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Abstract

Background : Bug tracking systems receive many bug reports daily. Although the software

quality team aims to identify and resolve these bugs, they are never able to fix all of the

reported bugs in the issue tracking system before the release deadline. However, postponing

the bug fixing may have some consequences. Prioritization of bug reports will help the software

manager decide which bugs to fix and which bugs to postpone. Typically, bug reports are

prioritized based on the severity, priority, time and effort for fixing, customer pressure, etc.

Aim: Previous studies have shown that these factors may not be appropriate for prioriti-

zation. Therefore, relying on them to automate bug prioritization might be misleading. In this

dissertation, we aim to prioritize bug reports with respect to the consequence of not fixing the

bugs in terms of their relative importance in the issue tracking system.

Method: In order to measure the relative importance of bugs in the issue tracking system,

we propose the construction of a dependency graph based on the reported dependency-blocking

information in the issue tracking system. Two metrics, namely depth and degree, are used to

measure the relative importance of the bugs. However, there is uncertainty in the dependency

graph structure as the dependency information is discovered manually and gradually. Owing
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to this uncertainty, prioritization of bugs in the descending order of depth and degree may be

misleading. To handle the uncertainty, we propose a novel approach of a partially observable

Markov decision process (POMDP) and partially observable Monte Carlo planning (POMCP).

Result: To check the feasibility of the proposed approach, we analyzed seven years of data

from an open source project, Firefox, and a commercial project. We compared the proposed

policy with the developer policy, maximum policy, and random policy.

Conclusion: The results suggest that software practitioners do not consider the relative

importance of bugs in their current practice. The proposed framework can be combined with

practitioners’ expertise to prioritize bugs more effectively and take the depth and degree of

bugs into account. In practice, the POMDP framework with the POMCP planner can help

practitioners sequentially select bugs to minimize the connectivity of the dependency graph.

iv



Acknowledgements

First and foremost, I would like to thank Almighty God for giving me the knowledge, ability,

and opportunity to make progress and acquire knowledge and skill to fulfill this research.

My most sincere gratitude goes to my supervisor, Dr. Ayse Bener. Without her valuable

advice, tireless effort, and insightful support, this thesis would not have been possible. Her

guidance and supervision have helped me to make steady progress and cultivate the skills

required to succeed in this endeavor.

I am thankful to Ryerson University for giving me the opportunity to pursue my doctorate

degree, and for all the financial and academic support during the past few years. I am grateful

to all my professors, fellow graduate students, lab-mates, and postdoctoral fellows, especially

Dr. Bora Caglayan and Can Kavaklioglu, for their ideas, feedback, and collaboration. I would

like to thank my dissertation committee members for accepting to be in my defense jury.

I am also thankful to West Virginia University and all the amazing faculty members and

friends for the help, guidance, and support they provided me during the time I was studying

there.

I would like to acknowledge IBM, Canada, for providing the resources needed for part of

this research and also NSERC Canada for providing the funding necessary to collaborate with

the industry.

Finally, I would like to express my special thanks to my lovely husband and my wonderful

parents who gave me unconditional support and constant encouragement to pursue my degree. I

would like to dedicate this dissertation to my parents, Hooshang and Afsaneh, and my wonderful

brother, Shahram and my lovely husband, Sohrab.

v



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work 10

2.1 Prediction of Bug Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Prediction of Bug Severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Prediction of Duplicate Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Prediction of Bug Fixing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Prediction of Blocking Bug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Methodology 30

3.1 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Partially Observable MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 POMDP Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.4 Bayesian Inference for POMDP Solution: POMCP . . . . . . . . . . . . . 41

3.3 Blocking-Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Blocking-Dependency Graph Construction . . . . . . . . . . . . . . . . . . 45

vi



3.3.2 Blocking-dependency Graph Metrics . . . . . . . . . . . . . . . . . . . . . 49

3.4 A POMDP Model for Bug Prioritization . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Strategy of Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Evaluation Criteria and Comparison . . . . . . . . . . . . . . . . . . . . . 58

4 Experiments and results 60

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Dataset 1: Firefox Bugzilla Project . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 Dataset 2: proprietary software product . . . . . . . . . . . . . . . . . . . 64

4.2 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Discovery Time of Blocking Bugs . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Degree of Blocking Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.3 Number of Open Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Training and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Dataset 1: Firefox Bugzilla Project . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Dataset 2: proprietary software product . . . . . . . . . . . . . . . . . . . 81

4.4 Generative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Dataset 1: Firefox Bugzilla Project . . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 Dataset 2: proprietary software product . . . . . . . . . . . . . . . . . . . 84

4.5 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.1 Dataset 1: Firefox Bugzilla Project . . . . . . . . . . . . . . . . . . . . . . 85

4.5.2 Dataset 2: proprietary software product . . . . . . . . . . . . . . . . . . . 89

5 Threats to validity 93

6 Conclusion 97

6.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 How to Prioritize Bug Reports by Considering the Consequence of not

Fixing the Bugs in terms of their Relative Importance? . . . . . . . . . . 99

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Theoretical and Methodological Contributions . . . . . . . . . . . . . . . 100

6.2.2 Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



References 130

viii



List of Tables

2.1 Summary of software engineering studies on bug prioritization . . . . . . . . . . . 27

4.1 Firefox - Number of bugs reported yearly . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Firefox - Priority of reported bugs . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Firefox - Severity of reported bugs . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 proprietary software product - Number of bugs reported yearly . . . . . . . . . . 65

4.5 Proprietary software product - Priority of reported bugs . . . . . . . . . . . . . . 66

4.6 Proprietary software product - Severity of reported bugs . . . . . . . . . . . . . . 67

4.7 Firefox - Statistics of discovery time for bug reports . . . . . . . . . . . . . . . . 69

4.8 Firefox - Arrival time of blocking bugs . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Proprietary software product - Statistics of discovery time for bug reports . . . . 71

4.10 Proprietary software product - Discovery time of blocking bugs . . . . . . . . . . 71

4.11 Firefox - Degree of blocking bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.12 Proprietary software product - Degree of blocking bugs . . . . . . . . . . . . . . . 73

4.13 Firefox - Number of open and active bugs yearly . . . . . . . . . . . . . . . . . . 75

4.14 Proprietary software product - Number of open and active bugs yearly . . . . . . 76

4.15 Firefox - Average number of bugs in training sets . . . . . . . . . . . . . . . . . . 78

4.16 Firefox - Average dependency of bugs in training sets . . . . . . . . . . . . . . . 79

4.17 Firefox - Average maximum depth and degree in training sets . . . . . . . . . . . 80

4.18 Firefox - Testing set statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.19 Proprietary software product - Average number of bugs in training sets . . . . . 81

4.20 Proprietary software product - Average number of dependencies in training sets . 82

4.21 Proprietary software product - Average maximum depth and degree training sets 83

4.22 Proprietary software product - Testing set statistics . . . . . . . . . . . . . . . . 83

4.23 Firefox - Generative model parameter estimation . . . . . . . . . . . . . . . . . . 84

ix



4.24 Proprietary software product - Generative model parameter estimation . . . . . . 85

4.25 Firefox - Undiscounted return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.26 Firefox - Discounted return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.27 Statistical test comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.28 Proprietary software product - Undiscounted return . . . . . . . . . . . . . . . . 90

4.29 Proprietary software product - Discounted return . . . . . . . . . . . . . . . . . . 91

4.30 Statistical test comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

x



List of Figures

1.1 Example of a bug report in a bug tracking system . . . . . . . . . . . . . . . . . 3

1.2 Bug life cycle [24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 The MDP framework [151] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Backup diagram [151] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 The POMDP framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Value function for a two-state POMDP . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Example of a policy tree [146] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Example of a blocking-dependency graph . . . . . . . . . . . . . . . . . . . . . . 49

3.7 The difference between state and observation in our POMDP . . . . . . . . . . . 51

3.8 Training and testing strategy: “w” refers to week . . . . . . . . . . . . . . . . . . 54

3.9 Our proposed POMDP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Firefox - Distribution of bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 proprietary software product - Distribution of bugs . . . . . . . . . . . . . . . . . 66

4.3 Firefox - Distribution of discovery time in hours for bug reports . . . . . . . . . . 68

4.4 Proprietary software product - Distribution of discovery time in hours for bug

reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Firefox - Histogram plot for degree of blocking bugs . . . . . . . . . . . . . . . . 73

4.6 Proprietary software product - Histogram plot for degree of blocking bugs . . . . 74

4.7 Firefox - Half-yearly comparison among total number of bugs, open bugs, and

active bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Proprietary software product - Yearly comparison among total number of bugs,

open bugs, and active bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 Firefox - Comparison between several policies in terms of undiscounted return . . 87

4.10 Firefox - Comparison between several policies in terms of discounted return . . . 88

xi



4.11 Proprietary software product - Comparison between several policies in terms of

undiscounted return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.12 Proprietary software product - Comparison between several policies in terms of

discounted return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xii



List of Appendices

1 Source codes of our proposed model 104

xiii



Chapter 1

Introduction

1.1 Introduction

Software maintenance is a dominant factor affecting the cost of large software systems [35]. The

software maintenance life cycle starts after the initial release of the product and ends when the

product is withdrawn from use [92]. It includes four stages of introduction (infancy), growth

(adolescence), maturity (adulthood), and decline (senility) stage [92, 94]. Changes are one of

the key activities in software maintenance, which includes the enhancement of new software

requirements, fixing of reported bugs, and adapting to external changes in the environment.

In a mature software product, after a change request has been submitted, the change control

board checks the change request to ensure the validity of the changes. In case the changes

are not valid, no action would be required. Valid changes go through change assessment and

cost-benefit analysis, from both the business and technical perspectives. To approve the valid

change requests, some factors are considered, including but not limited to the consequence of

avoiding changes, the cost and benefit of the change, the number of affected users, and the next

release deadline [144].

The most common source of change requests is problem reports from users or operational

teams that identify bugs in the software system and require them fixed [57]. Even minor bugs

may have major negative impacts on the software system, such as user inconvenience, customer

churn, security risk, and loss of functionality [57]. Bug tracking systems (issue tracking systems)

are tools designed for reporting, recording, and tracking of the fixing of bugs and issues in the

software system. After a bug is discovered in the software system, the problem is reported in

the bug tracking system. Figure 1.1 depicts the typical bug report scheme in an open source

1



1.1. INTRODUCTION CHAPTER 1. INTRODUCTION

bug tracking systems called Bugzilla. A bug report usually has a bug ID, which is a number to

identify and verify the bug in the software system. A title is a brief description that summarizes

the problem. The full description of the problem can be found in the bug report as well. It

describes the details about how to reproduce the problems and about the differences between

the user expectation and the system. In Bugzilla, there are some fields for the location of the

bug and the time the bug is reported in the bug tracking system. It includes the product,

component, status, creation time (reported), and last modified time (modified). The status of

the bug is the current state of the bug, and only certain statuses, such as “New”, “Assigned”,

“In progress”, “Resolved”, “Reopened”, and “Closed”, are allowed. The bug report contains

people fields, such as “Assignee”, “Reporter”, “Owner”, and “CC”. “Assignee” is a person

who is in charge of the bug resolution. “Reporter” is a user or a developer who reports the

problem in the bug tracking system. The “Owner” is responsible for triaging a bug assigned

to a specific component, and “CC” is the subscriber of the bug who is interested in the bug

resolution. The tracking field includes the version, the target milestone for the bugs to be

resolved, and information about blocking, dependent, and duplicate bugs. Blocking bugs are

bugs that prevent other bugs from getting fixed. Duplicate bugs are the bug reports that are

already reported in the repository. A tracking flag is an indicator to track all bugs that are

required to be fixed for a particular release. The detail field gives the software team some details

about whiteboards and voters of the bugs. Developers (or users) may vote for some bugs to be

fixed or add some tags and status information in the whiteboard field [24].

Bug handling processes might be dependent on the organizations and projects, but typical

bug handling processes in many software organizations are as follows: Once the bug is reported

in the bug tracking system, the bug is tagged as “Unconfirmed”. As the bug is validated,

the status would change to “New”. However, the bug might be reported as “New” if the

reporter has the authority to confirm it upon arrival. In open source projects, the bug would

be assigned to the developers or it would be available for volunteer developers to resolve them.

Once the developer starts working on the bug, the status would change to “Assigned”. The

bug is reported as “Resolved” after the developer resolves it. The QA team would review the

resolution and “Verify” the bug if the resolution is satisfactory, or “Reopen” the bug if they

still find an issue. Eventually, the bug would be “Closed” by the same person who reports the

bug. The stages that the bug may pass through during its lifetime are presented in Figure 1.2.

As software projects become increasingly complex with multiple components in multiple

environments and platforms, organizations receive a higher number of bug reports in their bug

2
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Figure 1.1: Example of a bug report in a bug tracking system

tracker. Gue et al. reported that, on average, 170 Mozilla bugs and 120 Eclipse bugs were

reported daily in the first six months of 2009 [66]. Early detection and fixing of the bugs in the

software development process is less costly as compared to later in the process [34]. However,

software development teams are never able to fix all the bugs in their system before the release

deadline owing to time and resource constraints. The decision of whether the bug should get

fixed in the current release or deferred to the next release is a critical one. Inappropriate

planning of bug prioritization would affect the maintenance phase of the software life cycle

and may cause the software projects to go over budget and exceed the predefined schedule.

The Standish Group in their 2016 CHAOS report stated that 52.7% of software projects are

completed over budget and over time with lesser functionality than expected [70].

As all bugs are not the same with respect to their impact on performance, security, and

functionality, software managers determine which bugs should get fixed in the current release

3
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Figure 1.2: Bug life cycle [24]

with regards to some factors such as [143]:

• The priority and severity of the bug: The priority of the bug determines the sequence

in which the bugs should get fixed. The severity of the bug is the impact of the bug on

the software quality and functionality of the system. The high severity and high priority

bugs are scheduled to get resolved shortly. However, there is no census about the severity

4
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and priority of the bugs, and they may change during the life cycle of the bugs based on

different points of view from the reporters and developers to the software managers.

• The time and effort required to fix the bugs: The effort to fix the defects is another factor

to decide when the bug would get fixed. The bug fixing time and effort can be compared

to the available resources and schedule. Bug fixing may be postponed due to lack of

resources or time.

• The customer pressure: Occasionally, valuable customers may ask to fix a specific bug,

and the software development team needs to satisfy them by fixing the bugs immediately

or by finding a workaround.

• The existence of duplicate bugs: In some cases, the software team decides not to work

on some bugs, since they are duplicates of other bugs that they have already fixed or

assigned to a developer for fixing.

• The existence of blocking bugs: Additionally, the blocking bugs are severe bugs that must

be fixed prior to release deadline, since they obstruct fixing of other bugs.

Owing to the large number of bugs, handling these features manually is time-consuming and

labor-intensive. Therefore, some researchers have proposed automatic prediction of priority,

severity, duplicate bugs, and blocking bugs for prioritizing bug resolution. Supervised learning

techniques are generally applied to learn the relationship between different bug attributes and

prioritization factors. Nevertheless, previous studies have showed that developers rarely use

severity and priority [29], and therefore, labeling the data based on the published severity and

priority levels might be fallacious. The bug fixing time (difference between creation time and

resolution time) is not an indicator of effort. Additionally, the effort to fix the bugs is not

reported and recorded in the issue tracking system [159]. Besides, having prior knowledge of

duplicate bugs would indirectly help the software quality team prioritize bug reports.

We believe that another important factor can be the consequences of not fixing the bug.

Basically, the software managers have to consider what will happen if the bugs are not fixed

in the current release when they decide which bugs to fix in that release. They also need to

think about what will be the system advantage and eventual benefit of resolving that bug in

the current release for the entire system [144].

The consequence of not fixing the bug is very diverse from a minor irritation to a critical

crash of the system. In addition to loss of data, security hazards, negative goodwill, performance

5
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deficiency, and software instability, postponing bugs fixing might also have an internal impact

on other bugs in the bug tracking system. Normally, once the bug is reported and validated,

it would be assigned to a developer for resolution. However, the bug fixing process might be

paused due to the existence of blocking bugs [160]. In this scenario, the developer will not be

able to fix the bug until the blocking bug is fixed. Therefore, fixing the blocking bugs in the

early stage is essential. Presuming that the blocking bugs are postponed in the issue tracking

system, more bugs may get dependent on the blocking bugs, which might cause some conflicts

on resource planning and delays in the release schedule. In this dissertation, we specifically focus

on one of the consequence of not fixing the bugs and we define consequence as the number of

bugs that a bug blocks.

As more bugs get dependent on the blocking bugs, the consequence of not fixing them in the

issue tracking system becomes more significant because of the increase in the maintenance cost,

the degrading of the overall software quality, and the likely delay in the release schedule [159].

Isolated bugs with no or less dependent bugs might be deferred in the issue tracking system

since they do not obstruct fixing of any other bugs. However, the bugs with many back-links

should be resolved in the early stage since postponing them have an effect on the resolution

process of other bugs, and ultimately on the functionality of the system [10]. Furthermore, there

is more negative impact associated with blocking bugs as it may take longer to fix them and

also more line of codes with higher complexity are required to be modified in order to resolve

them [159]. In this dissertation, we propose a framework to prioritize bug fixing by considering

the relative importance of bugs. The relative importance by considering the consequence of

not fixing the bug is assessed based on the number of bugs they block. We did not use other

metrics, such as severity, priority, customer values, since they are not reported accurately in

the issue tracking system or the dynamics of them are not easily measured over a period of

time. Therefore we wanted to rely on a metric that is automatically driven from the data based

on the graphical structure of the bugs in the issue tracking system. Our aim is to build a

framework that captures its metrics from the data by understanding the underlying structure

of the bugs as well as the one that considers the temporality and dynamic structure of the bug

fixing process. Once the expert driven metrics such as customer pressure, severity and priority

are more reliable, it is possible to use them as different attributes in this framework to prioritize

bugs. Accordingly, our research question would be as follows:

• “How to prioritize bug reports by considering the consequence of not fixing the bugs in

terms of their relative importance?”

6
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Prioritization of bugs with respect to the consequence of not fixing them can also be dis-

cussed from the technical debt point of view. Technical debt is a metaphor in software engi-

neering and is defined as follows: “Shipping first time code is like going into debt. A little debt

speeds development so long as it is paid back promptly with a rewrite [55]”. Defect debt is a

type of technical debt that is described as any kind of bugs or defects that are reported but

not fixed in that release [102]. The accumulation of deferred bugs in the issue tracking system

becomes an obligation that needs to be paid off later. The software development team borrows

time and resources to engage in other activities rather than fixing those bugs. However, the

consequence of not fixing the bugs in the issue tracking system is associated with some im-

pacts. Having defects postponed in the system might have a positive impact, if the bugs do not

impose a higher maintenance cost in the future or the bugs get easier to be fixed in the next

release. However, it might have a negative impact if more parts of the system are dependent

on the buggy components, or if maintenance cost increases in the future [10]. Similar to defect

debt, if the deferred bugs are blocking bugs, postponing the bug resolution in the issue tracking

system may cause more bugs get dependent on the blocking bugs. The blocking bugs become a

bottleneck in the fixing processes of other bugs, which might impact the quality of the software

system. However, if the deferred bugs are non-blocking bugs, having them postponed may not

affect the bug handling processes of other bugs. This dissertation does not prioritize the bugs

with respect to accumulation of technical debt, but it is inspired by the definition of defect debt

in the technical debt literature.

The specific focus of this study is to facilitate the sequential decision making processes

for the quality team by providing a systematic way to prioritize the bugs with respect to the

number of bugs they block. Previous studies on blocking bugs have addressed the blocking

bug problems as binary classification problems. They studied the characteristics of blocking

bugs and how they could build a predictive model to estimate the likelihood of a bug being

a blocking bug [160, 168]. However, the interaction between bugs and the dynamic nature

of the bug repository due to the arrival of bugs, closing of bugs, and discovering of a new

relationship has not been considered in those studies. To tackle this problem, reinforcement

learning approach is proposed in this research.

The goal of reinforcement learning is to sequentially select bugs in such a way that more

bugs get cleared from the blocking bugs not only in the current release but also in future

releases. The Markov decision process is used as a framework for the reinforcement learning

problem [151]. To outline the bug prioritization problem as a Markov decision process, we
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propose construction of a dependency graph. The dependency graph is a directed graph where

the node represents the bug and the edge denotes that a bug is blocked by another bug. In order

to capture the number of bugs that may get affected by a blocking bug, we propose two graph

metrics, depth and degree. The depth of a bug measures the number of layered descandants of

a bug and degree is the number of outward edges from a given bug.

However, there are some uncertainties regarding the structure of the bug dependency graph.

First, almost all the relationships between bugs are discovered and added to the issue tracking

system manually and gradually [82]. Second, all the blocking bugs are not discovered at the

time of reporting [160]. Third, often times, there are some open bugs in the dependency graph

that have not been investigated yet. Therefore, all the dependency edges are not observable

at the time of planning for software managers. To handle the uncertainties in the dependency

graph structure, partially observable Markov decision process (POMDP) is proposed in this

dissertation. POMDP is a probabilistic model and a generalization of the Markov decision

process (MDP) for a sequential decision-making process that allows some uncertainties in the

process [44]. POMDP chooses the successive bugs from the dependency graph such that the

maximum depth and degree of the dependency graph are minimized. This approach is able

to reach a balance between the immediate impact of selecting a bug to fix and the long-term

consequence of this decision on the dependency graph. To the best of our knowledge, this is

the first time that POMDP has been used in this domain.

Because of a large number of bugs in the dependency graph, we are facing the large POMDP

problem. In large POMDP, learning the POMDP parameters, such as transition and observation

function, is challenging. Additionally, offline planners cannot solve the large POMDP problems

owing to the curse of dimensionality and history. To find the best policy for the proposed

POMDP, we rely on the partially observable Monte Carlo planning (POMCP) solution.

The experiments are performed on two datasets, one open source project from Mozilla, i.e.,

Firefox, and one commercial project. Our results show that the POMCP planner outperformed

baseline models as well as the current practice in the field with respect to our objective which is

to unblock as many bugs as possible. However, defect prioiritization is a multi-objective decision

making problem that considers many criteria including but not limited to, minimizing testing

time, maximizing test coverage, maximizing functionality, minimizing overall time to release

and minimizing the dependency between bugs [85]. Our proposed approach would provide a

data driven systematic way to prioritize the bugs. The proposed framework may include other

criteria to help practitioners to more effectively prioritize the defects. The proposed framework
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and the concept presented in this research are very flexible to extend.

In summary, the contribution of this dissertation can be grouped into five categories:

• Modeling the prioritization of bugs by constructing the blocking-dependency graph: We

propose construction of a blocking-dependency graph to model the prioritization of bugs

in a pure data driven approach in the sense that the graph is extracted from the data of

bug reports automatically, and we use this graph to model the bug prioritization problem

as a reinforcement learning problem.

• Quantifying the impact of the bugs considering their blockage structure: We quantify the

relative importance of bugs in the dependency graph by calculating two metrics, depth

and degree.

• Developing POMDP framework that dynamically models the bug prioritization process to

create policies that is learnt and adjusted based on the patterns in bug reporting data and

the dynamic relationships of bugs with each other: We formulate the bug prioritization

problem as a POMDP and introduce a tuple of six elements for the POMDP.

• Solving the large POMDP bug prioritisation model with POMCP to generate policies

for the practitioners: We propose application of POMCP in order to address the large

POMDP challenges to generate policies for practitioners.

The rest of this manuscript is organized as follows: In chapter 2, we review the related

work regarding bug prioritization. We thoroughly explain the proposed POMDP and POMCP

approach with the design of experiments in the methodology section in chapter 3. Experiments

and results are presented in chapter 4. Threats to the validity of this proposal are outlined in

chapter 5. Finally, chapter 7 presents the conclusions and future work framework.
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Chapter 2

Related Work

There is a large number of bug reports received daily in the bug tracking system. Although

software quality team aims to identify and resolve the bugs, they are never able to fix all the

bugs in the issue tracking system before the release deadline. The current state of the art on the

bug management and prediction mainly focuses on automating the bug triaging, duplicate bugs

detection, assignment of bugs to developers without deeming their impact [19, 20, 79, 162]. It is

shown that all the bugs are not the same in terms of their impact [159], however, there are only

a few works which have studied the bugs from their impact such as breakage bugs, performance

bugs, security bugs, and blocking bugs [63, 137, 118, 160, 63]. The bugs might impact on the

bug processes management or the software product [119]. The bugs with an impact on bug

processes management are the developers’ concern. Example of such bugs are surprize bugs

(unexpected bugs with a new concept) [137], dormant bugs (bugs introduced on one version but

reported on next versions) [47], and blocking bugs (bugs blocks other bugs from fixing) [160].

The bugs with impact on software products are the customer concern and example of these bugs

are security [63], performance [118], and breakage bugs [137]. So, different bugs with different

impact may cause different consequences on software quality [159]. There is also a possibility

that the impact of bugs changes over time. Variable impact of bugs makes the decision of which

bugs to fix on the current release essential. Practically, such a decision is made by considering

the bugs’ features such as the priority, severity, customer pressure, fixing time, presence of

duplicate bugs, and the existence of blocking bugs. However, handling these bugs features

manually is time-consuming and labor-intensive. Many researchers proposed to automatically

predict the priority, severity, duplicate, and blocking bugs in an attempt to prioritize the bugs.

This chapter briefly summarizes the related work regarding the different approaches to facilitate
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the bug prioritization. The summary of all the papers can be found in Table 2.1.

2.1 Prediction of Bug Priority

Priority of the bug is defined as how urgent the bug should get fixed. The higher the priority, the

sooner the bug should be fixed. Bug tracking systems usually define certain levels of priority for

bugs. Once the bug is reported in the bug tracking system, the reporter may assign a priority

level to the bug. However, the priority may change during the bug life cycle as the reporter

may have different opinions about the importance of bug from the software development team.

