
 
 

FAULT DETECTION AND PROGNOSIS OF AEROSPACE 

SYSTEMS USING LONG SHORT-TERM MEMORY BASED 

RECURRENT NEURAL NETWORKS 
 

 

 

 

 

 

 

 

    by 
 
 

                                                          Vasanth Dhanagopal 

 

        Bachelor of Engineering, Anna University, Chennai, 

    India (2012) 

 
 
 
 

        A thesis  

        presented to Ryerson University 

                    in partial fulfillment of the 

requirements for the degree of     

Master of Applied Science 

 in the program of  

   Aerospace Engineering 

 
 
 
 
 
 
 

Toronto, Ontario, Canada, 2020   

© Vasanth Dhanagopal, 2020 



ii 
 

AUTHOR'S DECLARATION FOR ELECTRONIC 

SUBMISSION OF A THESIS 
 
 
 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

 

I authorize Ryerson University to lend this thesis to other institutions or individuals for 

the purpose of scholarly research. 

 

I further authorize Ryerson University to reproduce this thesis by photocopying or by 

other means, in total or in part, at the request of other institutions or individuals for the 

purpose of scholarly research. 

 

I understand that my thesis may be made electronically available to the public. 



iii 
 

ABSTRACT 
 
 
FAULT DETECTION AND PROGNOSIS OF AEROSPACE SYSTEMS 

USING LONG SHORT-TERM MEMORY BASED RECURRENT 

NEURAL NETWORKS 
 

Vasanth Dhanagopal 

Master of Applied Science, Aerospace Engineering, Ryerson University, 

2020 

 

Health monitoring and remaining useful life predictions for the aerospace systems is a challenging 

and complex task to accomplish. Internal or external complications in these aerospace systems 

(aircraft and satellites) may lead to extremely hazardous or catastrophic consequences to the entire 

mission involving human life and budget. Considering the severity and complexity of the problem, 

this thesis deals in developing a diagnosis and prognosis health management system (DPHM) for 

the attitude actuator control system that uses reaction wheels in pyramid configuration onboard 

Kepler spacecraft and for the fleet of air-breathing turbofan engines. The established model is 

comparatively effective and computationally light in managing the objective of fault detection and 

prognostics.                   

An advanced data-driven DPHM scheme with optimization techniques is developed and 

evaluated. Initially, a recurrent LSTM (Long Short-Term Memory) neural network model is 

established and assessed with the general dataset (Particulate Matter (PM2.5)). Secondly, a 

statistical-based fault detection method with functional factors of Weibull and mathematical 

features of frictional parameters showed that reaction wheels 2 and 4 of Kepler spacecraft have an 

early sign (~2 months) of their respective failures. This statistical method is compared with the 

proposed LSTM model for validation. Thirdly, the prognostic approach for estimation of 

remaining useful life (RUL) of the C-MAPPS and PHM08 datasets is successfully achieved. 

Numerous preprocessing methods such as digital filters (Savitzky-Golay (S-G)), principal 

component analysis (PCA) are used for standardizing the data. Finally, the optimization tools such 

as genetic algorithm (GA) and particle swarm optimization (PSO) are merged with LSTM for fine-

tuning the hyper-parameters. Overall, the optimized model performs with better accuracy and can 

be concluded as a promising algorithm for the health management of complex systems. 
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CHAPTER 1  

1. Introduction  

 
n the present world, data science has become the solitary approach for all the 

Engineering problems. Most of the systems are automated and health monitored at 

regular time intervals. Intelligent and autonomous structure has been a core attraction for 

the wide range of industries and the elite technological group. The data provides details of 

the mechanism, while the technology helps in diagnosing the interruptions.  Data science 

is the unification of statistics and machine learning approaches for determining the features 

without the actual knowledge of the system [1].  

Big data analysis is a tool to extract, analyze and evaluate the complex data sets with a 

data processing algorithm. Data is growing at a very faster rate since the increasing use of 

the internet of things such as mobiles, cameras, health fitness, and medical devices, 

surveillance and other wireless networks.  On average, about 1.7 megabytes of data is 

generated every second of the day by every person online. The International Data 

Corporation (IDC) predicted that the global data volume will upsurge exponentially from 

4 to 40 zettabytes between 2013 and 2020 [2]. This gives the overall forthcoming 

evolutions for the data based predictive analysis. Figure 1.1 shows the growth of data usage 

over the period. 

There are various methods available to perform the diagnosis of the system, they are 

model-based, signal-based, knowledge-based and Hybrid methods (Figure 1.2) [3]. In a 

model-based approach, a small-scaled model is used to formulate the measured and 

estimated outcomes. The signal-based method works based on measurement signals from 

the system. Both these methods require prior knowledge of the system and have well-

documented limitations which will be discussed in the course of the work. Whereas the 

data-driven technique only needs a large historical dataset. The advantage of this approach 

is that even a complex system without a plant model can be investigated [4]. 

 

I 
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Figure 1.1 Growth of Data Usage [2] 

 

               

Figure 1.2 Approaches in Fault Detection [3] 

 

In this work, health monitoring of the spacecraft, the remaining useful life of the Jet engines 

and future predictions of the environmental pollution factor are studied.   

 

1.1 Motivation 
 

The main goal of the thesis is to develop a data-driven model for the detection and isolation 

of fault, prediction of remaining useful life and health monitoring of the complex systems. 

The proposed algorithm with variations is applied on the Kepler spacecraft, C-MAPSS 

turbofan engine and for predicting particulate matter (PM2.5) over three Canadian cities. 

Particulate matter is a fine particle pollutant (less than 2.5 microns) that affects the air 

quality. 
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1.1.1 Spacecraft Systems 
 

Attitude dynamics of the orbiting body and its control has been a distinct interest among 

the elite community for a long time. A Satellite placed in its orbit is tagged to perform its 

specific mission such as forecasting, navigation, imaging and so on. However, the 

functionality of the satellite can be easily disturbed by internal and external sources. The 

internal factors are radiation thrust, mass expulsion, momentum shift, and the external 

elements includes environmental radiations, earth’s gravity gradient, magnetic and 

aerodynamic torques [5]. 

To control the attitude of the vehicle; sensors, actuators and a specific algorithm based 

on the current and the desired attitude are required. Reaction wheels and control moment 

gyros are two of the commonly used attitude control systems. A resistant torque can be 

produced by accelerating or decelerating the rotation of the wheel since the initial angular 

velocity is zero for the reaction wheel, whereas the momentum wheels have initial angular 

velocity hence the magnitude of the resistant torque can be controlled by changing the 

angular velocity [6]. Figure 1.3 represents the motion of the orbiting spacecraft. 

 

 

 

Figure 1.3 Attitude and Orbital Motion of the Rigid body Spacecraft [4] 
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Apart from the interruptions and external disturbances the air-borne vehicles and the 

spacecraft components are subjected to fatigue which results in wear and tear. Allied 

Market Research estimated that the usage of the small satellite will reach around $7 billion 

by the year 2020 [7], so it is about the huge budget spent on the launch. Besides everything, 

it is very difficult to perform maintenance in the outer space. Hence, the defects must be 

identified, isolated in a well advanced period and an appropriate control system must be 

calibrated. 

 

1.1.1.1 Subsystems of the Spacecraft 
 

A spacecraft comprises the following subsystems (Figure 1.4) [8] for its operational 

functionality [6]. Throughout the mission cycle, every subsystem of the spacecraft is prone 

to faults and failures. They are as explained, 

a. Structure - An enclosure capable of withstanding stress and vibrations  

b. Attitude and Orbit Determination and Control - Guidance and Navigation 

c. Communication System - Exchanging signals 

d. Command and Data Handling Subsystem (C&DH) -Telemetry system for downlink 

and uplink of data 

e. Power System - Batteries, Fuel cells and solar panels 

f. Thermal system - Protection from the hostile environment 

g. Payload - Scientific equipment with a mission-specific functionality  

 

1.1.1.2 Satellite Attitude Determination and Control System 

 

Every man-made object in space such as spacecraft, space stations, and satellites are 

susceptible to many disturbances in space environment that create an undesirable 

translation and rotational motions of the spacecraft or satellites. Attitude Determination 

and Control System (ADCS) as shown in Figure 1.5 maintains the attitude of satellite 

against external disturbance torque such as solar radiation, aerodynamic drag and the 

impact of the earth's magnetic field. Thus, an attitude control torque device such as the 



5 
 

 

momentum wheels and reaction wheels are mounted within vehicles to reduce attitude 

errors.  

     

                                              Figure 1.4 Subsystems of the Spacecraft [8] 

 

The later development of a control torque generator that uses a momentum wheel 

principle is Control Moment Gyroscopes (CMGs). CMGs are commonly used to provide 

attitude control for a variety of vehicles, including spacecraft and satellites. CMGs generate 

attitude control torque in response to onboard or ground commands. Mostly the four 

double-gimbal control moment gyroscopes assembly is used to maintain the desired 

attitude. CMGs have many advantages; performance-wise, CMGs produce very minimal 

error as compared to other actuators that are up to 0.001°of pointing accuracy, but very 

expensive in terms of cost and mechanically complex. Thus, CMGs are normally preferred 

for high-cost missions, which require a high pointing accuracy [9]. 

Most spacecraft uses Reaction Wheel (RW) as the actuator, which is a three-axis attitude 

controller that operates at a constant rotation speed. They provide high pointing accuracy 

and are useful for rotating the spacecraft by a very small angle. The spacecraft is 

maneuvered when the torque is applied to one of its axes. Combinations of RWs integrated 

to the system can provide full axis attitude control and stability [10]. 
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Figure 1.5 Schematic of Satellite Attitude Determination and Control System [11] 

 

Use of chemical batteries to store excess energy generated by the solar panels during 

periods of exposure to the Sun. The primary problem with this approach is the cycle life of 

batteries and the additional power system mass required to control the charging and 

discharging cycles. An alternative to chemical batteries is the use of flywheels to store 

energy. This concept termed the Integrated Power and Attitude Control System (IPACS) 

has been studied since the 1960s, but it has been particularly popular since the 1980s. In 

fact, the use of flywheels instead of batteries to store energy on spacecraft was suggested 

as early as 1961 [12]. 

Also, these actuators such as reaction wheels, control moment gyros, and momentum 

wheels are electro-mechanical devices that are suspected to malfunction during the longer 

operating cycle.  

 

1.1.1.3 Health Monitoring System 
 

The main objective of the attitude controller is to generate a corrective torque based on the 

current and desired position. The reference position is attained from the inbuilt sensor 

measurements and the de-tumbling of the satellite to the desired position is performed by 

the actuators. In case of failure of any of those mechanical systems, the attitude will be 

lost, and trajectory will be out of control. Hence the health management system must be 

incorporated with the ACDS of the satellite as shown in Figure 1.6.  
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The performance of the system will be affected after the onset of the fault which will be 

detected by the integrated Diagnosis and Prognosis Health Management (DPHM) module. 

The algorithm must identify the type and locate the fault. Depending on the severity the 

ACDS system should be informed for further corrective actions, if the fault is inevitable 

then the algorithm should estimate the remaining useful life of the component [13].  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Diagnosis and Prognosis Health Management (DPHM) Module [11] 
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1.1.1.4 History of Failures of Spacecraft Systems 
     

Malfunctioning and failures are unavoidable with any of the mechanical systems, critical 

failure may result in termination of the mission, one such is a failure in the attitude control 

actuators. The actuator wheels that are positioned outside the spacecraft body are subjected 

to various irregularities in the temperature, speed constraints and momentum shift during 

the maneuvers. Conventionally, faults and failures were dealt with redundant hardware, 

however, design and operational cost will be increased.  

The history of space mission failure emphasizes the importance of health monitoring 

for the control systems of the spacecraft. For the mission GPS BI-05, the reaction wheels 

2 and 3 stopped completely with full motor voltage applied. In 2001, the backup 

momentum wheel of Radarsat 1 failed to lose the attitude. In 2002, there were anomalies 

in two of the thrusters of EchoStar VIII, the 2nd generation Globalstar satellite experienced 

a reaction wheel failure, the satellite missions for MSG-1, TDRS I, Nozomi, CONTOUR, 

EchoStar V and VI were aborted in the same year. For the Cassini spacecraft in mid-2003 

after 5 years of the launch, the operations team observed an anomalous drag torque in the 

bearings of the RWA-3 [14]. In the same year, 2003 various mechanical components 

malfunctioned for SOHO, MSAT1, Nimiq2, Thaicom3 missions which were terminated 

[6].            

After two reaction wheel failures in 2004-05, the spacecraft HAYABUSA was switched 

to one wheel and thruster configuration. In October 2005, the satellite TOPEX could not 

perform attitude maneuvers due to the failure of the pitch reaction wheel. After the failure 

of two reaction wheels, the Far Ultraviolet Spectroscopic Explorer (FUSE) mission was 

altered using a hybrid controller, later in mid-2007 the last reaction wheel was also failed 

and the efforts to restart the spacecraft was unsuccessful. In 2007, NASA’s Thermosphere, 

Ionosphere, Mesosphere Energetics, and Dynamics (TIMED) satellite’s reaction wheel 

failed due to bearing problems [15].                  

In the recent past, various cases were observed, two reaction wheels of the Dawn 

spacecraft of NASA has failed in the year 2010 and 2012 due to excessive friction 

development. In July 2012 Kepler’s reaction wheel 2 failed unexpectedly and later in 2013 
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after ten months of the first failure the reaction wheel 4 was also futile, after which the 

primary mission was altered as K2 [16]. The failure analysis for this Kepler mission is 

studied in this research work.         

The larger satellites can always be equipped with redundant wheels onboard in case of 

any failures or malfunctions of main Reaction wheel assemblies (RWA). Swift Gamma-

Ray Burst Explorer (Swift) and the James Webb Space Telescope (JWST) employs six 

RWAs. But for the micro and nanosatellites, there is no room for accommodating 

additional hardware due to limited space and power budget. In such a case, the attitude 

control system and health monitoring systems should be effective. Any small anomaly in 

the behavior of the components should be immediately addressed. Figure 1.7 shows the 

details of subsystem failure and year wise ADCS failure rate from 1980-2005 [17].               

Now the analytical procedure can very well be used avoiding the space and budget 

constraints to detect and isolate the failures. Because of the growing demand for reliability 

and safety in the control systems, there has been an increasing interest in fault diagnosis. 

Fault tolerance is an essential concern in the attitude control design. 

  

 

Figure 1.7 Failure Percentage of the Subsystems and ADCS Time to Failure from Launch  

(1980-2005) [17] 
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1.1.1.5 Faults in Attitude Determination Control Systems (ADCS) 
 

From the above discussion of failure events and percentage of subsystem faults, it is clearly 

evident that components of the attitude control system are prone to malfunction with a 

higher rate and also more than 40 percent of them failed within 3 years of the launch. This 

study gives an insight into studying the components of ADCS. 

The Attitude control system consists of sensors and actuators. The sensors are used to 

measure the attitude, which includes sun sensor, star sensor, horizon sensor, magnetometer, 

etc. The inputs from the available sensors are combined to a single solution and processed 

for determining the current attitude of the system. Sun sensors measure one or two angles 

between their mounting base and incident sunlight with a clear field of view. Star sensors 

are mainly trackers, they are used to scan multiple star fields for deriving the vehicle’s 

attitude. Horizon sensors are infrared devices that are capable of detecting the contrast 

between cold space and the Earth’s atmosphere. Magnetometers measure the magnitude 

and direction of Earth’s magnetic field which then establishes the vehicle’s relative attitude 

to the local magnetic field.      

Actuators are selected based on the mission requirements. They produce torque required 

for orienting the spacecraft to the desired position. Some of the actuators used in the space 

vehicles are Reaction wheels, Momentum Wheels, Wheel drive electronics, control 

moment gyros, value drive electronics, magnetic torquer, gas jet propulsion system, etc. 

[18]. Failure of the control system can be from any of the above-mentioned components in 

ADCS. From Figure 1.8, it is evident that among all other components RWs, CMGs, and 

Momentum wheels constitute more ratio of failure percentage [17] and hence have to be 

monitored cautiously. In the present work, the most predominant section of the failure 

(reaction wheel fault) of the Kepler Mission in the ADCS is taken for consideration. 

Anomaly detection without apriori knowledge of the mission is carried out in a precise 

manner.  
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Figure 1.8 Component Wise Failure of ADCS (1998-2005) [17] 

 

1.1.1.6  Fault Classification 
 

All the mechanical components are prone to faults and failure, every system is set with 

periodic maintenance after its permissible cycle of operation. In the case of complex 

systems or space vehicles, the onboard maintenance is impossible or very difficult which 

will lead to failure of the entire mission. Failure/fault is caused by various physical 

phenomena such as fracture, creep, thermal shock, corrosion, wear/tear, and other external 

factors.             

Faults can be abrupt, intermittent, transient and/or anticipated (Figure 1.9) that can 

degrade the actual performance of the system [11]. Abrupt faults in the system cannot be 

predicted by data-driven methods because it is sudden and there are no histories feed in 

training the model. Transient and intermittent faults are timely malfunctions that may or 

may not affect the performance of the system, therefore consideration of this type will 

result in the false signal. The prolonged incipient fault is the only condition that has the 

feature which can be mimicked while training the data-driven model. 
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Figure 1.9 Types of Fault-Based on Time Characteristics [11] 

Based on the operative behavior, the fault is either identified as additive or 

multiplicative [11]. Additive faults are observed in attitude control systems of the reaction 

wheels. The continuous malfunctioning leading to the accumulation of torques that changes 

the nominal action is categorized as a multiplicative fault (Figure 1.10).  

 

 

 

      Additive Signal                                        Multiplicative Signal 

Figure 1.10 Types of Fault-Based on Mathematical Operations [11] 

 

The fault in the RWs are due to the failure of signal response, decreased reaction torque, 

increased bias torque. Analysis of systematic failure events and examining its cause and 

effects will reduce the risk of the severity. Fault diagnosis and prognosis methods for 

satellite systems continuously monitor the health and predict future events.  

 

1.1.2 Jet Engines 
 

The Jet Engines are air-breathing engines used for propelling the aircraft in the forward 

direction. The turbofan, turboprop, turboshaft engines are variants of turbojet engines for 

producing thrust through fans, propellers, shafts respectively. They have inlets, low 

pressure, and high compressors, combustion systems, turbines, and nozzles as the 

components. There are several performance parameters, and all are interrelated which in 

turn affects the overall functionality of the engine and the aircraft [19]. 
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1.1.2.1  Performance Parameters 
 

The operating conditions of the engines vary with different speeds (Mach number) and 

altitude. The thrust generated is the foremost parameter which is the balance of uninstalled 

force minus the drag. The second is the rate of fuel used per unit thrust produced and is 

known as specific fuel consumption. The other parameters are defined as efficiencies and 

are related to shaft power, kinetic energy, overall velocity, thermal energy, bypass ratio of 

the engine [19]. Every feature is dependent on local conditions, internal and external 

factors, a comprehensive study of cause and effects between each parameter is extensively 

compared with appropriate experimental results. Optimal shape, weight, material, speed, 

altitude was already prescribed by the technical group for efficient operation. The 

performance of the engine declines regardless of the health conditions of the individual 

components. Deterioration can occur due to change in the load or variation of the 

external ambient conditions. 

Every fault mode has an effect on the performance, (i) Intake - Filter clogging will 

reduce the mass flow and power loss. (ii) Compressor and Turbine – fouling, corrosion, tip 

clearance, IGV/VGV malfunction, FOD will tend to increase the heat-rate, loss of power, 

loss of thrust and engine blowout. (iii) Combustion Chamber – liner cracking, clogging, 

fuel injectors malfunction may result in a lean mixture thereby reducing the thrust and 

power. (v) Nozzle – Surface Erosion increases the back pressure and thus affecting the 

overall efficiency of the engine [20]. 

