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Abstract The bifurcation structure of the oscillations
of ultrasound contrast agents (UCAs) was studied as a
function of the driving pressure for excitation frequen-
cies that were determined using the UCAs pressure-
dependent resonances ( fs). It was shown that when
excited by the ( fs), the UCA can undergo a saddle-
node bifurcation (SNB) to higher amplitude oscilla-
tions. The driving pressure at which the SNB occurs is
controllable and depends on the ( fs) magnitude. Uti-
lizing the appropriate ( fs), the scattering cross sec-
tion of the UCAs can significantly be enhanced (e.g.,
∼ninefold) while at the same time avoiding potential
UCA destruction (by limiting the radial expansion ratio
<2). This offers significant advantages for optimiz-
ing UCA-mediated imaging and therapeutic ultrasound
applications.
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1 Introduction

Bubbles excited by ultrasound waves are highly nonlin-
ear oscillators [1]. It has been shown both numerically
and experimentally that bubbles exhibit complex and
chaotic dynamics [1–11]. Bubbles encapsulated by a
shell are being used in diagnostic ultrasound as contrast
agents (UCAs) [12]. The dynamics of the UCAs has
also been associated with complex and chaotic oscilla-
tions [8,11].

Despite the complex behavior, bubbles and UCAs
have become instrumental in a wide variety of fields.
UCAs are used in sonoluminscence [6], in sonochem-
istry to increase chemical yields [13], and in mater-
ial science [14]. In the context of medical ultrasound,
studies have shown the potential of the UCAs to target
and enhance drug/gene delivery [15], reversibly open
blood–brain barrier to deliver drugs to the brain [16]
and in ultrasound diagnostic imaging to enhance the
detection of cancer even at early stages and with mole-
cular sensitivity [17].

Despite many applications of UCAs, the relation-
ship between the ultrasound exposure parameters (e.g.,
frequency and pressure) and the UCA behavior is not
well understood. The UCA response to ultrasound
is nonlinear and complex; thus, the exposure condi-
tions in some applications may not be optimized. A
comprehensive understanding of the dynamics of the
UCAs for the large range of relevant exposure para-
meters can be achieved using methods of nonlinear
physics.
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Fundamental insights into the dynamical properties
of the UCAs can lead to optimization of the exposure
parameters for particular applications. However, many
of the numerical and experimental studies on the UCA
dynamics have been carried out for a limited range of
ultrasound frequencies and pressures. Due to the com-
plexity and sensitivity of the exposure and the UCA
parameters on the UCA oscillation dynamics, the lim-
ited information acquired in these studies does not pro-
vide a comprehensive framework that can be used fur-
ther for the unification and classification of the UCAs
dynamics. Furthermore, many potential exposure para-
meter combinations may be excluded due to the dis-
crete nature of the parameters that have been investi-
gated.

In most UCA applications, resonant UCA oscilla-
tions are of fundamental importance as they result in
the highest energy transfer from the ultrasonic field to
the UCAs [18]. As an example, in ultrasonic imag-
ing, when UCAs are driven with their resonance fre-
quency, they generate a significant backscattered sig-
nal which will enhance the signal compared with the
background signal [19]. Previous studies for free [20]
and encapsulated [21–24] bubbles have shown a shift
in the UCA resonance occurs for different driving
ultrasound amplitudes. Higher driving pressures have
shown to decrease the resonance frequency of the free
and encapsulated bubbles [20–24]. Despite the well-
known fact of this shift in the resonant frequency for
free bubbles [2] and the recent detailed observations
of this shift for contrast agents [21–24], to our best
knowledge, no study has been published that examines
the consequences of this shift in the UCA resonant
frequency on the dynamical behavior of the UCAs.
The dynamics of the system over a wide continuous
range of the pressure and frequency has not been stud-
ied. To address the effect of the excitation frequency
and the applied acoustic pressure on the dynamics
of the UCAs, these two parameters must be investi-
gated together, taking into account the nonlinear rela-
tion between the acoustic pressure and the UCA reso-
nance frequency.

The focus of this study is to investigate the dynamics
of the resonant UCAs (excited by linear and pressure-
dependent resonance frequencies). The aim of this
work is to build a fundamental understanding of the
dynamics of the ultrasound contrast agents for the iden-
tification and classification of the nonlinear signatures
of the resonant UCAs. This is studied firstly by calculat-

ing the UCA resonance curves at different ultrasound-
driving pressures. In the second step, these resonance
frequencies are used to drive the UCA excitation and
the dynamical behavior of the UCAs are visualized by
the aid of the bifurcation diagrams of the radial oscilla-
tions of the UCAs as a function of the driving acoustic
pressures. In the third step, the maximum backscat-
tered pressure is calculated with the aid of bifurcation
diagrams to investigate the effect of the nonlinear res-
onance on the backscattered pressure in the regime of
nondestructive UCA oscillations.

2 Methods

2.1 The bubble model

The radial oscillations of the UCAs were simulated by
solving the Church–Hoff model [25] for UCAs through
applying the fourth-order Runge–Kutta technique:
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In this equation, R is the UCA radius at time t , R0 is
the initial radius of the unexcited UCA, Ṙ is the UCA
wall velocity at time t , R̈ is the UCA wall accelera-
tion at time t , ρ is the density of liquid and is equal
to 998 kg/m3 and μL is the density of the surround-
ing liquid which is equal to 0.001 N s/m2, P0 is the
equilibrium gas pressure within the bubble which is
1.01 × 105 Pa, Γ is polytropic exponent which is equal
to 1.095 for SF6. The symbol μs stands for the shell
viscosity, θ is the shell thickness, and Gs is the shear
modulus of the shell. The values for these parameters
are given in Sect. 2.2. The driving ultrasound pulse,
pA(t), is a sinusoidal signal consisting of 80 cycles
at varying acoustic pressure amplitudes (1kPa–1MPa)
and frequencies (0.5–10 MHz):

pA(t) = PA sin(2π f t) (2)

In the above equation, pA(t) is the driving sound field
where PA is the acoustic pressure amplitude, f is
the driving frequency and t is time. In addition, the
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backscattered acoustic pressure (Psc) at a distance d
from the center of the UCA, was calculated using
[26]:

Psc = ρL
R

d

(
2Ṙ2 + R R̈

)
(3)

In this paper, the backscatter pressure of different
UCAs was calculated at a normalized distance d = 1
as discussed in [27]. The maximum scattering cross
section was calculated using [28]:

SCSmax =
(

4π R0
2
) ∣∣∣∣ Psc

PA
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2

max
(4)

where SCSmax is the maximum scattering cross section.