Software managers based on the context of the bug and their project experience might assign

the proper level of priority level to the bug report [84]. As the number of bugs reported daily

is huge, some researchers have studied how to predict the bug priority. They mainly focused

on two dimensions: (1) extracting different features from bug repositories, version history, and

testing process; (2) applying different supervised or unsupervised machine learning algorithms

to predict the priority level for a new reported bug.

In order to predict the bug priority, the researchers relied on the priority levels which

are reported in the issue tracking system. Categorical metadata, textual features explaining

the bugs, and contributors’ information such as reporters, developers, and subscribers are the

primary features used in the prediction models. Kanwal et al. predicted the priority of the

bug reports by exploring their categorical attributes, summary, and long descriptions [83]. In

another study, they extracted features, including categorical attributes such as component,

severity, platform, operating system, bug lifetime, and developers and also text features like

summary and long description of the bugs. They designed their experiment on Eclipse project

and compared different algorithms in terms of their accuracy [84]. Sharma et al. selected

the summary of the bug as their input feature and represented the text by using TFIDF,

“term frequency (TF) time inverse document frequency (IDF) matrix” [136]. Alenezi et al.

investigated different features to build the predictive model, including the textual contents

from the summary of the bug report and metadata such as component, operating system, and

severity [13]. They selected attributes such as temporal, textual, author, related-report, severity,

and product. They studied the bug report from Eclipse for six years. Yu et al. proposed to

extract the features during the testing processes rather than getting them from issue tracking

system [173].

Different supervised learning algorithms also have been investigated by researchers in order
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to find the most promising ones. However, the results are not aligned with each other and based

on different set of data and design of experiments, different performance has been reported.

Kanwal et al. applied support vector machine to prioritize the bug reports and evaluated the

effect of training dataset size on the performance. They reported that sample size less than 50

observation is not enough for the training of the support vector machine [83]. In another study,

they proposed a classification approach based on näıve Bayes and support vector machine to

automate bug prioritization. They designed their experiment on Eclipse project and compared

the algorithms in terms of their accuracy. They also proposed Nearest False Negative (NFN)

and Nearest False Positive (NFP) to check if the predicted priority is close to the actual priority

level. According to their result, support vector machine is more accurate when the categorical

and text features are combined compared to näıve Bayes. However, näıve Bayes outperform

support vector machine if only categorical features are available [84]. Yu et al. proposed to

apply artificial neural network and näıve Bayes to predict the priority of defects during software

testing. They showed that artificial neural network performed better than näıve Bayes in terms

of precision, recall, and F-measure [173]. Sharma et al. applied support vector machine, näıve

Bayes, K-nearest neighbours, and neural network in order to classify the priority level of the

bug into five levels of P1 (highest) to P5 (lowest) priority. They also performed cross-validation

technique for 76 cases from Eclipse and Open Office. They reported that the accuracy of

all machine learning techniques except näıve Bayes was greater than 70% across and within

projects [136]. Alenezi et al. presented different machine learning approaches such as näıve

Bayes, decision tree and random forest to predict the priority of bug report. In order to deal

with imbalance dataset, they applied under-sampling by selecting equally random instances

from each class. They showed random forest and decision tree outperformed the näıve Bayes

using Eclipse and Firefox datasets [13]. Tian et al. automated the bug prioritization by applying

a new classification, GRAY, that combined the linear regression and thresholding. Since linear

regression predicts priority levels as numbers rather than categorical ones, the threshold is used

to decide the class labels. They showed that their model outperformed the baseline approaches

in terms of F-measure [156, 155]. The most common algorithm in all of these studies is näıve

Bayes, but there is not any census on which algorithm has the best performance. In addition

to inconsistent result, past researchers showed that priority levels are subjective and are not

reported appropriately by users [29]. Therefore, using them in order to label the data for

prediction model might be misleading. This dissertation resembles the following works in terms

of the purpose of the study, which is prioritization of the bugs into multi-level, but it differs
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from them since we do not place reliance on the reported priority levels in issue tracking system.

Along with bug reports priority predictions, there are some researchers who prioritized the

crashes. They applied several heuristics to choose the most significant ones. The frequency

of crashes is the most important factor to make them a priority. Khomh et al. studied the

processes for triaging the priority of crash type. A group of similar crash reports is categorized

as one crash type. The decision on which crash type to be fixed depends on many factors such

as the frequency, the impact of the crash, and the required effort to fix the crash type. They

suggested using both entropy and frequency of information for the prioritization of crash type.

Entropy provides the distribution of crash type among users of the system. The crash with high

entropy and high frequency should get high priority. On the hand, low entropy and low frequent

crash type should be labeled as low priority, since they are rare and would affect small users.

They applied their heuristic on 10 beta releases of Firefox and showed that it would improve

crash type classification [87]. Kim et al. predicted top crashes at an early stage of development

using näıve Bayes and multilayer perceptron to prioritize the debugging efforts. Top crashes are

the crashes that account for the vast majority of crash report (the most frequent). Identifying

the top crashes at an early stage would improve the quality of software products and save

some time and effort for developers. They validated their approach by using the datasets from

Thunderbird and Mozilla. Their features included history features, complexity metrics, and

social network analysis features. They reported that their models could predict top crash with

more than 68% accuracy even with a small training set. They identified closeness centrality

and cyclomatic complexity as the best features of their models [89]. The above studies do not

rely on any prior priority level arranged by software team, however, they proposed heuristic

based on the characteristic of data. Similar to these works, we also propose to make a data-

driven decision, but we specifically focus on bug reports instead of crashes. Our approach is

also different from them.

Re-prioritization of warning from bug-finding tools attracted some researchers because of

high false positive rate. Kim and Ernst proposed a heuristic based on the association of warning

to fix-changing bugs. They investigated the research question of “which warning should get

fixed first”. They proposed a history based warning prioritization (HWP) by mining the change

history of warning. If the warning is associated with the fix-change (i.e change that fixes a bug or

other problem), then they assumed that it is an important warning. However, if the warning has

not been removed for a long time, they categorized it as a minor one. Three bug-finding tools,

FindBugs, JLint, and PMD, and three projects, Columba, Lucene, and Scarab, were chosen for
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the empirical study. They reported that their model would improve the prioritization precision

at least 17% [90]. Our work is different from them since we focus on bug reports instead of

warning, but it is similar to them since we also consider the bug which is linked to other bugs

as an important bug.

Similar to the grouping of warning and bugs, grouping of related failure is also used for their

prioritization. Podgurski et al. proposed the four phases classification to make prioritization

easier for software failure and also to help to identify the cause of failure. The four-phases clas-

sification included: profiling, feature selection, grouping related failures, confirming or refining

the initial classification [124]

Xuan et al. focused on prioritization of developers instead of bug reports. They modeled the

developer prioritization using a social network technique by investigating developer ranking in

the product, the tolerance of noisy comments, and evolution over time. They tried to improve

bug triaging, severity prediction and reopened bug prediction by adding the output/input of

developer priorities. They checked the feasibility of their model on bug reports from Eclipse and

Mozilla. They showed that the developer prioritization may improve the task in bug repositories

based on empirical study [169]. This study is significantly different from ours in term of the goal

of prioritization, but it is related to our work in terms of using graph theory for prioritization.

In summary, the work in this dissertation is similar to the above studies in terms of pri-

oritization of the bugs into certain levels, however, it differs in terms of approach, and the

algorithm. Some of these studies use the priority level of the bug as an indubitable label for

the supervised model, however, we question the reported priority in the system. In our work,

the priority comes from the impact of the bugs on other bugs. In addition to the immediate

impact of the bug, the dynamic consequence of it is also taken into account.

2.2 Prediction of Bug Severity

Bug severity determines the negative impact of the problem on the functionality of the software,

security, capability, or other requirements. Priority of the bug report is a relative assessment and

it would be dependent on other bug report and also time period to the next release, however, the

severity of the bug indicates how urgent the bug should get fixed to keep the system functional.

The severity of the bug seems less subjective than the priority of the bug [97]. In some software

systems, assigning the proper severity level for the bug report is critical in order to manage the

resources and plan the release [111], but in other software systems, the developers rarely use the
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severity information in order to fix the bugs [29]. Similar to priority prediction literature, the

researchers of this field relied on the severity level reported in the issue tracking system to label

their bug report and obtained the training attributes by mining the bug repository. However,

in the case that enough information about the severity is not provided earlier by developers

then the lack of data may be a threat to the validity of those studies. There are two main goals

in these studies: (1) exploring different machine learning techniques to predict the severity of

bugs, and (2) selecting the features which can be the best candidates to predict the severity.

In this dissertation, we do not focus on severity prediction but we review the following works,

since severity can be one of the factors to make a priority for bugs.

Various type of supervised learning algorithms have been explored to predict the bug sever-

ity. Researchers were not in an agreement which algorithms outperform others in predicting

the bug severity and they did not discuss the advantages of their techniques over the previous

ones. Menzies et al. proposed SEVERIS (SEVERity ISsue assessment) which is an automated

method for severity assessment. SEVERIS is designed based on Cohens RIPPER [52] rule-based

machine learning technique. SEVERIS applied to five projects from NASA with an average F-

measure of 50% [111]. Lamkanfi et al. applied näıve Bayes, decision trees, K-nearest neighbour

to three open source software projects, Mozilla, Eclipse, and GNOME. They reported precision

and recall greater than 65% [97]. Lamkanfi et al. compared four different machine learning

algorithms such as näıve Bayes, näıve Bayes multinomial, K-nearest neighbour and support

vector machines to predict the bug severity for two open source projects, Eclipse and GNOME.

They concluded that näıve Bayes multinomial performed better than other models if at least 250

bug reports from each class for training is available [98]. Tian et al. presented the information

retrieval approach based on BM25 (Best matching) similarity function and K-nearest neigh-

bour to predict the severity of three open source projects, OpenOffice, Mozilla, and Eclipse.

They compared their model with SEVERIS [111] and did sensitivity analysis by changing the

parameter K in K-nearest neighbour [154]. Chaturvedi et al. applied several machine learning

algorithms näıve Bayes, k-nearest neighbor, näıve Bayes multinomial, support vector machine,

J48 (Java implementation of C4.5) and repeated incremental pruning to produce error reduction

(RIPPER) on bug summary to classify the severity of bug reports into five levels. They com-

pared the performance and applicability of those models using the data from NASA [46]. Näıve

Bayes has been widely used in most of the studies but different sources of data and different

design of the experiments make the comparison between these studies difficult. Only one of the

studies discussed the advantages of their model over others [111]. Menzies et al. claimed that
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the competitive advantage of SEVERIS is that it can be interoperated with human analysts.

It is able to provide the confidence probability for the predicted severity level. If the predicted

severity is different from the one analyst proposed, then an experienced supervisor would review

the first analyst severity to adjust the severity level. However, other techniques do not justify

what is the reason for choosing different algorithms. Our study is similar to the above ones

due to the purpose of the study which is bug prioritization but we do not rely on the reported

severity of bugs. Additionally, classifying bugs into certain levels may not be very informative

for practitioners, therefore, we propose to make a sequential decision making in this study.

The most common feature which has been extracted in order to predict the severity of the

bug is the textual feature from the summary and the long description of bug reports. Menzies

et al. applied some pre-processing step and dimensionality reduction such as tokenization, stop

word removal, stemming, TFIDF, and InfoGain [111]. Lamkanfi et al. explored the content

and length of the text, the size of the training set, and the component of a software system

to predict severity [97]. Tian et al. also extracted features from the summary and the long

description of the bug report, but they combined it with the product and component. For

the textual features BM25 similarity function is calculated and for non-textual one, component

and product, the binary values based on equality of them are considered [154]. In addition to

the textual features, some researchers applied graph theory metrics to predict the bug severity.

Bhattacharya et al. studied the call graph, module, and developer collaboration graphs to

investigate the evolution of software systems. They analyzed eleven open source projects written

either in C or C++. They used graph metrics such as average degree, clustering coefficient,

nodeRank, graph diameter, assortativity, distance, and modularity distribution. They exploited

the metrics from the source code graph and developer collaboration graph to predict the bug

severity, defect count, and effort [30]. Our study is similar to their work in respect of employing

the graph metrics and some of their metrics, but the purpose of the study and our approach is

different from their work.

Some researchers considered the severity prediction as a binary classification. Lamkanfi et al.

predicted the severity of bug reports into two classes of severe and non-severe by selecting textual

features [97, 98]. However, some other researchers considered the more realistic approach by

applying multilevel classification and predicting severity into four (five) levels of critical, major,

minor, trivial (and blocker) [111, 30, 154, 46].

The prioritization of the bug in compliance with the severity is certainly important, however,

sometime submitter of the bug augment the severity level to attract more attention in an
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attempt to fix their bug sooner. Additionally, past research shows that developers rarely use

the severity [29]. Sometimes practitioners may not be in consensus about severity level once the

reported bugs. There is also a chance that severity change during the life cycle of the bugs [154].

The work in this dissertation relies on more data-driven attributes rather than intuitive severity

levels. Instead of the classification model, we also propose to apply a sequential decision-making

approach which is more realistic.

2.3 Prediction of Duplicate Bugs

As issue tracking systems allow different stakeholders to report their issues, there is a proba-

bility that an incoming report refers to the bug which already have been reported. These bug

reports are called “duplicate bug”. Inexperience user, poor search functionality, and acciden-

tal/intentional re-submission of bug report can be the reason for duplicate bug reports. As

a considerable percentage (10%-30%) of bug reports are the duplicate bugs, identifying them

in the bug tracking system is a laborious task for bug triagers and software developers [45].

As the duplicate bugs are detected, they would be attached to the master bugs to provide an

extra information. The impact of duplicate bug is significant in all maintenance and evolution

activities. So, detecting the duplicate bug in an efficient way would save time and effort for

software development team. The extra time could improve software maintenance and evolution

activities and particularly the prioritization [45]. Our work in this dissertation is significantly

different from the detecting of duplicate bugs. However, we reviewed the prediction of duplicate

bugs since they are indirectly aiming the software team to improve prioritization. Practitioners

can filter out the duplicate bugs as they are examined and fixed with master bugs. Similar to

their practice, we also started our experiment by removing the duplicate bugs from the issue

tracking system.

The researchers in prediction of duplicate bugs mainly explored the information retrieval

techniques combined with textual features to find the similarity between bug reports. Duplica-

tion detection has been studied in three respects: Ranking [128, 162, 150, 149, 170, 116], binary

classification [78, 157] and decision making approach [100, 15].

In the ranking approach, a list of similar duplicate bug reports is recommended in chrono-

logical order. Text similarity between the original bug report and the duplicate ones is the basis

of most these studies. Two main techniques which have been widely used is natural language

processing and support vector machine. Runeson et al. used Natural Language Processing
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(NLP) to detect the duplicate bugs at Sony Ericsson Mobile Communications. The processes

that they followed in applying NLP is tokenization, stemming, removing the stop word, vector

space representation and similarity calculation (cosine, dice, and Jaccard). They analyzed the

bug reports’ description and summary text and searched the duplicate bugs in a user-defined

time frame. The time frame is used for searching the reports by considering the time difference

between when the master (original) and duplicate reports are submitted. They also considered

the subset of the ranked list, such as top list sizes of 5, 10 and 15. They presented that NLP

is able to find 2/3 duplicate reports [128].

NLP was combined with execution information to detect duplicate bugs by Wang et al. They

started by calculating the natural language similarities (NLS) between bug reports. They also

computed execution information similarities (ES). They combined two similarity measurements

and proposed the heuristic to retrieve the duplicate bugs. They also investigated which simi-

larity measure is more powerful in detecting the duplicate bugs [162]. However, this approach

needs that developers have access to the proper tool for collecting the execute information.

In another study, instead of word-level presentation, a continuous sequence of n words from a

given text (n-gram) is applied. Sureka et al. discussed that bug report is a vague and ambiguous

text with some missing information and noisy presentation. They proposed a character level

n-gram model in order to measure the similarity since it would be language independent and

also reduce the noise by extracting sub-word features. They applied their solution on Eclipse

project [150].

The performance of the above studies was not quite promising. In order to achieve a

better performance, Sun et al. applied support vector machine and Information retrieval (IR)

to find how likely two pairs of bug reports are duplicates. There are three main steps in

building their model: pre-processing, training a support vector machine model, and retrieving

the duplicate bug report. They conducted an empirical study on three projects Firefox, Eclipse,

and OpenOffice and showed a relative improvement of at least 17% [149]. In another study, Sun

et al. suggested three approaches to detect duplicate bugs. Their first approach is extending

BM25F (instead of BM25) which is similarity measurement function for structured documents

and anchor texts. Their second approach is to consider the retrieval function which is the

linear combination of both textual and categorical similarities. They suggested giving several

importance weights for each query term. And their third aspect is to optimize the retrieval

function in the training phase by using the gradient descent [148]. Yang et al. also studied the

effectiveness of BM25 term weighting scheme on three projects Apache, ArgoUML, and SVN
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[170].

Support vector machine shows prominent improvements in performance. So that, Lin et al.

extracted historical text from bug reports description and summary, and applied support vector

machine to rank the duplicate bugs. The main difference is that this study considered manifold

correlation features. In order to train support vector machine, they calculated the correlation

relationship between a pair of bugs. If two bug reports are in the same cluster of duplicate

bugs, the pair is labeled as positive, otherwise, it is labeled as negative. They designed the

experimental study on three open source projects Apache, ArgoUML, and SVN. They showed

their model outperformed the baseline model at least 2.79% improvement in recall rates [103].

In an attempt to improve the performance measurement, Nguyen et al. also introduced,

DBTM, the duplicate ranking prediction using information retrieval based features and topic

modeling with latent Dirichlet allocation (LDA). Their proposed model considered the lin-

ear combination of topic features and BM25F features. They applied their model in Eclipse,

OpenOffice, and Mozilla and reported up to 20% improvement in accuracy [116].

All the previous researchers proposed to predict the rank scores of bug reports, however,

Zhou et al. presented BugSim based on the concept of learning to rank via pairwise ranking.

They measured the similarity between bug reports according to nine features calculated based

on the frequency of common words, TFIDF, and the vector space model. BugSim is the linear

combination of nine the features. Higher Bugsim is an indicator of higher similarity. They also

minimized the Fidelity loss function [158] to measure the cost of BugSim [177].

In a binary classification, each test bug report is classified as either duplicate or non-

duplicate. Although the binary classification may be attractive to some researchers because

it clearly divided the bugs into two classes, however, there is still a huge number of false alarm

in their result. Jalbert and Weimer proposed to classify the bug reports into two classes of

duplicate and non-duplicate by using the surface features, textual feature via graph clustering

algorithms. The graph clustering is constructed in such a way that bug reports present the node

and the similarity weight denotes an edge. They built a linear regression model on 29,000 bug

reports from Mozilla project and considered the cut-off value to distinguish between duplicate

and non-duplicate bugs [78].

Tian et al. improved duplicate bug report identification by extending Jalbert et al. approach

[78] via applying feature engineering and imbalance data technique. For feature engineering,

they improved the similarity metrics by using REP instead of BM25F, capturing the product

difference, and synthesizing relative similarity from most similar reports. To deal with imbalance
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dataset, they applied oversampling and trained the model using support vector machines. They

identified 24% of possible duplicate bugs in a dataset from Mozilla but the accuracy still is not

reasonable [157].

In a decision-making approach, duplicate detection is treated as a decision-making problem.

There is more attention on machine learning technique among these researchers. Alipour et

al. investigated the impact of contextual information on the accuracy of duplicate bug report

ranking. They created a set of architectural words, non-functional requirement words, LDA

topic words and random English words. They calculated the similarity between bug reports and

query from contextual information using the BM25 function. Those similarity measurements

added as new features to textual and categorical features. They considered both binary classi-

fication approach and also ranking approach. 0-R, Logistic regression, Näıve Bayes, C4.5, and

K-nearest neighbor have been applied. They reported that contextual features would improve

the accuracy of classification approach by 11.5% and MAP measures by 7.8-9.5% [15]. Lazar et

al. described the textual features inspired by TakeLab [132] to measure a semantic similarity

score of bug report between 1 to 5 based on n-gram overlap and word-net augmented word

overlap. They also selected some categorical features such as product, component, version,

type, priority, open date, and bug id. They trained K-nearest neighbor, linear support vector

machine, RBF(Radial basis function) network, support vector machine, decision tree, random

forest, and Näıve Bayes to predict the duplicate bugs. Eclipse, OpenOffice, and Mozilla are

studied and accuracy improvement between 3.25% - 6.32% are reported [100]. Although, the

decision-making approach improved the performance to some extent, however, their approach

is less challenging than ranking approach. Additionally, the number of paired reports would

increase by the increase in the number of bug reports.

Search technique also has been studied to detect the duplicate bugs. However, as the bug re-

ports are described in many different ways, it would be challenging to search for duplicate bugs.

The search based technique is proposed based on Apache Lucene search engine. The technique

includes three steps: pre-processing and indexing, searching and ranking, selection and filtering.

They also explored the impact of parameter tuning of duplicate detection performance. They

applied their framework on two datasets from BlackBerry and Mozilla [17].

Detecting the duplicate bug in the issue tracking system would save lots of time for software

development team to engage in other activities for triaging the bug. Detecting duplicate bugs

indirectly support the development team to prioritize the bugs. Since filter out the duplicate

bugs, cause the total number of bugs requires to get fixed decrease and triagers can get more
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attention to more serious bugs. After identifying the duplicate bugs, the software team may

close and ignore those bugs and put their main focus on the original bugs. In this research, we

also followed the same approach and remove the duplicate bugs from our dataset. However, our

work significantly differs from these works as we do not focus on the duplicate bug prediction.

2.4 Prediction of Bug Fixing Time

There are some studies in the literature that predict the bug fixing time to give a software

quality team an early indication of the bug closing time so that they can prioritize their tasks.

Some of the studies focused on classifying the bug fixing time into fast or cheap (bugs with

the fixing time less than the median), and slow or expensive (bugs with the fixing time greater

than the median) [121, 73, 64]. Some other studies applied regression model to predict the

bug fixing time [18, 9]. Time to fix the bug in these studies is equal to the difference between

the bug creation time and the bug resolution time. However, the longer the bug in the issue

tracking system does not necessarily mean that the bug is more difficult to solve [159]. If the

bug fixing time can be measured more accurately in the terms of effort needed to fix the bugs,

the prioritization of the bug based on bug fixing time be more meaningful. Generally, most bug

fixing time predictions combine well-known methodologies such as statistical techniques and

machine learning algorithms.

Research on bug fixing time has a history of more than 10 years. Researchers started with

simple machine learning technique to classify the bugs into cheap (fast) or expensive (slow).

The surface features, including, but not limited to self-reported severity, submitter reputation,

severity change, comment count, priority, priority changes and attachment count are widely

used. The performance measurement ranges from 35% to 85%. Recent research in this realm

applied more complicated model such as hidden Markov model.

One of the earliest studies on bug fixing time prediction is by Panjer. He classified the bug

fixing time for five years of Eclipse bugs using basic machine learning tools such as 0-R, 1-R,

decision tree, naive Bayes, and logistic regression. He reported that his model is able to predict

34.9% of the bugs correctly in the initial stage of the bug life cycle [121].

Hooimeijer et al. described the bug quality model and used linear regression to classify the

bugs into expensive and cheap. Expensive (cheap) bugs are the bugs which are addressed by

developers after (before) a certain time threshold. In addition to surface features, readability

measure, daily load also included in their dataset. They also tried to optimize the threshold
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for their classification. They also investigated the post-submission data in order to improve the

model performance [73].

Some researchers investigated the relationship between the independent variables (bug fea-

tures) and the dependent variable (bug fixing time) and also the correlation between the vari-

ables. Anbalagan et al. studied 72,482 bug reports from Ubuntu and discovered that there is a

strong linear relationship (the correlation coefficient value is 0.92) between bug fixing time and

the number of participants involved in bug fixing process[18].

The work in this dissertation is significantly different from the above works in two ways: (1)

we do not prioritize the bugs with respect to bug fixing time as it may not be an indicator of

effort, and (2) we propose reinforcement learning instead of supervised learning for the purpose

of prioritization due to the dynamic nature of issue tracking system.

Some researchers focused on the temporal characteristics of the bug features. Giger et al.

employed a decision tree to classify bugs into “fast” or “slow” for three open source projects

including Eclipse, Mozilla, and Gnome. The median of 365 days is used to label the bug

data into a slow and fast bug. They investigated the post-submission data from day 0 to day

30 and how the post submission data can improve the model performance [64]. Habayeb et

al. also used a temporal sequence of development activities from the issue tracking instead of

the frequency of occurrence of certain activities. They applied two hidden Markov models for

predicting bug fixing time to slow and fast. They performed an experiment on eight years of

data from Firefox projects. They compared hidden Markov model with popular classification

algorithms and showed that it reached approximately 33% higher F-measure [67].

Some studies suggested that filtering of the bugs with very short life cycle might improve the

fixing time prediction. Lamkanfi et al. proposed the filtering of conspicuous bugs (bugs with a

very short life cycle) before the bug fixing time analysis. They reported a slight improvement

in fixing time prediction after filtering [96]. Habayeb et al. also filtered out the bugs which are

reported and resolved the same day [67].

Zhang et al. performed an empirical study on bug fixing times in three commercial projects.

They proposed a Markov chain model to predict the number of bugs that can be fixed in the

future. In addition, they employed Monte Carlo simulation to predict the total fixing time for a

given number of bugs. Then, they classified bugs as fast and slow based on different threshold

times [175]. We replicated their work using the Bugzilla Firefox dataset and concluded that

their model is robust enough to predict the bug fixing time [12].

Fixing time prediction by using Hidden Markov model [67] and Markov chain model [175]
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is simpler model of our proposed model, POMDP. They applied the Markovian property to

predict the bug fixing time, we applied the Markovian property in order to sequentially make

a decision about which bugs get fixed.

