
A Logic of Actions Revisited

Yilan Gu
Dept. of Computer Science

University of Toronto
10 King’s College Road

Toronto, ON, M5S 3G4, Canada
Email: yilan@cs.toronto.edu

Mikhail Soutchanski
Department of Computer Science

Ryerson University
245 Church Street, ENG281

Toronto, ON, M5B 2K3, Canada
Email: mes@scs.ryerson.ca

Abstract

We propose a theory for reasoning about actions
based on order-sorted predicate logic where one
can consider an elaborate taxonomy of objects. We
are interested in the projection problem: whether
a statement is true after executing a sequence of
actions. To solve it we design a regression oper-
ator that takes advantage of well-sorted unification
between terms. We show that answering projec-
tion queries in our logical theories is sound and
complete with respect to that of in Reiter’s basic
action theories. Moreover, we demonstrate that
our regression operator based on order-sorted logic
can provide significant computational advantages
in comparison to Reiter’s regression operator.

1 Introduction
In his influential paper[Hayes, 1971] titled “A Logic of Ac-
tions”, Pat Hayes proposed an outline of a logical theory
for reasoning about actions based on many-sorted logic with
equality. His paper inspired subsequent work on many-sorted
logics in AI. In particular, A. Cohn[Cohn, 1987; 1989] de-
veloped expressive many-sorted logic and reviewed all previ-
ous work in this area. Reasoning about actions based on the
situation calculus has been extensively developed in[Reiter,
2001]. However, he considers a logical language with sorts
for actions, situations and just one catch-all sortObject for
the rest that remains unelaborated. Surprisingly, even if the
idea proposed by Hayes seems straightforward, there is still
no formal study of logical and computational properties of a
version of the situation calculus with many related sorts for
objects in the domain. Perhaps, this is because mathematical
proofs of these properties are not straightforward. We under-
take this study and demonstrate that reasoning about actions
with elaborated sorts has significant computational advan-
tages in comparison to reasoning without them. In contrast
to an approach to many-sorted reasoning[Schmidt, 1938;
Wang, 1952; Herbrand, 1971] where variables of different
sorts range over unrelated universes, we consider a case when
sorts are related to each other, so that one can construct an
elaborated taxonomy. This is often convenient for represen-
tation of common-sense knowledge about a domain.

Generally speaking, we are usually interested in a compre-
hensive taxonomic structure for sorts, where sorts may in-

herit from each other and may have non-empty intersections.
Hence, we consider formulating the situation calculus in an
order-sorted (predicate) logic to describe taxonomic informa-
tion about objects. We are interested in the projection prob-
lem (whether a statement is true after executing a sequence
of actions) and we would like to use regression to solve this
problem[Reiter, 2001]. Note that even if both many-sorted
logic and order-sorted logic can be translated to unsorted,us-
ing order-sorted logic can bring about significant computa-
tional advantages, for example in deduction. This was a pri-
mary driving force for[Walther, 1987] and[Cohn, 1987]. We
show that regression in order-sorted SC can benefit from well-
sorted unification. One can gain computational efficiency by
terminating regression steps earlier when objects of incom-
mensurable sorts are involved.

It is well-known thatPDDL supports typed (sorted) vari-
ables and many implemented planners can take advantage of
types [Ghallabet al., 1998]. However, to the best of our
knowledge, there is no formal logical foundation for sorted
reasoning in planning domains. This paper can be considered
as a step towards providing this foundation.

2 Background
In general, order-sorted logic (OSL)[Oberschelp, 1962;
1990; Walther, 1987; Schmidt-Schauβ, 1989; Bierleet al.,
1992; Weidenbach, 1996] restricts the domain of variables to
subsets of the universe (i.e.,sorts). Notationx :Q means that
variablex is of sortQ andVQ is the set of variables of sort
Q. For anyn, sort cross-productQ1×· · ·×Qn is abbreviated
as ~Q1..n; term vectort1, . . . , tn is abbreviated as~t1..n; vari-
able vectorx1, . . . , xn is abbreviated as~x1..n; and, variable
declaration sequencex1 : Q1, . . . , xn : Qn is abbreviated as
~x1..n : ~Q1..n.

A theory in OSL always includes a set of declarations
(calledsort theory) to describe the hierarchical relationships
among sorts and the restrictions on ranges of the arguments
of predicates and functions. In particular, a sort theoryT
includes a set ofterm declarationsof the form t : Q repre-
senting that termt is of sortQ, subsort declarationsof the
form Q1 ≤Q2 representing that sortQ1 is a (direct) subsort
of sortQ2 (i.e., every object of sortQ1 is also of sortQ2),
andpredicate declarationsof the formP : ~Q1..n representing
that thei-th argument of then-ary predicateP is of sortQi

for i = 1..n. A function declarationis a special term dec-

laration where termt is a function with distinct variables as
arguments: for eachn-ary functionf , the abbreviation of its
function declaration is of the formf :Q1..n→Q, whereQi is
the sort of thei-th argument off andQ is the sort of the value
of f . c :Q is a special function declaration, representing that
constantc is of sortQ. Arguments of equality “=” can be of
any sort. Below, we consider afinite simplesort theory only,
in which there are finitely many sorts and declarations, the
term declarations are all function declarations, and for each
function there is one and only one declaration.

For any sort theoryT , subsort relation≤T is a partial or-
dering defined by the reflexive and transitive closure of the
subsort declarations. Then, following the standard terminol-
ogy of lattice theory, if each pair of sort symbols inT has
greatest lower bound (g.l.b.), then we say thatthe sort hi-
erarchy ofT is a meet semi-lattice[Walther, 1987]. More-
over, awell-sorted term(wrt T) is either a sorted variable,
or a constant declared inT , or a functional termf(~t1..n), in
which eachti is well-sorted and the sort ofti is a subsort of
Qi, given thatf : ~Q1..n → Q is in T . A well-sorted atom
(wrt T) is an atomP (~t1..n) (can bet1 = t2), where eachti
is a well-sorted term of sortQ′

i, andQ′
i ≤T Qi, given that

P : ~Q1..n is in T . A well-sorted formula(wrt T) is a formula
in which all terms (including variables) and atoms are well-
sorted. Any term or formula that is not well-sorted is called
ill-sorted. A well-sorted substitution(wrt T) is a substitu-
tion ρ s.t. for any variablex :Q, ρx (the result of applyingρ
to x) is a well-sorted term and its sort is a (non-empty) sub-
sort ofQ. Given any setE = {(t1,1, t1,2), . . . , (tn,1, tn,2)},
where eachti,j (i = 1..n, j = 1..2) is a well-sorted term, a
well-sorted most general unifier(well-sorted mgu) ofE is a
well-sorted substitution that is an mgu ofE. It is important
that in comparison to mgu in unsorted logic (i.e., predicate
logic without sorts), mgu in OSL can include new weakened
variables of sorts which are subsorts of the sorts of unified
terms. For example, assume thatE = {(x, y)}, x ∈ VQ1

,
y ∈VQ2

and the g.l.b. of{Q1, Q2} is a non-empty sortQ3.
Then,µ = [x/z, y/z] (x is substituted byz, y is substituted
by z) for some new variablez ∈ VQ3

is a well-sorted mgu
of E. Well-sorted mgu neither always exists nor it is unique.
However, it is proved that the well-sorted mgu of unifiable
sorted terms is unique up to variable renaming when the sort
hierarchy ofT is a meet semi-lattice[Walther, 1987].

