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Abstract

We propose phase-like characteristics in scale-free broadband processes and consider fluctuation synchrony based on the
temporal signature of significant amplitude fluctuation. Using wavelet transform, successful captures of similar fluctuation
pattern between such broadband processes are demonstrated. The application to the financial data leading to the 2008
financial crisis reveals the transition towards a qualitatively different dynamical regime with many equity price in fluctuation
synchrony. Further analysis suggests an underlying scale free ‘‘price fluctuation network’’ with large clustering coefficient.
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Introduction

Synchrony among coupled oscillators has fascinated scientists

and engineers for decades. There is an extensive literature on the

subject, from Huygen’s clock [1], amplitude, phase synchroniza-

tion of low-dimensional systems [2], Kumamoto phase oscillators

[3], to diverse manifestations in natural phenomena, such as social

opinion formation [4–7], population of species [8,9], collective

motion of Starling flock [10], traffic [11], neuronal dynamics

[12,13], just to name a few. Synchrony between broadband

processes is more subtle for it can emerge, disappear and reappear

sporadically in time, and is difficult to identify for it is less exact;

i.e., only similar fluctuation pattern may exist. Of interest here is

the synchrony between broadband processes showing scale free

characteristics. The fluctuation of the process has therefore a

power law characterization, such as the power law power

spectrum. In this work, we propose the state of fluctuation in

synchrony [14] (FIS) between broadband processes and present a

wavelet method to derive phase-like quantity to study FIS.

One area where FIS likely occurs is the market dynamics.

Equity price is known to exhibit broadband fluctuation and fractal

property [15,16]. Besides the market fundamental, a broad base

price increase or drop suggests the possibility of FIS. The goal of

this work is to study FIS of the dramatic equity price fluctuation in

the 2008 financial crisis. We find that the FIS among price series

exhibits a bifurcation pattern at the crisis. Using a network

analogy, we further show that the market dynamics underlying FIS

has a scale free configuration and a large clustering coefficient.

Methods
Our approach relies on the so-called wavelet transform modulus

maxima line (WTMML). For square-integrable function or

bounded signal in practice, wavelet transform can effectively

describe the local fluctuation according to the scale of resolution

[17,18]. The use of wavelet transform as a signal processing tool to

describe scale free property has a long history [17–19]. WTMM

was initially motivated for improved understandings of the

hydrodynamic turbulence, but was soon realized to have much

wider application for natural processes in diverse fields. The main

idea is based on the concept of singularity in mathematics where

scale free property can be obtained from the wavelet coefficients

along the WTMML. Our objective is slightly different in that we

are mainly interested in the location of the WTMML. On the

wavelet time-scale plane t|s, WTMML is a connected curve

defined by the modulus maxima of the continuous wavelet

transform coefficient jx � ys(t)j, where x(t) is the time series of

interest, a ‘‘ � ’’ denotes the convolution, and ys(t)~y(t=s)=s is

the dilated analyzing wavelet y(t) satisfying

ð
y(t)dt~0 [17]. We

shall denote these WTMML locations at the smallest scale by

ti,i[Z, and refer to them as the WTMML roots. Huang and Mallet

proved the seminal result on the convergence of ti’s towards

(singularity) locations where the derivative of the function is

undefined [17]; see also Ref [19]. Intuitively, these are where the

time series exhibits abrupt changes or jumps in the amplitude

fluctuation. By identifying such feature as the phase setting event,

ti maybe used to derive the phase difference of the fluctuation of

broadband processes. Specifically, let Rx~ft(x)
i g, Ry~ft(y)

j g be

the WTMML roots of time series x(t),y(t), respectively. The first

step in the FIS analysis is to search for nearest WTMML roots, say

t(x)
m ,t(y)

n , satisfying d~ mini,j (jt(x)
i {t(y)

j j)~jt(x)
m {t(y)

n j (FIG. 1b

below). Once such nearest WTMML roots are found, they are

deleted from Rx,y and the search continues until all WTMML

roots are processed. The d so obtained captures the difference in

‘‘timing’’ of the large amplitude jumps of x,y, and is used as the

measure for the phase difference of the fluctuation.