Most of the previous works in the prediction of bug fixing time proposed classification.

However, binary classification may not provide the practitioner with enough information about

the fixing time. Akbarinasaji et al. proposed to predict the bug fixing time using K-nearest

neighborhood regression model for the bugs which are reported and resolved within one release.

Their features include submitter, owner and component fixing time, the severity, and priority

level. They conducted an empirical study both on commercial and open source projects and

showed that their model outperformed the linear regression model with R2 ranges between 74%

to 85% [11].

Having a good understanding of the bug fixing time makes the maintenance planning more

effective. The software maintenance team is able to assign more resources to the bugs with

longer fixing time. We are aware of the bug fixing time as one of the factors to decide when to

fix the bugs. But the bug fixing time can be a more reliable factor if it would be the indicator of

effort as well. In this dissertation, we investigate the bug prioritization by focusing on another

factor which is the impact of not fixing the bug in the issue tracking system.

2.5 Prediction of Blocking Bug

There is no doubt that all the bugs are not the same in terms of their impact on bug process

management or software product [159]. The impact of bugs becomes an important factor in

the bug prioritization. The challenge is that the impact of bugs is variable and dynamic over

time. Variable impact of bugs causes that practitioners prioritize the bugs with respect to many

factors such as severity, priority, bug fixing time, and the existence of the duplicate bugs, etc.

In previous sections, we have discussed that priority and severity are not properly reported

in the issue tracking system [29]. Additionally, the bug fixing time is not a good indicator of

efforts [159]. And removing the duplicate bugs indirectly would support the bug prioritization.

Therefore, some researchers propose to prioritize the bugs with respect to their impact on other

bugs in the issue tracking system. If a particular bug stalls other bugs from fixing, that bug

would be a bottleneck in fixing of other bugs and it requires to get fixed at an early stage.

This kind of bugs is called “Blocking bugs”. Identifying the blocking bugs in the early stage is

necessary since they may have some effects on the software quality, the release date, and the
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maintenance cost. The fixing time and identifying time for blocking bugs are longer than the

other bugs [160] and in certain cases, blocking bugs may obstruct the whole fixing process. So,

they definitely would have a negative impact on the software quality as fixing them on the early

stage would reduce their impact on the software system. In practice, the bugs which block more

bugs may be the priority to get fixed. In this study, we also address the bug prioritization with

respect to blocking bugs and their impact.

There are only a few studies regarding the prediction of blocking bugs. The main focus

of these studies is two dimensions: (1) predicting and classifying the bugs into two classes

of blocking bugs and non-blocking bugs, and (2) characterizing the blocking bugs. Garcia

et al. presented the blocking bugs characterization. They studied six open source projects

including Chromium, Eclipse, FreeDesktop, Mozilla, NetBeans, and OpenOffice. They showed

that blocking bugs would be resolved 15-40 days longer than non-blocking bugs. The median

time to identify the blocking bugs would be 3-18 days. They measured the impact of bugs by

calculating the degree of blocking bugs. They reported that on average, each blocking bugs

blocked 2 bugs. Our study is similar to their works in terms of one of the metrics which have

been used to measure the impact of bugs which is the degree, however, we do not focus on

classifying the bugs. Garcia et al. also classified the bugs into blocking and non-blocking bugs

using a decision tree classifier, näıve Bayes, K-nearest neighbour, random forest, and zero-R.

They built a prediction model with F-measure between 15-24% to detect the blocking bugs.

They used 14 different factors to detect blocking bugs, including product, component, platform,

severity, priority, number of subscribers (CC), description size and text, comment size and text,

binary index if the priority has increased, reporter name and experience, and reporter blocking

experience [160].

The above study did not consider the impact of imbalance dataset in their classifiers. Xia

et al. studied the unequal distribution of bugs between blocking and non-blocking bugs. They

proposed ElBlocker in order to deal with the imbalanced dataset to predict the blocking bugs.

Elblocker is an ensemble approach that combines multiple classifiers (random forest in this study

is used) and builds the prediction on a disjoint subset of the training set. For each classifier,

the likelihood score of the bug as a blocking bug is calculated. The composite confidence score

is calculated as the sum of all likelihood score and the bug is chosen to be blocking bugs if the

composite score is greater than a threshold. ElBlocker was examined on six open source projects

including Freedesktop, Chromium, Mozilla, Netbeans, OpenOffice, and Eclipse. It improved

F1 and EffectivenessRatio@20% by 14.69% and 8.99%, respectively [168]. Our work in this
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dissertation differs from these two studies, in terms of overall approach and algorithm. The

supervised classifier which has been used in the above studies can only predict if the bugs are

blocking or non-blocking without deeming their impact. However, we are interested to consider

the relative impact of bugs. The impact of blocking bugs in terms of a number of blocking bugs

can serve as a feedback (reward/punishment) for the purpose of prioritization. Our aim is to

find the optimal sequence to fix the bug to minimize their total impact dynamically versus the

simple classifying.

Although classifying the bugs into blocking and non-blocking bugs is important, it does not

give enough information to practitioners regarding the impact of blocking bugs. Our study is

similar to the aforementioned works in terms of focusing on the blocking bugs, but it differs from

them as we consider the problem as a sequential decision making with a focus on the impact of

keeping the bugs in the issue tracking system. Supervised learning may not suffice in sequential

decision making since it is not possible to label all the sequences of bugs. Additionally, the

consequence of fixing the bug is not immediate, and delayed consequence would be dependent

on how the follower bugs would be selected. To sequentially select bugs, software practitioners

may prioritize the bugs by sorting the bugs in an ascending order based on the number of bugs

they block. The bug which blocks more bugs may be selected first to get fixed. However, the

dependency information is manually added to the bug tracking system, and sometimes it may

take time to be available in the issue tracking system. Furthermore, due to the existence of un-

examined bugs, some of the information is missing. The dynamic nature of issue tracking system

may cause that the impact of blocking bugs be different from time to time, as new bugs might be

reported or the bugs may get resolved. So, there is uncertainty in the dependency graph network

structure. The aforementioned studies did not take into account the partial information in the

issue tracking system. In order to cope with partially observable dependency information in

the bug tracking system, reinforcement learning based on Partially Observable Markov Decision

Model (POMDP) is proposed. Because the states are only partially observable, it causes the

perceptual aliasing, i.e., different states appear the same but requires different response behavior

[146]. POMDP has been commonly applied in manufacturing to machine maintenance problem

where the agent would decide when to inspect the machine in order to make a balance between

inspection cost and expected deterioration [141]. POMDP also has many applications in science

and technology such as robotics, machine vision, health-care, and network troubleshooting; in

business such as marketing, and social networks [44]. To the best of our knowledge, there are

no applications of POMDP in software engineering, specifically in bug fixing and prioritization

25



2.5. PREDICTION OF BLOCKING BUG CHAPTER 2. RELATED WORK

domain. In the next chapter, we will explain the formulation of our problem in POMDP and

its solution approach.
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Table 2.1: Summary of software engineering studies on bug prioritization
Paper Title Publication

Year
Data Approach Prioritize

wrt
Automated support for classifying software
failure reports [124]

2003 GCC, Jikes, javac Clustering with visualization Priority

Which warnings should I fix first? [90] 2007 Columba, Lucene,
and Scarab

History-based warning prioriti-
zation algorithm

Priority

An entropy evaluation approach for triaging
field crashes: A case study of Mozilla Firefox
[87]

2011 Firefox Entropy and frequency of infor-
mation

Priority

Which crashes should I fix first? Predicting
top crashes at an early stage to prioritize de-
bugging efforts [89]

2011 Thunderbirds and
Mozilla

Näıve Bayes and multi-layer per-
ceptron

Priority

Predicting Defect Priority Based on Neural
Networks [173]

2010 Health-care com-
pany

Artificial Neural network and
Näıve Bayes

Priority

Managing open bug repositories through bug
report prioritization using SVMs [83]

2010 Eclipse Support Vector Machine Priority

Bug prioritization to facilitate bug report
triage [84]

2012 Eclipse Näıve Bayes and Support Vector
Machine

Priotiy

Predicting the priority of a reported bug using
machine learning techniques and cross project
validation [136]

2012 Eclipse and Open
Office

support vector machine, Näıve
Bayes, K-Nearest Neighbours,
Neural network

Priority

Developer prioritization in bug repositories
[169]

2012 Eclipse and Mozilla Social Network technique Priority

Bug reports prioritization: Which features
and classifier to use? [13]

2013 Eclipse and Firefox Näıve Bayes, Decision Tree, Ran-
dom Forest

Priority

Predicting priority of reported bugs by multi-
factor analysis [155]

2013 Eclipse DRONE Priority

Automated prediction of bug report priority
using multi-factor analysis [156]

2015 Eclipse and Firefox GRAY Priority

Automated severity assessment of software de-
fect reports [111]

2008 NASA SEVERIS Severity

Predicting the severity of a reported bug [97] 2010 Mozilla, Eclipse,
and GNOME

Näıve Bayes, Decision trees, K-
Nearest Neighbour

Severity

Comparing mining algorithms for predicting
the severity of a reported bug [98]

2011 Eclipse and
GNOME

Näıve Bayes, Näıve Bayes Multi-
nomial, K-Nearest Neighbour
and Support Vector Machines

Severity

Graph-based analysis and prediction for soft-
ware evolution [30]

2012 11 Open source
projects

Graph theory Severity,
defect count
and effort
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Paper Title Publication
Year

Data Approach Prioritize
wrt

Information retrieval based nearest neighbour
classification for fine-grained bug severity pre-
diction [154]

2012 OpenOffice,
Mozilla, and
Eclipse

BM25 & KNN Severity

Determining bug severity using machine learn-
ing techniques [46]

2012 NASA Naive Bayes, KNN, Naive Bayes
Multi-nomial, Support Vector
Machine, J48, RIPPER

Severity

Detection of duplicate defect reports using
natural language processing [128]

2007 Sony Ericsson Mo-
bile

Natural language Processing
(NLP)

Duplicate
Bug

Detecting duplicate bug report using charac-
ter n-gram-based features [150]

2010 Eclipse N-gram and text similarity Duplicate
Bug

Automated duplicate detection for bug track-
ing systems [78]

2008 Mozilla Graph clustering algorithms Duplicate
Bug

An approach to detecting duplicate bug re-
ports using natural language and execution in-
formation [162]

2008 Eclipse & Firefox Natural language similarities
(NLS)

Duplicate
Bug

A discriminative model approach for accurate
duplicate bug report retrieval [149]

2010 Firefox, Eclipse,
and OpenOffice

Support vector machine and In-
formation retrieval (IR)

Duplicate
Bug

Towards more accurate retrieval of duplicate
bug reports [148]

2010 Mozilla, Eclipse
and OpenOffice

BM25F Duplicate
Bug

Duplication detection for software bug reports
based on BM25 term weighting [170]

2012 Apache, ArgoUML,
and SVN

BM25 and weighting Duplicate
Bug

Duplicate bug report detection with a combi-
nation of information retrieval and topic mod-
eling [116]

2012 Eclipse, OpenOf-
fice, and Mozilla

Topic modeling with latent
Dirichlet allocation (LDA)

Duplicate
Bug

Learning to rank duplicate bug reports [177] 2012 Eclipse JDT,
Eclipse SWT and
ArgoUML

BugSim Duplicate
bug

Improved duplicate bug report identification
[157]

2012 Mozilla 0-R, Logistic regression, Näıve
Bayes, C4.5, and K-nearest
neighbourhood

Duplicate
bug

Contextual approach towards more accurate
duplicate bug report detection [15]

2013 Android ecosystem LDA Duplicate
bug

Search-based duplicate defect detection: an
industrial experience [17]

2013 BlackBerry and
Mozilla

Search based techniques Duplicate
bug

Improving the accuracy of duplicate bug re-
port detection using textual similarity mea-
sures [100]

2014 Eclipse, OpenOf-
fice, and Mozilla

K-nearest neighbor, linear sup-
port vector machine, RBF (Ra-
dial basis function) network, sup-
port vector machine, decision
Tree, random forest, and Näıve
Bayes

Duplicate
bug
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Paper Title Publication
Year

Data Approach Prioritize
wrt

Enhancements for duplication detection in
bug reports with manifold correlation features
[103]

2016 Apache, ArgoUML,
and SVN

Support vector machine Duplicate
bug

Predicting eclipse bug lifetimes [121] 2007 Eclipse 0-R, 1-R, decision tree, näıve
Bayes, and logistic regression

Fixing time

Modeling bug report quality [73] 2007 Firefox Linear regression Fixing time
On predicting the time taken to correct bug
reports in open source projects [18]

2009 Ubuntu Correlation Analysis Fixing time

Predicting the fix time of bugs [64] 2010 Eclipse, Mozilla,
and Gnome

Decision tree Fixing time

Filtering bug reports for fix-time analysis [96] 2010 Eclipse, Mozilla Näıve Bayes Fixing time
Predicting bug-fixing time: an empirical study
of commercial software projects [175]

2013 CA Technologies Markov Chain, Monte Carlo
Simulation, KNN

Fixing time

On the use of hidden markov model to predict
the time to fix bugs [67]

2017 Firefox Hidden Markov Model Fixing time

Measuring the principal of defect debt [11] 2016 Firefox & Commer-
cial software

KNN-regression Fixing time

Predicting bug-fixing time: A replica-
tion study using an open source software
project[12]

2017 Firefox Markov Chain, Monte Carlo
Simulation, KNN

Fixing time

Characterizing and predicting blocking bugs
in open source projects [160]

2014 Chromium,
Eclipse, Free
Desktop, Mozilla,
NetBeans, and
OpenOffice

Decision Tree Classifier, Näıve
Bayes, K-Nearest Neighbour,
Random Forest and Zero-R

Blocking
Bug

Elblocker: Predicting blocking bugs with en-
semble imbalance learning [168]

2015 Free-desktop,
Chromium,
Mozilla, Net-
beans, OpenOffice,
and Eclipse

Ensemble approach Blocking
Bug
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Chapter 3

Methodology

3.1 Proposed Solution

In this chapter, we discuss the proposed approach to address our research problem: “How to

prioritize bug reports by considering the consequence of not fixing the bugs in terms of their

relative importance?”

In the related work chapter, we explain that the software practitioners may prioritize bugs by

considering their severity, priority, fixing time, the existence of duplicate bugs, and the presence

of blocker bugs. However, the dynamic nature of bugs in the issue tracking system due to the

arrival of new bugs, closing of resolved bugs, and discovering the new relationships between

bugs has not been considered in those studies [168, 160]. Most of these studies tackle the

problem of bug prioritization as a supervised learning approach [84, 66, 111, 98, 168]. However,

it is not possible to label all viable sequences of bugs. The output of a supervised learning

approach does not reveal which bug needs to be resolved as it does not consider the inherent

dependencies of bugs. Therefore, we need a different approach than supervised learning in

order to model the dynamic nature of the issue tracking system. In this research, we propose to

use the reinforcement learning approach with a partially observable framework to sequentially

choose the bugs based on their impact. The reinforcement learning problem, its framework, the

theory of Markov Decision Process (MDP), and Partially Observable Markov Decision Process

(POMDP) are described in section 3.2.

One way to measure the impact of the bug may be based on the number of bugs that are

blocked by that bug [168, 160]. In order to measure the impact of the bug, we can construct a

dependency graph and calculate the maximum depth and degree of the graph. Our goal is to
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select bugs sequentially such that the maximum depth and degree are minimized. Note that a

single selection of a bug also has a long-term consequence, apart from the immediate change in

the dependency graph. The solution to count both the immediate and long-term consequence

of fixing a bug is reinforcement learning. More often, MDP is used as the specification of the

reinforcement learning problem; however, the dependency information is manually added to the

bug tracking system, and all the dependencies are not fully available at the time of planning

[159]. Therefore, there is uncertainty in the dependency graph network structure. In order to

deal with partially observable dependency information in the bug tracking system, we propose

to use POMDP.

• Dependency graph: We construct the dependency graph from the bug repository. The

bug tracking system captures the blocking-dependent relationships. The detail regarding

the dependency graph is described in section 3.3. To measure the impact of bugs, we

need metrics that quantify the number of blocking bugs. Two graph metrics, degree and

depth, are calculated for each bug in the dependency graph as a measure of impact. The

definitions of the metrics are provided in section 3.3.2.

• POMDP framework for prioritization of bugs: Owing to uncertainties in the structure of

the dependency graph, the software practitioners may only partially observe the depen-

dency graph’s depth and degree. Therefore, POMDP is proposed to formulate the bug

prioritization problem. POMDP formally corresponds to 6 tuples of states, actions, tran-

sition probability, observation, observation probability, and reward, which are described

in section 3.4.

• Partially Observable Monte Carlo Planning (POMCP) solution: The state in our POMDP

is defined as the maximum depth and degree of the dependency graph. Theoretically, the

maximum depth and degree of the dependency graph are equal to the number of nodes

(bugs) existing in the dependency graph minus one. Therefore, we are facing the POMDP

problem with a large number of states. As the number of states increases, the POMDP

problem becomes computationally intractable to solve, and off-line planners, which specify

the best action for all possible scenarios, are not effective [139]. To solve the challenging

POMDP, Bayesian inference and, specifically, POMCP is employed [139]. We explain

these details in section 3.2.4.

• Design of experiments: We discuss the design of reinforcement learning, the training and

testing strategy, evaluation criteria, and comparison with other methods in section 3.5.
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3.2 Reinforcement Learning

Reinforcement learning is a machine learning technique in which learning occurs by interac-

tion with the environment through reward and punishment [151]. Reinforcement learning is

different from supervised learning where learning takes place with a teacher. It is also different

from unsupervised learning, which is about finding the hidden structure of unlabeled data [16].

Reinforcement learning mimics the way infants learn through a system of reward and punish-

ment based on the action that they take. The main characteristic of reinforcement learning is

finding the balance between exploration and exploitation [16]. The learner exploits previous

knowledge to collect rewards, but it also has to explore the environment to find a better action

for the future. In reinforcement learning framework, the agent is a learner or decision maker

and everything else around the agent is the environment. The agent performs an action and the

environment, as a result of the action, moves to a new situation (state) by getting a feedback

(reward/punishment). The environment is represented by states. The goal of the agent is to

choose such actions that would maximize the reward over time [151]. The learning takes place

through a sequence of actions. We can mathematically model this sequence with the MDP [16].

In the next section, we will describe how the MDP framework is used to model the sequential

decision making.

3.2.1 MDP

An MDP is a framework for the sequential decision-making problem where learning happens by

interacting with an environment. At each time step t, t = 0, 1, 2, ..., the agent knows the state

of the environment, St ∈ S, and based on the state of the environment, the agent performs an

action, At ∈ A. As a consequence of the action, the agent receives a reward, Rt+1 ∈ R, and

moves to a new state St+1. Figure 3.1 presents how the agent interacts with the environment

in the MDP framework [151].

A finite MDP is defined with a tuple of four elements < S,A,R, T >, where S is a set

of finite states, A is a set of finite actions, and R is a reward function. The state-transition

probability, T (s, a, s′), is defined as the probability that the agent takes action a at state s and

arrives at state s′ [81].

T (s, a, s′) = Pr
{
St = s′|St−1 = s,At−1 = a

}
. (3.1)
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Figure 3.1: The MDP framework [151]

The expected reward for state-action pairs is defined as follows [151]:

R(s, a) = E[Rt|St−1 = s,At−1 = a]. (3.2)

Note that due to Markovian property, random variables, Rt and St, are only dependent on

their preceding state and action, not on time.

A policy is a behavior of the agent to learn the environment. Generally, policy, π, is a

mapping from states, s, to the probabilities of selecting each possible action in MDP. If the

agent follows policy π at time t, then the policy π(a|s) is the probability of choosing action a

in the state s. The value of the state, s, under the policy, π, is defined as follows:

Vπ(s) = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]
∀s ∈ S, (3.3)

where Eπ[.] is the expected value of a random variable, and t is any time step. The value of

state s is the expected return from state s while following policy π. The cumulative discounted

reward, Gt =
∑∞

k=0 γ
kRt+k+1, is called return. γ is the discounted factor between 0 and 1 in

order to avoid infinity returns for a mathematical convenience.

In order to approximate how good a given action in a given state is in terms of future

rewards, reinforcement learning algorithms are required to estimate value functions. Value

functions have a fundamental property based on dynamic programming that satisfies the re-

cursive relationships. For any state and policy, the following holds true for a value function:

Vπ(s) = Eπ [Rt+1 + γGt+1|St = s] (3.4)
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=
∑
a

π(a|s)
∑
s′,r

p(s′ , r|s, a)
[
r + γVπ(s′)

]
, (3.5)

where p(s′ , r|s, a) is the probability that s′ and r are happening if the agent is in state s and

taking action a. Equation (3.5) is known as Bellman equation, and it explains that the value

of state is the discounted immediate reward plus the expected reward along the way. Figure

3.2 is known as a backup diagram and summarizes the Bellman equation graphically [151]. It

explains the relationship between the value of the state, s, and the value of its successor state,

s′. If the agent starts at state s, (s)he is able to take any action a ∈ A based on the policy.

Based on the action, the agent would receive reward r and arrive at state s′. The Bellman

equation takes an average over all the possibilities by weighting each of the probabilities of

occurrence, p(s′ , r|s, a) [151].

Figure 3.2: Backup diagram [151]

The goal of the agent is to find the policy that achieves the maximum of reward over the

time. If value of policy, π, is greater than or equal to the value of policy ,π′, i.e., Vπ(s) >= Vπ′(s),

then policy π is a better policy than policy π′. There is always one policy that is better than all

the other policies and it is called the optimal policy, π∗, and the optimal state-value function

is defined as:

V∗(s) = max
π

Vπ(s) ∀s ∈ S. (3.6)

The dynamic programming technique has been used to find the optimal policy for the MDP

problem. The key idea in dynamic programming is to use the value function in an attempt to

structure the search for the optimal policy [151]. In the known environment, equation (3.5) is a

system of S linear equation with S unknown where the exact solution is possible but computa-

tionally intractable [151]. The first step is to compute the value function for an arbitrary policy,

π, and it is called policy evaluation. Iterative policy evaluation approximates the value function

by initializing the value function to an arbitrary value and iteratively updating the value func-

tion by the Bellman equation instead of solving S linear equations[151]. Policy improvement is
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developed in order to change a policy towards finding a better policy. Policy iteration combines

Policy evaluation and Policy Improvement until a stable policy is found. More details about

the policy iteration can be found in Sutton et al. [151].

Policy iteration involves policy evaluation for each step, which might be computationally

expensive. Value iteration is an alternative way to cut off the policy evaluation steps [151].

Value iteration can be explained by the Bellman equation. Bellman equations serve as the

update rule in the value iteration. The complete algorithm for value iteration is as follows

[151]:

Algorithm 1 Value iteration [151]

Initialize array V arbitrarily
repeat

∆← 0
for s ∈ S do
v ← V (s)
V (s)← maxa

∑
s′,r p(s

′, r|s, a)[r + γV (s′)]
∆← max(∆, |v − V (s)|)

end for
until ∆ < θ (a small positive number)
Output a policy, π ≈ π∗, such that
π(s) = argmaxa

∑
s′,r p(s

′, r|s, a)[r + γV (s′)]

The MDP is an abstract model and can be applied to many real-life problems in different

domains, but it has a strong assumption that the agent has full knowledge about the states.

However, in many real world problems, perfect observation of the world is not a valid assump-

tion. Therefore, we need a model that considers partial observations, such as POMDP.

3.2.2 Partially Observable MDP

A POMDP is an extension of the MDP problem where the assumption that the agent can fully

observe the states of the environment is relaxed. The partial observability may occur due to two

reasons [146]: multiple states can be observed as the same since the agent may detect a limited

part of the environment; the agent sensor is noisy, and therefore, the same state may result in a

different observation. Because of the partial observability “perceptual aliasing” may occur, i.e.,

different parts of the environment look like the same to the agent but require different actions

[146, 16, 104].

At each time step t, t = 0, 1, 2, ..., the agent takes an action At but (s)he does not fully know
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the state of the environment, St. As a result of an action, the environment transits to the new

state St+1 but the agent is not able to fully observe the new state; instead, the agent receives

an observation, Ot, which is dependent on state St+1 and maybe on action At. The agent also

receives an immediate reward based on the action and state, Rt [146]. Figure 3.3 presents how

the agent interacts with the environment in POMDP.

Figure 3.3: The POMDP framework

POMDP is a tuple of six elements composed of states, action, observation, observation

function, transition function, and reward < S,A,Ω, O, T,R >. As in the case of MDP, S is

a finite set of states. A is a finite set of actions. R is a reward function. State-transition

probability, T (s, a, s′) is defined as the conditional probability that the agent takes action a at

state s and arrives at state s′. < S,A, T,R > are sometimes called the underlying MDP of

POMDP [135]. Ω is finite set of observations, and O is the observation function. O(a, s′, o) is

defined as the probability of observing o given that the agent takes action a and reaches the

state s′ [146]:

O(a, s′, o) = Pr
{
Ot+1 = o|At = a, St+1 = s′

}
. (3.7)

Although POMDP is the extension of MDP with Markovian characteristic with respect to

states, the lack of direct access to the current state makes it non-Markovian with respect to

the observation. At the time of decision, the agent needs to keep track of the initial state,

the previously performed actions, and the previous observations ht = {a0, o1, a1, o2, ...at−1, ot},
which might be unmanageable. To deal with this problem, instead of keeping the complete

history, a belief state which is a probability distribution over all the states can be used. In

discrete POMDP, belief, b ∈ B, is a vector of state probabilities where [135]:

∑
s

b(s) = 1 : s ∈ S, b(s) ∈ [0, 1] . (3.8)
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As in the case of MDP, in POMDP, the belief (that is the state in MDP) is updated after

taking an action and receiving a new observation [135].

ba,o(s′) = Pr(s′|b, a, o) (3.9)

=
Pr(s′, b, a, o)

Pr(b, a, o)
(3.10)

=
Pr(o|s′, b, a)Pr(s′|b, a)Pr(b, a)

Pr(o|b, a)Pr(b, a)
(3.11)

=
O(a, s′, o)

∑
s∈S Pr(s

′|b, a, s)Pr(s|b, a)

Pr(o|b, a)
(3.12)

=
O(a, s′, o)

∑
s∈S T (s, a, s′)b(s)

Pr(o|b, a)
, (3.13)

where

Pr(o|b, a) =
∑
s∈S

b(s)
∑
s′∈S

T (s, a, s′)O(a, s′, o). (3.14)

Each POMPD problem assumes the initial belief state, and in the case that the agent does

not have any prior information, the initial belief state is set to a uniform distribution [146]. By

considering the belief state instead of state, POMDP can be transformed to belief-space MDP

< B,A, τ,R > where B is a set of all the beliefs over states. A is a set of actions, as in the

case of MDP. τ(b, a, b′) is the probability of starting from belief b, taking action a, and reaching

belief b′. R(b, a) =
∑

s∈S b(s)R(s, a) is the expected reward after performing action a in belief

b [135].