The semantics of OSL is defined similar to unsorted logic.
Note that the definition of interpretations for well-sorted
terms and formulas is the same as in unsorted logic, but the
semantics is not defined for ill-sorted terms and formulas. For
any well-sorted formulaφ, a T -interpretationI = 〈M, I〉
is a tuple for a structureM and an assignmentI from the
set of free variables to the universeU of M, s.t. it satis-
fies the following conditions: (1) For each sortQ, QI is a
subset of the whole universeU. In particular,⊤I = U,
⊥I = ∅, andQI

1 ⊆ QI

2 for anyQ1 ≤T Q2. (2) For any
predicate declarationP : ~Q1..n, P I ⊆ QI

1×· · ·×QI

n is a re-
lation inM. (3) For any function declarationf : ~Q1..n →Q,
f I : QI

1×· · ·×QI

n →QI is a function inM. (4) xI = I(x)
is in QI for any variablex ∈ VQ, cI ∈ QI for any constant

declarationc : Q, and(f(~t1..n))I
def
= f I(tI1, . . . , t

I

n) for any
well-sorted termf(~t1..n). I is not defined for ill-sorted terms

and formulas. (5) IfT includes a declaration for equality
symbol “=”, then=I must be defined as set{(d, d) | d∈U},
i.e., the equality symbol is interpreted by the identity relation
on the whole universe. For any sort theoryT and a well-
sorted formulaφ, a structureM is aT -modelof φ, written as
M |=os

T φ iff for everyT -interpretationI=〈M, I〉, I satisfies
φ. In particular, whenφ is a sentence, this does not depend on
any variable assignment andI=M. Moreover, we say that a
T -interpretationI = 〈M, I〉 satisfiesφ, written asI |=os

T φ,
if the following conditions (1-7) hold: (1)I |=os

T P (~t1..n)
iff (tI1, . . . , t

I

n) ∈ P I. (2) I |=os
T ¬φ iff I |=os

T φ does not
hold. (3) I |=os

T φ1 ∧ φ2 iff I |=os
T φ1 and I |=os

T φ2. (4)
I |=os

T φ1 ∨ φ2 iff I |=os
T φ1 or I |=os

T φ2. (5) I |=os
T φ1 ⊃ φ2

iff I |=os
T ¬φ1 ∨ φ2. (6) I |=os

T ∀x :Q.φ iff for every d∈QI,
I |=os

T φ[x/d], whereφ[x/o] represent the formula obtained
by substitutingx with o. (7) I |=os

T ∃x : Q.φ iff there is
somed ∈ QI s.t. I |=os

T φ[x/d]. Given a sort theoryT as
the background, a theoryΦ including well-sorted sentences
only satisfies a well-sorted sentenceφ, written asΦ |=os

T φ,
iff every model ofΦ is a model ofφ.

Note that we follow traditional approaches to sorted rea-
soning, where sort symbols must not occur as predicates in
the formulas and there is the closed world assumption about
sorts. Alternative approaches, called hybrid, allow to mix
sort symbols with application specific predicates (see[Wei-
denbach, 1996; Cohn, 1989; Bierleet al., 1992]).

Due to the space limitations, we skip the background of the
situation calculus. Details can be found in[Reiter, 2001] and
we refer to this language as Reiter’s situation calculus below.
Note that in this paper, we use|=os

T to represent the logical
entailment wrt a sort theoryT in order-sorted logic,|=ms to
represent the logical entailment in Reiter’s situation calculus
(a many-sorted logic with one standard sortObject), and|=fo

to represent the logical entailment in unsorted predicate logic.

3 An Order-Sorted Situation Calculus
In this paper, we consider a modified situation calculus based
on order-sorted logic, calledorder-sorted situation calculus
and denoted asLOS below. LOS includes a set of sorts
Sort = Sortobj ∪ {⊤,⊥, Act, Sit}, where⊤ represents the
whole universe,⊥ is the empty sort,Act is the sort for all ac-
tions,Sit is the sort for all situations, andSortobj is a set of
sub-sorts ofObject including sortObject itself. We assume
that for every sort (except⊥) there is at least one ground term
(constant) of this sort to avoid the problem with “empty sorts”
[Goguen and Meseguer, 1987]. Moreover, the number of in-
dividual variable symbols of each sort inSort is infinitely
countable. For the sake of simplicity, we do not consider
functional fluents here.

In the following, we will defineorder-sorted basic action
theories(order-sorted BATs) and consider dynamical systems
that can be described using such order-sorted BATs. An
order-sorted BATD = (TD,D) includes the following two
parts of theories.
• TD is a sort theory based on a finite set of sortsQD s.t.
QD ⊆ Sort and{⊥,⊤, Object, Act, Sit} ⊆ QD. Moreover,
the sort theory includes the following declarations for finitely
many predicates and functions:
1. Subsort declarations of the formQ1 ≤ Q2 for Q1, Q2 ∈

QD − {⊤, Act, Sit}, and subsort declarations:Object≤⊤,
Act ≤ ⊤, Sit ≤ ⊤. ⊥ ≤ Act, ⊥ ≤ Sit. Here, we only
consider those sort theories whose sort hierarchies are meet
semi-lattices.
2. One and only one predicate declaration of the formF :
~Q1..n for eachn-ary relational fluentF in the system, where
Qi≤T Object andQi 6=⊥ for i=1..(n−1), andQn is Sit.
3.One and only one predicate declaration for the special pred-
icatePoss, that is,Poss :Act×Sit.
4. One and only one predicate declaration of the formP :
~Q1..n for eachn-ary situation independent predicateP in the
system, whereQi≤T Object andQi 6=⊥ for i=1..n.
5. A special declaration for equality symbol= : ⊤×⊤.
6. One and only one function declaration of the formA :
~Q1..n →Act for eachn-ary action functionA in the system,
whereQi ≤T Object andQi 6= ⊥ for i = 1..n. Note that,
whenn = 0, the declaration is of formA : Act for constant
action functionA.
7. One and only one function declaration of the formf :
~Q1..n → Qn+1 for eachn-ary (n ≥ 0) situation indepen-
dent functionf (other than action functions), where each
Qi ≤T Object andQi 6= ⊥ for eachi = 1..(n+1). Note
that, whenn = 0, it is a function declaration for a constant,
denoted asc :Q for constantc of sortQ.
8. One and only one function declarationdo :Act×Sit→Sit,
andS0 :Sit for the initial situationS0.
• D is a set of axioms represented using well-sorted sen-
tences wrtTD, which includes the following subsets of ax-
ioms.
1. Foundational axiomsΣ for situations, which are the same
as those in[Reiter, 2001].
2. A setDuna of unique name axioms for actions: for any
two distinct action function symbolsA andB with declara-
tionsA : ~Q1..n→Act andB : ~Q′

