

Revised: May 23, 2006

Computational Intelligence in Product Design Engineering:

Review and Trends

Andrew Kusiak* and Filippo A. Salustri#

*Intelligent Systems Laboratory

Department of Mechanical and Industrial Engineering
2139 Seamans Center

The University of Iowa
Iowa City, Iowa 52242 - 1527
andrew-kusiak@uiowa.edu

#Department of Mechanical and Industrial Engineering

Ryerson University
350 Victoria Street

Toronto, ON, M5B 2K3, Canada
salustri@ryerson.ca

Abstract

Product design engineering is undergoing a transformation from informal and largely
experience-based discipline to a science-based domain. Computational intelligence
offers models and algorithms that can contribute greatly to design formalization and
automation. This paper surveys computational intelligence concepts and approaches
applicable to product design engineering. Taxonomy of the surveyed literature is
presented according to the generally recognized areas in both product design engineering
and computational intelligence. Some research issues that arise from the broad
perspective presented in the paper have been signaled but not fully pursued. No survey
of such a broad field can be complete, however, the material presented in the paper is a
summary of state-of-the-art computational intelligence concepts and approaches in
product design engineering.

Keywords: Computational intelligence, engineering design, product engineering, decision
making, design automation.

2

1. Introduction
Product design engineering is a complex discipline; it draws upon and contributes to
other disciplines, and it is not well formalized. This interdisciplinary nature of product
design engineering has resulted in numerous computational approaches that have been
reported in the literature. The goal of this paper is to discuss the recent computational
intelligence results applied to product design engineering, and structure the
computational intelligence approaches in a general unifying framework.

No survey of such a broad field can be complete. An attempt has been made to balance
degree of detail against availability of literature sources. Any imbalance in the coverage
is due to the availability of information rather than topic’s importance. Such topics are
included as they are relevant to the breadth of our survey.

A general taxonomy of models used in product design engineering is proposed in Fig. 1.
Some formal approaches in product design engineering fall into the programming
language category (Category 1 in Fig. 1) equating designing mechanical components as
coding. This approach is analogous to the hardware design language developed in
electronics.

Category 1:
Computer code
development

Category 2:
Design objects

Category 3:
Genetic analogy

Category 4:
Optimization

Figure 1. Classification of modeling approaches in product design engineering.

There is no indication that a widely-accepted computer instruction approach to product
design engineering will be realized in the near future, and therefore Category 2 in Fig. 1
presents a more realistic option of object-based design. This is a coarser approach to
product design engineering aiming at capturing higher-level objects, i.e., parts and
assemblies defined by a collection of functions. Category 3 in Fig. 1 introduces a natural
system perspective to product design engineering. This perspective supposes that any
product can be viewed as a genome, with subassemblies represented by chromosomes,
and parts represented by genes. Genetic operators, decision rules, and other logic would
govern the design and redesign of products. The nature-based perspective to mechanical
design could be the most promising; as such, it will be a focal point of this survey.

Many researchers favor an optimization approach to product design engineering, shown
as Category 4 in Fig. 1. This approach usually describes some aspects of design with a
constrained objective function. A multitude of different models reflects different facets
of mechanical design under this approach. However, here the term “optimization” is
used in a broader sense than in mathematical programming. Once a basic design concept
is established, the remainder of the development process can be regarded as a refining
that concept into a real product. This sense of “refinement” is how the authors wish the
reader to interpret the term “optimization”.

3

In summary, one may distinguish between Categories 2, 3, and 4, as representing
perspectives of informational structure versus, evolutionary development, and
optimization, respectively.

In the next section, numerous approaches and methods that fall into Categories 2, 3, and 4
are examined.

2. Taxonomy of Computational Intelligence Algorithms, Techniques,

and Tools
Many experts agree that computational intelligence (CI) will contribute greatly to design
automation. Machine learning algorithms fuse historical design information distributed in
space and time into coherent and understandable design knowledge. The only
impediment here is in the representation of such information in a uniform way.

The computational intelligence approaches of potential use in product design engineering
can be grouped into seven major classes. These classes are identified and related to the
three categories of Fig. 1 in Table 1. Note that Category 1 of Fig. 1 has been excluded
from Table 1 as the computer code development approach requires an extensive coverage
that could not be accommodated in this paper. The criterion used for matching a CI
approach with a category is based on the literature coverage. If a substantive collection of
research was found, then an “x” was placed in the appropriate entry of Table 1.

Table 1. CI methods and categories of research approaches of Fig. 1.

 Category 2:
Design Objects

Category 3:
Genetic Analogy

Category 4:
Optimization

Ontologies x
Data Mining x
Evolutionary Computation x
Decision Making x
Case-based Reasoning x x
Qualitative Reasoning x
Hybrid Approaches x x x

The literature pertaining to each of the seven approaches of Table 1 is discussed in the
sections that follow.

2.1 Ontologies
An ontology is an agreed upon set of terms and meanings that enables parties to share
diverse knowledge through a common language (Gruber, 1992). “Intelligent” methods
and algorithms use knowledge organized into ontologies. The nature and representation
of ontologies are of importance to product design engineering. Ontologies are the formal
underpinnings of all methods that define knowledge as complex structures, and they are
fundamental to Category 2 (Design Objects) approaches (see Table 1).

Fowler et al. (2004) used ontologies of engineering features to develop software to check
that product configurations satisfy both physical and organizational constraints.

4

Yoshioka et al. (2004) developed a framework for knowledge intensive engineering
driven substantially by ontologies of physical concepts that constitute “pluggable”
metamodels in the framework. These physical concept ontologies form the common
basis to integrate diverse information sources.

Ontologies were used by Kitamura et al. (2004) to build and successfully deploy a
framework to capture and reuse knowledge about product functions in a large electric
corporation. The authors reported that a key feature of their framework was its ability to
make explicit the knowledge that designers would only use implicitly otherwise, and to
help share the knowledge with team members.

Brown et al. (2004) used ontologies to create a web-based repository to support the
distributed development of automotive components, using conventional web technologies
and standards. Leveraging the Web for such purposes allows users to add and search
content using ubiquitous and robust systems that many industries already have in place.

Cox (2003) described the development of ontologies to facilitate searching design spaces
based on the semantic grid concept of the Web. The reported work is part of the Geodise
project (http://www.geodise.org) intended to provide a complete web-enabled
knowledge-based system (KBS) for design and optimization involving fluid dynamics.

Tormey et al. (2003) developed agent-based systems using ontologies to support
collaborative design processes by making diverse and distributed sources of knowledge
appear homogenous and integrated to users.

The Enterprise Intelligence Laboratory at University of Toronto has developed an
extensive ontology based capability (see Gruninger et al. 2000) to address modeling of an
entire enterprise, including requirements, supply chain management, quality
management, etc.

Lin and Ho (1999) used ontologies to analyze requirements in the domain of network
management software.

2.2 Data mining

The volume of “legacy data” collected by industry is growing at an unprecedented rate.
Such large quantity of data is usually difficult to process and analyze, yet is likely to be a
source of valuable knowledge. Data mining, also called knowledge discovery, provides
algorithms for searching and summarizing the legacy data in a usable form. Data mining
can be combined with other approaches to develop intelligent systems. It falls into
Category 2 (Table 1) as it creates design objects from the typically unstructured legacy
data.

Kusiak et al. (2000) proposed a data mining system for predicting product cost using
historical design data. A rough-set theory algorithm was used to extract the decision-
making knowledge. Ishino and Jin (2001) applied data mining for knowledge acquisition
from design activities involving a CAD system. They developed a method called
extended dynamic programming to extract the knowledge. Romanowski and Nagi (2001)
proposed a design system based on knowledge extracted from product life-cycle data.

5

Giess et al. (2002) mined manufacturing and assembly data of gas turbine rotors to
establish and quantify relationships between the balance and vibration data, which in turn
improved component tolerance designs. Hamburg (2004) applied a decision-tree
algorithm to support product development by analyzing high-level data such as market
position, strategy, philosophy and culture of the manufacturing and customer behavior.
The extracted knowledge was to be integrated in the product development process.
Albers and Marz (2004) used data mining to extract know-how of disciplines related to
design processes for micro-technological products. Cascint (2004) uses data mining
techniques to create TRIZ-based semantic portals to support the redesign of metal parts in
plastic.

Terpenny et al. (2000) developed a methodology to assist in the discovery, classification,
and capture of design knowledge. The methodology was intended to guide industries in
developing taxonomies and ontologies in a practical way. By providing such guidance,
the paper demonstrated that it was possible to build semi-autonomous, agent-based tools
using structured knowledge in design.

2.3 Evolutionary computation

Evolutionary Computation is concerned with the development of problem solving
methods based on concepts from natural systems. A number of evolutionary
computational methods have been developed, including genetic algorithms, genetic
programming, evolutionary strategies, and evolutionary programming. All of these
approaches are discussed next.