POMDP has many diverse applications, including industrial, military, business, and social

applications [44]. A classic POMDP application is a periodic machine maintenance because

of the deterioration of its component [44]. The state in the POMDP of machine maintenance

is defined as the internal state of the components. The action may be to inspect, continue

production, or perform maintenance. The observation is the performance of the machine and

the various outcomes of inspection [145, 141, 61]. Elevator control policy is another application

of POMDP. In this problem, the states are the positions of passengers and the elevator, as well

as the direction of the elevator. Since the number of passengers and their ultimate destination
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is not fully observable, this problem can be formulated as a POMDP [44]. The most common

application of POMDP is in the field of autonomous robots. The states are the locations

of the robots. The actions are the actuators, and the observation is the sensor output [21,

74, 77]. Another application area in business is network troubleshooting to determine when

a component or a circuit breaks in a connected telecommunication network. This can be

categorized as a POMDP since limited number of circuit-breaker position sensors is available

[153, 152]. Marketing is another application area for POMDP to match customer preferences

with the products due to the uncertainty of customer preferences [44, 174]. There are various

applications of POMDP in military, such as moving target search [60], target identification

[44], and weapon allocation [171]. POMDP is also commonly used in the medical domain

in applications, such as medical diagnosis, surgery, laboratory tests, medication treatment,

physical therapy, personalized breast cancer diagnosis, and treatment of patients with Parkinson

disease, owing to the uncertainty of the internal state of the patients [71, 22, 65]. There

are various other applications of POMDP as well, such as spoken dialog systems [172, 166],

preference elicitation [59, 38], and machine vision [72].

3.2.3 POMDP Solution

Similar to the MDP, the goal of the agent in the POMDP is selecting actions such that the

reward is maximized in the long run. In general, the policy is mapping from state to action in

the MDP, but it is mapping from belief state to action in the POMDP. Thus, the policy, π(b),

is a function over the continuous state probability distribution [146]. The value of belief state

under policy π, Vπ(b), is defined as follows:

Vπ(b) = Eπ

[ ∞∑
t=0

γtR(bt, π(bt)|bt = b)

]
, (3.15)

where R(bt, π(bt)) =
∑

sR(s, π(bt))bt(s).

The optimal policy, π∗, is the policy that maximizes the Vπ and is based on Bellman equation.

The optimal value function is defined as:

V ∗(b) = max
a∈A

[
∑
s∈S

R(s, a)b(s) + γ
∑
o∈Ω

p(o|b, a)V ∗(ba,o)], (3.16)

where ba,o and p(o|b, a) are given in equation (3.9) and (3.14), respectively. Computing the value

function over the continuous belief state may be intractable. However, the special structure of
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the value function, which is piece-wise linear and convex over the planning horizon [145], makes

it feasible to deal with. The value function can be presented by a finite number of vectors

with the convex shape. Each vector is associated with a single action. Owing to convexity,

the value of the function for belief points near the corners is higher. Because the corners have

less uncertainty (i.e., are fully certain), it would be easier to make a decision on those points

and their values would be higher. An example of the value function in two-state POMDP is

illustrated in Figure 3.4. Note that the belief space is simplex, and it can be presented with

|S| − 1 dimension, where S is the number of states. Thus, in the two-state POMDP, the belief

space can be shown with a single line. The x-axis is the belief space. In the far left, the agent

is in state s1 with probability 1 and in state s2 with probability 0. Likewise, in the far right,

the agent is in state s2 with probability 1 and in state s1 with probability 0. Note that in

each point, the equation b(s2) = 1− b(s1) is held. The y-axis is the value of each belief. Each

segment line is associated with an action, and based on the belief of the agent, the best action

can be determined [146].

Figure 3.4: Value function for a two-state POMDP

An alternative form to illustrate policy is the “policy tree” [80]. The depth of the policy tree

is equal to the planning horizon. A partial policy tree is shown in figure 3.5. In the policy tree,

the nodes are representative of the actions, and the edges are representative of the observations.

The agent uses the policy to select an action based on the current belief state. After performing

the action, an observation is received. It also determines the next node the agent moves to.

This process repeats until the planning horizon terminates [80].

Pioneering researchers in the POMDP domain focused on solving the POMDP by using the

exact value iteration algorithm: enumeration algorithm [113], incremental pruning algorithm

[176], one-pass algorithm [145], witness algorithm [106], and linear support algorithm [48].

The idea behind these algorithms is to completely search the belief space and generate sets of

linear vectors as value functions. Linear programming and pruning with high computational
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Figure 3.5: Example of a policy tree [146]

complexity are the basis for the aforementioned algorithms [146]. However, in practice, only a

POMDP with a small state space can be solved by using the exact value iteration [135].

Owing to the computational cost of exact value iteration algorithms, some researchers tried

to approximate the solution. Point-based value iteration algorithm was a breakthrough in

solving the POMDP with a large number of states [135]. The general idea behind the entire

point-based algorithm is bounding the complete belief space to some reachable belief points and

then updating and optimizing the value function and its gradient only for those points [123].

Perseus algorithm [147], heuristic search value iteration (HSVI) [142], and SARSOP [95] are

the extensions of the original point-based algorithm [123].

Apart from the point-based approach, other approximate algorithms have been proposed

as well [146]. QMDP is one of the approximate algorithms that is a hybrid between MDP

and POMDP, which use the Q value of underlying MDP by ignoring the observation model.

Q function is the expected reward function following the policy π from the belief state b by

taking action a and then behaving optimally afterwards [104]. A grid-based algorithm is a

class of algorithms in which a fixed grid or variable grid is used for value iteration. Based

on the selection of grid points and the function for calculating the value of non-grid points, a

different grid-based approximation has been proposed [108, 37, 178]. Policy search is another

alternative that searches for a good policy within the state space. Policy iteration [68], bounded

policy iteration [39], and PEGASUS method [115] are examples of policy search. One of the

disadvantages of policy search is that it is prone to be trapped in the local optima [27]. Some
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researchers worked on heuristic search such that the initial belief nodes are chosen, and then, the

tree is constructed based on the collection of actions and observations by using the branch and

bound techniques to bound the upper and lower limit of value function [142, 69, 134]. Although

the aforementioned solution can solve larger POMDP problems, an explicit presentation of

probability functions are required. However, in our problem, owing to the large number of

states, calculating and presenting the probability function explicitly requires a lot of memory.

Therefore, we propose to use partially observable Monte Carlo planning (POMCP) to overcome

this problem.

POMCP is a seminal work based on Bayesian inference with two characteristics. First,

it can break the curse of dimensionality and history in large POMDPs. Second, an explicit

presentation of transition and observation functions is not required. We will explain POMCP

in particular and its benefits thoroughly in section 3.2.4.

3.2.4 Bayesian Inference for POMDP Solution: POMCP

Bayesian inference is a general technique to learn unknown parameters of a model from the

observations generated from that model [51]. Bayesian inference assumes that there is a prob-

ability distribution over all possible values of unknown parameters. Based on the upcoming

observation and Bayes’ rule, the probability distribution gets updated [51]. A Bayesian infer-

ence generally requires assuming posterior distribution of the parameter (latent variable) given

the observed data and evaluating the expectation with respect to the observed data. In de-

terministic Bayesian inference, evaluation of expectation with respect to the data is feasible.

However, for many real-world problems, the exact inference is not possible. Therefore, an ap-

proximate inference methods based on numerical sampling, known as Monte Carlo technique, is

applied [51]. In this dissertation, we applied Monte Carlo techniques in two ways: (1) POMCP

based on Monte Carlo sampling approximates the best action for POMDPs. (2) POMCP based

on sequential Monte Carlo and, specifically, particle filtering updates the belief state.

In the context of Bayesian machine learning, where Bayesian methods provide a probabilistic

approach to make inferences from data [99], POMDPs can be divided into two parallel types of

inferences: (1) estimating the parameters of the underlying model from data, (2) determining

the behavior that maximizes the reward over time. In the bug prioritization problem, we deal

with both problems, and POMCP is proposed to deal with them simultaneously.

The POMDP solution can also be categorized into off-line and online planning. In the off-

line policy, the policy is available beforehand for all the possible action-observation scenarios,
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but off-line planning is not scalable for large POMDPs. QMDP [104], point-based algorithms

[108, 123, 71], and fast informed bound (FIB) [71] are a few examples of off-line planning.

Online planning combines the planning and execution together [127]. In the planning phase,

the best action is chosen for the current belief state. In the execution phase, the best action is

executed, and the belief gets updated based on the received observations. These processes are

repeated to update the beliefs. Branch and bound pruning [122], Monte Carlo sampling [139],

and heuristic search [134, 126, 163] are three main techniques for online planning.

POMCP is an online planning technique that extends Monte Carlo tree search (MCTS)

for partially observable domains [139]. As the number of states increases in the POMDP

problem, the value iterations have to deal with the curse of of dimensionality in updating the

n-dimensional belief state, and in evaluating the history over the horizon [139]. POMCP is a

Monte Carlo sampling method that overcomes the issue of dimensionality. It samples from the

initial belief states to choose the start sates. It also samples from history by using a generative

model instead of keeping all elements of probability functions. Compared to other algorithms,

POMCP does not need the explicit probability distribution functions, such as the transition

and observation function, rather it relies only on the generative model [139]. The generative

model is used to generate the next state, observation, and reward given the current state and

action.

As explained before, POMDP is a tuple of 6 elements < S,A,O,Ω, T,R >. In addition to

those elements, the notations below make it easier to explain the POMCP [139]:

• History is a sequence of action and observation: ht = {a1, o1, ...at, ot} or htat+1 =

{a1, o1, ...at, ot, at+1}.

• Policy can be described based on history rather than the belief state: π(h, a) = Pr(at+1 =

a|ht = h)

• Return is the cumulative discounted reward collected after time t, Gt =
∑∞

k=t γ
k−tRk

where γ is the discounted factor.

• Value function for history, V π(h) = Eπ [Gt|ht = h], is the expected return from history h

following the policy π.

• Belief state is the probability distribution over state given the history B(s, h) = Pr(st =

s|ht = h), and the initial belief state where no history exists is defined as Is = Pr(s0 = s).
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• A generative model, which provides the next state, observation, and reward given the

current state and action, is presented by (st+1, ot+1, rt+1) ∼ Ξ(st, ot)

MCTS is a tree search analysis to find the most promising action in each step. In a classic

MDP, it starts from the root node (state) and selects the successive child nodes down the leaf.

It expands the tree by creating more child nodes and also choosing a random child node from

them to continue [54]. In order to balance between exploration and exploitation while choosing

the random child node, the UCT (Upper Confidence bound 1 applied to Trees) algorithm is

introduced [93]. POMCP extends the UCT for the partially observable environment (PO-UCT)

in order to select the action, and combines it with particle filtering to update the belief state.

PO-UCT: PO-UCT is the extension of the UCT [93] algorithm for POMDP problems.

UCT is the bandit-based Monte Carlo planning algorithm that is used for reaching a balance

between the exploration and the exploitation of the action in the MDP domain. As the states

are fully known to the agent in the MDP, the node of the search tree is defined as a state. In the

POMDP, instead of states, the history is the start of the search. For each represented history,

h , T (h) =< N(h), V (h) > is defined where N(h) is the number of times that history is visited,

and V (h) is the value function for the history. The value function is approximated by rolling

out policy, i.e., the value of history is approximated by starting from history h and using the

random policy until the termination criteria are reached. The value of history is estimated by

the mean return after N simulations from history h. The initialization for T (h) is < 0, 0 > if

no domain knowledge is available [139]. Then, the initial state is sampled from B(s, h). Similar

to the MDP, if the current node is not a leaf node , i.e., child nodes exist for all children, the

action that maximises V (ha) is selected:

V (ha)
⊕

= V (ha) + c

√
logN(h)

N(ha)
, (3.17)

where c is the exploration constant. Otherwise, i.e., if the current node is the leaf node, the

action is chosen by random selection (roll-out policy) [139].

Particle filtering for updating the belief state: Bayes rule has generally been used in

order to update the belief state in small POMDPs, as given in equation (3.9) [127]. However,

as the POMDP becomes larger, it is not feasible to use Bayes rule. POMCP approximates the

belief state by using K particles, Bi
t ∈ S, 1 6 i 6 K . Each particle corresponds to each state,

and the belief state is the sum of all the particles, B̂(s, h) = 1
kδsBi

t
, where δij is the Kronecker
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Algorithm 2 POMCP [139]

procedure SEARCH(h)
repeat

if h = empty then
s ∼ I

else
s ∼ B(h)

end if
SIMULATE(s, h, 0)

until TIMEOUT ()
return arg maxb V (hb)
end procedure

procedure Rollout(s, h, depth)
if γdepth < ε then

return 0
end if
a ∼ πrollout(h, .)
(s′, o, r) ∼ Ξ(s, a)
return r + γ.ROLLOUT (s′, hao, depth+ 1)

end procedure

procedure Simulate(s, h, depth)
if γdepth < ε then

return 0
end if
if h /∈ T then

for all a ∈ A do
T (ha)← (Ninit(ha), Vinit(ha), φ)

end for
return ROLLOUT (s, h, depth)

end if
a← arg maxb V (hb) + c

√
logN(h)
N(hb)

(s′, o, r) ∼ Ξ(s, a)
R← r + γ.SIMULATE(s′, hao, depth+ 1)
B(h)← B(h) ∪ {s}
N(h)← N(h) + 1
N(ha)← N(ha) + 1

V (ha)← V (ha) + R−V (ha)
N(ha)

return R
end procedure

44



CHAPTER 3. METHODOLOGY 3.3. BLOCKING-DEPENDENCY GRAPH

delta function and is defined as [139]:

δij =

{
0 if i = j

1 if i 6= j
. (3.18)

Initially, a particle is sampled from the initial state distribution. For this particle, the next

state and observation are generated using the generative model, Ξ. If the sample observation

matches the real observation, then the particle is added to the new belief state. This process is

repeated until K particles are chosen for the belief state. It is shown that if K →∞, then the

approximate belief state reaches the true belief state [139].

Partially Observable Monte-Carlo: POMCP combines the PO-UCT and the particle

filtering as follows: the search tree contains a node, T (h) =< N(h), V (h), B(h) >, where B(h)

is a set of particles and N(h) and V (h) are defined in PO-UCT. The start state is a sample

from the belief state B(ht). PO-UCT is performed to find the next action. For every history

h, the state is added to the belief state. When the search is complete, the best action with the

greatest value is selected. Then, the best action is performed, and the real world is observed.

At that point, atot is added to history ht and a new node becomes htatot and the belief state is

updated to B(htatot) and the rest of the tree is pruned. Pseudo code for POMCP is presented

in Algorithm 2.

In the next sections, we explain how the POMDP framework and POMCP solution may

solve the problem of prioritization of bugs.

3.3 Blocking-Dependency Graph

3.3.1 Blocking-Dependency Graph Construction

As explained in the section 3.1, we aim to prioritize the bugs with respect to their relative

importance. One way to measure the relative importance of the bugs is to find out about the

number of bugs they block. The bugs that block a large number of bugs need to be fixed

sooner. Otherwise, the blocking chain may increase over time and the consequence of not fixing

them may have a significant impact on the system. A bug blocking-dependency graph may be

constructed by mining the issue tracking system.

The graph concept has been widely studied from different perspectives in software engineer-

ing. There are some studies that have explored the graphs on the source code. Zimmermann et

al. defined the dependency graph as a directed graph where nodes are binaries and the edges
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are the dependencies between them. They predicted the defects for binaries by adding the de-

pendency network metrics to the complexity metrics on source code, and they showed that the

model would improve the recall rate on Windows server 2003 in predicting defects from source

code [180]. Their work is significantly different from our study as they used the dependency

graph to predict the defects, but we aim to identify the relative importance of reported defects.

Additionally, they constructed the dependency graph on the source code, but we construct the

blocking-dependency graph on the bug repository. Premraj et al. replicated the study done by

Zimmermann and Nagappan [180] to examine the dependency metrics versus the code metrics

to predict defective entities on Java projects, viz., JRuby, ArgoUML, and Eclipse [125]. Bhat-

tacharya et al. constructed source code graphs and module collaboration graphs. In the source

code graph, the nodes represent the function and the edges are the caller-callee relationships.

The module collaboration graph is based on the communication between modules. If a func-

tion in module “A” calls a function in module “B”, then there is an edge from “A” to “B”.

They also built a bug-based developer collaboration graph and commit-based developer graph.

The bug-based developer graph is built based on the reassignment of bugs between developers

[79], and the commit-based graph is an undirected graph between developers who work on the

same file [30]. The purpose of this study is also different from our work as the graph-based

analyses were used to predict the defect-prone releases while our work is focused on the impact

of unresolved defects after the product release. Kikas et al. described the package dependency

network, in which the projects represent the nodes and the directed edges between the projects

indicate the dependency. They annotated the edges with attributes to differentiate between

project versions [88]. Sarma et al. developed a tool, Tesseract, that investigates and visual-

izes the relationships between source codes, bugs, and developers. Tesseract provides the file

network, which denotes the files that are changing together, and the developer network, which

represents the developers working on the same artifacts [133]. In the aforementioned studies,

the source code graph was used to predict the software quality (defects), and it was mainly

extracted from the source code. Our study differs from theirs in two ways: (1) our aim is to

prioritize the defects that are already reported, and (2) our blocking-dependency graph is not

based on the source code. In some cases, when the bug is reported, the associated source code

is not identified, and therefore, the source code graph may not provide us with the full picture

of bugs in the issue tracking system.

Furthermore, some researchers have been interested in social graphs between users and de-

velopers in software systems [79, 31, 32, 41, 112, 33, 14]. The social network graph is mainly
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used to assign bugs to developers and facilitate the triaging process. These studies may in-

directly improve the bug prioritization. Social network graphs characterize the structure of

people in bug process management. In this research, we aim to obtain a better understanding

of bug structure; however, studies on social network graphs give us insights on how to construct

the dependency graph. Jeong et al. studied the bug tossing graph effect on bug triage. The

bugs might be reassigned (tossed) to other developers during the fixing process, and the bug

tossing graph is modeled based on the Markov chain. They showed that the tossing history

would improve the traditional bug triaging approaches [79]. Bhattacharya et al. proposed a

multi-feature tossing graph instead of a single-attribute tossing graph to improve the bug triag-

ing processes [31]. In another study, Bhattacharya et al. investigated how multiple machine

learning classifiers with several features and training sets along with bug tossing graph might

affect the accuracy of bug assignment prediction model [32]. They improved the bug triaging

processes by finding developers for a new task; however, we can improve the triaging process

by identifying the bug with the highest impact. Social graphs analyses are also used to predict

defect proneness of a software product [41, 112, 33, 14]. The collaboration of developers was

modeled as an undirected network, in which developers were represented as nodes and their

collaborations as edges. To quantify the importance of developers in the network, centrality

metrics were extracted [41]. The previous study showed that temporal collaboration model

could be used to predict the number of exposed defects [112]. Alhassan et al. showed that

there is a positive correlation between network complexity and defect proneness [14]. These

works are different from our study, as they aimed to predict defect proneness, whereas we focus

more on defect prioritization.

All the graph-based analyses so far assumed that complete information about the graph is

available, except for the study done by Nia et al. [117]. They described the social network from

email archive of open source software projects and described how an incomplete or incorrect

network might affect the validity of the analysis [117]. An incomplete network is also our

concern in this study, and to handle this, we assume that blocking-dependency graph is partially

available.

Some researchers investigated the social graph network with different purposes, such as

developer productivity [140], modeling of software development [109], and project success [140].

We review their work in terms of how they constructed their dependency graph. Madey et

al. described the social network in an open source software by representing the developers

as nodes and their collaboration in the same project as a link between them [109]. Lopez et
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al. analyzed committers networks, in which two committers are linked if they simultaneously

work on the same module, and module networks, in which modules are connected if the same

committers work on both of them [107]. Ohira et al. studied three different networks, including

developer networks, project networks, and developer-project networks, by using SourceForge

for the purpose of cross-project knowledge collaboration [120]. Huang et al. also constructed

the social network of developers from the version history [75]. Sadat et al. constructed the the

graph of rediscoveries to capture the inter-relationships among duplicate defects[130]. Our work

in this research is different from them in terms of the study purpose and the graph topology.

In this research, we are inspired by the work of Sandusky et al. [131]. They introduced

the dependency graph (bug report network (BRN)) as one of the structural features of bug

repository. They considered both the formal relationships (dependency and duplicate bugs)

and informal relationships between bug reports. In their graph, the nodes are represented by

bugs and the edges are indicated by both formal and informal relationships. They studied the

type of relationships, the frequency of occurrence, and the pattern in dependency graph and its

impacts [131]. Our work is similar to theirs as the blocking-dependency graph is constructed

using the same idea, but out study is different from theirs in two ways: (1) we only focus on the

formal relationship between bugs, and (2) we use the blocking-dependency graph to formulate

the bug prioritization problem as a POMDP problem.

To construct the blocking-dependency graph, the raw data from the bug repository are

extracted. Two bug tracking systems, Bugzilla and a commercial software project, are used in

this study. To collect the raw data from the bug tracking system, we developed a Python script

using the REST API to extract the formal relationship between the bugs, such as duplicate,

blocking, and dependent bugs. For the purpose of this study, “directed graph” is constructed

from the bug tracking system. Our graph captures the dependency of the bugs to each other.

If bug “A” blocks bug “B”, then the graph contains two nodes “A” and “B” and a directed

edge from “A” to “B”. Similarly, if bug “A” depends on bug “B”, then the graph contains

two nodes “A” and “B” and a directed edge from “B” to “A”. Figure 3.6 presents the typical

topology of the dependency graph from Bugzilla. In the figure, the bug under study is shown

in a rectangle and other bugs are shown in circles. For example, the dependency graph shows

that bug ‘1317138’ is dependent on bug ‘1272256’ and blocks bug ‘1191418’. Bug ‘1191418’

blocks another bug, ‘1304875’.

Similar to developers’ practice in real life, we removed the duplicate bugs from the blocking-

dependency graph. In case that duplicate bugs have more dependency information than the
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Figure 3.6: Example of a blocking-dependency graph

original bugs, we added the additional information to the description of the original bugs.

Note that for the rest of this manuscript, we use the term “blocking-dependency graph” and

“dependency graph” interchangeably.

3.3.2 Blocking-dependency Graph Metrics

After the data collection and blocking-dependency graph construction, we define two metrics to

measure the impact of bugs in the dependency graph: “degree” and “depth”. In graph theory,

degree is referred to as out-degree, and it is the number of outward edges from a given node [36].

This metric is driven from social network analysis where the highest degree is widely considered

as an influential node [164]. It has also been widely used in the software engineering domain

[30, 180, 179, 161, 41]. Intuitively, bugs with many outward edges block many bugs in the

blocking-dependency graph and may have a negative impact on the software quality. Blocking
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bugs with lots of links create a bottleneck in the fixing processes of other bugs. Degree of

blocking bugs was used by Valdivia et al. to measure the impact of the blocking bugs [160].

Another metric used in this study is the depth of the blocking-dependency graph. It is

defined similar to “depth of inheritance tree (DIT)” introduced by Chidamber and Kemerer

[49] and used by Basili in his work regarding the object-oriented design metrics [26]. The depth

of dependency measures the number of layered descandants of a bug. The assumption behind

it is that if the bug inherits a large number of descandants and blocks many bugs, then it

should get fixed sooner [26]. It is shown that blocking bugs take longer time than other bugs

to get fixed, and the effort required to fix them is also much more than that for non-blocking

bugs [160]. Thus, identifying and fixing the blocking bugs is important, and as more bugs get

dependent on the blocking bugs, their fixing processes might be a point of congestion in the

issue tracking system. Figure 3.6 also presents an example of how the depth and degree metrics

are calculated for each bug.

Intuitively, the bugs can be prioritized with respect to their depth and degree in descending

order; however, the limited information about the blocking-dependency of bugs causes un-

certainty in the blocking-dependency graph structure. Therefore, we propose application of

POMDP to deal with this uncertainty in order to minimize the maximum depth and degree

of the blocking-dependency graph while selecting the bugs sequentially. The next section pro-

vides an explanation of how the POMPD model is constructed in order to address the bug

prioritization problem.

3.4 A POMDP Model for Bug Prioritization

One of the advantageous features of the POMDP model is that it has a compact form of

presentation with a tuple of six elements. In our problem, the environment is a bug tracking

system, and the agent is a software practitioner who wants to sequentially decide which group

of bugs needs to get fixed. Before formulating the bug prioritization with a POMDP, the

blocking-dependency graph should be constructed as described in section 3.3. The six elements

of the POMDP for the bug prioritization problem are as follows:

• States: The maximum depth and degree of blocking-dependency graph is the state of

the environment. Our POMDP has n − 1 states, where n is the number of bugs in the
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Figure 3.7: The difference between state and observation in our POMDP

dependency graph.