1..m→Act, we have
(∀~x1..n : ~Q1..n, ~y1..m : ~Q′

1..m). A(~x1..n) 6= B(~y1..m)

Moreover, for each action function symbolA, we have

(∀~x1..n : ~Q1..n, ~y1..n : ~Q1..n). A(~x1..n)=A(~y1..n)⊃
Vn

i=1
xi = yi

3. The initial theoryDS0
, which includes well-sorted (first-

order) sentences that are uniform inS0. In particular, it in-
cludes the unique name axioms for object contants. For clar-
ity, it also includes finitely manyaxioms of disjointness for
basic sortsof the form∀x : Qi.∀y : Qj .(x 6= y) for all
distinctbasic sortsQi andQj , whereQi, Qj are considered
basic sorts if⊥ ≤ Qi and⊥ ≤ Qj are inTD, and there are
no sortsQ′ 6= ⊥, Q′′ 6= ⊥, such thatQ′ ≤Qi andQ′′ ≤Qj .
Notice that these conditions actually are consequences of the
semantics of the subsort declarations in the sort theoryTD.
4. A setDap of precondition axioms for actions represented
using well-sorted formulas: for each action symbolA, whose
sort declaration isA : ~Q1..n →Act, its precondition axiom is
of the form

(∀~x1..n : ~Q1..n, s :Sit).Poss(A(~x1..n), s) ≡ φA(~x1..n, s), (1)

whereφA(~x1..n, s) is a well-sorted formula uniform ins,
whose free variables are at most among~x1..n ands.
5. A setDss of successor state axioms (SSAs) for fluents rep-
resented using well-sorted formulas: for each fluentF with
declarationF : ~Q1..n×Sit, its SSA is of the form

(∀~x1..n : ~Q1..n, a :Act, s :Sit).

F (~x1..n, do(a, s)) ≡ ψF (~x1..n, a, s), (2)

whereψF (~x1..n, a, s) is a well-sorted formula uniform ins,
whose free variables are at most among~x1..n anda, s.

Here is a simple example of an order-sorted BAT.

Example 1 (Transport Logistics) We present an order-sorted
BAT D of a simplified example of logistics.TD includes fol-
lowing subsort declarations:
MovObj≤Object, ⊥≤City, ⊥≤Box, ⊥≤Truck,
Truck≤MovObj, City≤Object,Box≤MovObj,

whereMovObj is the sort of movable objects, and other sorts
are self-explanatory. The predicate declarations are
InCity :MovObj×City×Sit, On :Box×Truck×Sit

for the fluentsInCity(o, l, s) andOn(o, t, s). The func-
tion declarations for actionsload(b, t), unload(b, t) and
drive(t, c1, c2) are obvious. For instance,
drive :Truck×City×City→Act

BesidesS0 :Sit, the constant declarations may include:
B1 :Box, B2 :Box, T1 :Truck,
T2 :Truck, Pasadena :City, Boston :City.

Axioms inDS0
can be:

∃x : Box. InCity(x,Boston, S0),
(∀x : Box, t : Truck).¬On(x, t, S0),
InCity(T1, Boston, S0)∨InCity(T2, Boston, S0).

As an example, the precondition axiom forload is:
(∀x :Box, t :Truck, s :Sit). Poss(load(x, t), s) ≡

¬On(x, t, s) ∧ ∃y :City.InCity(x, y, s) ∧ InCity(t, y, s),
and the preconditions forunload anddrive are obvious.
As an example, the SSA of fluentInCity is:

(∀d :MovObj, c :City, a :Act, s :Sit).
InCity(d, c, do(a, s)) ≡ (∃t :Truck, c1 :City).
a=drive(t, c1, c) ∧ (d= t ∨ ∃b :Box.b=d ∧On(b, t, s)))∨
InCity(d, c, s) ∧ ¬(∃t :Truck, c1 :City.a=drive(t, c, c1)
∧(d= t ∨ ∃b :Box.b=d ∧On(b, t, s))),

and the SSA of fluentOn is obvious.

4 Order-Sorted Regression and Reasoning
We now consider the central reasoning mechanism in the
order-sorted situation calculus. The definition of a regress-
able formula ofLOS is the same as the definition of a re-
gressable formula ofLsc except that instead of being stated
for a formula inLsc, it is formulated for a well-sorted formula
in LOS .

A formulaW of LOS is regressable(wrt an order-sorted
BAT D) iff (1) W is a well-sorted first-order formula wrtTD;
(2) every term of sortSit in W starts fromS0 and has the
syntactic formdo([α1, · · · , αn], S0), where eachαi is of sort
Act; (3) for every atom of the formPoss(α, σ) in W , α has
the syntactic formA(~t1..n) for somen-ary action function
symbolA; and (4)W does not quantify over situations, and
does not mention the relation symbols “<” or “ =” between
terms of sortSit. A queryis a regressable sentence.

Example 2 Consider the BATD from Example 1. LetW be
∃d :Box. d=Boston ∧On(d, T1, do(load(B1, T1), S0))

W is a (well-sorted) regressable sentence (wrtD); while
On(Boston, T1, do(load(B1, T1), S0))

is ill-sorted and therefore is not regressable.

The regression operatorRos in LOS is defined recursively
similar to the regression operator in[Reiter, 2001]. Moreover,
we would like to take advantages of the sort theory during
regression: when there is no well-sorted mgu for equalities
between terms that occur in a conjunctive sub-formula of a
query, this sub-formula is logically equivalent to false and
it should not be regressed any further. We will see that this
key idea helps eliminate useless sub-trees of a regression tree.
In what follows,~t and~τ are tuples of terms,α andα′ are
terms of sortAct, σ andσ′ are terms of sortSit, andW is a
regressable formula ofLOS .
1. If W is a non-atomic formula and is of the form¬W1,

W1∨W2, (∃v :Q).W1 or (∀v :Q).W1, for some regressable
formulasW1,W2 in LOS , then

Ros[◦W1]=◦Ros[W1] for constructor◦ ∈ {¬, (∃x :Q), (∀x :Q)}

Ros[W1 ∨W2]=Ros[W1] ∨Ros[W2].

