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Abstract

Acoustically excited microbubbles (MBs) are the building blocks of several applications as diverse

as underwater acoustics to sonochemistry and medicine. MBs are used in numerous diagnostic

and therapeutic procedures. MBs dynamics are complex and nonlinear. Moreover, the presence

of the MBs in a medium changes the medium’s attenuation and sound speed. The changes are

nonlinear and depend on the complex MB dynamics. Within this complexity lies great potential

for applications. For instance, the nonlinear response of MBs is used to increase the contrast

to tissue ratio in imaging. Achieving the full potential of MBs in applications requires not only

understanding the MB behavior, but also a detailed knowledge on the effect of the MBs pulsations

on the medium acoustical properties. For instance, increased attenuation due to MBs in the

ultrasound beam path limits the focal ultrasound energy which can reach a target. In this work,

nonlinear MB dynamics are studied with unprecedented detail over wide ranges of ultrasound

exposure parameters. Methods of nonlinear dynamics and chaos including bifurcation diagrams

and resonance curves are used to visualize the results. In tandem, the scattered pressure from single

bubble oscillations was experimentally investigated. Nonlinear dynamics of the MBs is classified

both experimentally and numerically. We show, for the first time, that higher order subharmonic

oscillations can be generated at very low acoustic pressures (e.g. 1kPa) in the oscillations of the

lipid coated MBs. We address one of the open problems in acoustics by developing a comprehensive

model to calculate the nonlinear attenuation and sound speed of bubbly media. Unlike current

models, our new model is not limited by any linear or semi-linear approximations. The predictions

of the model are verified by comparing it to other simplified models and experimental observations
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in bubbly media. We show, for the first time, the numerical and experimental evidence of the

pressure dependent sound speed in bubbly media. The nonlinear attenuation and sound speed of

the bubbly media are classified over a large range of acoustic exposure parameters. The classified

regimes are then used to engineer the attenuation of a bubbly medium, during which ultrasound

can pass through a highly dissipative bubbly medium with minimum loss.
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List of Abbreviations and Symbols

α attenuation

β void fraction

AM amplitude modulation

B molecular co-volume

c sound speed of the medium

Cd dissipated power due to coating (shell) viscosity

cl sound speed in the liquid

Cv heat capacity at constant volume

Cp heat capacity at constant pressure

d distance from bubble center

D thermal diffusivity

δtotal total thermal damping

δV is liquid viscosity damping constant

δth thermal damping constant

δrad radiation damping constant

δint interfacial damping constant

δsh shell viscosity damping constant

ε shell thickness

f frequency
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fr Resonance frequency

fsh subharmonic resonance frequency

fs pressure dependent resonance frequency

FU fundamental

Gs Shell shear modulus

G sediment shear modulus

k polytropic exponent

K Boltzman constant

Kl liquid kinetic energy

χ thermal diffusion length

L thermal conductivity of gas

Ld dissipated power due to liquid viscosity

LC lipid coated

Lth thickness of the thermal boundary layer

MB microbubble

NB nanobubble

US ultrasound

CEUS contrast enhanced ultrasound

UCA ultrasound contrast agent

SN saddle node bifurcation.

PD period doubling

P1 period 1

P2 period 2
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σ surface tension

σ0 initial surface tension

µ viscosity

µl liquid viscosity

µsh shell viscosity

µs sediment viscosity

µth thermal viscosity

N number of bubbles per unit volume

Ng number of gas molecules

ω angular frequency

ω0 resonance angular frequency

P0 atmospheric pressure

PA acoustic pressure amplitude

P pressure

PDfr Pressure dependent resonance frequency

Pg gas pressure

Psc scattered pressure

R bubble radius

R0 initial bubble radius

Rb buckling radius

Rd dissipated power due to radiation

Rr rupture radius

Ṙ bubble wall velocity
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Ṙ bubble wall acceleration

ρ density

ρg gas density

ρl liquid density

SH subharmonic

SuH superharmonic

T temperature

t time

T0 initial temperature

θ shell thickness

Td dissipated power due to thermal damping

UH ultraharmonic

v(r, t) velocity field

Sd dissipated power due to scattering

Wtotal total dissipated power
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Chapter 1

Introduction

1.1 Background

A bubble is neither a gas or a liquid [1], nor a solid or a plasma. To form a bubble at least two phases

of matter must exist. In this thesis a bubble is considered as a volume gas surrounded by a liquid,

and in the case of coated microbubbles (MB) it is a volume of gas coated by a lipid, polymer or an

albumin shell (Fig. 1.1). When exposed to an ultrasonic field the MB oscillates and emits sound.

Bubbles can be introduced into the medium or they can be created by the deposition of energy

into the medium. As an instance it can be created hydrodynamically [2] or in high frequency high

pressure ultrasonics [3] or through focused laser light [4,5].

The first mention of cavitation dates back to 1754 when Euler investigated the theory of turbines

[6]. Cavitation can occur by applying tensile stress to the liquid elements using a pressure change.

The first analysis of the cavitation for practical applications was made by Rayleigh in 1917 [2] in

a hydrodynamics context. Hydrodyanmic cavitation occurs due to the changes in the ambient

pressure and fluid. Ship propellers produce bubbles. When propellers rotate fast, the water

ruptures and cavitation is produced. This diminishes the thrust and upon collapse of cavitation

bubbles, the propellers erode. The bubble collapse is accompanied by underwater noise emissions.

Early investigations studied the nature of these unwanted effects [2].

Later, it was found that when high intensity ultrasound is applied to an aqueous solution, the

pressure achieved in the the rarefaction cycle can exceed the attractive forces among the liquid

molecules. This ruptures the water and acoustic cavitation is generated [4, 5]. In response to the

sound filled the generated MBs begin nonlinear oscillations which can be accompanied by intense

noise emission which is called the acoustic cavitation noise [4].
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Figure 1.1: A schematic representation of a free (left) and coated bubble (right)

More recent investigations revealed that strong light waves can cause MBs to appear in a liquid

through a phenomenon called dielectric breakdown. This phenomenon is called optical cavitation.

Bubbles and cavitation are closely connected and often both are discussed together (e.g. in the

book by Brennen [7]). The processes upon which cavitation can be generated are summarized in

Fig. 1.2, which is adopted from [5].

Lord Rayleigh’s theory [2] only considers the bubbles that collapse freely. His work was extended

by Plesset [8] by adding an acoustic excitation term. His work formed the building blocks of the

Rayleigh-Plesset equation [8], which forms the basis of the equations for modeling the acoustically

excited bubbles.

In the presence of an acoustical excitation, the bubble expands and contracts. This is shown in

Fig. 1.3 adapted from [9]. The bubble expands with the negative pressure and contracts with

the positive pressure. The bubble may reach an unstable size and the collapse can lead to bubble

destruction. The radius time curve will be used often in this thesis to study the bubble dynamics.

The contraction and expansion of the bubble in the form of radius-time curve is shown in Fig. 1.4.

The MB oscillations as simplified in Figs. 1.3 & 1.4, forms the building block of several applications
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Figure 1.2: Classification scheme for different types of cavitation adopted from [5].

and phenomena. Oscillations of the MBs and the rapid collapse during the compression phase

leads to the generation of a flow filled around the oscillating bubble and emitting of shockwaves to

the surrounding medium. Moreover, the collapse of the bubble results in the elevation of the gas

temperature [1,7]. These effects, when exploited controllably, form the basis for several industrial,

chemical, food science and medical applications of MBs.

1.2 Nonlinear MB dynamics, applications and challenges

MBs excited by ultrasound waves are highly nonlinear oscillators [11]. It has been shown both

numerically and experimentally that MBs exhibit complex and chaotic dynamics [11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21]. MBs encapsulated by a shell are being used in diagnostic ultrasound as

contrast agents (UCAs) [22]. The dynamics of the UCAs (coated MBs) has also been associated

with complex and chaotic oscillations [18,21].

Despite their complex behavior, MBs and UCAs have become instrumental in a wide variety of fields.

MBs are used in sonochemistry to increase chemical yields [23], in surface cleaning applications

[24] and material science [25]. In the context of medical ultrasound, studies have shown the

potential of the UCAs to target and enhance drug/gene delivery [26], reversibly open blood–brain

barrier to deliver drugs to the brain [27] and in ultrasound diagnostic imaging to enhance the
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Figure 1.3: The process of bubble oscillations adapted from [9].

detection of cancer even at early stages and with increased sensitivity [28].

However, despite the many applications of the UCAs and MBs, due to the complexity in modeling

their interaction with ultrasound fields [1], the relationship between the ultrasound exposure

parameters (e.g., frequency and pressure) and the UCA and bubble behavior is not well understood

[1]. The UCA response to ultrasound is nonlinear and complex; thus, the ultrasound exposure

conditions for some applications may not be optimized. A comprehensive understanding of the

dynamics of the UCAs over a large range of relevant ultrasound exposure parameters can be

achieved using methods of nonlinear physics.

Fundamental insights into the dynamical properties of the UCAs can lead to the optimization of

the exposure parameters for specific applications. However, many of the numerical and experimen-

tal studies on the UCA dynamics have been carried out for a limited range of ultrasound frequencies

and pressures [1]. Due to the complexity and sensitivity of the UCA oscillations to the exposure

parameters, the limited information acquired in these studies does not provide a comprehensive

framework that can be used further for the unification and classification of the UCAs and bubble

dynamics. Furthermore, many potential exposure parameter combinations may be overlooked due

to the discrete nature and limited range of the parameters that have been investigated. Thus, a

more comprehensive analysis of the parameter space is required.

In addition to the complexity of the dynamics of the MBs and UCAs, the introduction of the MBs
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Figure 1.4: a) Radius time curve of bubble oscillations, b) corresponding phase of the bubble oscillations adapted [10].

to the medium changes the acoustical properties of the medium [29, 30, 31]. The oscillations of

the MBs increase the attenuation of the medium and change the speed of sound. The increase

in attenuation is directly proportional to the dissipation of the acoustic energy during bubble

oscillations which is nonlinear and complex. Experimental studies and semi linear models have

shown that the attenuation of a bubbly medium deviates largely from linear predictions [28,29,30].

For a given frequency, the oscillation of the MBs at the target location largely depends on the

pressure that the MBs are exposed to at the time of their oscillations. Thus a better understanding

of the attenuation of a bubbly medium, one in which changes in the medium properties that

are dependent on pressure of bubbles are taken into account, is necessary for optimizing and

controlling the dynamics of the MBs.

Despite the importance of the attenuation phenomenon in a bubbly medium, models that are

used to predict the attenuation are based on linear oscillations of the MBs [29] which are only

valid for small amplitude MB oscillations (e.g. 1% expansion ratio of the bubble). The improved

model by Louisnard [30] is also based on semi linear assumptions and thus cannot accurately

predict the speed of sound and attenuation during nonlinear MB oscillations. As shown in previous
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works [30, 31], the nonlinear attenuation of the MBs above a pressure threshold can completely

shield the acoustic waves from reaching the target location. In addition, comprehensive knowledge

of the nonlinear attenuation and its dependence on pressure and frequency may allow one to choose

parameter ranges that may decrease the pre-focal attenuation with advantages for ultrasound

imaging and drug delivery which use focused ultrasound beams. Increasing the attenuation at

the focal location, while minimizing attenuation outside the focal point, can be advantageous for

applications related to bubble enhanced heating [32,33].

Thus, in order to better understand the bubble related phenomena and optimize and control the

behavior of the MBs and UCAs in applications we need:

1- A comprehensive knowledge of the the MBs oscillations for a large range of ultrasound exposure

parameters; so that the potential parameter ranges (e.g. frequency and pressure) for stable nonlin-

ear MB oscillations can be calculated and applied to the relevant application.

2- A detailed understanding of the nonlinear attenuation of the bubbly medium to deliver the

sufficient acoustic energy at the target location to ensure adequate MB oscillations.

These two phenomena are interwoven. As will be seen in this thesis, the propagation of sound

waves through dense bubble clouds can be engineered if we can mathematically model the inter-

actions mentioned above. This thesis will describe how the two goals above are approached.

1.3 Examples of the nonlinear bubble behavior and related

applications

In this section we introduce instances of the nonlinear bubble behavior. Radial oscillations of the

bubble as a function of the driving periods of the acoustic field will be visualized alongside the

scattered pressure by the bubbles and the power spectrum of the scattered pressure. We will show

how an increase in the excitation pressure can change the oscillatory behavior of the bubble. Then

we will introduce the method of bifurcation analysis and relate some of the introduced nonlinear

phenomena to diagnostic applications of ultrasound.
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1.3.1 Keller-Miksis model

The nonlinear behavior of an uncoated bubble will be used as an example. The radial oscillations of

the uncoated bubbles can numerically simulated by solving the well known Keller-Miksis equation

[34]:

ρ

(
1− Ṙ

c

)
RR̈+ 3

2ρṘ
2
(

1− Ṙ

3c

)
=

(
1 + Ṙ

c
+ R

c

d

dt

)(
(p0 + 2σ

R0
)
(
R0
R

)3k
− 2σ
R
− 4µṘ

R
− P0 + Pasin (2πft)

)
(1.1)

In this equation, R is radius at time t, R0 is the initial bubble radius, Ṙ is the wall velocity of the

bubble and R̈ is the wall acceleration ρ is the liquid density (998 kg
m3 ), c is the sound speed (1481

m/s), P0 is the atmospheric pressure (101 kPa), σ is the surface tension (0.0725 N
m), µ is the liquid

viscosity (0.001 Pa.s), Pa and f are the amplitude and frequency of the applied acoustic pressure.

The values in the parentheses are for water at 293 K and are used in all the simulations. The gas

inside the bubble is air with polytropic exponent of k=1.4.

1.3.2 Scattered pressure by bubbles

Oscillations of the bubbles generate a scattered pressure (PSc) which can be calculated by [35]:

Psc = ρ

(
R

d

)
(RR̈+ 2Ṙ2) (1.2)

where d is the distance from the center of the bubble (and for simplicity is considered as 1m in this

thesis unless otherwise mentioned). Calculation of the scattered pressure is of great importance

since in several applications the scattered pressure (Psc) resulting from bubble oscillations plays a

critical role. For example, in imaging applications the Psc is detected and analyzed to form images.

In majority of the applications and phenomena involving bubble dynamics, monitoring the behavior

of the bubbles is through recording the Psc signal and analyzing its frequency components.

In this Chapter, Eq. 1.1 is solved using the 4th order Runge-Kutta technique for an air bubble with

R0 = 2µm sonicated with f = 1.8MHz. The simulations were done using the ode45 function of
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Figure 1.5: Oscillations of an air bubble with R0 = 2µm sonicated with f = 1.8MHz at different pressures of: a-c) 25 kPa and d-f)
50 kPa. The left column is the radial oscillations as a function of driving periods, the middle column represents the Psc and the right
column represents the power spectrum of the Psc

MATLAB and the relative and absolute tolerance of the integration was set to 1e-12 and 1e-13. The

solutions were recorded at time steps of 0.001
f . The initial conditions of the problem were set to

R0(t = 0) = R0 and Ṙ(t = 0) = 0 m/s.

1.3.3 Radial oscillations, Psc and power spectrum at different ultrasound

excitation pressures

Fig. 1.5a shows the radial oscillations of an air bubble with R0 = 2µm where f = 1.8MHz and

Pa = 25kPa. The red and yellow circles highlight the peaks and radial amplitude of the bubble

at the start of each period respectively. The radial oscillations have one maximum and the yellow

circles also have one value. The corresponding Psc and its power spectrum are shown in Figs.

1.5b-c respectively.

Fig. 1.5.d shows the radial oscillations when Pa = 50kPa. The corresponding Psc and its power

spectrum are shown in Figs. 1.5e-f respectively. Compared to the previous case, although the

amplitude of the excitation pressure is only doubled, the maximum amplitude of the Psc increased

approximately 10 folds. The corresponding fundamental and harmonic components respectively at
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Figure 1.6: Schematic of the amplitude modulation technique: a) case of the tissue and b) case of the bubbles.

f and 2f have increased about 10 dB. This shows one of the nonlinear responses of the bubble to

changes in ultrasonic excitation amplitude.

The asymmetrical increase in the scattered pressure from bubbles forms the foundations of the am-

plitude modulation techniques [36,37] in contrast enhanced diagnostic ultrasound. The schematic

of this technique is shown in Fig. 1.6. In this technique two pulses are sent with one having half the

amplitude of the other. The scattered signals are scaled and subtracted upon receive. The signals

from tissue cancel due to the linear response of the tissue and thus the tissue signal is suppressed.

However, there is a residual signal due to the nonlinear bubble behavior, thus the contrast to tissue

ratio increases.

Fig. 1.7.a displays the radial oscillations of the bubble when excitation pressure is increased to

230 kPa. The oscillations have two peaks and the yellow circles have two values. These values

repeat themselves once every two acoustic cycles. Thus the period of the oscillations is 2. The

corresponding Psc has two maxima. The occurrence of P2 is concomitant with the generation of

1/2 order subharmonics (SHs) and 3/2 ultraharmonics (UHs) in the power spectrum of the Psc

(Fig. 1.7c). This behavior is exclusive to the bubbles and the tissue can not produce SHs or UHs.

SHs oscillations are used to increase the contrast to tissue ratio in contrast enhanced ultrasound
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Figure 1.7: Oscillations of an air bubble with R0 = 2µm sonicated with f = 1.8MHz at different pressures of: a-c) 230 kPa and d-f)
300 kPa. The left column is the radial oscillations as a function of driving periods, the middle column represents the Psc and the right
column represents the power spectrum of the Psc

[38]. The signals are filtered upon receive and only the SH frequency component is kept in the

image. Thus contrast to tissue ratio increases. Fig. 1.8 shows the SH image of a rabbit ear. The

signal from the tissue is suppressed and the vessels are displayed with high contrast.

When pressure is increased to 300 kPa (Fig. 1.7d) the oscillations have several peaks. The yellow

circles have many distinct values and it is very difficult to distinguish a period or a pattern in the

bubble oscillations. This is referred to as chaotic oscillations. Occurrence of chaos is undesirable

as the oscillations are unpredictable and the strength of the nonlinear components (e.g. SH) of the

power spectrum decrease. This is because the signal energy is distributed over a large frequency

range leading to a broadband spectrum (Fig, 1.7f).

Figs. 1.5 and 1.7 show that the behavior of the bubble strongly depends on the excitation

amplitude. The discrete nature of the analysis in these figures. does not allow for a comprehensive

understanding of the bubble dynamics. Moreover, some of the parameter ranges with potential

for applications may be overlooked. Thus, in this thesis we will use the bifurcation diagrams

to analyze the bubble behavior over a large range of parameters (frequency, pressure, size and

initial surface tension of the bubbles). In Chapter 3, we will introduce in detail a comprehensive
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Figure 1.8: In vivo demonstration of SH imaging in the microvasculature of a rabbit ear. Top, 20 MHz fundamental mode image of
a rabbit ear in cross section, in which the presence of a 300–400 µm diameter microvessel (V) is evident relative to the surrounding
tissue before bubble injection. Bottom, SH image at 10 MHz of the same region after the injection of bubbles. The tissue signal has been
suppressed, leaving the image of the 400 µm vessel as well as signals from several smaller vessels that were not visible in the original
scan [38].

method of generating the bifurcation diagrams. Here we will show the bifurcation diagram of the

bubble in Figs. 1.5 and 1.7 alongside the fundamental, harmonic, 1/2 order SH and 3/2 order UH

components of the power spectrum.

Fig. 1.9a displays the bifurcation structure of an air bubble with R0 = 2µm sonicated with

f = 1.8MHz as a function of pressure. The red curve represent the peaks of the radial oscillations

at each pressure and the blue curve represents the amplitude of bubble oscillations at the beginning

of each period. The analysis is performed within the last 40 cycles of a 240 cycles pulse to avoid

the transient bubble oscillations.

Oscillations are P1 for pressures below 220 kPa. The red and blue curve have one value. Point

A (Pa = 25kPa), corresponds to the radial oscillations in Fig. 1.5a. At Pa ≈ 30kPa the radial

oscillation amplitude undergoes a rapid increase. This causes a discontinuity in the bifurcation

diagram and is referred to as a saddle node (SN) bifurcation. The radial oscillations at point B are

shown in Fig. 1.5.d. The sudden increase in the radial oscillations at the SN pressure have potential

applications in amplitude modulation techniques as the residual signal from bubbles will be higher
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Figure 1.9: Case of an air bubble with R0 = 2µm sonicated with f=1.8 MHz: a) bifurcation structure of the R
R0

as a function of
the driving acoustic pressure, b) harmonic components of the power spectrum of the Psc as a function of the driving pressure and c)
subharmonic (SH) and ultraharmonic (UH) components of the power spectrum of the Psc as a function of the driving acoustic pressure.
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in amplitude.

Further increase in excitation pressure results in a monotonic increase in the bubble amplitude and

at Pa ≈ 220kPa a period doubling (PD) bifurcation takes place. Oscillations becomes period 2 (P2)

and there are two distinct values for the blue curve. Radial oscillations of the point C are shown

in Fig. 1.7.a. There are two yellow circles (the two blue values in the bifurcation diagram) and

the oscillations also have two peaks. Above a pressure threshold chaotic oscillations appear. This

phenomenon usually occurs through successive Pds. Point D in the chaotic window corresponds to

the radial oscillations in Fig. 1.7d. The oscillations have many distinct values at each period of the

driving pressure, thus when they are plotted versus the acoustic pressure in Fig. 1.9 they resemble

a continuous vertical line.

The fundamental and the 2nd harmonic components of the power spectrum are shown in Fig.

1.9.b. The occurrence of the SN bifurcation is simultaneous with a sudden 10 dB increase in the

fundamental and 2nd order harmonic components of the power spectrum which can be used to

enhance the contrast in amplitude modulation techniques [36,37].

Fig. 1.9.c shows that concomitant with the Pd in the bifurcation diagram, the amplitude of the 1/2

order SH and 3/2 UH of the power spectrum increases significantly (14 dB). Moreover, occurrence

of the chaotic oscillations are simultaneous with a drop in the SH and UH strength. Additionally,

due to the higher pressures required for chaotic oscillations, the scattered signal will be higher from

tissue, thus signal to noise may also decrease.

The application of the bifurcation diagrams reveals valuable information about the radial oscilla-

tions of the bubbles. In this thesis, this information will be used to classify the nonlinear bubble

dynamics and relate each nonlinear regime to the relevant applications of bubbles.

1.4 Thesis structure

The thesis has 10 chapters which constitute either published papers, or papers that have been

submitted for publication or are being prepared for submission. To avoid duplication, the relevant

background context is presented in each individual chapter instead of the introduction.

In Chapter 2, the influence of the pressure dependent resonance frequency (PDfr) on the bubble

dynamics will be investigated. The bifurcation structure of the radial oscillations of the MBs when
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sonicated with their PDfr will be analyzed. The non-destructive (stable oscillations) scattered

pressure by UCAs will be investigated in tandem with bifurcation diagrams and the conditions for

amplification of the non-destructive scattered pressure by MBs and wall velocities will be identified.

The work is published in Nonlinear Dynamics [39]

In Chapter 3, we will introduce a more comprehensive method to study the bifurcation diagrams

of the bubble oscillators. Current methods cannot differentiate the exposure parameter regions

where the oscillations are in ultraharmonic regimes from the exposure parameter regions where the

bubble oscillations are in subharmonic regimes. Moreover, using current methods, superharmonic

regimes of oscillations cannot be identified. We will introduce a comprehensive method that tackles

the problems associated with the conventional bifurcation methods. The work is published in

Ultrasonics Sonochemistry [40]

In Chapter 4, we will use the method developed in Chapter 3, and will classify the bifurcation struc-

ture of an uncoated bubble that is sonciated with its resonance frequency (fr) and its subharmonic

(SH) resonance frequency (fsh = 2fr). Conditions for the generation, amplification and stability

of 1/2 order subharmonics (SHs) will be investigated comprehensively. This paper is published in

Physics Letters A [41].

In Chapter 5, the pressure dependence of the SH resonance frequency (fsh) will be investigated.

The dynamics of the uncoated MBs sonicated with their pressure dependent fsh (PDfsh) will

be investigated using the comprehensive method developed in Chapter 3. Conditions for the

enhancement of the upper limit of the SH power during non-destructive bubble oscillations will

be identified. This paper is under review in Nonlinear Dynamics [42].

In Chapter 6, we will provide critical corrections to the formulations of the pressure dependent

dissipation mechanisms in the oscillations of the uncoated MBs. The corrections are critical for the

models that will be used for calculating the propagation of ultrasound through bubbly media. This

paper is published in Ultrasonics Sonochemistry [43].

In Chapter 7, we will introduce a simple model for the dynamics of the coated bubble including

radiation effects. Using the approach in Chapter 6, the formulations for the pressure dependent

dissipation mechanisms in the bubble oscillator will be derived. Through analyzing the pressure

dependent dissipation mechanisms, the nonlinear scattering to dissipation ratio will be calculated

and conditions for its maximization scattering and minimizing attenuation. This paper is published
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in Ultrasonics Sonochemistry [44].

In Chapter 8, the nonlinear dynamics of the uncoated and coated MBs (with linear visco-elasticity)

will be classified by using and extending the analysis in chapters 2,3,4 and 5. Then, using the

derived nonlinear formulations and the classified behavior, the dissipation mechanisms due to

thermal damping, radiation damping, damping due to the viscosity of the shell and the liquid

viscosity will be classified. This chapter will be submitted as two papers.

In Chapter 9, we will present a model for calculating the pressure dependent attenuation and sound

speed in bubbly media. The model uses no linear approximations. The accuracy of the model will

be verified numerically and experimentally. Using the classification scheme in Chapter 8, we will

classify the nonlinear regimes of the attenuation and sound speed in bubbly media. The important

information obtained ins this classification scheme is then related to possible optimization of

exposure parameters for relevant applications. This chapter will be submitted as two papers. This

work won the 2nd best paper award in the 171st Meeting of the Acoustical Society of America in

Salt Lake City, Utah in 2016 [45].

In Chapter 10, we will report the first time experimental observations of the higher order non-

linearity in the oscillations of lipid coated MBs at low excitation pressures. Physical reasons for

the enhanced non-linearity will be given by comparing the experimental results with numerical

predictions. This paper has been submitted to the International Journal of Engineering Science.

This work won the best paper award in the joint congress of the 21st International Congress

on Acoustics, 165th Meeting of the Acoustical Society of America and the 52nd meeting of the

Canadian Acoustical Society in Montreal, Canada in 2013 [46].

In Chapter 11, we will classify the dynamics of the lipid coated MBs. The buckling and rupture

of the lipid coating, significantly enhance the nonlinear behavior and make the dynamics of lipid

coated bubble very complex. Using the information of the chapters 2,3,4,5 and 8 and by analyzing

the bifurcation structure of the lipid coated MBs with different initial surface tensions, we will ex-

amine the influence of the coating on the nonlinear bubble behavior. Finally, a simple classification

scheme is provided for the complex coated bubble system. This paper is planned to be submitted

soon.

The thesis will end with a summary of the contributions of each chapter.
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Chapter 2

Influence of the pressure dependent resonance

frequency on the bifurcation structure and

backscattered pressure of ultrasound contrast

agents: A Numerical investigation

2.1 Abstract

The bifurcation structure of the oscillations of ultrasound contrast agents (UCAs) was studied as

a function of the driving pressure for excitation frequencies that were determined using the UCAs

pressure dependent resonances (fs). It was shown that when excited by the (fs), the UCA can

undergo a saddle node bifurcation (SNB) to higher amplitude oscillations. The driving pressure at

which the SNB occurs is controllable and depends on the (fs) magnitude. Utilizing the appropriate

(fs), the scattering cross section of the UCAs can significantly be enhanced (e.g. ∼ 9 fold) while

at the same time avoiding potential UCA destruction (by limiting the radial expansion ratio < 2).

This offers significant advantages for optimizing UCA mediated imaging and therapeutic ultrasound

applications1.

1Published as: Sojahrood, A.J., Falou, O., Earl, R., Karshafian, R. and Kolios, M.C., 2015. Influence of the pressure-
dependent resonance frequency on the bifurcation structure and backscattered pressure of ultrasound contrast agents: a
numerical investigation. Nonlinear Dynamics, 80(1-2), pp.889-904.
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2.2 Introduction

Bubbles excited by ultrasound waves are highly nonlinear oscillators [1]. It has been shown both

numerically and experimentally that bubbles exhibit complex and chaotic dynamics [1,2,3,4,5,6,

7,8,9,10,11]. Bubbles encapsulated by a shell are being used in diagnostic ultrasound as contrast

agents (UCAs) [12]. The dynamics of the UCAs has also been associated with complex and chaotic

oscillations [8,11].

Despite the complex behavior, bubbles and UCAs have become instrumental in a wide variety of

fields. UCAs are used in sonoluminscence [6], in sonochemistry to increase chemical yields [13],

and material science [14]. In the context of medical ultrasound, studies have shown the potential

of the UCAs to target and enhance drug/gene delivery [15], reversibly open blood brain barrier to

deliver drugs to the brain [16] and in ultrasound diagnostic imaging to enhance the detection of

cancer even at early stages and with molecular sensitivity [17].

Despite of the many applications of UCAs, the relationship between the ultrasound exposure pa-

rameters (e.g. frequency and pressure) and the UCA behavior is not well understood. The UCA

response to ultrasound is nonlinear and complex; thus the exposure conditions in some applications

may not be optimized. A comprehensive understanding of the dynamics of the UCAs for the large

range of relevant exposure parameters can be achieved using methods of nonlinear physics.

Fundamental insights into the dynamical properties of the UCAs can lead to optimization of the

exposure parameters for particular applications. However, many of the numerical and experimental

studies on the UCA dynamics have been carried out for a limited range of ultrasound frequencies

and pressures. Due to the complexity and sensitivity of the exposure and the UCA parameters on

the UCA oscillation dynamics, the limited information acquired in these studies does not provide

a comprehensive framework that can be used further for the unification and classification of the

UCAs dynamics. Furthermore, many potential exposure parameter combinations may be excluded

due to the discrete nature of the parameters that have been investigated.

In most UCA applications, resonant UCA oscillations are of fundamental importance as they result in

the highest energy transfer from the ultrasonic field to the UCAs [18]. As an example, in ultrasonic

imaging when UCAs are driven with their resonance frequency they generate a significant backscat-

tered signal which will enhance the signal compared to the background signal [19]. Previous

26



studies for free [20] and encapsulated [21, 22, 23, 24] bubbles have shown a shift in the UCA

resonance occurs for different driving ultrasound amplitudes. Higher driving pressures have shown

to decrease the resonance frequency of the free and encapsulated bubbles [20, 21, 22, 23, 24].

Despite the well-known fact of this shift in the resonant frequency for free bubbles [2] and the

recent detailed observations of this shift for contrast agents [21,22,23,24], to our best knowledge

no study has been published that examines the consequences of this shift in the UCA resonant

frequency on the dynamical behavior of the UCAs. The dynamics of the system over a wide

continuous range of the pressure and frequency has not been studied. To address the effect of

the excitation frequency and the applied acoustic pressure on the dynamics of the UCAs, these two

parameters must be investigated together, taking into account the nonlinear relation between the

acoustic pressure and the UCA resonance frequency.

The focus of this study is to investigate the dynamics of the resonant UCAs (excited by linear

and pressure dependent resonance frequencies). The aim of this work is to build a fundamental

understanding of the dynamics of the ultrasound contrast agents for the identification and clas-

sification of the nonlinear signatures of the resonant UCAs. This is studied firstly by calculating

the UCA resonance curves at different ultrasound driving pressures. In the second step, these

resonance frequencies are used to drive the UCA excitation and the dynamical behavior of the

UCAs are visualized by the aid of the bifurcation diagrams of the radial oscillations of the UCAs as a

function of the driving acoustic pressures. In the third step, the maximum backscattered pressure is

calculated with the aid of bifurcation diagrams to investigate the effect of the nonlinear resonance

on the backscattered pressure in the regime of non-destructive UCA oscillations.

2.3 Methods

2.3.1 The Bubble model

The radial oscillations of the UCAs were simulated by solving the Church-Hoff model [25] for UCAs

through applying the 4th-order Runge-Kutta technique :

ρ(R̈R+ 3
2Ṙ

2) = P0((R0
R

)3Γ − 1)− pA(t)
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−4µL
Ṙ

R
− 12µsθ

R0
2

R3
Ṙ

R
− 12Gsθ

R0
2

R3 (1− Ṙ0
R

) (2.1)

In this equation R is the UCA radius at time t, R0 is the initial radius of the unexcited UCA, Ṙ

is the UCA wall velocity at time t, R̈ is the UCA wall acceleration at time t, ρ is the density of liquid

and is equal to 998 kg
m3 and µL is the density of the surrounding liquid which is equal to 0.001 N.s

m2 ,

P0 is the equilibrium gas pressure within the bubble which is 1.01∗105Pa, Γ is polytropic exponent

which is equal to 1.095 for SF6. The symbol µs stands for the shell viscosity, θ is the shell thickness

and Gs is the shear modulus of the shell. The values for these parameters are given in section 2.2.

The driving ultrasound pulse, pA(t), is a sinusoidal signal consisting of 80 cycles at varying acoustic

pressure amplitudes (1kPa− 1MPa) and frequencies (0.5− 10MHz):

pA(t) = PA sin(2πft) (2.2)

In the above equation, pA(t) is the driving sound field where PA is the acoustic pressure amplitude,

f is the driving frequency and t is time. In addition, the backscattered acoustic pressure (Psc) at a

distance d from the center of the UCA, was calculated using [26]:

Psc = ρL
R

d
(2Ṙ2 +RR̈) (2.3)

In this paper, the backscatter pressure of different UCAs was calculated at a normalized distance

d = 1 as discussed in [27]. The maximum scattering cross section was calculated using [28]:

SCSmax = (4πR0
2)|Psc
PA
|
2

max
(2.4)

Where SCSmax is the maximum scattering cross section.

2.3.2 Simulation parameters

Four UCAs with initial radii of 1, 2, 3 and 4µm were considered. The sample shell parameters of

Gs = 50MPa, θ = 4nm and µsh = 1.49(R0(µm)−0.86)
θ(nm) were chosen. The shell viscosity was based on

the values reported in [29] that take into account the increase in the shell viscosity for larger UCAs.

These parameters were chosen based on published values for a generic UCA; this is done since the
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main purpose of the paper is to investigate a general characteristic of the UCA system excited by its

pressure dependent resonance frequency and not the behavior of one particular UCA. The results

may therefore be generalized to all the UCAs whose dynamics are governed by equations like Eq.

1.

2.4 Results

2.4.1 Pressure dependent resonance

First the resonance frequencies of the UCAs were calculated by solving Eq.1. For each UCA, the

primary linear resonance frequency was calculated by assuming a weak driving pressure amplitude

of PA = 1kPa. To calculate the maximum amplitude of the radial oscillations, the last 40 cycles

of a 80 cycle sonication were used. In practice attenuation measurements are used to determine

the resonance frequency of the UCAs [23]. In these experiments, the ultrasound pulse hits the

UCAs which are initially at rest. Thus, at each frequency step (0.01 MHz), the Hoff model was

solved with the initial conditions of R(t = 0)=R0 and Ṙ(t = 0)=0 to emulate UCA experimental

conditions. The dynamics of a highly nonlinear system like UCA is strongly dependent on the initial

conditions (ICs) [7,30]. The effect of the ICs on the resonance curves is studied in section 4. After

calculating the linear resonance frequency for PA = 1kPa, for each UCA, the PA was increased

and the new resonance frequencies were calculated for 5 different PAs. Again at each frequency

step the ICs is set as R(t = 0)=R0 and Ṙ(t = 0)=0. The maximum pressure amplitude was set

based on a maximum ratio the radial oscillations of the UCA of Rn = 1.9 (Rn = Rmax
R0

). This

upper limit was used since the UCA disruption threshold is estimated to be Rn ∼ 2.0 [31].Complete

discussion about the threshold for UCA destruction is given in the discussion section. This limit can

be considered a limit below which UCA destruction will be at a minimum.

The normalized maximum radial oscillation (Rn) as a function of frequency at varying acoustic

pressures (PA) for UCAs with R0 of 1 µm and 4 µm are shown in Figure 2.1a and 2.1b, respectively.

The resonance frequency of the UCA decreased and the radial oscillation increased with acoustic

pressure. For the 1 µm UCA, the resonance frequency decreased from the linear resonance fre-

quency (fr) of 8.21 MHz at 1kPa to 5.46 MHz (fs) at 340 kPa acoustic pressure (Rn = 1.9).

This corresponds to 33% decrease in the resonant frequency (Figure 2.1a). For the 4 µm UCA,
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Figure 2.1: Resonance curves at different driving pressures for a) R0=1 µm (linear resonance=8.21 MHz), b) R0=4 µm (linear
resonance=1.21 MHz). The driving pressures used in the simulation are shown in the figure caption.

the resonance frequency decreased from 1.21 MHz (fr) to 0.88 MHz (fs) at 105 kPa (Rn = 1.9)

corresponding to 27% decrease in the resonant frequency (Figure 2.1b).

The ratios of fs to fr ( fsfr ) as a function of acoustic pressure for four UCA sizes (1-to-4 µm) are

shown in Figure 2.2. The ratio fs
fr

decreased as the acoustic pressure increased. Moreover, the fs
fr

ratio decreased for increasing UCA size at a given acoustic pressure exposure. The rate of decrease

of fs
fr

is approximately 3 times higher for UCA with R0 = 4 µm compared to R0 = 1 µm. On

average, the resonance frequency changed by 30-35% from the linear resonance frequency as the
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Figure 2.2: Variation of the resonance frequencies versus acoustic pressure for UCAs with R0= 1,2,3 and 4 µm.

acoustic pressure increased. The larger UCAs reach the threshold of Rn = 1.9 at lower pressures

compared to smaller UCAs (105 kPa vs 340 kPa for the 4 µm and 1 µm UCA, respectively). This is

mainly due to the larger effect of viscosity and surface tension for the smaller UCA oscillations [32].