 

1.1.2.2    Onboard Sensors 
 

For measuring operating parameters, the modern aircraft engines are incorporated with 

numerous sensors. The output of the sensors is used to monitor the engine health 

conditions. The sensors are capable of operating at severe environmental conditions and 

supply signals to the cockpit indicators [21]. They are mounted at various locations of 

the engine to measure the critical variables such as total temperature, static and total 

pressure, fan and core speed, bypass ratio, pressure ratio, fuel flow, etc. Sensors can 

detect impending fault and alarm the system for corrective actions.  
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1.1.2.3    Health Monitoring Systems 
 

Health monitoring is a continuous process of obtaining, measuring, filtering, analyzing 

and detecting the irregularity. This system uses the information from multiple sensors 

for the diagnosis of the engine. The data from the sensors are used both to monitor the 

performance in real-time and predict the remaining useful life of the engine and its 

components so that timely maintenance is scheduled to prevent the failure events. The 

failure can be sudden, random, uncertain; hence the diagnostic approach has to be a 

blend of expert systems and artificial intelligence. Observation of non-performance 

values like exhaust pollution, noise, vibration, debris, and clearances can provide 

additional attention to the safety and reliability of the system [22].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 Modern Health Monitoring Framework [23] 

 

A key objective is to find out the effects of the actual cause of the deterioration. 

The pattern of the faulty feature has to be identified and used for diagnostic purposes. 

Every diagnostic and prognostic technique has its own advantages and disadvantages 

thus a hybrid model will be an ideal framework for the hierarchical development of 

 Model Based Approach – nonlinear and dynamic gas-path models should be 

considered with powerful computational platforms 

Model-Free Methods – advanced AI techniques can be used for pattern 

recognition and fault isolation with automatic data collection 

Modern methods should include the effects of the operating condition, such as 

power in the trend of degradation, in order to reduce uncertainty of simple 

model 

Global Pattern Recognition from across the similar jet engines should be 

considered to include the preceding measurements and failure events 

Hybrid Models – fusion of classical models will improve the prediction results 
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different techniques while alleviating their limitations [23]. Remaining useful life 

(RUL) is the central parameter in condition-based maintenance and prognostic health 

management. Figure 1.11 presents the recommendations for designing modern health 

monitoring and prognostic system. 

 

1.1.3 Environmental Pollution 
 

Several manmade sources like agricultural burning, residential wood burning, Industries, 

carbon vehicles, Airplanes and natural sources like dust storms, volcanic eruptions cause 

the pollutant contaminates to stay in the atmosphere. Long-term exposure leads to climatic 

changes and severe health issues to living beings [24]. The fine particles with 2.5μm or less 

were deadly, ranks the sixth leading risk factor globally and cause a 36% increase in lung 

cancer as it can penetrate deeper into the lungs.  

In 2016, PM2.5 exposure contributed to more than 4 million deaths worldwide which 

include heart disease, chronic lung disease and respiratory infections [25]. In this work, the 

trend of Particulate Matter PM2.5 over the three Canadian cities is studied with data-driven 

techniques.  

 

1.2 Data Science  
 

Data science is a growing field that uses algorithms, frameworks, scientific approaches to 

extract meaningful features and distinct characteristics of the given data. The primary goal 

of the analysis is to get insight into both structured and unstructured forms of the given set 

[26]. The world is flooded with data and the growth level increases every day. Data analysis 

is the most powerful multi-disciplinary field that involves statistics, mathematics, computer 

science and deep learning for solving real-time problems in an efficient manner. The 

advancement in computer technology and the internet empowered the world with ease of 

accessibility and low-cost storage of data. 

1.2.1 Features of Data 
 

The current work is on data-driven modeling and hence the characteristics of the data have 

to be studied for utilizing them to the relevant application. Big data is a  multi-variant 
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collection of combinations of different sets from various sources. There are about 17 (V’s) 

attributes identified so far to describe the internal feature of the data set. These extended 

findings will solve many problems and interrogations about Big Data Analytics. 

I. Since the evolution of Big Data (1995), many attributes are added to evaluate the 

accountability of their usefulness. Among them, the investigation carried by Douglas 

Laney [27] recommended the 3 V’s – Volume, Velocity, and Variety.  This work is 

developed in 2004 with Gartner and is popularly known as Gartner's Interpretation.  

1. Volume  - Size of the data available for the analysis (Bytes) 

2. Velocity - Speed of accessibility of the data 

3. Variety   - Type of the data: structured, unstructured, numeric,   

                  image, video, audio   

II. In addition to the Douglas Laney’s 3 Vs, data scientists of IBM introduced another 

attribute known as Veracity - the 4th V. 

4. Veracity - Indicates uncertainty of the captured data  

III. For enhancing the data analysis business, Microsoft stretched the attributes to 6 Vs, they 

are variability and visibility. 

5. Variability - Multi-dimensionality or complexity of the dataset 

6. Visibility   - Inclusiveness of the minute details of the data 

IV. The sheer size along with the complexity of analysis, Oracle - in its study [28] included 

one more attribute named value. 

7. Value - Represents the commercial importance derived from the 

given source 

V. Further analysis of the big data challenges, invoked Kirk Borne [29] to define the feature 

in 10 V’s. 

8. Venue - Source and platform of the data 

9. Vocabulary - Terminology used for describing the data models 

10. Vagueness  - Misconceptions of the existing data  

VI. The world is operated with more sophisticated levels with the invent of more specifics 

of the datasets, in 2017 a formal study by a group of elites [30], discovered 7 more Vs to 

the existing list, making it 17.  
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11. Validity  - Authenticity of the data  

12. Volatility  - Usefulness period of the stored data  

13. Virality  - Rate at which the data spreads among the  

                           users  

14. Viscosity - Signifies the lag of the described event 

15. Verbosity - Redundancy of the available information  

16. Voluntariness  - Relevant availability of the data according   

                                      context 

17. Versatility   - Flexibility of the data to be used at various    

                                      platforms with different functionalities.  

For solving every distinct problem, the characteristics of the captured dataset have to be 

studied prudently with all the mentioned V’s to predict better outcomes. 

 

1.2.2 Data Mining  
 

The term data-mining was coined in the 1990s previously used as ‘data fishing’, it is a 

process of obtaining useful features form the data to describe the unknown patterns, trends, 

and functionality of the system. This procedure is more prevalent after the advent of big 

data because the size of the data is larger, and information is more varied in its content. In 

the process of data mining, the data has to be sampled and transformed for the model to 

evaluate the outcome of the problem [1].  

Deep learning is a subset of machine learning that works based on neural network 

algorithms. With the quick evolution of technology, machines are capable of replacing 

human intelligence with ease and accuracy. The multilayered network learns from the 

complex, unstructured, diverse data and solves for the reliable solution [31]. Deep learning 

is applied in a variety of businesses, banking, manufacturing, education, stock markets, 

retails, etc.  
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1.2.3 Machine Learning 
 

Machine learning came to existence after the research study of Arthur Samuel (1959) and 

Tom M. Mitchell (1999). It is the field where the computer is trained to learn without a 

programming platform [32]. The machine learning methods are classified based on the type 

of learning; supervised (trained with inputs and desired outputs), unsupervised (without the 

output label) and nature of the output; binary classifiable outputs and regressive outputs.   

          

The accuracy or correctness of a machine learning approach is validated based on the 

error of the untrained data. Based on the nature of the tasks, there are different types of 

machine learning algorithms used to accomplish the problem. Some commonly used 

methods are Linear/Logistic Regression, Least Squares Regression, Support Vector 

Machine (SVM), Decision Trees (supervised learning approach), Navie Bayes 

classification (probabilistic classifier based on Baye’s theorem), K-means clustering, 

Nearest-neighbor mapping, Artificial Neural Networks, etc. [33].     

A model based on any of the above algorithm is created to learn a specific feature form 

the data. Later a targeted variable is predicted based on the training given to the model. 

The present world uses machine learning methods to improve the decisions and 

productivity in the business and forecasting and detecting faults in the industries. Better 

tools and self-adaptive algorithms have to be framed with the exponential growth of 

technology to solve complex real-time problems. Machine learning is broadly applied in 

many fields such as fraud/anomaly detection, Image prediction, sentiment analysis (twitter 

opinion), face recognition, natural language processing, virus/spam detection, etc. 

 

1.2.4 Artificial Intelligence 
 

Artificial intelligence is the modern approach in science and technology and started gaining 

importance after the II world war, and the names were devised in 1956. For the AI 

algorithm to think humanly, the human brain has to be studied intensely. The insides of the 

actual working of the mind have to be introspected through psychological experiments. 
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Cognitive science is the interdisciplinary field that binds these human behavioral 

techniques together with the computer models.       

AI is a thriving field that covers a variety of intellectual task-related fields such as face 

recognition, natural language processing, proving mathematical relations, sentence 

predictions, machine/robotic operations, diagnosing medical conditions, etc. [34]. This 

field has gained unbelievable growth in the past decades with a very high ability to handle 

and calculating complex problems. Artificial intelligence has to outdo the performance of 

humans to solve multiple complicated tasks. AI is the enclosure of deep learning and 

machine learning concepts together as shown in Figure 1.12. 

                                   

                            Figure 1.12 Pictorial Representation of AI Concept [34] 

AI should act and think realistically and rationally, according to Turning Test [35], the 

computer should be capable of the following things, 

I. Communicate successfully in natural language 

II. To store the obtained data 

III. Proper reasoning with new conclusions 

IV. Should adapt, detect and extrapolate new trends 

V. Needs a computer vision to perceive objects 

VI. Manipulator to move the objects in the simulated direction 

Artificial 
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Machine 
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Deep Learning
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The different categories of AI algorithms include a. Reactive Machines (reactive but 

failed to use past data), b. limited Memory AI (uses static data for the process- self-driving),           

c. Theory of Mind  (understanding the emotions of the human), d. Self-aware AI 

(supplement of theory of mind AI, configure about themselves), e. Artificial Narrow 

Intelligence (Weak AI: technology used in smart devices), f. Artificial General Intelligence 

(Strong AI: robotic technology), g. Artificial Superhuman Intelligence (Powerful AI: 

humanoid robot). 

 

1.3 Limitations of the Approach 
 

a. Attributes of Data  - The measured data can be messy, inappropriate or unnecessary 

for the analysis. Attributes that are discussed in the previous section may not exist in 

most of the measurements and values thus making it more difficult for the application.  

b. External Factors  - The output of the model based on the training set containing 

history of events (faults and trends). Future predictions exclusively depend on the past 

source of data. Interaction of external factors, changes in the current situation, and 

unknown factors will affect the predictability of the network. The severity of these 

aspects will make the model to a complete unfeasible form.        

c.  Tuning of Hyperparameters - All the neural network and other mathematical 

models has its own specific characteristics. Selecting the effective combination of the 

various parametric functions manually by trial and error is a difficult and demanding 

task. 

d. Noisy Data - Noise is a meaningless feature irrelevant in explaining the relationship 

between source and target. Noise in the tabular data are of three types; irregularities in 

the recorded item, unwanted features, records that won’t follow the flow. This has to 

be removed from the data to improve accuracy. Filtering techniques, wrapper methods 

like recursive and backward elimination, embedded regularization methods are applied 

to remove these irrelevant functionalities from the dataset. 

e.  Overfitting and Underfitting - This is the most common issue in statistical fitting 

based problems. Overfitting occurs when a model learns unwanted features to an 
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extent that impacts the performance in a negative way. Underfitting is the case in 

which the model is incapable of capturing the underlying trends of the training data.  

f.  Incomplete Data - It is very difficult to obtain the complete set of data with all the 

dimensional features of the system. Data is mostly insufficient and less correspondent 

between the events and facts. Ethical issues like privacy, ownership, liabilities of the 

data are the major matter of concern.  

 

1.4 Literature Review 

 

Artificial Intelligence and Predictive Analytics for Aerospace Systems (AI-PAAS) 

laboratory and Space Systems Dynamics and Control Laboratory in the Department of 

Aerospace Engineering at Ryerson University directed by Dr. Krishna Dev Kumar carried 

out majority of the existing research in the field of fault detection, isolation and prognosis 

through model-based methods [4][11] and knowledge-based data-driven approaches [8]. 

An extensive literature review for model development, future forecasting, fault diagnosis, 

fault prognosis, and remaining useful life prediction along with optimization is detailly 

discussed in each of the below-mentioned sections. 

 

1.4.1 Model Development  
 

In the earlier days, the behavior of any system is studied by simulating its small-scaled 

model. The model-based approaches require the complete details about the plant and the 

outcomes of the system have to be mathematically formulated to estimate the actual output 

and to detect or isolate the existing faults and malfunctions. A survey on model-based 

methods in the complex plants using statistical testing, signature analysis is carried [36]. A 

technical process with conventional limit and trend checks is studied with various examples 

[37]. A review of process engineering using a basic quantitative model-based method is 

available in the paper [38]. A general framework on dynamic systems of model-based FDI 

techniques are structured with residual estimations [39]. To highlight the characteristics of 

aerospace systems an extensive health monitoring investigation is performed to detect 
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sensor and actuator faults [40]. To avoid the potential hazards and detect the dangerous 

faults a thorough investigation with model and signal based methodologies [3].           

In the digital era, problems in the field of life sciences, finance, commerce, engineering, 

and technology are resolved efficiently by data-driven methods. The data mining 

techniques become popular since the 1960s and gained momentum after the innovations in 

computer systems after 1995. Numerous software tools were developed to incorporate the 

capability of the analysis to solve real-time problems [41]. A comprehensive review of data 

mining techniques from 2000-2017 is extensively studied [42][43].     

Classical data-driven methods such as visualization, correlation, and discriminant 

analysis are initially applied to the medical field to extract information about the individual 

disease database [44]. To learn the user pattern of web page usage, an elaborate research 

effort using the WebSIFT system is trained and modeled [45]. Urban planning for different 

regions in Munich is proposed by extracting the entire road database [46]. The relationship 

between switch hitch and weather factor, temperature and electrical nets is exercised using 

statistical techniques. The crime scene investigation without the ability of actual samples 

is monitored and forensic samples have been recovered with best yielding results using the 

obtained data [47]. A vital study on voting patterns in the United States has been interpreted 

successfully using the online data based on the comments and opinion polls. Some 

mathematical techniques including association rule mining, t-weight calculations, and 

decision tree analysis are used for the outline study [48]. Similarly, accident investigation 

based on the different conditions is simulated with factor analysis and actions to avoid 

certain known situations are proposed [49]. A broad review of financial fraud detection 

[50] and cybersecurity intrusion detection [51] is executed. The Medical field is advanced 

with data mining techniques (Cross Industry Standard Process for data mining) to 

determine the factors related to chronic kidney disease [52] and cholera related mortality 

is reduced by studying combined satellite data with local environment and climate along 

with the field data [53].         

The modern data-driven approach incorporates machine learning algorithms with neural 

network topology. From the public source data, every general analysis is shifted towards 
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artificial neural network models. Electric load forecasting [54], rainfall estimation [55] and 

stock price predictions are successfully studied using artificial neural networks. Recurrent 

neural networks are powerful in solving time series problems [56] and certain long term 

dependency issues in the time-related data are reconsidered and a modified RNN known 

as LSTM [57] is currently applied with certain modifications. 

 

1.4.2 Fault Diagnosis 

Early fault detection and isolation [58] from the plant helps in avoiding anomalous event 

progression and improves reliability and safety [59]. The conventional methods use state 

parameters and characteristics data to process the detection [18]. The majority of the 

existing research in the field of fault diagnosis is performed through model-based methods 

and data-driven approaches.                 

The model-based fault detection methods [40] can be both stochastic and deterministic. 

Fault identification is achieved using filtering schemes in the stochastic approach [11] and 

deterministic methods use observers and parity relations [3]. A model-based diagnosis, 

prognosis, and health monitoring (DPHM) framework was developed and evaluated using 

a new fault detection algorithm, using Unscented Kalman filters (UKF) in conjunction with 

residual and innovation sequences [60]. Sliding mode observers estimate the state vector 

and a signal-residual is generated from the estimated output to detect the fault [61]. 

Classical data-driven methods for fault diagnosis especially for complex systems such 

as satellite component failure and aerospace-related matters are investigated extensively.  

Friction data methodology [62] was developed for monitoring potential failure of the 

reaction wheel of the Globalstar 2nd generation satellite. A time algorithm with envelope 

learning and monitoring with limit sensing trends and adaptive limit-checking using 

regression tree learning [63] of the telemetry data from spacecraft is applied to detect the 

abnormal activities.        

Modern data-driven methods applied to-date are very effective in detecting irregular 

behavior without knowing the apriori knowledge of the system. In this research work of 

time series examples, the main focus on diagnosis methods is using ANNs. FDI approaches 
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for dynamic non-linear systems [64] [65] using AI techniques in comparison with model-

based methods are surveyed. A dynamic neural network approach [66] trains the model 

torque command and voltage output to detect the RW failure. A similar work with input-

output based ANN [67] for RADARSAT actuator fault is studied with sensor data.  

Based on the literature review on model development, the latest and suitable fault 

diagnosis on time series systems will be LSTM methods. The recent works on LSTM 

include usage of stacked LSTM networks for fault detection on space systems, multi-sensor 

engine dataset and an exclusive Gated Neural Networks (GRU) for identifying the events 

reducing safety margins of flight operations. Invariant of the applications the latest 

common security hacking of the modern automobiles [68] and valuable resources of 

government websites are precisely detected using LSTM neural networks. The author has 

referred the latest spacecraft pilot anomalies detection algorithm (LSTM) with 

nonparametric dynamic thresholding with proper false mitigation strategies to build [69] 

the FDI model for this work.   

 

1.4.3 Fault Prognosis  
 

Fault prognosis is one of the top ten challenges in the aviation safety program. It is the 

process of assessing the forthcoming status of the system and estimating the remaining 

useful life of the degrading components. Similar to the diagnosis the prognosis methods 

are reviewed with model-based and data-driven approaches to determine the finest possible 

technique. Model-based requires mathematical equations explaining degradation pattern, a 

scientific approach on actuator dynamics of the aircraft [70] and a predictive approach for 

bearing analysis [71] is considered. The physics-based methods are always on top of the 

pyramid when compared to other methods due to its law of nature and are always precise, 

accurate, easy to validation and verification. After establishing the system model with all 

features, it can be applied for determining the remaining useful life; the gearbox prognostic 

module [70], residual-based failure in dynamic hydraulic systems and other works related 

to CMG system spin motor failure prognosis in the satellite, wiener degradation based life 

estimation algorithm [72] for small satellites were determined.     
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In spite of the advantages, the classical methods are time-consuming, expensive and 

intensive Hence conventional numerical methods are widely used due to its speedy 

implementation. Regression analysis, Bayesian approaches [73], support vector regression 

[74] are the most used algorithms for remaining useful life predictions. Some hybrid 

models [75] [76] combining the advantages of both the above-discussed techniques are 

applied for prognostic development.                    

Machine learning data-driven for prognostic problems become renowned after the 2008 

PHM (PHM08) conference data challenge competition for complex engineering systems. 

These approaches are based on uncertainty and approximation; hence a robust algorithm 

has to be proposed for the unstructured, multivariant and noisy data. The generic 

methodology for structural health prognostics is introduced and parallelly multiple 

algorithms to achieve better performance are also added. Advanced RNNs with extended 

Kalman filter evolutionary algorithms, Hidden Markov Models and LSTMs, and deep 

convolution neural networks [77] are examined to estimate RUL. Recently, semi-

supervised deep architecture for turbofan engine degradation [78] and battery cycle life 

capacity degradation are effectively implemented. In this work, the LSTM model with 

optimization techniques is proposed for RUL predictions. 

 

1.4.4 Optimization Techniques  

 

The suggested model in the present work for fault diagnosis and prognosis uses LSTM 

networks for analysis. There are several hyperparameters in the artificial neural network 

models which have to be fine-tuned befittingly to get convergence with the high level of 

accuracy. The authoritative articles discussing the optimization techniques are studied to 

decide the suitable scheme. Rahimi et al. [79] presented a methodology using adaptive 

filter (Particle Swarm Optimization) for detecting the fault in the reaction wheels onboard 

satellites with greater performance. Likewise, numerous studies with PSO over 

backpropagation for length of stay, non-linear channel equalization [80], in ANN and 

tuning of emotion recognition framework, stock forecast in LSTM resulted in superior 

predictions. Genetic Algorithm-optimized models [81] have also become popular for 
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diagnostic and prognostic decision-making frameworks and hence both (PSO and GA) the 

optimization procedures are discoursed, outlined and compared at the end of this thesis. 

 

1.5  Problem Statement 
 

In the current research work, a superior data-driven model is developed, then the classical 

approach is refurbished with improvements and finally, optimization techniques are 

applied to the intended model. Sketching from the previous section on literature review, 

the following problems can be framed, 

[PROBLEM 1]     To the author’s knowledge, the majority of the prevailing work on health 

management was model-based [4] which requires apriori knowledge of the system. Later, 

several modern data-driven methods are proposed [43] with neural network topology, but 

they are incompetent with overfitting and underfitting [31]. Also, those models require a 

complete historic dataset [55], for the seamless predictions. 