2.2 Simulation parameters

Four UCAs with initial radii of 1, 2, 3, and 4 µm
were considered. The sample shell parameters of Gs =
50 MPa, θ = 4 nm and μsh = 1.49(R0(µm)−0.86)

θ(nm)
were

chosen. The shell viscosity was based on the values
reported in [29] that take into account the increase
in the shell viscosity for larger UCAs. These para-
meters were chosen based on published values for a
generic UCA; this is done since the main purpose of
the paper is to investigate a general characteristic of
the UCA system excited by its pressure-dependent res-
onance frequency and not the behavior of one particular
UCA. The results may therefore be generalized to all
the UCAs whose dynamics are governed by equations
like Eq. 1.

3 Results

3.1 Pressure-dependent resonance

First the resonance frequencies of the UCAs were cal-
culated by solving Eq. 1. For each UCA, the primary
linear resonance frequency was calculated by assuming
a weak driving pressure amplitude of PA = 1 kPa. To
calculate the maximum amplitude of the radial oscilla-
tions, the last 40 cycles of a 80-cycle sonication were
used. In practice attenuation measurements are used
to determine the resonance frequency of the UCAs
[23]. In these experiments, the ultrasound pulse hits

the UCAs which are initially at rest. Thus, at each fre-
quency step (0.01 MHz), the Hoff model was solved
with the initial conditions (ICs) of R(t = 0) = R0

and Ṙ(t = 0) = 0 to emulate UCA experimental
conditions. The dynamics of a highly nonlinear sys-
tem like UCA is strongly dependent on the ICs [7,30].
The effect of the ICs on the resonance curves is stud-
ied in Sect. 4. After calculating the linear resonance
frequency for PA = 1 kPa, for each UCA, the PA

was increased and the new resonance frequencies were
calculated for five different PAs. Again at each fre-
quency step, the ICs is set as R(t = 0) = R0 and
Ṙ(t = 0) = 0. The maximum pressure amplitude was
set based on a maximum ratio of the radial oscillations
of the UCA of Rn = 1.9

(
Rn = Rmax

R0

)
. This upper

limit was used since the UCA disruption threshold is
estimated to be Rn ∼ 2.0 [31]. Complete discussion
about the threshold for UCA destruction is given in
the discussion section. This limit can be considered a
limit below which UCA destruction will be at a mini-
mum.

The normalized maximum radial oscillation (Rn) as
a function of frequency at varying acoustic pressures
(PA) for UCAs with R0 of 1 and 4 µm are shown in
Fig. 1a, b, respectively. The resonance frequency of
the UCA decreased and the radial oscillation increased
with acoustic pressure. For the 1 µm UCA, the reso-
nance frequency decreased from the linear resonance
frequency ( fr) of 8.21 MHz at 1 kPa to 5.46 MHz ( fs)
at 340 kPa acoustic pressure (Rn = 1.9). This cor-
responds to 33 % decrease in the resonant frequency
(Fig. 1a). For the 4 µm UCA, the resonance frequency
decreased from 1.21 MHz ( fr ) to 0.88 MHz ( fs) at
105 kPa (Rn = 1.9) corresponding to 27 % decrease
in the resonant frequency (Fig. 1b).

The ratios of fs to fr

(
fs
fr

)
as a function of acoustic

pressure for four UCA sizes (1–4µm) are shown in
Fig. 2. The ratio fs

fr
decreased as the acoustic pres-

sure increased. Moreover, the fs
fr

ratio decreased for
increasing UCA size at a given acoustic pressure expo-
sure. The rate of decrease of fs

fr
is approximately three

times higher for UCA with R0 = 4 µm compared
to R0 = 1 µm. On average, the resonance frequency
changed by 30–35 % from the linear resonance fre-
quency as the acoustic pressure increased. The larger
UCAs reach the threshold of Rn = 1.9 at lower pres-
sures compared to smaller UCAs (105 vs 340 kPa for
the 4 and 1 µm UCA, respectively). This is mainly due
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Fig. 1 Resonance curves at different driving pressures for a
R0 = 1 µm (linear resonance= 8.21 MHz), b R0 = 4 µm (lin-
ear resonance= 1.21 MHz). The driving pressures used in the
simulation are shown in the figure caption

Fig. 2 Variation of the resonance frequencies versus acoustic
pressure for UCAs with R0 =1, 2, 3 and 4 µm

to the larger effect of viscosity and surface tension for
the smaller UCA oscillations [32].

3.2 Bifurcation structure of the UCA driven
with linear and pressure-dependent resonance
frequencies

The bifurcation structures of the radial oscillations of
the 4 UCAs (representing 4 initial radii) were plotted
as a function of Rn versus the driving acoustic pressure
PA. The driving frequencies were chosen firstly based
on the linear resonance frequency and then the cal-
culated pressure-dependent resonance frequencies for
the appropriate ultrasound-driving pressure. The bifur-
cation analysis was performed over the 40 cycles of the
80-cycle pulse to eliminate the transient behavior.