2.3.1 Genetic algorithms
A human organism in its all complexity can be represented by approximately 30,000
genes expressed as a vector of four genetic letters A, C, G, and T, or just series of zeros
and ones, if one prefers the binary representation. Any two humans differ only in a small
percentage of their “genetic vectors” regardless of their phenotypic differences (looks).
How long would the vector of “product letters” need to be to represent a watch, a bicycle,
or a space station? One could argue that such vectors of characters can be handled by the
modern computer hardware and software. Thinking of a product design in a bottom up
(genetic like) rather than the top down (the way the products are often viewed today)
leads one to believe that intelligent systems may dramatically change the course of
product design engineering. The time could be ripe to explore the genetic design
paradigm.

Subassembly 1Chromosome

Gene Part 11 Part 12

Subassembly 2

Part 21 Part 22 Part 23

Subassembly 3

Part 31 Part 22

Figure 2. Genomic representation of a product.

Fig. 2 shows a “genomic-like” representation of a product, where the genes represent
parts, and the chromosomes represent subassemblies. The same product could be
represented at finer level by assigning genes to its design features.

6

Bentley and Wakefield (1995) applied a genetic algorithm to design a table. Using
primitive shape representations, tables were designed to satisfy the size constraints, the
distribution of mass, and the resulting stability. Cho (2002) applied a genetic algorithm to
learn the replication of human intent of interest to product design engineering. The user
provided initial selections and the algorithm optimized the intent.

 2.3.2 Genetic programming
Genetic Programming (GP): Genetic programming creates a computer program in the
scheme computer language as the solution (Koza 1992 and Benzhaf et al. 1998). Zhang
and Muehlenbein (1995) investigated the relationship between the performance and
complexity of the evolved structures. Employing statistical search, Iba et al. (1995)
introduced a new approach to genetic programming by integrating a GP-based adaptive
search of tree structures and a local parameter tuning mechanism. In traditional GP,
recombination can cause frequent disruption of building blocks, or mutation can cause
abrupt changes in the semantics. Soule and Foster (1998) showed that poor results with
parsimony pressure are due to “failed” populations that overshadow the results of the
populations that successfully incorporate the parsimony pressure. Additionally, they
showed that the effect of parsimony pressure could be measured by calculating the
relationship between program size and performance within the population. This measure
can be used as a partial indicator of success or failure of individual populations. Yao et
al. (1999) proposed a fast evolutionary programming algorithm using as the primary
operator Cauchy rather than Gaussian mutation. The authors showed the relationship
between the search step size and the probability of finding a global optimum. Genetic
programming has also been applied to multiobjective robust design by Forouraghi (2000).

Within the limits of their current applicability, genetic programming algorithms have
typically been able to generate and evaluate far more design alternatives than any team of
designers. As such, these algorithms can be effective design tools, especially in
developing new and innovative design alternatives.

 2.3.3 Evolutionary programming
Evolutionary Programming (known also as Evolutionary Algorithms) incorporates
aspects of natural selection or survival of the fittest. An evolutionary algorithm (EA)
maintains a population of structures (initially randomly generated) that evolve according
to rules of selection, recombination, mutation and survival, referred here as genetic
operators. A shared “environment” determines the fitness (performance) of each
individual in the population. The fittest individuals are more likely to be selected for
reproduction (e.g., retention, duplication), while recombination and mutation modify the
individuals, yielding potentially superior ones.

The background on various implementations of evolutionary algorithms is provided in
Fonseca and Fleming (1995), Bäck (1996), Coello (1999), and Van Veldhuizen and
Lamont (2000). The last paper provides a comprehensive typology of EAs. A promising
alternative in solving difficult and dynamic problems is the coevolutionary algorithm,
which is a variation of EA where each individual represents only a partial solution to the
problem (see Horn et al. 1994 and Moriarty and Miikkulainen 1998).

7

 2.3.4 Evolutionary strategies
Evolutionary Strategy (ES): An algorithm where individuals (potential solutions) are
encoded by a set of real-valued “object variables” (the individual's ‘genome). For each
object variable an individual has a “strategy variable” determining the degree of mutation
to be applied to the corresponding object variable. The strategy variables mutate,
allowing the rate of mutation of the object variables to vary. The population size, the
number of offspring produced in each generation and whether the new population is
selected from parents and offspring or only from the offspring characterize an ES.

Eiben and Bäck (1997) extended the evolutionary strategy approach to multi-parent
recombination involving a variable number of parents to create an individual offspring.
The extension was experimentally evaluated on a test suite of functions of different
modality and separability and the regular/irregular arrangement of their local optima.
Multi-parent diagonal crossover and uniform scanning crossover and a multi-parent
version of intermediary recombination were considered in the experiment. Olafsson
(1996) demonstrated the use of evolutionary game theory for allocation of service
requirements on to an ensemble of heterogeneous network components. Schweitzer et al.
(1997) applied Boltzmann and Darwin and mixed strategies to find differently optimized
solutions (graphs of varying density) for the road network, depending on the degree of
frustration. They showed that the optimization process occurs on two different time
scales. In the asymptotic limit, a fixed relation between the mean connection distance
(detour) and the total length (costs) of the network exists that defines a range of possible
compromises. Thompson et al. (1999) presented evolutionary strategy to design a
reconfigurable controller. The designed product exhibit better properties than the one
designed with conventional constraint based methods. Moriarty and Miikkulainen (1998)
applied co-evolutionary search to design a neural network. The designed network was
robust due to neurons assuming overlapping roles as well as increased diversity. Lohn
and Colombano (1999) presented an evolutionary search method for automatic generation
of circuit designs. They used a set of circuit primitives that were synthesized in valid
circuits. The algorithm allows for the evolution of the circuit size, circuit topology, and
device values.

 2.4 Decision making
Product engineering has a significant decision-making element. Intelligent decision-
support systems are especially useful in product design engineering because of high
complexity associated with the decisions and of the risks associated with making wrong
decisions. Decision-making algorithms optimize various design outcomes and therefore
naturally fall in Category 4 (Table 1).

Sim and Chan (1992) developed a knowledge-based system for rolling element bearing
selection. They used heuristic knowledge supported by a manufacturer's catalogue to
generate a solution. Stacey et al. (2000) reported on a computational intelligence
approach, called signposting, to support decision-making in design. Signposting provides
both inference knowledge and strategic problem solving knowledge by focusing on the
dependencies between design parameters. Danesh and Jin (2001) created an agent-based
decision network to support decision-making in collaborative design. Each designer is
represented with a software agent in an objective-based negotiation environment.

8

Agents were also used by Chao et al. (2003) to model interactions between design
systems used by multiple teams working on large-scale, complex design problems. An
evolutionary approach was used to automate negotiation between the agents in
exchanging design solutions from different systems.

Mussi (2004) presented a method for building decision-support systems based on
decision theory using value of information. The method accounts for the vagueness of
information derived from tests needed to validate hypotheses crucial to task completion,
which is typical of product design engineering situations.

 2.5 Case-based reasoning
Case-Based Reasoning (CBR) is an approach that attempts to mimic the human capacity
to adapt and reuse solutions from known problems to new ones. It assumes that similar
problems can be solved with similar solution approaches. A case is a description of a
problem and its solution. New problems are analyzed and compared to known cases until
a best match is found. The solution of the matching case is used (and sometimes
adapted) to solve the new problem. CBR performs best when the library of known cases
is such that each case (a) is representative of a particular class of common problems, and
(b) has some similarity to a few other cases in the library. The major operational
elements of CBR systems include: gathering and analyzing cases, establishing a
“similarity measure” for new problems, and adapting known solutions to new problems.
The structuring of cases places CBR to the Design Object (Category 2, Table 1)
approach, while its aspects of space searching indicate its membership in Category 4
(Optimization).

CBR has been used to build software of known solutions. Depending on the way the
similarity is defined, it is possible to apply CBR in quite innovative settings. Marling et
al. (2002) presented the recent advances in CBR.

Scott and Cook (2004) used CBR in combination with context-free grammars to “emulate
human reasoning” with respect to assessing product requirements. Morcous et al. (2002)
applied CBR to model infrastructure deterioration in civil engineering structures using a
large volume of data (i.e., large number of cases) on the strength and deterioration of
structures.

Rivard and Fenves (2000) developed a CBR system for conceptual design of buildings.
The system supports the hierarchical decomposition of design cases, offers multiple
views, and encapsulates the outcome of the design. Multiple case retrieval methods are
available, and case adaptation is done by a “replay” method of existent processes. Note
that adaptation is generally a parametric operation requiring a parameterized model of the
object being designed. Such parametric models may themselves be the object of
intelligent systems.

Concept maps were used to navigate and manipulate cases and their adaptations in the
CBR system developed by Leake and Wilson (2001) to support aerospace design.