[PROBLEM 2]    From the published work, the classical data-driven methods are simple 

and widely used in varied fields from urban planning [46], medical [44], to crime 

investigations [47]. Apart from the measurement dataset, conventional methods such as the 

hidden Markov model, autoregressive integrated moving average model also requires 

extensive parameters of the system.  

[PROBLEM 3]  Based on the review, the available literature on the fault detection 

algorithms are limited by (1) use of simple dynamic systems without considering multi-

level integrated units [67], (2) the detectivity of the model is limited by its pre-historic data 

and is ineffective with external feature interaction or when a different scenario occurs build 

[69]. 

[PROBLEM 4]     To the best of the author’s knowledge, there is no considerable literature 

available on model-based prognostic works with auto-tuning of the hyperparameters. Time 

series evolutionary algorithms consume time in choosing the appropriate values with the 

combinational sets for training and validation of the model. 
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1.6  Research Objectives 
 

To resolve the identified problems, the subsequent objectives were established for the 

research work, 

 

[OBJECTIVE 1]     To address problem 1, a modern recurrent neural network model that 

is capable of remembering the long term dependencies has to be framed. The anticipated 

framework has to be (1) proficient with the available data (minimal information), (2) 

update the weights based on the significance of the input, (3) avoid the overfitting and 

underfitting curve fitting issues. 

 

[OBJECTIVE 2]     To tackle the problem 2, the statistical data-driven methods need to be 

refurbished with a new capability. Therefore, the featuring properties of the desired 

conventional methods have to be extracted and merged together into a better algorithm to 

outperform the other classical methods. The other most important characteristic is the 

ability to develop the model without expert knowledge about any system. The intended 

framework has to be easily accessible and executable to any user irrespective of the 

complexity of the field of application. 

 

[OBJECTIVE 3]   To encounter problem 3, an algorithm for handling all abnormal 

scenarios including transient, intermittent and incipient faults needs to be formulated. The 

new fault detection approach should (1) be intelligent in perceiving the behavioral pattern 

of dynamic nonlinear systems, (2) be able to predict the future trends well in advance 

without the complete history of data, (3) be adaptable to the changes incorporated in the 

system by any external means as new scenario or disturbances.   

 

[OBJECTIVE 4]    To overcome the problem 4, the neural network model has to be 

extended with the capability estimating the remaining useful life. Optimization techniques 

have to be integrated into the base model for improving the computational time and 

probability in selecting the finest parameters. Minimum two optimization tools need to be 

configured for the comparative study of their performance metrics to suit the assigned 

problem. 
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1.7 Main Contributions 
 

The contributions for the formulated problems and the research objectives are explained as 

follows, 

 

[CONTRIBUTION 1]      A recurrent neural network (LSTM) model to predict future 

trends with minimal data requirement and adaptive adjustments of weights is developed. 

Multi-step predictions of standard pollution particulate matter (PM2.5) for three Canadian 

cites ahead a month using a sliding window technique with supervised learning (different 

combinations of hyperparameters) is achieved. Dickey-Fuller test is applied to the data for 

removing the stationarity time differencing problems. 

 

[CONTRIBUTION 2]       An improvised statistical framework is formulated with the 

combinations of three significant methods. The predominant factors are extracted from the 

correlation functions, then the shape and scale factors are calculated with Weibull analysis, 

later the intercepts from the torque friction and rotor speed are utilized to detect the fault 

of the Kepler mission Reaction Wheel failures (RW2 and RW4).  

 

[CONTRIBUTION 3]      The LSTM model with elementary design requirements is 

modified to the Kepler dataset with the improvement of early detection capability. With 

the minimal data, the network is tuned and trained effectively to capture the outline of the 

telemetry data. The overfitting and underfitting issues are prevented with appropriate 

selection of regularizers and dropout values.  

   

[CONTRIBUTION 4]       An improvised prognostic model for estimating the remaining 

useful life of the aircraft turbofan engine is designed. The proposed recurrent neural 

network model is integrated with a genetic algorithm and particle swarm technique 

separately and compared with the best combinations based on the results extracted from 

merged parameters (PCA) and digital filters (Savitzky – Golay filter). 
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1.8 Thesis Outline 
 

This thesis is organized as follows: in Chapter 2, terminologies and requirements of fault 

management system are discussed. Also, a comprehensive analysis of both conventional 

approaches and data-driven modern methods are explained. LSTM model is developed and 

validated for pollution dataset with single and multi-step sliding window prediction 

capability. In Chapter 3, the integrated and combined statistical techniques for fault 

detection of Kepler spacecraft reaction wheel scenarios are outlined. In the second part of 

Chapter 3, the enhanced statistical technique is validated using the LSTM model with 

simulations and case studies using coronal discharge (space weather data). In Chapter 4, 

the prognosis algorithm is derived and the remaining useful life of the same fleet of a 

turbofan engine is estimated for all the given operational settings. This prognostic model 

is enhanced with heuristic optimization tools such as genetic algorithm and particle swarm 

optimization to improve the results. In Chapter 5, the highlights, summary of contributions 

and results of the work are described, and the scope of future work is specified. 
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CHAPTER 2 

2. Data-Driven Approach 
 

he most important issues of the mechanical system are performance, reliability, and 

safety. In order to avoid minor issues or failures, these parameters need to be studied and 

monitored completely at every instant in time. Every approach has its own effectiveness 

and shortcomings in detecting and resolving the anomalies. Since the early days, the failure 

rate of the complex systems is declining steadily. The terrestrial systems are frequently 

tested for various modes of failure and are designed with a high level of precision. The 

faulty components can be serviced and will be recovered for its complete operation. On the 

other hand, airborne vehicles and space systems are hard to simulate and extremely 

vulnerable to unknown external disturbances. Based on the literature review all the fault 

detection methods are studied and explained. In this Chapter, a suitable approach with a 

high predictability factor is identified for the most complex systems. 

Several fault prognosis and diagnosis methods available in the field successfully 

mitigates the issue and helps in monitoring the health of the system throughout its operating 

cycle. As a treated field from anomalies, it is important to describe the terminology of the 

factors [82] that are required for the health monitoring analysis, 

Fault: 

• It is defined as an unpermitted deviation of at least one characteristic property from the 

acceptable, standard condition.  

• The smaller and hidden faults are difficult to detect. 

• It can be related to manufacturing, design, assembly, maintenance or operators. 

• It can be minor and may not affect the functionally of the system. 

• It may cause the system to malfunction or collapse. 

 

 

T 
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Malfunction:  

• The intermittent irregularity in the fulfillment of the system’s anticipated function is 

termed as malfunction. 

• It is a temporary disruption of a regular operation. 

• One or more faults result in a malfunction. 

• It occurs after a prolonged stressing of the system. 

Failure: 

• Failure is defined as permanent obtrusion which breaks the ability to perform a desired 

process of operation. 

• One or more faults result in failure. 

• It also occurs after a prolonged stressing of the system. 

• Failure can be systematic, random, deterministic or causal based on predictability.  

 

2.1 Desired Requirements of a Fault Management System 
 

An ideal fault diagnosis model as shown in Figure 2.1 should satisfy certain requirements 

in order to accomplish the desired task with high accuracy.  

 

 

 

 

 

 

 

 

Figure 2.1 Schematic of Fault Diagnosis and Prognosis Model [8] 
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Some of the important general attributes of the DPHM module are listed below [83], 

a) Early Detection and Isolation: For the system to function normally, it has to be 

uninterpreted and flawless. In the case of critical-systems, even a small initiation of the 

fault may propagate and breaks the mechanism. Hence the fault-tolerant module should 

be highly sensitive in identifying and eliminating the fault in the initial stage. The system 

should also be capable of avoiding false warnings. 

  

b) Fault Identifiability: Recognizing the fault is most challenging to accomplish due to 

the presence of uncertainties in the model, external disturbances and turbulences, 

measurement noise and most importantly the coupled interactions between the potential 

fault sources. The type and severity of the fault has to be estimated. 

 

c) Unknown Fault Identifiability: Detecting the unfamiliar fault is relatively easier than 

isolating and identifying them. Due to their irregularities and uncertainties, the new 

faults cannot be modeled. The most renowned failure analysis tools such as FMEA 

(failure mode and effects analysis) and  FMECA (failure mode, effects, and criticality 

analysis) which are used in industry levels known for its accurate predictions, can even 

fail to identify these unacquainted malfunctions.  

 

d) Isolability: The identified fault that occurred in the system has to be isolated from the 

cause, so distinguishing the roots of the fault from other potential sources is the next 

important capability of the tolerant-control system. Isolability is absolutely essential 

since the necessary counter-actions cannot be signaled without the source of the glitch. 

This attribute is also affected by the uncertainties discussed in the previous part.    

 

e) Observability: This is the factor of how well the details of the fault can be inferred 

from the outputs and the known system parameters. 

 

f) Robustness: It augments the reliability, consistency, and effectiveness of the health 

monitoring system. Uncertainties are unavoidable in the practical applications, thus 
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robustness in every measurements and modeling is the utmost important attribute for 

the designed system. 

 

g) Multiple Fault Identification: Even a simple system or a model can exhibit multiple 

faults, so the proposed diagnostic system should be capable of identifying and 

classifying the faults. Incorporating this attribute is problematic due to couplings and 

nonlinearities that exist between the source and the states. 

 

h) Fault Detailing: The fault management system should be capable of identifying the 

exact location, reason, and explanation of how the fault affected the functionality of the 

operation. 

 

i) Adaptability: Each system is exceptional and unique based on its application and works 

in a different operating condition. System and its components are always designed to 

function in its permissible range of vibrations, temperature fluctuations, stresses, and 

other external disturbances. Likewise, the fault-tolerant module has to adapt to the 

system’s operating state in order to maintain competence. 

 

j) Computational Requirements: For the real-time application, the fault detection 

module has to be computationally compatible, memory sufficient, low power 

consumable. It has to have an exceptional specific functionality for each model 

designed. 

 

2.2 Fault Detection/Isolation Methods 

The fault diagnosis algorithms are modeled with the above-mentioned characteristics for 

effectively finding the magnitude and locating the faults at the component level. Fault can 

be from the sensors, actuators or even the processes. The proposed algorithm should be 

capable of notifying every single detail of the irregularity such as proportions, location, 

severity, type and time of detection.  
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There exist numerous fault detection methods starting from the invent of mechanical 

systems. A comprehensive analysis of both conventional approaches and data-driven 

modern methods is explained with its advantages and limitations. For aircraft and 

spacecraft, the severity and consequences are very much higher, due to their direct 

connection with human safety, constraints of time and financial budgets. 

2.2.1 Conventional Methods 
 

The conventional methods require apriori knowledge about the system that is dealt with. 

Large scale complex systems such as space stations, satellites, launchers, aircraft require 

the highest safety. Therefore, these systems are cautiously designed with an uppermost 

factor of safety with a fault diagnosis module as a part of the unit. In this section, the 

different types of fault-diagnosis methods used from earlier days to the present world are 

discussed. They are broadly classified as model-based, signal-based and knowledge-based 

methods. 

2.2.1.1 Model-Based Methods 
 

Model-based methods use the mathematical dynamic equations and generate a 

computational model of the system with their actual features, then the output is simulated 

and compared with the target system to detect irregularities and reason of cause about the 

anomalies. The complete parameters and structure have to be precisely known about the 

system. In the Mid ’90s, Groundbreaking work in the model-based approach was 

developed for NASA’s DeepSpaceOne (DS-1) mission. Most of the earlier methods were 

based on reasoning and quantitative models.  

 

I. Detection by Parity Relations (Deterministic Approach) 

 

The key idea of this method is to generate and evaluate the residuals. These residuals are 

compared between the real and processed model to describe the behavior. If the system is 

functioning normally, then it is said to be non-faulty. The consistency [84] of the 

mathematical equations by using the actual values is checked for any signal differences as 

shown in Figure 2.2. 
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Figure 2.2 Parity Relations Approach [84] 

 

II. Detection by State observers/ Estimators (Deterministic Approach) 

If the system is not completely controllable or directly observable, then the state feedback 

cannot be obtained. In such cases, a new subsystem known as an observer/estimator is 

designed to duplicate the state vectors. An observer computes the states of the dynamic 

system based on the model outputs. Changes in the input or the output lead to the variations 

in the state variables. The function of the observer is to correct the output using the 

estimation error as a residual for the detection of the fault. The general schematic for the 

feedback control system with an observer is as shown in Figure 2.3.  

 

 

 

 

 

Figure 2.3 Schematic of the Output Feedback Controller with an Observer [11] 

 

2.2.1.2 Signal Based Methods 

Signal-based methods work on the principle of processing the measurement signals, it does 

not explicitly require the details about the system. The output signal is analyzed and 

changes in them are related to the fault in the process. Either time-domain or frequency-

domain is used for processing the amplitudes, phases, and spectrum of the signals. 

Vibrational signal measurements use the acoustic-based frequency domain for the 

diagnosis and time-domain methods are mostly used in electric motor applications [82].  
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I. Spectrum Analysis 

 

The faulty sceneries within a certain bandwidth of the signal in the spectrum are restricted 

to the amplitude densities. The frequency of the signal (Eqn 2.1) is generated using the Fast 

Fourier Transform (FFT) algorithm. The amplitude (Amp) signal will have pre-defined 

limit values for a normal operational condition. When the amplitude crosses the restricted 

range (Eqn 2.2), the proposed model will sense the fault and initiate the corrective actions.  

                                 𝑥(𝑡) =  𝐴𝑚𝑝𝑜 + ∑ 𝐴𝑚𝑝𝑖 𝑠𝑖𝑛 𝜔𝑡𝑁
𝑖=1                                              (2.1) 

                                      𝐴𝑚𝑝𝑚𝑖𝑛 ≤ |𝐴𝑚𝑝𝑖|  ≤  𝐴𝑚𝑝𝑚𝑎𝑥                                              (2.2) 

where x(t) is the input signal, Ampo is the initial amplitude and ω is the frequency.  

 

II. Parametric Model (ARMA)  

 

The autoregressive-moving-average model is a type of parametric signal approach used 

mainly for the time-series datasets. The model describes the process in terms of two forms, 

one for regression and the other for the error term. These models are sensitive to very small 

changes in frequency. ARMA(p,q) model is defined in Eqn (2.3) with p as the order of AR 

term and q as the order of MA term.  

𝑥(𝑡) =  𝑐 + 𝜎𝑡 + ∑𝛽𝑖

𝑝

𝑖=1

𝑋𝑡−1 + ∑𝛼𝑖

𝑞

𝑖=1

𝜎𝑡−1 + 𝜗𝑡 

 

with parameters 𝛽𝑖 and 𝛼𝑖, c is the model constant, 𝜎𝑡 is the random variable and 𝜗𝑡 is 

noise. 

 

2.2.1.3 Knowledge-Based Methods 

The trend of fault diagnosis methods moved towards knowledge-based algorithms (also 

known as rule-based) to solve complex systems. Qualitative methods work on the basis of 

a certain set of rules developed for the system using historic data and prior understanding. 

While the quantitative knowledge methods are based on both statistical and non-statistical 

analysis approaches [85].  

   (2.3)  
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I. Expert Systems 

 

In the earlier days, this method is considered as the most significant accomplishment of 

artificial intelligence. Most of the research work in space systems developed in the early 

90s is exclusively based on the invent of this scheme. With a high level of experience and 

expertise about the system, some common set of rules about the cause and effects of the 

anomalies and their relationship between the warnings and failures is vigilantly established. 

The advantages of this scheme are that the rules can be easily amended, changed or 

removed with suitable explanations, it outperforms the model-based methods in terms of 

power and capability. The most significant issues of this technique are that the physical 

properties are either not fully available or costlier to acquire, inability to detect unknown 

phenomenon, inefficient inconsistency, incapability to learn from their errors.  

 

II. Fuzzy Logic 

The Fuzzy logic theory had been studied since the 1920s and was later termed by Lotfi 

Zadeh in 1965 while proposing the fuzzy set theory. Based on the available information 

and existing data the fuzzy logic controller is designed to detect the anomalies. Boolean 

logic only has two variables either true (1) / fault or false (0) / no-fault, in contrast, the 

fuzzy logic has many variables between 0 and 1 representing the range of intensity of the 

faults [86].             

Fuzzification, Rule execution, Defuzzification are the major steps involved in the Fuzzy 

logic controller. Fuzzification is the process of tagging the input variables with random 

values between 0 and 1 with membership functions. The variables with 0s and near 0s are 

not a part of the fuzzy set, on the other hand, the variables with 1s and near 1s are 

considered to be in the fuzzy set. Each value between the interval [0,1] has a significant 

degree of certainty. Secondly, based on the rules and reasonings the process is evaluated 

and executed for computing the output. Finally, defuzzification - converting the fuzzy 

values to its original form is carried out to decide the state of the system based on the 

prearranged conditions [87].  
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2.2.2 Data-Driven Methods 
 

All the conventional fault detection methods discussed earlier requires the detailed historic 

knowledge about the model. In other words, they are based on empirical reasoning 

processes for future predictions. On the other hand, fault diagnosis methods based on data-

driven analysis only requires past telemetry data with all possible combinations of 

operational conditions. They are popularly known as Machine learning or Data Mining 

approaches and has recently gained popularity and drawn attention in almost every field. 

With the advancements in internet and technology, acquiring, handling or storing data has 

become much easier and simpler in the present world. Many advanced algorithms have 

been developed with a large volume of available data and high computational power. Data 

is considered to be a critical asset to the business world, the growth in each sector has made 

a leap forward with the highest advancement in retails and location-based services.            

New challenging and attractive data-driven solutions are introduced every day and are 

changing the insights of the markets. The important challenge in big data analytics is 

extracting meaningful features from both physical and digital environments. Successful 

utilization of data requires five elements as shown in Figure 2.4. 

Figure 2.4 Transformation Process of Data and Analytics [34] 

 

To demonstrate the detailing about the process or model, an appropriate statistical 

measure has to be framed using the generated data. The competence of these data-driven 

methods depends on the objectives and independent parameters required to describe the 

system. The characteristics of the data such as mean, variance, standard deviation remains 

the same unless a fault occurs in the model [88].              
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The measured data has to be pretreated to remove unwanted features, signal noise, and 

discontinuities. Further, it has to be scaled and reshaped for input to the model to perform 

regressive training. Lastly, the trained model is tested for fault, classification or future 

prediction applications for the real world. 

2.2.2.1 Classical Data-Driven Approaches 
 

In this section, the conventional methods formulated in the early days of data analysis are 

discussed in detail. These standard procedures are integrated with modern algorithms for 

improving redundancy and reliability. Numerous classical fault detection approaches were 

applied across different anomaly types, application domains, and various data types. Some 

of them are as discussed below,  

I. Limit Checking 

 

Limit checking is the most fundamental and widely used fault detecting method. The 

nominal range for each sensor value is determined by engineers and designers. The 

telemetry data received from the system is monitored continuously for its nominal values 

with a specified upper and lower limit. When the signal deviates from the pre-determined 

threshold value then the component is considered to be defective or malfunctioning as 

represented in Figure 2.5 and its application is discussed in Chapter 3.  

 

Figure 2.5 Threshold Limits for Spacecraft Telemetry Data 
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This method is still used in many complex systems due to its significant features. One 

is simplicity - the ease of implementing; second is the success rate of detecting the fault 

and the third factor is that the limits values can be repeatedly adjusted by the technicians 

based on the local condition. However, this approach fails in detecting the new faults and 

the types of failure that are associated with various factors other than limit volitions.  

 

II. Principal Component Analysis (PCA) 

PCA is mainly applied in the multivariant data field to transform the vector space into a 

subspace maintaining the maximum variance of the actual space with dimensionality 

reduction. It is the linear transformation technique to convert the correlated data into an 

uncorrected form that explains the trend of the process as shown in Figure 2.6 [89].  

The nonlinear space systems and aircraft will have a multitude of sensor values, this 

method helps in mapping the telemetry values of each time segment into a high 

dimensional feature space by the kernel (polynomial) and detects the fault as the deviation 

of the principal direction of the data. This method is successfully applied in merging the 

sensor values of the turbojet engine (Chapter 4) for obtaining the principal direction.  