In order to investigate the effects of the shift in the
resonance frequency on the behavior of the UCAs, the
bifurcation diagrams of the UCAs were generated as a
function of Rn versus driving acoustic pressure (PA).
In each diagram, the driving frequency used was based
on the pressure-dependent resonance frequency ( fs in
Fig. 1). The generated bifurcation diagrams were com-
pared to the case of insonification with linear resonance
frequency ( f = fr, PA = 1 kPa). The results of this
comparison are shown in Fig. 3 for UCAs of R0 = 1
(left column) and 4 µm (right column) respectively.

The bifurcation diagrams of 1 and 4 µm size UCAs
with varying acoustic pressures (PA) at their cor-
responding resonance frequencies ( fs) are shown in
Fig. 3.

The bifurcation diagram for the 1 µm UCA excited
at its linear resonance frequency ( fr = 8.21 MHz) is
shown in Fig. 3a. The UCA (1 µm) undergoes period-
doubling bifurcation at PA of 546 kPa and Rn of 1.54,
and exhibits 1

2 subharmonics up to 661 kPa (PA). With
increasing pressure, the UCA shows period-doubling
cascades and chaos at PA of 700 kPa and Rn of 1.88.
The disruption threshold occurs at 790 kPa pressure
with Rn = 2. According to Fig. 3a, the maximum Rn

which is obtained in the regime of period one is 1.54
(The red line indicates the destruction threshold).

A similar response is observed for the 4 µm UCA
at its linear resonance frequency ( fr = 1.21 MHz)
(Fig. 3b). The 4 µm UCA exhibits period-one oscil-
lations with increasing amplitude up to PA of 240 kPa
(Rn = 1.7), and above which the 4 µm UCA under-
goes successive period doubling (PA = 320 kPa) to
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Fig. 3 Bifurcation diagram
of the R

R0
of the UCAs

versus the driving acoustic
pressure. In the left column,
the UCA have an initial
radius R0 = 1 µm, while in
the right column, they have
an initial radius of 4 µm,
and are driven at the
frequencies in the figure
inset. The initial radius and
excitation frequencies are:
a R0 = 1 µm
f = 8.21 MHz,
b R0 = 4 µm
f = 1.21 MHz,
c R0 = 1 µm
f = 7.25 MHz,
d R0 = 4 µm
f = 1.11 MHz,
e R0 = 1µm
f = 5.96 MHz,
f R0 = 4 µm
f = 0.95 MHz,
g R0 = 1µm
f = 5.46 MHz and
h R0 = 4µm
f = 0.88 MHz. (Red line
shows the destruction
threshold). (Color figure
online)
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chaos. The destruction occurs at 280 kPa. As depicted
in Fig. 3b, driving the UCA with R0 = 4 µm with
its linear resonance frequency results in a maximum
period one Rn of 1.7.

Figure 3c shows the bifurcation structure of the UCA
with R0 = 1 µm driven with f = 7.25 MHz (the res-
onance frequency fs at PA = 150 kPa, Fig. 1a). Com-
pared to Fig. 3a, a change in the slope of increase in
Rn versus pressure is noticeable at PA = 150 kPa. The
UCA driven with fr exhibits a monotonic increase in
Rn as PA is increased. As illustrated in Fig. 3b, for
PA < Ps (Ps = 150 kPa), Rn is smaller than the case
depicted in Fig. 3a. After the PA is increased above the
Ps, the Rn undergoes a rapid growth and gets larger
than the Rn of that UCA driven with fr (Fig. 3a). The
oscillatory behavior follows a period-one regime with
a higher Rn compared to the case of the UCA driven
with fr . Period-doubling occurs at PA = 506 kPa while
Rn reaches ∼1.7. Compared to the UCA driven with
f = fr, Rn reaches a higher value when the period dou-
bling occurs. The UCA exhibits period two before the
occurrence of further period-doubling cascades above
PA = 606 kPa. The onset of chaos and destruction are
concomitant at PA = 630 kPa with Rn = 2. Like
the onset of period doubling, the pressure threshold for
chaotic behavior is lower compared with the case of
f = fr.

Figure 3d shows the bifurcation structure of the UCA
with R0 = 4 µm driven with f = 1.11 MHz (the res-
onance frequency fs at PA = 40 kPa, Fig. 1a). The
dynamics are very similar to the UCA in Fig. 3c. The
oscillation amplitude is below the oscillation ampli-
tude of the UCA sonicated with f = fr but only for
PA < Ps = 40 kPa. For acoustic pressure amplitudes
greater than Ps, the oscillations undergo a significant
increase in amplitude and in a manner similar to that
presented in Fig. 3b. For these conditions, the destruc-
tion of the UCA with R0 = 4 µm occurs at 247 kPa.

Figure 3e depicts the bifurcation diagram of the
UCA with R0 = 1 µm when driven with f =
5.96 MHz ( fs at PA = 270 kPa). Compared to Fig. 3a,
Rn is lower for PA < Ps = 270 kPa. Once the
PA is increased above 270 kPa, Rn undergoes a rapid
growth and exhibits a saddle-node bifurcation to a
higher oscillation amplitude (Rn ∼1. 71), which is
23 % larger than the Rn in Fig. 3a (at the same PA).
The UCA continues period one oscillations at a higher
Rn compared to Fig. 3a, c and undergoes period dou-
bling at PA ∼461 kPa at which point the Rn reaches

1.91. This is 24 % larger than the maximum period
one Rn in Fig. 3a. The chaotic behavior appears at
PA = 577 kPa with Rn 2.20. The threshold PA for
the onset of period doubling, destruction (at 475 kPa),
and chaotic oscillations is lower than both the threshold
PA for fr = 8.21 MHz and fs = 7.25 MHz.