When all WTMML roots of x,y are separated by a fixed

distance, d equals a constant and has a Dirac delta probability

density function (PDF) p(d). In this case, the FIS is said to be

complete. As the FIS level drops, the WTMML roots are more

scattered and the shape of p(d) widens. To measure FIS, we use an
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entropy based synchronization index (SI) [20]: r~

(Smax{S)=Smax where S~{
X

p log (p) is the Shannon entro-

py and Smax~ log (N0) is the largest entropy from a uniformly

distributed d. Thus, r~1 for a Dirac delta p(d) in complete FIS

and r?0 for completely independent fluctuations.

In the numerical analysis, the kth order gaussian derivative

wavelet gk is considered. Since gk has k vanishing moments, it is

able to capture irregularities in the (k{1)th derivative of a

function. However, for defining the phase event, wavelet with

higher order vanishing moment may be too sensitive, resulting in

WTMML roots at every ‘‘regular’’ rise-and-fall of the time series.

To capture more ‘‘violent’’ fluctuation pattern that is typically

found in the financial data, using analyzing wavelets with the

lowest number of vanishing moment is more desirable. In this

study, g1~(d=dt) exp ({t2=2) is used.

Results

We will first apply the above ideas to demonstrate FIS

using artificial time series. Consider multifractal measures

mA,mB, where dmA~pA(t; w
(A)
0 ,w

(A)
1 ), dmB~pB(t; w

(B)
0 ,w

(B)
1 ),

are dyadic cascades with deterministic weights w
(A)
0,1 ,w

(B)
0,1 satisfyingX

i
w

(A)
i ~

X
i
w

(B)
i ~1. Let the weights be assigned randomly,

say, by flipping a coin, to dyadic intervals. One can write

pa(t)~PJa(t)w
(a)
k ,a~A,B, where Ja(t) is a random sequence of

0,1. FIS is realized by ensuring JA(t)~JB(t) in some time interval.

This may be achieved by imposing JA(t)~JB(t) whenever a

uniformly distributed f in [0,1] is less than a constant z. Thus,

mA,B are independent when z~0 and in complete FIS when z§1.

The function r(z) is therefore increasing in z. To demonstrate, 30

pairs of mA,B of 8,192 points each were generated with

w
(A)
0,1 ~(0:2,0:8), w

(B)
0,1~(0:4,0:6) for z~0 to 1 in 0.2 increment.

Indeed, it is observed that the WTMML roots are more scattered

at z~0 and have almost identical locations at z~1 (FIGs. 1a, 1b).

They lead to the increasing r(z) as predicted (TABLE 1).

While d is motivated to measure the phase difference, it also

characterizes the intrinsic property of the broadband fluctuation.

Consider the fractional Brownian motion (fBm) BH (t) [21]. With

probability 1, BH is continuous and nowhere differentiable; i.e., it

is singular almost everywhere (Lipschitz exponent less than 1). Its

covariance function given by (jtj2H
zjsj2H

{jt{sj2H
)=2 implies a

negatively (positively) correlated increment DBH (d)~BH (tzd)
{BH (t) for Hv0:5 (Hw0:5). For a fixed H , we conducted the FIS

analysis based on different realizations of BH and found a

decreasing r(H); see FIGs. 1c, 1d and TABLE 2). This result

follows intuitively from DBH . Since the singularity in BH arises

mostly from a positive increment followed by a negative one, or

vice versa, there are relatively more WTMML roots for Hv0:5
(with negatively correlated increment). This implies a smaller d
range, or narrower p(d), and thus a larger r value.