 

Figure 2.6 PCA Components of the Multiple-Sensor Values of the Turbojet Engine 
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III. Correlation Analysis 

Correlation analysis is a simple formulation to find the strength of the association between 

the design variables. The correlation coefficient (ranges between -1 and +1) quantifies the 

direction and strength of the connection. This concept is applied primarily in the Kepler 

dataset (Chapter 3) for understanding the defect causing factor and to reduce the 

dimensions. Figure 2.7 shows the positive correlation between the two telemetry values 

(Rotor Speed and Torque Command). The figure of merit that is mostly used to evaluate 

the health condition of the wheel is torque command and speed. 

 

Figure 2.7 Correlation Between Speed and Torque Command – Kepler Mission 

 

IV. Weibull Analysis 

 

The Weibull distribution can be used to predict failure even for small sample sizes. In most 

cases the two-parameter model is preferable and a three-parameter model is used to 

describe failure behavior when there is a time period where no failure can occur. Weibull 

distribution with the two-parameter model is mathematically expressed as, 

                                                         F(t) = 1 – e –(t/η)β                                                 (2.4)                                    

The distribution has two factors, scale factor (η) and shape factor (β): 

For the shape factor, 

If β is less than 1, the sample fails earlier than expected. 

If β is equal to 1 shows random failures 



42 
 

 

If β is greater than 1, specifies the sign of wear out failures 

The second parameter η also is known as the scale parameter represents the time at 

which the specimen will fail, the higher the scale parameter the better the durability. The 

lifespan of any product can be determined by fitting the statistical distribution to its 

sampled data unit. The probability density function (pdf) describes the mathematical 

representation and the model estimates three parameters [90].  

After obtaining the parameters, factors like mean life, failure rate, reliable life with 

confidence bounds are calculated. The Weibull distribution is applied for the same Kepler 

dataset (Chapter 3) and  Figure 2.8 is a plot that represents unreliability versus time.  

 

Figure 2.8 Plot Representing Early Life, Useful Life, and Wear out Life [90] 

 

V. Friction Model 

The review of failure analysis reveals that bearing-related anomalies are the major cause 

of actuator failure in the spacecraft. The Frictional analysis of the components based on the 

bearing friction data will be a major breakthrough for the fault diagnosis zone. This method 

has the most powerful impact on detecting irregularities [62]. Dry friction, calculated from 

the total friction-induced torque and rotor speed (both available from the telemetry data) is 

plotted (Figure 2.9). The intercept and slope values of the plot are analyzed for 

discrepancies with the nominal friction values (Chapter 3).  
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Figure 2.9 Classical Frictional Model [62] 

2.2.2.2 Statistical Based Data-Driven Methods 
 

In statistical-based methods the given data set is scrutinized with statistical features such 

as mean, median, bias, variance, standard deviation, etc., to solve the problem. Statistical 

learning will identify the risk factors, classifies the variables that cause discrepancies, 

emphasizes the uncertainty and interpretability of the model. Linear regression is an 

elementary statistical technique used for predicting the target variable by fitting the linear 

relationship. Some other famous tools are classification analysis, resampling methods, 

subset selection predictors, shrinkage analysis, tree-based methods, etc., Two of the wide-

spread models are discussed below in detail.   

 

I. Hidden Markov Model (HMM)  

 

The Hierarchical Hidden Markov Model inspects both the observable events and hidden 

units of the error causing function. The model is embedded with Markov chains that are 

structured with transition probability state variables [91]. Initially, the probability of the 

occurrence with all the possible combinations is calculated and the Viterbi decoding 

algorithm is applied to find the hidden states. Deciding the number of independent features 

is the initial step for the HMM, then the normal distribution values for each segment is 

computed. The boundaries and neighboring values are altered based on the z-score. Upon 

iteration, the performance parameters are estimated.  
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II. Autoregressive Integrated Moving Average Model (ARIMA)  

 

This model is a popular statistical approach for time series analysis which captures a 

standard temporal structure in the data.  In the algorithm, the dependent association with 

current and past observation is inspected. Then, the data is converted to a stationary form 

using differencing techniques to eliminate the trend and seasonality that affects the 

regression model. Finally, the dependency factor is established from a residual error [92]. 

The parameters such as the number of lag observations (p), degree of differencing (d) and 

order of moving average are defined, and the model is trained to forecast the time 

associated applications. The model has the number of variations VARIMA (Multiple 

Variables), SARIMA (Seasonality effects), FARIMA (Long-range dependences).  

2.2.2.3 Advanced AI Methods  

 

Artificial intelligence methods help the computer to mimic the human intelligence for 

solving any problem types such as classification, image or speech recognition, prediction 

or new data generation. It is a well-established cutting edge technology for the scientific 

investigation. Artificial learning involves a number of techniques or procedures that 

recognize patterns and relations in huge amounts of complex data. Figure 2.10 

characterizes the features of the advanced AI algorithms.  

Techniques such as support vector machine, Markov decision models, k-mean 

clustering are in use for decades. Falling into the latter class are artificial neural networks 

- a model inspired by the connectivity of neurons in the human brain.  

                     

Figure 2.10 Process Involved in Artifical Intelligent Methods [34] 
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I. Support Vector Machine (SVM) 

 
Support Vector Machine got its name from the data points that are directly on either of the 

supporting lines. Support Vector Machine is a simple machine learning algorithm that is 

used mostly in classification based problems. The objective of the algorithm is to locate 

the hyperplane in N-dimensional space (N distinct features) to classify the data points 

(Figure 2.11) [93]. For nonlinear multidimensional problems, the kernel-based 

mathematical tool is used for classifying the data points.  

 

Figure 2.11 Classification Using SVM [93] 

 

The dimension of the classified vector used for training the SVM does not have an 

influence on the performance and hence it is capable of handling large features and has 

better generalization properties than the conventional classifiers [93]. SVM will recognize 

the pattern and classifies the fault of the nonlinear system using kernel Hilbert spaces. SVM 

algorithm is fully automatic, robust and outperforms with substantial improvements over 

the other methods. Recently developed techniques such as coordinate descent and sub-

gradient in SVM classifiers are more efficient with large and sparse datasets.  

 

II. Markov Decision Process 

A Markov Decision Process (MDP) is a modeling technique with the outcome that is partly 

random and partly based on the input of the decision-maker. The main goal of MDP is to 
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find a policy for a problem and to indicate further required action to normalize the situation. 

The model contains the following parts,  

a. A set of possible world states 

b. A set of possible actions  

c. Transition probabilities - effects of each action 

d. Direction towards planning - reward function  

Markov decision process (Figure 2.12) is defined by the five-tuple  (x, y, y(.), p, r) where 

x is the state space, y denotes the action space, y(x) is a set of admissible actions in the 

state x, p(x,y)(z) is the probability of transitioning from state x to z and r denotes the reward 

when y action is taken in the state x [94]. In the MDP process, deterministic and stochastic 

actions have to be represented with a solution and a policy (Л)  for mapping sets to actions. 

Subsequently, the assigned policy has to be followed up for the new state and evaluated for 

an optimal value. Later, an objective function maps infinite sequences to a single real 

number representing utility.  

  

 

 

 

 

Figure 2.12 Markov Decision Process [94] 

 

III. Artificial Neural Networks 

 

Intelligence in the machine can be created by repeated learning and adaptivity. This 

concept is inspired by the human brain which has a highly interconnected network of 

neurons for communication. ANNs (Figure 2.13) are modeled by simulating the network 

Environment 

Agent 

Action 

State 

Reward 



47 
 

 

of model neurons with weights and activation functions. The output of the feed-forward 

network is based on the assigned weights and is evaluated by mean squared error metrics. 

The same steps are repeated for all training data and until a pre-defined optimized value is 

obtained. Neural networks can be trained to store, process and retrieve information based 

on past observations.  

 

Figure 2.13 Graphical Representation of Biological Neuron (left) and an Artificial Neuron (right) 

[95] 

 

In the biological brain, learning consists of strengthening or weakening the bonds 

between different neurons to remember or forget things accordingly. In the case of ANN, 

learning is just updating the weights at every time step during the training process.  

The structure and features of the neural networks can be organized in several ways based 

on its application. Components of an artificial neural network are, 

a. Input layers 

b. Neurons 

c. Activation Functions and Learning Rate 

d. Hidden Layers 

e. Output Layers 
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Different types of neural networks with its variations and wide range of applications are 

discussed in detail in the upcoming section 2.3.   

2.2.2 Hybrid Methods 
 

Both classical and data-based methods are discussed in detail in the previous sections, a 

major problem in the conventional methods is that the system model has to be accurate. To 

manage this uncertainty, a hybrid approach with a probabilistic inference and an inductive 

estimation process based on telemetry data is created (Figure 2.14).  

                                       

                                                 Figure 2.14 Schematic of Hybrid Model  

 

Dynamic Bayesian Network (DBN) is a modified version of Bayesian Network (BN) 

proposed to model numerous dynamic systems.  DBN is a state space approach using the 

Kalman filter and Hidden Markov model with the uncertain parameters learned from the 

past data. This method performs fault analysis by sequentially estimating the unobservable 

variables from the observable sets [63]. In the future, hybrid methods with the 

combinations of best features from different models will play a prominent role in the fault 

detection and diagnosis field.   

2.3 List of Neural Network Models 
 

There are different types of neural network models based on the problem type and the 

output, some of the major categories for binary classification, time series prediction, image 

processing, etc., are discussed below, 
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I. Feed-Forward Neural Network 

 

Artificial Neural networks are a notion in the field of artificial intelligence. This concept is 

inspired by the sensory processing model of the human brain. The ANN is created by 

simulating a network of model neurons with input, output and hidden layers as shown in 

Figure 2.15.  

 

 

 

 

 

 

 

 

 

Figure 2.15 Multilayer Feedforward Neural Network 

 

The system is trained repeatedly to imitate the real-time process termed as learning. 

Like the human brain, for the neural network knowledge is acquired through the learning 

process and connection strengths named as weights are used to store the information. 

Furthermore, the process of training ANN has many types, they are Perceptron, 

Backpropagation, Self-Organizing Map and Delta [96]. 

The neural network is developed from a popular machine learning approach named 

perceptron. In this method, the signal is allowed to travel only in one direction from input 

to output without a feedback loop. Feed-forward neural networks are the quintessential 

model that are similar to linear models used to solve the simple and most important 

commercial applications. The main goal is to approximate the function that maps the inputs 

with the classifier category. They represent many different functions together and hence 
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are often called networks. The model is associated with the behavioral characteristics of 

the function, let the functions f(1), f(2), f(3) are connected in a form f (x) = f (3) (f (2) (f 

(1)(x))) where 1,2,3 represents the layer numbers. The overall length of the chain represents 

the depth of the model, thus it is named as  “deep learning”. The measured data with noise 

and imperfections are preprocessed to evaluate the output function at every iteration. Each 

hidden layer in the model is vector-valued with appropriate activation functions embedded 

in each of its neurons [31].         

Neuroscience is the inspiration for choosing the number of neurons, hidden layers, 

learning rate, and other functions to compute the output. This is the elementary model 

developed in the 1950s and has many limitations such as limited capabilities (linear 

functions), the volume of past data, no feedback loop, difficult to compute the gradients of 

complicated functions. The back-propagation algorithm and its modern generalizations are 

effectively used to overcome the shortcomings.               

Backpropagation is a supervised learning method introduced by Paul Werbos in 1974, 

then made popular by Rumelhart and McClelland in 1986. The value from the output layer 

is fed back to the input layer with changing the weights as shown in Figure 2.16. It is an 

efficient method of finding the change in each segment weight in a multi-layer network to 

minimize the error [97].                 

Let i be the input neuron and j the output neuron, wij denoted the connection weight, xj 

represents the input to the jth neuron, and yj signifies the corresponding output and dj is the 

desired output, 

Total Input                  xj = ∑ yi wij                                                      (2.5) 

Output (Sigmoid Function)                𝑦𝑗 =
1

1+𝑒
−𝑥𝑗

                                                        (2.6) 

This algorithm reduces the global error for the given set of weights, the error derivatives 

for all weights will be computed by feeding backward from the output units. The process 

of presenting epochs of training samples to the network continues until the average error 

reached a defined error goal. 
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Figure 2.16 Neural Network with Backpropagation 

 
II. Recurrent Neural Network (RNN) 

Feedforward neural networks with a feedback connection is known as recurrent neural 

networks. They are capable of handling variable-length sequence input by having recurrent 

hidden states with dependent activations. RNNs are two-way communication networks 

with one to many or many to many configurations. This network can address issues related 

to storing and retrieving information at any instant in time [31].  

In this chain-like structure, the contents of the output vector are influenced by both the 

present input and the history of past inputs. The adjustment of magnitude and direction of 

weights is estimated by running the back-propagation algorithm with the differential 

operations. The model parameters are updated along with the gradient direction to increase 

the target score. This process is repeated over many times until the solution converges with 

a consistent prediction.  

Recurrent neural networks are specialized for processing sequential values mainly time 

series. This model produces an output at each time step and have connections between the 

hidden units. A generalized back-propagation algorithm is used to compute the gradient 

for RNN. The RNN model is unrolled and application to it is known as back-propagation 
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through time (BPTT). An RNN is a multiple layer network with levels structurally being 

copies of each other and each layer passes information to the next layer as shown in Figure 

2.17. RNN has been successfully applied to time series sequences, speech recognition, 

language modeling, translation, and image captioning. This feedback loop that records 

information at every time step has to be stored, but the RNN is incapable of doing them. 

The basic problem is that gradients propagated over many stages tend to either vanish or 

explode. 

 

 

 

 

 

 

 

 

Figure 2.17 Structure of RNN with Unrolled View [31] 

 

III. Long Short Term Memory (LSTM) 

Recurrent neural networks are incapable of storing long term dependencies due to 

insufficient decaying error backflow. An efficient approach introduced by Hochreiter in 

1991 addressed the gradient-based method termed as Long Short-term Memory. LSTM 

networks can learn past information and solve vanishing gradient problem with excess of 

1000 time steps by imposing constant error flow through carrousels within the special units 

[57]. The architecture allows constant error to flow through the special and self-connected 

units without any limitations of the previous methods.    

LSTM networks are four times complex compared to the simple RNN and effective in 

recognizing patterns outlines across time. A multiplicative input and output gates are 

introduced to protect the stored memory contents and avoid perturbation by irrelevant 

values respectively. It is also embodied with a multifaceted memory cell around a central 

linear unit with a fixed self-connection. Due to the model’s speed, proficiency in solving 
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complex problems and time lag tasks, LSTM is considered to be the most relevant method 

for this work and thus is applied throughout all the case-studies with suitable justifications. 

 

IV. Convolutional Neural Network (CNN) 

 

CNN is a class of feed-forward neural network which is mainly used for image processing, 

object and video recognition, natural language processing, etc., The structure of ConvNet 

is inspired by the organization of visual cortex in the human brain for image recognition. 

A ConvNet successfully captures the spatial and temporal dependencies in an image 

through the various layers and filters in the architecture [98].                    

A typical model consists of an input, output and multiple hidden layers, in CNN the 

hidden layers are made of series convolutional layers with pooling and fully connected 

units. The CNN consists of a set of layers (Figure 2.18) with one or more planes to 

recognize the complex multidimensional image,  

Convolution Layer 

a. Based on the given image (m x m), a number of filters of size (n x n) are applied with a 

particular stride size (s). 

b. The filter is mapped to the input image and mathematical operations are computed and 

the obtained value is stored in the center of the cell. 

c. The applied filter is moved with the pixel and is repeated for the entire portion of the 

image. 

d. A feature map for the given filter is attained with the size (m-n+s) x (m-n+s) and the 

same procedure is applied with padding to every filter for obtaining the final stacked 

convoluted map.  

e. The first ConvLayer captures the low-level features such as edges, colors, orientations, 

etc. Further, the high-level features are acquired with the added layers. 

Pooling Layer  

a. The purpose of the pooling layer to further reduce the spatial size of the convoluted 

feature which decreases the computational time and power. 
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b. There are two types of pooling, max-pooling (returns maximum value) and average-

pooling to extract the dominant features which are rotational and positional invariant. 

Fully Connected Layer  

a. This Layer is used for learning the non-linear combinations of high-level features of the 

output in kernel space. 

b. Activation functions such as ReLu or SoftMax is applied to classify the dominating and 

unwanted features from the image. 

 

Figure 2.18 A Typical Convolutional Neural Network [98] 

2.4 Steps Involved in Data Modeling 
 

The steps involved in analyzing the problem using data analysis is discussed in detail, 

executing these segments will improve and simplify the investigating procedure in terms 

of efficiency and computational time. 

a. Data Acquisition 

The primary step is to examine the obtained data for its attributes as mentioned in 

section 1.2.1, the required feature for the related problem has to be taken into consideration. 

The collected data has to be organized will all the necessary details with proper units and 

source notes. Time frame, criticality factor, linear dependencies, correlative behavior has 

to be measured initially for consistency and applicability. 

b. Data Preprocessing 

Real-world datasets are mostly unstructured and unformatted that should be cleaned for 

imperfections like out-of-range values, NANs (Not A Number) and the missing values have 

Image Convolutional  Pooling Pooling Convolutional  Fully 

Connected  



55 
 

 

to be filled with an appropriate substitute. The range of input dimensions may vary from 

problem to problem and it is laborious to change the setup every time, therefore these 

values have to be normalized based on the statistical features to generalize the situation. 

Techniques like Principal Component Analysis (PCA), Singular Value Decomposition 

(SVD) are proposed for removing insignificant items to reduce the dimensionalities.  

c. Filtering Techniques  

Apart from the visual features, there are some unwanted inbuilt characteristics like noise 

and impurities (outliners) within the data which has to filter to extract the actual response. 

Most complicated filtering is for time-series data which is analogous to signal processing. 

The high-frequency fluctuations are removed using the filters to improve the factor of 

predictability [99].  Wiener, Kalam, and Savitzky-Golay filters are the most commonly 

used signal processing techniques used in data mining applications.  

d. Model Generation and Analysis 

After manipulating the data in all possible ways, the input is reshaped to the model 

readable format with sample size, dimensions, timesteps, and distinct features. Based on 

the nature of the problem, one of the above discussed data-driven neural network models 

is designed. The input and output given to the model may be of supervised learning or 

unsupervised learning format. This proposed network is compiled with a portion of the 

training dataset and validated with the test-set using appropriate optimizers and loss 

functions to generate accurate future predictions of the given type of problem. 

e. Interpretation of Results  

 

Finally, from the iterative runs of the model, the convergence error is studied between 

train and test results for improving the efficiency. After determining the proficiency of the 

model, the future values are predicted with some confidence interval. In spite of regressive 

processing and analysis, the data-driven models may not be accurate due to proper model 

selection, overfitting and underfitting issues, improper tuning of hyperparameters. 
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2.5 Model Selection and Hyperparameters 
 

Artificial neural networks have the greatest ability to learn and predict complex and 

nonlinear relationships. Different models discussed in the previous section 2.3 are applied 

accordingly to real-time problems such as binary classification, pattern recognition, future 

prediction, anomaly detection, image processing, and others.     

The Feed-forward networks are employed in solving classification problems like 

true/false predictions, consumer activities in marketing, weather forecasting, speech, vision 

and handwriting recognition.         

Time-series problems are mostly solved by recurrent neural networks due to its 

recursive properties. Any time-based data such as remaining useful life prediction of a 

system, telemetry data from the satellite or word predictions in a sentence, natural language 

processing are effectually solved by RNNs. The limitations in solving the above-listed 

issues are efficiently resolved by the special case RNN known as LSTM. The case studies 

in the current work fall in this category and thus an improvised LSTM model is solidly 

considered and successfully applied.         

CNN's are used to identify the conceptual structure of an image by breaking down into 

overlapping tiles. This network gives better accuracy and boosts the performance due to its 

local connectivity with shared weights and is mainly applied in face recognition, scene 

labeling, image classification, action recognition, human pose estimation, document 

analysis, natural language processing, and others.      

Each of the networks has many different parameters and each has a significant effect on 

the convergence of the solution. Some of the common parameters in the ANN models are, 

a. Number of Neurons 

b. Number of Hidden Layers 

c. Input and Output Size 

d. Learning Type 

e. Activation Functions 

f. Batch Size 
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g. Number of Iterations (Epoch) 

h. Optimizer 

i. Learning Rate 

j. Decay Parameter 

k.  Dropout Value 

l. L1/L2 Regularization 

 

Tuning all the parameters manually results in a total of more than 6 00 000 

combinations, which is timing consuming and laborious. To improve the accuracy, 

predicting factor, efficiency, power, and computational time some of the optimization 

techniques along with filters are applied.  