Figure 3f illustrates the bifurcation diagram of the
UCA with R0 = 4 µm when driven with f =
0.95 MHz ( fs at PA = 80 kPa). Compared to Fig. 3b,
Rn is lower for a PA < Ps = 80 kPa. Once the
PA is increased above Ps = 60 kPa, Rn undergoes a
rapid growth and exhibits a saddle-node bifurcation to
a higher oscillation amplitude (Rn ∼1.68), which is
26 % larger than the Rn in Fig. 3b at the same PA. The
UCA continues period one oscillations at a higher Rn

compared with Fig. 3b, d. The radial oscillations pass
the destruction threshold at 183 kPa. The UCA under-
goes period doubling at PA 231 kPa while Rn reaches
∼2.2. The maximum period-one oscillations in this
case is 17 % larger than the maximum period one Rn in
Fig. 3b. The chaotic behavior appears at PA = 300 kPa
with Rn ∼2.6. The threshold PA for the onset of period
doubling and chaotic oscillations is lower than both
the fr = 1.21 MHz and fs = 1.11 MHz. There is
a high degree of similarity in the dynamics between
Fig. 3f, e. This indicates a general behavior for the
UCAs sonicated with their pressure-dependent reso-
nance frequency.

The bifurcation diagram of the UCA with R0 =
1 µm sonicated with f = 5.46 MHz (the fs at PA =
340 kPa) is presented in Fig. 3g. As shown, the Rn is
less than the previous cases (Fig. 3a, c, e) for PA <

Ps = 340 kPa. However, once the PA is increased
above 340 kPa, Rn exhibits a significant growth and
becomes larger than the Rn in Fig. (3a, c, e). At this PA

amplitude, the Rn is 35 % larger than when driven with
fr. The oscillation is of period one for PA < 451 kPa
with a larger Rn (in 330 < PA < 451 kPa) compared to
the previous cases. The radial oscillations of the UCA
pass the destruction threshold at 416 kPa. The UCA
undergoes period doubling at 451 kPa and Rn ∼2.04.
Finally, the oscillations become chaotic after a series of
successive period-doubling bifurcations at ∼546 kPa.
In this case, a full nondestructive amplitude (Rn = 2)
of period one is developed before the UCA undergoes
period doubling.

Figure 3h depicts the bifurcation diagram of the
UCA with R0 = 4 µm insonified with f = 0.88 MHz
(the fs at PA = 105 kPa). As shown, the Rn is less than
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Fig. 4 Backscattered
pressure amplitude as a
function of pressure
for linear and
pressure-dependent
resonance frequencies when
a R0 = 1 µm, b
R0 = 2 µm, c R0 = 3 µm
and d R0 = 4 µm. The
pressure-dependent
resonance frequencies are in
the figure legends

the previous cases (Fig. 3b, d, f) for PA < Ps = 105 kPa.
However, once the PA is increased above 105 kPa, Rn

exhibits a significant growth and becomes larger than
the Rn in Fig. (3a, d, f). At PA = Ps = 105 kPa ampli-
tude, the Rn is ∼30 % larger than when driven with
fr. The oscillation is of period one for PA < 231 kPa
with a larger Rn (in 105 < PA < 231 kPa) com-
pared to the previous cases. The destruction threshold
occurs at 137 kPa. The UCA undergoes period dou-
bling at 232 kPa (Rn ∼2.32). Finally, the oscillations
become chaotic after a series of successive period-
doubling bifurcations at 310 kPa. Again, the similarity
between Fig. 3g, h is noticeable indicating a general
trend in the UCA behavior sonicated with pressure-
dependent resonance. In both cases, a full-amplitude
period-one oscillation is achieved. The importance of
the full-amplitude period-one oscillations are in the
backscattered pressure and will be discussed in the next
section.

3.3 Maximum backscattered pressure in the regime
of stable UCA oscillations

The backscattered pressure amplitude (Psc) was numer-
ically calculated using Eq. 3 for all of the exposure

parameters. In each case, the excitation pressure range
was chosen so that the Rn remained below the UCA
destruction threshold (Rn = 2). This range was chosen
by examination of the bifurcation diagrams and ensur-
ing that Rmax

R0
< 2 (red line in Fig. 3). The results are

shown in Fig. 4a–d for UCAs with R0 = 1, 2, 3 and
4 µm.

The backscattered pressure amplitude (Psc) from
UCAs of different sizes (1–4µm) at varying reso-
nance frequencies is shown in Fig. 4. The Psc increases
with acoustic pressure for all UCA sizes and acoustic
frequencies. At low acoustic pressures, a higher Psc

is achieved at the UCAs linear resonance frequency
( fr). However, with increasing acoustic pressure and
at pressure-dependent resonance frequency, the Psc

amplitude significantly increases.
As shown in Fig. 4a–d, driving the UCA with its

linear resonance frequency ( fr) results in a higher
backscattered pressure amplitude (Psc), but only at low
pressures of insonification. When sonicated with its
linear resonance frequency, the Psc increases linearly
alongside the driving acoustic pressure until the UCA
undergoes the period-doubling bifurcation. The occur-
rence of the period-doubling bifurcation is concomitant
with a decrease in the Psc although the UCA displays

123



896 A. J. Sojahrood et al.

a higher Rn . This will be explained in the next sec-
tion.

Figure 4a–d illustrate that when a UCA is sonicated
with its pressure-dependent resonance frequency ( fs),
the diagram has two distinct regions, PA < Ps and
PA > Ps. For PA < Ps the Psc is less than the backscat-
tered pressure amplitude of a UCA driven with fr.
However, as soon as the pressure is increased above Ps,
the Psc increases significantly becoming much larger
than the Psc of a UCA driven with its linear reso-
nance frequency fr. For example in Fig. 4a, the Psc

of a R0 = 1 µm UCA driven with fs = 5.46 MHz
(Ps = 340 kPa) becomes ∼threefold larger than the
Psc of the same UCA driven with fr = 8.21 MHz as
soon as the pressure increases above 340 kPa.