2.4.2 Bifurcation structure of the UCA driven with linear and pressure dependent

resonance frequencies

The bifurcation structures of the radial oscillations of the 4 UCAs (representing 4 initial radii) were

plotted as a function of Rn versus the driving acoustic pressure PA. The driving frequencies were

chosen firstly based on the linear resonance frequency and then the calculated pressure dependent

resonance frequencies for the appropriate ultrasound driving pressure. The bifurcation analysis

was performed over the 40 cycles of the 80 cycle pulse to eliminate the transient behavior.

In order to investigate the effects of the shift in the resonance frequency on the behavior of the

UCAs, the bifurcation diagrams of the UCAs were generated as a function of Rn versus driving

acoustic pressure (PA). In each diagram the driving frequency used was based on the pressure de-

pendent resonance frequency (fs in Fig. 2.1). The generated bifurcation diagrams were compared

to the case of insonification with linear resonance frequency (f = fr, PA = 1 kPa). The results of

this comparison are shown in Fig. 2.3 for UCAs of R0 = 1 (left column) and 4 µm (right column)

respectively.
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The bifurcation diagrams of 1 µm and 4 µm size UCAs with varying acoustic pressures (PA) at their

corresponding resonance frequencies (fs) are shown in Figure 2.3.

The bifurcation diagram for the 1 µm UCA excited at its linear resonance frequency (fr = 8.21

MHz) is shown in Figure 2.3a. The UCA (1 µm ) undergoes period doubling bifurcation at PA

of 546 kPa and Rn of 1.54, and exhibits 1
2 subharmonics up to 661 kPa (PA). With increasing

pressure, the UCA shows period doubling cascades and chaos at PA of 700 kPa and Rn of 1.88. The

disruption threshold occurs at 790 kPa pressure with Rn = 2. According to Fig. 2.3a the maximum

Rn which is obtained in the regime of period one is 1.54 (The red line indicates the destruction

threshold).

A similar response is observed for the 4 µm UCA at its linear resonance frequency (fr = 1.21 MHz)

(Figure 2.3b). The 4 µm UCA exhibits period-one oscillations with increasing amplitude up to PA

of 240 kPa (Rn = 1.7), and above which the 4 µm UCA undergoes successive period doubling (PA

= 320 kPa) to chaos. The destruction occurs at 280 kPa. As depicted in Fig. 2.3b, driving the UCA

with R0=4 µm with its linear resonance frequency results in a maximum period one Rn of 1.7.

Fig. 2.3c shows the bifurcation structure of the UCA with R0= 1 µm driven with f = 7.25 MHz

(the resonance frequency fs at PA = 150kPa, Fig. 2.1a). Compared to Fig. 2.3a, a change in the

slope of increase in Rn versus pressure is noticeable at PA = 150 kPa. The UCA driven with fr

exhibits a monotonic increase in Rn as PA is increased. As illustrated in Fig. 2.3b, for PA<Ps (Ps=

150 kPa), Rn is smaller than the case depicted in Fig. 2.3a. After the PA is increased above the

Ps, the Rn undergoes a rapid growth and gets larger than the Rn of that UCA driven with fr (Fig.

2.3a). The oscillatory behavior follows a period one regime with a higher Rn compared to the

case of the UCA driven with fr. Period doubling occurs at PA =506 kPa while Rn reaches ∼ 1.7.

Compared to the UCA driven with f = fr, Rn reaches a higher value when the period doubling

occurs. The UCA exhibits period two before the occurrence of further period doubling cascades

above PA = 606 kPa. The onset of chaos and destruction are concomitant at PA = 630 kPa with

Rn = 2. Like the onset of period doubling, the pressure threshold for chaotic behavior is lower

compared to the case of f= fr.

Fig. 2.3d shows the bifurcation structure of the UCA with R0= 4 µm driven with f = 1.11 MHz

(the resonance frequency fs at PA = 40 kPa, Fig. 2.1a). The dynamics are very similar to the

UCA in Fig. 2.3c. The oscillation amplitude is below the oscillation amplitude of the UCA sonicated
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Figure 2.3: Bifurcation diagram of the R
R0

of the UCAs verses the driving acoustic pressure. In the left column, the UCA have an initial
radius R0 = 1 µm, while in the right column they have an initial radius of 4 µm, and are driven at the frequencies in the figure inset.
The initial radius and excitation frequencies are: a) R0=1 µm f=8.21 MHz, b) R0=4 µm f=1.21 MHz, c) R0=1 µm f=7.25 MHz,
d)R0=4µm f=1.11 MHz, 2 e) R0=1µm f=5.96 MHz, f) R0=4µm f=0.95 MHz, g) R0=1µm f=5.46 MHz and h R0=4µm
f=0.88 MHz. (Red line shows the destruction threshold).
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with f = fr but only for PA<Ps=40 kPa. For acoustic pressure amplitudes greater than Ps, the

oscillations undergo a significant increase in amplitude and in a manner similar to that presented

in Fig. 2.3b. For these conditions, the destruction of the UCA with R0= 4µm occurs at 247 kPa.

Fig. 2.3e depicts the bifurcation diagram of the UCA with R0 =1 µm when driven with f = 5.96

MHz (fs at PA = 270 kPa). Compared to Fig. 2.3a, Rn is lower for PA < Ps = 270 kPa. Once

the PA is increased above 270 kPa, Rn undergoes a rapid growth and exhibits a saddle node

bifurcation to a higher oscillation amplitude (Rn ∼ 1. 71), which is 23% larger than the Rn in Fig.

2.3a (at the same PA). The UCA continues period one oscillations at a higher Rn compared to Figs

2.3a and 2.3c and undergoes period doubling at PA ∼ 461 kPa at which point the Rn reaches 1.91.

This is 24% larger than the maximum period one Rn in Fig. 2.3a. The chaotic behavior appears at

PA = 577 kPa with Rn 2.20. The threshold PA for the onset of period doubling, destruction (at

475 kPa) and chaotic oscillations is lower than both the threshold PA for fr = 8.21 MHz and fs

= 7.25 MHz.

Fig. 2.3f illustrates the bifurcation diagram of the UCA with R0 =4 µm when driven with f=

0.95 MHz (fs at PA = 80 kPa). Compared to Fig. 2.3b, Rn is lower for a PA < Ps=80 kPa.

Once the PA is increased above Ps=60 kPa, Rn undergoes a rapid growth and exhibits a saddle

node bifurcation to a higher oscillation amplitude (Rn ∼ 1.68), which is 26% larger than the Rn

in Fig. 2.3b at the same PA. The UCA continues period one oscillations at a higher Rn compared

to Figs 2.3b and 2.3d. The radial oscillations pass the destruction threshold at 183 kPa. The UCA

undergoes period doubling at PA 231 kPa while Rn reaches ∼ 2.2. The maximum period one

oscillations in this case is 17% larger than the maximum period one Rn in Fig. 2.3b. The chaotic

behavior appears at PA = 300 kPa with Rn ∼ 2.6. The threshold PA for the onset of period

doubling and chaotic oscillations is lower than both the fr = 1.21 MHz and fs = 1.11 MHz.

There is a high degree of similarity in the dynamics between Fig. 2.3f and Fig. 2.3e. This indicates

a general behavior for the UCAs sonicated with their pressure dependent resonance frequency.

The bifurcation diagram of the UCA with R0 =1 µm sonicated with f = 5.46 MHz (the fs at PA

= 340 kPa) is presented in Fig. 2.3g. As shown, the Rn is less than the previous cases (Figs. 2.3a,

2.3c and 2.3e) for PA < Ps =340 kPa. However, once the PA is increased above 340 kPa, Rn

exhibits a significant growth and becomes larger than the Rn in Figs. (2.3a, 2.3c and 2.3e). At

this PA amplitude, the Rn is 35% larger than when driven with fr. The oscillation is of period one
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for PA < 451 kPa with a larger Rn (in 330<PA<451kPa) compared to the previous cases. The

radial oscillations of the UCA passes the destruction threshold at 416 kPa. The UCA undergoes

period doubling at 451 kPa and Rn ∼ 2.04. Finally, the oscillations become chaotic after a series of

successive period doubling bifurcations at ∼ 546 kPa. In this case a full nondestructive amplitude

(Rn=2) of period one is developed before the UCA undergoes period doubling.

Fig. 2.3h depicts the bifurcation diagram of the UCA with R0 =4 µm insonified with f = 0.88MHz

(the fs at PA = 105 kPa). As shown, the Rn is less than the previous cases (Figs. 2.3b, 2.3d, 2.3f)

for PA < Ps= 105 kPa. However, once the PA is increased above 105 kPa, Rn exhibits a significant

growth and becomes larger than the Rn in Figs. (2.3a, 2.3d, 2.3f). At PA=Ps=105 kPa amplitude,

the Rn is ∼ 30% larger than when driven with fr. The oscillation is of period one for PA < 231

kPa with a larger Rn (in 105 <PA < 231 kPa) compared to the previous cases. The destruction

threshold occurs at 137 kPa The UCA undergoes period doubling at 232 kPa (Rn ∼ 2.32). Finally,

the oscillations become chaotic after a series of successive period doubling bifurcations at 310

kPa. Again, the similarity between Fig. 2.3g and 2.3h is noticeable indicating a general trend in

the UCA behavior sonicated with pressure dependent resonance. In both cases a full amplitude

period one oscillation is achieved. The importance of the full amplitude period one oscillations is

in the backscattered pressure and will be discussed in the next section.

2.4.3 Maximum backscattered pressure in the regime of stable UCA oscillations

The backscattered pressure amplitude (Psc) was numerically calculated using Eq. 3 for all of

the exposure parameters. In each case the excitation pressure range was chosen so that the Rn

remained below the UCA destruction threshold (Rn = 2). This range was chosen by examination

of the bifurcation diagrams and ensuring that Rmax
R0

<2 (red line in figure 2.3). The results are

shown in Figs.2.4a− d for UCAs with R0= 1, 2, 3 and 4 µm.

The backscattered pressure amplitude (Psc) from UCAs of different sizes (1-to-4 µm) at varying

resonance frequencies is shown in Figure 2.4. The Psc increases with acoustic pressure for all UCA

sizes and acoustic frequencies. At low acoustic pressures, a higher Psc is achieved at the UCA’s linear

resonance frequency (fr). However, with increasing acoustic pressure and at pressure dependent

resonance frequency, the Psc amplitude significantly increases.

As shown in Figs. 2.4a-d, driving the UCA with its linear resonance frequency (fr) results in a
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(a) (b)

(c) (d)

Figure 2.4: Backscattered pressure amplitude as a function of pressure for linear and pressure dependent resonance frequencies when
a) R0= 1 µm, b) R0=2 µm, c) R0=3 µm and d) R0=4 µm. The pressure dependent resonance frequencies are in the figure legends.

higher backscattered pressure amplitude (Psc), but only at low pressures of insonification. When

sonicated with its linear resonance frequency, the Psc increases linearly alongside the driving

acoustic pressure until the UCA undergoes the period doubling bifurcation. The occurrence of the

period doubling bifurcation is concomitant with a decrease in the Psc although the UCA displays a

higher Rn. This will be explained in the next section.

Figs. 2.4a-d illustrate that when a UCA is sonicated with its pressure dependent resonance fre-

quency (fs), the diagram has two distinct regions, PA < Ps and PA>Ps. For PA<Ps the Psc is

less than the backscattered pressure amplitude of a UCA driven with fr. However, as soon as the

pressure is increased above Ps, the Psc increases significantly becoming much larger than the Psc

of a UCA driven with its linear resonance frequency fr. For example in Fig. 2.4a, the Psc of a R0

=1 µm UCA driven with fs =5.46 MHz (Ps=340 kPa) becomes ∼ 3 fold larger than the Psc of

the same UCA driven with fr=8.21 MHz as soon as the pressure increases above 340 kPa.
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Figure 2.5: The normalized maximum possible scattering cross section while avoiding the UCA destruction as a function of fs
fr

. In each
case the maximum possible scattering cross section (SCSmax) is normalized by the maximum possible scattering cross section for a
UCA driven with its linear resonance frequency (SCSrmax).

A comparison between Figs. 2.3 and 2.4 shows that the sudden increase in Psc is concomitant

with the saddle node bifurcation in Rn-PA bifurcation diagrams. The increase is more significant

for higher Ps and lower fs. In this regard, if fs1, fs2 and fs3 are the pressure dependent resonance

frequencies of the UCA at the acoustic pressures of Ps1, Ps2 and Ps3 where Ps1<Ps2<Ps3; the Psc

follows the order of Psc3>Psc2>Psc1 as soon as PA increases above Ps3.

Fig. 2.4 contains very important information regarding the maximum possible backscatter from an

UCA (Pscmax). Driving the UCA with its linear resonance frequency does not result in the maxi-

mum backscatter. When the pressure dependent resonance frequency is used and the pressure is

increased above Ps, the Psc increases significantly. The backscattered pressure amplitude continues

to increase alongside pressure until the UCA is destroyed (Rn > 2). Just below this critical pressure

for UCA destruction the maximum possible backscattered pressure (Pscmax) is at its highest for the

UCA driven with fs.

For example, in Fig. 2.4a, the Pscmax for R0=1 µm driven with fr=8.15 MHz is 4 Pa and occurs

at PA= 542 kPa. However, when the same UCA is driven with fs=5.4 MHz the Pscmax reaches

9.3 Pa and happens at PA= 408 kPa. It should be noted that not only is the backscatter pressure

maximized, but also it is occurring at a lower driving pressure. This can have significant advantages

in increasing the signal to noise ratio (SNR) and contrast to tissue ratio (CTR) in medical imaging

applications. This is because the SNR decreases for linear scatterers (such as tissues) at lower

sonication pressures while at the same time the Psc from the UCA increases at these lower excitation

pressures..
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In summary, it is observed that in the region of nondestructive oscillations (Rn<2), the maximum

possible backscattered pressure has an upper limit when the UCA is driven with fr. This limit

can significantly be enhanced through optimizing the driving frequency in terms of the pressure

dependent resonant frequency fs and applying an acoustic pressure that is greater than a threshold

Ps. The maximum possible nondestructive backscattered pressure occurs in the region of the

period one oscillations. Occurrence of the period doubling is concomitant with a decrease in the

backscattered pressure.

2.4.4 Comparison between the maximum possible backscatter cross section

In order to investigate the effect of the pressure dependent resonance on the scattering properties

of the UCAs, the maximum possible scattering cross section (SCSmax) was calculted using Eq.

4. The maximum possible backscattered pressure derived in Fig. 2.4 was used in the calculation

of the SCSmax. These values were then normalized by the maximum possible SCS in the case of

excitation with the linear resonance frequency (SCSrmax). These values were plotted as a function

of fs
fr

in Fig. 2.5.

As it is illustrated in Fig. 2.5, driving the UCA with fs results in a larger scattering cross section

compared to excitation with fr. The SCSmax increases as fs decreases. As an example, exciting an

R0=4 µm UCA with fs= 0.86 MHz results in a SCSmax which is 9 times greater than the SCSmax

of fr=1.21 MHz. It can also be concluded from Figure 2.5 that the SCSmax increases faster versus

fs
fr

for the larger UCAs.

2.4.5 The concomitant decrease in maximum backscattered pressure with period

doubling

In section 3.3 it was shown that the backscattered pressure decreases when the period doubling

occurs. At the first glance, this appears counterintuitive as the decrease occurs for a higher Rn.

After period doubling, while pressure increases, Rn keeps increasing but the backscattered pressure

decreases. Comparing the radial oscillations between the period one regime and the period two

regime (after the period doubling has taken place) shows that when period doubling occurs, the

magnitude of the UCA contraction decreases, thus the UCA velocity and acceleration during the

contraction phase of the UCA oscillation are smaller compared to the period one oscillations prior

38



(a) (e)

56 56.5 57 57.5 58 58.5 59 59.5 60
−1

0

1

2

3

4

5

6
x 10

9

Acoustic periods

A
cc

el
er

at
io

n 
(m

/s2 )

(b) (f)

(c) (g)

(d) (h)

Figure 2.6: Comparison between the period 1 and 2 behaviors of the UCA with R0=1 µm driven with 8.21 MHz of frequency. In left
column PA=533 kPa: a) radial oscillations, b) velocity, c) acceleration, d) Backscattered pressure. In right column PA=640 kPa: e)
radial oscillations, f) velocity, g) acceleration, and h) Backscattered pressure..
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Figure 2.7: The pressure dependent resonance frequency of the UCA with R0 = 1 µm at PA = 264kPa with 10 random initial
conditions (blue superimposed) and when the initial conditions are R(t = 0)=R0 and Ṙ(t = 0)=0 (red).

Figure 2.8: The bifurcation diagram of the UCA with R0 = 1 µ m sonicated with f = 6 MHz with 10 random initial conditions (blue
superimposed) and when the initial conditions are R(t = 0)=R0 (red).
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to period doubling.

This phenomenon is shown in detail in Figs. 2.6a-d. Fig. 2.6a shows the radial oscillations of the

UCA with R0=1 µm driven with fr=8.21 MHz and acoustic pressure of 533 kPa as a function of

the driving acoustic periods. This corresponds to a UCA undergoing period one oscillations before

the occurrence of the period doubling (Fig. 2.3a). The corresponding wall velocity, acceleration and

backscattered pressure are shown in Figs. 2.6b-d. Fig. 2.6e illustrates the radial oscillations of the

same UCA when driven with an acoustic pressure of 640 kPa. According to Fig. 2.3a this condition

corresponds for period two oscillations after the period doubling bifurcation. The corresponding

wall velocity, acceleration and backscattered pressure are shown in Figs. 2.6f-h. It can be observed

in Fig. 2.6d that despite the increasing UCA radius, the magnitude of the contraction is smaller than

in Fig. 2.6a. This results in a smaller velocity and acceleration for the UCA as shown in Fig. 2.6f-g.

As a consequence the corresponding backscattered pressure is larger for the UCA undergoing period

one oscillation (Fig. 2.6d).

The concomitant decrease in the Psc amplitude with period doubling was only shown for the

frequency range that was studied in this paper. The decrease in Psc was shown only for UCAs being

sonicated with their resonance and pressure dependent resonance frequencies. The frequencies

which are considered in our study are between the resonance frequency (fr) and the pressure

dependent resonance frequency (fs) down to 0.665 ∗ fr. It should be noted that in different cases

like sonication of the UCA with its 2nd harmonic resonance frequency (0.5 ∗ fr) or sonication with

the subharmonic resonance frequency ∼ 2 ∗ fr the behavior of the UCA will be different and one

may not see the same decrease in the backscattered pressure concomitant with period doubling.

However, as the main purpose of this study is the understanding of the dynamics of the resonant

UCAs, we have not studied the above mentioned frequency ranges. Investigation of the behavior of

the harmonically or subharmonically resonant UCAs are beyond the scope of this paper.

2.5 Effect of the initial condition on the resonance curves and

bifurcation structure of the UCAs

As it was discussed earlier, to generate the resonance curves and the bifurcation diagrams, the

initial conditions were chosen to be R(t = 0)=R0 and Ṙ(t = 0)=0. However, the dynamics of
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a nonlinear system like UCA is heavily dependent on the initial conditions. The effect of random

initial conditions on the dynamics and resonance curves of bubble oscillators have been investigated

in [1, 7, 30]. The results of these studies have shown that there can be coexisting stable solutions

for a given parameter range. In order to visualize all the solutions for a given parameter range,

the effect of random initial conditions should be studied. In order to complete the analysis on

the dynamics of the UCAs driven with their pressure dependent resonance frequency and test the

effect of the initial condition on the solutions of the system in this regime, we have calculated one

resonance curve and one bifurcation diagram considering 10 random initial conditions [30] at each

step.

Figure 2.7 shows the resonance frequency of a UCA with R0= 1 µm, sonicated with an ultrasound

pulse whose pressure amplitude is PA= 264 kPa. At each frequency step, the radial dynamics of

the UCA is simulated for 10 random initial conditions (ICs) and the Rmax
R0

is plotted for every IC.

Compared to the case of sonication with ICs of R(t = 0)=R0, the resonance frequency may occur

at a lower frequency (∼ 1 MHz lower) with a higher amplitude. Also note the coexisting attractors

for the frequency range of ∼ 5 to 6 MHz.

Figure 2.8 shows the bifurcation diagrams of the UCA with R0= 1 µ m for two different set of ICs.

The blue curve shows the bifurcation diagram for the IC of R(t = 0)=R0 and Ṙ(t = 0)=0 while the

red curve shows the bifurcation diagram for 10 random initial condition at each pressure step. The

sonication frequency is 6 MHz which is the pressure dependent resonance frequency of the UCA

(fs) at PA= 264 kPa for R(t = 0)=R0 and Ṙ(t = 0)=0 calculated in fig. 2.7. As it is illustrated, the

UCA starting with R(t = 0)=R0 and Ṙ(t = 0)=0 (red), starts with period one oscillations which

undergo a saddle node bifurcation at PA = 264 kPa to a higher amplitude. However, the UCA

starting with the random initial conditions, exhibit a slight different behavior. There is coexisting

period one oscillations in for 224kPa ≤ PA < 264kPa. Depending on the IC, the UCA exhibit the

saddle node bifurcation to a higher amplitude for a lower PA.

2.6 Discussion and conclusion

The resonance frequency of the UCAs decreases with increasing acoustic pressure. It was shown

that the shift in the resonance significantly influences the oscillatory behavior of the UCA. The key
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findings can be summarized as follows:

When the bifurcation diagrams of the (Rn = R
R0

) versus acoustic pressure (PA) of an UCA driven

with its linear resonance frequency (fr) are compared to the case of insonification with fs (reso-

nance frequency at the acoustic pressure Ps), it is seen that Rn undergoes either a steep rise or

a saddle node bifurcation at the excitation pressure Ps. After a saddle node bifurcation, the UCA

continues oscillations in the same way as the UCA driven with fr but with a higher Rn. Both UCAs

undergo a period doubling transition to chaos, however the UCAs driven with fs exhibit period

doubling and chaotic oscillations at lower pressure thresholds.

When the Rn -PA bifurcation diagrams are compared for UCAs driven with fs1 and fs2 (non-linear

resonance frequencies corresponding to Ps1 and Ps2 with Ps2 > Ps1), both UCAs exhibit the saddle

node bifurcation with the difference of a saddle node bifurcation to a higher amplitude in case of

the UCA driven with fs2. In addition, the UCA destruction (Rn > 2) and the transition to chaos

occur at a lower pressure threshold for the UCA driven with Ps2. When the backscattered pressures

are compared, it was shown that the acoustic pressure range can be divided into two distinct regions

(PA < Ps and PA > Ps). For PA < Ps, the backscattered pressure is higher for the UCA driven with

fr. However, for the UCA driven with fs, while PA > Ps the backscattered pressure undergoes

a significant increase and is greater than for the case of the excitation with f = fr. This is true

for all of the applied driving acoustic pressure values for which PA > Ps. The main advantage of

sonication with fs is the increased backscatter from UCAs at lower driving acoustic pressures. This

can result in an enhanced signal to noise ratio and contrast to tissue ratio in a clinical imaging

setting.

The threshold for destruction was set based on the criteria which was formulated by Flynn [33] and

later was used in [31]. According to the formulation by FLynn, when Rmax
R0

>2, inertial forces dom-

inate the collapse of the UCA, and increasing quantities of kinetic energy will be transferred to the

collapsing bubble as the surrounding liquid converges while at the same time decreasing amount of

this energy is lost as a result of dissipation. Transient collapse is defined as a phenomenon where

significant amount of energy is concentrated in the bubble and the effect of the energy supply

outweighs the energy dissipation [34]. So the destruction criterion by Flynn is set as Rmax
R0

>2.

There is also another criterion based on the ratio of Rmax
R0

which is developed by Apfel [35]. In this

criterion transient collapse occurs when Rmax
R0

is between 2 and 2.3 . In this work we have used
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the Flynn’s criterion to ensure there is no transient collapse, as it predicts the minimum expansion

ratio for bubble destruction.

There have been a number of experimental studies on the destruction of the ultrasound contrast

agents. These studies employed mainly two techniques: 1- fast optical measurements of the

UCA radius [36, 37, 38, 39], 2- Acoustical method by analyzing the post excitation signal after

collapse [40, 41, 42]. Results of the large number of optical measurements of the UCA oscillations

in [36, 37, 38, 39] has shown that although some UCAs may undergo large amplitude oscillations

and are not destroyed when Rmax
R0

>2, however, there is no or very little evidence of UCA destruction

when Rmax
R0

<2. In other words, the majority of the UCAs are destroyed once Rmax
R0

>2 although

some few UCAs may exhibit higher expansion ratios. In another series of acoustical investigations

on the UCA destruction, the post excitation signal by UCA has been used as an indicator for UCA

destruction [40, 41, 42]. The results of these studies, illustrated no evidence of UCA destruction

when Rmax
R0

<2. The UCA destruction only happened once Rmax
R0

>2, although again some of the UCAs

exhibited higher amplitude of oscillations. Based on these results we have chosen the destruction

threshold to be equal to 2 to avoid UCA destruction.

It should be noted that the results of our study at the destruction point also satisfies the criteria

developed by Mitchell and Plesset [43]. According to this theoretical study, the bubble is stable

if Rmax
Rmin

<5 and it is unstable if Rmax
Rmin

>10. In our study the maximum Rmax
Rmin

in the nondestructive

regime is 4.11 (R0= 4 µm, fs= 0.88 MHz and PA = 137 kPa ) which is below the limit of this

criterion. Thus the identified parameter ranges for nondestructive oscillations in this study also

satisfy this criterion of bubble stability.

It should be noted that another potentially better indicator for UCA destruction is the UCA wall

velocity. However, there has not been a criterion set based on the UCA wall velocity limit. There

have been experimental studies in which the bubble wall velocity has been recorded or estimated

during the collapse. We have also compared the maximum simulated UCA wall velocity at the

destruction threshold with the published destructive bubble wall velocities. The bubble wall ve-

locities of -51 m/s in [36] (”apparently sufficient to destroy very small bubbles” [36]), -350 m/s

in [37] and -144, -329 and -456 m/s in [44] are reported to be sufficient for bubble destruction.

The maximum negative and positive wall velocity in our simulations are respectively -48.92 m/s

and 36.47 m/s for (R0= 1 µm, fs= 5.46 MHz and PA = 340 kPa ), which are smaller than the
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reported velocities for the bubble destruction.

In this paper it was shown that the main feature of the UCA oscillations driven with fr is that

Rn grows monotonically with pressure up to a pressure threshold and beyond which the UCA

oscillations undergoes successive period doubling bifurcations leading to eventual chaotic oscilla-

tions. The occurrence of the period doubling is concomitant with counterintuitive decrease in the

backscatter pressure. This is due to the fact that the magnitude of the UCA contraction decreases

with period doubling (Figure 2.6), which results in lower wall velocity and acceleration when

compared to the case of the period one oscillation. Thus, in order to maximize the backscatter

pressure during nondestructive oscillations, period one oscillations of full amplitude (Rn = 2) are

needed.

It was shown that through driving the UCA with fr, radial oscillations of period one with the full

amplitude (Rn=2) are not developed. In this regard, application of fs will be of great advantage. If

fs is optimized correctly, period one oscillations with full amplitude (Rn=2) can be generated. This

results in significant enhancement of the backscattered pressure without the UCA destruction. In

addition, because the maximum backscatter pressure occurs at a lower applied acoustic pressure,

the background noise is minimized, which may lead to a superior SNR and CTR. Calculation

of the maximum possible scattering cross section (SCSmax) showed that through optimizing fs,

nondestructive SCSmax can be enhanced up to 9 fold.

The backscattered pressure amplitude was calculated using eq. 3, however the frequency depen-

dent attenuation that will occur in tissue was not considered. Thus, high-frequency components

that will be preferentially diminished in tissue were persevered. As the main goal of the paper

was the study of the dynamical characteristics of the UCA which is independent from attenuation,

we have not considered the spreading loss due to attenuation. However, in applications, we may

expect a better enhancement in case of the sonication with the pressure dependent resonance

frequency compared to the values predicted here. This is because the pressure dependent resonance

frequency is smaller (∼ 30 − 35 % in this study) compared to the linear resonance frequency, thus

the backscatter signal from UCAs experiences less attenuation.

In many investigations, the resonance frequency of the UCAs is experimentally selected through

attenuation measurements. The applied pressure amplitude may significantly shift the resonance

frequency with larger UCAs experiencing a more drastic effect. The results indicate that in order to
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increase the efficiency of the UCA applications, either corrections should be made for the measured

resonance frequency, or the pressure amplitude of the sonication should be chosen higher than

the pressure amplitude used for measuring the resonance frequency of the UCA. This is because

choosing pressures below the value (Ps) used in the measurements, the backscattered pressure is

significantly reduced (Figs. 2.4a-d).

The sudden increase in the radial oscillations of the UCA for PA>Ps may provide advantages to

current diagnostic and therapeutic applications of the UCA. One of the diagnostic applications

that can benefit from this phenomenon is the amplitude modulation (AM) UCA imaging technique

[45,46,47]. This method is based on the nonlinear increase in the backscatter pressure when pulses

of different amplitude are applied. In AM two pulses are sent to the tissue with the first having

twice the amplitude of the second. The backscattered pressure from the second pulse is scaled by

multiplying its magnitude by two and subtracted from the backscattered from the first pulse. Due

to the linear response of the tissue, the residual from the tissue will be minimal, however there

will be a significant residual from the UCAs, which leads to a superior CTR. The sudden jump will

be large when increasing the nonlinearity of the UCA system by choosing the half amplitude signal

below Ps and the full amplitude above Ps.

Another benefit may be in the case of imaging a region of interest (ROI) deep within the body.

Because the UCAs are distributed within all the vessels among the pre-target tissue layers, they

may shield the signals on the beam path and from the target tissue and UCA in the ROI. Specifically

this tends to be more problematic in cases of deeper targets. This is because the signal encounters

more UCAs on its path to the target and back, therefore the signal significantly loses its strength.

Consequently the ultrasonic beams become attenuated by the superficial pre-focal tissue, which

causes the loss of the strength of the signal from the UCAs at the target, thus limits the visualization

of the tissue layers at deeper locations [48, 49]. The accuracy of tissue perfusion measurement

is largely affected by this shadowing effect [48, 49]. To allow accurate quantification, removal

of shadowing artifact is crucial [47, 49]. Near resonance, the attenuation is higher because of

increased scattering and energy absorption by the UCAs [18]. In this regard the imaging procedure

can be optimized by using focused transducers that produce the pressures greater than Ps at the ROI

(focal region) and less than Ps at the superficial tissue. This will decrease the prefocal shadowing

effect (because pre-focal UCAs will be non-resonant) and at the same time increases the backscatter
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at the ROI (the UCAs at the ROI are resonant because the focal pressure is more than Ps) which

can ultimately improve the SNR and CTR.

One of the therapeutic applications that can benefit from this nonlinear behavior of UCAs is the

microbubble enhanced drug delivery. In drug delivery UCA oscillations are used to enhance the

permeability of the cell to the drug [15]. However, multiple scattering of the UCAs coming from

pre-focal regions will attenuate the ultrasonic beams and have undesirable effects on the healthy

(non-targeted) tissue while also distorting the focus at the target tissue [50]. Because of the steep

pressure gradient of the therapy transducers, pressures above Ps can be generated at the target

while the pressure in the surrounding tissue can be kept below Ps. This way, the microbubbles in the

non-focal surrounding tissue will oscillate below resonance and therefore the pre-focal scattering

effects and attenuations are minimized. In addition, the microbubble activity will be enhanced in

the focal region, due to enhanced oscillations in pressure dependent resonance regime. This can

lead to a more effective and precise treatment and enhanced safety.

This work considered single size microbubbles. However, location of the saddle node bifurcation

is highly size dependent. Thus, in case of a polydisperse solution of microbubbles (which is

generally the case in clinical investigations), only a fraction of microbubble sizes will be active

in the pressure dependent resonance regime. One possible way to partially take advantage of

the pressure dependent resonance can be to choose a frequency which excite the majority of the

microbubbles around the resonance peak. The other method could be the use of centrifugation

techniques to stack the micobubbles in narrow size ranges [51], then the driving frequency can

be chosen so that it drives the majority of each stack into pressure dependent resonance regime.

Through using monodisperse microbubbles [23, 52, 53] one may fully take advantage of exciting

all the microbubbles in the pressure dependent resonance regime.

Another factor that should be considered is the microbubble growth due to rectified diffusion.

In applications where long high amplitude pulses are used for sonication, the effect of rectified

diffusion may become significant. This can displace the pressure for saddle node bifurcation in

the microbubble system as the microbubble can grow beyond the active size range due to rectified

diffusion. One possible way to solve this problem is modifying the pulsing sequences by choosing

a suitable combination of ”pulse on time” / ”pulse off time” strategy [54]. The duration of the

pulse on time may ensure the microbubbles are still in effective pressure dependent resonance
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regime, while the ”pulse off” time duration may ensure that there is enough partial dissolution of

microbubbles. The ”pulse off” time duration may allow reactivation of the microbubbles which

have grown beyond the active size range at the beginning of the subsequent pulse [54].

48



Bibliography

[1] Parlitz U, Englisch V, Scheczyk C, Lauterborn W Bifurcation structure of bubble oscillators. J.

Acoust. Soc. Am. 88(2) 106177 (1990).

[2] Lauterborn W and Suchla E Bifurction straucture in a model of acoustic turbulence. Phys. Rev.

Lett. 53(24) 2304-2307 (1984).

[3] Esche R Untersuchungder schwingungs kavitation in ussigkeiten. Acustica 2 20818 (1952).

[4] Luterborn W and Cramer L Subharmonic route to chaos observed in acoustics. Phys. Rev. Lett.

47(20) 14458 (1981).

[5] Lauterborn W and Koch A Holographic observation of period-doubled and chaotic bubble

oscillations in acoustic cavitation. Phys. Rev. A 35(4) 19746 (1987).

[6] Holt RG, Gaitan DF, Atchley AA and Holzfuss J Chaotic sonoluminescence. Phys. Rev. Lett.

72(9) 13769 (1994).
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Chapter 3

A simple method to analyze the super-harmonic

and ultra-harmonic behavior of the acoustically

excited bubble oscillator

3.1 Abstract

The bubble oscillator is a highly nonlinear system, which makes it difficult to generate a compre-

hensive understanding of its oscillatory behavior. One method used to investigate such complex

dynamical systems is the bifurcation analysis. Numerous investigations have employed the method

of bifurcation diagrams to study the effect of different control parameters on the bubble behavior.

These studies, however, focused mainly on investigating the subharmonic (SH) and chaotic oscil-

lations of the bubbles. Super-harmonic (SuH) and ultra-harmonic (UH) bubble oscillations remain

under-investigated. One reason is that the conventional method used for generating bifurcation

diagrams cannot reliably identify features that are responsible for the identification of SuH and UH

oscillations. Additionally, the conventional method cannot distinguish between the UHs and SHs.

We introduce a simple procedure to address this shortcoming. In this method, the maxima of the

bubble oscillatory response were selected and plotted alongside the traditional bifurcation points

for the corresponding control parameter. Results show that depending on the control parameters

the conventional method or the method of maxima may miss intricate details of the oscillations. In

order to have a comprehensive knowledge on the rich dynamics of the system, the two methods

should be employed side by side. Through plotting the two bifurcation structures in tandem, the

oscillatory behavior of the bubble was analyzed with more detail, and stable SuH and UH bubble
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oscillations were investigated. Based on this new analysis, the conditions for the generation and

amplification of UH and SuH regimes are discussed1.

3.2 Introduction

The acoustic bubble [1,2,3,4,5,6,7,8,9,10,11,12] oscillator is present in many physical phenomena

and applications. Bubbles are involved in physical phenomena associated with underwater acous-

tics and oceanography [2,12]. Bubbles are used as catalysts for chemical reactions in sonochemistry

[13, 14, 15, 16] and several non-chemical cleaning applications [17]. Bubble oscillations drive

sonoluminscence [15], and are the basis of several medical applications including, but not limited

to, blood vessel imaging and treatment monitoring [18,19], drug delivery [20], blood brain barrier

opening [21], high intensity focused ultrasound [22], shock wave lithotripsy [23] and histotripsy

and clot lysis [24].

The bubble oscillator is a highly nonlinear dynamical system [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]; the oscillatory bubble behavior has been

referred to as chaotic and complex [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41]. Due to the complex behavior, a comprehensive understanding

of the phenomena associated with bubble dynamics is difficult. Consequently, the optimization of

applications is a challenging task. Moreover, due to the incomplete knowledge on the nonlinear

behavior of bubbles, many applications are not optimized and this limits progress in the associated

fields (e.g., enhanced drug delivery [20]).

Methods of nonlinear dynamics (e.g. resonance curves and bifurcation diagrams) have been

extensively applied to investigate bubble behavior [1, 2, 3, 4, 5, 6, 7, 25, 26, 27, 28, 29, 30, 31, 32,

33,34,35,36,37,38,39,40,41]. It has been shown that the bubble oscillator can exhibit 1
2 ,1

3 ,1
4 ,1

5 or

higher order SHs, as well as period doubling route to chaos [1, 2, 3, 4, 5, 6, 7, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. These studies have shed light on the nonlinear dynamics

and bifurcation structure of the bubbles; however, the approaches used in these publications have

provided insights primarily on SH and chaotic bubble oscillations.

1Published as: Sojahrood, A.J., Wegierak, D., Haghi, H., Karshfian, R. and Kolios, M.C., 2019. A simple method
to analyze the super-harmonic and ultra-harmonic behavior of the acoustically excited bubble oscillator. Ultrasonics
sonochemistry, 54, pp.99-109.
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Recently the dynamics of a 0.1 mm gas bubble immersed in glycerine with varying temperature was

studied in [42,43,44] where the effect of high viscosity on the bubble dynamics and the evolution

of the harmonic and UH resonances were presented. Results of these studies have emphasized

that knowledge of the oscillatory behavior of the bubble (including SHs and UHs) is necessary to

optimize the bubble applications.