We now apply these ideas to analyze the fluctuation in the

equity price series. The daily closing price, xC,1, � � � ,xC,N , for

N~250 publicly traded stocks in NASDAQ from Jan 2001 to Nov

2011 are used (File S1). This selection is aimed at a reasonable mix

of the market, so that any potential FIS represents a general

market property, rather than the characteristics of a particular

business sector. FIG. 2a shows the broadband character of the

price series where the power-law power spectrum can be clearly

seen. FIGs. 2b*2d shows the typical case that suggests FIS in the

market dynamics. They are the closing price of two technology

companies xC,1 (Agilent Tech Inc) and xC,4 (Analog Devices Inc),

where similar fluctuation pattern is visually apparent. But similar

fluctuation patterns exist more generally in companies from

different sectors, for example, those between xC,4 and xC,60 of an

energy company (CenterPoint Energy Inc).

To analyze the potential FIS in the price series, we take into

account the market nonstationarity by processing the data in

window segments of L calendar year, advancing every V calendar

month (VvL). In general, using smaller L,V suffers from poorer

statistics and results in larger fluctuation of the SI r. But using

larger L,V can average out the subtle fluctuation in the market

dynamics. Our goal is to find persistent FIS indicators over a

reasonable range of V ,L. These indicators are now described.

Given N price series, there are N(N{1)=2 sets of p(d)’s are

obtained in each of the window segment (31,125 sets for N~250).

They were then used to calculate the pair-wise SI

ri,j ,i,j~1, � � � ,N. The FIS indicators used in this study are

defined from the ri,j . First, the sample mean and standard

variance �rri~
X

j=i
ri,j=(N{1), �ss2

i ~
X

j=i
(ri,j{�rri)

2=(N{2),

respectively, are calculated for the ith price series. Then, averages

are made to define the FIS indicators mr~
X

i
�rri=N and

sr~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
�ss2

i =N
q

.

A large mr implies a higher FIS level market. But it does not

mean the formation of a global cluster of companies that exhibit

similar price fluctuation. If sr is also large, smaller clusters are

Figure 1. FIS in artificial examples. (a) Cascade dmA,B for z~0:2 (top two panels) and z~1:0 (bottom two panels). Notice the more
(synchronized) similar fluctuation pattern as z increases to 1. (b) WTMML’s of mA (‘‘+’’), mB (‘‘o’’) constructed from (a) with z~0:2 (top) and z~1:0
(bottom). (c) Two samples (one in blue and one in red) of BH for H~0:2,0:5,0:8 (top to bottom). (d) WTMML’s of BH ’s shown in (c): (‘‘+’’ for the blue
sample and ‘‘o’’ for the red sample).
doi:10.1371/journal.pone.0077254.g001

Table 1. Average r(z) with 1 standard deviation (SD) based on the ensemble of 30 pairs of mA,B.

g 0.0 0.2 0.4 0.6 0.8 1.0

r+SD 0.661+0.003 0.674+0.004 0.695+0.005 0.732+0.005 0.797+0.006 0.952+0.032

doi:10.1371/journal.pone.0077254.t001

Table 2. Average r(H) with 1 standard deviation (SD) based
on 30 samples of BH at H~0:2,0:5,0:8.

H 0.2 0.5 0.8

r+SD 0.581+0.009 0.506+0.012 0.423+0.011

doi:10.1371/journal.pone.0077254.t002
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likely formed. This is because, while ri,j for xC,i,xC,j in the same

cluster increases, the ri,j0 with the price series xC,j0 from a different

cluster decreases, which in turn creates a greater disparity of the

pair-wise SI and, thus, a larger sr.