2.6 Data-Driven Modelling: LSTM 
 

A base LSTM model with all the essential parameters is created and validated with 

Particulate Matter (PM2.5). 

2.6.1 LSTM Structure  

The structure of LSTM is similar to that of RNN with a difference in repeating modules. 

Instead of a single layer, there are layers interacting in a very special way as shown in 

Figure 2.19. It is composed of cell states, gates (to regulate the flow of information) and 

memory cells [100].  

 

 

 

 

 

 

 

 

Figure 2.19 LSTM with Interacting Layers [57] 
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The cell state runs through the entire chain with linear interactions, forgetting old memory 

and adding new memory. Gates let/prevent information through it with am activation layer 

and an elementwise operation. An LSTM has three gates; input, output and forget gate. 

The cell state vector at the current time is Ct and the previous time step is Ct-1. 

Forget gate layer: Looks at ht-1 and xt and outputs a number 0 and 1(sigmoid layer) for each 

number in the cell state Ct-1. 

 

                         Forget vector 𝑓𝑡 =  𝜎(𝑊𝑓. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                         (2.7) 

 

Input gate layer: Decides the update on the new information with 2 parts, a sigmoid layer 

(what to update) and a tanh layer (what new value to add). 

 

                     Input Vector 𝑖𝑡 =  𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                (2.8) 

                   Cell state update vector 𝑁𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                         (2.9) 

 

Then all the old cell state Ct-1 has to be updated with the new cell state Ct.      

Output gate layer: Decides what is going out based on the filtered version of the cell state. 

Sigmoid layer runs in which part goes out and puts the cell state through the tanh layer. 

 

        𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑂𝑡 =  𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), ℎ𝑡 = 𝑂𝑡 ∗ tanh (𝐶𝑡)                (2.10) 

 

Other popular variants of LSTM are Peephole connections, coupled forget and input gates 

and Gated Recurrent Unit (GRU). Among them, the GRU is simpler and growing 

increasingly popular in the current days. 

2.6.2 Preprocessing    
 

In the current case, the multistep pollutant prediction is studied. Accordingly, the input 

sample is thoroughly inspected and stacked in such a way the file only has the hourly 

interval of appropriate data with the absolute numbers reformatted to values between 0 and 

1 with the inbuilt scaler function and the missed values are filled with their mean. The 
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given data (PM2.5) is converted to the supervised format by shifting the data with a given 

time step into inputs and outputs with the required interval.  

 

Input: PM2.5 (t-n) , Output: PM2.5 (t+n) 

where t is time step and n is number of future intervals 

 

The training dataset (50%) is used to train and fit the model. In this zone, the model will 

capture, store the feature of the sample and learns weights, biases. The second set (25%)is 

used to fine-tune the hyperparameters and validate the proposed model. Finally, testing 

(25%) is the new set of data used for validating the model with the performance metrics.  

2.6.3 Hyperparameters of the Model 

 

This method minimizes the error and delivers the predicted value based on the fine-tuning 

of the hyperparameters of the model as explained, 

 

a. Batch size, Neurons, Hidden layers:  

Batch size is defined as the number samples that will get updated with the weights before 

the next iteration, it has to chosen to avoid convergence and time. For better memory, the 

number is always chosen in the powers of 2.  

Batch Size = near the power of 2 [of (Total training set/1000)]]  
 
For selecting number of neurons there is no direct thumb rule, to start with the upper bound 

has to be always within the range of NH 

 

𝑁𝐻 = 
𝑁𝑜.  𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎

[𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟(2 − 10) ∗  (𝑁𝑜.  𝑜𝑓 𝐼𝑃 +  𝑁𝑜.  𝑜𝑓 𝑂𝑃)]
 

 

The number of hidden layers depends on the size of training data, an optimum number 

will avoid overfitting and bias problems. Two are preferable for this kind of problem and 

can represent an arbitrary boundary with smooth mapping. 

 

 

 

 

(2.11) 
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b. Activation Function:  

The nonlinear activation function includes logistic sigmoid, tan-hyperbolic, rectified 

linear (ReLU) and SoftMax/Softplus. The only requirement to choose the function is that 

it should be continuously differentiable. For the logistic sigmoid the output range is (0,1) 

it prevents jumps in the output values, the range for tanh is (-1,1), it is zero centered making 

it easier to model the negative values. ReLu (0, max) is computationally efficient function. 

SoftMax/Softplus is mostly used in the case of multiple-layered categories. 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 ;   𝑇𝑎𝑛ℎ 𝑓(𝑥)

1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
;   

𝑅𝑒𝐿𝑈 𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

;    𝑆𝑜𝑓𝑡𝑀𝑎𝑥 𝑓(𝑥) = log𝑒(1 + 𝑒𝑥) 

 

c. Optimizers and Regularizers: 

Optimizers are the inbuilt algorithm that is used to update the weights after every 

iteration. It helps to optimize the objective function of the given set. ADAM (Adaptive 

Moment Estimation) is a second-order optimizer that has a faster convergence rate, the 

capability of tuning the learning rate and keeps an exponentially decaying average of its 

past gradients and is used accordingly. Furthermore, underfitting and overfitting issues are 

avoided by adding dropout layers, it acts as a regularizer and removes the unwanted 

connections. L1 (Lasso Regression) and L2 (Ridge Regression) are regularizers wherein 

the high values of weights are curbed and is used when the model overfits ever after using 

the dropout value. Finally, the total number of iterations is regulated with the early stopping 

criteria. Figure 2.20 represents the LSTM architecture including all the above-mentioned 

parameters that are used in the modeling.   

 

(2.12) 

(2.13) 
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Figure 2.20 Descriptive LSTM Model Plot 

2.6.4 Stationarity of the Data  

 

The model that exhibits correlation and tends to output (t+1) time index value close to time 

(t) is known as the persistence model. In order to avoid such a downside, the need to be 

checked for its trend over time and is changed to stationary standards with statistical 

properties such as mean, variance, standard deviation using the Dickey-Fuller test [101] 

and the obtained results are shown in Table 2.1.  

Inference of Dickey-Fuller test :  

i. P-value <= 0.05  the data does not have unit root and is stationary.  

ii. The more the test statistic value is negative the data is stationary. 

 

Table 2.1 Results of Dickey-Fuller Test 

Number of Observations Used: 34990 

Test Statistic Value -19.911217 

P-Value 0.0000000 

Critical Value (1%) -3.4305370 

Critical Value (5%) -2.8616230 

Critical Value (10%) -2.5668140 

 
 

 



62 
 

 

2.6.5 Results and Discussion 

 

The accuracy and efficiency of the LSTM model is validated for real-world data. Both one-

step prediction (supervised learning) and multi-step predictions using the sliding window 

technique ahead a week and a month respectively are achieved. The model is evaluated 

with Root Mean Square Error (RMSE) and Mean Percentage Error. 

2.6.5.1 LSTM - One Step Prediction 

 

The LSTM model developed was used to predict the PM2.5 values for the next time step. 

The parameters of the model are as given in Table 2.2.  

 
Table 2.2 LSTM Model Parameters for One-Time Step 

Parameters Values 

Number of Neurons 50, Dropout Value of 0.2 

Number of Hidden Layers 1 

Batch Size 64 

Input shape 1,1 

Output shape 1 

Optimizer ADAM 

Loss Function Mean Squared Error, Mean Absolute Error 

 

 

Figure 2.21 Actual and Predicted Values of             Figure 2.22 Variations of Actual and 

      Fine Matter Particulate (PM2.5) [Mississauga]                          Predicted Values [Mississagua] 
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    Figure 2.23 MAE Plot for Train and                                 Figure 2.24 MSE Plot for Train and 

              Validation Dataset [Mississagua]           Validation Dataset [Mississagua] 

 

 

Figure 2.21 shows the real and predicted values of Mississauga over the year 2017 - test 

set (never used in training or validation) as it almost overlaps with each other. Being the 

model learned all parameters, it is used to predict the test sequences one at a time. This is 

persistence prediction and is implemented by using the last value of the training data and 

history accumulated by walk-forward validation for predicting the next step value. Figure 

2.22 shows the comparison of actual and predicted values, Figures 2.23 and 2.24 are 

convergence of error plots and is seen that the rate of the validation error is slightly above 

the training error which is considered to be a good fit. Table 2.3 represents the results 

obtained for all the cities. 

 

Table 2.3 Model Metrics for the Results of One-Step Prediction 

Performance Scores Mississauga Toronto Downtown Ottawa 

Root Mean Square Error (RMSE) 2.030 2.351 1.541 

Mean Percentage Error 21.47 20.82 17.814 

Total Computational Time (s) 101.43 73.39 86.16 
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2.6.5.2 LSTM - Multi-Step Prediction 
 

This model is created with the aim to predict future events based on the fixed lag in time 

to predict the window of the same size. Since the model always inputs the sequences of 

known inputs it eliminates the built-up error. The algorithm was developed to one-week 

values to predict the next week’s values. The prediction is iterated constantly every time to 

forecast the next week’s corresponding value using the previous week’s data. All the hourly 

data is resampled to a daily time interval before the analysis. The parameters of the model 

for both 1 week and 15 days predictions are as given in Table 2.4.  

 

Table 2.4 LSTM Model Parameters for Multi Time Step Prediction 

Parameters Values 

Number of Neurons 200, Dropout Value of 0.2 

Number of Hidden Layers 1 

Batch Size 16 

Input Shape 1,1 

Output Shape 1 

Optimizer ADAM 

Loss Function Mean Squared Error 

 

      

     Figure 2.25  Actual and Predicted Values of Fine           Figure 2.26 Actual and Predicted Values of 

 Particulate Matter (PM2.5) 1-Week                                 Fine Particulate Matter (PM2.5) 15 Day      

Ahead [Toronto]                                                                     Ahead [Toronto] 



65 
 

 

 

Figure 2.27 Error Plot of Actual and Predicted Values(PM2.5) [Toronto] 

 

Figure 2.27 error plot of the actual and predicted values of pollutant particles. Table 2.5 

represents the performance metric scores and computational time of the model taken by all 

the three different data sets for both 1 week and 15 days prediction. 

 
Table 2.5 Score Metrics of Multi-Step Prediction 

Performance Scores Mississauga Toronto Downtown Ottawa 

 1 week 15 days 1 week 15 days 1 week 15 days 

Root Mean Square 

Error (RMSE) 

3.922 7.823 4.023 4.916 4.152 4.658 

Mean Percentage Error 23.57 44.18 28.64 48.51 23.65 46.25 

Total Computational 

Time (s) 

77.458 105.98 110.14 137.66 156.15 145.67 
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2.6.5.3 Sliding Window - Multistep Prediction  
 

The sliding window or moving window forecasting method is used to predict the future in 

multiple time steps without using the source data. The model will learn the input in a 

particular sequence and predicts the output, later this predicted output is used to forecast 

the future values in multiple time steps ahead. After training and validating the model same 

as explained in the previous sections a series of 360 hours (1 week) of data were used as 

the input t(0), t(1), t(2)….t(359)] to predict the 361st value. Every instant in time the first 

data will be removed and the predicted data will be added with the fixed window size, by 

this, the model builds on predicted values. 

For achieving the accurate predictions, the hyper-parameters of the model are varied 

with many combinations and the results for the dataset are presented below with their 

results. The performance of the sliding window model is tested in the first month of January 

(2017) – from 760th hour (31st day) to the next 30 days (1400th hour) and the best-scored 

plot is as shown in Figure 2.28.  

 

The common parameters of the model are as given in Table 2.6.  

 
Table 2.6 Model Metrics for the Results of Multi-Step Prediction 

Parameters Values 

Number of Neurons 50 

Number of Hidden Layers 2 

Regularizer L1 = 0.01, L2 = 0.01 

Batch Size 16 

Input Shape 1,1 

Output Shape 1 

Optimizer ADAM 

Loss Function Mean Squared Error 
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Figure 2.28 Fine Particulate Matter (PM2.5) [Predictions 760th hr to 1400th hr] 

 

 

Finally, Table 2.7 represents the summary of results for different variations in the 

hyperparameter choices. 

 
 

Table 2.7 The Fixed Parameters of the LSTM Model 

 Variations in the 

Parameters 

RMSE % Error Computational 

Time (s) 

Predictions 

Ahead 

Case 1 Activation Function: 

Tanh, ReLU, Sigmoid. 

Dropout value : 0.5,0.5 

13.64 44.16 481.56 ~ 48 hrs 

(2 days) 

Case 2 Activation Function: 

Tanh, ReLU, Tanh. 

Dropout value : 0.3,0.5 

14.56 43.59 490.56 ~ 340 hrs 

(14 days) 

Case 3 Activation Function: 

Tanh, Tanh, Tanh. 

Dropout value : 0.5,0.5 

17.56 45.78 416.18 100 hrs 

(4 days) 

Case 4 Activation Function: 

Sigmoid, Tanh, Tanh. 

Dropout value : 0.3,0.3 

12.56 33.16 381.15 ~ 440 hrs 

(18 days) 

Case 5 Activation Function: 

Tanh, Sigmoid, Tanh. 

Dropout value : 0.3,0.5 

13.87 35.99 394.58 ~ 440 hrs 

(18 days) 

Case 6 Activation Function 

Tanh, Sigmoid, Tanh. 

Dropout value : 0.3,0.5 

RMSprop - Optimizer 

15.78 46.78 498.12 ~ 340 hrs 

(14 days) 
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2.6.5.4 Conclusions 
 

Data-driven modeling is a promising route for prognostics and diagnostics of any system. 

The viability of the LSTM models is demonstrated for forecasting the Fine particulate 

matter (PM2.5). The first model developed is a persistence model and provided accurate 

predictions over time and is capable only with t+1 step predictions. The Second model is 

capable of predicting values ahead of 1 week and 15 days respectively. Finally, the sliding 

window algorithm is modeled with the notion of predicting the values ahead of 1 month 

with finite sequences of inputs. Key-areas for improvements will be on fine-tuning the 

hyper-parameters for future predictions of larger intervals.       

There are no reference systems to compare and validate the efficiency of the designed 

model and choosing the best combination of the parameters by trial and error is time-

consuming and laborious. 
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CHAPTER 3 

3. Fault Detection of Reaction Wheels Onboard Kepler 

Spacecraft 

 

3.1 Introduction - Kepler Mission 
 

In this Chapter faults of the reaction wheels onboard Kepler Spacecraft are analyzed using 

both the telemetry data received from the Kepler mission and the correlated weather data. 

The yearly sets that include the critical parameters of the mission namely speed, torque 

commands, rotor temperature, torque friction, and attitude error are used for analysis. 

Initially, the classical approach such as correlation method (feature extraction), Weibull 

analysis (appropriate with normal distribution) and classical friction theory model with 

linear function is applied and later reinforced with data-driven methods to compare the 

results.                   

The Kepler spacecraft was launched on March 7, 2009, into an Earth trailing orbit with 

the intention of discovering Earth-sized planets in the habitable zone around sun-like stars. 

The mission goal of detecting planets is accomplished using the transit method. When a 

planet passes the line of sight of the telescope, the reduction of light from the planet is 

measured by the spacecraft's telescope. To perform this the onboard instrument should be 

capable of detecting changes in brightness on the order of 30 ppm. The duration and size 

of the dip in light can tell the orbital period and size of the planet. To date over 3,000 planet 

candidates are acknowledged by the Kepler program [102].     

The attitude control of the Kepler spacecraft was made possible using four reaction 

wheels along with the set of fine guidance control sensors along with charge-coupled 

devices (Figure 3.1). All the four reaction wheels are Goodrich TW-16B200 and they are 

arranged in a pyramid configuration shown in Figure 3.1 with details presented in Table 

3.1. Each wheel has a determined momentum capacity of 16.6 Nms, with a reaction torque 

capability of ±0.2 Nms which corresponds to a speed of 5100 RPM. Each of them has an 
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upper limit (above 7000 RPM) on its speed and is controlled by the Overspeed electronic 

circuit. The life expectancy of the reaction wheels is approximately 10 years, and at least 

three should be operational for the system to remain stable [103]. 

 

 
 

Figure 3.1 Kepler Spacecraft with Attitude Control Subsystem Components [103] 

 

The reaction wheel is one of the satellite attitude control actuators with a flywheel and 

an electric motor. These wheels spun at variable speeds to turn the vehicle to the desired 

direction. For a spacecraft to be controlled about all three directions there must be one at 

each axis along with a redundant wheel to back them up. For the satellite to remain stable 

at least three wheels must be operational. Reaction wheel 2 of the Kepler spacecraft failed 

unexpectedly in July 2012, followed by the failure of reaction wheel 4 in May 2013. The 

yearly sets of data which include the critical parameters of the mission namely speed, 

torque commands, rotor temperature, torque friction, and attitude error are used for 

analysis. 
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Table 3.1 Reaction Wheel Spin Axis Unit Vectors [103] 

 RW1 RW2 RW3 RW4 

X 0.573526 -0.573526 0.573526 -0.573526 

Y 0.484684 0.484684 0.484684 0.484684 

Z 0.660328 0.660328 -0.660328 -0.660328 

 

3.2 Data Processing Methodology 
 

The telemetry data for the Kepler Spacecraft is provided for all the four reaction wheels 

and is a multivariate time series information with a five minute time interval. The data is 

available for the first 100 days after the launch in 2009, for the 275 days of 2012 in the 

year which reaction wheel 2 failed and 100 days in 2013 till the failure of reaction wheel 

4. Each file includes TCMD (Torque Command in Nm), Speed (RPM), RW motor 

temperature (deg), Torque friction (Nm) and attitude errors  (radians). All the critical data 

for the analysis is given and it is known that the most common cause of the fault is the 

frictional behavior of the rotating components. Altogether we have one input (TCMD) and 

4 output data.  

 

3.2.1 Kepler Mission Dataset 
 

To begin with the analysis, all the parametric data are plotted with time for the given 

intervals. The first set of plots are for the early days of the year 2012 (Figures 3.2(a) to 

3.2(e)) representing a healthy condition. It is to be noted that the following set of figures 

describes the telemetry data from 09th April 2012 to 10th May 2012, apart from the minor 

correction made on April 30th (around data points 6100 to 6300) all the parameters remain 

normal.  

ACKNOWLEDGMENTS: I Would like to thank Dr. Marcie Smith, Mission Director, and Dr. Sobeck 

Charles, Project Manager of The Kepler Mission, Nasa’s Ames Research Center, California, USA for 

providing us the Kepler data for this study. 
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Figure 3.2 (a) RW Speed for 30 Days Sample Set, 2012 (Healthy Condition) 

 

 

Figure 3.2 (b) Torque Command for 30 Days Sample Set, 2012 (Healthy Condition) 

 

Figure 3.2 (c) Temperature for 30 Days Sample Dataset, 2012 (Healthy Condition) 
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Figure 3.2 (d) Torque Friction for 30 Days Sample Dataset, 2012 (Healthy Condition) 

 

Figure 3.2 (e) Attitude Error for 30 Days Sample Dataset, 2012 (Healthy Condition) 

Next, the second set of plots is considered (Figures 3.2(f) to 3.2(j)); this includes data 

from 28th June 2012 to 29th July 2012. Furthermore, this set has 15 days of data, ahead and 

after the failure event (14, July 2012) of the reaction wheel 2 (RW 2). A small anomaly is 

observed in the rotor speed of all the wheels, before the day of failure of reaction wheel 2 

as seen in Figure 3.2(f). 

 

Figure 3.2 (f) RW Speed for 30 days Sample Dataset, 2012 (Faulty Condition) 



74 
 

 

From Figure 3.2(g), it is noted that before the day of the failure event, the torque 

command variations for reaction wheel 2 is higher than the other wheels. 

 

Figure 3.2 (g) Torque Command for 30 Days Sample Dataset, 2012 (Faulty Condition) 

 

As such, there is no evident signature in the temperature profile of the wheels (Figure 

3.2(h)) prior to the event of failure. A similar variation to rotor speed is exhibited in the 

torque friction profile (Figure 3.2(i)).  