2. Else, ifW is a non-atomic formula,W is not of the form
¬W1,W1 ∨W2, (∃v :Q)W1 or (∀v :Q)W1, but of the form
W1 ∧W2 ∧ · · · ∧Wn (n ≥ 2), where eachWi (i=1..n)
is not of the formWi,1 ∧ Wi,2 for some sub-formulas
Wi,1,Wi,2 in Wi. After using commutative law for∧,
without loss of generality, there are two sub-cases:

2(a) Suppose that for somej, j = 1..n, eachWi (i =
1..j) is of the form ti,1 = ti,2 for some (well-sorted)
terms ti,1, ti,2, and none ofWk, k = (j + 1)..n, is
an equality between terms. In particular, whenj = n,
∧n

k=j+1Wk
def
= true. Then,

Ros[W] =

8

>

<

>

:

W1 ∧W2 ∧ · · · ∧Wj ∧Ros[W ′

0]
if there is a well-sorted mguµ

for {〈ti,1, ti,2〉 | i = 1..j};
false otherwise.

Here,W ′
0 is a new formula obtained by applying mguµ

to
∧n

k=j+1Wk and it is existentially-quantified at front
for every newly introduced sort weakened variable in
µ. Moreover, note that based on the assumption that
we consider meet semi-lattice sort hierarchies only, such
mgu is unique if it exists.

2(b) Otherwise,Ros[W] = Ros[W1] ∧ · · · ∧ Ros[Wn].
3. Otherwise,W is atomic. There are four sub-cases.
3(a) Suppose thatW is of the formPoss(A(~t), σ) for an

action termA(~t) and a situation termσ, and the action
precondition axiom forA is of the form (1). Without
loss of generality, assume that all variables in Axiom (1)
have had been renamed (with variables of the same sorts)
to be distinct from the free variables (if any) ofW . Then,

Ros[W] = Ros[φA(~t, σ)].

3(b) Suppose thatW is of the formF (~t, do(α, σ)) for some
relational fluentF . Let F ’s SSA be of the form (2).
Without loss of generality, assume that all variables in
Axiom (2) have had been renamed (with variables of the
same sorts) to be distinct from the free variables (if any)
of W . Then, Ros[W] = Ros[ψF (~t, α, σ)].

3(c) Suppose that atomW is of the formt1 = t2. for some
well-sorted termst1, t2. Then,

Ros[W] =

(

W if there is a well-sorted mguµ
for 〈t1, t2〉;

false otherwise.

3(d) Otherwise, if atomW hasS0 as its only situation term,
then Ros[W] = W .

Notice that although the definition seems to depend on syn-
tactic form of a formula, we prove below that for any regress-
able formulasW1 andW2 in LOS that are logically equiv-
alent, their regressed results are still equivalent wrtD (See
Corollary 1). Here are some examples.

Example 3 Consider the order-sorted BATD from Exam-
ple 1 and the queryW from Example 2. Then, it is easy
to see thatRos[W]=false, since there is no well-sorted mgu
for (d,Boston), whered :Box. Now, letW1 be
¬∀d :Box. d 6=Boston ∨ ¬On(d, T1, do(load(B1, T1), S0)).

W1 is a sentence that is equivalent toW . It is easy to check
thatRos[W1] is a formula equivalent tofalse (wrt D).

Given an order-sorted BATD = (TD,D) and the order-
sorted regression operator defined above, to show the correct-
ness of the newly defined regression operator, we prove the
following theorems similar to that of in[Reiter, 2001].

Theorem 1 If W is a regressable formula wrtD, then
Ros[W] is a well-sortedLOS formula (includingfalse) that
is uniform inS0. Moreover,D |=os

TD
W ≡ Ros[W].

Theorem 2 If W is a regressable formula wrtD, then
D |=os

TD
W iff DS0

∪ Duna |=os

TD
Ros[W].

Hence, to reason whetherD |=os

TD
W is the same as to com-

puteRos[W] first and then to reason whetherDS0
∪Duna |=os

TD

Ros[W]. Besides, according to Theorem 1, it is easy to see
that the following consequence holds.

Corollary 1 If W1 andW2 are regressable formulas inLOS

s.t. |=os
TD

W1 ≡W2, thenD |=os

TD
Ros[W1] ≡ Ros[W2].

Intuitively, Corollary 1 states that the regressed resultsof
two logically equivalent regressable formulas (possibly hav-
ing different syntactic forms only) are still equivalent.

5 Order-Sorted Situation Calculus v.s.
Reiter’s Situation Calculus

Although BATs and regressable formulas inLOS are based on
OSL, they can be related to BATs and regressable formulas in
Reiter’s situation calculus as stated in Theorem 3.

Theorem 3 (Soundness)For any BATD and any queryW
in order-sorted situation calculusLOS , there exists a corre-
sponding BATD′ and a corresponding queryW ′ in Reiter’s
situation calculus s.t.

D |=os

TD
W iff D′ |=ms W ′.

Intuitively, we would like to show that the order-sorted sit-
uation calculusLOS is correct, orsound, in the sense that
for any query inLOS that can be answered in its background
BAT in LOS , we always can find a way to represent the BAT
and the query in Reiter’s situation calculusLsc s.t. the corre-
sponding query inLsc can be answered wrt the corresponding
BAT in Lsc.

It is hard to prove Theorem 3 directly. Inspired by thestan-
dard relativizationof OSL to unsorted (first-order) logic, our
general idea of proving Theorem 3 is as follows. In Step 1,

we prove that there is an unsorted theoryD′′ (via strong rela-
tivization) and an unsorted first-order sentenceW ′′ (via rela-
tivization) s.t.D |=os

TD
W iff D′′ |=fo W ′′. In Step 2, we con-

struct a BATD′ (called thecorresponding Reiter’s BAT ofD
below) and a regressable formulaW ′ (called thetranslation
of W below) in Reiter’s situation calculus, s.t.D′ |=ms W ′

iff D′′′ |=fo W ′′′, for some unsorted theoryD′′′ (via standard
relativization) and sentenceW ′′′ (via relativization). Finally,
in Step 3, we show thatD′′′ |=fo W ′′′ iff D′′ |=fo W ′′.