Despite many investigations of the nonlinear behavior of acoustically excited bubbles using the

methods of chaos physics and nonlinear dynamics, details of the super-harmonic (SuH) and ultra-

harmonic (UH) oscillations including the characteristics of the radial oscillation, phase portraits

and the backscattered pressure have received less attention. The conventional analysis method only

extracts the data after every period of acoustic driving pressure [1, 5]. The alternative method of

bifurcation analysis which is based on analyzing the peaks of the radial oscillations (e.g. employed

in [25, 26, 27, 28, 38]) can not by itself produce information to help identify the SuH and/or UH

behavior of the bubble.Thus, analysis methods need to be developed to identify and explore SuH

and UH oscillations alongside the SH and chaotic regimes.

In this work, we introduce a more comprehensive and simple method to study the SuH and

UH bubble oscillations. The bifurcation structure of the bubble oscillator is constructed using

the two well-known methods in tandem. This is done by plotting the maxima of the stable

oscillations of the bubble alongside the conventional bifurcation points at each corresponding

control parameters in the bifutcation diagrams. Through plotting the two bifurcation curves we

were able to straightforwardly identify the SuH and UH oscillations and explore the conditions

that are required to generate and amplify the SuH and UH oscillations.This method establishes

a framework that provides a more comprehensive understanding of the rich nonlinear behavior

of bubbles; consequently, it may help in optimizing current applications and/or can be used to

discover new nonlinear bubble behaviors that may result in new applications.

3.3 Methods

3.3.1 The Bubble model

The radial oscillations of the bubbles are numerically simulated by solving the well known Keller-

Miksis equation [45]:
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In this equation, R is radius at time t, R0 is the initial bubble radius, Ṙ is the wall velocity of the

bubble and R̈ is the wall acceleration ρ is the liquid density (998 kg
m3 ), c is the sound speed (1481

m/s), P0 is the atmospheric pressure (101 kPa), σ is the surface tension (0.0725 N
m), µ is the liquid

viscosity (0.001 Pa.s), PA and f are the amplitude and frequency of the applied acoustic pressure.

The values in the parentheses are for water at 293 0K and are used in all the simulations. The gas

inside the bubble is air with polytropic exponent of k=1.4.

Oscillations of a bubble generates a backscattered pressure (PSc) which can be calculated by [46]:

PSc = ρ

(
R

d

)
(RR̈+ 2Ṙ2) (3.2)

where d is the distance from the center of the bubble (and for simplicity is considered as 1m in

this paper) [46].Backscattered pressure is directly related to the radial oscillations of the bubble

but is a more complex function of the radial oscillations and also will be affected by the freqeuncy

depdendent attenuation in tissue [47]. Calculation of the backscattered pressure is of great im-

portance since in several applications the backscattered pressure resulting from bubble oscillations

plays a critical role. For example, in imaging applications the backscattered pressure is detected

and analyzed to form images. In shock wave lithotripsy the backscattered pressure is used to break

and disintegrate kidney stones. In majority of the applications and phenomena involving bubble

dynamics, monitoring the behavior of the bubbles is through recording the backscatterd signal and

analyzing its frequency components.

Equation 1 is solved using the 4th order Runge-Kutta technique; the control parameters of interest

are R0, f and PA. The resulting radial bubble oscillations are visualized using the bifurcations

diagrams. The simulations were done using the ode45 function of MATLAB and the relative and

absolute tolerance of the integration was set to 1e-12 and 1e-13. The solutions were recorded

at time steps of 0.001
f . The initial conditions of the problem were set to R0(t = 0) = R0 and
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Ṙ(t = 0) = 0 m/s. Bifurcation diagrams of the normalized bubble oscillations R
R0

are presented

as a function of driving pressure. Detailed analysis is presented at select control parameters using

a) the radius versus time curves, b) phase portrait analysis and c) the frequency spectrum of the

backscattered pressure.

3.3.2 Bifurcation diagrams

For highly nonlinear systems like bubble oscillators, small changes in the initial conditions of the

system or control parameters can result in large changes in the behavior of the system. Due

to the complexity and sensitivity of the bubble dynamics to the exposure parameters (frequency

and acoustic pressure) and the initial conditions, a comprehensive understanding of the bubble

dynamics is a challenging task and requires investigation of the behavior of the system over a wide

range of the control parameters. Bifurcation diagrams are valuable tools to analyze the dynamics

of nonlinear systems where the qualitative and quantitative changes of the dynamics of the system

can be investigated effectively over a wide range of the control parameters.

3.3.2.1 Conventional bifurcation analysis

When dealing with systems responding to a driving force, to generate the points in the bifurcation

diagrams vs. the control parameter, one option is to sample from a specific point in each driving

period. The approach can be summarized in:

Q ≡ (R(Θ)){(R(t), Ṙ(t)) : Θ = n

f
} where n = 100, 101...150 (3.3)

Where Q denotes the points in the bifurcation diagram, R and Ṙ are the time dependentradius

and wall velocity of the bubble at a given set of control parameters of (R0, P0, PA, c, k, µ, σ, f)

and Θ is given by n
f . Points on the bifurcation diagram are constructed by plotting the solution

of R(t) at time points that are multiples of the driving acoustic period. The results are plotted for

n = 100− 150 to ensure a steady state solution has been reached.
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3.3.2.2 Method of peaks

As a more general method, bifurcation points can be constructed by setting one of the phase space

coordinates to zero:

Q ≡ max(R){(R, Ṙ) : Ṙ = 0} (3.4)

In this method, the steady state solution of the radial oscillations for each control parameter is

considered. The maxima of the radial peaks (Ṙ = 0) are identified (determined within 100-150

cycles of the stable oscillations) and are plotted versus the given control parameter in the bifurca-

tion diagrams. The bifurcation diagrams of the normalized bubble oscillations ( R
R0

) are calculated

using both methods a) and b). When the two results are plotted alongside each other, it is easier to

uncover more important details about the SuH and UH oscillations, as well as the SH and chaotic

oscillations.

3.4 Results

To illustrate how the method of constructing the bifurcation diagram can influence the classification

of the oscillatory patterns, we have considered a bubble with initial diameter of 4 microns. The

linear resonance frequency (fr) of the bubble is ˜2.04 MHz. fr is calculated by numerically solving

equation 1 for PA = 1kPa and finding the frequency that results in the maximum expansion ratio.

We have studied the bifurcation structure of the bubble in the form of R
R0

as a function of the driving

acoustic pressure for (400kHz<f<6MHz) and (1kPa<PA< 3MPa). For simplicity we focus on the

stable non-destructive regime of oscillations and results are only presented for pressure ranges that

leads to radial oscillations with R
R0

5 2 [27].

3.4.1 Example of SHs, UHs and SuHs oscillations

To gain a better insight of the oscillation characteristics that the conventional bifurcation analysis

method will be unable to reveal, first we will show different regime of oscillations in detail. In

this regard a) radial oscillations vs. driving acoustic periods, b) phase portraits, c)backscattered

pressure vs. driving periods and d) backscattered frequency spectra are examined in detail. Ex-

posure parameters relevant to biomedical applications were chosen. Fig. 3.1a depicts the radial
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Figure 3.1: Oscillation characteristics of a 4 micron bubble driven at f=2.6 MHz and 125 kPa of pressure: a) Radial oscillations
versus driving periods. Yellow dots correspond to R(t) values at each period (conventional method) and Red dots (peaks method) are
positioned at the peaks of the R(t) curve. b) phase portrait diagrams c) Backscattered pressure aand d) frequency spectrum of the
backscattered pressure. .

oscillations of the bubble for PA=125 kPa and f=2.6MHz. The yellow stars represent the amplitude

of radial oscillations after every period, and the red circle illustrates the maxima of the curve. There

exists only one value for all red circles and yellow stars; therefore, the behavior is a period-1 (P1)

signal with one maximum. In this case both methods predict the same behavior. The corresponding

phase portrait in Fig. 3.1b is a semi circular orbit with one loop. The backscattered pressure has

one peak and is shown in Fig. 3.1c and the corresponding fundamental component of the PSc in

Fig. 3.1d is stronger than the SuHs.

Fig. 3.2a shows the R-T curve that corresponds to PA=78 kPa and f=1.2 MHz. The signal has

two maxima, while the amplitude of the signal at each driving period remains the same. In this case

the two methods do not provide the same results. This suggests a P1 signal with two maxima. Fig.

3.2b shows that the phase portrait of the bubble undergoes an internal bend; depicting a similar

behavior when SHs are present in the curve. However, the absence of SHs are evident in the

frequency spectra (Fig. 3.2d) of the corresponding PSc shown in Fig 3.2c while the 2nd harmonic

has the highest value (2nd harmonic resonance). In this case examination of the maxima provides
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Figure 3.2: Oscillation characteristics of a 4 micron bubble driven at f=1.2 MHz and 78 kPa of pressure: a) Radial oscillations
versus driving periods. Yellow dots correspond to R(t) values at each period (conventional method) and Red dots (peaks method)
are positioned at the peaks of the R(t) curve. b) phase portrait diagrams c) Backscattered pressure aand d) frequency spectrum of the
backscattered pressure. .

more complete information about the oscillation characteristics, identifying a 2nd SuH resonance.

Figure 3.3 and 3.4 compare the characteristics of two P2 oscillations; one has two maxima while the

other has 4 maxima. Fig 3.3a shows the R-T curve of the bubble for f=2.6 MHz and PA=275kPa.

The signal has two maxima (two red dots), and the signal repeats its pattern once every two

acoustic driving periods (two yellow stars). The phase portrait (Fig 3.3b) consists of two circular

orbits with one creating another and enclosing it within itself. The backscattered pressure is shown

in Fig. 3.3c and has 2 maxima. Fig. 3.3d depicts the existence of 1
2 order SH which is stronger than

the UH components. Fig. 3.4a shows the R-T curve of the bubble for f=1.2 MHz and PA=145kPa;

the signal is of P2 but with 4 distinct maxima. The radial oscillations repeat their pattern once

every two acoustic periods (two yellow stars), and each pattern has 4 maxima (4 red dots). The

phase portrait has two circular orbits similar to Fig 3.3b; however, each of these circular orbits

underwent an internal bend. The backscattered pressure is shown in Fig. 3.4c and has 4 maxima.

The frequency content of the PSc in Fig. 3.4f has 1
2 order SHs as well as UHs; the 2nd order SuH is

the strongest signal, and 5
2 and 7

2 UHs are stronger than 1
2 order SH and other UHs.
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Figure 3.3: Oscillation characteristics of a 4 micron bubble driven at f=2.6 MHz and 275 kPa of pressure: a) Radial oscillations
versus driving periods. Yellow dots correspond to R(t) values at each period (conventional method) and Red dots (peaks method) are
positioned at the peaks of the R(t) curve. b) phase portrait diagrams c) Backscattered pressure aand d) frequency spectrum of the
backscattered pressure. .
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Figure 3.4: Oscillation characteristics of a 4 micron bubble driven at f=1.2 MHz and 145 kPa of pressure: a) Radial oscillations
versus driving periods. Yellow dots correspond to R(t) values at each period (conventional method) and Red dots (peaks method) are
positioned at the peaks of the R(t) curve. b) phase portrait diagrams c) Backscattered pressure aand d) frequency spectrum of the
backscattered pressure. .
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Fig. 3.5a shows the R-T curve that corresponds to PA=135 kPa and f=4.068 MHz. The signal

has only one maxima, while the amplitude of the signal at each driving period has two distinct

values. This suggests a P2 signal with one maximum. Fig. 3.5b shows that the phase portrait of

the bubble consists of rotated semi heart shape loop. The corresponding backscattered pressure

has two maxima (Fig. 3.5c) and the frequency component of the PSc (Fig. 3.5d) has a very strong

SH near the fundamental level while the 2nd SuH and 3
2 order UH are relatively weaker. This is

an example of a case that the method of peaks fails to capture intricate details of the oscillations

however the conventional method reveals the 1
2 order SH resonance clearly.

Figure 3.6 is another example in which the method of peaks can not capture the nature of oscilla-

tions clearly however the conventional method captures the details that the peaks method missed.

Fig. 3.6a shows the R-T curve that corresponds to PA=400 kPa and f=5.8986 MHz. The signal

has only one maxima, while the amplitude of the signal at each driving period has three distinct

values. This suggests a P3 signal with one maximum. Fig. 6b shows that the phase portrait of the

bubble consists of a duck shape loop. The corresponding backscattered pressure has three maxima

(Fig. 3.6c) and the frequency component of the signal has a very strong 1
3 and 2

3 SH near the

fundamental level while the 2nd SuH and other UHs and SHs are relatively weaker.

3.4.2 Bifurcation diagrams and power spectrum

After introducing a few examples in figures 3.1-6 here we examine the bifurcation structure of the

R
R0

of bubble as a function of pressure that is constructed by the two methods in tandem. The

frequency components of the backscattered pressure are also plotted along side the bifurcation

diagrams to visualize the evolution of the frequency spectra as pressure increases. To focus on

more practical and stable oscillation regimes, we have omitted the parameter ranges that result in

chaotic oscillations or bubble destruction ( R
R0

> 2). As it is discussed in detail in [16], R
R0

> 2 seems

to be the minimum estmated expansion ratio for bubble destruction. The bifurcation structures that

are produced using the conventional method are presented in blue, and the ones produced by the

method of peaks are shown in red. Results are shown in Figures 3.7-11.

Fig. 3.7a shows the response of the bubble when f=0.7 MHz. The conventional method reveals a

period 1 solution for PA<118 kPa and detects the generation of period 2 solution for PA>120 kPa.

On the other hand, the peaks method reveals the generation of two maxima at 24 kPa<PA<56 kPa
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Figure 3.5: Oscillation characteristics of a 4 micron bubble driven at f=4.068 MHz and 135 kPa of pressure: a) Radial oscillations
versus driving periods. Yellow dots correspond to R(t) values at each period (conventional method) and Red dots (peaks method) are
positioned at the peaks of the R(t) curve. b) phase portrait diagrams c) Backscattered pressure aand d) frequency spectrum of the
backscattered pressure. .
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Figure 3.6: Oscillation characteristics of a 4 micron bubble driven at f=5.9 MHz and 400 kPa of pressure: a) Radial oscillations
versus driving periods. Yellow dots correspond to R(t) values at each period (conventional method) and Red dots (peaks method) are
positioned at the peaks of the R(t) curve. b) phase portrait diagrams c) Backscattered pressure aand d) frequency spectrum of the
backscattered pressure. .
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and three maxima for 56 kPa<PA<118 kPa. The three maxima undergo period doublings (PDs)

resulting in a solution with 6 maxima for PA > 118 kPa.

Examination of the frequency content of the backscattered pressure reveals the underlying

phenomenon which results in the discrepancy between the two methods. Figure 3.7b shows the

amplitude of the harmonics and UHs of the backscattered signal. The occurrence of the maxima

correlates with the resonance of the harmonic contents of the signal. After a pressure threshold

(˜25 kPa), the 3rd SuH of the backscattered signal becomes stronger than the fundamental and

other SuH harmonics, showing a 3rd SuH resonance. The 3rd SuH saturates for PA > 56 kPa

concomitant with the occurrence of 3 maxima in the peaks methods. The SH and UH contents of

the backscattered signal are shown in Fig. 3.7c. The simultaneous appearance of period doublings

(PDs) in the blue curve and multiple PDs in the red curve are coincident with a sharp increase in

the SH and UH content of the backscattered signal (Fig. 3.7c, arrow); the backscatter at the 7
2

(purple) and 9
2 UHs (green) are the strongest whit the 1

2 SH (blue) the weakest component.

Fig. 3.8a shows that when sonication frequency is 1.2 MHz the conventional method depicts a

similar behavior to f=0.7 MHz (fig. 3.1a); a linear response is observed for PA < 110kPa and

radial oscillations undergo a PD for PA > 110 kPa. The method of peaks reveals a solution with

one maximum for PA < 51 kPa which is similar to the conventional method; above this pressure,

however, 2 maxima occur in the bifurcation diagram up until PA = 110kPa which are not detected

in the conventional method. For PA > 110 kPa, the oscillations undergo two concomitant PDs

resulting in a solution with 4 maxima. The conventional method predicted the same behavior for

the two frequencies (0.7 MHz(Fig 3.7a) and 1.2 MHz (Fig 3.8a)), however, the method of peaks

revealed more intricate details of the bubble dynamics. Fig. 3.8b shows that the second harmonic of

the backscattered signal has the strongest amplitude and saturates concomitant with the generation

of the initial two maxima at ˜52 KPa. Fig. 3.8c illustrates a sharp increase in the amplitude of SH

and UHs concomitant with the generation of PDs (arrow) in the blue and red curves as shown in

Fig. 3.1b. UH components of the signal are stronger than the SHs (˜20 dB) with 5
2 and 3

2 UHs being

the strongest while the 1
2 SH is the weakest component.

Fig. 3.9a shows that when f= 2.6 MHz the conventional method (blue) and method of peaks

(red) depict a similar behavior to f=0.7 MHz and f=1.2 MHz (Fig. 3.7a, 3.8a). The oscillations

are of period 1 in both graphs until PA=243 kPa; above this pressure, PD occurs in both methods.
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Figure 3.7: a) Bifurcation structure of the normalized radial oscillations versus acoustic pressure of a 4 micron air bubble immersed
in water as constructed by the conventional method (blue) and the peaks method (red) when f=0.7 MHz, b) harmonics of the
backscattered pressure versus acoustic pressure, c)SH and UH amplitudes of the backscattered pressure versus the acoustic pressure
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Figure 3.8: a) Bifurcation structure of the normalized radial oscillations versus acoustic pressure of a 4 micron air bubble immersed
in water as constructed by the conventional method (blue) and the peaks method (red) when f=1.2 MHz, b) harmonics of the
backscattered pressure versus acoustic pressure, c)SH and UH amplitudes of the backscattered pressure versus the acoustic pressure
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Figure 3.9: a) Bifurcation structure of the normalized radial oscillations versus acoustic pressure of a 4 micron air bubble immersed
in water as constructed by the conventional method (blue) and the peaks method (red) when f=2.6 MHz, b) harmonics of the
backscattered pressure versus acoustic pressure, c)SH and UH amplitudes of the backscattered pressure versus the acoustic pressure
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Figure 3.10: a) Bifurcation structure of the normalized radial oscillations versus acoustic pressure of a 4 micron air bubble immersed
in water as constructed by the conventional method (blue) and the peaks method (red) when f=4.068 MHz, b) harmonics of the
backscattered pressure versus acoustic pressure, c)SH and UH amplitudes of the backscattered pressure versus the acoustic pressure
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Figure 3.11: a) Bifurcation structure of the normalized radial oscillations versus acoustic pressure of a 4 micron air bubble immersed
in water as constructed by the conventional method (blue) and the peaks method (red) when f=5.9 MHz, b) harmonics of the
backscattered pressure versus acoustic pressure, c)SH and UH amplitudes of the backscattered pressure versus the acoustic pressure
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The fundamental frequency is the strongest frequency component in the backscattered signal as is

shown in Fig. 3.9b. Figure 3.9c indicates that the SH and UH components of the signal increase

rapidly at pressures at which the PD occurs in Fig. 3.1c ; the SH component is stronger than all the

UHs.

Fig. 3.10a shows that when f= 4.068 MHz and for PA less than 66 kPa the conventional method

(blue) and method of peaks (red) depict a similar behavior to f=0.7 MHz,f=1.2 MHz and f=2.6

MHz (Fig. 3.7a, 3.8a, 3.9a). The oscillations are of period 1 in both graphs until PA=66 kPa; above

this pressure, PD occurs in both methods. The fundamental frequency is the strongest frequency

component in the backscattered signal as is shown in Fig. 3.10b. Figure 3.10c indicates that the

SH and UH components of the signal increase rapidly (shown by arrow) at pressures at which

the PD occurs in Fig. 3.10a; the SH component is stronger than all the UHs. However, as the

pressure increase above PA=66 kPa, one of the maxima disappears while the conventional method

still depicts a P2 solution. In this case the maxima method fails to capture all the details of the

oscillations. Above PA=228 kPa the second maxima returns and oscillations become again P2 with

two maxima.

Figure 3.11a shows the bifurcation structure of the R
R0

as a function of pressure when f=5.9 MHz.

For PA less than 370 kPa he conventional method (blue) and method of peaks (red) depict a similar

behavior to f=0.7 MHz ,f=1.2 MHz, f=2.6 MHz and 4.068 MHz (Fig. 3.7a, 3.8a, 3.9a and 3.10a).

The oscillations are of period 1 in both graphs and as soon as PA increases above 370 kPa the

oscillations undergo a saddle node bifurcation in both graphs. However, the method of peaks (red)

displays a saddle node bifurcation from a solution with one maxima to higher amplitude solution

with one maxima while the conventional method reveals more details by capturing a saddle node

bifurcation from a P1 to a P3 solution. Thus oscillations are of P3 with one maxima. As the

pressure increases a second maxima appears for PA higher than 444 kPa. These solution undergo

concomitant PD at PA=626 kPa; the red curve shows that the signal has 4 maxima while the blue

curve depicts a P6 solution. At frequencies above resonance the maxima method was unable to

reveal some intricate details of oscillations while for frequencies around and below resonance it

was the conventional method that failed to reveal the intricate oscillation details. We conclude

that for a comprehensive analysis of the bubble dynamics the two methods should be employed in

tandem and the analysis will be incomplete in case that only one of the methods is used.
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3.5 Discussion and summary

We have shown that the conventional method of generating bifurcation diagrams cannot reveal

the hidden details of the oscillations that typically result in UH and SuH resonance. We have

introduced a simple alternative method to generate the bifurcation diagrams; the method extracts

the peaks of the oscillations and plots it as a function of the given control parameter. When this

method is applied alongside the conventional method one can reveal hidden details of the bubble

oscillations and identify the parameter ranges where SuH, UH or SH oscillations occur. We can

briefly categorize the scenarios shown in this paper as follows:

1. The conventional method depicts a P1 oscillation regime, and the maxima method only

reveals one maximum. In this case, the oscillation has a P1 resonance and the fundamental

frequency component is the strongest in the backscattered signal. 1
2 order SH and UHs are

generated concomitant with PD in both graphs (constructed by conventional method and

method of maxima) and 1
2 order SHs, or 3

2 UHs are stronger than other UHs.

2. The conventional method depicts a P1 oscillation regime, but maxima method reveals n=2,3,. . .

maxima. In this case, the n-th order SuH frequency component is the strongest in the

backscattered signal. Generation of PD in the conventional method is concomitant with the

generation of n-PDs in the diagram constructed by the peaks method; this correlates with an

UH resonance behavior of (2n−1)
2 or (2n+1)

2 ; in other words, these UHs are stronger than the

1
2 order SHs and other UHs.

3. The conventional method depicts a P2 oscillation regime, but the maxima method reveals

only 1 maximum; in this case, we have a P2 resonance; 1
2 order SH frequency component is

the stronger than UHs.

4. UH and SHs only exist when the conventional method predicts a P2 oscillations; however, the

method of maxima needs to be applied alongside of traditional method to determine whether

SH or UH resonance are present, as well as the order of UHs.

Heat and mass transfer across the bubble influence the dynamics of the bubble oscillations [48,49,

50, 51, 52]. Heat and mass transfer in turn are nonlinear and depend on the nonlinear dynamics
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of the bubble. Since the main purpose of this paper was to introduce a simple and more compre-

hensive method to identify the SuH and UH oscillations of the bubble, for simplicity, the effects

of heat and mass transfer were neglected. Nonlinear dynamics of heat and mass transfer requires

further investigation and is beyond the scope of this paper. However, for accurate optimization

of the applications and understanding of the associated phenomena with bubble dynamics, these

effects must be considered.

Detailed studies on the effect of initial conditions (ICs) (R(0) and Ṙ(0)) on the dynamical evolution

of the bubble oscillations [28,29,30,31,32,33,34] have resulted in the discovery of new nonlinear

features [29,30,31,32,33,34]. For example, depending on the ICs, the bubble has shown to exhibit

period 1 (P1), P2 or P3 oscillations [31,33]. Application of the method proposed in this paper can

help to better understand and categorize these nonlinear features, especially in the SuH and UH

oscillation regimes. These results may be used to optimize applications by sending the proper

pre-conditioning pulses to manipulate the ICs of the bubble to achieve the desirable behavior.

In contrast enhanced ultrasound imaging SH component of the backscattered signal is used to

enhance the contrast to tissue ratio since the tissue does not produce SHs and UHs [53]. UHs

oscillations, however have the advantage of generating images with higher resolution due to

higher frequency [53]. Understating the ultrasound exposure parameters for the generation and

enhancement of UHs will help to acquire images with high contrast to tissue ratio and resolution.

Pre-conditioning pulses may help in enhancing the UH signal and using the methods described in

this work can help in identification of optimum pre-conditioning pulses to enhance UHs. Another

important application of bubbles in medicine is in molecular acoustic angiography [54] where the

high frequency response of the bubbles is used to acquire images with superior resolution. In

this regard higher order SuHs [54, 55] or higher order UHs can be used to achieve high contrast

and high resolution due to higher frequency response of the bubbles. Due to the lack of tissue

SuHs and significant UHs only the bubble response is detected and micro-vessels can be visualized

with superior detail and resolution. Identification of the exposure parameters for the SuH and UH

responses of the bubbles can be used in these applications.

The nonlinear behavior of the lipid shell enhances the generation of SHs (1
2 , 1

3 , 2
3 , 1

4 , 3
4 . . . ) at very

low acoustic pressures and over a more extensive frequency range [56, 57]. The behavior of lipid

shell MBs are more complex due to the nonlinear response of the encapsulating shell. For example
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the buckling of the lipid shell can result in compression only behavior [58]. Implementation

of the proposed method in this paper can shine a brighter light on the behavior of lipid coated

MBs. Our proposed approach can be used to optimize the wide range of applications that employ

lipid coated MBs (for example: blood brain barrier opening [59], UH imaging [53], SuH imaging

[54, 55], Passive acoustic Imaging [60] and treatment monitoring [61]). The pressure radiated

by the SuHs is attenuated much faster due to the higher attenuation of the higher harmonics

[62, 63]. This property can be used to enhance the heat deposition in therapeutic applications of

ultrasound [62,63] especially for thermal therapy in regions with higher blood perfusion or tissue

located beyond an obstacle like bone where delivery of acoustic energy is limited. Furthermore,

SuH oscillations may result in better mixing; identification of the of the relative frequencies and

pressures can help in setting up a specific shape oscillation to increase the efficacy of these applica-

tions. Furthermore, the anatomy of the giant resonances [4] and their nonlinear properties can be

studied with more detail; the lower bound of frequency to create a desired giant resonance can be

identified. Since knowledge of the bifurcation structure is critical for non-feedback techniques [30]

to control the multi-stability of the bubble system a more detailed understanding of the system

bifurcation structure can be helpful in such control techniques by identifying the proper exposure

parameters.
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Chapter 4

Investigation of the 1/2 order subharmonic

emissions of the period-2 oscillations of an

ultrasonically excited bubble.

4.1 Abstract

In this work, through applying a comprehensive bifurcation method, we study the nonlinear radial

oscillations of the bubble oscillator. The frequency of the driving force is chosen as the linear

resonance frequency (fr) and linear subharmonic (SH) resonance frequency (fsh = 2fr) of the

bubble. Results show that, when the bubble is sonicated with 2fr, period doubling is more likely to

result in non-destructive oscillations. The evolution of the bubble period-2 (P2) oscillations makes

the shape of a bowtie for bubbles with an initial diameter of 0.74 µm and above. When f = 2fr,

the phase portrait of the P2 attractor is distinctly different from a P2 attractor when f = fr,

and subharmonic component of the backscattered pressure is maximum. When sonicated by 2fr,

due to lower oscillation amplitude and gentler bubble collapse, the bubble can sustain stable P2

oscillations for a longer duration and over a broader range of applied acoustic pressure 1.

4.2 Introduction

An acoustically excited bubble is an example of a highly nonlinear and complex oscillator [1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Pioneering works of [1, 5, 6, 7] investigated the complex behavior

1Published as: Sojahrood, A.J., Earl, R., Kolios, M.C. and Karshafian, R., 2020. Investigation of the 1/2 order
subharmonic emissions of the period-2 oscillations of an ultrasonically excited bubble. Physics Letters A, p.126446.
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of the bubbles in the realm of nonlinear dynamics and chaos. Despite the numerous studies that

shed light on the bubble behavior, due to the complexity of the system, the bubble behavior is

not yet fully describable [4]. Thus, following the pioneering studies on the nonlinear bubble

behavior, investigation is yet ongoing with several studies in the last decade [14, 15, 16, 17, 18,

19,20,21,22,23,24,25,26,27]. [13] and [15] investigated the bifurcation structure of ultrasound

contrast agents (UCAs) that are coated with a stabilizing shell. Occurrence of the oscillations with

higher periods in the bubble behavior were investigated in [13, 17, 20, 22]. Application of a dual

frequency acoustic excitation to control the chaotic bubble behavior was first proposed in [14].

Nonlinear behavior of the bubble under excitation with multiple frequencies were investigated in

detail in [18, 23, 25, 26]. [13] and [21] investigated possible ways to classify the complex bubble

behavior. Stability mechanisms of vapor bubbles were investigated in [24] and the influence of

strong nonlinear coupling on the dynamics of interacting bubbles were probed in [27].

Bubbles exist in several phenomena in nature; they are involved in underwater acoustics [3, 12]

and oceanography studies [12, 27, 28]; they have a key role in enhanced chemical reaction in

sonochemistry [29, 30, 31, 32]; they are the building block of sonoluminescence [30, 31] and they

have several advantageous applications in medical ultrasound [33, 34, 35, 36, 37, 38, 39, 40](e.g.

contrast-enhanced imaging [33,34,35,36], drug delivery [34,35], blood-brain barrier (BBB) open-

ing [37], enhanced heating in high-intensity ultrasound treatments [38], shock wave lithotripsy

[39], histotripsy [40] and sonothrombolysis [41,42]).

The complex dynamics of the bubbles have been the subject of numerous numerical [1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] and experimental studies

[4,43,44,45,46,47,48,49,50,51]. The pioneering work of [1] extensively studied the bifurcation

structure of the bubble oscillator and revealed the nonlinear nature of the system and period

doubling route to chaos. The chaotic dynamics of the bubble oscillator has recently been extensively

studied using the methods of nonlinear dynamics [15,16,17,18,19,20,21,22,23,24,25,26]. The

existence of period 2,3, 4 and higher periods have been confirmed in several numerical and recent

experimental studies of single bubble dynamics [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,

19,20,21,22,23,24,25,26,27].

One of the main characteristics of nonlinear oscillators is the period doubling route to chaos

[1, 4]. The occurrence of period doubling in the oscillations of the bubbles is concomitant with
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the generation of 1/2 order subharmonics (SHs) and ultraharmonics (UHs) in the backscattered

pressure signal from the bubbles. 1/2 order SHs has been used as an indicator for stable cavitation

to monitor treatments [52, 53, 54]; in bubble sizing [55], in contrast-enhanced ultrasound to

detect the signal from blood [54, 55, 56, 57, 58], for non-invasive measurement of pressure inside

vessels [59, 60, 61] and as an indicator for the pressure threshold of BBB opening [62, 63] among

several other applications.

It is known that as the acoustic pressure is increased, the nonlinear response will become chaotic

and bubble radius grows beyond a limit that may result in bubble destruction. When chaos occurs,

the SH amplitude experiences fluctuations or may even disappear. Because of the spread of the

signal energy over a wider frequency range, chaotic oscillations won’t be useful in imaging methods

or monitoring treatments as they may not be distinguishable from broadband noise due to bubble

destruction. Thus, in this paper, SH oscillations are of main interest for acoustic pressures between

two limit values: the threshold for the onset of SH oscillations and the critical pressure at which

the nonlinear response becomes chaotic or results in bubble destruction. Knowledge of these limits

is essential for the optimization of applications that depend on the SH oscillations of the bubbles.

Pioneering theoretical work of Eller [64] and Prosperetti [65, 66, 67, 68] investigated the pressure

threshold for the generation of subharmonics for uncoated free bubbles. Later, studies have the-

oretically and experimentally investigated the pressure threshold for the generation of SHs in the

encapsulated bubbles [69, 70, 71, 72]. The focus of these studies was on the determination of the

conditions required to achieve the lowest pressure threshold that can produce 1/2 order SHs. In

the theoretical works [64,65,66,67,68,69,70], the equations for the bubble radial oscillations were

linearized and used to determine the lowest pressure threshold.

Pioneering theoretical work [64, 65, 66, 67, 68, 69] has shown that sonication of uncoated bubbles

with twice their linear resonance frequency (fr) will result in the generation of SHs at the lowest

pressure threshold. This frequency can be referred to as the linear 1/2 order SH resonance fre-

quency (fsh = 2fr). Recent numerical works [71, 72] investigated the SH threshold in uncoated

and encapsulated bubbles. Their method was based on calculating the SH component of the

backscattered pressure from different bubble sizes. They found that at low pressures, there is

no SH component that is distinguishable from the noise level; however, by increasing the acoustic

pressure, the SH component appears and grows quickly. This is followed by a gradual saturation of
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the SH component and eventual disappearance. In their work, the excitation pressure just above

which a distinct subharmonic peak appears was selected as the SH threshold. They found that

for small bubbles (less than 1 micron), increased damping weakens the bubble response at twice

the resonance frequency, leading to a shift of the minimum SH pressure threshold from twice the

resonance frequency toward the resonance frequency.

Recent theoretical work of Prosperetti [67] investigated the SH threshold of coated bubbles and

showed that the subharmonic threshold can be considerably lowered with respect to that of an

uncoated free bubble if the mechanical response of the coating varies rapidly in the neighborhood

of certain specific values of the bubble radius (e.g. changes in shell parameters due to buckling of

the shell). [73] numerically investigated the ambient pressure dependence of the SH generation

from contrast bubbles.

Despite the studies investigating the SH threshold of the bubbles [64,65,66,67,68,69,70,71,72],

the bifurcation structure of the bubble oscillator in the regime of 1/2 order SHs (especially when

sonicated with fsh) has not been investigated in detail. Additionally, the evolution of the nonlinear

bubble dynamics at higher amplitudes of period 2 (P2) oscillations and the exposure conditions to

generate sustainable non-destructive high amplitude P2 bubble oscillations are not understood in

detail.

Detailed investigation of the period doubling (PD) phenomenon in the bubble oscillator and the

dynamical properties of P2 oscillations will help in better understanding and optimization of 1/2

order SHs emissions. This study investigates the dynamics of the bubble oscillator by closer

examination of the dynamics of the bubbles undergoing period doubling (PD). The bifurcation

structure of the bubble radial oscillations has been investigated as a function of pressure under

sonication with fr and 2fr. In [74, 75] we have shown that when two methods of bifurcation

constructions are applied in tandem more intricate details of the oscillations are revealed (e.g.

ultraharmonics (UHs) and Superharmonics). Therefore, in this study, we have used this method to

reveal the conditions for the generation, amplification and stability of P2 oscillations and the phase

structure of the bubble oscillations. Effects of the bubble size on the behavior of P2 oscillations

is investigated by considering bubbles with R0 between 0.2µm − 10µm. This study provides

fundamental insight over the characteristics of period 2 oscillations when the bubble is sonicated

with f = fr and f = 2fr . These insights will help in selecting the appropriate ultrasound
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exposure parameters for imaging or therapeutic applications that use bubbles. Moreover, they will

provide a foundation for a better understanding of the PD phenomenon in case of more complex

systems like encapsulated microbubbles with nonlinear shell behavior [76] or bubbles entrapped

in tissues [77,78,79].

4.3 Methods

Since the purpose of this study is the detailed investigation of the nature of P2 oscillations and

their fundamental characteristics in a bubble system, we have chosen the uncoated bubble as the

oscillator of interest. Addition of the encapsulating shells will add more complexity to the dynamics

and will be the subject of future studies. The fundamental information about the bubble dynamics

in the absence of the shell will help provide a better understanding of the more complex features

that will appear in case of the coated bubbles and will help in separating the shell effects from the

abstract bubble system.

4.3.1 The Bubble model

The dynamics of the bubble model including the compressibility effects to the first order of Mach

number can be modelled using Keller-Miksis equation [80]:

ρ[(1− Ṙ

c
)RR̈+ 3

2Ṙ
2(1− Ṙ

3c)] = (1 + Ṙ

c
)(G) + R

c

d

dt
(G) (4.1)

where G is given by

G = Pg −
4µLṘ
R
− 2σ
R
− P0 − PAsin(2πft) (4.2)

where Pg is the gas pressure in the bubble and is given by Pg = (P0 + 2σ
R ) ∗ (R0

R )3γ

In this equation, R is radius at time t, R0 is the initial bubble radius, Ṙ is the wall velocity of the

bubble and R̈ is the wall acceleration, ρ is the liquid density (998 kg
m3 ), c is the sound speed (1481

m/s), P0 is the atmospheric pressure, σ is the surface tension (0.0725 N
m), µ is the liquid viscosity

(0.001 Pa.s), PA and f are the amplitude and frequency of the applied acoustic pressure. The values

in the parentheses are for water at 2930K. In this paper the gas inside the bubble is air (γ=1.4) and

water is the host media.
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The undamped resonance frequency of the bubble (fundamped) can be calculated using linearization

( [3] P. 372):

fundamped = 1
2π

√
3γ(P0 + 2σ

R )
ρR2

0
− 2σ
ρR3

0
(4.3)

4.3.2 Backscattered pressure

Oscillations of a bubble generate a backscattered pressure (PSc) which can be calculated by [81]:

Psc = ρ
R

d
(RR̈+ 2Ṙ2) (4.4)

where d is the distance from the center of the bubble (and for simplicity is considered as 1m in

this paper) [15]. Eq. 4.1 is solved using the 4th order Runge-Kutta technique using the ode45

function in Matlab (this function also has a 5th order error estimation). The control parameters of

interest are R0, f and PA. The resulting radial bubble oscillations are visualized using bifurcations

diagrams. Bifurcation diagrams of the normalized bubble oscillations R/R0 are presented as a

function of driving pressure (PA is investigated between 1kPa− 3.5MPa with in steps of 1kPa) at

f = fr and f = 2fr (fr is the linear damped resonance frequency) and for bubbles with R0 between

0.2µm-10µm. Detailed analysis is presented for selected control parameters using a) the radius

versus time curves, b) phase portrait analysis and c) the frequency spectrum of the backscattered

pressure.