A comparison between Figs. 3 and 4 shows that the
sudden increase in Psc is concomitant with the saddle-
node bifurcation in Rn − PA bifurcation diagrams. The
increase is more significant for higher Ps and lower
fs. In this regard, if fs1, fs2 and fs3 are the pressure-
dependent resonance frequencies of the UCA at the
acoustic pressures of Ps1, Ps2 and Ps3 where Ps1 <

Ps2 < Ps3; the Psc follows the order of Psc3 > Psc2 >

Psc1 as soon as PA increases above Ps3.
Figure 4 contains very important information regard-

ing the maximum possible backscatter from an UCA
(Pscmax). Driving the UCA with its linear resonance
frequency does not result in the maximum backscat-
ter. When the pressure-dependent resonance frequency
is used and the pressure is increased above Ps, the
Psc increases significantly. The backscattered pres-
sure amplitude continues to increase alongside pres-
sure until the UCA is destroyed (Rn > 2). Just below
this critical pressure for UCA destruction, the maxi-
mum possible backscattered pressure (Pscmax) is at its
highest for the UCA driven with fs.

For example, in Fig. 4a, the Pscmax for R0 = 1 µm
driven with fr = 8.15 MHz is 4 Pa and occurs at PA =
542 kPa. However, when the same UCA is driven with
fs = 5.4 MHz the Pscmax reaches 9.3 Pa and happens
at PA = 408 kPa. It should be noted that not only is the
backscatter pressure maximized, but also it is occurring
at a lower driving pressure. This can have significant
advantages in increasing the signal to noise ratio (SNR)
and contrast to tissue ratio (CTR) in medical imaging
applications. This is because the SNR decreases for
linear scatterers (such as tissues) at lower sonication
pressures while at the same time the Psc from the UCA
increases at these lower excitation pressures.

Fig. 5 The normalized maximum possible scattering cross sec-
tion while avoiding the UCA destruction as a function of fs

fr
.

In each case, the maximum possible scattering cross section
(SCSmax) is normalized by the maximum possible scattering
cross section for a UCA driven with its linear resonance fre-
quency (SCSrmax)

In summary, it is observed that in the region of non-
destructive oscillations (Rn < 2), the maximum possi-
ble backscattered pressure has an upper limit when the
UCA is driven with fr. This limit can significantly be
enhanced through optimizing the driving frequency in
terms of the pressure-dependent resonant frequency fs

and applying an acoustic pressure that is greater than
a threshold Ps. The maximum possible nondestruc-
tive backscattered pressure occurs in the region of the
period-one oscillations. Occurrence of the period dou-
bling is concomitant with a decrease in the backscat-
tered pressure.

3.4 Comparison between the maximum possible
backscatter cross section

In order to investigate the effect of the pressure-
dependent resonance on the scattering properties of the
UCAs, the maximum possible scattering cross section
(SCSmax) was calculted using Eq. 4. The maximum
possible backscattered pressure derived in Fig. 4 was
used in the calculation of the SCSmax. These values
were then normalized by the maximum possible SCS
in the case of excitation with the linear resonance fre-
quency (SCSrmax). These values were plotted as a func-
tion of fs

fr
in Fig. 5.

As it is illustrated in Fig. 5, driving the UCA with
fs results in a larger scattering cross section compared
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Fig. 6 Comparison
between the period-one and
period-two behaviors of the
UCA with R0 = 1 µm
driven with 8.21 MHz of
frequency. In left column
PA = 533 kPa: a radial
oscillations, b velocity,
c acceleration, d
backscattered pressure. In
right column PA = 640 kPa:
e radial oscillations, f
velocity, g acceleration, and
h backscattered pressure
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with excitation with fr. The SCSmax increases as fs

decreases. As an example, exciting an R0 = 4 µm UCA
with fs = 0.86 MHz results in a SCSmax which is nine
times greater than the SCSmax of fr = 1.21 MHz. It can
also be concluded from Fig. 5 that the SCSmax increases
faster versus fs

fr
for the larger UCAs.

3.5 The concomitant decrease in maximum
backscattered pressure with period doubling

In Sect. 3.3, it was shown that the backscattered pres-
sure decreases when the period doubling occurs. At
the first glance, this appears counterintuitive as the
decrease occurs for a higher Rn . After period dou-
bling, while pressure increases, Rn keeps increasing but
the backscattered pressure decreases. Comparing the
radial oscillations between the period-one regime and
the period-two regime (after the period doubling has
taken place) shows that when period doubling occurs,
the magnitude of the UCA contraction decreases, and
thus, the UCA velocity and acceleration during the con-
traction phase of the UCA oscillation are smaller com-
pared with the period-one oscillations prior to period
doubling.

This phenomenon is shown in detail in Fig. 6a–d.
Figure 6a shows the radial oscillations of the UCA with
R0 = 1 µm driven with fr = 8.21 MHz and acoustic
pressure of 533 kPa as a function of the driving acoustic
periods. This corresponds to a UCA undergoing period-
one oscillations before the occurrence of the period
doubling (Fig. 3a). The corresponding wall velocity,
acceleration, and backscattered pressure are shown in
Fig. 6b–d. Figure 6e illustrates the radial oscillations of
the same UCA when driven with an acoustic pressure
of 640 kPa. According to Fig. 3a, this condition cor-
responds for period-two oscillations after the period-
doubling bifurcation. The corresponding wall velocity,
acceleration and backscattered pressure are shown in
Fig. 6f–h. It can be observed in Fig. 6e that despite
the increasing UCA radial oscillation amplitude, the
magnitude of the contraction is smaller than in Fig. 6a.
This results in a smaller velocity and acceleration for
the UCA as shown in Fig. 6f–g. As a consequence, the
corresponding backscattered pressure is larger for the
UCA undergoing period-one oscillation (Fig. 6d).