D |=os
TD

W
(Step 1)
⇐⇒ D′′ |=fo W ′′

m (Step 3)

D′ |=ms W ′
(Step 2)
⇐⇒ D′′′ |=fo W ′′′

Fig 1. Diagram of the Outline for Proving Theorem 3

To prove Theorem 3, we first define some concepts and
prove Lemma 1 for later convenience. First, for any sortQ in
the language ofLOS , we introduce a unary predicateQ(x),
which will be true iffx is of sortQ in LOS .

Definition 1 For any well-sorted formulaφ in LOS , rel(φ),
a relativizationof φ, is an unsorted formula defined as:

For every atomP (~t), rel(P (~t))
def
= P (~t); rel(¬φ)

def
= ¬rel(φ);

rel(φ ◦ ψ)
def
= rel(φ) ◦ rel(ψ) for ◦∈{∧,∨,⊃};

rel((∀x :Q)φ)
def
= (∀y)[Q(y) ⊃ rel(φ[x/y])];

rel((∃x :Q)φ)
def
= (∃y)[Q(y) ∧ rel(φ[x/y])].

Moreover, for any setSet of well-sorted formulas,
rel(Set) = {rel(φ) |φ∈Set}.

Note that all formulas inLsc are well-sorted wrt the sort
theory ofLsc. Hence, the definition ofrel can also be ap-
plied to any formula or a set of formulas in Reiter’s situation
calculus.

Definition 2 For any sort theoryTD in LOS , the set of bridge
axiomsof TD,BA(TD), is a set of the following formulas:
(a) (∀x). Q2(x) ⊃ Q1(x) for eachQ2≤Q1 ∈TD;
(b) Q(c) for eachc :Q ∈TD;
(c) (∀~x1..n).

Vn

i=1
Qi(xi) ⊃ Q(f(~x1..n)) for eachf : ~Q1..n →

Q ∈TD.
Moreover, letSorted(x) be an auxiliary predicate that

does not appear inD: it is a purely technical device used
for proving Theorem 3. The set ofstrong bridge axiomsof
TD, SBA(TD), is also a set of unsorted axiomsBA(TD) ∪
sba(TD), wheresba(TD) includes the following axioms:
(d) (∀~x1..n).P (~x1..n) ⊃

Vn

i=1
Qi(xi) ∧ Sorted(xi) for each

P : ~Q1..n ∈TD;
(e) (∀~x1..n).Q(f(~x1..n))∧Sorted(f(~x1..n)) ⊃

Vn

i=1
(Qi(xi) ∧

Sorted(xi)) for eachf : ~Q1..n→Q ∈TD.

Intuitively, Sorted(t) means that termt is well-sorted (wrt
D). (a functional term is well-sorted and of its own sort,
respectively), then all its arguments should be well-sorted
and of the corresponding sorts wrt the predicate declaration
(the function declaration, respectively). Note that although
Sorted may satisfy other characterizing axioms than axioms
in (d) and (e) according to its intuitive meaning, but adding
axioms in (d) and (e) to the strong relativization theory ofD
defined below is enough for us to prove Theorem 3.

Definition 3 For any order-sorted BATD in LOS , the
strong relativization ofD, an unsorted theory, is defined as

RELS(D)
def
= rel(D) ∪ SBA(TD).

Consider any BAT D1 in Reiter’s situation calculus
Lsc, which has a finite setTD1

of function decla-
rations and predicate declarations for all predicates
and functions appeared inD1. The standard rela-
tivization of D1, an unsorted theory, is defined as

REL(D1)
def
= rel(D1) ∪BA(TD1

).

The reasons for differences between the two cases in Def. 3
are that (1) we include the sort theory in each BAT of order-
sorted situation calculus, while Reiter’s situation calculus
mentions sort declarations generally in the signature ofLsc,
and (2) we need strong relativization for order-sorted BATs
and only need standard relativization for Reiter’s BATs to
prove Theorem 3. In comparison to the standard relativiza-
tion, the strong relativization adds additional axioms of the
form (d) and (e) in Def. 2. They are based on the sort theory
that includes one and only one declaration for each predicate
P or for each functionf , respectively. We can also prove a
relativization theorem as follows for the strong relativization
similar to the Sort Theorem proved in[Walther, 1987] and/or
the relativization theorem proved in[Schmidt-Schauβ, 1989].

Lemma 1 Consider any regressable formulaW with a back-
ground BATD in order-sorted situation calculusLOS . Then,

D |=os

TD
W iff RELS(D) |=fo rel(W).

We therefore can prove Step 1 in Fig. 1 using Lemma 1.
Because Reiter’s situation calculus is a many-sorted logical
language with special formats for precondition axioms and
SSAs, we cannot userel to relateD in LOS with a Reiter’s
BAT directly. It is also the reason why strong relativization is
introduced. To construct a Reiter’s BATD′ and a regressable
formulaW ′ that satisfy the theorem, we first define another
translation functiontr(W) as follows.

Definition 4 Consider any well-sorted formulaφ in LOS . A
translationof φ to a (well-sorted) sentence in Reiter’s situa-
tion calculus, denoted astr(φ), is defined recursively as fol-
lows:

For every atomP (~t), tr(P (~t))
def
= P (~t); tr(¬φ)

def
= ¬tr(φ);

tr((∃x :⊥)φ)
def
= false; tr((∀x :Q)φ)

def
= ¬tr((∃x :Q.¬φ));

tr((∃x :Q)φ)
def
= (∃x :Q)tr(φ), if Q∈{Object, Act, Sit}.

tr((∃x :⊤)φ)
def
= (∃x :Object)tr(φ)∨(∃x :Act)tr(φ)∨

(∃x :Sit)tr(φ);

tr((∃x :Q)φ)
def
= (∃y :Object)[Q(y) ∧ tr(φ(x/y))],

if Q 6∈{⊤,⊥, Object, Act, Sit};

tr(φ ◦ ψ)
def
= tr(φ) ◦ tr(ψ) for ◦∈{⊃,∧,∨,⊃,≡}.

The translation functiontr defined above is a mapping from
well-sorted formulas wrt the sort theory of some BATD (or,
wrt D for simplicity) in LOS to well-sorted formulas inLsc.
Moreover, it is easy to prove by structural induction the fol-
lowing lemma forrel andtr, which will be useful for proving
Theorem 3.

Lemma 2 Consider any well-sorted formulaφ in LOS .
Then,|=fo rel(tr(φ)) ≡ rel(φ).