4.3.3 Investigation techniques

Bifurcation diagrams are valuable tools to analyze the dynamics of nonlinear systems where the

qualitative and quantitative changes of the dynamics of the system can be investigated effectively

over a wide range of the control parameters. In this paper, we employ a more comprehensive

bifurcation analysis method introduced in [74,75].

2.3.a) Poincaré section

When dealing with systems responding to a driving force, to generate the points in the bifurcation

diagrams vs. the control parameter, one option is to sample the R(t) curves using a specific point
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in each driving period. The approach can be summarized in:

P ≡ (R(Θ)){(R(t), Ṙ(t)) : Θ = n

f
} (4.5)

Where P denotes the points in the bifurcation diagram, R and Ṙ are the time dependent radius

and wall velocity of the bubble at a given set of control parameters of (R0, PA and f), Θ is given

by n
f and n=1,2,....440. Points on the bifurcation diagram are constructed by plotting the solution

of R(t) at time points that are multiples of the driving acoustic period. The results are plotted

for n = 400 − 440 to ensure a steady state solution has been reached for all bubbles and thus 40

Poincaré point are stored for each solution. Due to smaller viscous effects, bigger bubbles require

longer cycles to reach steady state.

2.3.b) Method of peaks

Another way of constructing bifurcation points is by setting one of the phase space coordinates to

zero:

Q ≡ max(R){(R, Ṙ) : Ṙ = 0} (4.6)

In this method, the steady state solution of the radial oscillations for each control parameter is

considered. The maxima of the radial peaks (Ṙ = 0 and R̈ > 0) are identified (determined within

400-440 cycles of the stable oscillations) and are plotted versus the given control parameter in the

bifurcation diagrams.

The bifurcation diagrams of the normalized bubble oscillations (R/R0) are calculated using both

methods a) and b). When the two results are plotted alongside each other, it is easier to uncover

more important details about the SuH and UH oscillations, as well as the SH and chaotic oscilla-

tions.

4.3.4 Investigation steps and criteria

Damping changes the resonance frequency of the bubble and Eq. 9.3 can loose accuracy [83].

Moreover, the radiation effects in Keller-Miksis model affect the stiffness of the bubble oscillator

through the momentum it gives to the liquid [3] (P. 372). To calculated the linear damped

resonance frequency including all these effects, resonance curves of the bubbles were calculated
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by numerically solving Eq. 1 for different frequency values and for an acoustic pressure of 1 kPa.

The frequency values which were solved to find the frequency of maximum response were chosen

between 0.5fundamped−1.5fundamped in steps sizes of fundamped/500 where fundamped was calculated

using Eq.9.3. An acoustic pressure of 1 kPa is chosen as it results in very low oscillation amplitudes

(RmaxR0
< 1.02) and thus nonlinear effects can be neglected. The linear damped resonance frequency

(fr) was determined as the frequency by which the oscillation amplitude was maximum. To avoid

transient oscillations, for each simulation parameter, all analysis was performed within the last 40

cycles of a 440 cycle acoustic pulse. The process of choosing the maximum resonance frequency is

similar to [82].

The bifurcation structure of the bubble radial oscillations were then plotted as a function of (R/R0)

with respect to the applied acoustic pressure when the driving frequencies were fr and fsh = 2fr.

fsh is called the 1st SH resonance frequency. Results were compared for f = fr and f = fsh. The

evolution of the two different period 2 attractors was studied in more detail by examination of the

time-series of the radial oscillations, maximum wall velocities, phase portraits and frequency spec-

tra of the backscattered pressure at different stages of the dynamical evolution of the system. For

each sonication frequency and pressure, the maximum wall velocity and maximum non-destructive

wall velocity ( R
R0
≤ 2 [84], for a review on the minimum threshold of bubble destruction refer

to [15]) were calculated for the regimes of non-chaotic oscillations. The results were compared for

cases of f = fr and f = fsh. The pressure ranges which result in non-destructive bubble oscillations

( R
R0
≤ 2 [15, 82]) and non-chaotic oscillations were determined. For these determined parameter

ranges, the maximum fundamental (FU), subharmonic (SH) and ultraharmonic (UH) amplitude of

the backscattered acoustic pressure wave were calculated. The results were compared for cases of

f = fr and f = fsh.

4.4 Results

4.4.1 Period doubling and SH initiation, growth and saturation

In order to have a better understanding on the effect of period doubling and chaos on the 1/2 order

SH and 3/2 order UH emissions of the bubble oscillations, Figure 4.1 plots the bifurcation structure

of R/R0 (the red curve represents the Poincaré section points at each acoustic period, and blue
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Figure 4.1: Bifurcation structure of bubble with R0 = 0.8µm driven by a) its resonance frequency (fr), b)2fr . 1/2 order SH and 3/2
order UH component of the backscattered signal when c)f = fr , d)f = 2fr .
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curve represents the peaks of the oscillations) as a function of pressure and the corresponding SH

and UH amplitude of the backscattered pressure side by side. The SH and the UH components are

calculated by finding the frequency spectrum of the Psc (Eq.9.4) The bubble has an initial radius

of 0.8µm (this size has been chosen as a sample and because different stages of the dynamical

process can be seen more clearly). The left column shows the dynamics of the bubble when f = fr

and the right column represents the case of f = 2fr. Period doubling in both cases results in the

initiation and fast growth of SH amplitudes; as pressure increases, the SH and UH components

grow in magnitude and reach a saturation value. This behavior (initiation, growth and saturation)

has been also observed experimentally [67]. The P2 oscillations undergo further period doubling

cascades to chaos; the occurrence of chaotic oscillations is concomitant with a decrease in SH and

UH amplitude which continue rapid fluctuation in amplitude for chaotic oscillations. In case of

sonication with f = fr and when PD occurs, 3/2 order UH component of the Psc grows faster

than the 1/2 order SH component of the Psc; however, for f = 2fr, the SH component of the

backscattered pressure grows faster than the UH component and becomes stronger in magnitude.

4.4.2 Different stages of the P2 oscillations when f = fr and f = fsh

Focusing on a narrow pressure range allows us to better understand the mechanism of the two

different PDs and the corresponding dynamics of SH and UH components of the backscattered

signal (Fig. 4.2). In this figure, the bubble has R0 = 0.8µm; the left column represents the case in

which f = fr and the right column represents the case in which f = 2fr.

When bubble is sonicated with f = fr (Fig. 4.2a) the bifurcation structure of the bubble has 3

different oscillation regions; the P1 oscillation stage (black arrow), the initiation of PD stage (blue

arrow) and the P2 oscillations stage (red arrow). The bifurcation structures that are generated

using the Poincaré section at every acoustic period and maxima methods have concomitant PD

and P2 oscillations, indicating the bubble oscillation is a P2 oscillation with two maxima. The

corresponding SH and UH components of the backscattered pressure are plotted in Fig. 4.2b and

can be categorized in 3 regions which can be described by the absence of SHs and UHs (black

arrow), the initiation and fast growth of SH and UH of the Psc concomitant with period doubling

in Fig. 4.2a (blue arrow) and the region of UH and SH amplitude saturation (red arrow). Fig.

4.2c shows the maximum amplitude of the wall velocity. The velocity increases monotonically with
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Figure 4.2: A closer look at the evolution of the P2 attractor when a) f = fr and b) f = 2fr . The SH and UH component of the signal
when c) f = fr , and d) f = 2fr . Wall velocity as a function of pressure when e) f = fr , and f) f = 2fr (Maximum wall velocity of
oscillations with periods higher than 2 are not displayed)
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pressure elevation and undergoes a decrease concomitant with PD. The decrease of wall velocity

concomitant with PD when the bubble is sonicated with a frequency close to fr is studied in detail

in [15].Occurrence of further PDs results in P4-2 oscillations followed by successive PDs to chaos.

Generation of P4-2 does not increase the SH or UH amplitude, however, the bubble wall velocity

increases. Occurrence of chaos leads to a substantial decrease in SH and UH strength, although the

maximum wall velocity increases.

Fig. 4.2b shows the bifurcation structure of the R/R0 of the bubble when it is sonicated with

f = 2fr. The dynamics of the PD bifurcation is different from the case of sonication with f = fr

(Fig. 4.2a). The bubble initially starts with period 1 (black arrow). At 165 kPa the bubble

undergoes a PD and oscillations become P2 with 2 maxima. As soon as PD occurs, the SH amplitude

and wall velocity undergo a rapid increase (Fig. 4.2d and Fig. 4.2f). As the pressure increases, one

of the local maxima in the bifurcation structure (blue curve) disappears while the red bifurcation

curve still keeps P2 oscillations (purple arrow). Just before the disappearance, the value of the

maxima (blue curve) overlaps one of the solutions in the red curve; this implies one of the time

points in which the bubble wall velocity becomes zero is once every two acoustic cycles. The

disappearance of the second maxima (at 245 kPa) is concomitant by a fast increase in the UH

amplitude (purple arrow). Above this pressure, the growth rate of SH amplitude changes and

starts to plateau. As the pressure increases, the two branches in the Poincaré section bifurcation

diagram (red curve) converge at u 297 kPa. At this pressure there is only one point in the red

curve (green arrow). This is concomitant with further decrease of the growth rate of the SH and

UH components of the backscattered pressure.

To more thoroughly examine the dynamics of PD when f = fr, Fig. 4.3 shows the time-series,

phase portraits and the frequency spectra of the backscattered pressure at three different pressures

(black, blue, and red arrows in Fig. 4.2a). When PA = 250 kPa, the oscillations are P1; Fig. 4.3a

shows that the signal has one maximum (red circle) and R/R0 has one single value at the end of

each period of the acoustic driving force. The phase portrait (constructed over the last 40 cycles of

a 200 cycle pulse) shown in Fig. 4.3b is a bell shape orbit consisting of only one loop. There is no

distinct SH component in the frequency spectrum of the Psc shown in Fig. 4.3c.

At PA = 330 kPa (Fig. 4.3d) corresponding to the blue arrow in Figs. 4.2a and c, oscillations are

of P2. There are two maxima and two distinct values for R/R0 at the end of each driving period
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Figure 4.3: Evolution of the dynamics of the bubble withR0 = 0.8µm when f = fr . Diagrams are plotted for three difference pressures
of interest (250, 330 and 360 kPa, see Figure 2a). a) Radial oscillations, b) phase portrait diagram and c) frequency spectrum of the
Psc when Ps=250 kPa. The d) radial oscillations, e) the phase portrait diagram and f) the frequency spectrum of the Psc are plotted
when Ps=330kPa.The g) radial oscillations, h) the phase portrait diagram and i) the frequency spectrum of the Psc are plotted when
Ps=360kPa.
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(shown in red and yellow circles respectively). The phase portrait in Fig. 4.3e, consists of a bell

shape orbit which undergoes a bell shaped loop within itself. The frequency spectrum of the Psc

in Fig. 4.3f now has distinct SH and UH components with UH component stronger than the SH

component. As pressure increases the separation between the two distinct peaks of the R/R0 curve

increases (Fig. 4.3g), as do the two loops of the phase portrait (Fig. 4.3h). In this case, the SH and

UH components of the Psc grow stronger with increasing pressure.

When sonicated with f = 2fr, the period doubling can be analyzed in 5 pressure ranges (indicated

by the black, blue, purple, green and red arrows in Fig. 2b).

Fig. 4.4 shows the time series, phase portraits and the frequency spectrum of the Psc of a bubble

with R0 = 0.8µm when f = 2fr. Fig. 4.4a-c shows the time series, phase portrait and the frequency

spectrum of the Psc when PA=205 kPa; the oscillations are of P1, the phase portrait is an ellipsoidal

orbit of only one loop and the frequency spectrum lacks any distinct SH or UH component.

Right after the generation of PD at PA=205 kPa, the radial oscillations have two maxima (red

circles) and R/R0 has two distinct values at the end of each period (yellow circles). When PD

occurs radial oscillations are much smaller (Rmax/R0 < 1.08) when f = 2fr (Fig. 4.4d) compared

to when f = fr with Rmax/R0 = 1.95 (Fig. 4.4d). The phase portrait in Fig. 4.4e consists of one

ellipsoidal orbit undergoing and ellipsoidal loop within itself. The frequency spectrum of the Psc in

Fig. 4.4f shows a distinct SH component indicating the generation of SH oscillations.

When pressure is increased one of the maxima of the R/R0 oscillations disappear while the os-

cillations remain P2 oscillations. Fig. 4.4g shows a representative R/R0 time series of this stage

of oscillations (purple arrow in Fig. 4.2b) when PA=240 kPa. The radial oscillations have only

one maximum however there are two distinct values (yellow circles) for R/R0 at the end of every

period. The phase portrait has an interesting heart like shape, which is rotated by -90 degrees

around the y-axis shown in Fig. 4.4h. The frequency spectrum of Psc illustrates distinct SH and UH

peaks in Fig. 4.4i.

As the pressure further increases, the yellow circle with lower amplitude in the radial oscillation

curve (Fig. 4.4a) grows quicker than the initially higher amplitude yellow circle. Thus, at a pressure

that is shown by green arrow in Fig. 4.2b, the bifurcation diagram constructed by setting Poincaré

section at each acoustic period (red curve) only shows one point as the two solutions have the same

amplitude.
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Figure 4.4: Evolution of the dynamics of the bubble with R0 = 0.8µm when f = 2fr . Diagrams are plotted for four difference
pressures of interest (see Figure 4.2b). Radial oscillations are plotted in the left column, phase portrait diagrams in the middle column
and the frequency spectrum of the Psc in the right column. The top row is for Ps=135 kPa, and the rows after for 205, 240, 297 and
400 kPa.
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To shed a better light on the dynamics of the bubble shown by the green arrow in Fig. 4.2b, the

time series of R/R0 as a function of periods is shown in Fig. 4.4j. The signal has one maxima and

repeats its shape once every two acoustic cycles; the amplitude of R/R0 (yellow circle) at each

period is the same; however, one yellow circle is located at the growth stage (positive wall velocity)

while the second one is located at the collapse stage of the oscillations (negative wall velocity). The

phase portrait still is in a heart shape form with one loop and SH and UH components are grown

stronger as a function of pressure (Fig. 4.4k and 4.4l respectively).

As the pressure increases, the second maxima re-appears. Fig. 4.4m shows that the R/R0 oscilla-

tions of the bubble (PA=400 kPa) have two maxima (red circles) and R/R0 represent two distinct

values after every period. One of the maxima (red circles) is located exactly on one of the (yellow

circles) indicating velocity becomes zero once every two acoustic cycles and right at the end of the

acoustic driving period.

4.4.3 Bifurcation structure of bubbles with different sizes when f = fr and f = 2fr

Figure 4.5 shows the bifurcation structure of the normalized radial oscillations of the three bubble

sizes chosen (R0 = 0.5, 1.5 and 2.5µm) with respect to the excitation pressure amplitude; the

left column represents the case where the sonication frequency is fr and right column represents

the case where the sonication frequency is fsh (fsh = 2fr). The red graphs represent the structure

constructed by the by setting the Poincaré section at each acoustic period and blue graphs represent

the structure constructed by the maxima method.

Comparison between the two columns reveals 3 important findings:

1- The pressure threshold for P2 oscillations are lower when f = fsh and the possible pressure

range of P2 oscillations are considerably larger.

2- When f = fsh, P2 oscillations exist for a larger pressure range and evolve in the shape of a

bowtie.

3- The amplitude of P2 oscillations are considerably (≈ 80%) smaller when f = fsh.

Figures 4.5a, 4.5c, and 4.5e show that when f = fr, the period-1 (P1) oscillations monotonically

increase with pressure increase; then at a pressure threshold bubble oscillations undergo period

doubling (PD). For lower pressure values (e.g. 1kPa-10 kPa in Fig. 4.5a) the two bifurcation

diagrams are on top of each other. This means that the wall velocity of bubble oscillations is in
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phase with the driving acoustic filed and oscillations are resonant [27]. As the pressure increases,

the two curves diverge; this is because at higher pressures resonance frequency decreases [15] and

oscillations become off-resonant. The pressure threshold for PD is size dependent and is higher

for smaller bubbles due to the stronger viscous effects on smaller bubbles which is consistent

with analytical predictions [62, 63, 64, 65, 66]. The bubble with R0 = 2.5µm underwent a period

doubling at 208 kPa while the pressure threshold for the bubble with R0 = 0.5µm was 446 kPa.

Both methods of bifurcation construction show a period doubling succeeding linear oscillations.

When f = fr, the period doubling phenomenon however occurs when the R/R0 amplitude is very

close to 2; indicating that bubble would be more likely to undergo inertial collapse.

Figures 4.5b, 4.5d and 4.5f show the bifurcation structure of the bubble when f = 2fr for R0=2.5,

1.5 and 0.5 µm respectively. Compared to sonication with f = fr, the linear oscillation amplitude

and R/R0 growth rate with pressure increase are smaller. The pressure threshold of PD is lower

than sonication with f = fr; the bubble with R0 = 2.5µm and the bubble with R0 = 0.5µm

underwent PD at 62 kPa (Fig. 4.5b) and 388 kPa (Fig. 4.5f) respectively. The R/R0 oscillation

amplitude of the P2 oscillations are much smaller than 2 indicating that the bubble may sustain

long-lasting P2 oscillations without destruction. Additionally, the pressure range that results in P2

oscillations is broader (e.g. when R0 = 2.5µm, for f = fr pressure range of P2 oscillations is ≈ 40

kPa while for f = 2fr this pressure range increases to 400 kPa).

Fig. 4.5 shows that the pressure range of P2 oscillations becomes broader as R0 decreases, likely

due to the stronger effects of viscous damping (e.g. when f=2fr the pressure range of P2 oscillations

are ≈ 400kPa, ≈ 480 kPa and ≈ 600 kPa respectively for R0= 2.5, 1.5 and 0.5 µm).

One of the differences between the cases of sonication with f = fr (left column) and f = 2fr (right

column) is the occurrence of the bowtie point (Fig. 4.5). When f = 2fr, P2 oscillations occur

over a larger pressure range and at a pressure (see insets in graphs) the two red curves meet. At

this pressure, radial oscillations of the bubble have the same value after every period (see Fig. 4.4j

as an instance), however one point has a positive wall velocity and one point has a negative wall

velocity. After the occurrence of PD and with increasing pressure the two branches of the red curve

converge until they meet and then diverge. This makes the evolution of the P2 oscillations to form

a shape that looks like a bowtie.

When the blue curve (representing the maxima of the R/R0) is analyzed, it is seen that the bubble
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Figure 4.5: Bifurcation structure (conventional method in red and method of peaks in blue) of the normalized radial oscillations (R/R0)
of the bubble as a function of pressure for a) R0=2.5 µm and f = fr b) R0 = 2.5µm and f = 2fr , c) R0 = 1.5µm and f = fr ,
d)R0 = 1.5µm and f = 2fr , e) R0 = 0.5µm and f = fr , f) R0 = 0.5µm and f = 2fr .
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has two maxima when PD occurs in the red curve. But one of the maxima of the blue curve

disappears quickly as the pressure increases (see Fig. 4.4g as an example of a time series). This

indicates that the period of oscillations is 2; however, the R/R0 oscillations vs time have only one

maximum. Above a second pressure threshold (highlighted by zooming in the Figs. 4.5b,d and f),

the second maxima re-emerges and its amplitude is exactly equal to the highest amplitude of the

R/R0 branch of the P2 oscillations in red curve (see Fig. 4.4m as an instance).

In case of f = fr and R0 = 1.5µm (Fig. 4.5c) we see a short window of P3 oscillations and for the

bubble with R0 = 2.5µm, we see a short pressure window of P6 oscillations for f = 2fr (Fig. 4.5b).

These will be discussed in more detail in the Appendix.

Fig. 4.6, shows the bifurcation structure of R/R0 of the bubbles with R0 of 0.4, 0.3, and 0.2 µm

(top to bottom respectively) versus acoustic pressure. The left column represent the case where the

sonication frequency is set to the linear resonance of the bubble (fr) and right column represent

the case of sonication with 2fr.

When the bubble is sonicated with fr; the radial oscillations increase monotonically with pressure

elevation and the bubble undergoes PD route to chaos above a pressure threshold (e.g. 700 kPa

for the bubble with R0=0.3 µm). The blue curve and red curve are initially on top of each other

(wall velocities are in phase with the driving acoustic pressure) but they diverge as the pressure

increases. For smaller bubbles the pressure range where the red and blue curve have the same value

are wider (e.g. 200 kPa for the R0=0.3 µm bubble and 460 kPa for the R0=0.2 µm bubble). When

f = fr, the R/R0 amplitude of bubble oscillations at the time of PD is very close to 2; this indicates

that bubbles may not be able to sustain non-destructive oscillations. The bifurcation diagrams

generated by both methods demonstrate concomitant PD. This shows that the oscillations are of P2

with two maxima. It should be noted that the occurrence of PD does not necessarily mean that the

oscillations will have two maxima, nor does a P1 oscillations necessarily have 1 maximum [75].

When bubbles are sonicated with f = 2fr however, R/R0 amplitude is well below the value of

2 when PD occurs. The bubble keeps P2 oscillations with an amplitude relatively below 2 (e.g.

1.15 at 0.1 MPa in Fig. 4.6f ) indicating that the bubble is more likely to sustain non-destructive

P2 oscillations when sonicated with 2fr. Additionally the pressure range of P2 oscillations are

much broader compared to the case of sonication with fr (e.g. 1 MPa in Fig. 4.6d). Unlike the

cases of bubbles with R0 larger than 0.5 µm when sonicated with f = 2fr, the bubble oscillations
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Figure 4.6: Bifurcation structure (conventional method in red and method of peaks in blue) of the normalized radial oscillations (R/R0)
of the bubble as a function of pressure for a) R0 = 0.4µm and f = fr b) R0 = 0.4µm and f = 2fr , c) R0 = 0.3µm and f = fr , d)
R0 = 0.3µm and f = 2fr , e) R0 = 0.2µm and f = fr , f) R0 = 0.2µm and f = 2fr .
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Figure 4.7: Pressure threshold of P2 oscillations as a function of R0 when bubble is sonicated with f = fr and f = 2fr .

exhibit two maxima for the whole range of P2 oscillations. After a pressure threshold, the lower

maxima of the P2 oscillations lies on top of one of the branches of the P2 oscillations in the

conventional bifurcation diagram; this indicates that one of the time points where the velocity

of bubble oscillations is zero is exactly once every two acoustic cycles. Furthermore, the evolution

of P2 oscillations for bubbles with R0 ≤ 0.37 µm does not have the bowtie point; in other words,

when sonicated with 2fr a bowtie point only happens for bubbles with R0 larger than 0.37 µm.

Comparing figs 4.5 and 6, when f = fr, chaotic oscillations only develop when R/R0 > 2.3; thus,

in practice, resonant bubbles may not sustain chaotic oscillations due to the high possibility of

destruction. However, when f = 2fr, and for bubbles with R0 / 2.5µm, chaotic oscillations can

develop when R/R0 ≤ 2; thus, these bubbles may sustain chaotic oscillations when f = 2fr. As the

bubble size gets smaller, the pressure threshold for the PD increases for both f = fr and f = 2fr.

Although, PD typically occurs at a lower pressure when f = 2fr however, for the bubbles with

R0 = 0.3 and 0.2 µm pressure threshold for PD is lower when f = fr. It is hypothesized in [71,72]

that increased damping is the reason behind this effect.

4.4.4 Pressure threshold and range of P2 oscillations

Figure 4.7 illustrates the pressure threshold of period doubling (PD) as a function of R0 for f = fr

and f = 2fr and is created by analyzing the bifurcation diagrams of bubbles with initial radii
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between 0.2-10 µm (Appendix: Figs 4.12a and A.13a). The pressure threshold (Pt) of PD is lower

when the bubble is sonicated with 2fr; however, as R0 decreases the difference between the Pt(f1)

and Pt(f2) decreases and for bubbles with initial radii of R0 = 0.3 and 0.2 µm pressure threshold

for PD is lower when f = fr. The pressure threshold of PD is lower for bigger bubbles; this is

due to weaker effects of viscosity on larger bubbles. These results are in agreement with analytical

predictions of Prosperetti [66].

Figure 8 is made by analyzing the bifurcation diagrams of bubbleswith initial radii of 0.2-10 µm

size (Appendix: Figs 4.12a and 4.13a). Figure 4.8a demonstrates the range of P2 oscillations as a

function of R0 for f = fr and f = 2fr. To construct Fig. 4.8a we have identified the lower pressure

limit (the pressure threshold) and the upper pressure limit of P2 oscillations and then plotted the

value of their subtraction as a function of radius. In Fig. 4.8b the upper pressure limit is chosen

so that Rmax/R0 < 2. When bubble is sonicated with 2fr, the range of acoustic pressures that can

result in P2 oscillations are broader than when compared to f = fr by an order of magnitude (e.g.

for R0 = 4µm, the P2 pressure range is 34 and 304 kPa for f = fr and f = 2fr respectively).

Figure 4.8b demonstrates the pressure range of P2 oscillations when R/R0 ≤ 2. When f = fr,

bubbles with R0>2.5 µm undergo PD when R/R0>2, thus they may not exhibit non-destructive

SH oscillations; however, when f = 2fr, all the studied bubble sizes (0.2 µm≤R0≤10 µm) exhibit

non-destructive P2 oscillations over a broad range of acoustic pressures. Thus, if non-destructive SH

oscillations are desired in an application where (R(t = 0s) = R0 and Ṙ(t = 0s) = 0m/s a condition

that is typically seen during imaging applications), preferred sonciation frequency between f = fr

and f = 2fr is the latter one. However, the choice of frequency may be different depending on the

initial conditions and in case of liquids with higher viscosity [85].

4.4.5 Absolute wall velocity of the period 2 oscillation regimes

Wall velocity is an important measure of the bubble collapse and strongly contributes to the bubble

backscatter in (Eq. 9.4). To compare the magnitudes of the bubble wall velocities, the absolute wall

velocities for bubbles of initial radii between 0.2µm-10 µm were plotted alongside their bifurcation

diagram as a function of pressure (Appendix: Fig. 4.12 and Fig. 4.13). The absolute value of the

bubble wall velocity when PD occurs and the maximum achievable P2 absolute wall velocities were
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Figure 4.8: a) Acoustic pressure range of P2 oscillations as a function of R0, b) Non-destructive ( R
R0
≤ 2) acoustic pressure range of

P2 oscillations as a function of R0.

Figure 4.9: Maximum wall velocity amplitude (|Ṙ(t)|max) when period doubling occurs as a function of R0. Blue is for f = fr , and
red denotes the case of f = 2fr .
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Figure 4.10: Maximum possible non-destructive: a)P 2
sc, b) Fu amplitude, c) SH amplitude and d) UH amplitude as a function of R0.
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Figure 4.11: Gas volume weighted (β=1e-7) maximum possible non-destructive: a) P 2
sc, b) FU amplitude, c) SH amplitude and d)UH

amplitude as a function of R0.
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extracted from Fig. 4.12 and 4.13 and are plotted as a function of bubble size in Figure 4.9. Figure

4.9 depicts the bubble absolute wall velocity when PD occurs as a function of size. The blue line

shows the case of f = fr and the red line represents f = 2fr. For the micron size bubbles when

f = fr, the wall velocity is ≈ 34-40 m/s when PD occurs. For nanobubbles the PD wall velocity

rapidly increases as the size decreases, reaching velocities greater than 60 m/s for the bubble with

R0 = 0.2µm. The same trend is seen when f = 2fr; the PD wall velocity is less than ≈ 6 m/s

for micron size bubbles and rapidly increases for nanobubbles approaching 20 m/s for the bubble

with R0 = 0.2µm. In comparison to bubbles sonicated by f = fr, bubbles sonicated with f = 2fr

exhibit much smaller wall velocities when PD occurs (e.g. for bubbles with initial radii > 0.5µm,

6-36 times smaller and for bubbles with initial radii < 0.5µm, about 3-5 times smaller). Thus due

to lower collapse velocities, this suggests that bubbles sonicated with f = 2fr are more likely to

sustain P2 non-destructive oscillations.

4.4.6 Analysis of the backscatter signal for the two types of Period two oscillations

To identify the maximum achievable non-destructive backscattered signal strength and it’s funda-

mental (FU), 1/2 order subharmonic (SH) and 3/2 order ultraharmonic (UH) components, the

maximum nondestructive (R/R0≤2) values for each bubble size when f = fr and f = 2fr were

plotted (Fig. 4.10). These values are extracted from Figs 4.14-4.17 in Appendix.

The maximum value of P 2
sc (P 2

sc is used instead of Psc to better relate to the signal intensity) and

the fundamental component of the Psc are stronger when the bubble is sonicated with f = fr (Fig.

4.10a-b), with bigger bubbles scattering stronger than smaller bubbles. However, the maximum

non-destructive SH and UH amplitude of Psc are stronger when f = 2fr (Fig. 4.10c-d).

When f = 2fr nondestructive SHmax and UHmax are greater for bigger bubbles; however, when

f = fr nondestructive SHmax and UHmax, of the 1 micron bubble (R0=0.5 µm) exhibits the

strongest possible nondestructive SHmax(-28 dB) and UHmax (≈ -25.5 dB). Nondestructive SHmax

and UHmax are highest for bubbles with (0.3µm<R0<2 µm) when f = fr. As is discussed in

Fig. 4.4, when f = fr, only a small range of bubble sizes can undergo non-destructive PD and

consequently SH and UH emissions when R/R0≤2.

Gas volume plays an important role in many applications. For a given volume a greater number of

smaller bubbles are possible. The volume fraction is given by β = 4
3πNR

3 where β is the volume
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fraction that the gas occupies, N is the number of bubbles per unit volume and R is the radius of

the bubbles at time t. To consider the effect of gas volume on the maximum achievable signal from

bubbles, the results of figure 4.10 are normalized for a case of β=10−7 and, the signal intensities

were calculated for a 1 mm cube in figure 4.11 (assuming negligible interaction between bubbles).

Results of the bubbles bigger than 8 micron in diameter (R0 = 4µm) were omitted as the average

capillary diameter in human body is approximately 8 µm [86].

Fig. 4.11 shows that smaller bubbles (e.g. nanobubbles) have the potential to provide stronger

signals in specific situations (e.g. when f = 2fr and β=10−7). If one assumes monodispersity and

that all signals arrive in phase, then the bubbles with R0 = 0.2µm bubbles produce SHmax and

UHmax of 15 dB and 18 dB higher than the 3 µm bubbles when controlled for gas volume.

4.5 Discussion

Period doubling (PD) and chaos are one of the well-known characteristics of nonlinear dynamical

systems including bubble oscillators [1,2,3,4,5,6,7]. PD results in bubble subharmonic oscillations

which are of great importance in applications including but not limited to contrast-enhanced

ultrasound imaging [54, 55, 56], monitoring therapeutic applications of ultrasound [50, 51, 52],

non-destructive testing [53, 64, 65, 66], sonoluminescence [41] and other applications. The non-

linear and chaotic dynamics of the bubble oscillator have been the subject of many recent studies

[15,16,17,18,19,20,21,22,23,24,25,26].

However, the two main period-2 regimes in the bubble oscillator have not been studied in detail.

Because of the importance of bubble 1/2 order SH oscillations, comprehensive knowledge of the

mechanisms of PD and 1/2 order SH oscillations can help in optimizing current applications or

explore new potential parameters to be used in applications.

In this work the bifurcation structure of the R/R0 of the bubble oscillator was studied as a function

of pressure; two important cases of sonication with linear resonance frequency (fr) and subhar-

monic resonance frequency (2fr) were studied in detail for bubbles with initial radii of 0.2 µm up

to 10 µm. The SH, ultraharmonic (UH) and fundamental (FU) components of the backscattered

pressure, as well as the R/R0 vs time and phase portraits of the signals, were analyzed.

It was shown that the bubbles sonicated with f = 2fr are most likely to sustain non-destructive
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oscillations as the period doubling occurs at a very gentle oscillation regime and at very small

expansion ratios (Rmax/R0 < 1.1R0). To the contrary, sonication with f = fr may not result in

non-destructive period doubling as the period doubling occurs at expansion ratio of Rmax/R0 ' 2.

Expansion ratio of 2 is reported by Flynn [84] as the minimum threshold of transient cavitation

where inertial forces dominate the collapse of the bubble. In another study, Apfel [87] suggested the

threshold of Rmax/R0 ≈ 2.3 as the transient cavitation threshold. Another criteria was developed

by Mitchell and Plesset [88] which is based on the Rmax/Rmin ratio. According to this theoretical

study, the bubble is stable if Rmax/Rmin < 5 and it is unstable if Rmax/Rmin > 10. In our previous

study [15] and for coated bubbles with pure viscoelastic behavior of the coating, stability condition

of Rmax/R0 / 2 also satisfied the stability criteria of Rmax/Rmin < 5 by Mitchell and Plesset [88].

For a review on the studies on transient cavitation threshold one can refer to [3] (P. 316-335).

Several experimental studies [89, 90, 91, 92] have reported stable oscillations of coated bubbles

beyond the minimum stability threshold of Rmax/R0 ≈ 2. In these studies, which are based on

optical measurements of the bubble radius during oscillations, the majority of the coated bubbles

were destroyed once Rmax/R0 > 2. These results were also supported by acoustic measurements

of the destruction of coated bubbles [93, 94, 95] where the destruction only happened when

Rmax/R0 > 2, although some bubbles survived higher expansion ratios. Based on the experimental

observations, the minimum threshold for transient cavitation used in this work is a reasonable

choice. However, since the criteria of Rmax/R0 = 2 is the minimum value, this does not guarantee

that destruction will happen at this exact value, thus some bubbles may survive period 2 oscillations

when they are sonicated with f = fr. This criteria is considered to be a sufficient condition to

ensure bubbles do not undergo transient collapse which may need to be avoided for SH imaging

applications. The conclusions of the study are based on a model in the absence of coating. The

increased viscosity and change in the nonlinear bubble behavior due to the coating will affect the

conclusions.

Another advantage of sonication with f = 2fr is the higher amplitude of the 1/2 order SHs and

3/2 order UHs which leads to a higher contrast to tissue ratio. Moreover, due to the lower pressure

threshold of the period 2 oscillations, sonication with 2fr may lead to superior signal to noise ratio

of the SH and UH images.

We showed that when f = fr, increasing the exciation pressure amplitude leads to a monotonic
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increase in the scattered pressure (Psc) by bubbles (Fig. 4.14a). However, when f = 2fr, Psc

undergoes a rapid increase (> 10 fold) when excitation pressure is increased above the pressure

threshold for period doubling (Fig. 4.14b). This property can be exploited for amplitude modula-

tion imaging techniques [96].

SH emissions of isolated coated bubbles have been studied experimentally through high speed

optical observations of bubble oscillations [92]. They showed that when f = fr, the pressure

threshold of SH generation is greater than the bubble destruction threshold. When f = fr we

showed that PD only occurs when Rmax/R0 is close to 2 and thus stable SH oscillations may

not occur. Thus our results are in agreement with the results of optical observations in [92].

Moreover, [92] concludes that when f = 2fr the bubble exhibits SH emissions while exhibiting

maximum stability. This conclusion is in agreement with the results of our study.

In this study we only focused on 1/2 order SHs regime of oscillations when f = fr and f = 2fr and

to replicate the initial conditions that we expect during imaging applications, we chose R(t = 0s) =

R0 and Ṙ(t = 0s) = 0 [15]. However, the initial conditions of the system heavily influences the

pressure threshold and order of the SHs [85]. Through, GPU accelerated simulations, nonlinear

dynamics of the bubble with different initial conditions (25 random initial conditions) has been

investigated using 2 dimensional bifurcation diagrams in [85]. The stability conditions of the P2

and higher order SH oscillations, may change depending on the initial condition of the system.

The model that used in this paper is the Keller-Miksis model [80] for uncoated bubbles. Analysis

of the complex dynamics of the uncoated bubble builds the fundamental knowledge that is needed

to investigate the more complex coated bubble models. The buckling and rupture of the coating

and the dynamic variation of the effective surface tension of the bubbles can be modeled using

the Marmottant model [76]. In the Marmottant model when the coating buckles the effective

surface tension on the bubble drops to zero. The coating behaves like an elastic material when

the bubble radius is between the buckling and rupture radii. When the radial amplitude exceeds

the rupture radius, the effective surface tension becomes equal to that of the uncoated bubble.

The effect of strain softening of the coating have been analyzed in [97]. In this model interfacial

elasticity decreases with increasing area fraction of the coating of the bubble. The strain softening

is due to the decreasing association between the constitutive molecules of the encapsulation. This

model do not necessarily incorporate buckling/rupturing radii however has been able to predict
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subharmonic oscillations. [97] concludes that the use of the strain softening model improves the

ability to predict subharmonic response. Moreover, similar to Marmottant model [76], this model

can also predict compression only behavior when buckling occurs. In a comparative study of the

SH emissions [98] of the coated bubbles at higher frequencies, both the [76] and [97] were applied

to undertsand the SH emissions. Paul et al. [97] concludes that similar results can be achieved for

both ”compression-only” and ”expansion dominated” oscillations and thus, this emphasizes the fact

that the exact form of the coating elasticity relation to radius still remains unknown.

Experimental results have shown that the buckling of the lipid coating enhances the generation of

SH oscillations at very low acoustic pressures [99,100]. These pressures are below the thresholds of

SH generation for uncoated bubbles even though coated bubbles have higher viscosity. Prosperetti’s

theoretical analysis [67] attributed this effect to the dynamic variation of the effective surface

tension on the bubble.