The concomitant decrease in the Psc amplitude with
period doubling was only shown for the frequency
range that was studied in this paper. The decrease in

Psc was shown only for UCAs being sonicated with
their resonance and pressure-dependent resonance fre-
quencies. The frequencies which are considered in our
study are between the resonance frequency ( fr) and
the pressure-dependent resonance frequency ( fs) down
to 0.665 × fr. It should be noted that in different
cases like sonication of the UCA with its second har-
monic resonance frequency (0.5 × fr) or sonication
with the subharmonic resonance frequency ∼ 2 × fr

the behavior of the UCA will be different and one may
not see the same decrease in the backscattered pres-
sure concomitant with period doubling. However, as
the main purpose of this study is the understanding
of the dynamics of the resonant UCAs, we have not
studied the above-mentioned frequency ranges. Inves-
tigation of the behavior of the harmonically or subhar-
monically resonant UCAs are beyond the scope of this
paper.

4 Effect of the initial condition on the resonance
curves and bifurcation structure of the UCAs

As it was discussed earlier, to generate the resonance
curves and the bifurcation diagrams, the ICs were cho-
sen to be R(t = 0) = R0 and Ṙ(t = 0) = 0. How-
ever, the dynamics of a nonlinear system like UCA
is heavily dependent on the initial conditions. The
effect of random ICs on the dynamics and resonance
curves of bubble oscillators have been investigated in
[1,7,30]. The results of these studies have shown that
there can be coexisting stable solutions for a given
parameter range. In order to visualize all the solutions
for a given parameter range, the effect of random ICs
should be studied. In order to complete the analysis on
the dynamics of the UCAs driven with their pressure-
dependent resonance frequency and test the effect of
the IC on the solutions of the system in this regime, we
have calculated one resonance curve and one bifurca-
tion diagram considering ten random ICs [30] at each
step.

Figure 7 shows the resonance frequency of a UCA
with R0 = 1 µm, sonicated with an ultrasound pulse
whose pressure amplitude is PA = 264 kPa. At each
frequency step, the radial dynamics of the UCA is
simulated for 10 random initial conditions (ICs) and
the Rmax

R0
is plotted for every IC. Compared to the

case of sonication with ICs of R(t = 0) = R0, the
resonance frequency may occur at a lower frequency
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Fig. 7 The
pressure-dependent
resonance frequency of the
UCA with R0 = 1 µm at
PA = 264 kPa with ten
random ICs (blue
superimposed) and when
the ICs are R(t = 0) = R0
and Ṙ(t = 0) = 0 (red).
(Color figure online)

Fig. 8 The bifurcation
diagram of the UCA with
R0 = 1 µm sonicated with
f = 6 MHz with ten
random initial conditions
(blue superimposed) and
when the initial conditions
are R(t = 0) = R0 (red).
(Color figure online)

(∼1 MHz lower) with a higher amplitude. Also note
the coexisting attractors for the frequency range of
∼5–6 MHz.

Figure 8 shows the bifurcation diagrams of the UCA
with R0 = 1 µm for two different set of ICs. The blue
curve shows the bifurcation diagram for the IC of R(t =
0) = R0 and Ṙ(t = 0) = 0, while the red curve
shows the bifurcation diagram for ten random IC at each
pressure step. The sonication frequency is 6 MHz which
is the pressure-dependent resonance frequency of the
UCA ( fs) at PA = 264 kPa for R(t = 0) = R0 and
Ṙ(t = 0) = 0 calculated in Fig. 7. As it is illustrated,
the UCA starting with R(t = 0) = R0 and Ṙ(t =
0) = 0 (red), starts with period-one oscillations which
undergo a saddle-node bifurcation at PA = 264 kPa to
a higher amplitude. However, the UCA starting with the
random ICs, exhibit a slight different behavior. There
is coexisting period-one oscillations in for 224 kPa ≤
PA < 264 kPa. Depending on the IC, the UCA exhibit
the saddle-node bifurcation to a higher amplitude for a
lower PA.

5 Discussion and conclusion

The resonance frequency of the UCAs decreases with
increasing acoustic pressure. It was shown that the shift
in the resonance significantly influences the oscillatory
behavior of the UCA. The key findings can be summa-
rized as follows:

When the bifurcation diagrams of the
(

Rn = R
R0

)
versus acoustic pressure (PA) of an UCA driven with
its linear resonance frequency ( fr) are compared to the
case of insonification with fs (resonance frequency at
the acoustic pressure Ps), it is seen that Rn undergoes
either a steep rise or a saddle-node bifurcation at the
excitation pressure Ps. After a saddle-node bifurcation,
the UCA continues oscillations in the same way as the
UCA driven with fr but with a higher Rn . Both UCAs
undergo a period-doubling transition to chaos; how-
ever, the UCAs driven with fs exhibit period doubling
and chaotic oscillations at lower pressure thresholds.