Consider any order-sorted BATD. We construct thecor-
responding Reiter’s BAT ofD, denoted asTR(D), that will
be the Reiter’s BAT we are looking for in Theorem 3. No-
tice that in[Reiter, 2001], sorted quantifiers are omitted as
a convention, because their sorts are always obvious from
context. Hence, when we construct the BATTR(D) in Re-
iter’s situation calculus below, all free variables are implicitly
universally sorted-quantified according to their obvious sorts.
The function and predicate declarations are always standard,
hence are not mentioned here.
• TR(D) includes the foundational axioms and the set of
unique name axioms for action functions in Reiter’s situation
calculus.
• The initial theory ofTR(D), sayD′

S0
, includes the fol-

lowing axioms. Note that for axioms in items (3)–(5) below,
predicateSorted is auxiliary wrtD and eachxi is universally
quantified with a default sortObject (Qi itself, respectively)
if Qi≤T Object (Qi 6≤T Object, respectively).
1. For any well-sorted sentenceφ∈DS0

, tr(φ) is inD′
S0

.
2. For each declarationQ2≤Q1 in TD, add an axiomtr((∀x :
⊤).(∃y2 :Q2.x = y2) ⊃ (∃y1 :Q1.x = y1)).

3. For each declarationf : ~Q1..n →Q in TD (n ≥ 1), add an
axiomtr((∀~x1..n : ~Q1..n).(∃y :Q).y = f(~x1..n)).
We also add an axiom
Q(f(~x1..n)) ∧ Sorted(f(~x1..n)) ⊃

tr((∃~y1..n : ~Q1..n).
Vn

i=1
(xi = yi ∧ Sorted(xi)))

if Q≤T Object andQ 6=Object, or add an axiom
((∃y :Q).y = f(~x1..n) ∧ Sorted(y)) ⊃

tr((∃~y1..n : ~Q1..n).
Vn

i=1
(xi = yi ∧ Sorted(xi)))

otherwise.
4. For each situation-independent predicate declaration
P : ~Q1..n, add an axiom
P (~x1..n) ⊃ tr((∃~y1..n : ~Q1..n).

Vn

i=1
(xi = yi ∧ Sorted(xi))).

5. For each fluent declarationF : ~Q1..n × Sit, add an axiom
F (~x1..n, S0)⊃ tr((∃~y1..n : ~Q1..n).

Vn

i=1
(xi =yi∧Sorted(xi))).

6. For any constant declarationc : Q whereQ ≤T Object
andQ 6= Object, add an axiomQ(c). Note that other con-
stant declarations will still be kept in the sort theory ofLsc

by default (e.g.,S0 :Sit).
• For actionA(~x1..n) whose precondition axiom inDap has
the form Eq. (1), we replace it with a precondition axiom in
the format of Reiter’s situation calculus:

Poss(A(~x1..n), s) ≡ φ′

A(~x1..n, s) (3)

whereφ′A(~x1..n, s) is aLsc formula uniform ins, resulting
from tr((∃~y1..n : ~Q1..n).(

Vn

i=1
xi = yi) ∧ φA(~y1..n, s)). Here,

all yi’s are distinct auxiliary variables never appearing in
φA(~x1..n, s).
• For each relational fluentF (~x1..n, s), whose SSA inDss is
of the form Eq. (2), we replace it with SSA in the format of
Reiter’s situation calculus:

F (~x1..n, do(a, s)) ≡ ψ′

F (~x1..n, a, s) (4)

whereψ′
F (~x1..n, a, s) is aLsc formula uniform ins, result-

ing from tr((∃~y1..n : ~Q1..n).
Vn

i=1
xi = yi ∧ ψF (~y1..n, a, s)).

Here, allyi’s are distinct auxiliary variables never appearing

in ψF (~x1..n, s).

LetD′ =TR(D),W ′ = tr(W), we then can prove Theorem 3
by following the ideas presented in Fig. 1. Details are omitted
due to the space limitations.

Example 4 Consider the BATD from Example 1. The ax-
ioms inTR(D) are mostly obvious. Due to the space limita-
tions, we just provide examples of a precondition axiom and
an SSA inTR(D):
Poss(load(x, t), s) ≡ Box(x) ∧ Truck(t) ∧ ¬On(x, t, s)∧

(∃y.City(y) ∧ InCity(x, y, s) ∧ InCity(t, y, s)),
InCity(d, c, do(a, s)) ≡MovObj(d) ∧ City(c)∧

[(∃t, c1.T ruck(t) ∧ City(c1) ∧ a=drive(t, c1, c)
∧(d= t ∨ ∃b.Box(b) ∧ b=d ∧On(b, t, s)))
∨InCity(d, c, s)∧
¬(∃t, c1.T ruck(t) ∧ City(c1) ∧ a=drive(t, c, c1)
∧(d= t ∨ ∃b.Box(b) ∧ b=d ∧On(b, t, s)))].

It is important to notice that all queriesLOS have to be
well-sorted wrt the given background order-sorted BATD;
while, in general, the queries that can be answered in the cor-
responding Reiter’s BAT ofD are not necessarily well-sorted
wrt D. Below, Theorem 4 shows that for any query that can
be answered inTR(D), it can be answered inD in a “well-
sorted way” too.

Theorem 4 (Completeness)Let D be an order-sorted BAT
in LOS , andTR(D) be its corresponding Reiter’s BAT. Then,
for any queryW in Reiter’s situation calculus,W can be
translated to a (well-sorted) query wrtD, denoted asos(W)
below, s.t.TR(D) |=ms tr(os(W)) ≡ W . Furthermore, we
haveTR(D) |=ms W iff D |=os

TD
os(W).

To prove Theorem 4, we first define some new concepts
and prove a lemma.

Definition 5 LetD be a BAT in the order-sorted situation cal-
culusLOS , andTR(D) be its corresponding Reiter’s BAT.
Any termt in Reiter’s situation calculus is apossibly sortable
term wrtD, if one of the following conditions holds:
(1) t is a variable of sortAct,Object or Sit in Lsc;
(2) t is a constantc, andc :Q in TD (we say that the sort ofc
isQ wrt D); or,
(3) t is of form f(~x1..n), function declarationf : ~Q1..n →Q
in TD, for everyi (i=1..n), ti either is a variable or is a non-
variable term of sortQ′

i wrt D andQ′
i ≤T Qi in TD (we say

that the sort off(~t1..n) isQ wrt D).
Similarly, any atomP (~t1..n) in Reiter’s situation calculus

(can bet1 = t2), which is well-sorted wrtTR(D), is apossibly
sortable atom wrtD, if for everyi, ti either is a variable or is
a non-variable term s.t.:
(a) it is possibly sortable wrtD; and
(b) P : ~Q1..n is in TD (=: ⊤×⊤, respectively), the sort ofti
isQ′

i wrt D andQ′
i≤T Qi wrt D.

Given anyD in order-sorted situation calculus, it is easy to
see that every atom (term, respectively) inTR(D) that can be
considered as well-sorted wrtD is always a possibly sortable
atom (term, respectively); while a possibly sortable atom
(term, respectively) is not necessarily well-sorted wrtD.