 

Figure 3.3 (h) Temperature for 30 Days Sample Dataset, 2012 (Faulty Condition) 

 

Figure 3.2 (i) Torque Friction for 30 Days Sample Dataset, 2012 (Faulty Condition) 
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The attitude errors of the spacecraft about all three axes are significantly high (see 

Figure 3.2 (j)) during the period of 10 days starting from 4700 data point (corresponds to 

10th of June 2012) to 6500 data point (corresponds to 14th of June 2012). The attitude errors 

increase before the failure event (4000 data point (corresponds to June 2012) and reach 

high at the time of failure and then decrease and reach high again after 5 days.  

 

Figure 3.2 (j) Attitude Error for 30 Days Sample Dataset, 2012 (Faulty Condition) 

3.3 Classical Data-Driven Approaches - Results  

 

The comprehensive analysis is detailed in the conference paper$ and patent application* 

submitted by the supervisor and the author. The methodologies presented in the previous 

section are applied to analyze the Kepler spacecraft data, starting from the simpler data plot 

to linear intercept friction analysis; there are many inferences as explained below: 

 

3.3.1 Raw Data 

The rotor speed exhibited some small changes 2 days before the complete failure of the 

RW2 in 2012. A similar trend is observed for the RW4 in the year 2013, 8 days before the 

failure as shown in Figures 3.3 and 3.4. 

 

$ Dhanagopal, V., Kumar, K. D. (2019). Fault Detection and Remaining Useful Life Prediction of 

Reaction Wheels Onboard Kepler Spacecraft. 15th International Space Conference of Pacific-basin 

Societies (ISCOPS) (AAS 18-713), (10-13, July 2018), Montréal, Québec, Canada. 

 

* Dhanagopal, V., Kumar, K. D. “Fault Detection and Remaining Useful Life Prediction of 

Reaction Wheels Onboard Spacecraft,” Ryerson University Invention Disclosure, AI-PASS 

Document No.: 2019-10-04, Oct. 04, 2019; to be submitted to Canadian Intellectual Property Office 

(CIPO), Date to be filed: October 2019. 

http://cipo.gc.ca/
http://cipo.gc.ca/
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Figure 3.3 Speed Response of RW2 with a Prior Signature 

                   

Figure 3.4 Speed Response of RW4 

3.3.2 Correlation 

 
As expected the plot for 2009 was normal. In the failure year 2012, the correlation plot 

exhibited a change in trend for rotor temperature with torque friction prior to 90 days, as 

shown in Figure 3.5. For the next event in 2013 for RW4, the trend is different with a 

significant shift prior to a month of the failure as shown in Figure 3.6. 

 

Failure point 

Failure point 
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Figure 3.5 Correlation Between Rotor Temperature and Torque friction, RW2 

 

               

Figure 3.6 Correlation Between Rotor Temperature and Torque friction, RW4 

 

Similar plots for rotor speed with torque friction in the year 2012 and 2013 for RW2 

and RW4 respectively, exhibited the change in correlation coefficient before 3 months of 

the event as revealed in Figure 3.7 (a) and Figure 3.7 (b). 

  Day 196        
(July 14, 2012) 

Decreasing trend  
90 days 

Sign Shift - 30 days 
 

 

Day 131 

(May 14, 2013) 
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Figure 3.7 (a) Correlation Between Speed and Torque Friction, RW2 

 

 

Figure 3.7 (b) Correlation Between Speed and Torque Friction, RW4 

 

 

 

   Day 196  

 (July 14, 2012) 

   Day 131   

(May 14, 2013) 
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3.3.3 Weibull  
 

The probability plots with mean rank, the median rank, and symmetric cumulative 

distribution functions are used. Lilliefors test and least R-squared test based on 

Kolmogorov-Smirnov is performed to check the normality of the data. Two parameter 

variant Weibull function is used in commercial software [104]  to extract the shape and 

scale parameters of the given data. Since the plot is suitable even for smaller samples, the 

size of the sample is reduced from 30 to 16 days (case 1 - 2012) and 5 days (case 2 - 2013). 

The shape factors for torque command (input), torque friction (output), wheel speed (input) 

and rotor temperature (output) for all the reaction wheel assemblies are extracted from the 

sample sets.  

 
 

 
 

Figure 3.8 (a) Time Series Plot of Torque Command - Shape Factor for RW 1,2 and RW 3,4 
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 From the observations the torque command was increased after the 11th sample set 

which is 16 days before the failure of the RW2, similarly, for the second case in 2013, it 

was increased before 5 days of the RW4 failure as shown in Figure 3.8 (a) respectively. 

All the 4 reaction wheels are mounted on the baseplate (exterior) of the vehicle. 

Throughout the Kepler quarter, they are transitioned from sunlit to dark area and vice versa. 

By this orientation, the wheels are kept warmer, but there were large variations of 

temperature depending on the time of the quarter [102]. The rotor temperature profile for 

the RW2 started to increase from approx. 2 months before the anomaly (Figure 3.8 (b)). 

After this failure event, each reaction wheel pair was coupled with a heater and controlled 

by flight software, thus there were no variations in the rotor temperature from RW4 prior 

to the failure (Figure 3.8(b)). 

 

Figure 3.8 (b) Time Series Plot of Temperature - Shape Factor for RW 1,2 and RW 3,4 
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The first failure leads the team to examine the other three wheels with and an intense 

effort. In April of 2013, before 10 days of the failure warning signs of torque friction started 

to peak up in RW4 as shown in Figure 3.8 (c).  

 
 

Figure 3.8 (c) Time Series Plot of Torque Friction - Shape Factor for RW 3,4 

 

3.3.4 Friction Model  

 

The dry friction is not available from the telemetry data, instead, it has to be calculated 

based on the total frictional torque (TRQF) with the speed of the wheel (SPD).  

 

Figure 3.9 Intercept Plots for all the RW Assemblies in 2009 
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Figure 3.10 Intercept Plots for all the RW Assemblies in 2012 

 

 
 

Figure 3.11 Intercept Plots for all the RW Assemblies in 2013 

 

Speed vs T-friction plot is a line on either side of zero speed depending on the 

configuration. Intercept from Torque friction and speed is obtained for the same sample 

used for Weibull analysis. From Figures 3.9, 3.10, 3.11, it is clearly noticeable that, if a 

maximum and minimum trend line is fixed at 2E-5 and -2E-5. For the year 2009 everything 

was under control, but for 2012 (sample size - 16 days) the intercept of friction for the 

reaction wheel 2 crossed the limit approximately 2 months earlier of the failure and similar 

Year 2013 
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trend was noticed for the year 2013 (sample size – 5 days) approximately 1.5 months ahead 

of the reaction wheel 4 failure. 

Dry friction (τ)= | Torque Friction | - |Slope avg * Wheel Speed| - Intercept avg 

 

Table 3.2 Dry Friction Values for the Given Telemetry Set 

  RW1 RW2 RW3 RW4 

2009 Min τ 0.44 0.41 0.47 0.46 

Max τ 11.39 8.03 8.67 10.33 

2012 Min τ 0.61 0.46 0.67 0.61 

Max τ 11.38 18.13 10.41 12.13 

2013 Min τ 0.68 N/A 0.57 0.77 

Max τ 11.69 N/A 12.13 19.11 

 

The average slope and intercept values are calculated from the friction vs speed graphs 

and the baseline dry friction for a healthy Reaction wheel from Table 3.2 are 0.41 mNm 

and 12.13 mNm. 

3.4 Remaining Useful Life – Classical Method 
 

A system is said to be failed if it completely stops functioning its task. The satellites are 

more vulnerable to interruptions and external disturbances, also it is very difficult to 

perform maintenance in the outer space. Prediction of remaining useful life enables the 

team members to reconfigure the functionality of the system promptly and eliminates the 

total loss of mission.  

In this case, the initial set of data (20 days) after 100 days of the launch (2009) is taken 

for consideration, the apriori knowledge is extracted and is extrapolated to the next 100 

days. It is clear from Figure 3.12 that the value for RW2 approaches the threshold (2E-5) 

relatively faster than the other wheels, which can be taken as an initial warning sign for the 

failure. 
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Figure 3.12 Degradation of the Intercept Values for all the RW Assemblies 
 

From the friction model, the day at which intercept value crossed the threshold limit is 

established, from that point in time the data is extracted for RUL prediction. Primarily, the 

data is normalized with the difference in the mean value, such that every sample set from 

the onset of failure will depict the same degradation. 

The cycle of rising and dip is every 20 days in the data for reaction wheel 2, thus 20 

days sample set is used and is extrapolated for the next 80 days using the curve fit details.  

 

Figure 3.13 Prediction of Healthy Reaction Wheel - RW1 
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For RW 1 and RW2, the sample is taken from 120th day till 140th day, the intercept 

values remain almost the same for RW1 as shown in Figure 3.13, for RW2 it crossed the 

limit on 170th day as shown in Figure 3.14. 

 
 

Figure 3.14 Remaining Useful Life for RW2 - 2012 

 

Similarly, there is a cycle change every 10 days in the data for reaction wheel 4, thus 10 

days sample set is used and extrapolated for the next 40 days using the curve fit details. 

For RW 3 and RW4, the sample is taken from 100th day till 109th day, the intercept values 

remain almost the same for RW3 as shown in Figure 3.15, for RW4 the limit is crossed on 

the 119th day as shown in Figure 3.16. 

 

Figure 3.15 Prediction of Healthy Reaction Wheel - RW3 
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Figure 3.16 Remaining Useful Life for RW4 - 2013 

A polynomial function was fit into the data and the remaining useful life was predicted 

and compared with the true RUL. In the statistical perspective, prediction Interval (PI) is 

used to measure the upper and lower bounds of confidence intervals for future 

observations.   

𝑃𝐼 = 𝑀𝑒𝑎𝑛 ± 𝑧 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

where z is the normal distribution curve value (for this case 95% confidence interval is 

used and thus the value of z is 1.96). 

The actual and estimated life is represented with the percentage error in Table 3.3 as shown. 

Table 3.3 Remaining Useful Life After Fault Detection: (Classical Method) 

 

The most common problem for data analysis is the overfitting problem. The model has 

to be created with an accurate degree of the polynomial. For the appropriate selection, the 

root mean square (RMS) error for the functions with degree 1 to 8 is calculated. From the 

test performed, the error is comparatively lesser for the 1st degree as shown in Figure 3.17, 

for all the years. And thus 1st-degree polynomial is used for prediction analysis.  

 

Reaction Wheel 

Assembly 

True RUL 

(days) 

Estimated RUL 

(days) 

Percentage Error    

(%) 

RW2 56 31 44.64 

RW4 22 10 54.54 
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Figure 3.17 Justification for 1st Degree of Polynomial Selection 
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The actual failure date from the telemetry data set and the predicted failure date from 

the analyses are formulated and represented in Table 3.4 as shown below. 

 

Table 3.4 Remaining Useful Life Prediction Results for RWAs 

Reaction Wheel 

Assembly 

Actual Date of 

Failure 

Predicted Date of 

Failure 

RW1 Operational Beyond 5 years 

RW2 July 14, 2012 

(196th day) 

May 11, 2012 

(132nd day) 

RW3 Operational Beyond 5 years 

RW4 May 11, 2013 

(131st day) 

March 22, 2013 

(81st day) 

 

 

3.5 Long-Short Term Memory (LSTM) - Results 

 

A Long-Short Term Memory (LSTM) variant of Recurrent Neural Network (RNN) was 

used to implement supervised time-series forecasting using the sliding window technique 

to predict future values and faulty conditions. 

3.5.1 Model Validation - Healthy Data  
 

The model is trained and validated with the healthy dataset (year-2009) by comparing the 

train and test dataset for all the given sensor values such as rotor speed, temperature, torque 

command, torque friction. Being the model learned all parameters, it is used to predict the 

test sequences one at a time. Figures 3.18 to 3.21 represent the error plots and are seen that 

the rate of the testing error is lesser than the training error which is considered to be a good 

fit and is later used to predict the fault that occurred in Kepler's mission. 
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Figure 3.18 Error Plots of Rotor Speed for all Four Reaction Wheels 
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Figure 3.19 Error Plots of Torque Command for all Four Reaction Wheels 
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Figure 3.20 Error Plots of Temperature for all Four Reaction Wheels 
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Figure 3.21 Error Plots of Torque Friction for all Four Reaction Wheels 
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3.5.2 Fault Detection - Actual Data 
 

An LSTM model was developed which would input speed, temperature, torque command 

and torque friction values from the previous time steps to predict the respective features in 

the following time step using sliding window technique. The model was trained and 

validated using data of the year 2009 as shown in the previous section. The same model is 

utilized to predict the sensor values of the year 2012. The differences in the predicted output 

from the model and actual faulty output are calculated and the sudden change is captured 

to identify the fault in the RW2 and RW4 as shown below.        

Figure 3.22 and Figure 3.23 show the error signals of temperature profile and torque 

command detecting the abrupt fault of RW2 at the data point 205, which is an equivalent 

time frame on the exact failure date (July 14, 2012). 

 
Figure 3.22 Error Signal: Abrupt Fault - Temperature of RW2 

 
Figure 3.23 Error Signal: Abrupt Fault - Torque command of RW2 
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Similarly, Figure 3.24 to 3.27 represents the error signals of rotor speed, temperature 

profile, torque command and torque friction detecting the abrupt fault for RW4. The 

timeline equivalent of May 11, 2013, in the corresponding plots is at the 610th datapoint. 

Figure 3.24 Error Signal: Abrupt Fault - Rotor Speed of RW4 

 
Figure 3.25 Error Signal: Abrupt Fault - Temperature of RW4 

 
Figure 3.26 Error Signal: Abrupt Fault - Torque Command of RW4 
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Figure 3.27 Error Signal: Abrupt Fault - Torque Friction of RW4 

 

In addition to the fault detection, the plots of speed and corresponding torque frictional 

data showed a disruption signal. It is confirmed later that the rotor speed was changed on 

at that particular time to reorient the spacecraft and is hence neglected.  

Also, the sample plots for the healthy reaction wheels RW1 and RW3 show no change 

in the error signal for the following years 2012 and 2013 respectively as shown in Figure 

3.28 to Figure 3.33. 

 

Figure 3.28 Error Signal: Healthy Wheel - Torque Command of RW1 
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Figure 3.29 Error Signal: Healthy Wheel - Rotor Temperature of RW1 

Figure 3.30 Error Signal: Healthy Wheel - Torque Friction of RW1 

 

Figure 3.31 Error Signal: Healthy Wheel  - Torque Command of RW3 
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Figure 3.32 Error Signal: Healthy Wheel - Rotor Temperature of RW3 

Figure 3.33 Error Signal: Healthy Wheel - Torque Friction of RW3 

 

3.5.3 Fault Detection - Weibull Data 
 

In this segment, the correlated Weibull parameters of torque command is used as the input 

to the model for predicting the abnormality in the reaction wheels 2 and 4. The results of 

all the four wheels are as shown in Figure 3.34 to Figure 3.37 respectively and are clearly 

predicting the fault in accordance with the classical methods.  
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Figure 3.34 RW1: LSTM - Time Series Plot of Tcmd - Shape Factor (Healthy) 

 

 
 

Figure 3.35 RW2: LSTM - Time Series Plot of Tcmd - Shape Factor (Faulty) 

 

 
 

Figure 3.36 RW3: LSTM - Time Series Plot of Tcmd - Shape Factor (Healthy) 
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Figure 3.37 RW4: LSTM - Time Series Plot of Tcmd - Shape Factor (Faulty) 

 

3.5.4 Fault Detection – Intercept Values 

 

Similarly, in this section, the intercept values calculated using the torque friction are used 

as the input for predicting the fault in advance. The results of all the four wheels are as 

shown in Figure 3.38 to Figure 3.41 respectively and the numerical values in comparison 

with the statistical results are given in Table 3.5. 

 

Figure 3.38 RW1: Torque Friction Intercept Values of 2012 - No-fault 
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Figure 3.39 RW2: Torque Friction Intercept Values of 2012 - Fault Detection 

 

Figure 3.40 RW3: Torque Friction Intercept Values of 2013 – No-Fault 

 

Figure 3.41 RW4: Torque Friction Intercept Values of 2013 - Fault Detection 
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Table 3.5 Remaining Useful Life After Fault Detection: Intercept (Data-Driven) 

 

3.5.5 RUL - Prediction with Weather Data 
 

To train the model in order to predict the remaining useful life with the given sensor values 

are insufficient. From the obtained data, the total number of faulty events is only two (RW2 

and RW4) out of four and both are differently induced. Many unidentified bearing failures 

and friction anomalies of the reaction wheels on the spacecraft lead to an analysis of the 

space charging environment by United technologies corporation [105]. In this section, the 

space weather data of Coronal Mass Ejection (CME) is obtained in terms of the Kp Index 

[106]. The 3-hours Kp values are converted to Ap Index and are averaged to each day 

which is plotted for each year from 2009 to 2013 as shown in Figure 3.42.   

From the 2012 plot, it is clearly noted the Ap index reached the highest value around 80 

ahead of 100 days to failure of RW2 (196th day).  On the exact failure date, the value of the 

Ap index is 90 (41st largest geomagnetic storm since 1994) and this is used as an indication.  

Similarly, in the year 2013, the Ap index (63) was high on 78th day that is approx. 1.5 

months before the RW3 failure (131st day). From this it can be clearly stated there is a 

strong correction between space weather and bearing issues. Hence the weather data is used 

for predicting the remaining useful life of the reaction wheel 2 and reaction wheel 4 with 

the adaptive threshold assigned for all the five years based on the data using the prediction 

interval technique. 

Reaction Wheel 

Assembly 

True 

RUL 

(days) 

Estimated 

RUL 

(days) 

Percentage 

Error (%) 

Actual Date of 

Failure 

Predicted Date 

of Failure 

RW1 N/A N/A N/A Operational Beyond 5 years 

RW2 56 40 28.57 July 14, 2012 

(196th day) 

June 4, 2012 

(156th day) 

RW3 N/A N/A N/A Operational Beyond 5 years 

RW4 22 15 31.81 May 11, 2013 

(131st day) 

April 26, 2013 

(116th day) 
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Figure 3.42 Plots of Averaged Ap Index for the Year 2009 to 2013 

 

The LSTM model is simulated for predicting the remaining useful life of the two 

respective reaction wheels 2 and 4 using the Ap index values. For RW2, the daily averaged 

data for the year 2012 is plotted for the actual and predicted values. From Figure 3.43, it is 

observed the predicted value is 15 days ahead of the actual failure event. Similarly, the 

model predicted the RW4 incident 14 days prior to the malfunction (Figure 3.44). Figures 
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3.45 and 3.46 is a supportive plot for the other 2 healthy reaction wheels for 2013 until the 

given data points. 

 

Figure 3.43 Comparison Plot of Actual and Predicted RUL (RW2) - 2012 

 

Figure 3.44 Comparison Plot of Actual and Predicted RUL (RW4) - 2013 
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Figure 3.45 Comparison Plot of Actual and Predicted RUL (RW1) - 2013 

 

Table 3.6 shows the actual failure date from the given data and the predicted failure date 

from the LSTM model. 

 

 

Figure 3.46 Comparison Plot of Actual and Predicted RUL (RW3) - 2013 
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Table 3.6 LSTM - Remaining Useful Life Prediction Results for Faulty Wheels 

Reaction Wheel 

Assembly 

Actual Date of 

Failure 

Predicted Date of 

Failure 

Predictions Ahead 

RW1 Operational N/A N/A 

RW2 July 14, 2012 

(196th day) 

June 29, 2012 

(181st day) 

15 days 

RW3 Operational N/A N/A 

RW4 May 11, 2013 

(131st day) 

April 27, 2013 

(117st day) 

14 days 

 

3.6 Conclusions 
 

A detailed analysis of the failure of reaction wheels onboard the Kepler spacecraft based 

on telemetry data is studied. Several methodologies are applied; these include raw data 

analysis, correlation, Weibull and friction model. The results of the statistical analysis show 

that Reaction wheel 2/ Reaction wheel 4 possesses a signature of failure two to three 

months prior to its complete failure. Thus, it is possible to preplan, develop and upload new 

attitude control algorithms to extend the life of the spacecraft in case of onboard reaction 

wheel failures.            

The data-driven LSTM model is applied successfully for detecting the faults of  

Reaction wheel 2/ Reaction wheel 4 using given data, Weibull parameters and intercept 

values. Finally, from the space weather data, the remaining useful life close to the actual 

value is estimated and it can be concluded that the reaction wheels made up of an insulating 

material such as ceramics, will not react with the electrical charges and thus failure can be 

prevented. In the future, a detailed investigation of the effects of space weather will be 

performed. 