When the Rn − PA bifurcation diagrams are com-
pared for UCAs driven with fs1 and fs2 (nonlinear res-
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onance frequencies corresponding to Ps1 and Ps2 with
Ps2 > Ps1), both UCAs exhibit the saddle-node bifur-
cation with the difference of a saddle-node bifurcation
to a higher amplitude in case of the UCA driven with
fs2. In addition, the UCA destruction (Rn > 2) and
the transition to chaos occur at a lower pressure thresh-
old for the UCA driven with fs2. When the backscat-
tered pressures are compared, it was shown that the
acoustic pressure range can be divided into two distinct
regions (PA < Ps and PA > Ps). For PA < Ps, the
backscattered pressure is higher for the UCA driven
with fr. However, for the UCA driven with fs, while
PA > Ps the backscattered pressure undergoes a sig-
nificant increase and is greater than for the case of the
excitation with f = fr. This is true for all of the applied
driving acoustic pressure values for which PA > Ps.
The main advantage of sonication with fs is the
increased backscatter from UCAs at lower driving
acoustic pressures. This can result in an enhanced SNR
and CTR in a clinical imaging setting.

The threshold for destruction was set based on the
criteria which was formulated by Flynn [33] and later
was used in [31]. According to the formulation by
FLynn, when Rmax

R0
> 2, inertial forces dominate the

collapse of the UCA and increasing quantities of kinetic
energy will be transferred to the collapsing bubble as
the surrounding liquid converges, while at the same
time, decreasing amount of this energy is lost as a result
of dissipation. Transient collapse is defined as a phe-
nomenon where significant amount of energy is con-
centrated in the bubble, and the effect of the energy
supply outweighs the energy dissipation [34]. So the
destruction criterion by Flynn is set as Rmax

R0
> 2.

There is also another criterion based on the ratio of
Rmax
R0

which is developed by Apfel [35]. In this criterion,

transient collapse occurs when Rmax
R0

is between 2 and
2.3 . In this work, we have used the Flynn’s criterion to
ensure there is no transient collapse, as it predicts the
minimum expansion ratio for bubble destruction.

There have been a number of experimental studies
on the destruction of the ultrasound contrast agents.
These studies employed mainly two techniques: (1)
fast optical measurements of the UCA radius [36–39],
(2) Acoustical method by analyzing the post-excitation
signal after collapse [40–42]. Results of the large num-
ber of optical measurements of the UCA oscillations
in [36–39] have shown that although some UCAs
may undergo large amplitude oscillations and are not

destroyed when Rmax
R0

> 2, there is no or very little evi-

dence of UCA destruction when Rmax
R0

< 2. In other
words, the majority of the UCAs are destroyed once
Rmax
R0

> 2 although some few UCAs may exhibit higher
expansion ratios. In another series of acoustical inves-
tigations on the UCA destruction, the post-excitation
signal by UCA has been used as an indicator for UCA
destruction [40–42]. The results of these studies illus-
trated no evidence of UCA destruction when Rmax

R0
< 2.

The UCA destruction only happened once Rmax
R0

> 2,
although again some of the UCAs exhibited higher
amplitude of oscillations. Based on these results, we
have chosen the destruction threshold to be equal to
two to avoid UCA destruction.

It should be noted that the results of our study at the
destruction point also satisfies the criteria developed
by Mitchell and Plesset [43]. According to this theo-
retical study, the bubble is stable if Rmax

Rmin
< 5 and it

is unstable if Rmax
Rmin

> 10. In our study, the maximum
Rmax
Rmin

in the nondestructive regime is 4.11 (R0 = 4 µm,
fs = 0.88 MHz and PA = 137 kPa) which is below
the limit of this criterion. Thus the identified parameter
ranges for nondestructive oscillations in this study also
satisfy this criterion of bubble stability.

It should be noted that another potentially better
indicator for UCA destruction is the UCA wall velocity.
However, there has not been a criterion set based on the
UCA wall velocity limit. There have been experimen-
tal studies in which the bubble wall velocity has been
recorded or estimated during the collapse. We have also
compared the maximum simulated UCA wall velocity
at the destruction threshold with the published destruc-
tive bubble wall velocities. The bubble wall velocities
of −51 m/s in [36] (“apparently sufficient to destroy
very small bubbles” [36]), −350 m/s in [37] and −144,
−329 and −456 m/s in [44] are reported to be sufficient
for bubble destruction. The maximum negative and
positive wall velocities in our simulations are −48.92
and 36.47 m/s for (R0 = 1µm, fs = 5.46 MHz and
PA = 340 kPa), which are smaller than the reported
velocities for the bubble destruction.

In this paper, it was shown that the main feature of
the UCA oscillations driven with fr is that Rn grows
monotonically with pressure up to a pressure threshold
and beyond which the UCA oscillations undergoes suc-
cessive period-doubling bifurcations leading to even-
tual chaotic oscillations. The occurrence of the period
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doubling is concomitant with counterintuitive decrease
in the backscatter pressure. This is due to the fact that
the magnitude of the UCA contraction decreases with
period doubling (Fig. 6), which results in lower wall
velocity and acceleration when compared to the case
of the period-one oscillation. Thus, in order to max-
imize the backscatter pressure during nondestructive
oscillations, period-one oscillations of full amplitude
(Rn = 2) are needed.

It was shown that through driving the UCA with fr,
radial oscillations of period one with the full amplitude
(Rn = 2) are not developed. In this regard, applica-
tion of fs will be of great advantage. If fs is optimized
correctly, period-one oscillations with full amplitude
(Rn = 2) can be generated. This results in signifi-
cant enhancement of the backscattered pressure with-
out the UCA destruction. In addition, because the max-
imum backscatter pressure occurs at a lower applied
acoustic pressure, the background noise is minimized,
which may lead to a superior SNR and CTR. Calcula-
tion of the maximum possible scattering cross section
(SCSmax) showed that through optimizing fs, nonde-
structive SCSmax can be enhanced up to ninefold.

