parametric methods continue to perform better than the conventional ‘smart’

approach - centroing.
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6.5 Summary

This chapter introduced advanced noise modeling to examine the performance of super-
resolution algorithms in estimating the sun-angle. A component noise model that included
quantization error, shot noise, and the AWGN term was developed and tested with different
sun-sensor illumination patterns. The results showed that adding a component noise model to
the calculations made little impact on the performance of super-resolution algorithms for all
the tested illumination patterns. The difference between the performance of super-resolution
algorithms using a component noise model when compared to using only an AWGN term was

found to be negligible.

The effects of Earth albedo in modifying the incoming illumination pattern on the detector
array was analyzed. After modeling the Earth albedo based on [Bhanderi & Bak, 2005], the
amount of albedo seen by each pixel in the array was calculated using a simple ray tracing
method. The resulting albedo pattern along with a Sun illumination pattern at different
positions on the pixel array, were tested for algorithmic performance. Parametric algorithms
displayed good performance throughout the test regime. There was little effect on the
accuracy of the sensor-model when Earth albedo was tested with parametric algorithms.
Linear-phase algorithm yielded sizeable improvements in sun-displacement estimates when
compared to the conventional centroiding algorithm. Thus, parametric algorithms demonstrate

immunity to albedo interference.
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Chapter 7

CONCLUSIONS

The goal of this study, as outlined in Chapter 1, was to examine several approaches that could
improve the angular accuracy of digital sun-sensors. The main focus was on developing
super-resolution algorithms that can provide subpixel accuracy in estimating the sun

illumination displacement. Using these algorithms, other re-design strategies were evaluated.

7.1 Summary

This section provides an outline of key features and other results observed in the previous

chapters.

7.1.1 Background

Detailed analysis of various centroiding algorithms used in Star sensors were investigated. It
was established that certain centering algorithms when slightly modified to suppress the sky
background below a prechosen threshold level can significantly improve the accuracy of star

image processing. Advantages and disadvantages of each of the methods were examined.

Parametric algorithms play a vital role in estimation of lateral shift in two similar images. The
theoretical background of phase-correlation method was introduced in this section. It was
shown that, this method can also be used in signal analysis. The linear-phase algorithm later
derived in Chapter 3 was based on the fourier shift property of this method. MUSIC algorithm

is used widely for time delay estimation in many application. If combined with other methods,
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then MUSIC can be used to estimate various parameters related to a signal. The eigenanalysis

algorithm examined in Chapter 3 was one of derivatives of MUSIC algorithm.

7.1.2 Design Evaluation Framework

A fairly representative of modern sensors made by Sinclair Interplanetary was used to
describe the characteristic parameters of the sensor model. The analytical sensor model was
used to determine the illumination pattern. Noise in the model were introduced by using a

single AGWN term.

Theoretical framework of super-resolution algorithms used in this study were developed. Four
algorithms were evaluated: two were conventional algorithms common to spacecraft sensors
(Peak-detection, Centroiding); two were parametric algorithms employed in other fields of
signal processing. To quantitatively assess the results of the simulations, a performance metric
called the effective resolution 3, i Was derived. Another metric called the performance gain,
G was also introduced to compare algorithms, illumination patterns, and noise levels or some

combination of the above.

‘Smarter” sun-sensor algorithms come at the cost of additional processing requirements. Table
2 presents a qualitative comparison of the mathematical operations required for each
algorithm and their overall computational costs. Assessing the attractiveness of any new
technique, entails weighting the potential improvement in performance and the cost of

adopting the new technology.