St = max(deptht, degreet). (3.19)

Typically, the state space in our POMDP problem can be defined as the vector where

each element is the depth and degree of each bug in the dependency graph. Defining the

state space in such a way causes the large computational cost. Therefore, we propose to

use the state aggregation function which can be applied to cluster the states with a share

common characteristic in an attempt to accelerate computation of effective policies for

POMDP. The maximum function is proposed for this purpose. However, other aggregation

function such as sum may also be used instead of maximum in the definition of state.

The advantage of using the maximum function is that it would provide the more compact

form of state spaces as it reduces the number of states from (n − 1)n to n − 1 while the

aggregation function such as sum would reduce it to only n ∗ (2n− 2) which is still large

space. As the main idea behind state aggregation is to form a smaller state POMDP

which can be solved and learnt more efficiently [76], we chose maximum function instead

of sum function. Additionally, the maximum aggregation function captures the bug with

maximum number of edges and also the longest downward path between that bug and

the descendant, while the sum aggregation function captures the complexity of the graph.

However, we believe both functions would converge to optimal policy by capturing the

evolving characteristic of graphs.
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• Observation: Maximum depth and degree of blocking-dependency graph due to a dis-

covery of new relationship or fixing of the bugs after performing of the action. Observation

is the maximum depth and degree of the bug that the agent is able to observe.

Ωt = max(deptht, degreet). (3.20)

Note that the states are the actual depth and degree of the blocking-dependency graph,

but the observation is whatever the agent observes from the environment. Figure 3.7

shows the difference between the state and observation. In this figure, hidden links are

shown with dashed lines and observable links are shown with solid lines. The state is equal

to three since the maximum depth and degree of the graph considering all the lines is

three. The observation is equal to two since the maximum depth and degree of the graph

considering only solid lines is two. This way of formulating is used in the well-known tiger

problem in the POMDP domain [80].

• Action: Three actions are defined.

– Action B1: Choosing a bug with maximum depth and degree 0 to get fixed;

– Action B2: Choosing a bug with maximum depth and degree less than or equal to

the median to get fixed;

– Action B3: Choosing a bug with maximum depth and degree greater than the median

to get fixed.

• Transition Probabilities: The probability that maximum depth and degree of graph

changes from D to D′ after taking action Bi

T (s, a, s′) = Pr
{
St+1 = D′|St = D,At = Bi

}
. (3.21)

• Observation Probabilities O(Ot|D′, Bi): The Probability of observing o if the maxi-

mum depth and degree of graph becomes D′ upon taking action Bi

O(o|s′, a) = Pr
{
Ot = o|St+1 = D′, At = Bi

}
. (3.22)

• Reward: The reward of taking an action Bi in state D is given as:

R(st = D,At = Bi) =
1

D + 1
. (3.23)
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The reward is defined independent of action as the ultimate connectivity of the blocking-

dependency graph is important to us regardless of the action. In case that the maximum

depth and degree of the blocking-dependency graph reaches 0 (no connectivity in the

dependency graph), it means that all the bugs are completely independent of each other

and the reward gets its maximum value, which is 1. On the other hand, if the maximum

depth and degree go to infinity (completely connected graph), then the reward will be

zero.

In the next section, we will explain how to find the policy for our POMDP using POMCP.

3.5 Design of Experiments

In this section, we explain how to construct the training and testing sets, how to build the

generative model on the training data, and apply POMCP in the testing data, and how to

evaluate and compare the policy suggested by POMCP with other strategies.

3.5.1 Strategy of Experimentation

The design of experiments begins by setting a planning horizon and a time step. We decide a

planning horizon of one month as the minor release period of the two software products under

study is roughly one month. We consider the cycle of one week for the time step to be less than

one sprint so that the development team has time to take an action. According to the time

step, the agent decides what action to take (selects bugs) at the start of day 7, day 14, day 21,

and so on. Thus, a weekly snapshot of the blocking-dependency graph is constructed for each

month. Six months of data are used for training, and one month of data is used for testing, as

shown in figure 3.8. The temporal order of the training set and testing set is important. The

testing set should be composed of observations (instances) that occur after the observations

(instances) in the training set.

The training phase in the POMDP problem involves learning the parameters of the POMDP,

including state, action, observation, transition function, observation function, and reward. The

number of states in our POMDP is theoretically equal to the number of bugs in the blocking-

dependency graph minus one. Therefore, we set the number of states equal to the average

number of bugs reported in the training interval. The number of observations is equal to the

maximum depth and degree observed in the blocking-dependency graph of the training set.
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The number of actions is fixed based on the POMDP formulation presented in section 3.4, and

it is equal to three: ActionB1, ActionB2, and ActionB3.

Figure 3.8: Training and testing strategy: “w” refers to week

To learn the transition and observation function from the training dataset, the BaumWelch

algorithm can be applied. It is a backwardforward algorithm based on expectation maximization

[165, 110]. It is originally designed to learn the hidden Markov model parameters, but it has

also been extended to POMDP in such a way that it maximizes the likelihood estimate of the

POMDP parameter given a set of observed feature vectors [50]. However, the BaumWelch

algorithm is not scalable as the number of states increases [105]. It is also costly to store the

huge transaction probability matrix (S×A×S) and observation probability matrix (O×S×A) in

the memory. Additionally, as explained before, the POMCP solver does not require the explicit

probability functions, but instead, it needs a generative model, (st+1, ot+1, rt+1) ∼ Ξ(st, at),

that provides the next state, observation, and reward given the current state and action [139].

The generative model can be built manually with domain knowledge, but it might be time-

consuming, subjective, and sub-optimal. Hence, it would more efficient if we can come up with

a generative model that learns from data. Therefore, we built a generative model by first fitting

the probability distribution of the POMDP parameters over the data, and then sampling from

those probabilities.

Initially, a trajectory of observation and action, ht = {o0, a0, a1, o1...}, is retrieved from the

blocking-dependency graph. In order to shape the trajectory, the weekly blocking-dependency

graphs are constructed starting from week one to week four for a duration of six months to train

the model. The maximum depth and degree of the blocking-dependency graph are recorded

at time t. Then, the action Bi is performed (i.e., bugs with maximum depth and degree of

{i = 0, i 6 median, i > median} are randomly chosen to get fixed), and the maximum depth

and degree of blocking-dependency graph are recorded in the next week, t+ 1. The instance of

54



CHAPTER 3. METHODOLOGY 3.5. DESIGN OF EXPERIMENTS

trajectory can be as follows: {1, B1, 2, B2, 0, B1, 1, ...}. Figure 3.9 part 1 and 2 show how the

trajectory can be generated. For each month in the training set, 500 action-observation pairs

are generated. We decided on the number of action-observation pairs by trail and error. Thus,

a total of 3000 action-observation pairs are generated for the training set. In the figure N refers

to the number of epochs and Mo refer to number of months.

The generative model will provide the next states, st+1, given a current state st and action

at; however, we are not aware of the state of the environment due to partial observability. We

propose to obtain the difference between the current observation and the next observation for

each action in the trajectory and fit the distribution into this data. The assumption is that the

difference between the current state and the next state would follow the same distribution as the

difference between the current observation and the next observation. This assumption makes

sense because in the unique formulation of our POMDP, as the observations are generated

from the states, and we assume that the sampling (observations) distribution depends on the

underlying distribution of the population (states). The best discrete probability distribution

for expressing the probability of a rare event in a large population is Poisson distribution [114].

Then, a sample from the Poisson distributions can be generated using the inverse sampling

technique [58]. The next state is equal to the difference between the current state and delta,

which is the random generated number:

st+1 = st − delta. (3.24)

Given the next state, st+1, the reward can be calculated for our POMDP since the reward

is 1
st+1

defined in equation (3.23).

The generative model will also generate the next observation, ot+1, given the current state

and action. We can use the Bayes rule in order to fit the probability distribution and then

sample the next observation from that distribution. For a given action, according to the Bayes

rule, we have the following:

Pr(ot+1|st+1) =
Pr(st+1|ot+1)Pr(ot+1)∑st+1=N

st+1=1 Pr(st+1|ot+1)Pr(ot+1)
, (3.25)

where
∑N

st+1=1 Pr(st+1|ot+1)Pr(ot+1) is the normalization constant.

Pr(ot+1) can be calculated based on frequency of observation on the retrieved trajectory.
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Figure 3.9: Our proposed POMDP approach
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Pr(st+1|ot+1) has the following distribution:

Pr(st+1|ot+1) =
1

st+1 − ot+1 + 1
. (3.26)

For instance, let us assume we have 1001 bugs in the blocking-dependency graph and we

observe the depth of 1000, the state will certainly be 1000. Thus, Pr(st+1 = 1000|ot+1 =

1000) = 1. Another example is observing depth 999 in the blocking-dependency graph, the state

is either 999 or 1000. Thus, Pr(st+1 = 1000|ot+1 = 999) = 0.5, P r(st+1 = 999|ot+1 = 999) =

0.5. Having the above probability distribution function, the observation can be generated by

using inverse sampling technique [58]. The complete generative model is described in Algorithm

3.

Algorithm 3 Proposed Generative Model

procedure generate-sor(ht, st, at)
h′ = {}
for all ai ∈ ht do

if ai = at then
Add {oi} to h′

end if
end for
X = {}
for all oi ∈ h′ do

Add {oi − oi+1} to X
end for
pdf = fit− distribution(X)
delta = rand(pdf)
st+1 = st − delta
reward = 1

st+1

for all oi ∈ h′ do
Pr(oi) = 1

frequency(oi)

Pr(st+1|oi) = 1
(st+1−oi+1)

obs = Pr(st+1|oi)Pr(oi)∑N
st+1=1 Pr(st+1|oi)Pr(oi)

end for
ot+1 = rand(obs)
return st+1, reward, ot+1

end procedure

The initial belief state is needed to perform the POMCP planner. If the agent does not
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have any prior information from the environment, the uniform distribution is chosen to be the

initial belief state [146].

POMCP is an online planner that mixes planning and execution [127]. The POMCP planner

is used to return the best action. Meanwhile, the weekly blocking-dependency graph is con-

structed from the testing data set. The best action is executed on that blocking-dependency

graph, and the observation is collected, i.e., the maximum depth and degree of the graph in

the next week from the testing set is collected. Then, the observation is passed to the POMCP

solver to update the belief state and collect the expected reward. As the new belief state is

generated, POMCP planner returns the best action and the whole process is repeated. We

repeated the experiment for 300 epochs in this study. It means that 300 observations are col-

lected for the testing part. The 300 observations are chosen to be approximately 30% of the

total bugs reported in one month. This percentage matches the percentage of bugs reported

and resolved in the same release. Figure 3.9 part 3 presents how the testing and training in

POMCP are performed.

3.5.2 Evaluation Criteria and Comparison

In practice, the development managers may combine some criteria, such as severity, priority,

and customer pressure, to decide which bugs to fix. Sometimes, they might choose the bugs

that block more bugs to be fixed sooner. Thus, the baselines used in our experiments are as

follows:

• Maximum policy, which selects the bugs in descending order with respect to the depth

and degree. It means that the bugs with higher depth and degree are the candidates to

be fixed earlier than the bugs with lower depth and degree. If there is no uncertainty in

the data, POMCP and this policy should behave almost the same. We compare these two

policies to show which one is the best in minimizing the maximum depth and degree of

the blocking-dependency graph.

• Developer policy, which is equivalent to supervised learning. Developer policy selects the

bugs chronologically and it matches the bugs to the history in the order that the devel-

opers fixed the bugs. This policy considers human diagnosis based on their experience,

bug characteristics, and the business strategy of the company. The comparison between

developer policy and the POMCP policy implicitly answers the question if the developers

use the relative importance of bugs in their current prioritization practice. Additionally,
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this is the baseline for all the supervised learning prediction model that have been studied

in the literature.

• Random policy, which selects the candidate bugs randomly. This policy shows if the bugs

are randomly selected to prioritize, how the maximum depth and degree of the blocking-

dependency graph change. Comparing this policy with POMCP shows how much our

proposed model is better than random selection.

We compare the policy found by POMCP with three baseline strategies. In MDP domain,

two metrics are used to evaluate the performance of the POMCP policy [139, 151]. Discounted

return and undiscounted return are the two metrics. Undiscounted return is the cumulative

reward that is collected in the testing phase. Discounted return is the cumulative reward

discounted by γ [40]. The discount rate determines the present value of future rewards: a

reward received i time steps in the future is worth only γi times what it would be worth if it

were received immediately [151]. In practice, the discount rate is a way to show the uncertainty

of future reward. γ is the discounted rate where 0 6 γ 6 1 and N is the number of epochs.

In the training phase, the agent finds the best policy, and in the testing phase, the proposed

policy is evaluated in terms of the collected reward. The policy with higher discounted and

undiscounted return is the better policy.

discounted− return =
N∑
i=0

γiRi, (3.27)

undiscounted− return =
N∑
i=0

Ri. (3.28)
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Chapter 4

Experiments and results

In this chapter, we first discuss and explore the characteristics of two datasets collected from

Firefox and proprietary software product. Then, we explain the implementation of the proposed

approach in chapter 3 on the two datasets and present the results.

4.1 Datasets

We extracted the bug data from two large bug repositories in two different domains, from both

open source and commercial software projects. The open source data set is from the Firefox

product and is obtained by mining the Bugzilla issue tracking system. The second data set

belongs to a proprietary software product.

4.1.1 Dataset 1: Firefox Bugzilla Project

Firefox is a free and global web browser created by the Mozilla community. The browser is

available for all modern operating systems, including Windows, OS, and Linux. It is among the

most popular web browsers in the world because of its security, speed, and add-ons [1]. More

than half billion people around the world use Firefox [5]. The bug tracking system for Mozilla,

called Bugzilla, was developed by Mozilla projects for open source web browsers. Firefox is

a web browser for transferring, retrieving, and presenting information to and from the World

Wide Web. The initial release for Firefox was under the name of Phoenix in September 2002,

and several versions have been released over 16 years [4].

We extracted 93,647 bug reports created from ‘2010-01-01’ to ‘2017-07-31’. In this study, we

excluded the bug reports that are new feature requests or enhancements. The analysis shows
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Table 4.1: Firefox - Number of bugs reported yearly
Time Period Total number of

bugs submitted
Total number of
resolved bugs

% of resolved
bug reports

Total Number
of duplicate
bugs

2016/07 to 2017/07 12,753 8,103 64% 1,592
2015/07 to 2016/07 11,810 6,019 51% 1,461
2014/07 to 2015/07 14,525 7,996 55% 2,401
2013/07 to 2014/07 13,440 8,744 65% 2,431
2012/07 to 2013/07 10,739 8,208 76% 2,014
2011/07 to 2012/07 10,173 7,673 75% 2,019
2010/07 to 2011/07 14,418 10,675 74% 3,442
2010/01 to 2010/07 5,789 4,871 84% 1,149

Total 93,647 62,289 67% 16,509

that all the bugs are not resolved as they are reported. On average, 67% of the bugs reached

the “RESOLVED” status for Firefox. Table 4.1 presents the total number of bugs reported,

the total number of resolved bugs, the percentage of resolved bugs, and the total number of

duplicate bugs over seven years of data collection. Note that the last time period in the table

represents only seven months. On average, 12,486 Firefox bugs are reported in Bugzilla each

year. Roughly speaking, out of those bugs, only 8,365 bugs on average would get resolved. This

confirms our earlier assumption that all the bugs might not get resolved in the issue tracking

system. The percentage of resolved bugs may vary from 51% to 84% over the years. According

to table 4.1, there was an increase in the number of reported bugs in 2011. In early 2011,

the development process changed to the rapid release model where new releases are planned

every six weeks. The jump in the number of reported bugs in the time period between 2010/07

to 2011/07 might be due to this reason. In mid-2013, Firefox 23 was released with several

changes, such as killing the blink tag, removing the ability to turn off JavaScript, and removing

the support for keyword URL [8]. The increase in the number of reported bugs after 2013/07

might be due to those changes in that release.

In Firefox, 18% of the reported bugs have the resolution of duplicates, which means that

they are duplicate of the bugs that are already reported. On average, there are 2,201 duplicate

bugs detected on a yearly basis. Once the duplicate bugs are detected in the issue tracking

system, the developers attach the duplicate bugs to the master bugs and close the duplicates.

We also follow their practice in this study, and all the duplicate bugs are removed from the bug

databases.

Owing to limited resources and tight deadlines in software projects, all bugs reported in
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the issue tracking system are not resolved within the release that they are reported. According

to Table 4.1, 67% of reported bugs get resolved eventually but all of those bugs may not get

resolved upon their arrival, and their fixing may be postponed to next releases. Figure 4.1

shows the distribution of bugs according to their resolution time and release schedule. Our

analysis shows that the majority of bug fixing, around 70%, was postponed to the next releases

(resolved later or never). Only 30% of them are reported and resolved in the same release

cycle (resolved earlier). The low percentage of bugs that are reported and resolved in the same

release is one of the motivations of this study. Because the developers select a small percentage

of the bugs from a large number of reported bugs, the decision of which bug to choose becomes

an important decision.

In the related work section, we discuss that the severity and priority of bugs are not reported

appropriately, and therefore, they are not reliable for making a decision. Table 4.2 shows the

distribution of priority between reported bugs. Priority P1 is an indicator of bugs with low

priority, and priority of P5 is an indicator of bugs with high priority. The table shows that 84%

of reported bugs in Bugzilla for Firefox do not have any priority level assigned to them. Out

of 16% of the bugs with assigned priority, only 1% of them have high priority. Based on this

observation, we conclude that the assignment of priority level to bugs in Firefox is ignored.

Table 4.3 shows the distribution of severity between the reported bugs. The severity level

in Bugzilla includes “Blocker”, “Critical”, “Major”, “Minor”, “Normal”, “Trivial”, and “En-

hancement”. Blocker bugs block further the development and testing work on the product.

Figure 4.1: Firefox - Distribution of bugs
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Table 4.2: Firefox - Priority of reported bugs
Priority Number of bugs % of bugs

P1 3,701 4%
P2 3,332 34%
P3 6,234 7%
P4 700 1%
P5 695 1%
— 78,985 84%

Total 93,647 100%

Table 4.3: Firefox - Severity of reported bugs
Severity Number of bugs % of bugs

Blocker 209 0.2%
Critical 3,500 3.7%
Major 4,359 4.7%
Minor 2,271 2.4%
Normal 82,318 87.9%
Trivial 990 1.1%

Total 93,647 100%

Critical bugs are the bugs that report the crashes and loss of data. Major bugs are bugs with a

major loss of function while minor bugs are bugs with minor loss of function that do not affect

many people or ones that have an easy workaround. Trivial bugs are cosmetic bugs, such as

spelling errors or misaligned text. Normal severity is the average severity of the bugs and also

the default severity level. Enhancement is a request for a new feature. As we are only focused

on defects, the enhancements are not considered in this study. Note that in this dissertation,

the terms bug and defect are used interchangeably but we specifically focus on defect. Table

4.3 shows that 87.9% of reported bugs in Bugzilla have normal severity. Normal severity is the

default severity level in Bugzilla. The reporters of the bugs probably do not change the severity

of the bugs. Bettenburg et al. conducted a survey among Mozilla developers and reported that

the severity information is rarely used by developers [29]. They described the characteristic of

a good bug report from developers’ point of view and reported that the developers pay more

attention to bug description, stack traces, and test cases rather than the severity of bugs while

fixing them. Blocker severity is depreciated in Mozilla, and this is the reason that only 0.2% of

bugs are Blocker bugs. Only 12.1% of bugs are assigned severity level, and out of them, 8.4% of

bugs have critical or major severity. Therefore, relying on the severity level to prioritize bugs

might be misleading.
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Additionally, the severity and priority level may be inconsistent due to a different point

of view of reporters, developers, and managers. For example, in Firefox, we observed that

the severity of bugs may change up to 5 times and the priority of bugs may change up to 8

times. The frequency of change is an indicator that there is no agreement on the severity and

the priority level among different stakeholders in Firefox. The characteristic of Firefox data

supports that the bug prioritization model cannot rely on the reported severity and priority

levels.

4.1.2 Dataset 2: proprietary software product

The commercial project belongs to technology company. The experiment of this study was

performed on the defects reported from its issue tracking system. The product was released

in 2008 for the first time. It is a collaborative tool for software development, which includes

iteration and release planning, change management, defect tracking, source control, and build

automation. Users can use it to track and manage the relationship between artifacts, create

work items, and share team and project information. It is available in both client and web

versions and also on cloud [7].

In proprietary software product, the work item might be a defect, enhancement, require-

ment, story, test, etc. In this study, we only extracted the work items that report defects.

From the defect tracking system, we extracted 47,084 bugs from “2010-01-01” to “2017-01-31”.

Table 4.4 presents the total number of bugs reported, the total number of resolved bugs, the

percentage of resolved bugs, and the total number of duplicate bugs on yearly basis. On av-

erage, 6,726 bugs are reported each year, and out of the reported bugs, 6,524 of them were

resolved on average each year. Approximately, 97% of bugs are resolved in proprietary software

product, compared to 67% of bugs resolved in Firefox. The difference might be due to the

differences between open source and proprietary software. In large open source software such

as Firefox, millions of users are examining the source code and it is more probable that the

bugs are exposed to more users in comparison with the proprietary software. 400,000 people

contribute to reporting the Firefox bugs in Bugzilla [5], and hence, more bugs get reported to

Firefox than to proprietary software product. However, it seems that the software development

team in proprietary software product is able to resolve most of the defects in such a way that

only 3% of bugs remain unresolved. Furthermore, Table 4.4 shows that the number of reported

bugs decreased from 2010 to 2017. Version 3.0 was released in 2010 with many new features,

including new sideboard, a web interface for work items, command line interface, interactive
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Table 4.4: proprietary software product - Number of bugs reported yearly
Time Period Total number of

bugs submitted
Total number of
resolved bugs

% of resolved bug
reports

Total Number of
duplicate bugs

2016/01 to 2017/01 4,067 3,702 91% 313
2015/01 to 2016/01 4,751 4,481 94% 419
2014/01 to 2015/01 5,476 5,200 95% 677
2013/01 to 2014/01 5,307 5,109 96% 733
2012/01 to 2013/01 7,942 7,775 98% 482
2011/01 to 2012/01 7,608 7,514 99% 173
2010/01 to 2011/01 11,933 11,885 99% 1,285

Total 47,084 45,666 97% 4,082

installation guide, and sandbox Explorer View. Thus , many developers in the company started

using the product in 2010 [6]. This might be the reason for the large number of bugs in the

period from 2010 to 2011. However, the number of developers using it decreased after a few

years. Thus, lesser number of bugs was reported later.

There is also less number of duplicate bugs in proprietary software product compared to

Firefox. Only 8% of reported bugs in proprietary software product are duplicate bugs. In open

source projects, more users have access to report bugs. Therefore, it is more likely that different

users report the same bugs. However, the bugs are reported in a more systematic way with

less public access in proprietary software, and hence, it is less likely that duplicate bugs are

reported.

Although 97% of proprietary software product bugs are resolved eventually, all the bugs

are not resolved upon their arrival. Similar to Firefox, in proprietary software product, a lack

of resources and time does not allow the software development team to resolve all the bugs

before the release deadline. Figure 4.2 shows that only 37% of the bugs are reported and

resolved in the same release (resolved earlier). However, 63% of the bugs are postponed in next

releases (resolved later or never). Therefore, in both open source and commercial software, bug

prioritization can be a necessity.

We also explored the priority and severity level of the reported bugs. Table 4.5 presents

how the priority of reported bugs was selected in proprietary software product. There are three

levels of priority in proprietary software product: low, high, and medium. 63% of bugs are

reported without any assigned priority level. Developers assigned the priority level to only

37% of bug reports, of which 18% had high priority. Compared to Firefox, the priority level in

proprietary software product is selected more frequently for defects. However, more than 50%
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Table 4.5: Proprietary software product - Priority of reported bugs
Priority Number of bugs % of bugs

High 8,142 18%
Low 1,424 3%
Medium 7,999 17%
Unassigned 29,519 63%

Total 47,084 100%

of bugs did not have any priority label. Therefore, priority and severity may not be a very

realistic measure for prioritization of bugs in the commercial software as well.

Table 4.6 describes the distribution of the severity of the reported bugs in proprietary

software product. There are five severity levels: “blocker”, “critical”, “major”, “minor” and

“normal”. 74% of the bugs are classified as normal bugs. Similar to Firefox, normal is the

default severity level in proprietary software product as well. There are also few bugs (less

than 1%) where the severity level is unclassified. In both projects, our observation regarding

the severity and priority level confirms our earlier assumption that severity and priority are not

reliable parameters for prioritizing bugs in issue tracking systems.

Similar to Firefox, the priority and severity of bugs might also change in proprietary software

product. Our data show that the severity of bugs might change up to 16 times and the priority

of bugs might change up to 7 times. The frequency of change shows that there is no agreement

on the severity and priority of bugs. It is also an indicator of our earlier assumption that

Figure 4.2: proprietary software product - Distribution of bugs
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Table 4.6: Proprietary software product - Severity of reported bugs
Severity Number of bugs % of bugs

Blocker 773 1.6%
Critical 1,155 2.5%
Major 6,685 14.2%
Minor 3,294 7.0%
Normal 35,005 74.3%
Unclassified 172 0.4%

Total 47,084 100%

severity and priority are subjective. Therefore, the number of blocking bugs can be chosen as

another factor to prioritize the bugs.

4.2 Exploratory Analysis

As we have already explained, the developer may sort the bugs in descending order based on

the number of bugs they block in order to prioritize them; however, there is an uncertainty on

the number of blocking bugs since some of the dependency information may not be available.