Lemma 3 LetD be a BAT in the order-sorted situation cal-
culusLOS , and TR(D) be its corresponding Reiter’s BAT.
Then, for any atomP (~t1..n) (can bet1 = t2) that is well-
sorted in Lsc but not possibly sortable wrtD, we have
TR(D) |=ms P (~t1..n) ≡ false.

Now we define a function which transforms a formula in
Lsc wrt TR(D) to a well-sorted formula inLOS wrt D.

Definition 6 LetD be a BAT in the order-sorted situation cal-
culusLOS , TR(D) be its corresponding Reiter’s BAT and
W be a regressable sentence inLsc wrt the background BAT
TR(D). Then, functionos(W) is defined recursively as fol-
lows.

1. If W is either of the form(∀x)W1, (∃x)W1, where
the default sort ofx is Q (eitherObject, Act or Sit)
in TR(D), then os((∀x)W1)

def
= (∀x : Q)os(W1), and

os(∃x.W1)
def
= (∃x :Q)os(W1).

2. If W is one of the form¬W1,W1 ∧W2,W1 ∨W2, then
os(¬W1)

def
= ¬os(W1), os(W1 ∧W2)

def
= os(W1) ∧ os(W2),

os(W1 ∨W2)
def
= os(W1) ∨ os(W2).

3. If W is atomic and not possibly sortable, thenW def
=

false.

4. If W is atomic and possibly sortable, assume that
var(W) = 〈x1, · · · , xn〉 is the vector of free vari-
ables appeared from left to right inW (including re-
peated ones). For eachi = 1..n, suppose thatxi ap-
pears as an argument of a functionfi in some term or
as an argument of a predicatePi in W . Let Qi be the
sort appeared in theki-th position of the declaration
of fi (Pi, respectively), ifxi appears in theki-th po-
sition of fi (Pi, respectively) inW . Then, letIW =
{i |xi ∈ var(W), Qi ≤T Object,Qi 6= Object}, and
~y : ~Q = {yi :Qi | i∈ IW }, whereyi’s are auxiliary vari-
ables never appeared inW and eachyi is distinct from

others. And,os(W)
def
= (∃~y : ~Q)(W0 ∧

∧
i∈IW

xi = yi),
whereW0 is obtained from substituting eachxi with yi

for i∈IW .

Proof sketch for Theorem 4. First, for any queryW in Re-
iter’s situation calculus, letW ′ = os(W). By using structural
induction and Lemma 3, it is easy to prove thatW ′ is a well-
sorted query wrtD in OSL andTR(D) |=ms W ≡ tr(W ′).
Then, by Theorem 3 andTR(D) |=ms W ≡ tr(W ′), it is
easy to see thatD |=os

TD
W ′ iff TR(D) |=ms tr(W ′) iff

TR(D) |=ms W . Proof details are omitted due to the space
limitations. But, we provide some examples below to illus-
trate the statement.

Example 5 Here are simple examples of computingos(W)
from W in Lsc. Consider theTR(D) in Example 4. Let
On(Boston, T1, S1) (denoted asW3) be a query inLsc,
whereS1 is some situation instance. According to the way
TR(D) is constructed, we haveTR(D) |=ms On(o, t, s) ⊃
Box(o) and TR(D) |=ms ¬Box(Boston). So, TR(D) |=ms

W3 ≡ false. Hence,os(W3)
def
= false.

Let W4 be ∀s.∃o.¬InCity(o, Pasadena, s), which is also a
query inLsc, whereo : Object ands : Sit hold by default.

Then,os(W4) is ∀s : Sit.∃o : Object.¬(∃b : MovObj.b = o∧
InCity(b, Pasadena, s)), sinceTR(D) |=ms InCity(o, c, s)⊃
MovObj(o)∧City(c). And it is easy to prove thatTR(D) |=ms

W4≡ tr(os(W4)).

6 Computational Advantages ofLOS

In this section, we discuss the advantages of using OSL and
the order-sorted regression operator based on it.

Given any BATD in LOS , it is easy to see that Reiter’s
regression operatorR [Reiter, 2001] still can be applied to
(well-sorted) regressable formulas (wrtD). Moreover, one
can prove thatR[W] is a formula inLOS uniform inS0 and
D |=os

TD
W ≡ R[W]. However, using the order-sorted regres-

sion operatorRos sometimes can give us computational ad-
vantages in comparison to using Reiter’s regression operator
R. But first of all, we show that the computational complex-
ity of usingRos is no worse than that ofR.

For the regression operatorR that can be used either in
LOS or in Lsc (Ros used inLOS , respectively), we can con-
struct aregression treerooted atW for any regressable query
W in either language. Each node in a regression tree of
R[W] (Ros[W], respectively) corresponds to a sub-formula
computed by regression, and each edge corresponds to one
step of regression according to the definition of the regression
operator. In the worst case scenario, for any queryW in LOS ,
the regression tree ofRos[W] will have the same number of
nodes as the regression tree ofR[W] (and linear to the num-
ber of nodes in the regression tree ofR[tr(W)] wrt TR(D)).
Moreover, based on the assumption that our sort theory ofD
is simple with empty equational theory, whose correspond-
ing sort hierarchy is a meet semi-lattice, finding a unique
(well-sorted) MGU takes the same time as in the unsorted
case[Schmidt-Schauβ, 1989; Jouannaud and Kirchner, 1991;
Weidenbach, 1996]. Hence, the overall computational com-
plexity of building the regression tree ofRos[W] is at most
linear to the size of Reiter’s regression tree.

Theorem 5 Consider any regressable sentenceW with a
background BATD in order-sorted situation calculusLOS .
Then, in the worst case scenario, the complexity of comput-
ing Ros[W] is the same as that of computingR[W], which
is also the same as the complexity of computingR[tr(W)] in
the corresponding Reiter’s BATTR(D).

On the other hand, under some circumstances, the regres-
sion of a query inLOS usingRos instead ofR will give us
computational advantages. Consider any query (i.e., a re-
gressable sentence)W with a background BATD in LOS .
Then, the computation ofRos[W] wrt D can sometimes ter-
minate earlier than that ofR[W] wrt D, and also earlier than
the computation ofR[tr(W)] wrt TR(D). In particular, we
have the following property.