The conventional techniques, peak-detection and centroiding, are computationally simple.
This is consistent with their continuing popularity in many classes of spacecraft. The
parametric methods require substantially more processing than conventional algorithms.
Moreover, there is a large computational difference between linear phase and eigenanalysis

methods.
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TABLE 7.1 Comparison of algorithm requirements

Required Mathematical Computational
Algorithm Operations Requirements
Peak-detection Maximization Very Low
Centroiding Weighted sums Low
Linear-phase DFT, Least Squares line fit Medium
Eigenanalysis DFT, Cross-correlation, Iterative High
Minimization, Eigen Value
Decomposition (EVD)

7.1.3 Performance Evaluation

The algorithms were tested using different procedures. The effects of system noise on
algorithm performance was first examined for a baseline pattern, and then other simple
patterns were tested. It was shown that under low-noise operational conditions, linear-phase
and eigenanalysis algorithms yielded sizeable improvements in sun displacement estimates.
Presently it is not clear that these improvements are dramatic enough to justify the added
computational load that these methods require. However, the gains from parametric
algorithms when compared the standard centroiding algorithm are encouraging enough to
validate this approach worthy of future study. These improvements were demonstrated in

simulation and supported by experimental validation [Enright & Godard, 2005].

Multi-peak patterns were found to be a highly desirable modification. Narrow peak patterns
demonstrated better performance when compared to wide peak patterns. Thus, a general

direction to look for ‘optimal’ illumination patterns was established.

7.1.4 Mask Optimization

In this section, it was shown that simple changes to the illumination pattern of a digital sun-
sensor can result in a three-fold increase in performance over the baseline two-slit sensor. The
results proved that patterns with multiple, narrow peaks provide sub-pixel accuracy in
resolving the sun-angle. A three-slit pattern was chosen as the most practical new pattern

since it gave a good performance with the smallest change from the original pattern.
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Fabrication of such an optimized pattern is not expected to be difficult. The existing masks are
laser etched and the revised pattern can be created using the same process. Therefore,
redesigning the masks creates little, if any, cost impact to the sensor since the only change is

the pattern etched in the front surface.

7.1.5 Image Artefacts and Noise Model

A component noise model was developed to evaluate the effect of other noise sources present
when dealing with detector arrays. A model that includes shot noise, quantization error, and
AWGN was derived. It was shown that, there was no change in performance of the algorithms
when compared to the simulations done using just an AWGN term in the noise model.
Therefore, the inaccuracies introduced using a single AWGN noise term rather than

component noise model was found to be negligible.

The effects of image artefacts like Earth albedo was analyzed. An Earth albedo model based
on TOMS reflectivity data and the work of [Bhanderi & Bak, 2005], was derived. The
directional information of Earth albedo contribution from each cell was examined by using a
ray tracing method. The amount of albedo on each pixel of the detector array was calculated.
Using the albedo pattern on the pixel array, different geometries of spacecraft-earth-sun were
examined. These geometries were tested for algorithm performance. Parametric algorithms
continued to demonstrate excellent performance when compared to other methods. The linear-
phase algorithm performed the best when compared to peak-detection, centroiding, and

eigenanalysis.

7.2 Future Work

7.2.1 Improved Fidelity Sensor Models

The sensor model employed in this study is simple but crude. An improved model of the

image-forming will give credence to the study results. Suggested improvements include:

* Two dimensional, non-paraxial diffraction propagation with extended sources.
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* An expanded noise model that includes other noise sources like amplifier noise,

reset noise, read noise, etc.
* Performance in the presence of image artefacts like dark/bright pixels.

* A model of component tolerances and calibration parameters.

7.2.2 Experimental Validation and Prototyping

Experimental validation is crucial for any new space technology. Not only must any new
algorithm be tested in the laboratory for robustness and effectiveness, the implementation
must also be optimized for deployment as flight software. To support the initial findings of
laboratory experiment, the parametric algorithms must be subjected to more comprehensive,
wide angle validation and the implementation of those algorithms should be prototyped in
flight-like hardware.

7.3 Concluding Remarks

The parametric algorithms demonstrated excellent performance in all the test cases when
compared with conventional processing techniques. The testing of component noise models
and image artefacts further proved the consistency of the performance of parametric methods.
The mask aperture pattern was optimized and a three-peak pattern looks to be promising. The
Overall, the re-design goals set in the initial stages of the study was successfully validated.
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