FIGs. 3a, 3b present the FIS indicators that characterize the

market synchrony. They show the mr,sr obtained by using

window parameters L~2,V~1. Most notably here is the rise of

mr,sr at apparently a transition year T�*2007:5 Yr. Let T� define a

pre- and post-2008 regimes in reference to the 2008 financial

crisis. A closer examination reveals a bifurcation pattern, where sr

considered as a function of mr first clusters around a steady range

in the pre-2008 regime and then bifurcates into at least two

branches in the post-2008 regime (FIG 3c). The rising mr and sr

after T� suggest the formation of smaller clusters of xC,i’s showing

similar price fluctuation. The top branch in the post-2008 regime

started at around the third quarter of 2009. It is when mr begins to

Figure 2. FIS in equity price series. (a) Power law power spectra of all price series (., grey) and their average (., blue), (b) Examples of price series
xC,1,xC,4,xC,60 (top to bottom). Typical FIS is demonstrated in three selected time intervals: T1~2002:3*2002:6 Yr (left, blue background),
T2~2004:6*2004:9 Yr (middle, grey background), T3~2005:4*2006 Yr (right, orange background). (c) Zoom-in of the price fluctuation of the price
series in T1,T2,T3 (left to right). (d) Pair-wise r1,4 (‘‘o’’), r4,60 (‘‘%’’) in T1,T2,T3 (left to right). Calculations are based on L~2,V~1. Error bars
correspond to one standard deviation of the ri,j values in T1,T2,T3 .

doi:10.1371/journal.pone.0077254.g002

Figure 3. FIS indicators of the price series obtained by using window parameters L~2,V~1 from 2001 to 2011. (a) mr, (b) sr, (c) mr vs.
sr. The transition year T�~2007:5 is marked by the long-dashed line in (a), (b) and by a cross z in (c). In (c), blue filled circles, and red open circles
correspond to the pre- and post-2008 regimes. In (a)*(c), green filled circles correspond to the top branch of the bifurcation pattern. (d) FIS
indicators obtained by using different window lengths L~1 (‘‘o’’), 1.5 (‘‘|’’), 2 (‘‘.’’, grey) and 3 (‘‘%’’) and V~1. To facilitate the comparison, sr vs.

mr are normalized according to Zm~(mr{MEAN(mr))=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR(mr)

q
and Zs~(sr{MEAN(sr))=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR(sr)

p
where MEAN, VAR denote the sample

mean and variance, respectively. The insets show the transition separating the pre- and post-2008 regimes using the same color scheme as (c). (e) mr

vs. sr for the first 100 stocks (‘‘o’’, red), 150 (‘‘z’’, black), 200 (‘‘%’’, green). The result of 250 stocks shown in (c) is added for comparison (‘‘.’’, grey).
doi:10.1371/journal.pone.0077254.g003
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Figure 4. FIS indicators of the cumulative returns. (a) Examples of cumulative daily and after-hour returns for a pharmaceutical services
company (AmerisourceBergen Corp), SD,3(t) (blue) and SAH,3(t) (red). (b) FIS indicators of fSD,i ,i~1, � � � ,Ng (blue) and fSAH,i ,i~1, � � � ,Ng (red). The

indicators are normalized: Zm~(mr{MEAN(mr))=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR(mr)

q
and Zs~(sr{MEAN(sr))=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR(sr)

p
. The pre-, post-2008 regimes are shown using

the similar specification as FIG. 3c: pre-2008 regime in filled circles, post-2008 regime in open circles, and solid green circles from the period of the
top branch in FIG. 3c.
doi:10.1371/journal.pone.0077254.g004

Figure 5. Network characterization of FIS: degree of the network. (a) Degree ki and degree PDF of the price series, from left to right: 2007 Yr
(rc~0:82, ‘‘o’’), 2008 Yr (rc~0:82, ‘‘+’’), and 2008 Yr, 2009 Yr (rc~0:7, ‘‘{’’). The solid lines shown in the two left panels have the slope 22.2 and
21.8, respectively. (b) The boundaries of the maximum (green) and minimum (blue) of ri,j of the price series. The horizontal lines show the range of

ISF where p(k)*kc . The particular cases shown in (a) are also marked. (c) The exponent c determined for rc[ISF (.) where p(k)*kc is observed. (d)
Average c in the pre- and post-2008 regimes. The error bars correspond to one standard deviation.
doi:10.1371/journal.pone.0077254.g005
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drop, showing the ‘‘return’’ of the market to its pre-2008 FIS level,

while sr remains at a higher post-2008 level, showing the

persistence of the market with a smaller cluster configuration.