 

 

 

 



106 
 

 

CHAPTER 4 

4. Data-Driven Prognostics   

 
4.1 Introduction 

In this Chapter, the aftereffects of the abnormal condition in the system are projected with 

remaining useful life prediction. In an engineering field, the prognosis is the method of 

predicting the operative time after which the plant will no longer perform its envisioned 

operation. Any mechanical component or system tends to degrade from its normal 

operation either due to wear/tear or aftermath the initiation of fault. The predictive 

maintenance framework of the health management system should perform all necessary 

corrective actions to maintain the normal operation throughout the lifetime of the mission. 

Based on the literature survey, this section for prognosis is developed with the data-driven 

technique (LSTM network) with some amendments using filtering, merging and 

optimization techniques.                

The Diagnosis and Prognosis Health Management (DPHM) module should effectively 

possess [107],  

a. complete control over the configuration of overall components of the structure to 

safety and reliability. 

b. managing the ability to record all the random failures to assist in identifying 

recurring issues. 

c. life predicting capability with reconditioning or replacement of the parent 

component after the onset of a failure event. 

Maintenance activities cover both panned and unplanned actions for sustaining the 

process in its nominal condition. 

* Data Source: National Aeronautics and Space Administration 

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan 

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan
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4.2 Dataset   

The sample used in prognostic management is from the collection of datasets developed 

by Modular Aero-Propulsion System Simulation (MAPPS) of NASA. These specimens 

consist of multiple multivariant time-series sensor values of several same configuration 

turbofan engines simulated with 40,800 kg of thrust at about 36,000 ft, of lower subsonic 

regime (0.7-0.9 Mach) with temperature ranging from -51 OC to 40  OC. All the sensor values 

extracted are from the nominal state until the point of failure.         

There are two different sets of datasets available in the repository that is used in this 

Chapter for simulation, they are 

1. Turbofan Engine Degradation simulation dataset (C-MAPPS) 

2. PHM08 Challenge Dataset  

4.2.1 C-MAPPS Dataset 

This dataset was an engine degradation simulation provided by the prognostics center of 

excellence at NASA Ames. It has four sets (FD001 to FD004) of train and test data along 

the with RUL values simulated under different fault modes and operational settings as 

shown in Table 4.1.  

Table 4.1 C-MAPPS Turbofan Dataset [108] 

Dataset Train 

Trajectories 

Test 

Trajectories 

Conditions Fault Modes 

FD001 100 100 (one) Sea level HPC degradation 

FD002 260 259 Six HPC 

Degradation 

FD003 100 100 (one) Sea level HPC and Fan 

degradation 

FD004 248 249 Six HPC and Fan 

degradation 

 

The given file has 26 columns with a unit number, time (cycles), operational settings 

and sensor values contaminated with noise [108]. The description of all the sensor values 
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of turbofan engines (Table 4.2) and its run to failure representation for one case (FD001) 

of the training dataset is as shown in Figure 4.1. 

Table 4.2 C-MAPPS Sensor Values of Turbofan Engine [108] 

Sensor Data Category Unit 

1 Total Temperature at Fan Inlet oR 

2 Total Temperature at LPC Outlet oR 

3 Total Temperature at HPC Outlet oR 

4 Total Temperature at LPT Outlet oR 

5 Pressure at Fan Inlet psia 

6 Total Pressure in the Bypass Duct psia 

7 Total Pressure at HPC Outlet psia 

8 Physical Fan Speed rpm 

9 Physical Core Speed rpm 

10 Engine Pressure Ratio (P50/P2) -- 

11 Static Pressure at HPC Outlet psia 

12 Ratio of Fuel Flow to Ps30 pps/psia 

13 Corrected Fan Speed rpm 

14 Corrected Core Speed rpm 

15 Bypass Ratio -- 

16 Burner Fuel-Air Ratio -- 

17 Bleed Enthalpy -- 

18 Demanded Fan Speed rpm 

19 Demanded Corrected Speed rpm 

20 HPT Coolant Bleed lbm/s 

21 LPT Coolant Bleed lbm/s 

 

Each time series dataset has 21 sensor values from a different engine of the same type 

with three different operational settings that substantially affects the performance of the 

engine. Each engine has a different manufacturing variation and initial wear which is not 

considered as a fault. Fault is developed at some point during the operation, the provided 

repository is divided into two sets until system failure.   
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Figure 4.1 Run to Failure Sensor Values of First Set Fault Mode (CMAPPS) 

 

4.2.2 PHM08 Dataset 

The second dataset is a similar turbofan engine degradation simulation model with train 

and test sensor values except for the true RUL information [109] as shown in Table 4.3.  

 Table 4.3 PHM08 Turbofan Dataset [109]  

Dataset Train 

Trajectories 

Test 

Trajectories 

Final Test 

Trajectories 

1 218 218 435 

 

This data is made available to the public for the challenge competition held at the 1st 

International Conference on Prognostics and Health Management (PHM08) in 2008. 

Similarly, the file has 26 columns with a unit number, time (cycles), operational settings 

and noisy sensor values as same as categories described in Table 4.2. The run to failure 

representation of the test dataset is given in Figure 4.2. 
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Figure 4.2 Run to Failure Sensor Values (PHM08) 

 

4.3 Pre-Processing 

Both the C-MAPPS and PHM08 sensor data are adulterated with noise which will affect 

the estimation of the remaining useful life based on the training given to the proposed 

model. Noise in the data is defined as a meaningless attribute attached to the parametric 

value which adversely affects the actual feature. The file has a total number of 21 sensor 

values (which will be given as the input to the model), due to unwanted and repeated 

features the model may overfit the results. Thus, the following steps are followed as a 

cleaning process before handling the input/output characteristics with the model. 

1. Stationary, unrelated, non-correlative sensor values are detached from the 

database. 

2. All the sensor values with different magnitudes are normalized with a unified 

interval range. 

3. Noise contamination is removed with an efficient digital filter for smoothing 

the oscillating data. 

4. The similar functionality sensor values are grouped together and are combined 

to a single value using merging techniques.  
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4.3.1 Data Reduction 

The primary step is to remove the irrelevant sensor values form based on the visualization. 

The sensor values, S1 (Total temperature at fan inlet), S5 (Pressure at fan inlet), S6 (Total 

pressure in bypass duct), S10 (Engine pressure ratio (P50/P2)), S16 (Burner fuel-air ratio), 

S18 (Demanded fan speed), S19 (Demanded corrected speed) remains constant throughout 

the cycle for all the operating settings and hence is removed from the analysis. 

  

4.3.2 Normalization  

The process of changing the range of different scaled variables to a common distribution 

is known as normalization. In the present case, the above-mentioned Figures 4.1 and 4.2 

clearly shows the difference in the range of sensor values. These variations cause problems 

in the learning rate and highly effects the process of updating weights at every iteration in 

training the model. This issue has to avoided and thus a mathematical rescaling is applied 

to the data to convert all the 21 sensors to a standard form (Figure 4.3).  

 

Figure 4.3 Normalized Data of the Correlative Sensor Values 
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In this approach, all the features are transformed between 0 and 1 using minmax_scaler 

function in pandas and the equivalent form is represented in the equation as, 

𝑆𝑛𝑜𝑟 = 
𝑆𝑖 − min (𝑆)

max(𝑆) − 𝑚𝑖𝑛(S)
 

where S = (S1, S2, ………., Sn) and Snor  is the ith normalized data.  

 

4.3.3 Filtering - Savitzky - Golay (S-G) Filter 

A Savitzky-Golay filter is a low-pass, well-adapted data-based method used for smoothing 

the data without distorting the actual feature. This was popularized by Abraham Savitzky 

and Marcel J.E. Golay [110] and is thereafter the most widely cited work in data cleaning. 

The S-G filters optimally curve fits the data points to an N-ordered polynomial using least-

square methods but are applicable only for the odd-numbered datasets. There are studies 

[111] that extend the even number of data smoothing with feasibility validation. 

The properties of the S-G filter [111] are summarized below: 

• Property 1: The odd-indexed coefficients of the impulse response polynomial are zero 

and S-G filters are identical for even integers.  

• Property 2: S-G smoothing with zero-order polynomial is identical to moving average 

filters. 

• Property 3:  The impulse response is symmetric, and the frequency response is purely 

real. 

• Property 4: S-G filters are either on the unit circle of z-plane or complex conjugate on 

reciprocal groups. 

• Property 5: These filters have a very flat frequency response in their passbands. 

• Property 6: The normalized cutoff frequency depends on the order of the polynomial 

and length of the impulse response. 

• Property 7: They have minimum attenuation characteristics in the stopband regions. 

(4.1) 
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They perform better than standard averaging filters and are effective in preserving high-

frequency signal components but are less effective in reducing the noisy signals. An 

example of filtered total temperature (LPC outlet) value is as shown in Figure 4.4.  

 

Figure 4.4 Savitzky-Golay Filtered S2 Sensor Value 

 

4.3.4 Parameter Merging  

The next step in preprocessing is to convert the complex multivariate time series input data 

into a simplified form. The multiple values have to be merged together and are performed 

by several approaches. Jamie Baalies Coble [109] has performed a prognostic study by 

merging the data sources using three predefined metrics such as monotonicity, 

prognosability, and trendibility. The scores from each of them are obtained for all the inputs 

and are merged based on their correlative strength. In the current work, a mathematical 

procedure called principal component analysis is applied to reduce the dimensions using 

orthogonal transformation.   
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4.3.4.1  Principal Component Analysis (PCA) 
 

PCA is a data compression method based on the correlation that reduces the attribute to a 

lower-dimensional space [112]. This dimension-reduction tool solidifies the whole data 

columns into a small set that contains all the important information. 

The segments involved in the process of principal component analysis is as given below,  

1. The values have to be standardized prior to the reduction process and the deviation 

of data points from its mean with respect to the other values is computed.  

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑒𝑎𝑛 

𝑆𝑡𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 

2. The eccentric correlative behavior is identified using the covariance matrix (C). 

The covariance matrix is a symmetric matrix (n x n) that contains covariances 

associated with all the possible pairs of the given variable set.  

 

C = (
𝑐𝑜𝑣 (𝑥, 𝑥) 𝑐𝑜𝑣(𝑥, 𝑦)
𝑐𝑜𝑣 (𝑦, 𝑥) 𝑐𝑜𝑣(𝑦, 𝑦)

) 

3. The third step is to compute the eigenvalues and eigenvectors of the covariance 

matrix to find the principal components of the data.  

4. All these component values are selected based on its significance, and a feature 

vector with the high factor eigenvalues is created.  

5. In the final step, the featured values are reoriented by multiplying the transpose of 

the feature vector with the transpose of the original dataset to represent the principal 

components. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑠 = (𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑒𝑐𝑡𝑜𝑟)𝑇 ∗ (𝐴𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎)𝑇  

Finally, PCA is an orthogonal linear transformation of data to a new coordinate system 

with the projection of the greatest variance with significant components. In the turbofan 

data, the sensor values are grouped based on the directional pattern and merged to a single 

(4.2) 

(4.3) 

(4.4) 
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value for effective prediction. An example of a principal component plot of a single sensor 

value in the training set of C-MAPPS is as shown in Figure 4.5. 

 

Figure 4.5 Orthogonal Transformation of Total Temperature (LPC Outlet) 

 

The method based on kernel PCA is applied to predict the anomaly based on the cause-

effect relationship of the abnormal telemetry data. This approach with a change in direction 

of the principal axes follows von Mises Fisher distribution for setting the threshold. 

 

4.4 Modeling with Optimization Techniques  

Optimization is the process of obtaining the best results from the complicated 

circumstances of any given problem. The reason for using optimization techniques is to 

minimize the effort and time in gaining efficient parameters and to maximize the desired 

outcome with reliability [80]. An objective function f(x) is defined in such a way to 

maximize or minimize certain parameters based on the set of constraints.       

Constructing the LSTM model involves many parameters, in order to achieve better 

results, two best-known optimization algorithms (GA and PSO) are used to optimize these 

hyperparameters. Both the techniques are coded, applied and compared with the 

conventional model. 
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4.4.1 Genetic Algorithm (GA)   

The genetic algorithm is a heuristic approach based on the theory of natural evolution for 

solving both constrained and unconstrained problems. This algorithm imitates the 

procedure of natural selection in which the appropriate population is selected to reproduce 

the fittest offspring of the future generation [81]. The optimal solution is achieved over the 

successive iterations (generations), for all problems even if the objective function is 

nonlinear, discontinuous, nondifferentiable or stochastic. 

4.4.1.1 GA operators 

The GA uses three types of operators every step to create the next generation from the 

current population [113].  

 

P1 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Selection Process of Genetic Algorithm [113] 

 

P2 0 0 1 P1 0 0 0 

P3 0 1 1 P4 1 1 1 

P4 1 1 1 

P5 1 1 0 P5 1 0 1 P1 0 0 0 

P4 1 1 1 
P6 0 0 1 P6 0 1 0 

Selection 

Crossover  Offspring Mutation 

Gene 

Chromosome 

Population 
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a. Selection - collection of the fitter chromosome (parents) based on the fitness score to  

     form the next generation.    

b. Crossover - rules to exchange the locus of the chromosomes of two parents to form the  

  children. Offspring are formed after reaching the crossover point.  

c. Mutation - random changes within the population applied to the parents to form the  

offspring with maintaining diversity along with preventing premature 

convergence. 

The fitness function is applied for each offspring and a fitness score is calculated to 

determine the accuracy of suitability for the future generation with optimal capability 

(Figure 4.6). The algorithm repeats and terminates until the convergence of significant 

offspring with a set of solutions. GA is applied is varied fields of science and engineering, 

automatic programming, machine learning, economics, natural immune systems, ecology 

studies, social systems, etc. 

4.4.1.2 Steps of Genetic Algorithm  

This algorithm is typically between 50 to 500 generations depending on the type of problem 

to obtain the highly fit chromosomes, the steps are: 

1. Initialize the process with a randomly generated population of n-size with m-bit 

chromosomes. 

2.  The fitness function f(x) in population is calculated for each chromosome. 

3.  The following steps are repeated until the creation of n-offspring, 

      a.  A pair of parent chromosomes are selected with the highest probability of fitness 

function.   

      b.  With the probability of cross overrate the pair chosen at the random point is used to 

form new offspring. ( If no crossover occurs - then exact copies of their parents are 

carried. 
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      c.  Transmute the two offspring at each point with the mutation rate to generate the new 

population.  

4. If the number of offspring is odd, truncate the new population to an even number,       

otherwise, proceed. 

5. Replace the current population with the new population and go back to step 2 and repeat 

the steps until the optimal solution.  

4.4.2 Particle Swarm Optimization (PSO) 

PSO was first introduced by James Kennedy and Russell Eberhart in 1995 [114] for 

nonlinear functions in ties with bird flocking, fish schooling and swarming theory. PSO is 

a swarm intelligence metaheuristic and nondeterministic optimization technique to find an 

optimal value of the target function. Five basic principles of Swarm intelligence are,  

a. Proximity principle  

b. Quality principle 

c. Diverse response 

d. Principle of Stability 

e. Principle of Adaptability  

The particle swarm optimization (Figure 4.7) paradigm adheres to all the above 

principles for manipulating the space calculations over a series of time steps. The bunch of 

particles called the swarm are allowed to move around and explore the given space. The 

motion of the particle direction is directed by, 

1. Inertia of the particle’s previous velocity. 

2. Distance between the best positions of individual particles – cognitive force. 

3. Social force from the best-known position of the swarms. 

Each particle (hyperparameter of the model) is initialized randomly to a prescribed 

position in the given space [80].   
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Figure 4.7 Steps in PSO Algorithm [114] 

 

The Euler Integration for the physical movement of the particle's position is given by, 

 

𝑥𝑖⃗⃗  ⃗(𝑡) =  𝑥𝑖⃗⃗  ⃗(𝑡 − 1) + 𝑣𝑖⃗⃗⃗  (𝑡)  

where, 

            𝑥𝑖⃗⃗  ⃗ is position vector 

𝑣𝑖⃗⃗⃗   is velocity vector 

i is the number of dimensions (number of components to optimize) 

Similarly, the current velocity 𝑣𝑖⃗⃗⃗   of the particle is updated from the initial random value 

with the velocity of the best particle (with two stochastic variables). 

 

Population Initialization – Particles Encoding  

Defining Objective Function for all Particles  

Updation of Best Local Position and Global Position   

Updation of Velocities According to the Best Position 

values  

Generation of New Particle Position  

Criteria Met  
No 

Yes 

Stop and Save the Fittest Particle 

(4.5) 
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𝑣𝑖⃗⃗⃗  (𝑡) =  𝑣𝑖⃗⃗⃗  (𝑡 − 1) + 𝜌1[𝑝𝑖⃗⃗⃗  −  𝑥𝑖⃗⃗  ⃗(𝑡 − 1)] + 𝜌2[𝑝𝑔⃗⃗⃗⃗ −  𝑥𝑖⃗⃗  ⃗(𝑡 − 1)]  

where, 

𝑝𝑖⃗⃗⃗   is variable that take cares of the velocity vector corresponding to the previous          

velocity 

𝑝𝑔⃗⃗⃗⃗  is the variable corresponding to the velocity of the best particle 

𝜌1 and 𝜌2 are the random constants for social and cognitive behavior of the particles 

This method is known to be a better method for training the network in LSTM. PSO 

compares the fitness of each network and finds the best global value for an optimized 

solution. Here, the model parameter such as the number of neurons, optimizers contains a 

position (weight) and velocity (to update the weight closer to global best). The particles 

swarm around the hyperspace and update their position to reach the optimal condition of 

the neighborhood and continue to move towards the global optima.  

In the training process of the LSTM model, the network fitness is determined by the 

mean square error for the entire set and is defined as, 

𝐹𝑖𝑡𝑡𝑛𝑒𝑠𝑠 =  ∑(𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒)2 

4.5 Results  

The LSTM model shaped in Chapter 2 with all relevance and tuning is used for prognosis 

in finding the remaining useful life of the turbofan engine for the two given datasets with 

all the 4 faulty conditions. Later the results with an optimized model using the above-

mentioned techniques are obtained and compared with the existing literature.  

 

4.5.1   Normal Model 

 

In this section, the predictions of the remaining useful life of the engines for the datasets 

of CMAPSS (FD001, FD002, FD003, FD004) and PHM08 are presented. The evaluation 

score is given by the expert team and an error plot with prediction accuracy is shown with 

proper justification [108][115].   

(4.6) 

(4.7) 
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The finalized hyperparameters of the model for the faulty conditions based on the 

learning from pollution analysis along with trial and error are shown in Table 4.4. 

 
Table 4.4 LSTM Model Hyperparameters 

Parameters C-MAPPS 

FD001 

C-MAPPS 

FD002 

C-MAPPS 

FD003 

C-MAPPS 

FD004 

PHM08 

Number of Neurons 50,50 128,128 50,50 64,64 50,50 

No. of Hidden Layers 2 2 2 2 2 

Activation Function Linear ReLU ReLU ReLU ReLU 

Batch Size 64 200 64 200 200 

Optimizer RMSprop Adam RMSprop Adam Adam 

Loss Function MSE MSE MSE MSE MSE 

 

4.5.1.1 C-MAPPS Dataset 
 

This dataset has 4 subsets with different operating settings and fault conditions as shown 

in Table 4.1. All the engines operate normally and develop a fault at some point in time 

and this study estimates the remaining operating cycles before the failure. 

(i) The subsets FD001 and FD003 exhibit similar patterns and are analyzed with the 

same hyperparameters (Table 4.4). Sensor 1,5,6,10,16,18,19 displays constant 

measurements thought the cycle and are no useful for the degradation pattern in modelling. 

The other 14 sensor values are grouped together based on their principle directional 

behavior (sensor 2,8,11,15,17 - showed a very slight increase (PCA combo 1) ; sensor 3,4 

- displayed slight increase with a magnitude more than 40 units (PCA combo 2); sensor 

7,12,20,21 - displayed decrease in pattern (PCA combo 3); sensor 9,14 - exhibited an 

increase in trend with magnitude more than 110 units (PCA combo 4)) and are merged into 

a single value using PCA technique. 