Faez et al. [101] investigated the SH response of individual coated bubbles (diameters between 1

and 4 µm) for the excitation frequency between 4-12 MHz at pressures of 50, 100 and 120 kPa.

Among their 390 analyzed bubbles 40 percent exhibited SH response. The SH resonance frequency

for bubbles smaller than 3 µm increased up to 10 % with increasing acoustic pressure from 50 to

120 kPa (a hardening effect of the coating). This was just the opposite of what was observed for the

fundamental response. Faez et al [102] investigated the SH response of biotinylated lipid coated

bubbles in vivo in a chicken embryo model. Bubble diameters between 1-3.5 µm were sonicated

in the frequency range of 4–7 MHz and applied pressure amplitudes of 300 kPa and 400 kPa. 44

% of the total studied bubble population showed a subharmonic response in the applied driving

frequency range. All the bubbles showed (strain) hardening behavior of the coating. Moreover,

transmit at f = fr was responsible for the SH response of the bubbles. These results indicate the

strong and complex effects of the coating on the nonlinear behavior of the bubble.

In this work effect of non-spherical oscillations of the bubble [103, 104, 105, 106] were neglected.

Holt et al. [104] investigated the subharmonic behavior of larger bubbles (≈ 100− 200µm in size)

and have experimentally observed the shape oscillations concomitant with subharmonic oscilla-

tions. They showed that, since the frequency of the first shape oscillation is 1/2 of the driving

frequency, its appearance could be phenomenologically mistaken for a simple period-doubling of

the radial mode. At higher pressure amplitudes, the oscillations were shown to be very complex,
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with many subharmonic components conjectured to the result from nonlinear volume resonances

and shape oscillations of undetermined mode [104]. Recently Klapcsik and Hegedűs [103] through

GPU accelerated large parameter investigations and 2 dimensional bifurcation diagrams, have

studied the dependence of the active cavitation threshold on the shape instability of the bubble.

Shape instability can affect the subharmonic threshold and nonlinear behavior of bubbles. More

accurate predictions of the oscillations requires the incorporation of the shape instability during

bubble oscillations. Versluis et al. [105] through using high speed optical observations were able

to identify shape oscillations of mode n= 2 to 6 in the behavior of single air bubbles with radii

between 10µm and 45 µm. Their study [105] concluded that the close to resonance bubbles

were found to be most vulnerable toward shape instabilities. For coated bubbles, nonspherical

bubble oscillations were investigated in [106] through high speed optical observations. It was

shown that non-spherical bubble oscillations are significantly present in medically relevant ranges

of bubble radii and applied acoustic pressures. Non-spherical oscillations develop preferentially at

the resonance radius and may be present during SH oscillations [106]. Thus, for a more accurate

modeling of the MB oscillations, deeper theoretical modeling of bubble coating, accounting for

membrane shear and bending is required [106].

Another factor that can affect the pressure threshold for PD and amplitude of P2 oscillations is

thermal damping. However, thermal damping is nonlinear [107] and application of the generally

used linear models may lead to inaccurate predictions of large amplitude nonlinear oscillations.

Thermal effects are shown [107] to become more important in uncoated bubble oscillations. How-

ever, for coated bubbles enclosed with gases like C3F8 thermal effects may be neglected [107]

without impairing the solutions.

4.6 Summary of the results and conclusion

The findings of this study can be summarized as follows:

1- When f = fr, the R/R0 oscillations of the bubble increases monotonically with pressure, and

above a pressure threshold PD occurs. This is concomitant with the appearance of SH oscillations.

2- When f = fr, the occurrence of PD is most likely concomitant with bubble destruction as R/R0

is very close to, or above, 2. Only bubbles with initial radii between 0.2 µm and 2.5 µm may
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sustain stable P2 oscillations (R/R0≤2) and only for a narrow pressure range. The bubble with

R0 = 0.2µm has the widest pressure range for non-destructive SH oscillations (≈ 60 kPa)

3- For the majority of the bubble sizes studied, PD occurs at lower pressures when f = 2fr compared

to f = fr. The difference between the two pressure thresholds is 180-190 kPa for bubbles with R0

bigger than 0.5 µm. As the bubble size decreases, the two pressure thresholds converge and then

diverge with bubbles with R0=0.2 and 0.3 µm having a lower pressure threshold when f = fr.

4- When the bubbles are sonicated with 2fr, PD is more likely to result in non-destructive oscilla-

tions as R/R0 <1.2. Even as pressure increases, the Rmax/R0 of the P2 oscillations does not exceed

2.

5- When f = 2fr and for bubbles with initial radii greater than 0.37 µm the evolution of the P2

oscillations exhibits a bowtie point. At this point, the two points on the Poincaré section have the

same amplitude for R/R0, however one point has a positive Ṙ while the other one has a negative

Ṙ.

6- When f = 2fr, the period doubling happens over a much wider pressure range when compared

to f = fr. This makes the period doubling shape to be elongated in the bifurcation diagrams. Due

to the lower oscillation amplitude and gentle bubble collapse (lower bubble wall velocities), the

bubble can sustain stable P2 oscillations for a longer duration and over a broader range of acoustic

pressures.

7- The occurrence of PD is concomitant with the initiation of the growth of SH and UH component

of the signal. When f = fr, the UH component of the signal undergoes the initiation first; however,

when f = 2fr the SH component of the signal grows first.

8- Different stages of the PD when bowtie point occurs correspond to the initiation (start of the PD),

growth and saturation of the SH and UH signals (at bowtie point when two red curves overlap) and

then overlap of one of the maxima with one of the points of the Poincaré section at each period.

The phenomena of initiation, growth and saturation of subharmonics have also been confirmed by

experimental observations [68].

9- When f = fr, the occurrence of PD is concomitant with a decrease in bubble wall velocity;

however, when f = 2fr, the bubble wall velocity undergoes a rapid increase as soon as PD occurs.

10- For bubbles with initial radii > 0.3µm when PD occurs wall velocity is approximately 30-45

m/s; however, when f = 2fr, the PD wall velocity is less than 10 m/s. This is another reason as to
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why P2 oscillations are more likely non-destructive when f = 2fr.

11- When sonicated with 2fr, the phase portrait of the P2 attractor differs from the P2 attractor

that is generated through sonication with fr. When f = fr, the phase portrait consists of one bell

shape orbit that undergoes a bell shape loop within itself. When f = 2fr, the phase portrait of the

P2 oscillations looks like a rotated heart (Fig. 4.4).

12- The SH component of the Psc is higher when the bubble is sonicated with 2fr; however,

maximum Psc amplitude, FU and UH component of the Psc are higher when f = fr.

13- Bigger bubbles scatter sound more strongly; however, for a given gas volume smaller microbub-

bles may produce stronger scattering due to their greater numbers compared to bigger bubbles.

4.7 Appendix

4.7.1 Bifurcation structure and the dynamical properties of the bubbles with

R0 = 0.2µm− 10µm

Figure 4.12(a), displays the bifurcation structure of the R/R0 of the bubbles as a function of

pressure for bubbles with R0 = 0.2µm− 10µm when f = fr. We have omitted the chaotic range of

oscillations as the main focus here is to compare the mechanism of PD of bubbles of different sizes.

The bifurcation curves are plotted using the conventional bifurcation analysis method as here we

are only interested in the period of the bubble oscillations. All bubbles undergo a period doubling

from P1 to P2; the pressure threshold for PD increases as the bubble size decreases. Fig. 4.12

(b), shows the corresponding maximum wall velocity. The wall velocity increases monotonically

with pressure until the occurrence of PD. As soon as PD occurs, the maximum wall velocity starts

decreasing with increasing pressure for bubbles with R0 > 0.4µm. For bubbles with R0 ≤ 0.4µm in

diameter, the growth rate of wall velocity as a function of pressure elevation is reduced as soon as

PD occurs. Smaller bubbles reach a higher P2 maximum wall velocities.

Fig. 4.13(a) displays the bifurcation structure of the R/R0 oscillations of the bubble a function of

pressure presented for bubbles with R0 = 0.2µm − 10µm when f = 2fr. Bigger bubbles undergo

PD at lower pressures and lower R/R0 amplitude because of less constrictions imposed by viscous

forces. The mechanism of PD is through a PD bifurcation that evolves in a form of bow tie shape

for bubbles with R0 > 0.37µm. The corresponding wall velocities in Fig. 4.13b exhibit an exact
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(a)

(b)

Figure 4.12: Bifurcation structure of R/R0 of the bubble oscillations as a function of pressure when f = fr (R0 = 0.2µm − 10µm).
b) The corresponding maximum wall velocity amplitude (| ˙R(t)|max) .
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(a)

(b)

Figure 4.13: Bifurcation structure of R/R0 of the bubble oscillations as a function of pressure when f = 2fr (R0 = 0.2µm− 10µm).
b) The corresponding maximum wall velocity amplitude (| ˙R(t)|max) .

opposite behavior when compare with the case of sonication with f = fr (Fig. 4.12b). The wall

velocity grows very slowly as pressure increases until PD occurs. As soon as PD occurs, the growth

rate of the wall velocity dramatically increases. Additionally, when PD coccus, wall velocities are

3-36 times smaller compared to when the bubbles are sonicated with f = fr. Lower wall velocity

is an important factor for the sustainable non-destructive oscillations of bubbles.

Figure 4.14(a) shows the maximum value of (P 2
sc)max in the regime of non-destructive oscillations

( R
R0
≤ 2). The maximum value of (P 2

sc)max increases monotonically with pressure. For bubbles that

are able to exhibit PD while ( R
R0
≤ 2), (P 2

sc)max undergo a decrease as soon as PD occurs consistent

with the predictions of [15] for coated bubbles. This phenomenon is discussed in full detail in [15].

Bigger bubbles achieve higher (P 2
sc)max and can be destroyed at lower pressures.

When f = 2fr the maximum (P 2
sc)max increases monotonically with increasing pressure. As soon

as PD occurs maximum (P 2
sc)max undergoes a rapid increase. For bubbles that exhibit the bow tie

shape bifurcation (R0 > 0.37µm) the (P 2
sc)max continues increasing rapidly until a second pressure
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(a)

(b)

Figure 4.14: Maximum value of non-destructive P 2
sc ( R

R0
≤ 2) when : a) f = fr , and b) f = 2fr .

threshold. Above the second pressure threshold, the rate of change of (P 2
sc)max decreases. This

pressure threshold is the same as the pressure where the bow tie point occurs in the conventional

bifurcation diagram.

Figure 4.15a-b shows the fundamental component of the non-destructive (P 2
sc)max for f = fr

and f = 2fr respectively. The fundamental component of the (Psc) exhibit the same behavior as

(P 2
sc)max as a function of pressure.

Figure 4.16 shows the amplitude of the SH component of the (Psc) when f = fr and f = 2fr

respectively. When f=fr, only a fraction of the bubble sizes that are shown (R0 < 4µm) are able

to undergo non-destructive PD ( R
R0
≤ 2); this is seen as a rapid increase in the SH component

as the pressure increases above the PD threshold. However, the pressure range of P2 oscillations
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(a)

(b)

Figure 4.15: Fundamental (FU) amplitude of the intensity of non-destructive ( R
R0
≤ 2) Psc when : a) f = fr , and b) f = 2fr .
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for non-destructive oscillations is very small. When f = 2fr (Fig. 4.16b), the SH component

of the signal grows rapidly when PD occurs and the rate of increase decreases above a second

pressure threshold. Fig. 4.17, illustrates the UH component of the (Psc) when f = fr and f = 2fr

respectively. The UH component of the signal exhibits the same trend as the SH component shown

in Fig. 4.16.

4.7.2 higher order attractors at fr and 2fr

Figure 4.18 pays a closer attention on the P6 behavior that is seen for bubbles (2.5 < R0 < 5) when

f = 2fr and initial conditions are R(0) = R0 and ˙R(0) = 0. This is a condition which is common in

biomedical imaging applications [15]). Figure 4.18a shows the generation of the P6 behavior (black

arrow) through a saddle node bifurcation from P2 that only lasts for a small pressure window. The

radial oscillations of R
R0
≤ 2 as a function of period are shown in figure 4.18b; the signal exhibits

6 maxima (red circles) that repeat themselves once every 6 acoustic cycles. The phase portrait of

the signal has 3 loops; each are enclosing a smaller loop in Fig. 4.18c. The back-scatter frequency

spectrum is shown in Figure 4.18d, depicting the existence of 5 SHs of f/6, f/3, f/2, 2f/3 and 5f/6

(with the f/2 component the strongest). The period 6 shown here (we name it P6-2) has distinct

differences from the P6 that can be generated by sonicating a bubble with a frequency that is about

6 times the resonance frequency of the bubble [13]. The later is generated through a saddle node

bifurcation [13] from a period 1 oscillations (we name it P6-1) while the former that is shown in

figure 4.18 is generated through a saddle node bifurcation from period 2 oscillations. Additionally,

the P6-1 R/R0 signal has one envelope with 6 or 5 maxima while a P6-2 R/R0 signal has three

envelopes each with 2 maxima. When the frequency spectrum of the Psc is considered, the f/6 is

the strongest SH component of a P6-1 oscillation [13] while f/2 is the strongest SH component of

a P6-2 oscillations.

Another interesting nonlinear oscillation that was observed in this paper is a P3 signal that is

generated through a saddle node bifurcation from P2 oscillations when f = fr. This behavior was

observed for bubbles of size 1µm < R0 < 2µm. Figure 4.19a shows the P3 oscillation (black arrow)

that is generated through a saddle node bifurcation from a P2 oscillation. The radial oscillations

shown in Fig. 4.19b display a signal with three maxima with two repeating envelopes once every

3 acoustic cycles; one has two maxima and one has one maxima. The phase portrait in Fig. 4.19c
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(a)

(b)

Figure 4.16: Sub-harmonic (SH) amplitude of the intensity of non-destructive ( R
R0
≤ 2) Psc when : a) f = fr , and b) f = 2fr .
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Figure 4.17: Ultra-harmonic (UH) amplitude of the intensity of non-destructive ( R
R0
≤ 2) Psc when : a) f = fr , and b) f = 2fr .
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Figure 4.18: Bifurcation structures of the bubble with R0 = 2.5µm and f = 2fr as a function of pressure highlighting a period 6 signal
(black arrow). Time-series of the P6 R/R0 oscillation as a function of the driving acoustic period when f = 2fr and PA=358 kPa. C)
Phase portrait of the P6 attractor. d) the corresponding frequency spectrum of the backscattered pressure.
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Figure 4.19: Bifurcation structures of the bubble with R0 = 1.5µm and f = fr as a function of pressure highlighting a period 3 signal
(black arrow). Time-series of the P3 R/R0 oscillation as a function of the driving acoustic period when f = 2fr and PA=290 kPa. C)
Phase portrait of the P3 attractor. d) the corresponding frequency spectrum of the backscattered pressure..
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consists of two orbits sharing an internal bend. The frequency spectrum in Fig. 4.19d, depicts

three SHs with frequencies of f/3 and 2f/3 with 2f/3 stronger than the f/3 component. We name

this a P3-2 oscillation and it has distinct differences from a P3-1 oscillation (a P3-1 occurs when

a bubble is sonicated with a frequency that is approximately 3 times its resonance frequency and

is generated via a saddle node bifurcation from a P1 oscillation [13]). The main difference is

mechanism of generation as it is discussed above. The second difference is the shape of the radial

oscillations; P3-1 has one envelope with 2 or 3 peaks that repeat itself once every three acoustic

cycle. The phase portrait of a P3-1 oscillation consists of one orbit with two distinct internal bends

and the f/3 component of the frequency spectrum is stronger than the 2f/3 component.
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Chapter 5

Nonlinear dynamics of acoustic bubbles excited

by their pressure dependent subharmonic

resonance frequency: oversaturation and

enhancement of the subharmonic signal

5.1 Abstract

The acoustic bubble is an example of a highly nonlinear system which is the building block of

several applications and phenomena ranging from underwater acoustics to sonochemistry and

medicine. Nonlinear behavior of bubbles, and most importantly 1
2 order subharmonics (SH), are

used to increase the contrast to tissue ratio (CTR) in diagnostic ultrasound (US) and to monitor

bubble mediated therapeutic US. It is shown experimentally and numerically that when bubbles

are sonicated with their SH resonance frequency (fsh = 2fr where fr is the linear resonance

frequency), SHs are generated at the lowest excitation pressure. SHs then increase rapidly with

pressure increase and reach an upper limit of the achievable SH signal strength. Numerous studies

have investigated the pressure threshold of SH oscillations; however, conditions to enhance the

saturation level of SHs has not been investigated. In this paper nonlinear dynamics of bubbles

excited by frequencies in the range of fr < f < 2fr is studied for different sizes of bubbles

(400nm-8 µm). We show that the SH resonance frequency is pressure dependent and decreases

as pressure increases. When a bubble is sonicated with its pressure dependent SH resonance

frequency, oscillations undergo a saddle node bifurcation from a P1 or P2 regime to a P2 oscillation
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regime with higher amplitude. The saddle node bifurcation is concomitant with over saturation of

the SH and UH amplitude and eventual enhancement of the upper limit of SH and UH strength

(e.g. ≈ 7 dB in UH amplitude). This can increase the CTR and signal to noise ratio in applications.

Here, we show that the highest non-destructive SH amplitude occurs when f u 1.5− 1.8fr1.

5.2 Introduction

A bubble is a nonlinear oscillator that can exhibits complex and chaotic dynamics [1,2,3,4,5,6,7,8].

Bubbles are the building block of several applications and phenomena; they have applications in

sonochemistry [9, 10, 11, 12, 13, 14, 15], ultrasonic cleaning [16, 17] , sonoluminscence [14, 15]

and medical ultrasound [18, 19, 20, 21, 22, 23]. Pioneering works of [1, 2, 3, 4, 5, 6, 7, 8] have

shown the nonlinear and chaotic properties of forced bubble oscillations which are followed by

recent extensive studies on the nonlinear behavior of bubbles in water [23, 24, 26, 27], coated

bubbles [24, 26] , bubbles in highly viscous media [28, 29, 30, 31, 32, 33]; and bubbles sonicated

with asymmetrical driving acoustic forces [34, 37]. Complexity of the bubble dynamics makes

it very difficult to effectively implement bubbles in applications; however, within this complexity

there exists an opportunity for beneficial bubble behavior in applications.

Period doubling (PD) is an example of a beneficial nonlinear behavior. In the bubble oscillator

PD results in generation of 1
2 order SHs and 3

2 order UHs. SH oscillations of bubbles are highly

desirable due to unique properties that makes them very useful in several applications. Ultrasound

contrast agents (coated bubbles) are clinically used on a daily basis to image microvascular blood

flow and quantify blood perfusion (e.g. in the liver, kidney and the myocardium) [38,39,40]. Due

the absence of SHs and UHs in tissue’s response to diagnostic ultrasound [20, 41, 42, 43]; SH and

UH emissions by bubbles allow the detection of blood flow with exceptional contrast enhancement

[20,41,42,43]. Furthermore, SH emissions have lower frequencies and are attenuated less by the

tissue.

In therapeutic ultrasound SH emissions are used for monitoring therapeutic applications of ultra-

sound and as an indicator for stable cavitation [44,45]. SHs and UHs are employed to measure the

1Submitted to Nonlinear dynamics in Nov 2019 as: Sojahrood, A.J., Earl, R., Li, Q., Porter, T.M., Kolios, M.C.
and Karshafian, R., 2019. Nonlinear dynamics of acoustic bubbles excited by their pressure dependent subharmonic
resonance frequency: oversaturation and enhancement of the subharmonic signal. arXiv preprint arXiv:1909.05071.
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efficacy of blood brain barrier opening [46, 47]. SHs are proposed for the non-invasive measure-

ment of the pressure inside vessels [48,49,50], to image the microvasculature [41,51,52] and can

be utilized in bubble sizing [53], among other applications.

Esche [54] was the first to characterize the SH bubble behavior through experimental observations

in 1952. Pioneering theoretical works of Eller [55] and Prosperetti [56,57,58,59] showed through

a weakly non-linear analysis of the Rayleigh-Plesset model [60] that the subharmonic behavior

of bubbles can only exist if the driving pressure amplitude exceeds a threshold pressure; it has

been predicted theoretically that the pressure threshold is minimum for sonications with twice the

linear resonance frequency (fr) of the bubbles. This frequency is referred to as the linear 1
2 order

SH resonance frequency (fsh=2fr). Recently, several experimental [61,62,63], numerical [64,65]

and theoretical [59,62] studies have investigated the pressure threshold of SH generation in bubble

oscillations. These works have shown that SH oscillations in bubbles have three stages: initiation,

rapid growth and saturation. Numerical Investigation of the SH threshold in uncoated and coated

bubbles in [64, 65]; have shown that for small bubbles (less than 500nm), increased damping

weakens the bubble response at fsh. This leads to a shift of the minimum SH pressure threshold

from fsh towards fr.

We have recently studied the bifurcation structure of the bubbles excited with their fr and fsh [66].

We have shown that for uncoated bubbles in water, non-destructive ( R
R0

<2 [67]) stable SH

oscillations are less likely to develop if the bubble is sonicated with fr. This is because when

f = fr, SHs oscillations only developed for R
R0

>2. When the bubble is sonicated with fsh, PD

occurs through a bow-tie shape bifurcation and at very gentle oscillation regimes ( R
R0

< 1.05). This

suggest that bubbles are more likely to sustain stable SHs at fsh [66]. The generation of PD in

bifurcation diagrams was concomitant with the initiation of SHs which rapidly grow with increased

pressure and get saturated. In other words, there is an upper limit for the achievable SHs and UHs

strength and acoustic pressure increase will not necessarily result in SHs increase. To the contrary,

a pressure increase can result in chaotic oscillations and/or bubble destruction which will lead to

subsequent decrease in SHs and UHs strength [50,66]. Despite several studies investigating the SH

threshold of the bubbles [56, 57, 58, 59, 61, 62, 63, 64, 65], conditions for the enhancement of the

upper limit of non-destructive SHs and UHs oscillations are under-investigated. Furthermore, the

bifurcation structure of the bubble oscillator in the regime of 1
2 order SHs when fr < f <u fsh is not
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studied in detail. Due to the importance of the SH and UH oscillations of bubbles, comprehensive

knowledge of the resonant period 2 (P2) oscillations and conditions to enhance non-destructive P2

oscillations can aid in understanding and optimizing bubble applications.

In this study, which follows upon our previous work [26] where pressure dependent resonance

(PDfr) was used to increase the non-destructive scattered pressure (Psc) by bubbles, we inves-

tigate the pressure dependence of SH resonance (Pdfsh ). Through numerically simulating the

resonance curves of bubbles at different pressures, linear (fsh) and pressure dependent (Pdfsh )

SH resonance frequencies of bubble diameters ranging from 400nm up to 8 microns are calculated

( 8 microns can be considered the upper limit of size used in biomedical applications [19]). The

bifurcation structure of the bubble oscillations as a function of pressure is studied when f = Pdfsh.

The corresponding SH and UH strength of the Psc are calculated and studied in conjunction with

the bifurcation diagrams. We show that Pdfsh decreases as pressure increases. Sonication of the

bubble with Pdfsh results in a saddle node bifurcation from a period 1 (P1) or a P2 oscillation

regime to a P2 oscillation of higher amplitude. This is concomitant by the oversaturation of the

SHs and UHs strength of up to u4 and u7 dB. Additionally for each bubble size there is an optimum

frequency between 1.5fr − 1.8frwhich results in the maximum SH scattering cross section.

5.3 Methods

Similar to [66], we have chosen the uncoated bubble as the bubble oscillator of interest. Effect

of coating is neglected as addition of the encapsulation introduces more complexity to the bubble

dynamics. In order to have a detailed understanding on the dynamics of the bubble its preferable

to separate the nonlinear effects of coating from that of the bubble itself. This makes it easier to un-

derstand the dynamics of the system and understand the basis of the bubble behavior. Furthermore,

in future studies where coating is involved, information of the system behavior in the absence of

coating will allow for a more straightforward understanding of the complex effects of coating on

the system behavior.
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Figure 5.1: SH resonance frequency of a bubble with R0 = 2µm at different pressure amplitudes.

5.3.1 The Bubble model

The radial oscillations of the bubbles are numerically simulated by solving the Keller-Miksis equa-

tion [68]:

ρ[(1− Ṙ

c
)RR̈+ 3

2Ṙ
2(1− Ṙ

3c)] = (1 + Ṙ

c
)(G) + R

c

d

dt
(G) (5.1)

where G = Pg − 4µLṘ
R − 2σ

R − P0 − PAsin(2πft). Pg is the gas pressure in the bubble and is given

by Pg = (P0 + 2σ
R ) ∗ ( RR0

)3γ

In this equation, R is radius at time t, R0 is the initial bubble radius, Ṙ is the wall velocity of the

bubble and R̈ is the wall acceleration ρ is the liquid density (998 kg
m3 ), c is the sound speed (1481

m/s), Pg is the gas pressure, σ is the surface tension (0.0725 N
m), µ is the liquid viscosity (0.001

Pa.s), PA = and f are the amplitude and frequency of the applied acoustic pressure. The values in

the parentheses are for water at 2930K. In this paper the gas inside the bubble is Air (γ=1.4) and

water is the host media.

5.3.2 Resonance curves

It is shown that above a pressure threshold SH oscillations are generated and the threshold is

minimum at fsh (f = 2fr). The radial oscillations of free uncoated air bubbles (R0=200nm-4 µm)
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were numerically simulated by solving equation 1, for fr < f < 2.2fr and for a range of pressure

amplitudes. The resonance curves were only calculated for pressure amplitude and frequency

combinations that result in non-destructive bubble oscillations R
R0

< 2 [26, 67]. The maximum

bubble radius was calculated in the last 20 cycles of a 200 cycle driving pulse to ensure that there

was no transient behavior (similar analysis to [66]) and then plotted as a function of frequency in

each graph. At each pressure,fsh and Pdfsh were selected from the graphs and used to generate

the bifurcation diagrams in the next step.

5.3.3 Bifurcation diagrams

Bifurcation diagrams are valuable tools to analyze the dynamics of nonlinear systems where the

qualitative and quantitative changes of the dynamics of the system can be investigated effectively

over a wide range of the control parameters. In this paper, we employ a more comprehensive

bifurcation analysis method introduced in [74,75].

5.3.3.1 Conventional bifurcation analysis

When dealing with systems responding to a driving force, to generate the points in the bifurcation

diagrams vs. the control parameter, one option is to sample the R(t) curves using a specific point

in each driving period. The approach can be summarized in:

P ≡ (R(Θ)){(R(t), Ṙ(t)) : Θ = n

f
} where n = 400, 401...440 (5.2)

Where P denotes the points in the bifurcation diagram, R and Ṙ are the time dependentradius

and wall velocity of the bubble at a given set of control parameters of (R0, P0, PA, c, k, µ, σ, f)

and Θ is given by n
f . Points on the bifurcation diagram are constructed by plotting the solution

of R(t) at time points that are multiples of the driving acoustic period. The results are plotted for

n = 400 − 440 to ensure a steady state solution has been reached for all bubbles. Due to smaller

viscous effects, bigger bubbles require longer cycles to reach steady state.

141



(a) (b)

(c) (d)

(e) (f)
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Figure 5.2: Bifurcation structure (blue: method of peaks, red: conventional method) of the micron-size bubbles as a function of pressure
when sonicated with fsh and Pdfsh. Left column is for R0 = 2µm and Right column is for R0 = 1µm (arrow shows the pressure
responsible for SN bifurcation)
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5.3.3.2 Method of peaks

As a more general method, bifurcation points can be constructed by setting one of the phase space

coordinates to zero:

Q ≡ max(R){(R, Ṙ) : Ṙ = 0} (5.3)

In this method, the steady state solution of the radial oscillations for each control parameter is

considered. The maxima of the radial peaks (Ṙ = 0) are identified (determined within 400-440

cycles of the stable oscillations) and are plotted versus the given control parameter in the bifurca-

tion diagrams. The bifurcation diagrams of the normalized bubble oscillations ( R
R0

) are calculated

using both methods a) and b). When the two results are plotted alongside each other, it is easier to

uncover more important details about the SuH and UH oscillations, as well as the SH and chaotic

oscillations.

5.3.4 Backscattered pressure

Oscillations of a bubble generates a scattered pressure (Psc) which can be calculated by [71]:

Psc = ρ
R

d
(RR̈+ 2Ṙ2) (5.4)

where d is the distance from the center of the bubble (and for simplicity is considered as 1m in

this paper) [26]. Equation 1 is solved using the 4th order Runge-Kutta technique using the ode45

function in Matlab (this function also has a 5th order estimation); the control parameters of interest

are R0, f and PA. The resulting radial bubble oscillations are visualized using resonance curves and

bifurcations diagrams. Bifurcation diagrams of the normalized bubble oscillations R
R0

are presented

as a function of the driving pressure in conjunction with the SH and UH amplitude of the Psc. The

scattered pressure (Psc) is calculated alongside the bifurcation structure only for pressures that

result in non-destructive oscillations ( R
R0

< 2) [26,67]. SH and UH amplitude of the Psc is plotted

alongside each bifurcation diagram to highlight the effect of nonlinearities on the changes in the

SH and UH strength.
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5.4 Results

5.4.1 Pressure dependent SH resonance frequency (PDSH)

First we explored the bubble expansion ratio ( R
R0

) as a function of peak excitation pressure for a

range of frequencies between 1.4fr- 2fr, where fr is the linear resonance frequency. It has been

hypothesized that a local maximum in the expansion ratio would be observed at 2fr, which would

represent the subharmonic response of the bubble. However, the maximum response shifted to

lower frequencies as the excitation pressure was increased (Fig. 5.1). Theoretical studies have

reported that the resonance frequency, which equates to fr only at very low excitation pressures

(i.e. < 50kPa) for a microbubble is inversely related with excitation pressure. We postulate this can

explain the shift in the subharmonic response to lower frequencies relative to 2fr. Figure 5.1 shows

the SH resonance frequency of a R0=2µm bubble sonicated with different pressure amplitudes.

The linear SH resonance frequency is generated at 60 kPa and f=2fr. As the pressure increases,

similar to the case of pressure dependent resonance [26], SH resonance frequency decreases. For

example the SH resonance frequency is u 2fr at 60 kPa and is 1.7fr at 200 kPa. We call this shifted

SH resonance frequency “pressure dependent SH resonance frequency (Pdfsh)”. In the next section,

we will show the mechanism of SH enhancement when bubbles of different sizes are sonicated with

their Pdfsh.

5.4.2 Bifurcation structure of the micron size bubbles (SH enhancement region)

Figures 5.2a and 5.2b show the bifurcation structure of the R0=2µm and R0=1µm bubbles as a

function of pressure when f=2fr. The radial oscillations of the bubbles undergo period doubling

at the lowest pressure threshold (60 kPa for R0=2 µm), which evolve in the form of a bowtie to

P2 oscillations of higher amplitude as the acoustic pressure increases. The oscillations undergo

further period doubling before the appearance of chaos. In this case full amplitude ( R
R0

=2) P2

non-destructive oscillations do not develop.

Figures 5.2c and 5.2d show the bifurcation structure of the R0=2 µm and R0=1 µm bubbles as

a function of pressure when f = 1.8fr. The radial oscillations undergo a saddle node bifurcation

from P1 to P2 oscillations of higher amplitude. The P2 oscillations have one maximum (red curve),
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above a second pressure threshold the second maximum appears (oscillations become P2 with

two maxima); the maxima are exactly on top of one of the branches of the conventional method

which implies the wall velocity is in phase with the driving signal once every two acoustic cycles.

Compared to the case of f = fsh, bubbles sonicated by their Pdfsh have a higher pressure threshold

for P2 oscillations; however, the amplitude of the P2 oscillations are higher. The oscillations

undergo further period doubling and chaos eventually occurs. Similar to f = 2fr, when f = 1.8fr

full amplitude ( R
R0

=2) P2 non-destructive oscillations did not develop.

Figures 5.2c and 5.2d show the bifurcation structure of the R0=2 µm and R0=1 µm size bubbles

as a function of pressure when f = 1.6fr. The radial oscillations undergo a saddle node bifurcation

from P2 (with two maxima) oscillations to P2 oscillations of higher amplitude (with one maxima).

Compared to the case of f=fsh, and f=1.8fr bubbles sonicated by their Pdfsh=1.6fr have a higher

pressure threshold (Pt) for P2 oscillations (e.g. for R0=2µm Ptu 230 kPa). The amplitude of

the P2 oscillations are higher than the previous cases at the occurrence of SN bifurcation (e.g.

for R0=2µm Pu 242 kPa the Rmax
R0

=1.94).b Similar to the previous cases, as pressure increases a

second maximum re-emerges in the blue curve with its value being the same as one of the branches

of the red curve. P2 oscillations then grow by pressure increase and P2 oscillations reach a large

amplitude that result in non-destructive oscillations (e.g. forR0=2µm R=1.99R0at PA =309 kPa).

Figures 5.2g and 5.2h show the bifurcation structure of the R0=2 µm and R0=1 µm bubbles as

a function of pressure when f = 1.5fr. PD initiation is at the highest pressure threshold (e.g.

for R0=2µm Pd occurs at 245 kPa). Above a second pressure threshold (e.g. for R0=2 µm at

PA =295 kPa) P2 oscillations (with two maxima ) undergo a SN bifurcation to P2 oscillations (with

two maxima) of higher amplitude ((RmaxR0
u 2.13). In this case occurrence of PD is concomitant

with bubble destruction as R
R0

> 2 for both bubbles.

5.4.3 Bifurcation structure of the nano-bubbles (SH enhancement region)

Figures 5.3a and 5.3b show the bifurcation structure of the bubbles with R=0 = 400nm & R0 =

200nm as a function of pressure when f = 2fr. The radial oscillations of the bubbles undergo

period doubling at the lowest pressure threshold (u 470 kPa for R0=400 nm). P2 oscillations grow

in amplitude as pressure increase and undergo further period doubling before the appearance of

chaos. When f = 2fr full amplitude (RmaxR0 =2) non-destructive P2 oscillations do not develop.
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Figure 5.3: Bifurcation structure (blue: method of peaks, red: conventional method) of the nano-size bubbles as a function of pressure
when sonicated with fsh and Pdfsh. Left column is for R0 = 0.4µm and Right column is for R0 = 0.2µm (arrow shows the pressure
responsible for SN bifurcation)
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Figures 5.3c and 5.3d show the bifurcation structure of R=0 = 400nm & R0 = 200nm bubbles

as a function of pressure when f = 1.8fr. P2 oscillations undergo a sharp increase in amplitude

(e.g. for R0=400 nm at PA u600 kPa). Compared to the case of f = fsh, bubbles sonicated by

their Pdfsh have a higher pressure threshold for P2 oscillations; however, the amplitude of the P2

oscillations are higher (similar for micron size bubbles in Fig 5.2c-d). The oscillations undergo

further period doubling and chaos eventually occurs. Similar to f = 2fr, when f = 1.8fr, bubble

doesn’t reach full amplitude (RmaxR0 =2) P2 non-destructive oscillations (similar to the case of micron

size bubbles). Unlike micron size bubbles, SN bifurcation is not observed; this is due to the stronger

effect of liquid viscosity on smaller bubbles.

Figures 5.3e and 5.3f show the bifurcation structure of the R0=400 nm and R0=200 nm size

bubbles as a function of pressure when f = 1.6fr. Radial oscillations undergo a saddle node

bifurcation from P2 oscillations to P2 oscillations of higher amplitude. Compared to the case of

f = fsh, and f = 1.8fr, nano-bubbles sonicated by their Pdfsh=1.6fr have a higher pressure

threshold (Pt) for P2 oscillations (e.g. for R0=400 nm Pt u 570kPa). In this case the amplitude of

the P2 oscillations are higher than the previous cases after the occurrence of SN bifurcation (e.g.

for R0=400nm PA u 710kPa and (RmaxR0 = 1.86). P2 oscillations then grow as pressure increases

and P2 oscillations reach large amplitude of non-destructive oscillations (e.g. for R0 = 400nm

Rmax = 1.98R0 at PA =976 kPa).

Figures 5.3g and 5.3h show the bifurcation structure of the R0 = 400nm and R0 = 200nm

size bubbles as a function of pressure when f = 1.5fr. PD initiation is at the highest pressure

threshold (e.g. for R0=400 nm Pd occurs at 597 kPa). Above a second pressure threshold (e.g. for

R0 = 400nm at PA = 815 kPa) P2 oscillations undergo a SN bifurcation to P2 oscillations of higher

amplitude ( R
R0

u 2.04). In this case occurrence of PD is concomitant with bubble destruction as

Rmax
R0 > 2 for both bubbles.

5.4.4 Enhancement of the SH saturation level

In order to investigate the consequence of the occurrence of SN on the strength of the SH and

UHs of the Psc, figure 5.4 displays the bifurcation structure of the bubble with R0=1 µm when

f = 2frand f = 1.6fr together with the SH and UH amplitude as well as the maximum value of

both the P 2
sc and |Ṙ|. When f = 2fr, PD (PA u135 kPa) is concomitant with SH and UH initiation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Period doubling and the corresponding bifurcation structure: a) bifurcation structure of the bubble when f = 2fr ,b)
bifurcation structure of the bubble when f = 1.6fr and c) corresponding SH component of the Psc, d) corresponding UH component
of the Psc, e) Maximum non-destructive P 2

sc (Rmax
R0

< 2) and f) maximum absolute value of the wall velocity
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Figure 5.5: Non-destructive (Rmax
R0

< 2) SH component of the Psc for fsh and Pdfsh of: a)R0 = 2µm, b)R0 = 1µm, c)R0 = 0.4µm
and d) R0 = 0.2µm.
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Consistent with experimental observations [61,62,63], SH and UH component of Psc grow quickly

with pressure increase and are saturated. The amplitude of SHs and UHs decrease simultaneous

with P4 oscillations (PA u 568 kPa) and chaos (PA u 651 kPa). Chaos result in increase in P 2
sc and

wall velocity; however, SHs and UHs amplitude of the Psc decrease.