The backscattered pressure amplitude was calcu-
lated using Eq. 3; however, the frequency-dependent
attenuation that will occur in tissue was not considered.
Thus, high-frequency components that will be prefer-
entially diminished in tissue were persevered. As the
main goal of the paper was the study of the dynam-
ical characteristics of the UCA which is independent
from attenuation, we have not considered the spread-
ing loss due to attenuation. However, in applications,
we may expect a better enhancement in case of the
sonication with the pressure-dependent resonance fre-
quency compared to the values predicted here. This is
because the pressure-dependent resonance frequency
is smaller (∼30–35 % in this study) compared to the
linear resonance frequency; thus the backscatter signal
from UCAs experiences less attenuation.

In many investigations, the resonance frequency of
the UCAs is experimentally measured through atten-
uation measurements. The applied pressure amplitude
may significantly shift the resonance frequency with
larger UCAs experiencing a more drastic effect. The
results indicate that in order to increase the efficiency
of the UCA applications, either corrections should be
made for the measured resonance frequency or the
pressure amplitude of the sonication should be cho-
sen higher than the pressure amplitude used for mea-

suring the resonance frequency of the UCAs. This is
because choosing pressures below the value (Ps) used
in the measurements, the backscattered pressure is sig-
nificantly reduced (Fig. 4a–d).

The sudden increase in the radial oscillations of the
UCA for PA > Ps may provide advantages to current
diagnostic and therapeutic applications of the UCA.
One of the diagnostic applications that can benefit from
this phenomenon is the amplitude modulation (AM)
UCA imaging technique [45–47]. This method is based
on the nonlinear increase in the backscatter pressure
when pulses of different amplitude are applied. In AM,
two pulses are sent to the tissue with the first having
twice the amplitude of the second. The backscattered
pressure from the second pulse is scaled by multiplying
its magnitude by two and it is then subtracted from
the backscattered pressure of the first pulse. Due to the
linear response of the tissue, the residual from the tissue
will be minimal; however there will be a significant
residual from the UCAs, which leads to a superior CTR.
The sudden increase will be enhanced when increasing
the nonlinearity of the UCA system by choosing the
half amplitude signal below Ps and the full amplitude
above Ps.

Another benefit may be in the case of imaging a
region of interest (ROI) deep within the body. Because
the UCAs are distributed within all the vessels among
the pre-target tissue layers, they may shield the signals
on the beam path and from the target tissue and UCAs
in the ROI. Specifically, this tends to be more prob-
lematic in cases of deeper targets. This is because the
signal encounters more UCAs on its path to the target
and back, and therefore the signal significantly loses its
strength. Consequently the ultrasonic beams become
attenuated by the superficial pre-focal tissue, which
causes the loss of the strength of the signal from the
UCAs at the target and thus limits the visualization of
the tissue layers at deeper locations [48,49]. The accu-
racy of tissue perfusion measurement is largely affected
by this shadowing effect [48,49]. To allow accurate
quantification, removal of shadowing artifact is cru-
cial [47,49]. Near resonance, the attenuation is higher
because of increased scattering and energy absorption
by the UCAs [18]. In this regard, the imaging proce-
dure can be optimized by using focused transducers that
produce the pressures greater than Ps at the ROI (focal
region) and less than Ps at the superficial tissue. This
will decrease the prefocal shadowing effect (because
pre-focal UCAs will be non-resonant) and at the same
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time increases the backscatter at the ROI (the UCAs
at the ROI are resonant because the focal pressure is
more than Ps) which can ultimately improve the SNR
and CTR.

One of the therapeutic applications that can ben-
efit from this nonlinear behavior of UCAs is the
microbubble-enhanced drug delivery. In drug delivery,
UCA oscillations are used to enhance the permeability
of the cell to the drug [15]. However, multiple scatter-
ing of the UCAs coming from pre-focal regions will
attenuate the ultrasonic beams and have undesirable
effects on the healthy (non-targeted) tissue while also
distorting the focus at the target tissue [50]. Because
of the steep pressure gradient of the therapy transduc-
ers, pressures above Ps can be generated at the tar-
get, while the pressure in the surrounding tissue can
be kept below Ps. This way, the microbubbles in the
non-focal surrounding tissue will oscillate below reso-
nance and therefore the pre-focal scattering effects and
attenuations are minimized. In addition, the microbub-
ble activity will be enhanced in the focal region, due to
enhanced oscillations in pressure-dependent resonance
regime. This can lead to a more effective and precise
treatment and enhanced safety.

This work considered single-size microbubbles.
However, location of the saddle-node bifurcation is
highly size dependent. Thus, in case of a polydisperse
solution of microbubbles (which is generally the case
in clinical investigations), only a fraction of microbub-
ble sizes will be active in the pressure-dependent reso-
nance regime. One possible way to partially take advan-
tage of the pressure-dependent resonance can be to
choose a frequency which excites the majority of the
microbubbles around the resonance peak. The other
method could be the use of centrifugation techniques
to stack the micobubbles in narrow size ranges [51],
then the driving frequency can be chosen so that it
drives the majority of each stack into pressure- depen-
dent resonance regime. Through using monodisperse
microbubbles [23,52,53], one may fully take advan-
tage of exciting all the microbubbles in the pressure-
dependent resonance regime.

Another factor that should be considered is the
microbubble growth due to rectified diffusion. In appli-
cations where long high-amplitude pulses are used for
sonication, the effect of rectified diffusion may become
significant. This can displace the pressure for saddle-
node bifurcation in the microbubble system as the
microbubble can grow beyond the active size range due

to rectified diffusion. One possible way to solve this
problem is modifying the pulsing sequences by choos-
ing a suitable combination of “pulse on time”/“pulse
off time” strategy [54]. The duration of the pulse on
time may ensure the microbubbles are still in effective
pressure- dependent resonance regime, while the “pulse
off” time duration may ensure that there is enough par-
tial dissolution of microbubbles. The “pulse off” time
duration may allow reactivation of the microbubbles
which have grown beyond the active size range at the
beginning of the subsequent pulse [54].
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