These FIS characteristics, the market transition at T� and the

bifurcation pattern, are also captured by using different window

parameters L~1,1:5,2,V~1 (FIG. 3d), and using different

number of price series (FIG. 3e). The robustness against these

technical parameters supports a genuine market phenomenon in

the analyzing period. For L~3, however, these characteristics are

no longer found. Note, the ‘‘return’’ of the mr value since the

second half of 2009 (FIG. 3c) suggests a *2 years ‘‘lifespan’’ for

these FIS features. As a result, the missing of these characteristics

using the L~3 window segments should be due to averaging. In

what follows, we will report results obtained by L~2,V~1.

It is reasonable to assume the action from traders has an

immediate impact on the observed FIS in the price series. To

examine this potential link, we also consider FIS from the daily

returns. In particular, let ri(t)~ log (xC,i(t)=xO,i(t)) be the return

during regular trading hours (9:30 am*4:00 pm) where xO,i(t) is

the opening price of the ith stock on the tth trading day. Consider

Figure 6. Network characterization of FIS, clustering coefficient of the network. (a) Clustering coefficient C and (b) C=CRG as functions of
rc from 2001 to 2011. Typical results are shown for rc~0:82. The corresponding degree PDF’s at 2007 (‘‘o’’) and 2008 Yr (‘‘+’’) have been shown in
FIG. 5a.
doi:10.1371/journal.pone.0077254.g006
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the cumulative daily return up till the trading day T , SD,i(T)

~
XT

t~1
ri(t), and the cumulative after-hour return (4:00

pm*8:00 pm, 7:00 am*9:30 am, E.T.), SAH,i(T)~XT

t~2
log (xO,i(t)=xC,i(t{1)). Note that subtle differences have

been noted in the after-hour trading such as its lower liquidity,

larger bid-ask spread [22]. Note, also, that

SAH,i(T)~({1)T{1 SD,i(T{1){SD,i(1)z½

log (xC,i(1)=xO,i(T))�:
ð1Þ

Hence, in terms of the fluctuation pattern, the after-hour SAH,i

may be viewed as a perturbation of the SD,i by the opening price

xO,i(T). As a result, these returns can exhibit qualitatively different

FIS characteristics.

Similar to the price series, our result shows the same ascending

trend in mr,sr of the fSD,ig, fSAH,ig, indicating a more

synchronized trading action in the crisis development (FIG. 4).

FIG. 4b shows the FIS indicators of fSD,ig where similar FIS

characteristics reported in FIG. 3 are observed. However, they are

not found in the FIS indicators of fSAH,ig. These results suggest a

more direct impact to the market FIS from the regular-hour

trading activities. That being the case, it is not possible to reject the

significance of the after-hour trading in its entirety, since different

trading characteristics in the pre-open (7:00 am*9:30 am) and

post-close (4:00 pm* 8:00 pm) are believed to exist [22].

However, we are not able to analyze these periods separately in

the after-hour trading in this work.

In light of the above, we take a network approach to further

characterize the FIS in the closing price. Here, xC,i, xC,j are

viewed as nodes and considered ‘‘connected’’ if ri,jwrc for a

threshold value rc[½0,1�. The degree of xC,i in the network is then

defined in the usual way by counting its links,

ki(rc)~#fj,ri,j§rcg [23–26]. While no meaningful dynamics

may be captured for rc~0 (ki*N) or 1 (ki*0), there exists an

interesting rc range, ISF , where a scale free configuration is

revealed with a power law degree PDF p(k)*kc (dropping the

subscript i) (FIG. 5a). The exponent c in the pre- and post-2008

regimes are averaged to *{2:2 and *{1:8, respectively

(FIG. 5d), indicating more links are formed in the post-2008

regime and, possibly, more clustering in the network. The latter

can be confirmed from the clustering coefficient Ci(rc), which

calculates the ratio of the number of links among xC,i’s neighbors

versus a fully connected neighborhood. We used the average

C~
X

Ci=N to describe this property of the network as a whole.