Figures 4.8 and 4.9 represents a comparison plot of the actual and predicted remaining 

useful life of the simpler datasets FD001 and FD003. 
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Figure 4.8 Actual and Predicted RUL [FD001] 

 

Figure 4.9 Actual and Predicted RUL [FD003] 

 

(ii) The subsets FD002 has six operating conditions with one fault mode, on the other 

hand, FD004 has six operating conditions with 2 fault conditions which makes this data 

much complex and difficult to analyze. Both these sets are examined with small changes 

in the model (Table 4.4). In both these cases, other than corrected core speed (S14) none 
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of the sensors show any convergence or divergence pattern. Hence sensor-14 is taken and 

is converted to the kernel space with principal components using the PCA technique. 

 

Figure 4.10 Actual and Predicted RUL [FD002] 

 

Figure 4.11 Actual and Predicted RUL [FD004] 

 

Figures 4.10 and 4.11 represents the comparison plot of both actual and model-predicted 

plots for both the complex datasets FD002 and FD004. 
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4.5.1.2 PHM08 
 

Prognostics and Health Management (PHM08) dataset is similar to the C-MAPPS data 

except for the true RUL values.  

The sensor patterns are as same as the FD003 dataset (C-MAPPS) and hence the relevant 

hyperparameters are applied with data pre-processing and deep LSTM model. Figure 4.12 

shows the predicted values of RUL for the test and final-test data sets (no reference is given 

for comparison).  

In the prognosis framework, early prediction is generally desirable than late prediction. 

Evaluation metrics namely, root mean square error (RMSE) and scoring function (SF) 

[108] are employed to assess the performance of the model. These functions are calculated 

for every set of modeling the mathematical expressed as shown below, 

 

 

Figure 4.12 Predicted RUL for Test Dataset - PHM08 
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𝑅𝑀𝑆𝐸 =  
1

𝑁
 ∑(𝑏𝑖)

2

𝑁

𝑖=1

 

𝑆𝐹 =   ∑𝑠𝑖

𝑁

𝑖=1

, 

and 

𝑠𝑖 = {
𝑒

−𝑏𝑖
𝑎1 − 1, 𝑓𝑜𝑟 𝑏𝑖 < 0

𝑒
𝑏𝑖
𝑎2 − 1, 𝑓𝑜𝑟 𝑏𝑖  ≥ 0

    

where,  

  N  = total number of the samples 

𝑏𝑖 = 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑅𝑈𝐿𝑡𝑟𝑢𝑒  

a1 = 13, a2 = 10 predetermined values  

 

A scoring function is an exponential form and a bad prediction would affect the overall 

performance score. Figure 4.13 represents the plots of these two evaluation metrics for the 

given error values. 

The summary of model results with all its variants including filters and PCA combos is 

presented in Table 4.5. The present model is ineffective in predicting the score values for 

the PHM08 challenge dataset. 

 
 

Figure 4.13 Scoring Function and RMSE Plots with Error Values 

(4.8) 

(4.9) 
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Table 4.5 Summary of Performance Metrics for the Given Dataset 

CMAPPS-FD001 

PCA Combos Score RMSE Computational 

Time (s) With Filter Without Filter 

1,2 2136 2350 24.51 32 

1,3 2149 2199 28.31 36 

1,4 3628 3678 31.54 35 

2,3 2655 2705 32.64 37 

2,4 11913 12764 39.32 49 

3,4 3024 3897 30.67 36 

1 3848 3898 30.14 37 

2 5222 5272 32.04 39 

3 3008 3058 30.87 41 

4 4974 5024 33.87 36 

CMAPPS-FD002 

Sensor Value Score RMSE Computational 

Time (s) With Filter Without Filter 

14 11643 10758 38.78 108 

 

 

CMAPPS-FD003 

PCA Combos Score RMSE Computational 

Time (s) With Filter Without Filter 

1,2 2456 2356 25.65 42 

1,3 2821 2721 31.13 46 

1,4 3268 3854 33.43 41 

2,3 3515 3754 34.46 53 

2,4 13133 11654 49.22 65 

3,4 5024 5664 42.75 45 

1 4897 4978 35.34 49 

2 4131 4752 33.08 49 

3 5118 5853 32.75 53 

4 6378 6454 34.83 56 

CMAPPS-FD004 

Sensor Value Score RMSE Computational 

Time (s) With Filter Without Filter 

14 13578 11051 43.44 115 

PHM08 

Dataset  

Score 

RMSE Computational 

Time (s) 

Test set 993104.48 48.47 67 

Final Test set N/A 43.56 78 
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4.5.2 Model with GA 

The results from the conventional LSTM states the necessity of improvements in the 

present model. The genetic algorithm is iterated for many generations until the evolution 

of improved individuals. The given dataset is split into 75 % and 25% for training and 

validation respectively [116]. The set of genes and parameters used in this approach is 

given in Table 4.6 and Table 4.7 respectively.  

The following iterative algorithm is used for obtaining the optimal solution, 

For i = 1, Population_max 

 Objective function f (x) = Accuracy Metrics (Value t-1 - Value t) 

 If f (x) ≤ Threshold,  go to 10 

End 

10 Stop 

 

Table 4.6 Genes Used in GA Approach (Hidden Layers = 2 and Batch Size = 64) 

Genes Hyper-Parameter Choices and Range Optimized 

Values 

1 Number of Neurons (Unit 1) 1 – 500 32 

2 Number of Neurons (Unit 2) 1 – 500 32 

3 Activation Function - Input 

Layer 

Sigmoid, ReLU, Softmax, Tanh, 

ELU, SELU, Linear 

Sigmoid 

4 Activation Function - 

Hidden Layer 

Sigmoid, ReLU, Softmax, Tanh, 

ELU, SELU, Linear 

Sigmoid 

5 Activation Function - Output 

Layer 

Sigmoid, ReLU, Softmax, Tanh, 

ELU, SELU, Linear 

Tanh 

6 Loss Functions Categorical Crossentropy, Binary 

Crossentropy, Mean Squared Error, 

Mean Absolute Error, 

Sparse Categorical Crossentropy 

Mean 

Squared Error 

7 Optimizer Stochastic Gradient Descent, 

RMSprop, Adagrad, Adadelta, 

Adam, Adammax, Nadam 

Adam 

8 Epoch Early Stopping Criteria N/A 
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Table 4.7 Parameters Used in GA Approach 

Parameters Value 

Classes 1 

Population_max 50 

Generations 10 

Threshold 0.0050 

 

The optimized hyperparameters obtained from the algorithm is expedited in the LSTM 

model for all the four cases (FD001, FD002, FD003, FD004). The results for the best PCA 

combo (1,2) are presented in Table 4.8 and the comparison plot is shown from Figure 4.14 

to Figure 4.17. 

   

Figure 4.14 GA Optimized Actual and Predicted RUL [FD001] 

 

   

Figure 4.15 GA Optimized Actual and Predicted RUL [FD002] 
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Figure 4.16 GA Optimized Actual and Predicted RUL [FD003] 

 

 

Figure 4.17 GA Optimized Actual and Predicted RUL [FD004] 

 

Table 4.8 GA Optimized Performance Parametric Values 

PCA Combos Score RMSE Computational 

Time With Filter Without 

Filter 

 

 

1,2 

 

660 780 15.82  

 

~ 48 hours 
3870 3845 21.14 

840 823 13.77 

4574 4698 23.69 
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4.5.3 Model with PSO 

The main advantage of this population-based optimization method is its fast convergence 

due to the association of particles in the swarm. The stochastic constants towards local best 

(pbest) and global best (gbest) are chosen to be 0.1 and 0.2 respectively for the training 

dataset. The inclusion of the validation dataset may have improved the results. The initial 

set of parameters specified to the process is given in Table 4.9.  

The following iterative algorithm is used for obtaining the optimal solution, 

10  i = 1 

20 Objective function f1 (i) = Training Loss [mse] 

30        gbest= f1 (i)   

40         i=i+1  

50 Objective function f1 (i) = Training Loss [mse] 

70 if  f1 (i) < f1 (i-1), then  go to 30 

80 Else if  gbest > gbest_min, go to 40 

90 Stop 

 

Table 4.9 Parameters Given to the PSO Algorithm (Hidden Layers = 2 and Batch Size = 64) 

S.No Hyper-Parameter Choices and Range Optimized 

Values 

1 Number of Neurons (Unit 1) 1 – 32 16 

2 Number of Neurons (Unit 2) 1 – 64 32 

3 Activation Function - Input 

Layer 

Sigmoid, ReLU, Softmax, Tanh, 

ELU, SELU, Linear 

Linear 

4 Activation Function - Hidden 

Layer 

Sigmoid, ReLU, Softmax, Tanh, 

ELU, SELU, Linear 

Sigmoid 

5 Activation Function - Output 

Layer 

Sigmoid, ReLU, Softmax, Tanh, 

ELU, SELU, Linear 

Linear 

6 Optimizer Stochastic Gradient Descent, 

RMSprop, Adagrad, Adadelta, 

Adam, Adammax, Nadam 

RMSprop 
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These optimized values are utilized in the LSTM model and the results for the best PCA 

combo (1,2) are presented in Table 4.10 and the comparison plot for all four cases is shown 

from Figure 4.18 to Figure 4.21.  

 

Table 4.10 PSO Optimized Performance Parametric Values 

PCA combos Score RMSE Computational 

Time  With Filter Without 

Filter 

 

 

1,2 

,, 

876 651 15.23  

 

~ 2 hours 
4124 4225 22.87 

765 618 14.53 

4897 4714 26.11 

            

 

   Figure 4.18 PSO Optimized Actual and Predicted RUL [FD001] 

 

  Figure 4.19 PSO Optimized Actual and Predicted RUL [FD002] 
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Figure 4.20 PSO Optimized Actual and Predicted RUL [FD003] 

 

Figure 4.21 PSO Optimized Actual and Predicted RUL [FD004] 

 

The best score from the above summary table is compared with earlier literature for both 

the metrics as shown in Table 4.11 and Table 4.12.  

 

Table 4.11 Comparison of RMSE on C-MAPSS Dataset with Reference [115] 

Dataset MLP SVR RVR Deep 

LSTM 

Proposed 

LSTM 

Model 

Proposed 

LSTM (GA 

Optimized) 

Proposed 

LSTM 

(PSO  

Optimized) 

CMAPPS 

FD001 

37.56 20.96 23.80 16.14 24.51 15.82 15.23 

CMAPPS 

FD002 

80.03 42.00 31.30 24.49 38.78 21.14 22.87 

CMAPPS 

FD003 

37.39 21.05 22.37 16.18 25.65 13.77 14.53 

CMAPPS 

FD004 

77.37 45.35 34.34 28.17 43.44 23.69 26.11 



133 
 

 

Table 4.12 Comparison of Score Function on C-MAPSS Dataset with Reference [115] 

Dataset MLP SVR RVR Deep 

LSTM 

Proposed 

LSTM 

Model 

Proposed 

LSTM (GA 

Optimized) 

Proposed 

LSTM (PSO  

Optimized) 

CMAPPS 

FD001 

18000 1380 1500 338 2199 660 651 

CMAPPS 

FD002 

7800000 590000 17400 4450 10758 3870 4124 

CMAPPS 

FD003 

17400 1600 1430 852 2356 823 618 

CMAPPS 

FD004 

5620000 371000 26500 5550 11051 4574 4714 

Remarks 

4.6 Conclusions  

In this Chapter, an improvised LSTM neural network with genetic algorithm and particle 

swarm techniques are employed to optimize the parameters of the model. Both the 

algorithms initiate from a random population and reckon a fitness value for each given 

parameter. PSO and GA are almost similar in updating the optimized offspring; unlike GA, 

PSO gets updated with internal velocity and does not have genetic operators like crossover 

and mutation. The information-sharing mechanism is different in PSO and GA. A most 

important advantage in PSO is the trend of convergence rate, the solution gets optimized 

quickly.                      

The variants in the conventional LSTM dictates the PCA combo 1,2 to be the best 

predicting solution with the least score value for the 4 cases of C-MAPSS as 2136, 10758, 

2356, 11051 and 9560 for PHM08 (Table 4.5). It can be also noted that the usage of filters 

does not make much difference in the score value. The best values are compared with the 

earlier works and are seen to be with fewer improvements, thus two of the optimized 

techniques are applied.                 

The PSO algorithm and GA modeled in python framework are compared, it can be 

inferred that RMSE and score values are much improvised than the conventional neural 

network (Table 4.11 and Table 4.12). Among the two techniques, PSO comparatively 

produces better results with a faster computational converge time of 2 hours which is 2.75 

days (72 hours) faster than the GA technique. The experimentation shows that the PSO-

LSTM model has better accuracy and performance. 
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CHAPTER 5 

5. Conclusions and Future Work 
 
 

This thesis dealt with the fault diagnosis and prognosis of the aerospace systems that 

include datasets of an aircraft turbofan engine and Kepler satellite. The main modules of 

the AOCS framework and health monitoring systems have discoursed with fault detection, 

isolation/identification, and prognosis. The historical report of the failures was reviewed 

and major causes were revealed, utilized for the current methodology. The proposed 

module is capable of detecting the failure in the primary stage, followed by the isolation/ 

identification of severity/location of the fault and finally determining the remaining useful 

life in advance. The early RUL estimation helps in charging remedial actions and strategic 

planning of maintenance activities well in advance. In light of the severity and difficulty 

associated with fault analysis frameworks for the complex systems, three major modules 

were examined and enriched frameworks were proposed and evaluated with addressing 

some of the restrictions sensed in the early literature. 

Data analysis is the advanced scientific approach with multi-disciplinary capability to 

handle complex systems without expert knowledge and experience. Artificial Intelligent 

techniques outperform human ability with high competence in solving complicated tasks. 

Furthermore, the proposed techniques with optimization tools can be extended to any 

similar aerospace systems with higher complications. Features of the data, types of faults 

and limitations of data methodology were scrutinized thoroughly.  

Model development, fault diagnosis and prognosis to avoid downtime and mission failure, 

along with the optimizing tools available in the literature were studied in Chapter 1. The next 

chapter reveals the terminology of fault, malfunction, and failure with the desired requirements 

of the fault management system. A complete analysis of conventional and data-driven 

methods were explained with the applications on aircraft and spacecraft. An LSTM neural 

network was developed and tested with a simpler pollution dataset for evaluating the 

performance and reliability of the model. In Chapter 3, the Kepler telemetry dataset is 

studied for diagnosing the fault with the conventional approaches and data-driven 
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techniques. Finally, in Chapter 4 the turbofan engine dataset is used in improvising the 

proposed model with optimization tools in successfully estimating the remaining useful 

life of the aircraft engines.  

 

5.1 Highlights 

This section explains the overall important structures of the proposed approach to the 

complex datasets (aircraft and satellite).  

In Chapter 2, a modified and efficient LSTM model was proposed to address the agility 

and limitations of the available literature. The proposed model used the pollution dataset 

and studied the selection process in choosing the hyper-parameters. The common issues 

such as stationarity, the laziness of the model in predicting the previous data as the future 

step were addressed appropriately with inferences of the Dickey-Fuller test and sliding 

window- multistep predictions respectively.  

In Chapter 3, the fault detection of a complex Kepler mission in its critical state (2 

operating reaction wheels) was carried with the conventional and modern data-driven 

approaches. The most effective statistical methods were applied to the telemetry data and 

various new inferences were extracted from each of the methods and are merged together 

to detect the fault well in advance. Later the proposed LSTM model was varied to adapt 

this dataset for detecting the fault of the reaction wheels.  

In Chapter 4, the performance of the recurrent neural network was reviewed, various 

preprocessing techniques such as parameter merging, principle component analysis, and 

digital filters were applied to improve the accuracy of prognosis. The projected model was 

verified and reviewed for all the different cases with its performance scores. Later, the two 

most effective and widely used optimization techniques (genetic algorithm and particle 

swarm optimization) were incorporated into the model separately. The prognostic ability 

of both the algorithms were compared with the metrics and reported in the tabular form.  
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5.2 Summary of Contributions 

The main contributions in this thesis of developing the modern data-driven method for 

analyzing the complex aerospace systems with the capability of fault detection and 

prognosis are given as follows, 

Model Development: The proposed data-driven model (1) considers the time-series 

environmental pollution dataset to predict and estimate the future trends with high-

performance computing platform and Python language with TensorFlow backend [117], 

(2) the nonlinearities caused by the anthropogenic and environmental factors which adds 

further complexity were in considered in the analysis, (3) the network was trained using 

supervised learning to forecast the data in multi-steps by varying the free parameters, (4) 

the major issue of the data-driven approach such as overfitting and underfitting were 

resolved. The fine-tuned proposed model with a month ahead capability of predicting the 

future with superior performance compared to other available techniques in the literature 

was implemented.  

Fault Detection: Based on the earlier literature, the conventional statistical methods were 

used for extracting the significant feature of the data. (1) correlational coefficients were 

studied initially for extracting the dependencies among the given input, (2) from the 

Weibull analysis the range of shape and scale factors were compared with the normal data 

to detect the faulty condition, (3) variations in the intercepts and slope values of the 

frictional data senses the abnormal behavior, (4) LSTM model was applied to the featured 

dataset for detecting the RW failure with the calculated weather data from the sun.  

Fault Prognosis: Remaining useful life of the set of similar turbofan engines were 

successfully determined well ahead of the downtime with higher accuracy. The LSTM 

model was employed with (1) usage of digital filters in reducing the noise levels, (2)  

normalization and principal component analysis - for converting the sensor values to a 

standardized time variational elements, (3) parameter merging - to integrate the sensor 

values to a low-dimensional frame for simpler analysis.  
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Optimized Model: The proposed model was enhanced with two of the best available 

optimization techniques. (1) the model merged with genetic algorithm (GA) performs 

better in tuning the hyper-parameters with improved prognostic efficiency but takes a huge 

amount of time in converging (3 days approx.), (2) PSO-LSTM accomplishes the optimal 

solution with higher convergent rate. This optimized model is capable of estimating the 

RUL with a low error percentage and is applicable for all the scenarios of the fault with 

external disturbances and noise levels. 

 

5.3 Future Work 

The number of imminent works needs to be envisioned in the data-driven modeling 

considering the growth and demand of the present world. From this thesis, the applicability 

of the algorithm is limited only to certain types of time-series problems. Improvements in 

addition to the contributions of this work will enhance the performance of the model with 

universal capability. A few of the future works are outlined below, 

Exploring the Model on Other Systems: The proposed algorithm of this thesis is 

substantially applied to the complex systems. It will be interesting to explore all the other 

relevant aerospace systems with different operating conditions. However, all the 

considered datasets are time-based and are only relevant to time-variant problems. The 

data-driven structure should also be proficient in solving the snags like classification and 

image-based problems. 

Hybrid Approaches on Neural Network Models: The present framework focused on the 

major issues in data-driven approaches along with optimization tools. It is also feasible to 

merge the two different neural networks to generate an enhanced approach with greater 

accuracy and reliability. Combinations of the two different models like CNN + FNN, RNN 

+ CNN, FNN + RNN, conventional + modern can compensate the inconsistencies, 

discrepancies, and inaccuracies from the existing methodology. It is also highly appreciated 

if the optimization tools are merged with this integrated model.  
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Integration of External Features and Disturbances: As discussed at the beginning of 

this work, the output of any high fidelity data-driven model depends on the early history 

of faults and failure trends. The predictions and known abnormal patterns can be easily 

estimated with proper training and evaluation of the designed model. The complexity arises 

with the sudden external interaction or a new disturbance that completely changes the 

behavior of the system. The severity of these aspects changes the model completely to an 

unfeasible form.   

Investigation of Noisy Datasets: Almost every dataset obtained from the machinery or 

sensors are noisy. The irregularities and contaminations in the featured data will affect the 

performance of the modeling. There is only a minimal change in the error and score values 

with the usage of the Savitzky-Golay filter in the second dataset. The fitters could be 

ineffective or not required (neural network is already a fitting model). Even a better 

technique might improve the results. Thus, to examine the exact cause of the issue further 

investigation on filtering is required.  

Performing Analysis for Incomplete Data: In this digital world, information about any 

system can be studied from its datasets. Big data analysis is a study of multi-variant 

collection of different sets with various attributes. The major issue is the availability of the 

data with all its dimensional features. In most of the cases, procurement of data is 

problematic and difficult due to ethical and privacy matters. Therefore, a framework that 

explores acquaintance about the system with the given incomplete data would be much 

competent. 
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