When f = 1.6fr, initiation of SH and UH oscillations are concomitant with P2 generation in the

bifurcation diagram (PA u 310 kPa). When the SN bifurcation occur(PA u 342kPa), SH and UH

amplitude of Psc undergo a significant increase (4 dB and 10 dB larger than the case of sonication

with f = 2fr). This results in oversaturation of the SH and UH amplitude. When f = 1.6fr,

the occurrence of a SN in the bifurcation diagram is concomitant with a significant increase in

the maximum amplitude of P 2
sc (P 2

sc becomes 88 times larger than its value before the occurrence

of SN) . At PA =340 kPa (the pressure at the SN bifurcation) P 2
sc and maximum wall velocity

amplitude are respectively 16.5 Pa2 and 23 m/s larger than the case of sonication with f = 2fr (by

a factor of u 80 and 4 times respectively). Moreover, when f = 1.6fr, the maximum achievable

non-destructive ( R
R0

< 2) SH and UH amplitude are respectively 3.5 and 7 dB larger than the case

of f = 2fr. Thus, application of the Pdfsh (in this case f = 1.6fr) resulted in the oversaturation of

the SH and UH amplitude. Maximum non-destructive P2 P 2
sc and P2 non-destructive wall velocity

amplitude are respectively 27 and 26.5 m/s higher than f = 2fr.

Figure 5.5a-d illustrates the SH amplitude of the Psc as a function of acoustic pressure at different

frequencies (f = 2fr, 1.8fr, 1.7fr, 1.6frand 1.5fr) for R0=2 µm (5.5a), R0=1 µm (5.5b), R0=400

nm (5.5c) and R0=200 nm (5.5d). The SH amplitude of the Psc are only shown for non-destructive

oscillation regimes where R
R0

< 2. When bubbles are sonicated with f=2fr, SHs are initiated at the

lowest pressure, and the SHs amplitude grows with increasing pressure and then saturate. At higher

pressures where P4 oscillations or chaos occurs, the SH amplitude decreases rapidly. When bubbles

are sonicated with their Pdfsh, SHs are initiated at higher acoustic pressures. However, SHs grow

rapidly after initiation (concomitant with SN bifurcation) and the SH amplitude becomes larger

than the case of sonication with f = 2fr. For the frequencies shown in Fig. 5.5, the maximum

SH amplitude occurs when f = 1.6fr (red line). For all the bubble sizes studied here, when

f=1.5fr(blue line in Fig. 5.5), the SN bifurcation is concomitant with bubble destruction ( R
R0

> 2),

therefore sonication with f = 1.5fr does not result in any SH enhancement over the conventional

method of sonication with f = 2fr. For frequencies less than 2fr the bubble undergoes destruction
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Figure 5.6: Maximum value of Non-destructive P 2
sc for fsh and Pdfsh of: a) R0 = 2µm, b) R0 = 1µm, c) R0 = 0.4µm and d)

R0 = 0.2µm.
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Figure 5.7: Maximum value of Non-destructive absolute wall velocity for fsh and Pdfsh of: a) R0 = 2µm, b) R0 = 1µm, c)
R0 = 0.4µm and d) R0 = 0.2µm.

at a lower acoustic pressures.

Figure 5.6 displays the maximum non-destructive ( R
R0

< 2) P 2
sc at different frequencies (f=2fr,

1.8fr, 1.6fr and 1.5fr) for R0=2 µm (6a), R0=1 µm (6b), R0=400 nm (6c) and R0=200 nm (6d).

When f=2fr, P 2
sc is very small for pressures below PD; concomitant with generation of PD, P 2

sc

undergoes a rapid increase and then increases linearly with acoustic pressure. When P4 oscillations

occur, P 2
sc decreases for micron size bubbles (the growth rate decreases for nano-size bubbles); this

is similar to the decrease of Psc concomitant with P2 oscillations when f=fr [26]. Further increase

in the acoustic pressure results in chaotic oscillations which lead to significant enhancement of the

P 2
sc; however, this enhancement in amplitude is associated with a rapid decrease in SH and UH

amplitude (Fig 4 and 5).

When f = Pdfsh (f = 1.8fr, 1.7fr and 1.6fr), P 2
sc is smaller than its counter part when f = 2fr.

Above a pressure threshold, the SN bifurcation results in the generation of higher amplitude P2

oscillations. The SN bifurcation is coincident with a rapid increase in P 2
sc. P

2
sc becomes significantly
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larger than the case of sonication with f = 2fr (e.g. for the bubble with R0=2 µm and f =

1.6fr, when SN occurs at u 242 kPa, P 2
sc becomes 8.4 times larger than its counterpart when

f = 2fr). After the SN, P 2
sc increase monotonically with pressure increase until the bubble is

destroyed (RmaxR0
> 2).

Figure 5.7 displays the maximum non-destructive wall velocity at different frequencies (f = 2fr,

1.8fr, 1.6fr and 1.5fr) for R0=2 µm (6a), R0=1 µm (6b), R0=400 nm (6c) and R0=200 nm (6d).

Maximum wall velocity amplitude increases monotonically with pressure; however, as soon as PD

occurs, the wall velocity undergoes a rapid increase and continues to increase monotonically after.

The occurrence of P4 oscillations results in a decrease in the maximum wall velocities for micron

size bubbles (or decrease in the growth rate of wall velocity for nano-size bubbles) which is similar

to the decrease of wall velocity concomitant with the occurrence of P2 when f = fr [26]. At higher

pressures, the generation of chaotic oscillations leads to a rapid increase in wall velocity; however,

as seen before this is simultaneous with a decrease in SH and UH amplitudes. For the bubble with

R0=0.2 µm the occurrence of SN bifurcation does not have a pronounced effect on the maximum

wall velocity amplitude which is due to the dominant effect of liquid viscosity on smaller bubbles.

5.4.5 Bifurcation structure of the micro-bubbles (for fr < f < 1.5fr)

In the previous sections we saw that when f u 1.5fr, SN bifurcation results in bubble destruction

( R
R0

> 2) and sonication with 1.5fr < f < 2fr results in an enhancement of the SH amplitude.

In this section, we closely examine the bifurcation structure of the micro-bubbles when sonicated

with fr < f < 1.5fr. Figure 5.8 shows the bifurcation structure of the micron-size bubbles with

R0=2µm and R0=1µm as a function of pressure. The frequencies are 1.4fr, 1.2fr and 1.1fr.

Unlike the case of sonication with 1.5fr < f < 2fr; within the parameter ranges studies here

(and for R
R0

< 2), there is no SN bifurcation taking place in the diagrams. The evolution of the

dynamics of the system is through a simple PD to P2 oscillations followed by a cascade of PDs to

chaos. In case of f = 1.2frand 1.1fr full amplitude (RmaxR0 =2) non-destructive P2 oscillations are

developed; however, unlike 1.5fr < f < 2fr, PD is simultaneous with a decrease in wall velocity

and scattered pressure. We have previously shown that when bubble is sonicated with f = fr,

the occurrence of PD is concomitant with a decrease in the scattered pressure and maximum wall

velocity [26]. The red curve in figure 5.8 (constructed by conventional method) never meets the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Bifurcation structure (blue: method of peaks, red: conventional method) of the micron-size bubbles as a function of pressure
when sonicated with f = 1.4fr, 1.2fr&1.1fr . Left column is for R0 = 2µm and Right column is for R0 = 1µm (arrow shows the
pressure responsible for SN bifurcation)
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blue curve (constructed by the maxima method) suggesting that the wall velocity of the bubble

never gets in phase with the acoustic driving force.

5.4.6 Bifurcation structure of the nano-bubbles (for fr < f < 1.5fr)

Figure 5.9 shows the bifurcation structure of the nano-size bubbles as a function of pressure.

Bubbles have initial radii of R0= 400nm (left column) and R0=200nm (right column). When

f = 1.4fr, P1 bubble oscillations grow monotonically with increasing pressure and above a pressure

threshold bubbles undergo a PD to P2 oscillations. P2 oscillations grow in amplitude and above a

second pressure threshold; there is a SN bifurcation to P2 oscillations of higher amplitude. The SN

bifurcation results in P2 oscillations that are resonant (one of the maxima in blue curve is on top of

one of the branches of the red curve), however, similar to the case of the f = 1.5fr, the SN results

in bubble destruction (RmaxR0 > 2). When f = 1.2fr and f = 1.1fr, SN bifurcation does not take

place and the bubble oscillations undergo a PD bifurcation to P2 oscillations followed by a cascade

of PDs to chaos.

5.4.7 Maximum achievable P 2
sc, wall velocity, SH and UH as a function of frequency

In many applications, it is of interest to find exposure parameters that maximize the scattered

pressure or enhances a specific frequency component in the scattered pressure. Figure 5.10a-b

show the normalized value of maximum non-destructive P 2
sc ( R

R0
< 2) and wall velocity in the

regime of P2 oscillations as a function of frequency. P 2
sc and wall velocity reach their maximum at

f = 1.6fr for bubbles with R0=0.4, 1 and 2µm and it is maximum for f = 1.65fr when R0=0.2

µm. For all bubbles there is a universal minimum for P 2
sc and wall velocity when f = 1.5− 1.55fr.

We show that conventional practice of sonication with SH resonance frequency (fsh=2fr) does not

lead to the generation of the maximum P2 scattered pressure or wall velocity. Instead there is a

frequency range (1.55 < f < 1.7) that results in the maximum value of the two parameters. Figure

5.10c-d presents the maximum non-destructive ( R
R0

< 2) SH and UH amplitude as a function of

frequency. For all bubble sizes examined, the conventional sonication with the fsh(2fr) does not

result in the strongest SH or UH amplitude. The bubble with R0=2µm reaches the strongest SH

and UH amplitude when f = 1.6fr; the bubbles with R0=1µm and R0=0.4µm reach the maximum

at f = 1.55fr. For bubbles with R0=2µm, 1µm and 0.4µm there exist a universal minimum for SH
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(c) (d)

(e) (f)

Figure 5.9: Bifurcation structure (blue: method of peaks, red: conventional method) of the micron-size bubbles as a function of pressure
when sonicated with f = 1.4fr, 1.2fr&1.1fr . Left column is for R0 = 0.4µm and Right column is for R0 = 0.2µm (arrow shows the
pressure responsible for SN bifurcation)
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Figure 5.10: a) Normalized maximum non-destructive P2 P 2
sc, b) Normalized maximum non-destructive P2 wall velocity, c) Maximum

non-destructive SH amplitude, and d) Normalized maximum UH amplitude.
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and UH at 1.5fr; this is because the SN bifurcation leads to bubble destruction at this frequency,

thus non-destructive full amplitude P2 oscillations are not developed in this case. For R0=200 nm,

maximum SH and UH amplitudes occurs respectively at f = 1.6fr and 1.4fr.

5.5 Discussion and summary

SH oscillation of bubbles are one of the most important nonlinear signatures of bubbles which

are used in several medical and industrial applications [18, 19, 20, 21, 22, 23, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. Despite the importance of SH oscillations, most studies have

only focused on investigating the minimum pressure threshold for SH oscillations [56, 57, 58, 59,

61, 62, 63, 64, 65]. Conditions to maximize the SH power remain uncertain. When the bubble is

sonicated with twice its linear resonance frequency (fr), SHs are developed at the lowest pressure

threshold [54, 55, 56, 57, 58, 59]. SHs grow quickly above this pressure threshold, however, they

are saturated and any further increase in incident pressure may even lead to weakening of the

SHs due to the occurrence of chaos or bubble destruction. Knowledge of the conditions and

exposure parameters that enhance the saturation level would allow to select exposure parameters

that increase the contrast to tissue ratio (CTR) and signal to noise ratio (SNR) in applications. We

have previously studied the two main routes of period doubling (PD) in the bubble oscillator and

showed that due to the very high oscillation amplitude ( R
R0

> 2 [67] and a for detailed review

please see the discussion in [26]), non-destructive SH oscillations are less likely to be developed

when bubbles are sonicated with fr. However, sonication with fsh=2fr, results in the generation of

SHs at very gentle oscillation regimes which increases the chance of the bubble survival during SH

regime of oscillations. We have also previously shown that the scattered signal from bubbles can

be enhanced if the bubbles are sonicated with its pressure dependent resonance frequency [26].

In this work the bifurcation structure of bubbles sonicated by its pressure dependent resonance

frequencies (Pdfsh) was investigated in detail.

SH and UH amplitudes were examined between two pressure limits: The threshold for the onset of

SH oscillations and the critical pressure at which the nonlinear response becomes chaotic (or results

in bubble destruction). Knowledge of these limits is essential for the optimization of applications

related to SHs as the SH amplitude drops rapidly when chaos occurs. The findings of this study can
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be summarized as follows:

1- When bubbles are sonicated with fsh=2fr, bubble oscillations undergo period doubling (PD)

at the lowest pressure threshold. Period 2 (P2) oscillations result in the generation of SHs and

UHs which then grow quickly with increasing pressure reaching a saturation value. Thus, there is

an upper limit of achievable SH and UH strength under conventional exposure parameters for SH

imaging.

2- When sonicated with fsh or Pdfsh, the occurrence of P4 or chaotic oscillations lead to a drop in

the SH and UH amplitude. Thus, in a clinical setting CTR decreases for these exposure conditions.

Furthermore since P4 and chaos occur at higher acoustic pressures, higher backscatter from tissue

will result in a decrease of bubble contrast enhancement compared to the tissue signal. Thus, the

limit for the occurrence of P4 or chaos should be determined and avoided in practical situations

where the goal is higher CTR and SNR.

3- Pressure increase leads to a decrease in SH resonance frequency. This is similar to the decrease

in resonance frequency with pressure [26].

4- When the bubble is sonicated with Pdfsh, PD initiation is at higher pressures compared to

f = fsh. Bubble oscillations undergo a SN bifurcation from P1 to P2 or from a P2 to P2 oscillations

of higher amplitude. This is concomitant with a rapid growth of signal and oversaturation of the

SH level.

5- When f = Pdfsh, the SN bifurcation results in a sudden increase in the scattered pressure and

wall velocity; this effect is more pronounced in bubbles > 800nm as the higher viscous forces on

smaller bubbles increases the pressure required for the onset of nonlinear oscillations.

6- In this study for bubble sizes > 800nm, the maximum non-destructive SH, UH, backscatter pres-

sure and wall velocity are generated when bubbles are sonicated with fu1.55-1.6fr. Conversely,

there is a universal minimum for all these values at fu1.4-1.5fr.

7- When sonicated with 1.5fr < f < 2fr, the occurrence of PD is concomitant with an increase in

the wall velocity and scattered pressure. This is in contrast to sonication with fr < f < 1.5fr, where

PD is simultaneous with a drop in scattered pressure and wall velocity. We have also previously

shown that when bubble is sonicated with its pressure dependent resonance (PDfr) and f = fr,

the maximum wall velocity drops when PD occurs [26]. This can be one of the reasons for the loss

of echogenecity observed concomittant with Pd [72].
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8- When sonicated with 1.5fr < f < 2fr, the occurrence of P4 or chaotic oscillations lead to an

increase in maximum scattered pressure and wall velocity; however, this increase is simultaneous

with a drop in SH and UH strength; thus it is not an ideal situation for SH imaging applications.

9- For bubble sizes > 400nm when sonicated with fr < f < 1.5fr; oscillations undergo a simple PD

from P1 to P2 oscillations which is followed by a PD cascade to chaos.

We have shown that exposure parameters (f = 2fr) that are used in conventional SH imaging

do not result in the maximum SH or UH strength. We conclude that sonication with f u 1.6fr

generates the highest achievable non-destructive ( R
R0

< 2) SH and UH amplitude (e.g. depending

on pressure, for the bubble with R0=1µm the enhancement in SH and UH were respectively 3.5-4

dB and 7-10 dB).

In this paper, we have derived the exposure parameters that maximize the enhancement of the SHs,

UHs, scattered pressure and wall velocities. The fundamental findings of this study can be used to

optimize the outcome of ultrasound applications based on SH oscillations. Furthermore, in drug

delivery applications, sonication parameters that lead to non-destructive oscillations with elevated

wall velocities can be used to increase the long lasting shear stress on the nearby cells.

SN bifurcation is concomitant with a fast increase in the scattered pressure. For example when

the bubble with R0=1µm was sonicated with f = 1.6fr scattered pressure underwent a 9.4 times

increase as soon as SN occurred (Fig. 5.6b). This has several advantages for amplitude modulation

imaging used in medical ultrasound [73, 74, 75]. Amplitude modulation (AM) is a method that

takes advantage of the nonlinear response of the bubble to increase in acoustic pressure; in this

method, two pulses are sent to the target with one having twice the amplitude of the other. The

signals are scaled and subtracted upon return. Because of the linear response of tissue to pressure

increase the signal from the tissue cancels and the residual signal from the bubble enhances the

CTR. When bubble is sonicated with Pdfsh, sonication with pressures below and above the pressure

threshold for the SN can significantly enhance the residual signal; furthermore, because of the

higher frequencies of PDsfh compared to conventional AM sonication at fr, higher resolution is

expected.

In this paper, we have analyzed the nonlinear dynamics of the free bubble in the absence of coating

(shell). Coated bubbles and most importantly lipid shell bubbles [76] are used in medical appli-

cations of ultrasound from SH imaging [40] to blood brain barrier opening [46] and thrombolysis
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[77]. The nonlinear behavior of lipid coating (e.g. buckling and rupture) makes the dynamics of the

bubble system more complex. In other words, the nonlinear shell dynamics are interwoven with the

inherent nonlinear behavior of the bubble. This makes it very difficult to understand the behavior of

the system and decouple effects due to the shell compared to nonlinear effects inherent in the forced

bubble oscillator. It has been shown experimentally and numerically [40,52,78,79,80,81,82,83,84]

that addition of the lipid shell reduces the pressure threshold for nonlinear oscillations including

SH oscillations [59, 64, 65]. Followed by experimental observations of the pressure threshold of

SH oscillations [78] and numerical results [64, 65], Prosperetti [59] theoretically investigated the

SH threshold of coated bubbles. He showed that consistent with experimental observations [78],

the SH threshold can be considerably lowered with respect to that of an uncoated free bubble.

This happens when the mechanical response of the coating varies rapidly in the neighbourhood of

certain specific values of the bubble radius (e.g. changes in shell parameters due to buckling of the

shell [76]).

In this paper, we have neglected the shell effects. To better understand the dynamics of the more

complex coated bubble, we first need to establish the nonlinear response of the less complex

uncoated system. In this regard, understanding the nonlinear dynamics of the bubble system in the

absence of the shell is the first step in developing a comprehensive framework for the understanding

of the complex nonlinear behavior of bubbles. Future studies will include the effect of coating and

since we know the behavior of the free bubble system, it is much easier to understand the shell

effects on the bubble system.

We have neglected the effects of thermal damping [85, 86,87, 88]. Thermal damping especially in

bigger bubbles can potentially have a strong effect on the dynamics of the system and changes the

resonant behavior of the system. At higher frequencies (above resonance), the effect of thermal

damping is weaker and neglecting the thermal effects in this paper may not change the general

conclusions presented here. A more complete understanding of the thermal damping, however,

is necessary for accurate prediction of the bubble behavior. Another important factor that should

be considered is the interaction between bubbles [89, 90, 91, 92, 93]. In applications bubbles exist

in poly-disperse clusters and their oscillations affect each other. We have recently shown that SH

behavior of a polydisperse interacting cluster of bubbles is dictated by the SH response of the bigger

bubbles in the cluster. Conclusions of this study can be useful in optimizing the SH strength of a
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poly-disperse cluster by optimizing the exposure parameters required to enhance the SH response

of the clusters bigger bubbles.
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Chapter 6

Critical corrections to formulations of nonlinear

power dissipation of ultrasonically excited

bubbles

6.1 Abstract

Current models for calculating nonlinear power dissipation during the oscillations of acoustically

excited bubbles generate non-physical values for the radiation damping (Rd) term for some fre-

quency and pressure regions that include near resonance oscillations. Moreover, ratio of the

dissipated powers significantly deviate from the values that are calculated by the linear model

at low amplitude oscillations (acoustic excitation pressure of PA = 1kPa and expansion ratio of

<u 1.01) . In high amplitude oscillation regimes (Pa ≥ 20kPa), the dissipated power due to Rd

deviates largely from the dissipated power as calculated by the widely accepted approach that uses

the scattered power by the bubbles. We provide critical corrections to the present models. The

validity of the results were examined in regimes of low amplitude oscillations and high amplitude

oscillations. In the low amplitude regime, the ratio of the dissipated powers as calculated by

the current and proposed model were compared with the linear model predictions. At higher

amplitude oscillations, the dissipated power by radiation loss as calculated by the current and the

proposed model were compared with the dissipated power calculated using the scattered energy

by the bubbles. We show that non-physical values are absent in the proposed model. Moreover,

predictions of the proposed approach are identical to the predictions of the linear model and the

dissipated power estimated using the scattered pressure by the bubble. We show that damping due
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to thermal effects, liquid viscosity and radiation heavily depend on the excitation pressure and that

the linear model estimations are not valid even at pressures as low as 20 kPa1.

6.2 Introduction

Bubbles attenuate ultrasound through radiation damping (Rd), thermal damping (Td) and damp-

ing due to liquid viscosity (Lvisd) [1,2,3,4,5,6]. Radiation damping is due to the energy re-radiated

away from the bubble as acoustic waves due to bubble oscillations ( [4]- p. 175). Td occurs due to

the temperature loss from thermal conduction between the gas and the surrounding liquid ( [4]-

p. 175). Lvisd occurs due to the work that the bubble wall does against the viscous forces of the

liquid.

Numerous studies have investigated the mechanisms of damping in bubbly media; using linear ap-

proximations (limited to very small bubble oscillation amplitudes) and neglecting the dependence

of the dissipated energy on the local pressure [4,5,6,7,8]. Semi-linear approaches have also been

developed that only considered the pressure dependence of the radiation damping while using

linear terms for the other damping factors (thermal and viscous damping) [9].

In many bubble dynamic studies, thermal effects are either neglected or simplified using models

that are derived based on linear approximations [4, 5, 6, 7, 8, 9]. Zhang and Li [10] investigated

the thermal effects on the nonlinear radial oscillations of bubbles. Although they used the linear

estimations for thermal effects, their study showed that the nonlinear bubble behavior was signifi-

cantly influenced by thermal effects.

In their linear form, Rd, Td, and Lvisd are functions of bubble initial radii and acoustic driving

frequency. Linear thermal effects have been studied in detail in [11]. Prosperetti [12], numerically

investigated the linear damping constants of bubbles with 10−4 − 0.1cm over a frequency range

of 10Hz − 108Hz. He showed that damping due to viscosity is higher in smaller bubbles while

radiation damping and thermal damping show a frequency dependent behavior. For a given bubble

size, radiation damping is small at lower frequencies and increases with frequency. Thermal

damping is stronger at lower frequencies and deceases with frequency. In terms of the Péclet

number (defined as Peb = ωR2
0

DT
b

where ω is the angular frequency of the acoustic field, R0 is the

1Published as: Sojahrood, A.J., Haghi, H., Karshafian, R. and Kolios, M.C., 2020. Critical corrections to models of
nonlinear power dissipation of ultrasonically excited bubbles. Ultrasonics Sonochemistry, 66, pp.105089-105089.
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bubble initial radius and DT
b is the thermal diffusivity inside the bubble), viscous damping is the

typical dominating damping mechanism for small Péclet numbers, thermal damping is stronger for

medium Péclet numbers and radiation damping is larger for larger Péclet numbers [13].

The damping terms Td, Lvisd and Rd, however, are nonlinear and pressure dependent [1,2]. These

parameters are functions of the bubble radial oscillations which are shown to exhibit nonlinear

behavior including subharmonic, superharmonic and chaotic oscillations [14,15,16,17,18,19,20,

21]. Moreover, bubble oscillations are nonlinear in the majority of applications (e.g. [22,23,24,25,

26,27,28,29,30,31]). In these applications, the higher acoustic pressures result in nonlinear large

amplitude bubble oscillations; thus, linear approximations fail to accurately model the medium

dissipation and therefore attenuation. A more complete estimation of the wave dissipation in

bubbly media requires an accurate estimation of the power dissipated by the nonlinear oscillations

of the bubbles that includes pressure dependent effects of the dissipation mechanisms [1, 2, 3, 32,

33].

Louisnard [1], starting with mass and momentum conservation equations for a bubbly liquid and

using Rayleigh-Plesset equation [34] has derived the nonlinear energy terms for Td and Lvisd. He

showed that damping from nonlinear oscillations of the bubbles can be several orders of magnitude

higher than the damping estimated by linear models. Jamshidi and Brenner [2] used the approach

introduced by Louisnard [1] in conjunction with the Keller-Miksis equation [35] accounting for

the compressibility of the medium to the first order of acoustical Mach number. Incorporation

of the changes in the compressibility of the medium allowed for the derivation of Rd and small

modifications in Td and Lvisd. It was shown [2, 3] that radiation damping increases significantly

above Blake threshold and becomes one of the major contributors to total damping and cannot be

neglected. However, as it will be shown here, the terms that are derived in [2], have errors and

need to be corrected. Rd at its current form in [2] leads to negative values near resonance and in

some frequency and pressure ranges. Additionally, the ratio of dissipated powers (e.g. <Td>
<Rd> and

<Lvisd>
<Rd> where <> stands for time-averaged) at linear regimes (Pa ≤ 1kPa) significantly deviate

from the linear power ratios. Predictions of < Rd > significantly deviate from the results of the

acoustic power radiated by the bubbles (< Sd >). A damping factor should always have positive

values; it can not be negative. Moreover, in linear oscillation regimes, the ratio of dissipated powers

must be in agreement with linear predictions. Finally, < Rd > and < Sd > should have the same
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values. This is because < Rd > and < Sd > both describe the same phenomenon which is damping

due to the acoustic energy radiated by the bubbles.

In this work, the nonlinear terms for Td, Rd and Lvisd were re-arranged and new expressions were

proposed. The proposed terms do not return negative values for damping terms. The solutions

using the new approach were verified in the linear regime. In the pressure dependent regime,

using the pressure radiated by pulsating bubbles [4,36,37,38], the acoustic power radiated by the

bubbles were calculated and the accuracy of the new model were verified.

6.3 Methods

6.3.1 Mass and momentum equations for bubbly media

van Wijngaardan [39] and Caflisch et al. [40] presented the mass and momentum conservation

equations for a bubbly liquid as:
1
ρc2

∂P

∂t
+∇.v = ∂β

∂t
(6.1)

and

ρ
∂v

∂t
= −∇P (6.2)

where c is the sound speed, ρ is the density of the medium, v(r, t) is the velocity field, P (r, t) is

the acoustic pressure, β = 4
3NπR(t)3 is the void fraction where N is number of bubbles per unit

volume, and R(t) is the radius of the bubble at time t. Eqs. 1 and 2, can be re-written into an

equation of energy conservation, by multiplying (1) by P and (2) by v:

∂

∂t

(
1
2
P 2

ρc2 + 1
2ρv

2
)

= NP
∂V

∂t
(6.3)

Where V is the volume occupied by gas.
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Thermal parameters of the Air at 1 atm [42]

L ( W
m0C ) Cp

kJ
kg0C Cv

kJ
kg0C ρg

kg
m3

0.01165+C*T 1.0049 0.7187 1.025

Table 6.1: Thermal properties used in simulations. (C=5.528 ∗ 1025 W
mK2 )

6.3.2 The Bubble model

The dynamics of the bubble model including the compressibility effects to the first order of Mach

number can be modelled using Keller-Miksis equation [35]:

ρ[
(

1− Ṙ

c

)
RR̈+ 3

2Ṙ
2
(

1− Ṙ

3c

)
] =

(
1 + Ṙ

c

)
G+ R

c

dG

dt
(6.4)

where G = Pg − 4µLṘ
R − 2σ

R − P0 − PAsin(2πft).

In this equation, R is radius at time t, R0 is the initial bubble radius, Ṙ is the wall velocity of

the bubble, R̈ is the wall acceleration, ρ is the liquid density (998 kg
m3 ), c is the sound speed of

the medium (1481 m/s), Pg is the gas pressure, σ is the surface tension (0.0725 N
m), µ is the

liquid viscosity (0.001 Pa.s), and PA and f are the amplitude and frequency of the applied acoustic

pressure. The values in the parentheses are for pure water at 293 K. In this paper the gas inside the

bubble is air and water is the host media.

Pg is given by Eq. 5 [41]:

Pg = NgKT
4
3πR(t)3 −NB

(6.5)

where Ng is the total number of the gas molecules, K is the Boltzman constant and B is the

molecular co-volume. The average temperature inside the gas can be calculated using Eq. 6:

Ṫ = 4πR(t)2

Cv
(L(T0 − T )

Lth
− ṘPg) (6.6)

Where Cv is the specific heat at constant volume, T0=300K is the initial gas temperature, Lth is

the thickness of the thermal boundary layer. Lth is given by Lth = min(
√

DR(t)
| ˙R(t)|

, R(t)
π ) where D is

the thermal diffusivity of the gas. D can be calculated using D = L
Cpρg

where L is the gas thermal

conductivity, Cp is specific heat at constant pressure and ρg is the gas density.

To calculate the radial oscillations of the bubble Eqs. 4, 5 and 6 are coupled and solved using
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the ode45 solver of MATLAB with relative and absolute tolerances of 1e−12 and 1e−13 respectively.

The time steps of each solution was 1e−4
f where f is the sonication frequency in Hz. The initial

conditions of R(t = 0s) = R0, Ṙ(t = 0s) = R0, Pg(t = 0s) = P0 + 2σ
R0

where P0 = 101kPa is the

atmospheric pressure and T (t = 0s) = 300K.

6.3.3 Derivation of the damping terms

Multiplying both sides of Eq.4 by N∂V
∂t and summation with equation 3 yields:

ρN

(
RR̈+ 3

2Ṙ
2
)
∂V

∂t
− ρN Ṙ

c

(
RR̈+ 1

2Ṙ
2
)
∂V

∂t
+ ∂

∂t

(
1
2
P 2

ρc2 + 1
2ρv

2
)

+∇.(Pv)

= N

(
Pg + Ṙ

c
Pg + R

c

dPg
dt

)
∂V

∂t
−N

4µLṘ
R

+ Ṙ

c

4µLṘ
R

+ R

c

d(4µLṘ
R )
dt

 ∂V

∂t

−N
(

2σ
R

+ Ṙ

c

2σ
R

+ R

c

d(2σ
R )
dt

)
∂V

∂t
−N

(
Ṙ

c
P + R

c

dP

dt

)
∂V

∂t
(6.7)

The kinetic energy of the liquid around bubble can be written as [2]:

Kl = 2πρR3Ṙ2 (6.8)

using Eqs. 7 and 8 and re-arranging terms we will have:

∂

∂t

(
1
2
P 2

ρc2 + 1
2ρv

2 +NKl + 4NπR2σ

)
+∇.(Pv) = N (Pg)

∂V

∂t
−N

(
4µLṘ
R

)
−

N

Ṙ
c
P + R

c

dP

dt
− Ṙ

c
Pg −

R

c

dPg
dt

+ Ṙ

c

4µLṘ
c

+ R

c

d(4µLṘ
R )
dt

 ∂V

∂t
− Ṙ

c

∂Kl

∂t

 (6.9)

Eq.9 can be written as:

∂

∂t

(
1
2
P 2

ρc2 + 1
2ρv

2 +NKl + 4NπR2σ

)
+∇.(Pv) = −N (Td+ Lvisd+Rd) (6.10)
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where Td, Lvisd and Rd are time dependent thermal, liquid and radiation damping respectively.

1
2
P 2

ρc2 is the elastic potential energy that is stored in the liquid and 1
2ρv

2 is the kinetic energy per

unit volume of the liquid 2 For N=1, Jamshidi and Brenner presented the damping terms in Eq. 9

as: 

Td = (−Pg −
Ṙ

c
Pg −

R

c
Ṗg)

∂V

∂t

Lvisd =

4µLṘ
R

+ Ṙ

c

4µLṘ
c

+ R

c

d(4µLṘ
R )
dt

 ∂V

∂t

Rd =
(
Ṙ

c
P + R

c

dP

dt
+
)
∂V

∂t
− Ṙ

c

∂Kl

∂t

(6.11)

Integrating Eq.11 over one acoustic period T results in:

1
T

∫ T

0

∂

∂t

(
1
2
P 2

ρc2 + 1
2ρv

2 +Kl + 4πR2σ

)
+∇. < Pv >= − < (Td+ Lvisd+Rd) > (6.12)

The first term on the left hand side of Eq. 12 cancels over time T (T = n
f where n=1,2,...) [1, 2].

Assuming periodic oscillations of the bubbles and averaging over T, the first two terms of the LHS

of Eq. 10 cancel due to their periodic nature [1,2].

However, the last two terms of the LHS of Eq. 10 do not necessarily cancel out depending on

the oscillations [2]. NKl is the kinetic energy per unit volume of the liquid due to its radial

movement around the bubbles and 4πNσR2 is the interfacial potential energy per unit volume.

Taking integration over time T = n
f :

1
T

∫ T
0

∂
∂t (NKl) dt = 2πN

T ρ
(
R(T )3Ṙ(T )2 −R(0)3Ṙ(0)2

)
1
T

∫ T
0

∂
∂t

(
4πNσR2) dt = 4πN

T σ
(
R(T )2 −R(0)2)

In the case of stable bubble behavior, the bubble oscillates nonlinearly around R0. At the end of

each cycle, the radius is approximately equal to R0 and the next cycle starts similar to the previous

one. Thus, we can assumeR(T ) u R0 and Ṙ(0) = 0m/s& Ṙ(T ) u 0m/s [2] and thus, the integrals

become zero or very small in magnitude [2]. If the bubble transiently collapses, the bubble will

collapse before reaching the end of a cycle. After a violent collapse it starts to ring-down with the

bubble resonance frequency in a series of after bounces to the end of the cycle. In this situation,

again, R(T ) u R0 and Ṙ(0) = 0 m/s and Ṙ(T ) u 0 m/s and the integrals can be neglected due to

very small amplitudes [2]. In the case of a collapse before reaching to the end of an acoustic cycle

2For information on the derivation of the 1
2
P2

ρc2 and 1
2
P2

ρc2 one can refer to [38] p. 255.
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(above the Blake threshold), an energy of approximately 4πR2σ is dissipated [2]. For a bubble with

the R0 in the µm range, this energy is approximately ten orders of magnitude less than the other

dissipated energies [2] and can also be neglected.

Thus the dissipated powers become:



< Td >= −1
T

∫ T

0
(Pg + Ṙ

c
Pg + R

c
Ṗg)

∂V

∂t
dt

< Lvisd >= 16πµL
T

∫ T

0
(RṘ2 + R2ṘR̈

c
)dt

< Rd >= 1
T

∫ T

0

[4π
c

(
R2Ṙ

(
ṘP +RṖ − 1

2ρṘ
3 − ρRṘR̈

))]
dt

(6.13)

where < Td >, < Lvisd > and < Rd > are total energy loss over time T (Dissipated power). In this

paper, the integrations are performed over the last 40 cycles of a 240 cycle pulse to ensure transient

behavior has subsided. However, Eq. 13 in its current form is not correct and several terms need

to be re-arranged. Every term that contains the sound speed represents the compressibility effects

to the first order of Mach number and should be added to the radiation damping term. Thus the

proposed damping terms will be in the form of Eq. 14:



< Td >= −1
T

∫ T

0
(Pg)

∂V

∂t
dt

< Lvisd >= 16πµL
T

∫ T

0

(
RṘ2

)
dt

< Rd >= 1
T

∫ T

0

[4π
c

(
R2Ṙ

(
ṘP +RṖ − 1

2ρṘ
3 − ρRṘR̈

))
−
(
Ṙ

c
Pg + R

c
Ṗg

)
∂V

∂t
+ 16πµLR2ṘR̈

c

]
dt

(6.14)

6.3.4 Ratio of dissipated powers during low amplitude oscillation regimes

One way to validate Eq. 13 and Eq. 14 is to focus on the linear oscillation regimes (Pa = 1kPa)

and compare the ratios of the dissipated powers <Td>
<Rd> and <Lvisd>

<Rd> with the ratios of the dissipated
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powers from the analytical expressions of the linear model [5, 11, 12]. In the linear regime, the

ratio of the dissipated powers equals the ratio of the damping constants [4](p.296). The constants

of the bubble oscillations for radiation, thermal and viscous damping are given by the following

analytical expressions [5,11,12]: 

βLvis = 2µ
ρR2

0

βth = 2µth
ρR2

0

βrd = ω2a

2c

(6.15)

In Eq. 21, βLvis , βth and βrd are respectively damping constants due to liquid viscosity, thermal

and radiation. In this equation, µth is thermal viscosity [5, 11, 12] and ω is the acoustic angular

frequency. µth is given by:

µth = Pg0=(φ)
4ω (6.16)

where Pg0 is the initial gas pressure, = is the imaginary part and the complex term φ is calculated

from [11]:

φ = 3γ

1− 3 (γ − 1) iχ
[(

i
χ

) 1
2 coth

(
i
χ

) 1
2 − 1

] (6.17)

where γ is the polytropic exponent and χ = D
ωR2

0
represents the thermal diffusion length where D

is the thermal diffusivity of the gas.

The ratio of the dissipated powers in the linear regime should thus follow: <Td>
<Rd> = βth

βrd
and

<Lvisd>
<Rd> = βLvis

βrd
.

6.3.5 Acoustic power due to scattered pressure by bubbles

Radiation damping is due to the re-radiated (scattered) pressure by the bubble. Thus, < Rd >

should be equal to the acoustic power that is scattered by the bubble [22,23,24,37]. Here, we will

first introduce the derivation of the energy that the spherical bubble radiates. Vokurka [36] started
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with the Euler’s equation ( [38] p.3 Eq. 2.4):

1
ρ

∂p

∂r
= −∂v

∂t
− v∂v

∂r
(6.18)

where ρ is the liquid density, p is pressure, r is the distance and v is the fluid velocity. This equation,

relates the pressure in the liquid p to the fluid velocity v.