Many applications of CBR in design have been restricted to relatively narrow domains.
Lee and Luo (2002) developed a CBR system for the design of die-casting dies. The

9

system logs how humans use it and trains itself to new cases, thus improving its
performance that is transparent to its user community. Tor et al. (2003) applied a two-
stage similarity algorithm to control the size of the search space in the CBR design of a
stamping die. Their solution is demonstrated to noticeably speed up die design. Qin and
Regli (2003) applied CBR to the design of mechanical bearings. Vong et al. (2002) used
CBR to design the hydraulic circuits of production machines.

CBR has also been applied to broader cases, e.g., Chiu (2003) used CBR to studying
cognitive processes of designers.

 2.6 Qualitative reasoning
Qualitative reasoning allows developing models when the relationships between variables
and parameters are not well established (Weld and de Kleer 1989). These methods seek
ideal solutions to simplified or abstracted situations and therefore they fall in Category 4
(Table 1). While they are not able to operate with highly detailed “real life” information,
they are able to guide design engineers in general terms. The qualitative reasoning
approach integrates well with the knowledge to be extracted from the data sets (Bratko
1994). Bond graphs are well suited to integrate the process modeling constructs. They
provide means for unambiguous definition of the behavior of components by (Karnopp et
al. 1990):

• Use of a limited number of versatile general terms and symbols to provide a
rational graphical structure describing the presence and the interaction of effects
impacting the dynamic performance of the system;

• Allowing for ready formation and subsequent changes of the structure,
important in the creative system design;

• Use of the model structure to formally prepare a rational and adequately
complete set of equations suitable for computer simulation of the system.

Karnopp et al. (1990) described applications of bond graphs in engineering systems using
the same set of ideal elements and provided standard techniques for translating these into
a simulation model. Zakarian and Kusiak (2000) discussed bi-directional reasoning of
interest to product design engineering.

Other research in qualitative reasoning has focused on the application of qualitative
physics to engineering in general – such as Pisan (1998), but has also examined the role
of other theories of qualitative reasoning in product design engineering such as analogical
reasoning (see Sgouros 1998). Stahovich et al. (2000) used qualitative reasoning to
develop a non-mathematical formalization of rigid-body mechanics.

 2.7 Hybrid approaches
As individual methods and techniques have matured, an interest in combining them has
emerged. Combinations of different methods have led to hybrid approaches that could
mitigate the shortcomings of the elemental methods. Obviously, hybrid approaches span
all of Categories 2, 3, and 4 in Table 1, as they combine aspects of all the major
approaches.
Chau and Albermani (2004) developed a hybrid system including production rules,
object-oriented programming, and procedural methods to express engineering heuristics

10

in a blackboard KBS for designing liquid retaining structures. The system can provide
advise in preliminary design as well as downstream design stages.

Lou et al. (2004) developed a new frame-rule structure for knowledge processing in mold
design by incorporating features of product modeling, frame-based KBSs, case-based
reasoning, and neural networks. They reported that design efficiency was significantly
improved. Zhang et al. (2004) developed a system integrating blackboard architecture
with case-based reasoning for stamping process planning in progressing die design. The
advantage of the system is that case-based reasoning can be used with past data as well as
other reasoning methods. Many hybrid approaches fall in the category of soft computing
methods and are discussed at numerous conferences and publications. One of the major
drivers of soft computing is the fuzzy set theory (e.g., see Zadeh 1976; Karray and De
Silva 2004).

Nursel (2003) reported an interesting use of a genetic algorithm to design neural network
structures. The combined genetic algorithm and neural network approach are reported to
reduce the computational complexity in design and manufacturing applications.

Evolutionary programming was used by Rosenman (2000) to adapt previously stored
design solutions in a case-based reasoning system. It is argued that such “knowledge-
lean” techniques are more broadly applicable than conventional case-based design
approaches. Chan et al. (2000) used the analytical hierarchy process methodology
jointly with expert systems, fuzzy systems, and neural networks to develop a decision-
support tool for designing flexible manufacturing systems.

3. Process View of Product Design Engineering
Product development processes can be considered as artifacts sharing commonality with
the products themselves. In this section, a categorization of design processes based on
similarities between the process and product characteristics is presented. The
categorization in this section refers to the three main categories of Table 1.

3.1 Typological Characteristics of Processes

Modularity. The first and most obvious characteristic is that of modular versus
platform-based processes (in analogy to product development). Modular processes are
composed of “ready-made” elements that can be assembled into an overall process. The
functional nature of the modules, makes optimization (Category 4, Table 1) approaches
likely to be used.

Platform-based processes use common bases that are modified to suit specific needs.
Since they depend on well-established bases, there is ample opportunity to perform data
mining. However, platform-based processes are easy to institutionalize but harder to
adapt to corporate and technological changes.

Platform orientation. Analogous to the product platform typology of Schuh et al.
(2000), processes can be based on standard components, basic components, common
architecture, and standard interfaces. Processes based on standard components are built
up from specific component processes; the overall structures of these processes are

11

defined each time a new process is developed. A process based on basic components
reuses certain fundamental process components connected in well-understood ways
(within a particular company or setting), adorning the process with other (possibly new)
process components as needed. A process based on common architecture uses pre-
defined overall process structure (e.g., a generalized workflow-like arrangement) and
fleshes out process components as required by the application of the architecture to a
particular situation. Finally, a process based on standard interfaces develops process
architecture and components.

Differentiation. Some processes, called here standardized processes, are based on
common process models intended to meet specific goals (such as best practices).
Otherwise, processes can be early differentiation processes or delayed differentiation
processes (Kusiak, 1999). The latter two processes differ in the distribution of process
activates. The early differentiation process shapes the unique design at the beginning of
the process, while late differentiation process makes design unique at the final stage.
Therefore the late differentiation processes are more likely reusable across different
products. This characterization is concerned primarily with optimization, i.e., finding an
ideal process based on corporate and other constraints and thus fall in Category 4 of
Table 1.

Modification. Processes can be modified generally for three reasons. Modifications
may be done to customize the process for reuse in a new setting. Processes may also be
modified for improvement, either gradually (e.g., continuous improvement) or by more
radical re-engineering method. Re-engineering of processes is usually undertaken only
when substantial changes are essential. This characterization belongs to Category 4 as it
deals with optimization and goal attainment.

Customization. Processes can be characterized by the type of their reuse. Unique
processes that are not expected to be reused as opposed to the processes developed using
principles of mass customization. For the latter, we intend that specific process aspects
are identified apriori as variable and that are expected to change based on how the
process will be applied. Considering process elements is analogous to the design objects
of Category 2 (Table 1). However, allowing for customization of processes in response
to the environment in which the process is to be used, such processes associate with
Category 3 (e.g., if evolutionary computation algorithms are used to perform the
customization) or Category 4 (e.g., if heuristic/deterministic algorithms are used to
perform the customization).

Construction. Another characteristic that can distinguish processes is the method by
which they are constructed, in analogy to the generally accepted kinds of product design:
innovative design, variant design, or redesign. Generative methods develop new
processes “from scratch” based on prior knowledge. Variant methods develop processes
from existent ones by modifying existent processes. Reverse-engineered processes are
those developed by dissecting existent processes, usually to address identified
shortcomings. We consider all three of these methods as Category 4 (Table 1) because
the development of the new process is primarily oriented to goal satisfaction.
Additionally, instances of the variant and reverse-engineered methods may also be
Category 3 if they depend on evolutionary analogies.

12

Evolution. One may also characterize processes by the way they change over time. The
basic division in this case is between changes in procedural elements – the tasks and
activities that occur in the process – and changes in the nature of the information objects
used by those activities and tasks. Since both procedural elements and information
elements can be treated as design objects, this characteristic associates Category 2 (Table
1). If the specific changes over time take advantage of the evolutionary analogy, then
such processes belong to Category 3.

The above defined elements will make up the library of constructs proposed in this paper.
This library will be an important element of a product design engineering cyber-
infrastructure.

3.2 Selection of CI methods
The typology presented in Section 3.1 can be used to guide the selection of CI methods.
For example, consider the following hypothetical company.

1. The company is well established, with significant corporate design knowledge
stored in various conventional databases, e.g., CAD database.

2. The company is a consumer goods producer with small profit margins, and it
cannot afford substantive process overhaul. That is, the company prefers small
and continuous process improvements.

3. The company designs a broad range of consumer products under a single brand.
4. The company has a number of distinct divisions, but there is significant

movement of personnel between the divisions. This suggests a preference for
design processes that can vary between divisions but that has a common base to
leverage worker expertise.

5. The company has developed pockets of procedural expertise that are not
systematically connected. The company plans using this expertise for process
improvements.

6. There are no known serious process problems in the company, but process
effectiveness is noted as slowly decreasing.

7. The company’s structure includes fairly independent groups. The interactions
between the groups are defined by the corporate leadership.

One might identify the company as seeking gradual, platform-based modularity using
variant design methods, mass customization, and standardized interfaces to address the
identified process problems. Solutions will be based on changes to procedural elements
because of procedural expertise being exchanged between groups with movements of
personnel.