The purpose of this exploratory analysis is to validate our earlier assumption that there is

uncertainty on the structure of the blocking-dependency graph. Three different analyses on

both datasets are performed to investigate the uncertainty on the structure of the dependency

graph. In the first experiment, we investigate if all the blocking bugs are observable at the

creation time of bugs. We also check how long it would take to discover the blocking bugs

and what is the probability that blocking bugs get discovered after a certain time. In the

second experiment, we examine what percentage of the bugs are blocking bugs and also the

degree of the blocking bugs. In the third experiment, we explore the number of outstanding

open bugs in the issue tracking system as they are not investigated completely and they may

bring uncertainty to the dependency graph. This is because open bugs are the nodes in the

dependency graph where limited information regarding their connection to the rest of the graph

is available. Based on how they are connected to the rest of the graph, there is a probability

that they increase the depth and degree of the graph. In the following section, we explain the

analyses for both datasets.
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4.2.1 Discovery Time of Blocking Bugs

4.2.1.1 Dataset 1: Firefox Bugzilla Project

As the bug is created in the issue tracking system, the creation time of the bug is recorded.

During the investigation period to reproduce and fix the bugs, the developers may discover the

dependency information of the bug. The dependency information and the time associated with

their discovery are included in the issue tracking system. We took the time difference between

the creation time of bugs and the time that the blocking bugs are discovered and called it the

discovery time.

First, we examine if all the blocking bugs are discovered at the creation time. In order to

check that, we explore the distribution of discovery time. Figure 4.3 shows the distribution of

discovery time for Firefox bug reports. The figure presents the frequency versus the discovery

time of blocking bugs using a histogram. It gives us a sense of the density of the underlying

distribution of our data. The distribution is right-skewed, and mass of the distribution is

concentrated on the left of the figure. Most of the blocking bugs are discovered in the first

20,000 h after the bugs are created. However, there are also a significant number of bugs whose

blocking bugs get discovered after 20,000 h. Figure 4.3 confirms that all the blocking bugs are

Figure 4.3: Firefox - Distribution of discovery time in hours for bug reports
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Table 4.7: Firefox - Statistics of discovery time for bug reports
Time (hrs) Median Mean Max

First blocking bugs discovered 47 787 55,389
Last blocking bug discovered 306 3,049 63,883

Table 4.8: Firefox - Arrival time of blocking bugs
Firefox Probability

Pr (dependency discovered after 12 hrs) 82%
Pr (dependency discovered after 24 hrs) 79%
Pr (dependency discovered after 48 hrs) 76%
Pr (dependency discovered after 1 week) 68%

not known at the time that the bugs are created in the issue tracking system.

Second, we explore how long it would take for the blocking bugs to get discovered. Table

4.7 shows that it takes 787 h on average to discover the first set of blocking bugs. The median

time for discovery of the first set of blocking bugs in Firefox is around 47 h. We also found

out that the maximum time to discover the first set of blocking bugs may be as long as 55,389

h. The bugs may have more than one blocking bugs, so we also investigated the statistics for

the last set of blocking bugs discovered. On average, it takes 3,049 h to discover the last set of

blocking bugs in Firefox. The median time to discover the last set of blocking bugs is around

306 h, and the maximum time to discover the blocking bugs is around 63,883 h. We can see

that it may take a few hours to a few years to discover the blocking bugs, and therefore, some

of the information might be hidden at the time of planning and decision making.

Third, we check the probability that blocking bugs get discovered after a certain time.

Earlier, we mentioned that the dependency information is manually investigated in the issue

tracking system so that this information is gradually appended to the issue tracking system.

Our further analysis shows that 82% of the dependency information is discovered after 12 h that

the bugs are created. Table 4.8 presents the probability of how long it would take to discover the

dependency information. Accordingly, 79% of the dependency information is discovered after

24 h, and 76% of them after 48 h. There is no linear relationship between the time and the

likelihood of discovery of blocking bugs. We can see that 68% of the dependency information

is discovered after one week that the bug is created.
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Figure 4.4: Proprietary software product - Distribution of discovery time in hours for bug
reports

4.2.1.2 Dataset 2: proprietary software product

The same analysis is repeated for the proprietary software product dataset. We explored the

distribution of the discovery time for blocking bugs. Figure 4.4 presents this distribution using

the histogram of discovery time. Similar to Firefox, for the proprietary software product, the

distribution of discovery time for blocking bugs is skewed-right in a way that most of the blocking

bugs get within 10,000 h of the bugs being reported. However, there are some blocking bugs that

get discovered after 10,000 h. In some cases, it takes more than 40,000 h to find the blocking

bugs. Compared to Firefox, we observe that the proprietary software product development

team is able to find the blocking bugs faster. Figure 4.4 confirms that developers are not aware

of all the blocking bugs at the time that the bugs are reported in the issue tracking system.

This may occur as the blocking bugs are not reported in the issue tracking system yet, or the

blocking bugs have already been reported but the relationships are not yet observed by the

developers.

We are also interested in exploring how long it would take to discover the blocking bugs.

The first blocking bugs get discovered 1,286 h after the bug is reported. The median time is

25 h, and the maximum time is 35,798 h. Compared to Firefox, it takes less time to discover

the blocking bugs. This is probably because the developers have a more robust picture of

the relationship between bugs in the commercial software than in the open source one. Those
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Table 4.9: Proprietary software product - Statistics of discovery time for bug reports
Time (hrs) Median Mean Max

First blocking bugs discovered 25 1,286 35,798
Last blocking bug discovered 45 1,400 48,439

Table 4.10: Proprietary software product - Discovery time of blocking bugs
Proprietary software product Probability

Pr (dependency discovered after 12 hrs) 56%
Pr (dependency discovered after 24 hrs) 53%
Pr (dependency discovered after 48 hrs) 49%
Pr (dependency discovered after 1 week) 40%

bugs may also block more than one bug. Therefore, we also checked how long it would take

to find the last reported blocking bugs. On average, it might take 1,400 h to discover those

bugs. However, the maximum time it takes may increase to 48,439 h. Therefore, some of the

dependency information is hidden for more than a few years in the issue tracking system. This

supports the assumption that there is uncertainty in the structure of the dependency graph.

Additionally, we explore the probability that the blocking bugs get discovered after a certain

time. Table 4.10 presents the calculated probability. In proprietary software product, 56% of

bugs get discovered after 12 h. As time goes on, the chance of finding blocking bugs does not

increase that much. Only 53% of blocking bugs get discovered after 24 h, and 49% of them

get discovered after 48 h. For 40% of bugs, it may even take more than one week to find

any blocking bugs. Compared to Firefox, fewer bugs are hidden in this product but still, a

significant percentage of them are hidden. The exploratory analysis on the discovery time of

blocking bugs shows that it may take a few hours to a few years until the blocking bug gets

discovered.

The exploratory analysis of both data sets regarding the discovery time of blocking bugs

confirms that at the time of planning, some of the edges in the dependency graph might not be

observed. This is the motivation behind proposing POMDP as a model that fits the character-

istics of the datasets and the problem at hand.
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Table 4.11: Firefox - Degree of blocking bugs
Degree Percentage

1 65.2%
2 20.8%
3 6.8%
4 3.2%
5 1.4%
6 1.0%
> 6 1.6%

4.2.2 Degree of Blocking Bugs

4.2.2.1 Dataset 1: Firefox Bugzilla Project

In this study, we found that only 17% of bugs in Firefox have dependency information. We

extracted the dependency information from the field “depends on” and “blocks” in Bugzilla.

We cannot make any claims about the remaining bugs in Bugzilla. They might have some

dependency information that is not appended yet, or they might not have any dependency

at all. For the purposes of this analysis, we filtered out the bugs that block at least one

bug. Approximately, 86% of the blocking bugs in Firefox block only 1 or 2 bugs. Table 4.16

summarizes the statistics regarding the degree of blocking bugs and their percentages. In the

table, > 6 refers to the bugs that block 6 or more bugs.

Histogram shown in Figure 4.5 complements Table 4.16. We can see that most of the bugs

block two or fewer bugs. We also observe that there are some bugs that block more than 80

other bugs.

4.2.2.2 Dataset 2: proprietary software product

Blocking bugs represent 28% of all bugs in this data set. At the time of data collection, the

remaining bugs do not block any bugs. Similar to Firefox, we cannot conclude whether blocking

dependency exists for them or not. We filtered out the bugs similar to the case for Firefox,

and we found that approximately 96.8% of the bugs in proprietary software product block 1 or

2 bugs. Only 3.2% of the bugs block 3 or more bugs. More information about the degree of

blocking bugs can be found in Figure 4.6. Based on this figure, some bugs might block 12 other

bugs.

Compared to Firefox, more blocking bugs are discovered in proprietary software product;

however, less degree of dependency exists. We should note that this product has project man-
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Figure 4.5: Firefox - Histogram plot for degree of blocking bugs

Table 4.12: Proprietary software product - Degree of blocking bugs
Degree Percentage

1 87.9%
2 8.9%
3 2.4%
4 0.2%
5 0.2%
6 0.3%
> 6 0.1%

ager allocated to this task, however, the Firefox development team includes more than 1000

volunteer contributors [5], and some of them might not have enough experience to find the

dependency between bugs, but Firefox data is older than the second dataset, and therefore, the

degree of dependency may grow. Regardless of how the commercial and open source software

looks like with respect to the number of blocking bugs and their degree, there are some uncer-

tainties in the dependency graph because some bugs do not show any dependency information

that they might have.
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Figure 4.6: Proprietary software product - Histogram plot for degree of blocking bugs

4.2.3 Number of Open Bugs

4.2.3.1 Dataset 1: Firefox Bugzilla Project

The third exploratory analysis focuses on the number of outstanding open bugs. By open bugs,

we mean the bugs that have the status of “Unconfirmed”, “New”, “Assigned”, and “Reopen”

in the issue tracking system. The open bugs are the bugs that have not been investigated

completely, so there is a chance that their dependency information is missed. Some of those

bugs might be ignored as the developers intentionally decide not to fix them and there is no

activity after the bugs get reported. However, we observe that there are some bugs that are open

and active in the issue tracking system. By active, we mean that there is at least one activity

in the history of the bugs in the last 12 months. As the dependency information of those bugs

is not completely investigated, the depth and degree of the whole dependency graph cannot be

completely observed. Those bugs are part of the dependency graph and their connectivity with

other bugs may affect the depth and degree of the whole dependency graph.

At the time of data collection, we found out that there are some open bugs in Firefox related

to 2010 and some of those bugs are still active in the issue tracking system. Table 4.13 and

Figure 4.7 1 summarize the number of open and active bugs on a yearly basis. In addition to

1X-axis represents the start time of “time period” column in Table 4.13
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Table 4.13: Firefox - Number of open and active bugs yearly
Time Period Number of

open bugs
Number of ac-
tive open bugs

% of open
bugs

% of active
open bugs

2016/07 to 2017/07 2,758 1,796 22% 14%
2015/07 to 2016/07 3,099 670 26% 6%
2014/07 to 2015/07 2,236 503 15% 3%
2013/07 to 2014/07 1,879 456 14% 3%
2012/07 to 2013/07 1,185 216 11% 2%
2011/07 to 2012/07 1,472 150 14% 1%
2010/07 to 2011/07 1,972 133 14% 1%
2010/01 to 2010/07 481 53 8% 1%

Figure 4.7: Firefox - Half-yearly comparison among total number of bugs, open bugs, and active
bugs

75



4.2. EXPLORATORY ANALYSIS CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.14: Proprietary software product - Number of open and active bugs yearly
Time Period Number of

open bugs
Number of ac-
tive open bugs

% of open
bugs

% of active
open bugs

2016/01 to 2017/01 345 151 9% 4%
2015/01 to 2016/01 270 77 6% 2%
2014/01 to 2015/01 275 64 5% 1%
2013/01 to 2014/01 189 38 4% 1%
2012/01 to 2013/01 144 21 2% 0.3%
2011/01 to 2012/01 58 5 1% 0.1%
2010/01 to 2011/01 23 5 0.2% 0.04%

the number of open and active bugs, Table 4.13 presents the fraction of open bugs and active

bugs to the total number of reported bugs in that period. It is notable that the percentage of

open and active bugs increased from 2010 to 2017. This is because the developers returned to

the older bugs to resolve them. The percentage of open active bugs gives us some information

regarding how incomplete the dependency graph might be. For example, 2,758 out of 12,753,

i.e., the total number bugs reported between 2016/07 and 2017/07, are still active and open.

This is equivalent to 22% of the total number of reported bugs in that period, and it means

that at least 22% of the dependency graph contains nodes with incomplete information. The

percentage of open bugs may vary from release to release, but due to the incompleteness of

data, as a result of open bugs in the repository, the dependency graph is subject to uncertainty

[181].

4.2.3.2 Dataset 2: proprietary software product

The same exploratory data analysis is performed on the second data set. The open bugs in

proprietary software product are the bugs with the status of “New”, “In progress”, “Triaged”,

and “Reopen”. Similar to Firefox, the open bugs with at least one activity in the last 12 months

are categorized as active bugs. Table 4.14 and Figure 4.8 2 present the number of open bugs

and active bugs compared to the total number of reported bugs. The percentage of open bugs

ranges between 0.2% and 9%, and the percentage of active bugs ranges between 0.04% and 4%

over the seven years of the data collection period. Compared to Firefox, there are less open

and active bugs in this project. We observe that there are only a few open and active bugs

in 2010 and 2011, less than or equal to 1%. However, similar to Firefox, the percentage of

open and active bugs increases over the years since developers resolved more bug reports in the

2X-axis represents the start time of “time period” column in Table 4.14
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subsequent years. In the recent years, the number of open bugs is not negligible. According

to Table 4.14, there are 9% open bugs, of which 4% are still active. This may suggest that

4% to 9% of nodes in the dependency graph have hidden dependency information. We should

note that regardless of the percentage of open bugs, only the existence of those bugs in the

dependency graph would generate the uncertainty in the structure of the graph.

4.3 Training and Testing

4.3.1 Dataset 1: Firefox Bugzilla Project

Six months of data are selected for training and the following month is chosen for testing.

We chose six months of training to approximately correspond to the Firefox version life cycle,

from a nightly build until the end of life for that version, so that there would be enough time

for the software team to discover some of the dependencies. We chose one month for testing

corresponding to our POMDP planning horizon and also the minor release, which developers

schedule to fix bugs and customer problems [2]. The first and second column in Table 4.1

Figure 4.8: Proprietary software product - Yearly comparison among total number of bugs,
open bugs, and active bugs
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Table 4.15: Firefox - Average number of bugs in training sets

Training time period Testing time period
Average Number of bugs
W1 W2 W3 W4

2017/01/01 to 2017/06/30 2017/07/01 to 2017/07/31 258.7 462.7 673.8 992.7
2016/06/01 to 2016/12/31 2017/01/01 to 2017/01/31 152.3 306.3 462.1 693.3
2016/01/01 to 2016/06/30 2016/07/01 to 2016/07/31 175.6 369.1 594.3 915.6
2015/06/01 to 2015/12/31 2016/01/01 to 2016/01/31 181.5 368.3 533.7 790.2
2015/01/01 to 2015/06/30 2015/07/01 to 2015/07/31 205.2 465.2 705.8 1084
2014/06/01 to 2014/12/31 2015/01/01 to 2015/01/31 160.7 376.2 569.3 880.3
2014/01/01 to 2014/06/30 2014/07/01 to 2014/07/31 201.8 451.0 689.8 1068.3
2013/06/01 to 2013/12/31 2014/01/01 to 2014/01/31 144.0 316.2 496.5 749.3
2013/01/01 to 2013/06/30 2013/07/01 to 2013/07/31 147.8 335.2 536.3 815.5
2012/06/01 to 2012/12/31 2013/01/01 to 2013/01/31 132.8 275.3 417.5 637.8
2012/01/01 to 2012/06/30 2012/07/01 to 2012/07/31 167.0 361.8 542.0 819.0
2011/06/01 to 2011/12/31 2012/01/01 to 2012/01/31 116.5 245.5 374.8 558.0
2011/01/01 to 2011/06/30 2011/07/01 to 2011/07/31 170.2 399.0 610.7 944.5
2010/06/01 to 2010/12/31 2011/01/01 to 2011/01/31 158.7 380.5 612.6 934.0
2010/01/01 to 2010/06/30 2011/07/01 to 2011/07/31 131.3 307.3 491.2 791.7

presents the training and testing pairs period from 2010/01/01 to 2017/07/31. The training set

is applied to learn the parameters of the proposed POMDP from the time period of 2010/01/01

to 2010/06/30, and the test data set from 2010/07/01 to 2010/07/31 is chosen to test the

policy and collect the reward. Then, the training set is used to learn the parameters of the

proposed POMDP from the time period of 2010/06/01 to 2010/12/31, and the test data set from

2011/01/01 to 2011/01/31 is chosen to test the policy and collect the reward. The experiment

continued in this manner until 2017/07/31. The temporal order of the training and testing set

is held consistent in all the datasets.

The average cumulative number of bugs from week 1 to week 4 for each training set is

reported in Table 4.15. The average total number of bugs in week 1 ranges from 116.5 to

258.7. The average number of bugs in weeks 2, 3, and 4 ranges from 245.5 to 465.2, 347.8 to

705.8, and 558.0 to 1084.0, respectively. A total of 15 experiments were performed to cover the

seven-year period. As explained in section 3.5, the average number of bugs in the dependency

graph corresponds to the number of states.

Table 4.16 reports the dependency information for the training data set. It shows how many

dependencies between the bugs are reported in the dataset. The dependencies between bugs

correspond to edges in the dependency graph. The weekly cumulative number of dependencies

are reported in Table 4.16. We observe that dependency information may vary year to year
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Table 4.16: Firefox - Average dependency of bugs in training sets

Training time period Testing time period
Average dependency
W1 W2 W3 W4

2017/01/01 to 2017/06/30 2017/07/01 to 2017/07/31 29.3 81.6 149.8 256.5
2016/06/01 to 2016/12/31 2017/01/01 to 2017/01/31 27.8 70.6 93.3 148.3
2016/01/01 to 2016/06/30 2016/07/01 to 2016/07/31 19.8 52.0 185.6 265.2
2015/06/01 to 2015/12/31 2016/01/01 to 2016/01/31 25.6 61.2 89.0 118.4
2015/01/01 to 2015/06/30 2015/07/01 to 2015/07/31 15.2 77.7 152.2 281.2
2014/06/01 to 2014/12/31 2015/01/01 to 2015/01/31 42.8 79.2 125.5 237.0
2014/01/01 to 2014/06/30 2014/07/01 to 2014/07/31 12.3 58.5 105.2 229.5
2013/06/01 to 2013/12/31 2014/01/01 to 2014/01/31 18.0 52.6 127.8 224.0
2013/01/01 to 2013/06/30 2013/07/01 to 2013/07/31 11.7 34 87.5 149.8
2012/06/01 to 2012/12/31 2013/01/01 to 2013/01/31 11.8 32.6 50.8 95.0
2012/01/01 to 2012/06/30 2012/07/01 to 2012/07/31 7.6 32.2 65.7 120.0
2011/06/01 to 2011/12/31 2012/01/01 to 2012/01/31 9.6 18.4 33.2 73.0
2011/01/01 to 2011/06/30 2011/07/01 to 2011/07/31 4.0 21.5 53.0 106.7
2010/06/01 to 2010/06/31 2011/01/01 to 2011/01/31 5.3 58.3 151.0 235.0
2010/01/01 to 2010/06/30 2010/07/01 to 2010/07/31 2.6 13.8 31.8 48.5

and week to week. As we expect, the dependency information increased from week 1 to week 4

since more bugs are reported and more bugs are investigated by developers.

The snapshot of the dependency graphs is created weekly from the dataset. The bugs

represent the node in the dependency graph, and the dependencies between them are the

directed edges. On a weekly basis, the maximum depth and degree of the dependency graph

are calculated. Table 4.17 presents the maximum depth and degree of the dependency graph for

training sets. They correspond to the observation in the POMDP formula. The average depth

and degree range from 0.8 to 9.6, from week 1 to week 4 in all the training sets. The average

depth and degree less than one (0.8) shows that there are a few months where no dependency

is found between bugs. However, as time passes, the depth and degree increase. A total of

500 data from each month are randomly selected from the training set to train the generative

model, as was explained in section 3.5.

After training the POMDP and the generative model, 300 data from the testing set is used

to select the best policy and collect the reward. In Table 4.18, the average number of bugs,

the average dependency, and the average depth and degree are reported for the testing set. We

observe that the testing set also has the same characteristics as the training set, and the depth

and degree of the dependency graph are in the same range as the training set.
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Table 4.17: Firefox - Average maximum depth and degree in training sets

Training time period Testing time period
Average depth & degree
W1 W2 W3 W4

2017/01/01 to 2017/06/30 2017/07/01 to 2017/07/31 3.8 4.5 6.5 8.8
2016/06/01 to 2016/12/31 2017/01/01 to 2017/01/31 1.3 4.3 5.1 6.5
2016/01/01 to 2016/06/30 2016/07/01 to 2016/07/31 1.6 3.3 6.6 7.8
2015/06/01 to 2015/12/31 2016/01/01 to 2016/01/31 2.8 3.6 4.4 5.0
2015/01/01 to 2015/06/30 2015/07/01 to 2015/07/31 1.8 4.5 6.7 7.3
2014/06/01 to 2014/12/31 2015/01/01 to 2015/01/31 4.0 6.5 6.8 7.6
2014/01/01 to 2014/06/30 2014/07/01 to 2014/07/31 1.8 4.8 6.0 9.6
2013/06/01 to 2013/12/31 2014/01/01 to 2014/01/31 1.7 3.0 3.5 4.6
2013/01/01 to 2013/06/30 2013/07/01 to 2013/07/31 1.8 3.2 5.3 5.8
2012/06/01 to 2012/12/31 2013/01/01 to 2013/01/31 1.5 2.4 2.8 4.6
2012/01/01 to 2012/06/30 2012/07/01 to 2012/07/31 1.8 3.6 5.5 6.6
2011/06/01 to 2011/12/31 2012/01/01 to 2012/01/31 1.6 1.8 2.4 5.6
2011/01/01 to 2011/06/30 2011/07/01 to 2011/07/31 0.8 3.6 4.1 4.5
2010/06/01 to 2010/12/31 2011/01/01 to 2011/01/31 1.3 4.3 6.0 7.3
2010/01/01 to 2010/06/30 2010/07/01 to 2010/07/31 1.0 2.0 2.3 3.1

Table 4.18: Firefox - Testing set statistics
W1 W2 W3 W4

Average number of bugs 182.7 386.5 594.2 947
Average dependency 11.4 53.86 109.8 206.4
Average depth/degree 1.73 3.53 5.4 8.14
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Table 4.19: Proprietary software product - Average number of bugs in training sets

Training time period Testing time period
Average Number of bugs
W1 W2 W3 W4

2016/06/01 to 2016/12/31 2017/01/01 to 2017/01/31 48.3 146.8 209.5 291.7
2016/01/01 to 2016/06/30 2016/07/01 to 2016/07/31 46.0 113.7 225.5 301.0
2015/06/01 to 2015/12/31 2016/01/01 to 2016/01/31 52.0 144.6 266.6 384.3
2015/01/01 to 2015/06/30 2015/07/01 to 2015/07/31 71.0 168.8 238.8 342.3
2014/06/01 to 2014/12/31 2015/01/01 to 2015/01/31 82.7 171.5 252.8 380.1
2014/01/01 to 2014/06/30 2014/07/01 to 2014/07/31 87.8 180.5 284.7 456.5
2013/06/01 to 2013/12/31 2014/01/01 to 2014/01/31 94.0 191.6 308.6 421.0
2013/01/01 to 2013/06/30 2013/07/01 to 2013/07/31 84.8 170.0 254.7 387.7
2012/06/01 to 2012/12/31 2013/01/01 to 2013/01/31 73.0 173.0 273.6 421.2
2012/01/01 to 2012/06/30 2012/07/01 to 2012/07/31 87.8 180.5 284.7 456.5
2011/06/01 to 2011/12/31 2012/01/01 to 2012/01/31 81.5 199.8 322.0 482.7
2011/01/01 to 2011/06/30 2011/07/01 to 2011/07/31 141.2 292.2 467.0 684.2
2010/06/01 to 2010/12/31 2011/01/01 to 2011/01/31 248.0 644.0 870.7 1171.3
2010/01/01 to 2010/06/30 2010/07/01 to 2010/07/31 123.5 278.8 412.3 623.7

4.3.2 Dataset 2: proprietary software product

Similar to Firefox, proprietary software product finalizes each release every six months while

there is a milestone deadline every one month that allows the developers to follow progress and

receive feedback [3]. Therefore, six months of data are selected for training and the following

month is selected for testing. The training-testing pairs are presented in Table 4.19. Note that

the temporal order of training and testing is also important in this experiment. A total of

14 experiments are performed for the dataset collected from 2010/01/01 to 2017/01/31. The

average number of bugs in the training set is also shown in Table 4.19. In week 1, the average

number of bugs ranges between 46.0 and 248.0. There is a significant increase in the average

number of bugs in 2010 since, as mentioned before in Table 4.4, many evelopers started using

this product in 2010 [6]. The average number of bugs in weeks 2, 3, and 4 ranges from 113.7 to

644.0, 209.5 to 870.7, and 291.7 to 1171.3, respectively. Compared to Firefox, there are fewer

bugs in this dataset. Likewise, the bugs are representative of nodes in the dependency graph

and correspond to the number of states.

The cumulative weekly dependency information between bugs is presented in Table 4.20.