FIG. 6 shows C and C=CRG as the function of rc in the analyzing

period, where CRG~SkT=N is the clustering coefficient of the

random graph [23,26]. For rc in ISF , C exhibits a similar rising

trend as the FIS indicators through T� (FIG. 6a). It follows

intuitively that the rising FIS indicators imply more price series

showing similar fluctuation pattern, which in turn leads to more

clustering among the xC,i’s. It is also seen a higher ratio

C=CRGw3 in the post-2008 regime, giving the evidence of a

nontrivial networking structure underlying the market synchrony.

Discussion and Conclusion

The notion of synchronized broadband processes in general

should rest on the statistical ground of certain phase variable, and

possibly be supported by the observation of similar fluctuation

pattern. In this work, we adopt these premises to establish the

preliminary ideas for synchrony in broad-band processes showing

scale free characteristics. In particular, we propose using the

wavelet transform to associate the phase to the large amplitude

jump characterized as the singularity. We then suggest the state of

FIS with the assumption of a common mechanism underlying the

singular fluctuation. While these ideas are successfully demon-

strated using artificial examples, we stress the importance of the

‘‘selectiveness’’ of the analyzing wavelet in wavelet transform.

When it is too sensitive, many WTMMLs can emerge, which may

be unrelated to the phase setting event leading to the large

amplitude jump. We suggest using the wavelet that has the lowest

number of vanishing moment, so as to associate the ‘‘most

singular’’ fluctuation to the phase event.

The application of the proposed ideas to the market data

leading to the 2008 financial crisis reveals several nontrivial results.

The main implication of the findings is the significance of the

market synchrony and its variability. The match of the rising FIS

indicators mr,sr to the approach of the 2008 financial crisis gives

promise to using FIS to capture significant market events. In

particular, our results imply many price series showing similar

fluctuation pattern is a troubling sign. Considering sr as a function

of mr reveals a bifurcation pattern which suggests the transition

towards a qualitatively different dynamical regimes in the crisis. It

further implies that sr, the FIS variability, may be considered

generally as an order parameter of the overall market dynamics.

Lillo and collaborators also suggest synchronous market activities

based on the persistent bid-ask spread in the market limit orders

[27–29]. The spread is significant since it creates a supply-demand

unbalance which can lead to large price fluctuation. On that

ground, the association of the singular fluctuation of the price to an

underlying mechanism is well supported. In this work, we offer two

modest extensions: (a) in addition to an individual stock, market

synchrony is a global property that generally exists between different

stocks, and (b) there is a likely link between a market in turmoil and

excess FIS, and FIS variability.

Finally, we suggest that similar price fluctuation in a group of

stocks without obvious business link reflects the herding or

collective behavior of the traders [31–33]. To this end, we observe

similar FIS characteristics in the regular trading hours, suggesting

traders’ ‘‘collective motion’’ as a potential cause of the present

findings. It is also in this realm that the market may be viewed as a

‘‘social’’ entity driven by a profit gaining objective. Indeed, market

dynamics has been much discussed in such social context in the

past; see [34,35] and references therein. Along these lines, we

remark that our attempt of using a network analogy to

characterize the dynamics underlying FIS has yielded similar c
and C values as other social networks reported in the past [23–26].

In general, we believe FIS describes a genuine property in

complex dynamics and should be explored to uncover subtle

interaction among the coupled oscillators in large dynamical

systems.
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