Based on this description, one may then consider various CI methods based on the
mapping between process characteristics and the categories outlined above. The
hypothesis is that the CI methods identified in this way would be best suited for use by
the company.

For example, one could propose a case-based reasoning system to support this company.
CBR works best with a broad range of slightly similar products, and can help discover
new variations on existent products. The movement of personnel between divisions

13

provides a “vector” to distribute new knowledge and tools (such as CBR) throughout the
company, so a phased implementation seems possible. Furthermore, the “pockets” of
expertise suggests that a knowledge acquisition system with data mining support could be
useful to pull the knowledge from the “pockets” and eventually redistribute it to other
workers.

Clearly, not enough information is presented here to allow a detailed and reliable
selection of specific CI methods for specific companies. However, we believe we have
shown the potential of this approach. Indeed, one can envision a three-dimensional
matrix aligning company characteristics (as outlined in the list above) on one axis,
against process characteristics (e.g. platform-based modularity) on a second axis, and
computational technologies on the third axis. One might then use the matrix as a guide to
identify what technologies of computational intelligence might be proposed for specific
industrial settings. An exploration of such a scheme is, however, beyond the scope of
this paper and is deferred to a future publication.

3.3 Evolutionary computation and process perspective
Process modeling involves two notions (see Fig. 3):

• Horizontal, and
• Vertical

Horizontal expansion

Vert
ica

l e
xp

an
sio

n

Figure 3. Horizontal and vertical expansion of a process model.

A process model is seldom developed at one level rather it is built vertically and
horizontally. The top node in the hierarchy denotes the overall process that is
decomposed into lower level components. The most granular model is usually a network
of activities (the horizontal notion).

To support the horizontal notion of process modeling concepts from evolutionary
computation will be applied. The feasibility of applying evolutionary computation, in
particular genetic programming is illustrated in Fig. 4. The crossover operator applied to
the process model in Fig. 4(a) produces the model in Fig. 4(c) by using the sub-model in
Fig. 4(b).

14

1

2 3

&

4 5

&

6 7

O

a) b)

1

2 3

&

4 5

&

8 9

&

10 11

&

c)

8 9

&

10 11

&

Figure 4. Illustration of the crossover operator in a process model.

The crossover operator demonstrated in Fig. 4 is one of many operators defined in
genetic programming that can be applied in product design engineering (e.g., see
operators defined in Hawley and Mori 1999).

The evolutionary computation concepts can be applied to support the horizontal notion of
process modeling. The use of evolutionary computation in horizontal process modeling is
illustrated with the following three activity operators:

• Specialize
• Generalize
• Mutate

To demonstrate these operators consider the model in Fig. 5(a). The generalization
operator transforms the model in Fig. 5(a) in the model in Fig. 5(b) by incorporating
activity 5. Similarly, the specialization and mutation operations are illustrated in Fig. 5(c)
and 5(d).

15

2

5

3

1 4

6

3

1 4

2

3

1 4

21 4

a) b)

c) d)

Figure 5. Activity model operators: (a) reference model, (b) generalization, (c)
specialization, (d) mutation.

In addition to the activity operators, algebra for inputs, outputs, controls, mechanisms,
and logical connectors can be defined. For example, the generalize operator applied to an
Exclusive OR connector would transform it into an OR-connector.

One of the tools that can contribute to increasing the autonomy of process models is data
mining. For example, a decision rule derived by a data-mining algorithm may select in
the model in Fig. 5(a) the path {1 - 2 - 3} based on real-time data.

The sub-process in Fig. 5(a) could be a fragment of the active web search process. At
present the information on the web is organized and largely searched hierarchically. In
the near future, the process of retrieving web information will be active. One way to
make the web active is to introduce process models that would adapt depending on the
arising conditions, e.g., changing user’s profile, the domain search frequency, changing
the domain content. Data-mining agents could track and increase adaptability of the
search process of various design libraries and repositories.

4. Problem View of Product Design Engineering
The review of the literature points to numerous topics of interest to both research and
industry. The most urgent topics include:

• Innovation
• Conceptual design
• Standardization
• Modularity
• Design of product families
• Design complexity management

The relationship between each of these topics and the taxonomy presented in Section 2 is
discussed below. For a researcher interested in a particular topic, this relationship allows
identifying pertinent CI techniques and literature in Section 2. A practitioner may
identify models and tools (Section 2) for a topic of interest.

16

4.1 Innovation
The term innovation is widely used in a broad range of settings, however, analysis of the
engineering literature indicates that the knowledge about the underlying science of
innovation is limited. The recently published “Innovate America” Report (NIIR 2004)
has brought renewed interest in innovation.

Innovations in any domain can be enhanced by principles and insights from disparate
disciplines. However, the process of identifying the linkages between the disparate
disciplines and the target domain is not well developed (Kostoff 2003).

There are three basic approaches to innovate: structured, creative, and dynamic,
producing either a sustaining or a disruptive product (Allen 2003). Structured innovation
spawned during the industrial era, was engineered to be highly efficient and replicable by
innovating within set guidelines. It has been primarily used in large corporations, and it
emphasizes internal leadership, strategic planning, effective execution of ideas,
shareholder pressure, and financial resources more than other approaches, while placing
less emphasis on a creative environment (Report_1 2003). Creative innovation thrives
more often in small organizations where focusing on the “big picture” is easier
accomplished (Allen 2003; Shah 2004). The greatest advantage to the creative approach
is the process itself. Dynamic innovation is a blend of both the structure and creative
innovation approaches. Businesses of all sizes from small to large have used the dynamic
approach to produce successful innovations. Dynamic innovation has taken on the aspects
of structured innovation that embody strategic thinking and planning, along with the need
for execution of projects (Report_1 2003).

Sustaining innovations are built off previous innovations (Allen 2003), e.g., the palm
PDA. The PDA been an innovative and successful device, however, its predecessor the
Apple Newton (a disruptive innovation) has failed. Sustaining innovations tend to be
more successful then the disruptive ones. The sustaining innovation follows the
incumbent and therefore it is easier to develop and market.

Several tools have been developed in support of innovation in engineering, including
TRIZ – a Russian algorithm for Theory of Inventive Problem Solving (TRIZ Journal
2005), the Osborn/Parnes creative problem solving (CPS) process (Daupert 2005), and
the innovation technology (IvT) approach.

TRIZ was developed to aid innovation by studying the patterns of problems and
solutions, rather than relying on the spontaneous creativity of individuals or groups
(Domb 2003). This is done by focusing on a problem in its basic form while
simultaneously understanding that this problem is rarely the actual problem to be solved.
TRIZ handles three basic problems: the technical conflict and physical contradiction
problem in which a solution creates another problem; the inventive problem where before
a problem is solved, the solution of the conflict must be resolved; and the creation of the
ideal machine/process in which something simplistic is constructed from a concept (Siem
1996).

17

The CPS is an “as-needed” problem solver for a generation of innovative solutions. The
process greatly increases the chances of creating useful and unique solutions to almost
any problem applied by groups or individuals. During the working process, combining
convergent and divergent thinking is used to generate numerous potential solutions, while
the user imagination is used freely to aid in the creation of innovative and working
solutions.

Another approach used by engineers is the innovation technology, IvT, approach. It
involves various tools for problem-solving, e.g., modeling, simulation, virtual reality,
data mining, artificial intelligence, rapid prototyping, high throughput chemistry, and
high throughput screening (Report_2 2004).

Other innovation tools include CREAX (Report_3 2005), Visual Mind (Report_4 2005),
and Pull Thinking (Report_5 2005).

Genetic algorithms (GAs) have been used to design new electronic circuits. In some cases
Gas have outperformed the circuitry designed by humans (Ando et al. 2003 and
Thompson et al. 1999). Some research, e.g., Deb (2003), suggests that genetic
algorithms can help discover “innovative principles” of designing.

It is expected that in the near future, evolutionary computation algorithms, will become
embedded in software and integrated with other systems to support innovation. The
ramification and use of the existing methodologies, e.g., group thinking and
brainstorming, will be better understood, and new progressive methodologies will be
developed.

Some of the drivers for the development of innovation science are:

• Innovation is the engine of the global economy, accounting for some 50% of the
economic growth (NIIR 2004).

• Innovation will mark the first economic revolution of the 21st century (Shah
2004).

• Innovation involves almost all aspects of life, yet the innovation process is not
well understood.

• Innovation applies to the creation of methods used in industry, including the
design of consumer goods and services.

• The increasing complexity of technologies, their interdependencies, and the
rapidly expanding volume of data call for a paradigm shift to be led by
innovation.

Innovation clearly belongs to Category 2 and 3 (Table 1).

4.2 Conceptual design
Conceptual design is the early stage of design where general notions of a product are
developed. To date no computer-based system has been developed that can actually
perform conceptual design. However, there are a number of systems that have been
proposed to assist human designers in this task. These systems generally involve
knowledge management in the areas of expected and desired function and behavior of
products. Conceptual design falls in Category 2 (Table 1).