Although the number of reported bugs in 2010 is larger than that in other years, the number of

dependencies between bugs is lower than that in other years. The average dependencies range

between 0.8 and 214.2 for the entire training set. A dependency less than 0.8 means that no
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Table 4.20: Proprietary software product - Average number of dependencies in training sets

Training time period Testing time period
Average dependency
W1 W2 W3 W4

2016/06/01 to 2016/12/31 2017/01/01 to 2017/01/31 13.0 41.3 59.2 87.2
2016/01/01 to 2016/06/30 2016/07/01 to 2016/07/31 3.5 13.8 38.5 58.8
2015/06/01 to 2015/12/31 2016/01/01 to 2016/01/31 5.5 24.3 56.8 91.2
2015/01/01 to 2015/06/30 2015/07/01 to 2015/07/31 17.7 48.7 69.5 100.3
2014/06/01 to 2014/12/31 2015/01/01 to 2015/01/31 17.3 45.3 64.2 96.3
2014/01/01 to 2014/06/30 2014/07/01 to 2014/07/31 18.3 42.0 70.3 128.3
2013/06/01 to 2013/12/31 2014/01/01 to 2014/01/31 24.8 50.6 88.3 121.2
2013/01/01 to 2013/06/30 2013/07/01 to 2013/07/31 16.2 37.5 59.2 94.2
2012/06/01 to 2012/12/31 2013/01/01 to 2013/01/31 14.6 40.6 64.5 105.7
2012/01/01 to 2012/06/30 2012/07/01 to 2012/07/31 28.5 66.2 125.8 214.2
2011/06/01 to 2011/12/31 2012/01/01 to 2012/01/31 15.2 45.2 80.6 127.3
2011/01/01 to 2011/06/30 2011/07/01 to 2011/07/31 30.3 67.6 108.8 177.3
2010/06/01 to 2010/12/31 2011/01/01 to 2011/01/31 3.8 7.2 13 19.3
2010/01/01 to 2010/06/30 2010/07/01 to 2010/07/31 0.8 1.5 1.7 3.8

dependent bugs are discovered in some months during that period. Compared to Firefox, we

almost have the same number of dependencies between bugs in proprietary software product,

although the number of bugs in RTC is lesser than in Firefox. This is probably because RTC

developers have more insight into their system compared to Firefox developers.

The dependency graph is constructed from proprietary software product data using the bugs

and their dependency information. After dependency graph construction, the maximum depth

and degree are calculated. Table 4.21 shows the maximum depth and degree for the second

dataset. It ranges from 0.5 to 7.5 for the entire training set. For each training set, 3000 bugs

are selected to train the POMDP generative model, as explained in section 3.5.

After training the POMDP, the testing set is used to execute the best policy and record the

reward. In Table 4.22, the average number of bugs, the average dependency, and average depth

and degree are reported for the testing set, which are in the same range as in the training set.

4.4 Generative Model

4.4.1 Dataset 1: Firefox Bugzilla Project

POMCP does not require the transition and observation function explicitly, but it uses the

generative model. The model generates the next state, action, and observation given the current
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Table 4.21: Proprietary software product - Average maximum depth and degree training sets

Training time period Testing time period
Average depth & degree
W1 W2 W3 W4

2016/06/01 to 2016/12/31 2017/01/01 to 2017/01/31 2.2 3.8 4.5 6.0
2016/01/01 to 2016/06/30 2016/07/01 to 2016/07/31 1.0 1.8 2.5 2.5
2015/06/01 to 2015/12/31 2016/01/01 to 2016/01/31 1.3 2.8 3.8 4.8
2015/01/01 to 2015/06/30 2015/07/01 to 2015/07/31 3.2 4.3 5.3 5.5
2014/06/01 to 2014/12/31 2015/01/01 to 2015/01/31 1.7 3.5 5.0 7.5
2014/01/01 to 2014/06/30 2014/07/01 to 2014/07/31 2.0 2.7 3.0 4.5
2013/06/01 to 2013/12/31 2014/01/01 to 2014/01/31 2.0 3.2 4.3 4.8
2013/01/01 to 2013/06/30 2013/07/01 to 2013/07/31 1.8 2.8 3.1 3.1
2012/06/01 to 2012/12/31 2013/01/01 to 2013/01/31 1.6 2.5 3.0 3.6
2012/01/01 to 2012/06/30 2012/07/01 to 2012/07/31 2.1 3.1 4.0 4.1
2011/06/01 to 2011/12/31 2012/01/01 to 2012/01/31 2.5 4.2 5.5 6.6
2011/01/01 to 2011/06/30 2011/07/01 to 2011/07/31 2.2 3.1 3.6 4.0
2010/06/01 to 2010/12/31 2011/01/01 to 2011/01/31 1.0 1.2 1.2 1.3
2010/01/01 to 2010/06/30 2010/07/01 to 2010/07/31 0.5 0.8 0.8 1.0

Table 4.22: Proprietary software product - Testing set statistics
W1 W2 W3 W4

Average number of bugs 60.2 182.3 290.3 471.2
Average dependency 8.8 30.0 50.2 91.8
Average depth/degree 1.1 2.6 3.8 5.2
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Table 4.23: Firefox - Generative model parameter estimation

Training time period
Action B1 Action B2 Action B3

λ Error λ Error λ Error

2017/01/01 to 2017/06/30 0.009 0.1% 0.087 1% 0.49 4%
2016/06/01 to 2016/12/31 0.014 0.1% 0.142 0.1% 0.19 4%
2016/01/01 to 2016/06/30 0.007 0.1% 0.031 0.7% 0.33 4%
2015/06/01 to 2015/12/31 0.007 0.1% 0.026 0.7% 0.14 2%
2015/01/01 to 2015/06/30 0.013 0.1% 0.025 0.7% 0.30 3%
2014/06/01 to 2014/12/31 0.025 0.1% 0.24 2% 0.28 4%
2014/01/01 to 2014/06/30 0.009 0.1% 0.03 0.8% 0.21 3%
2013/06/01 to 2013/12/31 0.010 0.1% 0.02 0.5% 0.36 5%
2013/01/01 to 2013/06/30 0.019 0.1% 0.06 1% 0.41 5%
2012/06/01 to 2012/12/31 0.007 0.7% 0.02 0.9% 0.06 2%
2012/01/01 to 2012/06/30 0.017 0.01% 0.08 2% 0.62 7%
2011/06/01 to 2011/12/31 0.006 0.8% 0.05 1% 0.51 11%
2011/01/01 to 2011/06/30 0.008 0.9% 0.6 1% 0.23 8%
2010/06/01 to 2010/12/31 0.007 0.08% 0.10 2% 0.48 7%
2010/01/01 to 2010/06/30 0.007 0.08% 0.17 3% 0.24 6%

state and action. As explained in Algorithm 3, the heuristic for the generative model uses the

Poisson distribution to generate the next state given the current state and action. In this

section, we calculate the Poisson distribution parameter and validate the model with respect

to standard error.

In the Firefox data set, the trajectory from each training set is created. In that trajectory,

the difference between the successive observations is calculated and the Poisson distribution is

fitted to the trajectory data. The Poisson parameter λ and the estimated standard errors for

the Firefox training set is reported in Table 4.23. The average standard error is around 2%,

which seems reasonable [56].

Using the Poisson distribution, the random number is generated. The next state is generated

by applying equation (3.24). Having the next state, the next observation and reward are

calculated based on the algorithm 3.

4.4.2 Dataset 2: proprietary software product

Similarly, the generative model also used for proprietary software product data. Therefore, the

trajectory from the training set is created. The Poisson distribution is fitted into the trajectory

data based on the algorithm 3. While fitting the distribution, there were two cases in which

due to the sparsity of data, we could not calculate the Poisson distribution parameter. The
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Table 4.24: Proprietary software product - Generative model parameter estimation

Training time period
Action B1 Action B2 Action B3

λ Error λ Error λ Error

2016/06/01 to 2016/12/31 0.144 0.4% 0.18 1% 0.89 3%
2016/01/01 to 2016/06/30 0.003 0.06% 0.015 0.4% 0.09 3%
2015/06/01 to 2015/12/31 0.004 0.7% 0.045 0.7% 0.36 5%
2015/01/01 to 2015/06/30 0.070 0.3% 0.121 1.0% 1.28 6%
2014/06/01 to 2014/12/31 0.036 0.21% 0.050 0.7% 0.65 4%
2014/01/01 to 2014/06/30 0.004 0.07% 0.006 0.2% 0.16 2%
2013/06/01 to 2013/12/31 0.016 0.14% 0.014 0.3% 0.42 3%
2013/01/01 to 2013/06/30 0.017 0.15% 0.033 0.5% 0.18 2%
2012/06/01 to 2012/12/31 0.012 0.12% 0.030 0.5% 0.16 2%
2012/01/01 to 2012/06/30 0.005 0.08% 0.016 0.4% 0.24 3%
2011/06/01 to 2011/12/31 0.070 0.30% 0.178 1% 0.78 7%
2011/01/01 to 2011/06/30 0.013 0.13% 0.036 0.6% 0.21 2%
2010/06/01 to 2010/12/31 0.002 0.04% 0.008 0.5% 0.002 0.04%
2010/01/01 to 2010/06/30 0.0001 0.01% 0.162 6% 0.001 0.03%

data observed after taking action B3 in 2010 are very limited. This is because the number

of dependencies is very low. In this case, the trajectory of observations created from all the

actions (B1, B2, B3) imputed the trajectory of observation for action B3. Table 4.24 presents the

parameter λ and the standard error. The standard error for all the training set ranges between

0.01% and 7%. The random number is generated using the computed Poisson distribution from

the table, and the next state, reward, and observation are updated as per algorithm 3.

4.5 Results and Comparison

4.5.1 Dataset 1: Firefox Bugzilla Project

The training sets are used to train POMDP model, particularly the generative model for

POMDP. Now, the POMCP planner is used to find the best action using that generative model,

according to the process described in algorithm 2. At each step, the best action is applied to the

dependency graph created from the testing set, and then, the next observation and the reward

are collected. Using the next observation, POMCP would update the belief state by applying

the particle filtering algorithm. After updating the belief state, the POMCP planner is applied

again in an attempt to search the best action, and this process is repeated. To implement

POMCP, we used the BasicPOMCP package written in Julia [62]. The maximum depth of the
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tree, exploration constant in PO-UCT, and the number of iterations during each action are all

set to their default values of 20, 1.0, and 1000, respectively.

The POMCP policy is compared with random policy, developer policy, and maximum policy.

In Table 4.25, the undiscounted return is presented for different policies. Figure 4.9 shows the

comparison between four policies. The x-axis corresponds to whether the training time period

represents the first half or the second half of the year. In general, the maximum policy, developer

policy, and random policy have a lower discounted return than POMCP policy. There is only

one instance where the maximum policy got a higher value than POMCP related to data trained

from 2016/01/01 to 2016/06/30 (2.30987 vs. 2.26323). According to this experiment, we can

discuss that choosing bugs with the maximum number of blocking bugs may not always be

a good policy, but sometimes the maximum policy and POMCP policy both choose the bugs

with the maximum number of blocking bugs. This happens in the case in which bugs having

the maximum blocking bugs have this characteristic over time. In addition, we observe that

the developer policy under-performed the POMCP policy because the developers may choose

the bugs based on other factors rather than the impact of bugs. In addition, the random

policy and developer policy sometimes get very close to each other, and again, this shows that

developers prioritize the bugs on many factors such that their behavior seems random. Variable

cost-effectiveness of defects make the prioritization task very challenging as there are conflicting

objectives in the bug prioritization processes. Our POMCP approach finds the optimal policy

for fixing the bugs with respect to minimizing the maximum depth and degree of dependency

graph. Our proposed POMCP policy can be applied as pre-filtering process and be combined

with other criteria for improving the bugs prioritization process. To check if there is a significant

difference between the POMCP policy and other policy, we performed the Wilcoxon rank test.

We concluded that there is a significant difference between POMCP and other policies based

on the P-value shown in Table 4.27.

The average discounted return also presented in Table 4.25 and Figure 4.9 while setting γ

to be 95%. The discounted rate behaves like the urgency rate, and it plays an important role

in the problem, which is more beneficial for obtaining the reward sooner than later. As in our

problem, we are also interested to select more impactful bugs sooner; therefore, calculating the

discounted return is appropriate. The result shows that POMCP significantly outperforms the

other policies considering the discounted return policy. Using the POMCP to select the action,

we reached an average discounted return of 0.14, while maximum policy, developer policy, and

random policy cannot reach values higher than 0.09.
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Table 4.25: Firefox - Undiscounted return
Training time period POMCP Maximum

Policy
Developer
Policy

Random
Policy

2017/01/01 to 2017/06/30 2.29004 2.08129 1.57969 1.59040
2016/06/01 to 2016/12/31 2.11235 1.34540 1.65294 1.68385
2016/01/01 to 2016/06/30 2.26323 2.30987 1.81888 1.84726
2015/06/01 to 2015/12/31 2.21655 1.76341 1.47288 1.58322
2015/01/01 to 2015/06/30 2.18038 1.81437 1.47695 1.58468
2014/06/01 to 2014/12/31 2.13740 1.49903 1.61908 1.63541
2014/01/01 to 2014/06/30 2.17299 2.00680 1.38542 1.50250
2013/06/01 to 2013/12/31 2.22869 1.62565 1.57228 1.78069
2013/01/01 to 2013/06/30 2.20706 1.26039 1.63652 1.64292
2012/06/01 to 2012/12/31 2.36615 1.93674 1.49117 1.61818
2012/01/01 to 2012/06/30 2.34608 1.47279 1.74353 1.75362
2011/06/01 to 2011/12/31 2.28441 1.92467 1.45701 1.49607
2011/01/01 to 2011/06/30 2.33910 1.35172 1.44037 1.89520
2010/06/01 to 2010/12/31 2.32236 1.97728 1.59319 1.75023
2010/01/01 to 2010/06/30 2.17297 2.00258 1.60586 1.63562

Figure 4.9: Firefox - Comparison between several policies in terms of undiscounted return
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Table 4.26: Firefox - Discounted return
Training time period POMCP Maximum

Policy
Developer
Policy

Random
Policy

2017/01/01 to 2017/06/30 0.153616 0.098940 0.093825 0.093824
2016/06/01 to 2016/12/31 0.130431 0.102581 0.096279 0.096385
2016/01/01 to 2016/06/30 0.146966 0.074040 0.107825 0.107853
2015/06/01 to 2015/12/31 0.119331 0.083194 0.058986 0.086198
2015/01/01 to 2015/06/30 0.133614 0.081874 0.076172 0.093857
2014/06/01 to 2014/12/31 0.129028 0.074072 0.096384 0.096379
2014/01/01 to 2014/06/30 0.138211 0.078940 0.087496 0.087546
2013/06/01 to 2013/12/31 0.137560 0.071625 0.091554 0.091921
2013/01/01 to 2013/06/30 0.144822 0.074520 0.093672 0.093957
2012/06/01 to 2012/12/31 0.158975 0.084910 0.096384 0.097139
2012/01/01 to 2012/06/30 0.151526 0.078105 0.093811 0.095051
2011/06/01 to 2011/12/31 0.150155 0.110921 0.082254 0.085039
2011/01/01 to 2011/06/30 0.147186 0.094062 0.020539 0.098075
2010/06/01 to 2010/12/31 0.152583 0.123141 0.093701 0.094020
2010/01/01 to 2010/06/30 0.140346 0.095798 0.089478 0.089529

Figure 4.10: Firefox - Comparison between several policies in terms of discounted return

Table 4.27: Statistical test comparison
Maximum Policy Developer Policy Random Policy

POMCP 1.289e-08 2.514e-06 1.289e-08
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4.5.2 Dataset 2: proprietary software product

For the second data set, the same set of experiments is carried out after learning the POMDP

parameters and constructing the generative model. We apply POMCP to select the impactful

bugs from this repository. Then, we perform the best action proposed by POMCP in the

dependency graph constructed from the testing data. The maximum depth and degree of

dependency graph are observed, and the reward is collected from the testing dependency graph.

The observation is passed to POMCP in order to update the belief state. The belief state is

updated using particle filtering and the process is repeated. Similar to Firefox, the POMCP

is compared with the random policy, developer policy, and maximum policy. Table 4.28 and

Figure 4.12 present the cumulative undiscounted return for all the four policies. The POMCP

planner outperforms the other policies in all the datasets, except the data trained during the

period of “2013/01/01” to “2013/06/30”. In that time period, the maximum policy outperforms

the POMCP (4.12987 vs. 4.10022). In that period, POMCP also suggests to choose the bugs

with maximum depth and degree, and thus, both policies collected almost the same return.

The result also suggests that developers do not prioritize the bugs with respect to the depth

and degree of the bugs in practice, and developer policy is the worst policy in terms of the

undiscounted cumulative return. Thus, combining our framework with their current practice

may aid them to take the relative importance of the bugs into account. We statistically test if

the POMCP is different than the other policies. Table 4.30 shows the P-value of the Wilcoxon

rank test for our hypothesis. We use the Wilcoxon rank test since the data do not have a

normal distribution. The P-value is less than 5% in all the cases, and therefore, we concluded

that there is a significant difference between the policies.

The second metric that we used to compare the different policies is the average discounted

return. The POMCP policy outperforms other policies with respect to this metric. Table

4.29 describes the discounted return for all policies. The discounted POMCP policy ranges

between 0.21 and 0.28. The average discounted return for the maximum policy, developer

policy, and random policy is 0.16, 0.08, and 0.18 respectively. It is notable that there is a lot of

fluctuation in the discounted return for the developer policy. This might be due to the fact that

developers may follow different factors with opposite effects on return to prioritize the bugs. If

there are more impactful bugs (bug with high depth and degree) in their prioritization, then

the discounted return would go higher. If there are less impactful bugs in their prioriterized

list, then the discounted return would go lower. The maximum policy and random policy

compete with each other for most of the data set due to different conflicting factors for bug
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Table 4.28: Proprietary software product - Undiscounted return
Training time period POMCP Maximum

Policy
Developer
Policy

Random
Policy

2016/06/01 to 2016/12/31 3.71763 3.18722 1.41398 3.20291
2016/01/01 to 2016/06/30 3.74556 3.36839 1.30040 3.29447
2015/06/01 to 2015/12/31 4.24477 2.50818 1.86235 3.14235
2015/01/01 to 2015/06/30 3.78301 3.07739 1.44388 3.27149
2014/06/01 to 2014/12/31 3.71258 3.15169 1.15418 3.51435
2014/01/01 to 2014/06/30 3.98364 3.65265 2.34219 2.38396
2013/06/01 to 2013/12/31 4.13568 2.31542 1.79229 3.17826
2013/01/01 to 2013/06/30 4.10022 4.12987 3.01980 3.26617
2012/06/01 to 2012/12/31 3.97601 2.83093 1.47694 3.22231
2012/01/01 to 2012/06/30 4.25745 3.83981 1.92888 3.39355
2011/06/01 to 2011/12/31 3.98563 3.32910 2.67268 3.41804
2011/01/01 to 2011/06/30 3.99059 2.77392 1.50465 2.80294
2010/06/01 to 2010/12/31 4.29242 2.71508 2.65689 3.19828
2010/01/01 to 2010/06/30 4.06443 2.03827 3.23132 3.67911

Figure 4.11: Proprietary software product - Comparison between several policies in terms of
undiscounted return
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Table 4.29: Proprietary software product - Discounted return
Training time period POMCP Maximum

Policy
Developer
Policy

Random
Policy

2016/06/01 to 2016/12/31 0.262636 0.201857 0.006687 0.201857
2016/01/01 to 2016/06/30 0.219341 0.140712 0.008274 0.192585
2015/06/01 to 2015/12/31 0.274698 0.155681 0.179343 0.180348
2015/01/01 to 2015/06/30 0.217064 0.106970 0.049027 0.180755
2014/06/01 to 2014/12/31 0.263150 0.172829 0.003984 0.207977
2014/01/01 to 2014/06/30 0.246949 0.205696 0.105985 0.131165
2013/06/01 to 2013/12/31 0.257262 0.115937 0.078606 0.181515
2013/01/01 to 2013/06/30 0.268153 0.198102 0.188920 0.196754
2012/06/01 to 2012/12/31 0.248770 0.223930 0.012927 0.189912
2012/01/01 to 2012/06/30 0.288431 0.185260 0.060323 0.189704
2011/06/01 to 2011/12/31 0.252114 0.183169 0.189689 0.189595
2011/01/01 to 2011/06/30 0.255334 0.191462 0.014097 0.164750
2010/06/01 to 2010/12/31 0.288501 0.116358 0.146641 0.193878
2010/01/01 to 2010/06/30 0.258474 0.014187 0.173665 0.220492

Figure 4.12: Proprietary software product - Comparison between several policies in terms of
discounted return

Table 4.30: Statistical test comparison
Maximum Policy Developer Policy Random Policy

POMCP 1.994e-07 4.985e-08 1.994e-07
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prioritization. Given a list of open defects, the POMCP approach can give the practitioners the

prior knowledge about the blocking bugs by filtering the bugs based on the category of actions.

This information can be incorporated with other objectives to tune the prioritization solution.

The comparison of these two metrics between the Firefox and proprietary software product

datasets may not be very reasonable as their POMDP parameters are different. However, the

important conclusion is that POMCP surpassed the other policies with respect to both metrics.

To conclude, the results suggest that software practitioners do not consider the relative

importance of bugs in their current practice and the POMDP framework with the POMCP

planner can help practitioners sequentially select bugs to minimize the connectivity of the

dependency graph. In the next chapter, we will discuss the threats to validity.
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Threats to validity

There are different ways to categorize the threats to validity in the literature. Campbell and

Stanley considered two types of threats to validity as external and internal validity [42]. How-

ever, Cook and Campbell extended the threats to four categories, namely: internal, external,

conclusion and construct validity [53]. Runeson et al. in the guidelines for conducting and

reporting case study research in software engineering [129], and Wohlin et al. in the guideline

for controlled experiments in software engineering [167] recommended the usage of the afore-

mentioned categories in the software engineering domain. In this dissertation, we highlight the

possible threats to the four categories of validity and explain how we mitigated them in our

experiments.

• Internal Validity: Internal validity concerns with the causal relationship between the

response variables and independent variables based on the measurement, research setting,

and whole research design [129].

The first threat to internal validity in this study concern about the suitability of the

POMDP model for the bug repository. POMDP is suitable for a large evolving software

system with stable bug fixing performance. Due to Markovian property, the model is

only stable for processes which future events are only dependent on the current event.

Apparently, for short-lived non-systematic bug handling projects, the model does not

work well. In both of our projects, we have mature software products with stable bug

handling systems.

The second threat to internal validity is related to a random selection of training and

testing set. Six Months of data are selected for training and the following one month
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is chosen for testing. In an attempt to construct the generative model, 3000 data are

randomly selected from training sets. So, the sampling biases may be a threat to inter-

nal validity as the different selection of testing and training may cause different results.

However, this threat is mitigated by repeating the experiments for several times and with

different pairs of testing and training sets.

We considered the biases in the data collection as another internal threat to validity. Data

collection is a very challenging task in mining the software repository. We have written the

Python script to collect the data from REST API. An incorrect implementation might be

a threat and can influence the outputs and results. Therefore, we manually and randomly

checked the results for the collected data. We also detected the outliers with strange

behaviour and manually checked the reported dependencies to avoid the miscalculation

in data collection.

• External Validity: External validity concerns with how much the result of the experiment

can be generalized to other setting and times, and how it can be transferred to other

researchers [129].

In an attempt to improve the validity and generalizability of software research, software

engineering community recently emphasized more on the replicability of the empirical

software engineering research [138]. To make sure that this dissertation is replicable to

other researchers and all the necessary information and details are provided, we follow

the replication study guidelines put forth by Carver [43].

Additionally, we performed the experiments on two sets of data in different domains,

one from open source project and one from the proprietary software product. Although,

the results for both products are consistent, however, drawing general conclusion from

an empirical study is not possible. The bug handling system, the characteristic of the

data and the behaviour of developers may be different from other commercial and open

source projects, but the framework and the concept which is explained in this study can be

mapped easily to other open source and commercial software projects. In this dissertation,

we proposed the general POMDP framework so it can be extendable to other software

projects in the other issue tracking system. However, the generalization of the results

requires that this framework will be transferred to other researchers.

• Construct Validity: Construct validity is the degree to which the researchers can measure

what they claimed to study based on their research questions [129].
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The generative model of POMCP requires generating the next state given the current

state. However, the states are not completely observable in the dependency graph. We

assumed that the difference between states follows the difference between the observations

as in the proposed POMDP formulation the observations are sampled from the states.

This approach is nearly lined with grey box modeling methods in system identification

[86]. We are aware of this threat, but it is a common challenge in POMDP parameter

estimation [23]. Additionally, in constructing the generative model, we assumed that the

difference between the observation follows the Poisson distribution. In ”Experiments and

results” chapter, we validated that assumption. We applied the maximum likelihood of

uni-variate distribution and we showed that the standard error in average is around 2%.

Our research question is prioritization of bugs with respect to the relative importance

of them in the dependency graph. Although there is not any study in the literature

which mainly investigated the relative importance of bugs with respect to each other,

we have reviewed a wide range of metrics in empirical software engineering domain and

graph theory and form the metrics by implicitly following Goal Question Metric (GQM)

approach [25]. We used the depth and degree of bugs in the dependency graph as a

measure of the impact of the bugs based on the previous empirical research on the software

engineering [159, 160, 26]. We discussed how prior researchers used those metrics and

how we applied them in this study in section 3.3.2. The reason that we used depth and

degree is that the dynamics of these metrics is measurable over time. Other metrics with

these characteristics can be Incorporated to our proposed framework to improve the bug

prioritization process.

The maximum aggregation function in defining the states of the POMDP model is used

for more compact representation of our problem and decreasing the number of states to

avoid the more complex computation. Other aggregation function can also be applied to

cluster the state space. We use the maximum function because it would more proactively

capture the bug with maximum number of edges and also the longest downward path

between that bug and a leaf while other aggregation function such as sum may capture

the complexity of the graph. However, there is always a trade-off between minimising the

information loss and maximising the state space reduction [101] and hence depending on

the objective a different aggregation function may be deployed instead of maximum.