The incompressibility relation is given as:

ṙ

Ṙ
= R2

r2 (6.19)

This equation is derived and discussed in detail in [4](Eq. 2.25-page 87) where R is the bubble

instantaneous radius and over dot denotes the derivative with respect to time. Vokurka [36] used

Eq. 2, and integrated the Euler’s equation and obtained the pressure at a distance r from the bubble

center. The process is given as follows and note that ṙ = v:

Inserting the value of v into Eq. 15 we have:

R2Ṙ

r2
∂

∂r

(
R2Ṙ

r2

)
+ ∂

∂t

(
R2Ṙ

r2

)
= −1

ρ

∂p

∂r
(6.20)

after taking the derivatives and omitting higher order terms due to their small contributions for the

frequencies and pressures that are considered here, one arrives at:

∂p

∂r
= −ρ

r
(R2R̈+ 2RṘ2) (6.21)

Integrating Eq. 21 one arrives at the expressions for the pressure scattered by the bubble at a

distance r from the bubble center:

Psc = ρ
R

r
(RR̈+ 2Ṙ2) (6.22)

The acoustic power (Wsc) scattered (re-radiated) by the bubble thus can be calculated as [4,22,23,

24,37]:

Wsc = 4πr2

ρc
Psc

2 = 4πρ
c
R2(RR̈+ 2Ṙ2) (6.23)

182



This quantity represents dissipated power due to scattering by the bubble (we will use < Sd > for

its representation for simplicity) and can be calculated using:

< Sd >= 1
T

∫ T

0
Wscdt (6.24)

The dissipated power due to radiation should have the same value as the acoustic scattered power

by the bubble. Therefore, one can compare < Rd > and < Sd > to validate the predictions of Eq.

14.

6.4 Results

6.4.1 Low amplitude oscillation regimes (Pa = 1kPa)

In this section, the predictions of the ratio of the dissipated powers are compared in the linear

regime of oscillations (very small amplitude bubble oscillations, RmaxR0
u 1.01 at resonance). Eq. 4

is coupled to Eq. 5 and Eq. 6 and solved for a R0 = 3µm air bubble sonicated with PA = 1kP

and for frequencies between 0.5fr − 2.5fr (fr is the frequency of maximum response at 1 kPa).

< Td >, < Lvisd > and < Rd > are calculated using Eq. 13 (Jamshidi and Brenner model [2])

and Eq. 14 (proposed model) and the acoustic power radiated by the bubble < Sd > is calculated

using Eq. 24. Calculations are performed over for the last 40 cycles of a 240 cycle pulse to ensure

the transient behavior has subsided. The damping constants were calculated using Eq. 15. The

thermal properties of the air as given in Table 1 were used for all the calculations.

Fig. 6.1a shows <Td>
<Rd> and βth

βrd
as a function of frequency. The predictions of the proposed model

(red) are in excellent agreement with the results of the analytical expressions (yellow). However,

predictions of the Jamshidi and Brenner model (Eq. 13) significantly deviate from the linear model,

especially for frequencies below resonance. Moreover, negative values appear for f < 0.87fr which

can not be shown in the log graph. Fig. 6.1b shows the <Lvisd>
<Rd> and

βLvis
βrd

as a function of frequency.

Once again, the predictions of the proposed model (red) are in excellent agreement with the results

of the analytical expressions (yellow). However, predictions of the Jamshidi and Brenner model

(blue) significantly deviate from linear model predictions.

Figs. 6.2a-b show the dissipated powers of < Td >, < Lvisd >, < Rd > and < Sd > as a function
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Figure 6.1: Ratio of the dissipated powers of a) <Td>
<Rd>

and b) <Lvisd>
<Rd>

as calculated by the proposed model (Eq. 14) and Jamshidi and

Brenner model (Eq. 13) and compared to analytical linear damping constants of βth
βrd

and
βLvis
βrd

. < Td >, < Rd > and < Lvisd > are
respectively dissipated powers due to thermal, radiation and liquid viscosity damping. βth, βrd and βLvis

are respectively the damping
constants for thermal, radiation and liquid viscosity. The bubble is an air bubble with R0 = 3µm. The dissipated powers are averaged
over the last 40 cycles of a 240 cycle acoustic pulse with Pa = 1kPa.
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Figure 6.2: The dissipated powers due to thermal damping (< Td >), radiation damping (< Rd >), liquid viscosity damping
(< Lvisd >) and damping due to the scattered pressure by bubbles < Sd > when PA=1 kPa as a function of frequency for an air
bubble with R0= 3 µ m calculated by a) the Jamshidi and Brenner model (Eq. 13) and b) the proposed model (Eq. 14). The dissipated
powers are averaged over the last 40 cycles of a 240 cycle acoustic pulse with Pa = 1kPa.
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Figure 6.3: Radiation to total damping ratio as a function of frequency. PA = 1kPa to ensure low amplitude oscillations. The bubble
is an air bubble with R0 = 3µm. In this figure, < Rd > and < Sd > are the dissipated powers due to radiation damping and damping
due to the scattered pressure by bubbles respectively. < Wtotal >=< Td >+< Rd >+< Lvisd > is the total dissipated power where
< Td > and < Lvisd > are respectively dissipated powers due to thermal damping and liquid viscosity damping. βrd is the radiation
damping constant and βtotal = βrd + βth + βLvis

where βth and βLvis
are respectively constants for thermal and liquid viscosity

damping. The dissipated powers are averaged over the last 40 cycles of a 240 cycle acoustic pulse.

of frequency at PA = 1kPa. < Rd > (red) as calculated by Jamshidi and Brenner model (Eq. 13)

in Fig. 6.2a is negative for frequencies below resonance. Additionally, it significantly deviates from

the predictions of acoustic power theory < Sd > (purple diamonds). < Rd > as calculated by the

proposed model of Eq. 14 (red curve in Fig. 6.2b) is in great agreement with the predictions of the

< Sd > (purple diamonds) and negative values are absent.

For the last comparison in the linear regime, Fig. 6.3 shows Rd
Wtotal

, Sd
Wtotal

and βrd
βtotal

as calculated

by Eq. 13, 14, 24 and 15. Wtotal =< Rd+ Td+ Lvisd > and βtotal = βrd + βth + βLvis . Predictions

of the Jamshidi and Brenner model significantly deviate from the other models. The deviation is

higher for lower frequencies.

6.4.2 Large amplitude nonLinear oscillation regimes

At higher pressures, predictions of the nonlinear model deviate from the linear model [1,2,3]. Figs.

6.4a-b shows the dissipated power at PA= 20 kPa due to < Td >, < Lvisd >, < Rd > and < Sd >

calculated using Eq. 13, Eq. 14 and Eq. 24. For frequencies below resonance, < Rd > becomes

negative. Moreover, < Rd > as calculated by Jamshidi and Brenner model (Eq. 13) deviates from
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Figure 6.4: The dissipated power due to thermal damping (< Td >), radiation damping (< Rd >), liquid viscous damping (<
Lvisd >) and damping due to the scattered pressure by bubbles (< Sd >) as a function of frequency for an air bubble with R0=3
µm as calculated by the Jamshidi and Brenner model (left column) and the proposed model (right column): a-b) PA = 20kPa, c-d)
PA = 50kPa and e-f) PA = 100kPa. The dissipated powers are averaged over the last 40 cycles of a 240 cycle acoustic pulse with
Pa = 1kPa.
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values of < Sd > calculated by Eq. 24. Fig. 6.4b shows that the proposed model described by Eq.

14 predicts the correct values for < Rd > which are in agreement with < Sd >. We also see the

generation of 2nd harmonic resonance frequency due to the pressure increase at ≈ 540 kHz.

Figures 6.4c-d, represent the predictions of Eqs. 13, 14 and 24 when PA=50 kPa. Increasing

the acoustic pressure shifted the fundamental frequency of the bubble to lower values. Damping

values increased by an order of magnitude. Moreover, a 3rd harmonic resonance peak at 360 kHz

is generated. Once again, Eq. 13 predicts negative values for < Rd > for some frequencies below

the fundamental resonance frequency and there is discrepancy between < Sd > and the < Rd >.

Eq. 14 accurately captures the value of < Rd > (Fig. 6.4d). Figures 6.4e-f show the predictions of

Eq. 13, 14 and 24 when PA= 100 kPa. Fig. 6.4e shows that solutions of Eq. 13 for < Rd > are

not in agreement with < Sd >. However, the proposed model (Eq. 14) predicts the correct value

for < Rd > (Fig. 6.4f) which is in good agreement with < Sd >. Increasing the pressure to PA=

100 kPa results in further shifting of the resonance frequencies of the system to lower frequencies,

and 4th and 5th harmonic resonance peaks are observable in the graphs. Radiation damping grows

faster than the other damping factors as pressure increases. At the pressure dependent resonance

(f = 800kHz) and pressure dependent 2nd harmonic resonance (f = 460kHz), radiation damping

becomes stronger than the other damping factors. Thermal damping remains the strongest damping

term for the rest of frequencies.

The values for < Rd >, < Td > and < Lvisd > are pressure and frequency dependent. < Rd >

grows with a faster rate than the other damping factors by pressure increase and there are regions

in frequency and pressure domain in which < Rd > is stronger than other damping factors. The

different contributions of the damping factors can have significant consequences in selecting the

optimal ultrasound exposure parameters for different applications.

Figs 6.5a-d show the ratio of the dissipated powers due to the thermal and liquid viscosity damping

as calculated by the Jamshidi and Brenner model to the ones as calculated by the proposed model.

< TdJB > and < LvisdJB > are the dissipated powers due to thermal and liquid viscosity as

calculated by Jamshidi and Brenner model (Eq. 13) respectively. < TdPM > and < LvisdPM > are

respectively the dissipated powers due to thermal and liquid viscosity as calculated by proposed

model (Eq. 14). The ratio of the dissipated powers due to liquid viscosity( <LvisdJB><LvisdPM>
represented

by red line) is u 1 which indicates that the two models return approximately identical results over
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Figure 6.5: The ratios of the dissipated powers due to the thermal and liquid viscosity as calculated by the proposed and Jamshidi and
Brenner models as a function of frequency for an air bubble with R0 = 3µm at PA=: a) 1kPa, b) 20kPa, c) 50kPa and d) 100kPa.
( In the legends < TdJB > and < LvisdJB > are respectively dissipated powers due to thermal and liquid viscosity as calculated
by Jamshidi and Brenner model (Eq. 13). < TdPM > and < LvisdPM > are respectively the dissipated powers due to thermal and
liquid viscosity the values calculated by the proposed model (Eq. 14).
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the frequency (20kHz − 2.5MHz) and pressure (1kPa-100kPa) ranges that are studied here.

However, the dissipated powers due to the thermal damping are quite different between the two

models. The ratio of the dissipated powers due to the thermal damping ( <TdJB><TdPM>
, represented by

blue line) grows with frequency increase. At 1 kPa this value is between 1.06− 1.0825 with a peak

at resonance. The ratios grow as pressure increases (1.08− 1.14 at 20 kPa to 1.1− 3.7 at 100 kPa)

with peaks at the pressure dependent resonance and super harmonic resonances of the system. The

Jamshidi and Brenner model overestimates the thermal damping between 6 % to 300 %.

6.5 Discussion

The dissipated powers due to the radiation damping (< Rd >), thermal damping (< Td >)

and damping due to the friction by the liquid viscosity (< Lvisd >) are nonlinear and depend

on the excitation pressure and frequency [1, 2]. Accurate predictions of bubble oscillations and

bubble related phenomena in sound fields requires an accurate estimation for the dissipation

mechanisms. However, the majority of studies considered linear estimations (valid only for very

small amplitude bubble oscillations) for the damping mechanisms in a bubble oscillator (e.g.

[4,5,6,7,8,9,10,11,12]).

Some models have been proposed that take into account the nonlinearities of the bubble oscillator.

Jamshidi and Brenner [2] used the Lousinard’s method [1] and derived the pressure dependent

terms for < Rd >, < Td >, and < Lvisd >. However, we showed here that the Jamshidi and

Brenner model needs corrections. We showed that:

1- < Rd > as derived by Jamshidi and Brenner [2] generates negative values for some frequencies

below bubble resonance and at a wide range of applied pressures. A dissipation mechanism should

not be negative. A negative value is analogous to a phenomenon that pumps energy to the system

and this contradicts the definition of dissipation.

2- For low amplitude bubble oscillations (e.g. PA = 1kPa and Rmax
R0

u 1.01) the ratios of the dissi-

pated powers <Lvisd>
<Rd> , <Td><Rd> and <Rd>

<Wtotal>
as calculated by Jamshidi and Brenner [2], significantly

deviate from the predictions of the linear model [5,11] even when < Rd > returns positive values.

3- For large amplitude bubble oscillations at higher pressures, < Rd > as calculated by Jamshidi

and Brenner model [2], significantly deviates from the dissipation power calculated by the scattered
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(re-radiated) pressure by the bubble (< Sd >). Since these two parameters refer to the same

mechanism, they should have the same value.

We provided critical corrections to the terms derived by the Jamshidi and Brenner. Negative values

were absent in the results of the proposed model for the range of frequencies and pressures studied

here. In the low amplitude oscillation regime, the predictions of the proposed model for the ratio of

energies are in excellent agreement with the predictions of the linear model. Moreover, predictions

of < Rd > are in excellent agreement with the predictions of < Sd > both in low amplitude and

high amplitude regimes of oscillations.

In agreement with linear model, it was shown that for the R0 = 3µm bubble and for ultrasound

frequencies 20kHz < f < 2.5MHz, < Td > and < Rd > are respectively the strongest and

weakest dissipation mechanisms at lower pressures (e.g. PA < 20kPa). However, as pressure

increases, < Rd > grows at a faster rate compared to < Td > and < Lvisd >. At specific

frequencies (e.g. pressure dependent resonance frequency [18]) < Rd > becomes the dominant

dissipation mechanism. This shows that compressibility effects are very important even at moderate

pressures (e.g. 100 kPa (Fig. 6.1h)). Thus models for free bubbles and ultrasound contrast

agents (UCAs) [6] that neglect or simplify liquid compressibility effects may loose accuracy even at

moderate pressures.

At 100 kPa (Fig. 6.4f), and at the pressure dependent resonance frequency (0.8 MHz) < Rd >

is larger than < Lvisd >, which is larger than < Td >. This is in contradiction with the linear

model results. The physical reason for the higher values for < Rd > is that at pressure dependent

resonance the collapse occurs over a shorter duration and bubble wall velocity and acceleration are

higher. Thus the scattered pressure by the bubble and the dissipation due to viscosity are stronger.

However, because the collapse occurs faster, the average available surface are for the temperature

diffusion decreases which results in smaller < Td > compared to other damping mechanisms.

Same phenomenon occurs for pressure dependent 2nd order SuH resonance (460 kHz) at 100 kPa.

In this study we focused on damping mechanisms due to< Td >, < Lvisd > and< Rd >. However,

there are other damping mechanisms that can become important depending on the exposure

conditions and the gas inside the bubble. Mass transfer effects have been shown to significantly

alter the damping mechanisms of vapor bubbles [10]. Mass transfer in vapor bubbles can become

the dominant damping phenomenon [10]. Phase change effects in a gas-vapour bubbly liquid can
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have a major effect on the behavior of the system [43]. In this regard the temperature of the

solution can heavily alter the dissipation mechanisms. A correct model for dissipation mechanisms

for large amplitude vapor bubble oscillations should incorporate these effects.

In this study we only considered the free bubble model as the focus was to correct the energy

dissipation calculations for linear and nonlinear bubble oscillations. In the case of bubbles that are

coated [6] or in case of bubbles that are immersed in viscoelastic materials like tissue [44, 45] or

sediments [7, 8] there are additional damping mechanisms due to the viscoelasticty of the coating

or the surrounding medium that needs to be derived by applying the process described in this work

on the right bubble oscillation model.

Accurate knowledge of the pressure dependent dissipation effects can help in optimization of the

excitation frequency and pressure for enhanced energy distribution in ultrasonic fields. Increased

attenuation of ultrasonic waves due to the presence of bubbles, limits the delivery of sufficient

energy to activate bubbles that are at the focus and/or limits the regions of enhanced bubble

activity. In therapeutic applications of ultrasound (e.g. drug delivery [30], high intensity focused

ultrasound [23, 24]) the increased attenuation of pre-focal bubbles may result in undesirable

heating in the intervening tissue. In diagnostic applications of ultrasound, the increased attenuation

of bubbles in the beam path creates shadowing effects that deteriorate the images of underlying

tissues [25, 30]. In sonochemical reactors, inhomogeneous pressure distributions inside reactors

from pressure dependent attenuation reduces the efficacy. Accurate models for nonlinear damping

in the presence of the bubbles significantly assists in understanding the mechanism of nonlinear

attenuation and aids in designing protocols that minimize the unwanted effects.

Scattered pressure by the bubbles is a function of the bubble radial oscillations, wall velocity and

acceleration; thus, there is a direct correlation between the intensity of bubble activity and the

scattered pressure [4]. Scattered pressure by bubbles and attenuation (directly proportional to

total dissipation) [1,2,3,4,5,6] are parameters that can be measured in real time and also can be

calculated theoretically. Two characteristics typically define the efficacy of an application; enhanced

bubble activity (e.g. scattering or micro-streaming) and attenuation caused by the bubble activity.

The scattering to attenuation ratio (STAR) was proposed in [25] as a measure of the scattering

effectiveness of contrast enhanced ultrasound. However, in that work and subsequent studies,

linear parameters were used to calculate STAR, thus the pressure dependence of the STAR was not
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examined.

Knowledge on the scattered (re-radiated) energy from the bubbles can be used as a measure of

the bubble activity. To this end, the scattering to dissipation ratio (STDR) can not only provide

a measure of the effectiveness of imaging applications of ultrasound, but it may also be used as

a measure of the effectiveness of several other applications (e.g. sonochemistry and therapeutic

ultrasound) where the goal is selective maximization of bubble activity and reducing unwanted

dissipation. Decreasing the dissipation of bubbly media increases the power that can be delivered

to bubbles.

STDR is nonlinear and depends on the complex bubble dynamics. We observed in Fig. 6.4 that Rd

can overcome the other damping factors for specific pressure and frequency ranges, and thus there

are potential exposure parameters for which the STDR can be maximized. Using the nonlinear

model represented by Eq. 14 for the damping terms, we can define a similar term to STAR which

can also be used for nonlinear regimes of oscillations:

STDR = < Rd >

< Td+ Lvisd+Rd >
(6.25)

The accurate calculation of STDR can help in selecting optimized frequency and pressure ranges

to reduce unwanted pre-focal dissipation and enhance bubble activity at focus. For example, in

case of the bubble presented in Fig. 6.4, by taking advantage of the steep pressure gradients of

focused transducers and setting the focal pressure slightly above 100 kPa, this property can be used

to reduce the absorption of the ultrasound in pre-focal regions while maximizing the absorption

and bubble activity in the target focal region [18,33] that have higher pressures.

6.6 Conclusion and future work

This study provides critical corrections for the calculation of power dissipation during the propa-

gation of ultrasonic waves through a bubbly medium. The accuracy of the proposed models were

verified against the linear analytical expressions for low amplitude oscillation regimes and against

acoustic power theory for higher amplitude oscillation regimes. The correct models can be used

to study the dissipation mechanisms related to thermal damping, radiation loss and damping due

193



to liquid viscosity. This can help in revealing the exposure parameters for which bubble activity

is maximized. It was shown that, at specific frequencies and pressures, the dissipation due to

radiation becomes higher than other dissipation mechanisms. Thus the exposure parameters of

the applications can be optimized to enhance a particular effect of interest. Investigation of the

pressure dependence of STDR and acoustic excitation parameters that can potentially maximize

the STDR are of great importance and can be the subject of future studies.

This study only focused on correcting the dissipation terms for a free bubble in a liquid like water.

Thus, the applications of the proposed model are limited to free bubbles immersed in Newtonian

fluids like water and organic solvents. The approach presented here, can be applied in combination

with the appropriate bubble models for coated bubbles (e.g. [6]) or bubbles in sediments (e.g.

[7,8]) or bubbles in tissue (e.g. [44,45]) to derive the additional damping effects due to the coating

and the visco-elasticity of the surrounding medium. This can help in accurate pressure dependent

predictions in studies related to characterization of bubbles in underwater acoustics [4, 7, 8] and

characterization of shell parameters of encapsulated bubbles [9, 46, 47, 48, 49, 50] or propagation

of waves in bubbly tissue [44,45].
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Chapter 7

Nonlinear power loss in the oscillations of

coated and uncoated bubbles: Role of thermal,

radiation and encapsulating shell damping at

various excitation pressures

7.1 Abstract

This study presents the fundamental equations governing the pressure dependent disipation mech-

anisms in the oscillations of coated bubbles. A simple generalized model (GM) for coated bubbles

accounting for the effect of compressibility of the liquid is presented. The GM was then coupled

with nonlinear ODEs that account for the thermal effects. Starting with mass and momentum

conservation equations for a bubbly liquid and using the GM, nonlinear pressure dependent terms

were derived for energy dissipation due to thermal damping (Td), radiation damping (Rd) and

dissipation due to the viscosity of liquid (Ld) and coating (Cd). The pressure dependence of the

dissipation mechanisms of the coated bubble have been analyzed for the first time. The dissipated

energies were solved for uncoated and coated 2- 20 µm in bubbles over a frequency range of

0.25fr − 2.5fr (fr is the bubble resonance) and for various acoustic pressures (1kPa-300kPa).

Thermal effects were examined for air and C3F8 gas cores. In the case of air bubbles, as pressure

increases, the linear thermal model looses accuracy and accurate modeling requires inclusion of

the full thermal model. However, for coated C3F8 bubbles of diameter 1-8 µm, which are typically

used in medical ultrasound, thermal effects maybe neglected even at higher pressures. For uncoated
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bubbles, when pressure increases, the contributions of Rd grow faster and become the dominant

damping mechanism for pressure dependent resonance frequencies (e.g. fundamental and super

harmonic resonances). For coated bubbles, Cd is the strongest damping mechanism. As pressure

increases, Rd contributes more to damping compared to Ld and Td. For coated bubbles, the

often neglected compressibility of the liquid has a strong effect on the oscillations and should

be incorporated in models. We show that the scattering to damping ratio (STDR), a measure of

the effectiveness of the bubble as contrast agent, is pressure dependent and can be maximized for

specific frequency ranges and pressures 1.

7.2 Introduction

Acoustically excited bubbles are oscillating gas or vapor cores that are found in free (uncoated)

or coated form (e.g. encapsulated by a lipid or polymer shell). They form the core of several

applications in liquids [1], and in soft and palpable matter (e.g. tissue [1,2,3] or sediments[1,4,5]).

When excited by a sound field they can oscillate with amplitudes large enough to destroy most

materials [1,6,7]; enhance chemical reactions [8,9,10], and act as healing or diagnostic agents in

medicine [11, 12, 13]. During these high amplitude oscillations, temperatures reached in the gas

core are high enough to turn the bubbles into tiny light bulbs [9,10,14].

Dynamics of the acoustically excited bubbles are nonlinear and chaotic. These dynamics have been

the subject of numerous experimental [1, 15, 17, 18, 19, 20] and numerical [21, 22, 23, 24, 25, 26,

27, 28, 29, 30] studies. Achieving the full potential of bubbles in applications and understanding

their role in the associated phenomena not only requires a detailed knowledge over their complex

behavior but also on the effect of bubble oscillations on the propagation of acoustic waves.

Propagation properties of acoustic waves in bubbly media are considerably different from those in

single-phase media (e.g. pure water) [31, 32, 33, 34, 35, 36]. Derivation of the correct medium

properties are essential for the understanding and predicting bubble oscillations in different loca-

tions of the media and consequently optimization of bubble related applications.

One of the characteristic properties of bubble oscillations in a medium is the increased attenuation.

1Published as: Sojahrood, A.J., Haghi, H., Li, Q., Porter, T.M., Karshafian, R. and Kolios, M.C., 2020. Nonlinear power
loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating shell damping at
various excitation pressures. Ultrasonics sonochemistry, 66, p.105070.
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Bubbles attenuate ultrasound through viscous damping due to liquid (Ld) and coating (Cd) viscous

effects, radiation damping (Rd) and thermal damping (Td) [33,34,35,36,37,38,39]. The changes

in attenuation of bubbly media has significance in studies related to oceanography [4, 5] and

acoustic characterization of coated bubbles used as ultrasound contrast agents (UCAs) [38, 39,

40, 41, 42, 43]. Furthermore, knowledge of the nonlinear attenuation in the medium will help in

optimization of applications related to sonochemistry [35,36, 37] and medical ultrasound [11, 12,

13,44,45] by enhancing and controlling the acoustic energy at the target.

The majority of the previous studies employed linear approximations [33,38,39,40,41,42] (limited

to very small bubble oscillation amplitudes) to calculate the damping parameters during bubble

oscillations. Thus, linear models neglect the dependence of the dissipated energy on the local

pressure [33, 34, 35, 36] and are not applicable to conditions under which bubbles are excited in

most applications. To properly account for the pressure dependence of attenuation new approaches

are developed that only consider the pressure dependence of the radiation damping while using

linear terms for the rest of the damping factors (thermal and viscous damping) [39]. However

other damping factors are also pressure dependent and linear approximations reduce the accuracy

of model predictions.

To account for the pressure dependence of all of the damping parameters, mass and momentum

conservation equations were used by Louisnard [34] and nonlinear energy terms for Td and Ld were

derived for a bubbly liquid using the Rayleigh-Plesset equation [46]. Jamshidi and Brenner [35]

used Louisnards approach [34] and the Keller-Miksis (KM) equation [47] to capture the nonlinear

damping term for re-radiated energy by bubbles (Rd). Louisnard [34] and Jamshidi’s [35] study

showed that damping from nonlinear oscillations of bubbles can be several orders of magnitude

higher than the damping estimated by linear models.

We have shown in [36], that the derived terms in [35] are incorrect as they can lead to non-physical

values for Rd; moreover, predictions of their model were not consistent with the results of radiation

damping due to re-radiated pressure (Sd) by bubbles [36]. We have corrected the nonlinear

damping terms in [36] and predictions of Rd were in excellent agreement with Sd. We have shown

that as pressure increases, Rd grows faster than other damping factors and there exist frequency

and pressure domains in which Rd is stronger than other damping parameters.

Despite the importance of nonlinear thermal losses when it comes to modeling the bubble os-
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cillations, most studies simplify the role of thermal losses on bubble behavior by using models

that are derived based on linear approximations [4, 5, 33, 34, 35, 36]. In addition, for coated

bubbles, the role of radiation damping is not completely captured as effects of the compressibility

of the liquid are often neglected or simplified [38, 48]. It is shown in [35, 36, 37] that radiation

damping is pressure dependent and can be a major contributor to the total damping and should

not be neglected. A more complete estimation of the wave attenuation in bubbly media must

incorporate the effects of thermal and radiation damping on bubble oscillations and the total

dissipated power [34,35,36,37].

In this work we present a generalized model (GM) for the oscillations of coated bubbles. Compress-

ibility effects (similar to the KM model [47]) are added to the Church-Hoff model [38]. We can

call this model the KMCH model. KMCH is then coupled with the ordinary differential equations

(ODEs) [49] that take into account the thermal effects. In case of uncoated bubbles, to capture

the thermal and radiation effects on the oscillations, the Keller-Miksis (KM) model is also coupled

with thermal ODEs [49]. Using the equations for conservation of mass and momentum in bubbly

liquids and applying the KMCH model, our proposed approach in [36] was applied to derive all the

damping terms Rd, Cd, Td and Ld for the oscillations of a coated bubble.

The total dissipated power by bubble oscillations was then studied as a function of frequency

for various excitation pressures. In each case (free uncoated and coated bubbles) three thermal

models were considered; these models were solved for an air gas core and C3F8 gas core that is

generally used in UCAs. The first model neglects the thermal effects. The second model includes

the thermal effects using linear approximations by introducing an artificial thermal viscosity [50].

The third model includes the full ordinary differential equations (ODEs) that describe the average

temperature elevation within the bubble and heat loss at the bubble boundary [49, 51, 52, 53].

The second model has widely been used in studies related to oceanography [4, 5] or ultrasound

contrast agent characterization [38, 39, 40, 41, 42]). In this paper we refer this model the linear

thermal model and we refer to the third model the full thermal model.

Here we will show that for uncoated bubbles, thermal effects are very important; at very low

acoustic pressures (PA ≈ 1kPa) predictions of the linear thermal model are in good agreement

with the full thermal model. However, as pressure increases predictions of the full thermal and

linear thermal model deviate for both gas cores; thus the full thermal model must be used for
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accurate bubble modeling. In case of C3F8 coated bubbles, however, thermal effects are masked

by large dissipation due to the bubble coating and are negligible. Even at high pressures (e.g. 100

kPa), predictions of the linear thermal, full thermal and non-thermal model are in good agreement.

However, for coated bubbles with air, thermal effects are important and the full thermal model

must be used for accurate prediction of bubble behavior at higher pressures and at frequencies and

pressures in which subharmonic (SH) oscillations are generated.

For both cases (uncoated and coated bubble) and for both gas types, mechanisms of energy dis-

sipation were studied as a function of frequency and pressure. We show that increasing the

excitation pressure leads to a faster growth in Rd compared to other damping mechanisms; thus,

optimum frequency and pressure ranges exist in which scattering to total damping ratio (STDR) is

maximized.

7.3 Methods

7.3.1 Coated bubble model

The dynamics of a coated bubble oscillator can be modeled using the Church-Hoff model [38]:

ρ

[
RR̈+ 3

2Ṙ
2
]

=(
Pg −

4µLṘ
R
− 12µshεR2

0Ṙ

R4 − 12GsεR2
0

( 1
R3 −

R0
R4

)
− P0 − P

) (7.1)

Where ρ is the density of the medium, R is the radius at time t, Ṙ is the bubble wall velocity, R̈

is the bubble wall acceleration, R0 is the initial radius of the bubble, µ and µsh are the viscosity

of the liquid and shell (coating) respectively, ε is the thickness of the coating, Gs is the shell shear

modulus, Pg is the gas pressure inside the bubble, P0 is the atmospheric pressure (101.325 kPa)

and P is the acoustic pressure given by P = Pasin(2πft) with Pa and f are respectively the

excitation pressure and frequency. Church-Hoff model (Eq. 1) does not incorporate the effects

of the compressibility of the medium. Similar to the KM model [47] we added the effects of the

compressibility of the medium to the first order of Mach number. The generalized model (GM) can
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be called Keller-Miksis-Church-Hoff (KMCH) model and is written as:

ρ

[(
1− Ṙ

c

)
RR̈+ 3

2Ṙ
2
(

1− Ṙ

3c

)]
=(

1 + Ṙ

c
+ R

c

d

dt

)(
Pg −

4µLṘ
R
− 12µshεR2

0Ṙ

R4 − 12GsεR2
0

( 1
R3 −

R0
R4

)
− P0 − P

) (7.2)

Here c is the sound speed in the liquid. In this paper for all of the simulations related to coated

bubbles Gs=45 MPa and µsh = 1.49(R0(µm)−0.86)
θ(nm) [54] (sh stands for shell (coating)) with θ = 4 nm.

7.3.2 Uncoated Bubble model

The dynamics of the bubble model including the compressibility effects to the first order of Mach

number can be modeled using Keller-Miksis (KM) equation [47]:

ρ

[(
1− Ṙ

c

)
RR̈+ 3

2Ṙ
(

1− R

3c

)]
=
(

1 + Ṙ

c

)
(G) + R

c

d

dt
(G) (7.3)

where G = Pg − 4µLṘ
R − 2σ

R − P0 − PAsin(2πft).

In this equation, R is radius at time t, R0 is the initial bubble radius, Ṙ is the wall velocity of the

bubble, R̈ is the wall acceleration, ρ is the liquid density (998 kg
m3 ), c is the sound speed (1481

m/s), Pg is the gas pressure, σ is the surface tension (0.0725 N
m), µ is the liquid viscosity (0.001

Pa.s), and PA and f are the amplitude and frequency of the applied acoustic pressure. The values

in the parentheses are for pure water at 293 K. In this paper the gas inside the bubble is either air

or C3F8 and water is the host media. Depending on which model is used for the simulation of the

thermal effects , Pg will be a function that will be defined in the next 3 subsections.

7.3.3 Non-thermal model

If the terms related to thermal damping are neglected, Pg in Eq. 2 and 3 can be written in the form

of:

Pg = Pg0(R0
R

)3γ (7.4)
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Thermal parameters of the gases at 1 atm

Gas type L( W
mK ) cp( kJ

kgK ) cv ( kJ
kgK ) ρg ( kg

m3 )
Air [55] 0.01165 + C × T 2 1.0049 0.7187 1.025

C3F8 [56] 0.012728 0.79 0.7407 8.17

Table 7.1: Thermal properties of the gases used in simulations.2 C=5.528× 1025 W
mK2 .

Where γ is the polytropic exponent and is given by cp
cv

. According to the Church-Hoff Model [38]

for a coated bubble Pg0 = P0 where P0 is the atmospheric pressure. For an uncoated bubble as

given by Keller-Miksis equation [47]. Pg0 = P0 − 2σ
R0

. In this work we have neglected the small

effect of vapor pressure.

7.3.4 Full thermal effects

If thermal effects are considered, Pg is given by Eq. 5 [49,50,51,52,53]:

Pg = NgKT
4
3πR(t)3 −NgB

(7.5)

Where Ng is the total number of the gas molecules, K is the Boltzman constant and B is the

molecular co-volume of the gas inside the bubble. The average temperature inside the gas can be

calculated using Eq. 6 [49]:

Ṫ = 4πR(t)2

Cv

(
L (T0 − T )

Lth
− ṘPg

)
(7.6)

where Cv is the heat capacity at constant volume, T0=293K is the initial gas temperature, Lth is

the thickness of the thermal boundary layer. Lth is given by Lth = min(
√

aR(t)
| ˙R(t)|

, R(t)
π ) where a is the

thermal diffusivity of the gas which can be calculated using a = L
cpρg

where L is the gas thermal

conductivity and cp is specific heat capacity at constant pressure and ρg is the gas density.

Predictions of the full thermal model have been shown to be in good agreement with predictions

of the models that incorporate the thermal effects using the PDEs [51] that incorporate the temper-

ature gradients within the bubble. To incorporate the full thermal effects, Eqs. 2 and 3 are coupled

with Eq. 5, to calculate the radial oscillations of the coated and uncoated bubbles respectively. The

coupled ODEs are solved using the ODE45 solver of MATLAB.
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7.3.5 Linear thermal model

The linear thermal model [33, 50] is a popular model that has been widely used in studies related

to oceanography [4, 5] and the modeling and characterization of coated bubble oscillations [38,

39, 40, 41, 42]. In this model through linearization thermal damping is approximated by adding

an artificial viscosity term to the liquid viscosity. Furthermore, a variable isoentropic index is used

instead of the polytropic exponent of the gas.

In this model Pg is given by:

Pg = Pg0

(
R0
R

)3k
(7.7)

Where the polytropic exponent γ is replaced by isoentropic indice (k):

k = 1
3<(φ) (7.8)

liquid viscosity is artificially increased by adding a thermal viscosity (µth) to the liquid viscosity.

This thermal viscosity (µth) is given by:

µth = Pg0=(φ)
ω

(7.9)

In the above equations the complex term φ is calculated from

φ = 3γ

1− 3 (γ − 1) iχ
[(

i
χ

) 1
2 coth

(
i
χ

) 1
2 − 1

] (7.10)

where γ is the polytropic exponent and χ = D
ωR2

0
represents the thermal diffusion length where D

is the thermal diffusivity of the gas. D = L
γcpρg

where cp, ρg, and L are specific heat capacity in

constant pressure, density and thermal conductivity of the gas inside the bubble.

To calculate the radial oscillations of the coated bubble and uncoated bubble while including the

linear thermal effects Eqs. 2 and Eq. 3 are respectively coupled with Eq. 7 and liquid viscosity is

increased by µth.
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7.3.6 Nonlinear terms of dissipation for the KMCH model (the coated bubble)

Using the approach in [36], the nonlinear dissipation terms for the KMCH model is derived. The

derivation is presented in Appendix. Fig. 7.1 represents a schematic of the process of the acoustic

energy loss by the bubbles. The nonlinear dissipation powers for the KMCH model are given by Eq.

11: 

Td = −4π
T

∫ T

0
R2ṘPgdt

Ld = 16πµL
T

∫ T

0
RṘ2dt

Cd = 48πµshεR2
0

T

∫ T

0

Ṙ2

R2dt

Gd = 48πGsεR2
0

T

∫ T

0

(
Ṙ

R
− R0Ṙ

R2

)
dt

Rd = 1
T

∫ T

0

(
4π
[
R2Ṙ2

c
(P − Pg) + R3Ṙ

c

(
Ṗ − Ṗg

)
+ 4µLR2ṘR̈

c

+12µshεR02
(
ṘR̈

cR
− 3Ṙ3

cR2

)
+ 12GsεR02

(
−2Ṙ2

cR
+ 3R0Ṙ

2

cR2

)]

−ρR
2Ṙ4

2c − ρR3Ṙ2R̈

c

)
dt

(7.11)

Where Td, Ld, Cd, Gd and Rd are the dissipation powers due to the thermal, liquid viscosity, coating

viscosity, coating elasticity (returns zero for the parameters that are studied in this paper) and

radiation damping respectively. T is the integration time and can be given as n/f where n=1,2......