Theorem 6 Let a regressable formulaW have the syntac-
tic form t1,1 = t1,2 ∧ . . . ∧ tm,1 = tm,2 ∧ W1, with any
background order-sorted BATD in LOS . Let the size ofW
(including the length of the terms inW) ben. If there is no
well-sorted mgu for equalities between terms, then Comput-
ing Ros[W] runs in timeO(n), while computingR[W] wrt
D (R[tr(W)] wrt TR(D)) runs in timeO(2n). Moreover, the
size of the resulting formula ofRos[W], which isfalse, is

always constant, while the size of the resulting formula using
R is inO(2n).
According to the definition of Reiter’s regression operator,
the equalities will be kept and regression will be further per-
formed onW1 (or ontr(W1) in TR(D), respectively), which
in general takes exponential time wrt the length ofW1 and
causes exponential blow-up in the size of the formula. Once
Reiter’s regression has terminated, a theorem prover will find
that the resulting formula is false either because there is no
mgu for terms when reasoning is performed inLOS (or, due
to the clash between sort related predicates when reasoningin
Lsc, respectively). Hence, using the order-sorted regression
operator can sometimes prune brunches of the regression tree
built by R exponentially (wrt the size of the regressed for-
mula), and therefore save computation time significantly.

Example 6 Consider the BATD from Example 1. LetW5

be aLOS query (i.e., a (well-sorted) regressable sentence)
InCity(T1, Pasadena, do(drive(T1, Boston, Pasadena), S1)),
whereS1 is a well-sorted ground situation term that involves
a long sequence of actions. According to the SSA ofInCity,
at the branch of computingRos[∃b :Box.b=T1 ∧ On(b, t, S1)]
in the regression tree, since there is no well-sorted mgu for
(b, T1), the application of order-sorted regression equals
to false immediately. However, using Reiter’s regression
operator (no matter inD or in TR(D)), his operator will
keep doing useless regression onOn(b, t, S1) until getting
(a potentially huge) sub-formula uniform inS0. Once his
regression has terminated, such sub-formula will also be
proved equivalent tofalse wrt the initial theory (DS0

or
TR(D)S0

, respectively) using a theorem prover, for the same
reason as above.

In addition, since our sort theory of a BATD in LOS is
finite and it has one and only one declaration for each func-
tion and predicate symbol, for any queryW (wrt TR(D)) in
Lsc, it takes linear time (wrt the length of the query) to find a
well-sorted formulaos(W) in LOS that satisfies Theorem 4.
But, reasoning whetherD |=os

TD
os(W) (starting from finding

os(W)) sometimes can terminate earlier than finding whether
TR(D) |=ms W . In particular, we have

Theorem 7 Assume thatW = F (~t, do([α1, · · · , αn], S0)) is
an atomic fluent instance inLsc that includes an ill-sorted
ground term wrtD (e.g.,W3 in Example 5). Then, it takes
at most linear time to terminate reasoning by computing the
correspondingos(W) (which isfalse).
Observe that reasoning aboutTR(D) |=ms W directly, for
the formulaW mentioned in Theorem 7, using regression
R could result in a exponentially large regression tree when
computingR[W]. Also, the size of the resulting formula can
be exponentially larger than that ofW . Moreover, it still
needs further computational steps to find whetherTR(D)S0

∪
TR(D)una |=ms R[W].

7 Conclusions
We propose a logical theory for reasoning about actions
wrt a taxonomy of objects based on OSL. We also define
a regression-based reasoning mechanism that takes advan-
tages of sort theories, and discuss the computational advan-
tages of our theory. One possible future work can be ex-
tending our logic to hybrid order-sorted logic[Cohn, 1989;

Bierle et al., 1992; Weidenbach, 1996]. Another possibility
is to consider efficient reasoning in our framework by iden-
tifying specialized classes of queries or decidable fragments
[Abadi et al., 2007]. Finally, we are planning to work on an
efficient implementation of our theory.

References
[Abadiet al., 2007] Aharon Abadi, Alexander Moshe Rabinovich,

and Mooly Sagiv. Decidable fragments of many-sorted logic. In
LPAR, volume 4790 ofLecture Notes in Computer Science, pages
17–31. Springer, 2007.

[Bierleet al., 1992] C. Bierle, U. Hedtsẗuck, U. Pletat, P. H.
Schmitt, and J. Siekmann. An order-sorted logic for knowledge
representation systems.Artificial Intelligence, 55(2-3):149–191,
1992.

[Cohn, 1987] Anthony G. Cohn. A more expressive formulation of
many sorted logic.J. Autom. Reason., 3(2):113–200, 1987.

[Cohn, 1989] Anthony G. Cohn. Taxonomic reasoning with many
sorted logics. Artificial Intelligence Review, 3(2-3):89–128,
1989.

[Ghallabet al., 1998] M. Ghallab, a. Howe, C. Knoblock, D. Mc-
Dermott, A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL
the planning domain definition language. Technical report, Yale
Center for Computational Vision and Control, Technical Report
CVC TR-98-003/DCS TR-1165, 1998.

[Goguen and Meseguer, 1987] J. A. Goguen and J. Meseguer. Re-
marks on remarks on many-sorted equational logic.SIGPLAN
Notices, 22(4):41–48, 1987.

[Hayes, 1971] Patrick J. Hayes. A logic of actions.Machine Intel-
ligence, 6:495–520, 1971.

[Herbrand, 1971] Jacques Herbrand.Logical Writings. Harvard
University Press, Cambridge, 1971. Warren D. Goldfarb (ed.).

[Jouannaud and Kirchner, 1991] Jean-Pierre Jouannaud and Claude
Kirchner. Solving equations in abstract algebras: A rule-based
survey of unification. InComputational Logic - Essays in Honor
of Alan Robinson, pages 257–321. MIT Press, 1991.

[Oberschelp, 1962] Arnold Oberschelp. Untersuchungen zur
mehrsortigen quantorenlogik (in German).Mathematische An-
nalen, (145):297–333, 1962.

[Oberschelp, 1990] Arnold Oberschelp. Order sorted predicate
logic. In Sorts and Types in Artificial Intelligence, volume 418 of
Lecture Notes in Computer Science, pages 8–17. Springer, 1990.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logical
Foundations for Describing and Implementing Dynamical Sys-
tems. MIT Press, 2001.

[Schmidt-Schauβ, 1989] M. Schmidt-Schauβ. Computational as-
pects of an order-sorted logic with term declarations. Springer-
Verlag, New York, 1989.

[Schmidt, 1938] Arnold Schmidt. Über deduktive theorien mit
mehreren soften von grunddingen.Mathematische Annalen,
(115):485–506, 1938.

[Walther, 1987] Christoph Walther.A many-sorted calculus based
on resolution and paramodulation. Morgan Kaufmann, San Fran-
cisco, 1987.

[Wang, 1952] Hao Wang. Logic of many sorted theories.Symbolic
Logic, 17(2):105–116, 1952.

[Weidenbach, 1996] Christoph Weidenbach. Unification in sort the-
ories and its applications.Annals of Math. and AI, 18(2/4):261–
293, 1996.