18

Zhang et al. (2005) developed a graph and matrix representation for the functional design
of mechanical products. The system assists in performing design tasks that involve
reasoning about function and behavior of products. Berrais (2005) reported on a KBS
that is used as an interactive design tool for all stages of design and analysis of
earthquake resistant reinforced concrete buildings, paying special attention to the
preliminary stages, by imposing a predefined design methodology. Lina and Farahati
(2003) developed a KBS for assembly design of blade and shell assemblies that focuses
on the early stages of product development, before actual component shapes have been
determined. Experimental validation of two cases indicates satisfactory results.

Parmee and Bonham (2000) used evolutionary techniques for quick identification of
regions of complex design spaces that contain high-performance solutions. The results of
such searches stimulate human designers in an iterative process of solution space
refinement. Test results indicate that such an approach can stimulate innovation. Zavbi
and Duhovnik (2000) developed a KBS using physical laws to identify key behaviors in
technical systems and assists designers in establishing behavioral models of products
from their expected functions. The system uses the analytical hierarchy process (AHP)
methododolgy to select among possible physical laws, and a prescriptive design process.
Cvetkovic and Parmee (2002) used several types of agents (search agents, interface
agents, and information agents) to develop an evolutionary conceptual design system. A
special type of agent to capture preference was also developed to account for qualitative
and experiential knowledge of the designers.

Ming (2001) developed a computer-based system using inductive learning to semi-
automate concept design tasks. Ling et al. (2004) proposed case-based reasoning to
represent function spaces. Kryssanov et al. (2001) suggested that semiotics could
significantly improve our understanding of the creative process of designing and
developing an applicable computational theory.

4.3 Standardization
Standardization is the activity of developing uniform products or product components
that can be used in different settings. Standardization of products and components has
been discussed in the literature from different viewpoints. Because standardization
regards goal-attainment and optimization (e.g., lowering part counts, increasing
production runs), falls in Category 4 (Table 1).

Tarondeau (1998) discussed the impact of standardization on the number of components,
number of reference points to be managed, and the manufacturing complexity. Lee and
Tang (1997) developed a model optimizing the trade-off between the investment in
standardization and the profit due to the economy of scale. Erol (1999) proposed a
mathematical formulation for the standardization of low value components that was
solved by Dupont et al. (1999).

Fouque (1999) discussed different scenarios for the standardization of two components
(C1 and C2) into one (C), namely: an increase in the service level of component C1
and/or C2, a decrease in the correlation between the demand for C1 and C2, an increase
in the uncertainty of demand for C1 and/or C2, similar costs of the components C1 and
C2, and a low demand for the two components. Standardization aggregates the risk and

19

reduces the uncertainty of the standardized component C in respect to the uncertainty of
each component C1 and C2. In addition, the level of in-process inventory may be reduced
and the productivity and service level may increase (Dupont 1998).

Kota et al. (2000) proposed a measure that captures the level of commonality in a product
family, i.e., the potential of the part family to divide the elements and to reduce the total
number of parts. This measure allows the comparison of design alternatives. Thoteman
and Brandeau (2000) presented an approach for determining an optimum commonality
among sub-products from the customer differentiation view point. For highly diversified
products, standardization is not the best solution.

4.4 Modularity
A way to design products for highly diversified requirements is to apply modular design
methods. These methods are to direct designers towards products including functional
units (modules) that are often interchangeable and reusable over different products or
product variants.

Modules imply standard interfaces allowing for their use across different products. To
implement the modular design concept, it is necessary to partition a product into semi-
independent or mutually separable elements. It then becomes possible to design,
manufacture, and service the modules independently. The differentiation of products is
accomplished at the assembly stage by the selection of modules and their location in a
product (Agard and Kusiak 2004a).

Kusiak and Huang (1996, 1998) discussed modular design aimed at the production of a
wide variety of products at low cost. A matrix representation of the product allowed the
identification of modules sharing different characteristics. Numerous applications of the
product modular concept in are presented in Kusiak (1999) and the recent product design
engineering literature.

Product flexibility and the use of common components across various products are
important in modular design (Gertosio and Dussauchoy 2004). The flexibility of a
module (the number of its uses) depends on its functionality and the required standard
interfaces.

Prior research on modular design has emphasized consistency of the design process and
manufacturing. For example, the taboo search algorithm presented in Dupont et al.
(1999), aimed at the design of an assembly system for modular products. A modular
design methodology intended to produce a large variety of products at a low cost is
discussed in Erens and Verhulst (1997). Other examples of modular concepts are
presented in Gertosio and Dussauchoy (2004).

Modular design leads to a large number of different products using a limited number of
modular components. One aspect of product modularity, the design product families, has
been discussed in Martin (1999), Newcomb et al. (1998), Simpson (2000), Erens and
Verhulst (1997), Dahmus et al. (2001), Gonzalez-Zugasti et al. (1999), and Jiao and
Tseng (1999).

20

Modular process design with CI has been pursued in disciplines where processes are
inherent elements of products, such as in chemical and electrical engineering. Byrne and
Bogle (2000) used optimization methods to design modular chemical plant process
flowsheets. Similarly, Smayling et al. (1999) developed modularized process elements to
automate the design of electronic components.

Goel and Bhatta (2004) used design patterns as starting points to modularize design
activities involving analogical reasoning, and develop computable models of limited
domains based on their approach. Fensel et al (2003) reported on their Unified Problem-
Solving Method Description Language (UPML), which used modularized process
elements to implement reusable methods, applied to simple design problems.

Modularity is associated with Category 4 (Table 1).

4.5 Design of product families
While modularity (discussed above) treats the identification, specification, and design of
modules, a separate issue – design of product families – builds upon modularity concepts,
taking a more holistic perspective on product development. Like modular design,
product family belongs to Category 4 (Table 1).

To meet diversified product requirements, numerous strategies are available (Agard and
Kusiak 2004b). It is conceivable that a standardized product would satisfy many
customers, as well as the requirements of a single customer. A cost-based compromise
between these two strategies is of interest. Therefore single and multi-objective models
are of interest. Fellini et al. (2002) addressed performance losses of product families
with respect to individually designed products, arising from commonality constraints.
This is done by a user-specified performance loss tolerance on an optimization of choice
of components. Seepersad et al. (2002) based their multi-objective approach on a utility-
based compromise decision-support model.

Du et al. (2002) used graph-rewriting techniques to create hierarchies of graph schema
for different product families, which can provide an interactive environment for
customers to make choices among product offerings. Siddique and Rosen (2001) and
Corbett and Rosen (2004) developed constraint-based methods for combining design
configuration spaces that model design requirements for physical connections, module
partitions, and assembly sequences for product families. They also presented a new
designer-guided method, called the partitioning method, for decomposing configuration
design problems hierarchically to enable significant reductions in design space sizes.

The delayed product differentiation concept implies delaying the point of differentiation
of the product or the process (in which a product acquires its identity) (Lee and Tang
1997). The goal of the delayed product differentiation is to maximize the use of standard
elements and to push back, to the latest time possible, the point when each product differs
from another. Some authors, e.g., He et al. (1998), used the term postponement as a
synonym of delayed differentiation.

21

4.6 Design complexity management
To meet the customer needs, product diversity tends to grow over time and therefore a
suitable management strategy is needed. The cost of offering a large portfolio of products
should not exceed gains obtained by satisfying the customer needs. It is essential to
determine the level of diversity that minimizes the total cost (see Fig. 6).

The major challenge is how to offer a large diversity of products while managing a
limited diversity of components. Different approaches have been used to address this
challenge, e.g., standardization, modular design, design of product families, and product
delayed differentiation. Assemble-to-order is a policy that links modular design and
product delayed differentiation. According to this policy, modules are built from basic
parts and stocked, the final assembly is done after an order has been confirmed.

The large apparent diversity for the customers is enabled by a combinatorial association
of basic parts.

Figure 6. Product diversity cost (Tarondeau 1998).

The major component of diversity is not visible to the customers. It is actually created by
the evolution of components (changes in technology) or the creation of new versions
(product upgrades).

5. Conclusion
This paper has surveyed recent literature and generalized emerging concepts of
computational intelligence in product design engineering. The research covered in this
paper is being vigorously pursued and no survey as broad as this one could be complete.
Rather than considering all papers published, a representative “slice” of recent research
has been described. The reviewed literature indicates certain trends that are briefly
summarized next.

Some recent research combined multiple approaches to develop new tools. As the new
techniques become better-understood (e.g., CBR) they are used as building blocks upon
which more powerful systems are constructed. This is a characteristic of the area that
was not evident a decade ago.