Using a single performance to evaluate the result of the experiment causes a mono-method

bias and is a threat to construct validity. To avoid the mono-method biased, we used
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two common performance measurements based on the cumulative return and discounted

return for all the evaluations.

• Conclusion Validity: Conclusion Validity is concerned to what extent the results are

dependent on the specific researchers. If the experiment is repeated by other researchers

later, would they get the same result or not [129].

The statistical conclusion validity is one of the conclusion validity and it is defined as

the degree to which the conclusion from the data is correct. Most statistical tests have

some assumptions that violating them may lead to incorrect inferences about the relation-

ship between variables. To mitigate the statistical conclusion validity, we used the non-

parametric test which has less assumptions comparing to the parametric one. Wilcoxon

ranked test has been applied to check the hypothesis if there is any significant difference

between the proposed policy and other policy. We also reviewed all the assumption in

order to make sure there is not any violation.

Another threat to conclusion validity may happen because of the over-fitting of POMCP

solution. However, Bayesian inference with the aid of Monte Carlo sampling can avoid the

sampling bias by inferring the posterior from the model [139]. Additionally, the number

of iterations during each action for tree queries is chosen to be large enough as 1000 times

so that it mitigates the chance of over-fitting.

There is a limited information related to the dependency of bugs in the issue tracking

system and we rely on that limited information to perform our experiments in this study.

Identifying and collecting more information would improve the performance of POMCP,

however, POMDP procedure is able to correct the dependency graph iteratively as new

information is added to the issue tracking system and this is one of the major strengths

of this technique.
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Conclusion

Pervasive data and computing power entail that every business, from finance to retail to soft-

ware, makes intelligent data-driven decisions. In software engineering domain similar to other

fields, there is also a demand for making more robust and data-oriented decisions [28]. Over

the past decades, mining software repositories has attracted many researchers to develop such

a decision-making framework. To this end, this dissertation proposed a systematic approach to

deal with one of the important research questions in software analytics regarding bug prioriti-

zation [28] by using the aggregated historical data and designing an effective decision-making

system. Typically, such a decision is made by considering the severity, priority, time, and effort

required to fix bugs; the customer pressure; the number of blocking bugs; the existence of du-

plicate bugs; etc. In this dissertation, we proposed prioritization of the bugs by considering the

consequence of not fixing the bugs in terms of their relative importance. In this chapter, we

summarize our findings of applying the proposed approach on two different software projects.

Then, we highlight our contribution and conclude with the future direction.

6.1 Summary of Results

We analyzed the data from two large projects, Firefox and proprietary software product, in two

different issue tracking systems. Firefox is an open source web browser developed by Mozilla,

and the other dataset is from the commercial software development team collaboration tool.

These two projects follow completely different behaviors with regards to the application, devel-

opment culture, and strategy to report and fix bugs in the issue tracking system. Various sets

of exploratory analysis on the data characteristics and also the uncertainty of the dependency
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graph structure were performed. Below is the summary of our finding after the exploratory

data analysis:

• Data Characteristics

– On Average, 12,486 Firefox bugs are reported in Bugzilla yearly, compared to 6,726

proprietary software product bugs. This indicates that a huge number of bugs are

reported for both projects and also shows that more bugs are discovered and fixed

in open source projects than in the commercial ones [144].

– 70% Firefox reported bugs and 63% proprietary software product reported bugs are

postponed to next releases for resolution owing to the limited time and resources.

Because a small percentage of bugs are reported and resolved in the same release,

the decisions of which bugs to choose for fixing in the current release and which bugs

to postpone become important.

– No priority and severity level is assigned to more than 80% of bug reports in Fire-

fox. Similarly, 63% of bug reports in proprietary software product have unassigned

priority level, and 74% of them have default severity level. Thus, in both datasets, it

seems that the severity and priority level are rarely used by the development team.

Previous studies also confirmed that the severity and priority level are not reported

appropriately.

– There is a high frequency of change in the severity and priority levels among the

bugs with assigned priority and severity levels. This is evidence that there is no

agreement between developers, reporters, and managers. The above analysis suggests

that practitioners require non-subjective factors to prioritize the bugs.

– 18% of Firefox reported bugs are duplicates of the bugs that are already reported,

compared to 8% of RTC duplicate bug reports.

• Uncertainty in the structure of dependency graph

– In both datasets, all the blocking bugs are not known at the reporting time. 68% of

the blocking bugs in Firefox and 40% of the blocking bugs in proprietary software

product get discovered one week after the reporting time. The statistics show that

it may sometimes take a few years (115,800 h for Firefox vs. 48,439 h for the second

dataset) to find out about blocking bugs. A lack of prior knowledge about the

blocking bugs is one source of uncertainty in the dependency graph.
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– Only 17% of bug reports in Firefox and 28% of the bug reports in proprietary software

product have dependency information. Among them, 85% of the bugs in Firefox and

96% of the bugs in proprietary software product block 1 or 2 bugs immediately. For

the remaining bugs, we cannot claim whether the dependency exists, but it is not

discovered yet, or whether the dependency does not exist at all. This is another

source of uncertainty in the dependency graph.

– There is also uncertainty in both bug repositories because of the existence of open

and active bugs. 14% of Firefox bug reports and 4% of proprietary software product

bug reports are still open and active since the last year. Those bugs are not investi-

gated thoroughly so that their dependency information is not available. Incomplete

information due to the existence of open bugs also causes uncertainty in the struc-

ture of the dependency graph. These findings suggest that the uncertainty on the

structure of dependency graph should be taken into account while prioritizing the

bugs.

6.1.1 How to Prioritize Bug Reports by Considering the Consequence of not

Fixing the Bugs in terms of their Relative Importance?

In order to measure the relative importance of the bugs, we propose to build a dependency graph

of bug reports. Two metrics, degree and depth, are used to measure the impact of bugs in the

dependency graph. However, uncertainties caused by the limited dependency information in

the dependency graph lead to a false assumption about the number of blocking bugs in the issue

tracking system. Therefore, the prioritization of the bug reports based on the descending order

of the depth and degree would be misleading. To handle this uncertainty, a novel approach for

bug prioritization based on the POMDP formulation is presented.

We thoroughly discussed the POMDP formulation by presenting the six elements of POMDP,

including state, action, observation, observation function, transition function, and reward. Ow-

ing to scalability issues as a result of a large number of bugs (states) in the dependency graph,

the curse of dimensionality and curse of history occur. In addition, a large memory is required

to record the transition and observation function as the number of states increases. We applied

POMCP to overcome these problems with the aid of Monte Carlo sampling and the generative

model instead of the explicit probability functions.

POMDP formulation with the POMCP planner provides an online sequential decision sup-

port system to select bugs for fixing in the issue tracking system. At each time step, the
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POMCP planner proposes the best actions (bugs) to get fixed based on past data. After the

proposed bugs get fixed, the dependency graph is observed and the maximum depth and degree

of dependency graph are recorded as the observation. The observation is passed to POMCP in

order to update the belief state. Then, the process is repeated and the best next actions are

chosen for the next round.

The POMCP policy was compared with three other policies: random policy, maximum

policy, and developer policy. The results showed that in both products POMCP significantly

outperformed the other models in term of the discounted and undiscounted return. Therefore,

the POMCP planner can suggest the best policy with respect to the relative importance of

bugs. It also suggests that the development team does not prioritize the bugs with respect to

their relative importance in these two products. If practitioners prefer to select the bugs only

based on this criteria, POMCP can be used separately. However, they often prefer to select

bugs with respect to many factors in addition to the relative importance of the bugs. They

can therefore combine the POMCP planner with their expertise. The POMCP policy can be

served as a filtering step to decide which category of bugs (action) to choose from. Then, the

developer can decide which bug to choose from that category based on their experience and

other factors, such as customer pressure, system functionality, and urgency of bug fixing.

6.2 Contributions

The contributions of this research can be summarized into both theoretical contributions and

practical implications as follows:

6.2.1 Theoretical and Methodological Contributions

• Model the prioritization of bugs by constructing the blocking-dependency graph:

In this research, the dependency graph is constructed by extracting the formal relation-

ships based on blocking/dependency information in the bug tracking system. Graph anal-

ysis has been widely used in the software domain via source code graph [180, 125, 30],

social graph [79, 169, 41], crash graph [91], and dependency graph in bug repertoires

[131, 82, 112, 130]. However, our contribution is to apply the dependency graph and

a set of graph metrics in discovering the blocking bugs, and developing a framework

for bug prioritization. The blocking-dependency graph may also help the software prac-

tioner community in improving the maintenance cost, reducing the delays in the release
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of software projects, and also finding similar bugs as a support for bug fixing process

in the network. It also helps the software research community to come up with more

data driven approaches and mathematical models to capture the dynamic structure of

the process for making more informed decision. Hence we believe that more complex

AI and ML approaches should be developed and validated by the research community.

This research is the first one that fills this gap in research by employing a RL solution

to bug prioritization problem by eliminating all business and experts biases through the

automatic extraction of metrics from the bug reports as bug relationship patterns.

• Quantifying the impact of the bug report in terms of metrics:

In this dissertation, we used two metrics to quantify the relative impact of bugs in the bug

repository, degree and depth. The degree is inspired by identifying the influential node

in the social network literature [164]. The blocking bugs with many outward links (high

degree) prevent many other bugs from getting fixed. Furthermore, depth is motivated

by the studies on identifying the faulty class in object-oriented design as the indicator of

software quality [26]. The blocking bugs with higher depth have a higher impact on other

bugs as they prevent more bugs from getting fixed. In contrast, a bug with a depth of

zero is an isolated bug with no or low impact on fixing of other bugs. These two metrics

can also reveal the consequence of not fixing the bugs in time.

• Developing POMDP framework to improve defect prioritization:

The dynamic nature of bug tracking systems makes it an instance of reinforcement learning

solution. Further, exploratory analysis of the topology of the dependency graph showed

that some uncertainties exist in the structure of the dependency graph. Thus, with the

limited information about bugs and their dependencies, software managers are not able

to easily identify the blocking bugs with so many back-links. In order to address this

problem, we developed a POMDP framework. This framework may provide the software

practitioners a mechanism for taking the number of blocked bugs into account. These

capabilities bring improvements over the current defect prioritization processes. It can

also be extended to other domains such as to identify a point of congestion in a given

network.

Our proposed POMDP chooses the successive bugs in the dependency graph such that

the maximum depth and degree of the dependency graph are minimized. This approach

provides a balance between the immediate impact of selecting a bug to fix and the long-
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term consequence of this decision on the dependency graph. To the best of our knowledge,

this is the first time that and approach such as POMDP has been used in this domain

and it introduces the concept of sequential decision making to deal with the interaction

between software artifacts.

• Solving the large POMDP bug prioritisation model with POMCP:

As the number of bugs in the dependency graph is large, the number of states in our

proposed framework of POMDP is also large. In a large POMDP, learning the POMDP

parameters, such as transition and observation function, is challenging. Besides, the

curse of history and dimensionality may occur. In order to handle large POMDP, we

applied POMCP. POMCP requires the generative model, rather than explicit probability

distribution of the parameters . The particular formulation of POMDP with related states

and observation definition enables us to design the generative model. This approach

eliminates the manual parameter estimation that comes from expert knowledge, rather it

uses the trajectory data to build that model. POMCP can break both curses by using

Monte Carlo sampling. It combines UCT, for choosing the best action at each step, and

particle filtering, for updating the belief state.

6.2.2 Practical Implications

• Prioritization of bugs with respect to their relative importance:

In practice, software engineering organizations need more systematic decision-making

processes regarding bug prioritization because a large number of bugs are reported daily

and investigating them manually may not be feasible. A traditional prediction model such

as a binary classification has been widely used in the software engineering domain. It may

provide a good start to decide which bugs to fix; however, the interaction between bugs

is not taken into account in these traditional models. In this dissertation, we propose

the POMDP framework with a POMCP planner to optimize the bug prioritization with

respect to their relative impact. POMDP framework through the sequential decision-

making processes gives the practitioners the opportunity to select the next bug based on

the observation and the consequence of fixing bugs in their network.

In practice, the defect prioritization processes is a function of defect characteristics, tech-

nical risk, effort required to fix the bug, availability of resources, and so many other

factors. Our proposed approach evaluate each defect with respect to the number of bugs
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they block. The POMCP planner recommends the category of bugs to practitioners as a

filtering step. Then, the practitioners may use the proposed bug dependency with their

preferred factors to select the bugs properly.

Furthermore, the bugs can be prioritized with respect to many factors in the issue tracking

system. In this study, we proposed to prioritize the bugs with respect to the depth and

degree of blocking bugs. However, the POMDP framework is extendable to other metrics

as well, and in case software practitioners prefer some metrics other than these two metrics,

we suggest them to follow our methodology rather than using these same metrics.

6.3 Future Directions

Prioritization of bugs only based on the expert knowledge and individuals’ experience may

not be a sustainable approach in the large software organizations. Therefore, we believe that

the importance of automated decision-making system for bug prioritization will increase in

the future. In this research, we proposed a more systematic decision-making approach and

conducted an empirical study on two software projects to check its feasibility. There are several

ways to improve and extend this research in the future:

First, our future plan is to transfer our framework to an industry environment in order

to check the online performance of POMCP in a live environment. Second, the POMDP

framework was defined based three levels of actions similar to three priority levels (low, high,

and medium) in this dissertation. However, more granularity in the definition of action can

be reached by combining other metrics with dependency graph metrics. Third, the focus of

this dissertation was on the relative importance of bugs based on the depth and degree of

blocking bugs. It might be worth investigating other metrics, such as developers’ effort, cost of

bugs, and customer churn. Fourth, we plan to incorporate more human factors during the bug

prioritization activity into this framework. The ultimate objective of this research is to develop

a robust prioritization model that software managers can integrate into their daily routines and

run confidently without human intervention.
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Appendix 1

Source codes of our proposed model

All the source codes for the purpose of this study are available on Github 1. Below is a sample

codes written in Julia for defining our proposed POMDP and implementing POMCP:

us ing POMDPs, POMDPModels , POMDPToolbox , BasicPOMCP

using D3Trees

us ing PyCall

us ing D i s t r i bu t i on s

us ing LightGraphs

us ing StatsBase

us ing P a r t i c l e F i l t e r s

s t=500

Obs=10

act=3

type BUGPOMDP <: POMDPs.POMDP{ Int64 , Int64 , Int64 }
d i s c o un t f a c t o r : : Float64

ob s f a c t o r : : Dict { Int32 , Array{ Int32 ,1}}
end

POMDPs. a c t i on s ( : :BUGPOMDP) = [ 1 , 2 , 3 ]

POMDPs. n a c t i on s ( : :BUGPOMDP)=3

POMDPs. n s t a t e s ( : :BUGPOMDP)=500

1https://github.com/RyersonU-DataScienceLab/dsl-Technical-debt/tree/master/POMDP
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ob s d i c t=Dict(1=>Array{ Int32 , 1}(0) ,2=>Array{ Int32 , 1}(0) ,3=>Array{ Int32 , 1} (0 ) )

m = readdlm (” . / experiment02 . csv ” , ’ , ’ )

f o r i =1: s i z e (m) [ 1 ]

f o r j =1:3

i f trunc ( Int ,m[ i , j ])==0

append ! ( ob s d i c t [ 1 ] , trunc ( Int ,m[ i , j +1]))

e l s e i f trunc ( Int ,m[ i , j ])==1

append ! ( ob s d i c t [ 2 ] , trunc ( Int ,m[ i , j +1]))

e l s e i f trunc ( Int ,m[ i , j ])==2

append ! ( ob s d i c t [ 3 ] , trunc ( Int ,m[ i , j +1]))

end

end

end

ob s d i c t

func t i on POMDPs. g en e r a t e s o r (p : :BUGPOMDP, s : : Int64 , a : : Int64 , rng : : AbstractRNG)

max state=500

i f a==1

d=Poisson (0 .0001116445)

de l t a=rand (d)

e l s e i f a==2

d=Poisson (0 .1627907)

de l t a=rand (d)

e l s e i f a==3

d=Poisson (0 )

de l t a=rand (d)

end

nex t s t a t e=s−de l t a

reward=1/( n ex t s t a t e+1)

ob s d i c t=p . ob s f a c t o r

f r e q ob s=countmap ( ob s d i c t [ a ] )

p r ob ob s g i v en s t=Dict ( )
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prob obs=Dict ( )

f o r i in keys ( f r e q ob s )

p r ob ob s g i v en s t [ i ]=1/(max state−i +1)

prob obs [ i ]= f r e q ob s [ i ] / l ength ( ob s d i c t [ a ] )

end

O=Dict ( )

f o r i in keys ( f r e q ob s )

O[ i ]= p rob ob s g i v en s t [ i ]∗ prob obs [ i ]

end

Obs fn=Dict ( )

f o r i in keys ( f r e q ob s )

Obs fn [ i ]=O[ i ] / sum( va lue s (O) )

end

Obs pair=c o l l e c t ( Obs fn )

Obs pa i r obse rva t i on =[ ]

Obs pair prob =[ ]

f o r i =1: l ength ( Obs pair )

push ! ( Obs pa i r obse rvat ion , Obs pair [ i ] [ 1 ] )

push ! ( Obs pair prob , Obs pair [ i ] [ 2 ] )

end

i f ! isempty ( Obs pair prob )

nex t obs e rva t i on=Obs pa i r obse rva t i on [ f i n d f i r s t ( Obs pair prob , rand ( Obs pair prob ) ) ]

end

return Int64 ( n ex t s t a t e ) , Int64 ( nex t obse rva t i on ) , reward

end

func t i on POMDPs. g ene r a t e s o (p : :BUGPOMDP, s : : Int64 , a : : Int64 , rng : : AbstractRNG)

max state=500

i f a==1

d=Poisson (0 .0001116445)

de l t a=rand (d)

whi l e de l t a > s

d e l t a=rand (d)

end

e l s e i f a==2
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d=Poisson (0 .8878166)

de l t a=rand (d)

whi l e de l t a > s

d e l t a=rand (d)

end

e l s e i f a==3

d=Poisson (0 )

de l t a=rand (d)

whi l e de l t a > s

d e l t a=rand (d)

end

end

nex t s t a t e=s−de l t a

reward=1/( n ex t s t a t e+1)

ob s d i c t=p . ob s f a c t o r

f r e q ob s=countmap ( ob s d i c t [ a ] )

p r ob ob s g i v en s t=Dict ( )

prob obs=Dict ( )

f o r i in keys ( f r e q ob s )

p r ob ob s g i v en s t [ i ]=1/(max state−i +1)

prob obs [ i ]= f r e q ob s [ i ] / l ength ( ob s d i c t [ a ] )

end

O=Dict ( )

f o r i in keys ( f r e q ob s )

O[ i ]= p rob ob s g i v en s t [ i ]∗ prob obs [ i ]

end

Obs fn=Dict ( )

f o r i in keys ( f r e q ob s )

Obs fn [ i ]=O[ i ] / sum( va lue s (O) )

end

Obs pair=c o l l e c t ( Obs fn )

Obs pa i r obse rva t i on =[ ]
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Obs pair prob =[ ]

f o r i =1: l ength ( Obs pair )

push ! ( Obs pa i r obse rvat ion , Obs pair [ i ] [ 1 ] )

push ! ( Obs pair prob , Obs pair [ i ] [ 2 ] )

end

i f ! isempty ( Obs pair prob )

nex t obs e rva t i on=Obs pa i r obse rva t i on [ f i n d f i r s t ( Obs pair prob , rand ( Obs pair prob ) ) ]

end

return Int64 ( n ex t s t a t e ) , Int64 ( nex t obse rva t i on )

end

func t i on P a r t i c l e F i l t e r s . g en e r a t e s (p : :BUGPOMDP, s : : Int64 , a : : Int64 , rng : : AbstractRNG)

max state=500

i f a==1

d=Poisson (0 .0001116445)

de l t a=rand (d)

e l s e i f a==2

d=Poisson (0 .1627907)

de l t a=rand (d)

e l s e i f a==3

d=Poisson (0 )

de l t a=rand (d)

end

nex t s t a t e=s−de l t a
re turn Int64 ( n ex t s t a t e )

end

func t i on P a r t i c l e F i l t e r s . obs we ight (p : :BUGPOMDP, s : : Int64 , a : : Int64 , sp : : Int64 , o : : Int64 )

d=Poisson ( 0 . 8 88 )

re turn pdf (d , o )

end

R=ze ro s ( st , act )

R = readdlm (” . / rwd . txt ”)

#read reward
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s o l v e r = POMCPSolver( t r e e q u e r i e s =1000 , rng = MersenneTwister ( 0 ) )

pomdp=BUGPOMDP(0 . 9 5 , ob s d i c t )

p lanner = so l v e ( so lve r , pomdp)

i n i t i a l s t a t e=POMDPModels . S ta teDi s t ( vcat ( repeat ( [ 0 ] , i nne r =2) , r epeat ( [ 1 / ( st −2) ] , i nne r=[ st −2 ] ) ) )

a = act i on ( planner , i n i t i a l s t a t e )

up=Pa r t i c l e F i l t e r s . S IRPa r t i c l eF i l t e r (pomdp , s o l v e r . t r e e qu e r i e s , rng=MersenneTwister ( 1 ) )

f i r s t r o o t n o d e = i n i t i a l i z e b e l i e f (up , i n i t i a l s t a t e )

us ing PyCall

@pyimport os

os . chd i r (”C:\\ Users \\ Sh i r i n \\Dropbox\\ ds l−Technical−debt \\Techn ica l debt ”)

@pyimport subproces s

r e s u l t = subproces s . check output ( ‘ python jul ia pomdp . py

”.\\20100707 f x d ep t h l v . csv ”

”.\\20100714 fx dep . csv ” ”$a ” ‘ )

s econd root node = update (up , f i r s t r o o t n o d e , a , parse ( Int64 , r e s u l t ) )

f i r s t r o o t n o d e=second root node

us ing P a r t i c l e F i l t e r s

func t i on ge t probs {S}(b : : Ab s t r a c tPa r t i c l eB e l i e f {S})

i f i s n u l l (b . probs )

# update the cache

probs = Dict {S , Float64 } ( )

f o r ( i , p ) in enumerate ( p a r t i c l e s (b ) )

i f haskey ( probs , p )

probs [ p ] += weight (b , i )/ weight sum (b)
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e l s e

probs [ p ] = weight (b , i )/ weight sum (b)

end

end

b . probs = Nul lab l e ( probs )

end

return get (b . probs )

end

func t i on expected reward {S}(b : : Ab s t r a c tPa r t i c l eB e l i e f {S})
c u r r e n t b e l i e f=ze ro s (1 , s t )

f o r i = 1 : s t

c u r r e n t b e l i e f [ 1 , i ]=pdf (b , i )

end

expected reward=c u r r e n t b e l i e f ∗R[ : , a ]

r e turn expected reward

end

no o f epoc=100

to ta l r eward=ze ro s (3∗ no of epoc , 1 )

t o ta l r eward [1 ,1 ]= expected reward ( second root node ) [ 1 , 1 ]

f o r i =1: no o f epoc

f o r j =7:7:21

z=lpad ( j , 2 , 0 )

zz=j+7

i f i==1 && j==7

# al ready got the reward in i n i t i a l s t a t e

e l s e

t ry

a = act i on ( planner , f i r s t r o o t n o d e )
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catch

a=3

end

r e s u l t = subproces s . check output ( ‘ python jul ia pomdp . py

”.\\201007”” $z ”” f x d ep t h l v . csv ”

”.\\201007”” $zz ”” fx dep . csv ” ”$a ” ‘ )

up=Pa r t i c l e F i l t e r s . S imp l ePa r t i c l eF i l t e r (pomdp , LowVarianceResampler (1000) )

second root node = update (up , f i r s t r o o t n o d e , a , parse ( Int64 , r e s u l t ) )

t o ta l r eward [ ( Int64 ( j /7)−1)∗ no o f epoc+i ]= expected reward ( second root node ) [ 1 , 1 ]

f i r s t r o o t n o d e=second root node

end

end

end

to ta l r eward

sum( to ta l r eward )

d i scount = pomdp . d i s c oun t f a c t o r

func t i on d i scounted reward 1 ( reward )

d i s c = pomdp . d i s c o un t f a c t o r

r t o t a l = 0 .0

f o r i in l ength ( reward ) :−1:1

r t o t a l += d i s c ∗ reward [ i ]

d i s c ∗= discount

end

return r t o t a l

end

func t i on d i scounted reward 2 ( reward )

d i s c = pomdp . d i s c o un t f a c t o r

r t o t a l = 0 .0

r e c o r d r t o t a l=ze ro s ( l ength ( reward ) , 1 )

f o r i in l ength ( reward ) :−1:1

r t o t a l += d i s c ∗ reward [ i ]

d i s c ∗= discount

r e c o r d r t o t a l [300− i +1]= r t o t a l

end

return r e c o r d r t o t a l

end

func t i on undiscounted reward 1 ( reward )
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r t o t a l = 0 .0

r e c o r d r t o t a l=ze ro s ( l ength ( reward ) , 1 )

f o r i in l ength ( reward ) :−1:1

r t o t a l += reward [ i ]

r e c o r d r t o t a l [300− i +1]= r t o t a l

end

return r e c o r d r t o t a l

end

tota l d iscounted Reward M=discounted reward 2 ( to ta l r eward )

d i s counted reward 1 ( to ta l r eward )

undiscounted return M=undiscounted reward 1 ( to ta l r eward )
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[126] Stéphane Ross, Brahim Chaib-Draa, et al. Aems: An anytime online search algorithm

for approximate policy refinement in large pomdps. In IJCAI, pages 2592–2598, 2007.
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