Another somewhat paradoxical trend that can be observed is a tendency to include a
human in the “loop” of the intelligent system. This may be an indication that developing

Optimal product
diversity

Product diversity

 Products
 diversity
 function

Customer
satisfaction
function

Total cost function

22

totally autonomous and thinking software is not feasible (at least given the current
understanding of the computing science and the human mind). Usable intelligent systems
of systems involving humans are likely to emerge in time.

A third trend is the emergence of the www as a component of the computational
intelligence landscape. Whether by using Semantic Web technologies or just using
browsers as user interface tools, the Web continues to be a growing application platform.

The role of data, data analysis, knowledge extraction, and knowledge management in
product design engineering is gaining momentum. As sufficient volume of information
surrounding the design process will be captured, design may become process driven.
Dynamically induced knowledge and models could guide the design of innovative
artifacts.

Another conclusion one may draw is that there appears to be some correlation between
characteristics of corporate settings and the kinds of CI tools that could be most
beneficial in those settings (see Section 3.2). The authors have not gathered “hard” data
on this matter, but instead we suggest that it may be a fruitful avenue for future work.

Finally, evolutionary computation algorithms could pave way towards systems
supporting many of the frameworks reviewed in this paper, including increased
automation and enhanced innovation in product design engineering.

References
Agard, B. and A. Kusiak (2004a), Data mining for subassembly selection, ASME

Transactions: Journal of Manufacturing Science and Engineering, Vol. 126, No. 3,
2004, pp. 627-631.

Agard, B. and A. Kusiak (2004b), A data-mining based methodology for the design of
product families, International Journal of Production Research, Vol. 42, No. 15, pp.
2955-2969.

Aha, D.W. (1992), Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithms, International Journal of Man-Machine Studies, Vol. 36, No. 2,
pp. 267-287.

Albers, A. and J. Marz (2004), Restrictions of production on micro-specific product
development, Microsystems Technologies, Vol. 10, No. 3, pp. 205-210.

Allen, K. (2003), Bringing New Technology to Market, Prentice Hall, Upper Saddle
River, N.J.

Ando, S., Ishizuka, M., and H. Iba (2003), Evolving analog circuits by variable length
chromosomes, Advances in Evolutionary Computing: Theory and Applications,
ACM, pp. 643-662.

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S., and
B. Smolinski (1999), Toward a common component architecture for high-
performance scientific computing, Proceedings of High Performance Distributed
Computing Conference HPDC'99, www.cs.utah.edu/sci/publications.

Auer, P., Holte, R., and W. Maass (1995), Theory and application of agnostic PAC-
learning with small decision trees, in A. Prieditis and S. Russell, Eds, ECML-95:

23

Proceedings of 8th European Conference on Machine Learning, Springer Verlag, New
York.

Bäck, T. (1996), Evolutionary Algorithms in Theory and Practice, Oxford University
Press, New York.

Bentley, P.J., and J.P. Wakefield, (1995), The table: An illustration of evolutionary
design using genetic algorithms, Proceedings of the 1st IEE/IEEE Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications, Sep 12-14.

Benzhaf, W., Nordin, P., Keller, R.E., and F.D. Francone (1998), Genetic Programming;
An Introduction, Morgan Kaufmann, San Francisco, CA.

Berrais, A. (2005), A knowledge-based expert system for earthquake resistant design of
reinforced concrete buildings, Expert Systems with Applications, Vol. 28, No. 3, pp.
519-530.

Brown, D., Leal, D., McMahon, C., Crossland, R., J. Devlukia (2004), A web-enabled
virtual repository for supporting distributed automotive component development.
Advanced Engineering Informatics, Vol. 18, No. 3, pp. 173-190.

Byrne, R.P. and Bogle, I.D.L. (2000), Global optimization of modular process flowsheets,
Industrial and Engineering Chemistry Research, Vol. 39, No. 11, pp. 4296-4301.

Carbonell, J.G. (Ed.) (1990), Machine Learning: Paradigms and Methods, MIT Press,
Cambridge, MA.

Cascint, G. (2004), Plastics design: Integrating TRIZ creativity and semantic knowledge
portals, Journal of Engineering Design, Vol. 15, No. 4, pp. 405-424.

Chao, K-M., Laing, C., Anane, R., Younas, M., and P. Norman (2003), Multiple
evolutionary agents for decision support, Transactions of the Society for Design and
Process Science, Vol. 7, No. 2, pp. 39-56.

Chan, F.T.S., Jiang, B., and N.K.H. Tang (2000), Development of intelligent decision
support tools to aid the design of flexible manufacturing systems, International
Journal of Production Economics, Vol. 65, No. 1, pp. 73-84.

Chau, K.W. and F. Albermani (2004), Hybrid knowledge representation in a blackboard
KBS for liquid retaining structure design, Engineering Applications of Artificial
Intelligence, Vol. 17, No. 1, pp. 11-18.

Child, P., Diederichs, R., Sanders, F.-H., and S. Wisniowski (1991), The management of
complexity, Sloan Management Review, Fall, pp. 73-80.

Chiu, M-L, (2003), Design moves in situated design with case-based reasoning, Design
Studies, Vol. 24, No. 1, pp. 1-25.

Cho, S.-B. (2002), Towards creative evolutionary systems with interactive genetic
algorithm, Applied Intelligence, Vol. 16, No. 2, pp. 129-138.

Clark, P. and R. Boswell (1989), The CN2 induction algorithm, Machine Learning, Vol.
3, No. 4, pp. 261-283.

Coello, C.A.C. (1999), A comprehensive survey of evolutionary-based multiobjective
optimization techniques, Knowledge and Information Systems, Vol. 1, No. 3, pp. 269-
308.

Corbett, B., and Rosen, D.W., (2004), A configuration design based method for platform
commonization for product families, AIEDAM, Vol. 18, No. 1, pp. 21-39.

Cox, S. (2003), Semantic support for grid-enabled design search in engineering,
Proceedings GGF9 Semantic Grid Workshop, Chicago, USA.

Cvetkovic, D. and I. Parmee (2002), Agent-based support within an interactive
evolutionary design system, AIEDAM, Vol. 16, No. 5, pp. 331-342.

24

Dahmus, J.B., J.P. Gonzalez-Zugasti, and K. Otto (2001), Modular product architecture,
Design Studies, Vol. 22, pp. 409-424.

Danesh, M.R., and Y. Jin (2001), An agent-based decision network for concurrent
engineering design, Concurrent Engineering: Research and Applications, Vol. 9, No.
1, pp. 37-47.

Daupert, D. (2005), The Osborne-Parnes Creative Problem Solving Process Manual,
http://www.ideastream.com/create.

Deb, K. (2003), Unveiling innovative design principles by means of multiple conflicting
objectives, Engineering Optimization, Vol. 35, No. 5, pp 445-470,

Domingos, P. and M. Pazzani (1996), Beyond independence: conditions for the
optimality of the simple Bayesian classifier, Machine Learning: Proceedings of the
Thirteenth International Conference, Morgan Kaufmann, Los Altos, CA, pp. 105-
112.

Du, X., Jiao, J., and M.M. Tseng (2002), Product family modeling and design support:
An approach based on graph rewriting systems, AIEDAM, Vol. 16, No. 2, pp. 103-
120.

Dupont, L. (1998), La Gestion Industrielle: Concepts et Outils, Hermès, Paris, France.
Dupont, L., Erol, M., Cormier, G., and N. Turkkan (1999), La standardisation des

composants: modèles et algorithmes, 3ème Congrès International de Génie
Industriel, Montréal, Canada, May, pp. 671-680.

Eiben, A.E. and T. Bäck (1997), Empirical investigation of multiparent recombination
operators in evolution strategies, Computational Intelligence, Vol. 5, No. 3, pp. 347-
365

Erens, F. and K. Verhulst (1997), Architectures for product families, Computers in
Industry, Vol. 33, pp. 165-178.

Erol, M. (1999), Prise en compte de la flexibilité dans la planification dynamique, Ph.D.
Thesis, Institut National Polytechnique de Grenoble, France.

Fellini, R., Kokkolaras, M., Papalambros, P.Y., and Perez-Duarte, A. (2002) Platform
selection under performance loss constraints in optimal design of product families,
ASME Design Engineering Technical Conferences, paper DETC2002/DAC-34099.

Fensel, D., Musen, M., Plaza, E., Schreiber, G., Studer, R., Wielinga, B., Motta, E., van
Harmelen, F., Benjamins, V.R., Crubezy, M., Decker, S., Gaspari, M., Groenboom,
R., and Grosso, W. (2003) The unified problem-solving method development
language UPML, Knowledge and Information Systems, Vol. 5, No. 1, pp. 83-131.

Fonseca, C.M. and P.J. Fleming (1995), An overview of evolutionary algorithms in
multiobjective optimization, Evolutionary Computation, Vol. 3, No. 1, pp. 1-16.

Forouraghi, B. (2000), A genetic algorithm for multiobjective robust design, Applied
Intelligence, Vol. 12, No. 3, pp. 151-161.

Fouque, T. (1999), A la recherche des produits flexibles, Revue Française de Gestion,
mars-avril-mai, No. 123, pp. 80-87.

Fowler, D. W., Sleeman, D., Wills, G., Lyon, T. and D. Knott (2004), The designers'
workbench: Using ontologies and constraints for configuration, Proc. 24th SGAI
International Conference on Innovative Techniques and Applications of Artificial
Intelligence, Queens' College, Cambridge, UK.

Gertosio, C. and A .Dussauchoy (2004), Knowledge discovery from industrial databases,
Journal of Intelligent Manufacturing, Vol. 15, pp. 29-37.

Giess, M.D., Culley, S.J., and A. Shepherd (2002), Informing Design Using Data Mining
Methods, Proceedings of the ASME DETC Conference, Montreal, Canada.

25

Goel, A.K. and Bhatta, S.R. (2004), Use of design patterns in analogy-based design,
Advanced Engineering Informatics, Vol. 18, pp. 85-94.

Gonzalez-Zugasti, J., Otto, K. and J. Baker (1999), Assessing value for product family
design and selection, Proceedings of the 25th ASME Design Automation Conference,
Las Vegas, Nevada, September, pp. 12-15.

Gruber, T. (1992), Ontolingua: A mechanism to support portable ontologies, Technical
Report KSL91-66, Knowledge Systems Laboratory, Stanford University, Stanford,
CA.

Gruninger, M., Atefi, K., and M.S. Fox (2000), Ontologies to support process integration
in enterprise engineering, Computational and Mathematical Organization Theory,
Vol. 6, No. 4, pp. 381-394.

Hamburg, L. (2004), Improving Computer supported Environment Friendly product
Development by Analysis of Data, Proceedings of the 2nd European Conference on
Intelligent Systems and Technologies Conference, Iasi, Romania.

Hawley, R.S. and C.A. Mori (1999), The Human Genome: A User’s Guide, Academic
Press, San Diego, CA.

He, D.W., A. Kusiak, and T.L. Tseng (1998), Delayed product differentiation: A design
and manufacturing perspective, Computer-Aided Design, Vol. 30, No. 2, pp. 105-113.

Horn, J., Goldberg, D.E., and K. Deb (1994), Implicit niching in a learning classifier
system: Nature’s way, Evolutionary Computation, Vol. 2, No. 1, pp. 37-66.

Huang, C.C. and Kusiak, A. (1998), Modularity in design of products and systems, IEEE
Transactions on Systems, Man and Cybernetics, Part A, Vol. 28, No. 1, pp. 66-77.

Iba, H., deGaris, H., and T. Sato (1995), A numerical approach to genetic programming
for system identification, Evolutionary Computation, Vol. 3, No. 4, pp. 417-452.

Inmon, W.H., Terdeman, R.H., and C. Imhoff (2000), Exploration Warehousing: Turning
Business Information into Business Opportunity, John Wiley, New York.

Ishino, Y. and Y. Jin (2001), Data Mining and Knowledge Acquisition in Engineering
Design, in Data Mining for Design and Manufacturing: Methods and Applications,
Braha, D. (Ed), Kluwer, Norwell, MA, pp. 145-160.

Jiao, J. and M. Tseng (1999), A methodology of developing product family architecture
for mass customization, Journal of Intelligent Manufacturing, Vol. 10, pp. 3-20.

Karnopp, D.C., Margolis, D.L., and R.C. Rosenberg (1990), System Dynamics: A Unified
Approach, John Wiley, New York.

Karray, F.O. and C.W. De Silva (2004), Soft Computing and Intelligent Systems Design:
Theory, Tools and Applications, Addison Wesley, New York.

Kitamura, Y., Kashiwase, M., Fuse, M., and R. Mizoguchi (2004), Deployment of an
ontological framework of functional design knowledge, Advanced Engineering
Informatics, Vol. 18, No. 2, pp. 115-127.

Kosanke, K. and J.G. Nell (Eds) (1997), Enterprise Engineering and Integration,
Springer, New York.

Kostoff, R.N. (2003), Role of technical literature in science and technology development
and exploitation, Journal of Information Science, Vol. 29, No. 3, pp. 223-228.

Kota, S., Sethuraman, K., and R. Miller (2000), A metric for evaluating design
commonality in product families, ASME Transactions: Journal of Mechanical
Design, Vol. 122, pp. 403-410.

Koza, Z. (1992), Genetic Programming, MIT Press, Cambridge, MA.

26

Kryssanov, V.V., Tamaki, H., and S. Kitamura (2001), Understanding design
fundamentals: how synthesis and analysis drive creativity, resulting in emergence,
Artificial Intelligence in Engineering, Vol. 15, No. 4, pp. 329-342.

Kusiak, A. (1999), Engineering Design: Products, Processes and Systems, Academic
Press, San Diego, CA.

Kusiak, A. (2000), Computational Intelligence in Design and Manufacturing, John
Wiley, New York.

Kusiak, A. and C.C. Huang (1996), Development of modular products, IEEE
Transactions on Components, Packaging, and Manufacturing Technology, Part A,
Vol. 19, No. 4, pp. 523-538.

Kusiak, A., Kernstine, K.H., Kern, J.A., McLaughlin, K.A., and T.L. Tseng (2000), Data
Mining: Medical and Engineering Case Studies, Industrial Engineering Research
Conference, Cleveland, Ohio.

Leake, D.B., and D.C. Wilson (2001), A case-based framework for interactive capture
and reuse of design knowledge, Applied Intelligence, Vol. 14, No. 1, pp. 77-94.

Lee, K.S. and C. Luo (2002), Application of case-based reasoning in die-casting die
design, International Journal of Advanced Manufacturing Technology, Vol. 20, No.
4, pp. 284-295.

Lee, H.L. and C.S. Tang (1997), Modeling the costs and benefits of delayed product
differentiation, Management Science, Vol. 43, No. 1, p. 40-53.

Lim, T.-S., Loh, W.-Y., and Y.-S. Shih (2000), A comparison of prediction accuracy,
complexity, and training time of thirty-three old and new classification algorithms,
Machine Learning, Vol. 40, pp. 203-228.

Lin, C-Y.I. and C-S. Ho (1999), A generic ontology-based approach for requirement
analysis and its application in network management software. AIEDAM, Vol. 13, No.
1, pp. 37-61.

Lina, Y.J., and R. Farahati (2000), Optimum assembly design utilizing a behavioral
modeling concept, Assembly Automation, Vol. 23, No.2, pp. 181-191.

Ling, W., Yan, J., Wang, J., and Y. Xie (2004), Case-based conceptual design, Chinese
Journal of Mechanical Engineering (English Edition), Vol. 17, No. 1, pp. 73-77.

Lohn, J.D. and S.P. Colombano (1999), A circuit representation technique for automated
circuit design, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 3, pp.
205-219.

Lou, Z., Jiang, H., and X. Ruan (2004), Development of an integrated knowledge-based
system for mold-base design, Journal of Materials Processing Technology, Vol. 150,
No. 1-2, pp. 194-199.

MacDuffie, J.-P., Sethuraman, K., and M.-L. Fisher (1996), Product variety and
manufacturing performance: Evidence from the international automotive assembly
plant study, Management Science, Vol. 42, No. 3, pp. 350-369.

Marling, C., Sqalli, M., Rissland, E., Munoz-Avila, H., and D. Aha (2002), Case-based
reasoning integrations, AI Magazine, Spring Issue, pp. 69-86.

Martin, M.V. (1999), Design for variety: A methodology for developing product platform
architectures, Ph.D. Thesis, Stanford University, Stanford, CA.

Michalewicz, Z. and M. Schoenauer (1996), Evolutionary algorithms for constrained
parameter optimization problems, Evolutionary Computation, Vol. 4, No. 1, pp. 1-32.

Ming, X.T., (2001), Inductive learning techniques in design process: A design concept
learning system, Integrated Computer-Aided Engineering, Vol. 8, No. 2, pp. 171-186.

27

Morcous, G., Rivard, H., and A.M. Hanna (2002), Case-Based Reasoning System for
Modeling Infrastructure Deterioration, Journal of Computing in Civil Engineering,
Vol. 16, No. 2, pp. 104-114.

Moriarty, D.E. and R. Miikkulainen (1998), Forming neural networks through efficient
ad adaptive coevolution, Evolutionary Computation, Vol. 5, No. 4, pp. 373-399.

Murthy, S.K. and S. Salzberg (1994), A system for the induction of oblique decision
trees, Journal of Artificial Intelligence Research, Vol. 2, No. 1, pp. 1-33.

Mussi, S., (2004), Putting value of information theory into practice: a methodology for
building sequential decision support systems, Expert Systems, Vol. 21, No. 2, pp. 92-
103.

Newcomb, P.J., B. Bras, D.W. Rosen (1998), Implications of modularity on product
design for the life cycle, ASME Transactions: Journal of Mechanical Design, Vol.
120, No. 3, pp. 483-490.

NIIR (2004), Innovate America, Council for Competitiveness, National Innovation
Initiative Report.

Nursel, Ö. (2003), Use of genetic algorithm to design optimal neural network structure,
Engineering Computations, Vol. 20, No. 8, pp. 979-997.

Olafsson, S. (1996), Resource allocation as an evolving strategy, Evolutionary
Computation, Vol. 4, No. 1, pp. 33-55.

Parmee, I.C. and C.R. Bonham (2000), Towards the support of innovative conceptual
design through interactive designer/evolutionary computing strategies, AIEDAM, Vol.
14, No. 1, pp. 3-16.

Pisan, Y., (1998), An integrated architecture for engineering problem solving, Doctoral
dissertation, Northwestern University, Evanston, IL.

Pokojski, P., Okapiec, M., and G. Witkowski (2002), Knowledge-based engineering,
design history storage, and case-based reasoning on the basis of car gear box design,
Proceedings of the Conference on Artificial Intelligence Methods, Gliwice, Poland.

Qin, X., and Regli, W.C., (2003), A study in applying case-based reasoning to
engineering design: mechanical bearing design, AIEDAM, Vol. 17, No. 3, pp. 235-
252.

Report_1 (2003), Cheskin and Fitch: Worldwide, Fast, Focused & Fertile: The
Innovation Evolution.

Report_2 (2004), Dodgeson, Gann and Salter, Industrial Dynamics, Innovation and
Development, Elsinore, Denmark.

Report_3 (2005), The CREAX Innovation Suite 3.1,
http://www.creax.com/tools.htm.

Report_4 (2005), Visual Mind, http://www.visual-mind.com.
Report_5 (2005), Pull Thinking, http://www.pullthinking.com.
Rivard, H. and S.J. Fenves (2000), SEED-Config: A case-based reasoning system for

conceptual building design, AIEDAM, Vol. 14, pp. 415-430.
Romanowski, C.J. and R. Nagi (2001), A Data Mining for Knowledge Acquisition in

Engineering Design, in Data Mining for Design and Manufacturing: Methods and
Applications, Braha, D. (Ed.), Norwell, Boston, MA, pp. 161-178.

Rosenman, M. (2000), Case-based evolutionary design, AIEDAM, Vol. 14, No.1, pp. 17-
29.

Schuh, G., Ley, W., Gruenenfelder, M.P., and A.P. Hofer (2000), The potential for
product family management based on product platform concepts, in S. Sivaganathan

28

and P.T. Andrews (Eds), Design for Excellence, Professional Engineering Publishing,
London, UK, pp. 601-611.

Schweitzer, F., Rosé, H., Ebeling, W., and O. Weiss (1997), Optimization of road
networks using evolutionary strategies, Evolutionary Computation, Vol. 5, No. 4, pp.
419-438.

Scott, W. and S.C. Cook (2004), A requirements assessment architecture that combines
natural language parsing and artificial intelligence, Proc 14th Annual Symposium of
the International Council on Systems Engineering, Toulouse, Paper Number 6.1.3.

Siem, P. (1996), An Introduction to TRIZ: A Revolutionary New Product Development
Tool, Visions, January.

Seepersad, C.C., Mistree, F., and J.K. Allen (2002), A quantitative approach for
designing multiple product platforms for an evolving portfolio of products, ASME
Design Engineering Technical Conferences, Paper DETC2002/DAC-34096.

Sgouros, N., (1998), Interaction between physical and design knowledge in design from
physical principles, Engineering Applications of Artificial Intelligence, Vol. 11, pp.
449- 459.

Shah, J. (2004), Engineering Design in 2030: An NSF Strategic Planning Workshop,
(Workshop Chair: J. Shah), http://dal.asu.edu/engdesign/index.html.

Siddique, Z. and D.W. Rosen (2001), On combinatorial design spaces for the
configuration design of product families, AIEDAM, Vol. 15, No. 2, pp. 91-108.

Sim, S.K. and Y.W. Chan (1992), A knowledge-based expert system for rolling-element
bearing selection in mechanical engineering design, Artificial Intelligence in
Engineering, Vol. 6, No. 3, pp. 125-135.

Simpson, T.W., J.-R.A. Maier, and F. Mistree (2000), Product platform design: Method
and application, Research in Engineering Design, Vol. 13, pp. 2-22.

Smayling, M., Rodriguez, J., Young, A. and Ichiro, F. (1999), Process synthesis using
TCAD: a mixed-signal case study, IEICE Transactions on Electronics, Vol. E82-C,
No. 6, pp. 983-991.

Stacey, M., Clarkson, P.J., and C. Eckert (2000), Signposting: an AI approach to
supporting human decision making in design, Proceedings of the ASME Computers in
Engineering Conference, Paper CIE-14617.

Stahovich, T.F., Davis, R., H. Shrobe (2000), Qualitative rigid-body dynamics, Artificial
Intelligence, Vol. 119, No. 1-2, pp. 19-60.

Soule, T. and J.A. Foster (1998), Effects of code growth and parsimony pressure on
populations in genetic programming, Evolutionary Computation, Vol. 6, No. 4, pp.
293-309.

Tarondeau, J.C. (1998), Stratégie Industrielle (2nd Edition), Collection Gestion, Vuibert,
France.

Terpenny, J.P., Strong, S., and J. Wang (2000), A methodology for knowledge discovery
and classification, Proceedings of the Tenth Flexible Automation and Intelligent
Manufacturing Conference, June, College Park, MD.

Thompson, A., Layzell, P., and R.S. Zebulum (1999), Exploration in design space:
Unconventional electronics design through artificial evolution, IEEE Transactions on
Evolutionary Computation, Vol. 3, No. 2, pp. 167-196.

Thonemann, U.W. and M. Brandeau (2000), Optimal commonality in component design,
Operations Research, Vol. 48, No. 1, pp. 1-19.

29

Tor, S.B., Britton, G.A., and W.Y. Zhang (2003), Indexing and Retrieval in Metal
Stamping Die Design Using Case-based Reasoning, ASME Transactions : Journal of
Computing and Information Science in Engineering, Vol. 3, No. 4, pp. 353-362.

Tormey, D., Chira, O., Chira, C., Brennan, A., and T. Roche (2003), The Use of
Ontologies for Defining Collaborative Design Processes, Proceedings of the 32nd
International Conference on Computers and Industrial Engineering, University of
Limerick, UK.

Tsumoto, S. (2000), Automated discovery of positive and negative knowledge in clinical
databases, IEEE Engineering in Medicine and Biology, Vol. 19, No. 4, pp. 56-62.

Van Veldhuizen, D.A. and G.B. Lemont (2000), Multiobjective evolutionary algorithms:
Analyzing the state-of-the-art, Evolutionary Computation, Vol. 8, No. 2, pp. 125-147.

Vong, C.M., Leung, T.P., and P.K. Wong (2002), Case-based reasoning and adaptation in
hydraulic production machine design, Engineering Applications of Artificial
Intelligence, Vol. 15, No. 6, pp. 567-585.

Weld, D.S. and J. de Kleer, Eds. (1989), Readings in Qualitative Reasoning About
Physical Systems, Morgan Kaufmann, Los Altos, CA.

Yao, X., Liu, Y., and G. Lin (1999), Evolutionary programming made easier, IEEE
Transactions on Evolutionary Computation, Vol. 3, No. 2, pp. 82-102.

Yoshioka, M., Umeda, Y., Takeda, H., Shimomura, Y., Nomaguchi, Y., and T.
Tomiyama (2004), Physical concept ontology for the knowledge intensive
engineering framework. Advanced Engineering Informatics, Vol. 18, No. 2, pp. 95-
113.

Zadeh, L. (1976), A fuzzy-algorithmic approach to the definition of complex or imprecise
concepts, International Journal of Man-Machine Studies, Vol. 8, pp. 249-291.

Zakarian, A. and A. Kusiak (2000), Analysis of process models, IEEE Transactions on
Electronic Packaging Manufacturing, Vol. 23, No. 2, pp. 137-147.

Zavbi, R. and J. Duhovnik (2000), Conceptual design of technical systems using
functions and physical laws, AIEDAM, Vol. 14, No. 1, pp. 69-83.

Zhang, B.-T. and H. Muehlenbein (1995), Balancing accuracy and parsimony in genetic
programming, Evolutionary Computation, Vol. 3, No. 1, pp. 17-38.

Zhang, W.Y., Tor, S.B., and G.A. Britton (2004), A Hybrid Intelligent System for
Stamping Process Planning in Progressive Die Design, Innovation in Manufacturing
Systems and Technology (IMST) Report, MIT,
http://hdl.handle.net/1721.1/3905.

Zhang, W.Y., Tor, S.B., and G.A. Britton (2005), A graph and matrix representation
scheme for functional design of mechanical products, International Journal of
Advanced Manufacturing Technology, Vol. 25, No. 3-4, pp. 221-232.