. In this paper the integrals are performed over the last 20 cycles of a 200 cycles pulses. It should be

noted that in this paper we considered the dissipation mechanisms of only a single bubble. In real

cases, however, bubbles exists in polydisperse clusters with variable number density for each bubble

size. In such case, accurate modeling requires consideration of bubble interactions on the radial

dynamics of each bubble [22]. Dissipation powers then can be calculated by solving Eq. 11 for each

size separately and then summing the contribution of each bubble. Another assumption in Eq. 11 is
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Figure 7.1: Schematic diagram showing the different damping mechanisms for a coated bubble. The nonlinear damping terms are due
to the liquid viscosity (Ld), viscosity of the coating (Cd), the heat loss due to the temperature gradient between the bubble and the host
media (Td) and the damping due to the re-radiation of acoustic waves by the bubble (Rd). These terms are represented by Eq. 12.
In the diagram Psc is the scattered (re-radiated) pressure by the bubble (radiated spherically away from bubble), T is the internal gas
temperature, T0 is the temperature of the host media and Q represents heat energy loss due to the temperature gradient ∆T .

that its accuracy is limited to the regime of low Mach numbers [35] where both Keller-Miksis [47]

and Caflisch [31] equations are valid. The regime of large amplitude bubble oscillations that lead

to wall velocities in the order of sound speed of the medium are beyond the focus of this study.

In case of the non-thermal model (Eq. 4) Td=0. In case of the LTM model (Eq. 7-10), Td is

replaced by Td = 16πµth
T

∫ T
0

(
RṘ2

)
dt.
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7.3.7 Nonlinear terms of dissipation for the KM model (the uncoated bubble)

The dissipation terms for an uncoated bubble were derived in our previous work [36] and are given

by Eq. 12: 

Td = −4π
T

∫ T

0
PgṘR

2dt

Ld = 16πµL
T

∫ T

0

(
RṘ2

)
dt

Rd = 1
T

∫ T

0

[4π
c

(
R2Ṙ

(
ṘP +RṖ − 1

2ρṘ
3 − ρRṘR̈

))
−
(
Ṙ

c
Pg + R

c
Ṗg

)
4πṘR2 + 16πµLR2ṘR̈

c

]
dt

(7.12)

In case of using the model with no thermal damping effects Td=0 and in case of incorporating

the linear thermal effects Td = 16πµth
T

∫ T
0

(
RṘ2

)
dt All the dissipated powers were calculated

for the last 20 cycles of pulses with 200 cycles length. Simulations were carried out in Matlab

using ODE45. The minimum time size for integration in each simulation was 10−5

f where f is the

excitation frequency. Similar to Eq. 11, in case of the non-thermal model (Eq. 4) Td=0. In case of

the LTM model (Eq. 7-10), Td is replaced by Td = 16πµth
T

∫ T
0

(
RṘ2

)
dt.

7.3.8 Acoustic power due to scattered pressure by bubbles

Radiation damping is due to the re-radiated (scattered) energy by the bubble. The acoustic energy

scattered by an oscillating bubble can be calculated using [57,58]:

Wsc = 4πr2

ρc
P 2
sc (7.13)

where Psc is the pressure scattered (re-radiated) by the oscillating bubble [57,58]:

Psc = ρ
R

r

(
RR̈+ 2Ṙ2

)
(7.14)
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here r is the distance from the bubble center. Using Eqs.13 and 14 we can write:

Wsc = 4πρ
c
R2
(
RR̈+ 2Ṙ2

)2
(7.15)

The dissipated power due to radiation should have the same value of the acoustic scattered power

by the bubble. To calculate the power loss due to the scattered pressure by the bubble one can take

the time average of the Eq. 15:

Sd = 1
T

∫ T

0
Wscdt (7.16)

where Sd is the dissipated power due to the scattered pressure by the bubble. This term should

have the same value of as Rd. Therefore, one can compare < Rd > and < Sd > to validate the

predictions of Rd in Eq. 11. In this paper, Eq. 16 was used to validate the predictions of Rd in

Eq. 11, similar to our previous approach in [36]. Rd and Sd were in good agreement within the

parameter ranges that are studied in this paper.

7.4 Results

7.4.1 Total dissipated power by uncoated bubbles

In order to get a better understanding of the effect of thermal dissipation on the uncoated bubble

oscillations, Fig. 7..2 presents the total dissipated power as a function of frequency for different

excitation pressures. The bubble has an initial radius of R0 = 2µm. At each pressure and frequency,

first the radial oscillations as a function of time are calculated. This is done for three cases by solving

the coupled KM model (Eq. 3) with the full thermal (FTM) (Eqs. 5-6), linear thermal (LTM) (Eqs.

7-10) and non-thermal model (NTM) (Eq. 4). Then the radial oscillations are used as input in

to Eq. 12 to calculate the dissipation mechanisms. In Fig. 7..2, the left column is for an air gas

core and right column represents the C3F8 gas core. At Pa = 1 KPa (Figs 7..2a-b), predictions of

FTM and LTM are in good agreement ; however, the NTM over estimates the dissipated power and

also over estimates the resonance frequency. The resonance energy curves are wider when thermal

effects are present which is due to the increased damping. Furthermore, due to lower thermal

damping in the case of a C3F8 gas core, the resonance energy curves in Fig. 7..2b are narrower
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Figure 7.2: Total dissipated power as predicted by the non-thermal, linear thermal, and full thermal model as a function of frequency
for an uncoated bubble with R0= 2 µ m at various pressures (left column is for air gas core and right column is for C3F8 gas core).
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Figure 7.3: Total dissipated power as predicted by the non-thermal, linear thermal, and full thermal model as a function of frequency
for a coated bubble with R0= 2 µ m at various pressures (left column is an uncoated air bubble and right column is a C3F8 coated (left
column is for air gas core and right column is for C3F8 gas core)).
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compared to Fig. 7..2a.

Nonlinear effects increase with increasing pressure and at Pa = 30kPa (Figs 7..2c-d) predictions

of the FTM and LTM start deviating. We also observe a 2nd superharmonic (SuH) resonance

peak below resonance frequency. At Pa = 60kPa (Figs. 7..2e-f) nonlinear effects result in further

disagreement between the FTM and the LTM. Moreover, the damping predicted by LTM and FTM

are ≈ 30% higher than the predictions of the NTM models. At higher pressure the total dissipated

power grows at resonance and the 2nd SuH resonance while both resonance frequencies decrease

in magnitude; this is a phenomenon known as pressure dependent (PD) resonance [24]. We also

observe the generation of a third peak below 2nd SuH resonance which indicates the 3rd SuH

resonance frequency. NTM underestimates the total dissipated power by about 250 % at the main

resonance. NTM predicts the correct value for the resonance frequencies of the bubble with C3F8

gas core; however, it over-predicts the resonance frequencies of the air bubble.

At Pa = 100kPa predictions of the FTM for the total dissipated power deviate by up to 20 % from

those made by the LTM model. However, for all pressures, the FTM and the LTM predict the same

resonance frequencies. The NTM underestimates the total dissipated power and over-predicts the

resonance frequencies.

We see here that for pressures above 1 kPa and for air and C3F8 uncoated bubbles FTM must be

applied for more accurate predictions of the dissipated powers and bubble oscillations. In case of

gases with higher thermal damping like Ar usage of the FTM becomes more important as thermal

effects become even more significant.

7.4.2 Total dissipated power by coated bubbles

In order to get a better understanding on the effect of thermal dissipation on the uncoated bubble

oscillations, Fig. 7..3 shows the total dissipated power as a function of frequency and gas core

composition for a coated bubble with R0 = 2µm, Gs=45 MPa and µsh = 1.49(R0(µm)−0.86)
θ(nm) with

θ = 4nm. The right column represents the dissipation results for a bubble with air gas core and the

left column illustrates the dissipated power for a C3F8 gas core. When Pa = 1kPa (Figs. 7.3a-b)

and with air as the gas core, the NTM over estimates the value of the resonance frequency while

the FTM and LTM predict the same resonance frequency. However, the LTM slightly under-predicts
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(≈ 6% at resonance peak) the dissipated power. In case of a C3F8 gas core, the NTM, FTM and

LTM predict the same value for resonance frequency and total dissipated power. The total dissipated

power increases with an increase in the excitation pressure (Figs. 7.3c-h), and the main resonance

frequency shifting to lower frequencies. In case of an air gas core, the LTM slightly underestimates

the total dissipated power at resonance; however, the LTM and FTM predict the same value for the

dissipated power at other frequencies (Fig. 7.3). For the studied pressures in Fig. 7.3 (1-100 kPa)

even when 2nd order SuH occurs, predictions of the LTM and FTM are in good agreement. This

is because unlike the uncoated bubble where the thermal damping is the major contributor to the

total dissipated power, in case of coated bubble thermal effects are largely overwhelmed by the

strong dissipation due to Cd. In case of a C3F8 gas core, predictions of the NTM, FTM and LTM

are in excellent agreement at all excitation pressures examined. This is because C3F8 has smaller

Td compared to air, therefore Td is overwhelmed by the strong Cd. For the characterization of

UCAs that enclose gases like C3F8 (coated bubbles with R0 < 4µm), thermal effects can fully be

neglected. For larger bubbles, Td increases as the surface area for Td increases; however, UCA sizes

are limited to bubbles smaller than 8 µm [12]. Fig. 7.3 however shows that FTM is the appropriate

model for more accurate prediction of the behavior of uncoated bubbles.

7.4.2.1 Mechanisms of damping in coated bubbles at different pressure amplitudes

In order to highlight the pressure dependence of the dissipation mechanisms in a coated bubble,

the dissipation due to Rd, Td, Ld and Cd of a coated bubble with R0 = 4µm is studied as a function

of frequency (0.25fr < f < 2.5fr) at different pressures between 1−240kPa and results are plotted

in Fig. 7.4. More information on the mechanisms of damping considering the effect of size for both

the coated and uncoated bubbles can be found in the Appendix. Fig. 7.4 plots the dissipated power

due to the damping from coating (Cd), Td, Rd and Ld for a coated bubble with R0=4 µm ,Gs=45

MPa, θ=9 nm and µsh = 1.49(R0(µm)−0.86)
θ(nm) . This was chosen as it is the upper limit of the coated

bubbles that can be used in biomedical ultrasound and thus has the highest Td. The right column

represents the air gas core and the left column represents the C3F8 gas core. When Pa=1 kPa and

for the air as the filling gas (Fig. 7.4a) the damping due to Cd is the major damping factor at the

main resonance and frequencies below (Cd > Td > Ld > Rd). For frequencies above 1.5fr Rd
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contributes more to damping with Rd≈Cd at f = 2.5fr. At f ≈ fr, Cd is 3 times stronger than

Td and Ld. For the bubble filled a C3F8 core (Fig. 7.4b) Cd is the major dissipation factor with

Cd > Ld > Rd > Td; Cd is ≈ 3.8 larger than Ld and 40 times larger than Td. Thus use of C3F8 as

the gas core significantly reduces the Td at resonance.

For the coated bubble filled an air core at an increased Pa = 80kPa (Fig. 7.4c), we see the

generation of 2nd and 3rd SuH resonances and a large shift of the main resonance to PDfr

(pressure dependent resonance frequency) at f = 0.79fr. Cd is the major damping factor (≈ 4.5

times larger than Ld) with Ld ≈ Rd ≈ Td. At frequencies below resonance Cd > Td > Ld > Rd

and at frequencies above 1.5fr Rd > Ld ≈ Td. For the bubble filled a C3F8 gas core (Fig. 7.4d) the

shift in main resonance is more significant due to less thermal damping effects (PDfr = 0.76fr)

and Cd > (Ld ≈ Rd) > Td. Here Cd is 64 times stronger than Td at the PDfr.

Fig. 7.4e-f displays the case of sonication with Pa= 160 kPa. For the air bubble (Fig. 7.4e)

Cd > Rd > Ld > Td at frequencies near and below PDfr. When the growth rate of the dissipation

factors are compared in Fig. 7.4, we see that Rd grows the fastest with pressure increase and Td

has the slowest growth rate. As pressure increases Rd grows faster and eventually becomes the

second major dissipation factor while the initially strong Td lags behind the rest of the damping

factors. Due to the high bubble oscillation amplitude Rmax
R0

> 2 the bubble may not sustain stable

non-destructive oscillations for f < fr at 160 kPa. At this pressure and at fr < f < 1.5fr Ld

uTduRd. For the C3F8 bubble, due to the smaller damping from thermal effects we can see the

generation of SH resonance peak at f ≈ 2f (Fig. 7.4f). For the frequency range that is studied

here, Cd > Rd ≈ Ld. Cd is ≈ 100 times and 600 times stronger than Td, respectively at PDfr and

PDfsh (pressure dependent SH resonance at ≈ 1.86fr).

At Pa=240 kPa the SH resonance peak is seen for the coated air bubble (Fig. 7.4g). The bubble

oscillation amplitude has exceeded the threshold of destruction Rmax
R0

> 2 for f < fr. At f = PDfsh

(1.67fr at Pa=240 kPa) Cd > Rd > Td ≈ Ld. Cd is about 46 times stronger than Td. For the coated

bubble enclosing C3F8 (Fig. 7.4h) thermal effects are much weaker at PDfsh ( 1.62fr at Pa=240

kPa) with Cd > Rd > Ld > Td and Cd is about 72 times stronger than Td. For frequencies below

fr, the bubble can not sustain stability at this pressure.

217



0.5 1 1.5 2 2.5
f/fr

10-24

10-23

10-22

10-21

10-20

P
o

w
er

 [
W

]

1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

R
m

ax
/R

0

Coated Air bubble, R0=4 m, Pa=1kPa

Td
Rd
Ld
Cd
R

max
/R

0

0.5 1 1.5 2 2.5
f/fr

10-26

10-24

10-22

10-20

P
o

w
er

 [
W

]

1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

1.008

R
m

ax
/R

0

Coated C3F8 bubble, R0=4 m, Pa=1kPa

Td
Rd
Ld
Cd
R

max
/R

0

(a) (b)

0.5 1 1.5 2 2.5
f/fr

10-20

10-19

10-18

10-17

10-16

P
o

w
er

 [
W

]

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

R
m

ax
/R

0

Coated Air bubble, R0=4 m, Pa=80kPa

Td
Rd
Ld
Cd
R

max
/R

0

0.5 1 1.5 2 2.5
f/fr

10-22

10-20

10-18

10-16

P
o

w
er

 [
W

]

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

R
m

ax
/R

0

Coated C3F8 bubble, R0=4 m, Pa=80kPa

Td
Rd
Ld
Cd
R

max
/R

0

(c) (d)

0.5 1 1.5 2 2.5
f/fr

10-20

10-18

10-16

10-14

P
o

w
er

 [
W

]

1

1.5

2

2.5

R
m

ax
/R

0

Coated Air bubble, R0=4 m, Pa=160kPa

Td
Rd
Ld
Cd
R

max
/R

0

0.5 1 1.5 2 2.5
f/fr

10-22

10-20

10-18

10-16

10-14

P
o

w
er

 [
W

]

1

1.5

2

2.5

R
m

ax
/R

0

Coated C3F8 bubble, R0=4 m, Pa=160kPa

Td
Rd
Ld
Cd
R

max
/R

0

(e) (f)

0.5 1 1.5 2 2.5
f/fr

10-19

10-18

10-17

10-16

10-15

10-14

P
o

w
er

 [
W

]

1

1.5

2

2.5

3

3.5

4

4.5

5

R
m

ax
/R

0

Coated Air bubble, R0=4 m, Pa=240kPa

Td
Rd
Ld
Cd
R

max
/R

0

0.5 1 1.5 2 2.5
f/fr

10-22

10-20

10-18

10-16

10-14

P
o

w
er

 [
W

]

1

1.5

2

2.5

3

3.5

4

4.5

R
m

ax
/R

0

Coated C3F8 bubble, R0=4 m, Pa=240kPa

Td
Rd
Ld
Cd
R

max
/R

0

(g) (h)

Figure 7.4: Dissipated power due to Cd, Td, Ld and Rd as predicted by the full thermal model as a function of frequency for a coated
bubble with R0= 4 µ m at various pressures (left column is for an air gas core and right column is for a C3F8 gas core).
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Figure 7.5: Scattering to damping ratio (STDR) as a function of frequency at various excitation pressures. Top row is for an uncoated
bubble with R0 = 2µm and bottom row is for a coated bubble with R0 = 4µm. (left column is an uncoated air bubble and right
column is a C3F8 coated bubble ).

7.4.2.2 Scattering to damping ratio (STDR)

One of the important reasons for the valuation of the nonlinear dissipation terms (Eqs. 11 & 12)

is the calculation of the pressure dependent scattering to dissipation ratio (STDR). In the previous

sections and the results presented in the Appendix, it was shown that dissipation due to Cd, Ld, Rd

and Td are pressure dependent. We showed that as pressure increases, Rd can grow faster than the

other damping factors and can become the dominant or the second major dissipation mechanism

in the total dissipation. This will increase the scattering to dissipation ratio (STDR), which would

be desirable for applications in which a larger scattering to dissipation is desired. In this section

we investigate the pressure dependence of the STDR and present the regions for which STDR can

be enhanced. The graphs are calculated using Eqs. 11 and 12 and inputting the radial oscillations

that are solved by coupling the KMCH (Eq. 2) or the KM (Eq. 3) models with the FTM.

Fig. 5a shows the STDR of an air uncoated bubble with R0 = 2µm as a function of frequency
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at various pressures. At 1 kPa (the blue line), the STDR diagram doesn’t show any distinct peak;

STDR grows as a function of frequency. At higher frequencies the bubble oscillations are very

weak; thus Ld and Td are negligible compared to active scattering Rd. This is because even for

weak bubble oscillations, the bubble re-radiates and scatters sound waves. However, the very weak

oscillation leads to near zero wall velocities thus Ld becomes very small. Similarly, due to the near

zero temperature elevation inside bubble, Td becomes very small as well. Thus, the STDR is higher

at higher frequencies and lower excitation pressures. An increase in pressure leads to increase in

the STDR. The STDR is very high at PDfr [24] (e.g. 0.4 at 100 kPa). As pressure increases, the

STDR at the SuH resonance frequencies and PDfr increases. This is due the faster growth of Rd as

incident pressure increases when compared to other damping factors. At 150 kPa and concomitant

with the generation of 1
2 SH resonance [60] (green curves f/fr > 1.5), the STDR decreases. This is

because when the bubble oscillation amplitude increases, Ld and Td become significant, decreasing

the STDR. We have shown the same effect for the case of sonication with pressure dependent SH

resonance [61] when 1
3 [62,63] order SH resonance occurs [36]. For the investigated bubble when

f > 1.5fr, the STDR does not change as pressure increases, unless SH oscillations appear (in which

case STDR decrease by pressure increase).

Fig. 7.5b shows the STDR of a C3F8 uncoated bubble with R0 = 2µm as a function of frequency

at various pressures. The evolution of STDR with pressure is similar to that of the air bubble;

however, SH oscillations occur at lower pressures than the air gas core due to smaller effects of Td.

Furthermore, the STDRs at PDfr and SuH resonances are stronger than those for the air bubble

due to weaker contributions from Td. Thus, for uncoated bubbles one may get larger STDRs if a

gas like C3F8 is used.

Fig. 7.5c shows the STDR as a function of frequency of a coated air bubble with R0 = 4µm.

The evolution of the STDR with pressure increase is very similar to that of the uncoated bubble;

however, the STDR is considerably reduced compared to the uncoated counterpart. This is because

of the increased damping due to coating friction. In Fig. 7.4 we showed that Cd is the major

damping factor for the coated bubble. We see the same trend in the STDR of the bubble with

a C3F8 gas core (Fig. 7.5d). The values of STDR are very close to the ones of the air gas core

for f < 1.5fr. This is because Cd is the major contributor to total damping and changes in Td

do not affect the Wtotal significantly. At higher frequencies however, the C3F8 bubble exhibit SH
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oscillations at a lower pressure.

7.5 Discussion

Bubbles are the building blocks of several applications from material science and sonochemsitry

[6,7,8,9,10] to oceanography [4,5] and medicine [11,12,13]. Dynamics of bubbles are nonlinear

and complex [15, 17, 18, 19, 20] and to achieve their full potential in applications a detailed and

quantitative understanding of the bubble response to acoustic excitation as well as scattering

and damping mechanisms are needed. The presence of bubbles however, changes the acoustic

properties of the medium [31, 32, 33, 34, 35, 36, 37]. Changes in the acoustic properties are

nonlinear and are a function of bubble size, excitation frequency and pressure [34, 35, 36, 37].

Because of the changes in the acoustic properties of the medium (e.g. increased pressure dependent

attenuation [34,37,43,45]), knowledge of the nonlinear bubble behavior is not enough to control

and optimize applications. One must have sufficient knowledge on the relationship between the

nonlinear bubble oscillations and changes in the acoustic properties of the medium. For example,

increased attenuation from bubbles in the beam path can limit the energy that the bubbles at

the target are exposed to [34, 45] and decrease the efficacy of sonochemical applications [34, 35,

37], drug delivery [65] and enhanced heating in HIFU [44]. Increased attenuation of bubbles

can also create shielding of the post-focal tissue and bubbles in contrast enhanced diagnostic

ultrasound and deteriorate the ultrasound images [65,66]. In bubble characterization applications

like oceanography studies [4, 5] or characterization of ultrasound contrast agents [38, 39, 40, 41,

42,43] pressure dependent changes in the attenuation are of significant importance and should be

understood in detail.

In this study we present a simple model for coated bubbles that accounts for the compressibility

effects up to the first order of Mach number. The model is called CHKM model as it is a hybrid

of Church-Hoff model [38] and Keller-Miksis (KM) model [47]. The goal of incorporating the

compressibility effects was to investigate the dissipation of acoustic energy due to re-radiation (Rd)

effects [35, 36, 37]. Rd is a important pressure dependent dissipation mechanism [35, 36, 37];

however, it is simplified [48] or fully neglected [38] in models that are used to study the coated
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bubble behaviors. To model the oscillations of coated bubbles and uncoated bubbles, CHKM

and KM models were respectively solved; in each case three forms were considered for the gas

pressure inside the bubble. First, CHKM was coupled to nonlinear ordinary differential equations

(ODEs) that model the thermal behavior of gas bubbles [49, 51, 52, 53]. Second, thermal effects

were incorporated using linear approximations that include the thermal effects [33, 53]. The

linear thermal model has been widely used in studies related to coated bubble characterization

and characterization of bubbles in oceanography [4, 5, 39, 40]. Third, thermal effects were fully

neglected.

The relationship between excitation pressure and damping mechanisms for an oscillating coated

bubble has not been investigated thoroughly. Thus, in this work, using our previous approach [36]

we derived the nonlinear pressure dependent terms for the energy dissipation of the coated bubbles,

which were derived for the first time. Dissipation terms stemming from thermal effects (Td),

viscosity of coating (Cd), liquid viscosity (Ld) and re-radiation of acoustic waves (Rd) by coated

bubbles were derived.

In order to investigate the effect of thermal damping on bubble oscillations and choose the proper

model for bubble oscillations, the total dissipated acoustic energy was modeled using the three

models described above for both uncoated and coated bubbles of different sizes. For each bubble

size energy curves were displayed as a function of frequency at various pressures and for two gas

cores of air and C3F8.

Results showed that in case of uncoated bubbles thermal effects are significant and cannot be

neglected. Furthermore, linear approximations are only valid for small excitation pressures (e.g.

1 kPa). For higher pressures (e.g. > 10 kPa) predictions of the linear thermal model and the full

thermal model deviate and full thermal model should be used to model bubble oscillations. The

deviation arises due to the growth of nonlinear effects in the bubble oscillations. The linear thermal

model is derived by assuming very small bubble oscillation amplitude [10] (e.g. Rmax/R0 < 1.02)

and for symmetric expansion and compression (the bubble oscillates around R0). However, as

pressure increases, the radial oscillations grow above the size limit where linear assumptions are

valid. The bubble expansion and compression phases are no longer symmetric. Higher internal

temperatures are created during significant compression or collapse (larger Rmax/Rmin) and the

average surface area available for temperature escape becomes smaller or enhanced depending on
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the regime of oscillations. This causes the predictions of the two models to deviate. As an example,

below resonance (e.g. at pressure dependent resonance frequency) the collapse of the bubble into

a smaller radius decreases the surface area for the heat to dissipate into the surrounding liquid. At

the same time, the bubble collapses with a higher wall velocity and rebounds quicker, thus the time

duration available for the temperature escape will be limited as well. The average surface area for

thermal conduction decreases. Thus, the initially stronger Td in the linear oscillation regime (e.g.

PA = 1kPa in Fig. 7.4a ), becomes weaker than Rd and Ld in the PDfr regime (e.g. Fig. 7.4e

and 4g). This effect can only be captured using the full thermal model (Eqs. 4 and 5). It should be

noted that the more complete thermal model uses the full partial differential equations (PDEs) [51]

for heat loss which incorporates the temperature gradients within the oscillating bubble. The full

thermal model in ODE form (Eqs. 4 and 5) has the advantage of faster computation time, however

it simplifies the PDE form by assigning a uniform average temperature within the gas. For the

moderate pressures used in this study, predictions of the full thermal model in the ODE form have

been shown to be in good agreement with the thermal model in the PDE form [51].

In case of the coated bubbles with air gas core the ODE thermal model (Eq. 5 & 6 ) [51] is a more

precise model to incorporate the thermal effects at higher pressures compared to simplified linear

model [33, 50] (Fig. 7.3). Because of very high dissipation due to coating, Cd is the dominant

dissipation mechanisms within the frequency and pressure ranges that were studied in this paper.

As the driving pressure increases, the ratio of the Td to other damping factors decreases for < 1.5fr

(Figs. 7.4c,7.4e & 7.g). For the air coated bubble with R0 = 4µm and at 1kPa, and in agreement

with linear estimations [38] Cd > Td > Ld > Rd. However, when PA = 80 kPa (Fig. 7.4c)

and at f = PDfr(≈ 0.8fr), Cd > Td u Ld u Rd; when PA = 160 kPa (Fig. 7.4e) and at

f = PDfr(≈ 0.61fr) Cd > Rd > Ld > Td. The reason for the larger increase in Ld and

Rd compared to Td is because of the faster bubble collapses (higher wall velocities) and higher

wall accelerations. Thus, Rd and Ld exhibit very large growth with pressure, meanwhile due to

lower average surface area for thermal conduction stemming from rapid collapse and rebound,

Td can not grow as fast as the other dissipation mechanisms. Td estimated by the linear thermal

approximations (Eqs. 7-10) cannot capture this effect as it is proportional only to the wall velocity

(Td = 16πµth
T

∫ T
0

(
RṘ2

)
dt), and thus behaves similar to Ld and in this case will remain stronger

than Ld at all pressures. At higher pressures, these results are in contradiction with the predictions
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of the linear model and emphasize the importance of using the full thermal model (Eqs. 5 and

6) in modeling the radial oscillations together with Eq. 11 and 12 in modeling the dissipation

mechanisms. For frequencies > 1.5fr and for pressure and frequency ranges where SH oscillations

occur (e.g. [60,61]), Td of the air gas core is very important and can not be ignored (Fig. 7.4g).

In case of C3F8 coated bubbles, and for the pressure and frequency ranges that are investigated

here, thermal effects can be neglected (Figs. 7.3a, 7.b, 7.f, & 7.h) as it is 10-100 times smaller

than the major dissipation factor Cd (Figs. 7.4b, 7.4d, 7.4e and 7.4f). The reason for much smaller

Td of the C3F8 gas core compared to the air gas core is that the heat capacity of the C3F8 at

constant volume is about 8.2 times higher. This consequently results in much smaller temperature

elevations inside the bubble. Therefore, the temperature gradient at the bubble wall decreases and

thus thermal loss becomes smaller.

The pressure ranges studied here (1 kPa-100 kPa) are often used to characterize the shell param-

eters of coated bubbles in medical ultrasound. The previous studies [39, 67, 68]; considered an

artificial viscosity term and added it to the liquid viscosity to consider the thermal effects in the

bubble oscillations. The viscosity is usually twice that of the water viscosity [39,67, 68]. Here, we

show that such approximation leads to considerable overestimation of the Td especially in case of

C3F8 or similar gasses like C4F10 (Fig. 7.4). Thus estimated values for the viscosity of coating

in [39,67,68] and pressure threshold of SH oscillations may be inaccurate.

In the Appendix, we investigated the dependence of Cd, Ld, Rd and Td for different bubble sizes as

a function of frequency and at different pressures. We showed that the dissipated energy depends

on size, frequency and pressure. In case of uncoated bubbles, it is shown in the Appendix that

Td is very important for the larger air bubbles (e.g. 10µm); however at higher pressures Rd can

exceed Td. For C3F8 uncoated large bubbles Td is only the major damping factor for f < fr

and lower pressures (e.g. Pa < 10kPa). Rd is the major damping factor at f > 1.5fr and for

all the pressures studied here. For the uncoated C3F8 large bubble (e.g. 10µm) Rd becomes the

major damping factor for f < fr (e.g. PDfr and super harmonic resonance (SuHfr)) as pressure

increases (Pa > 40kPa). For smaller uncoated air and C3F8 bubbles (R0 < 2µm) Td is not the

major damping factor. Rd, Ld and Td grow as pressure increases; Rd exhibits the fastest growth

rate and Td the slowest. At higher pressures (e.g. Pa > 100kPa) Rd and Ld become an order of

magnitude higher than Td (for the studied frequency range here 0.25fr < f < 2.5fr).
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For coated bubbles Cd is the major damping factor for the pressure and frequency ranges that were

studied here (except for f > 2fr and for the coated bubble with R0 = 1µm where Rd is the most

significant dissipation mechanism). Similar to the uncoated bubble, Rd grows faster than other

damping factors with pressure increases while Td has the slowest growth rate. The reason for the

faster growth of Rd with pressure increase is its strong dependence on the fourth power of the

wall velocity and second power of the wall acceleration (Rd ∝ R2
(
RR̈+ 2Ṙ2

)2
Eq. 16 2). Ld and

Cd are only dependent on the second power of the wall velocity (Ld∝ (RṘ2) and Cd ∝ ( Ṙ2

R2 )). At

higher pressures and specially at frequencies below resonance, the bubble attains very high wall

velocities upon collapse and due to the stronger dependence of the Rd on wall velocity compared to

Cd and Ld, it demonstrates a larger growth. Because of the very strong effect of Cd on the damping

(which increases for smaller bubbles) and due to the reduction of Td with size, Td becomes less

important for smaller coated bubbles (compare Fig. 7.4 with the Fig. 7.9 of the appendix).

The bubble scattered pressure (Psc) and attenuation can be measured in real time. Psc depends

on R(t), ˙R(t) and ¨R(t); thus there is a direct relation between the enhanced bubble activity and

increased Psc. Power loss due to radiation (Psc) can be calculated using Eqs. 11 and 12 for coated

and uncoated bubbles respectively or Eq. 15 and is related to the scattered pressure measured

in real time during applications. Total damping can be calculated using Eqs. 11 and 12 and

attenuation which is directly related to damping [34, 35, 37] can be calculated using the total

damping [34, 35, 37]. The scattering to damping ratio (STDR = Rd
Wtotal

where Wtotal is the total

dissipated power due to bubble oscillations) can be defined as a dimensionless parameter that

can be used to assess the ratio of the energy re-radiated by the bubble as a fraction of the total

attenuation.

We derive the nonlinear terms to calculate the STDR and investigated the pressure dependence of

the STDR for without any linear assumptions. We showed that scattering to damping ratio (STDR)

is pressure dependent; STDR grows with pressure at pressure dependent resonance frequencies

(PDfr [24]) and at super harmonic resonances of the system (SuHfr [23]). The increase in STDR

with pressure was due to the faster growth in Rd relative to the other damping factors. STDR is

generally higher at f > fr. For the bubble size and frequency examined in this paper pressure

2Eq. 16 is used here for simplicity of comparison. Note that the Rd in Eq. 11 and the Sd in Eq. 16 are the same
phenomena and have the same value
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ranges here, elevation in excitation pressure does not change the value of STDR for f > 1.5fr,

until the occurrence of SH resonance which leads to a decrease in STDR. At f ≈ 2fr and when

SH oscillations are initiated, due to the gentler collapses [60] and larger available surface area for

thermal conduction the Td undergoes a larger enhancement compared to Rd and Ld (e.g. Figs.

7.4g-h, and in Appendix see Figs. 7.7f-h and 4.8f-h) which consequently results in a decrease in

STDR (when SHs are initiated Td exhibits the largest growth). For coated bubbles, and for the

stable non-destructive bubble oscillations Rmax
R0
≤ 2, STDR can be higher than PDfr and SuHfr

even when SH oscillations occur (Figs. 7.5c and 7.d).

Coated bubbles are used as ultrasound contrast agents (UCAs) in ultrasound imaging [11,12,13,40,

45,65,66,67,68] where higher scattering and small attenuation are desired. The scattering defines

the ability of UCA to enhance the echogenicity of the target. However, the presence of bubbles

increases the damping of the acoustic energy in the beam path and reduces the energy available

for the bubbles to be activated at the focal point. Thus higher scattering ability of UCAs and lower

total damping is desired. In this regard STDR expresses the ability of the UCA to enhance the

visualization of the tissue containing the UCAs and the underlying tissues [45, 65]. In therapeutic

applications like drug delivery shear stress resulted from micro-streaming due to bubble oscillations

are used to increase the drug delivery to cells in the target [64]. In drug delivery higher wall

velocities and higher Psc are desired. Compared to imaging applications, in therapeutic applications

higher concentration of bubbles are used to achieve desirable effects [64]; thus damping effects are

more significant [13,44]. Higher STDR and Psc are good indicators of a faster bubble wall velocity

and lower total damping. In High Intensity Focused Ultrasound the re-radiated energy by bubbles

is used to enhance the heating in the target area [44]; re-radiated pressure often have strong

higher harmonics content which have higher absorption rate in tissue [44]. This results in localized

efficient enhanced heating [44]. In these applications as well, higher Psc and lower energy damping

due to pre-focal bubble oscillations are desired. Same conclusions can be made for active bubbles

in sonochemistry and other applications. Decreasing the pre-focal power dissipation becomes more

important in treatment of locations where delivery of energy is more difficult (e.g. presence of

pre-focal bone in blood brain barrier opening [69, 70]). One of the important applications of the

derived nonlinear energy terms in this paper is the ability to calculate the pressure dependent

STDR and thus optimize the acoustic exposure parameters to increase the focal bubble activity
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while reducing pre-focal dissipation.

It should however be noted that STDR by itself is not a sufficient parameter to asses efficient bubble

activity for a particular application. We have shown here and in [36] that the STDR is higher at

frequencies above fr, however, at higher frequencies bubbles are only active when pressure exceeds

a threshold (e.g. above the pressure threshold of P3 or P4 oscillations [62, 63, 71, 72, 73]). Thus,

depending on the application [36], the STDR must be used in tandem with Psc or Rd to determine

the regions of higher bubble activity and lower total damping.

7.6 Summary and conclusion

Despite the importance of radiation effects, the majority of the models for coated bubble oscillations

neglect or simplify radiation effects. Moreover, thermal effects are often approximated using linear

models or are fully neglected. Additionally, pressure dependent dissipation effects during bubble

oscillations are not fully understood. In this work we first introduced a simple and comprehensive

model for coated bubble oscillations. The model incorporates the compressibility of the medium to

the first order of Mach number. Secondly, the equations for the dissipation effects due to thermal

damping, liquid viscous damping, coating viscous damping and radiation damping are derived with

no linear simplifications. The dissipation mechanisms were then studied as a function of frequency

and at different excitation pressures. We showed that radiation effects are important and can not be

neglected. Radiation damping becomes more important with pressure increase. Even at frequencies

below resonance, dissipation due to radiation can become the major dissipation mechanism with

pressure increase. This is in stark contradiction to the predictions of linear models. For uncoated

bubbles, thermal effects are very important and can not be neglected. With pressure increase,

predictions of the linear thermal model loses accuracy and inclusion of the full thermal effects are

recommended. In case of coated bubbles that encapsulate gas cores similar to C3F8, thermal effects

are not important and can be neglected even at higher pressures. We also showed that scattering to

damping ratio is pressure dependent and there exists frequency and pressure ranges in which the

STDR is higher. The basic equations provided here and the presented fundamental information can

be used to optimize the exposure parameters in applications and for more accurate characterization
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of bubbly media and coated bubbles.
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7.8 Appendix

7.8.1 Derivation of the nonlinear terms of dissipation for the GM

Van Wijngaardan [32] and Caflisch et al. [31] presented the mass and momentum conservation

equations for a bubbly liquid as:
1
ρc2

∂P

∂t
+∇.v = ∂β

∂t
(7.17)

and

ρ
∂v

∂t
= −∇P (7.18)

where c is the sound speed, ρ is the density of the medium, v(r, t) is the velocity field, P (r, t)

is acoustic pressure, β = 4
3NπR(t)3 is the void fraction where N is number of bubbles per unit

volume, and R(t) is the radius of the bubble at time t. These two equations can be re-written into

an equation of energy conservation, by multiplying (1) by P and (2) by v:

∂

∂t

(
1
2
P 2

ρc2 + 1
2ρv

2
)

= NP
∂V

∂t
(7.19)

228



Multiplying Eq.2 by N ∂V
∂t results in:

ρN

(
RR̈+ 3

2Ṙ
2
)
∂V

∂t
− ρN Ṙ

c

(
RR̈+ 1

2Ṙ
2
)
∂V

∂t

= N

(
Pg + Ṙ

c
Pg + R

c

dPg
dt

)
∂V

∂t
−N

(
4µLṘ
R

+ Ṙ

c

4µLṘ
R

+ R

c

d

dt

(
4µLṘ
R

))
∂V

∂t

−N
(

12µshεR2
0
Ṙ

R4 + Ṙ

c
12µshεR2

0
Ṙ

R4 + R

c

d

dt

(
12µshεR2

0
Ṙ

R4

))
∂V

∂t

−N
(

12GsεR2
0

( 1
R3 −

R0
R4

)
+ Ṙ

c
12GsεR2

0

( 1
R3 −

R0
R4

)
+ R

c

d

dt

(
12GsεR2

0

( 1
R3 −

R0
R4

)))
∂V

∂t

−N
(
P + Ṙ

c
P + R

c

dP

dt

)
∂V

∂t
(7.20)

if we add Eq.18 and Eq.19:

ρN

(
RR̈+ 3

2Ṙ
2
)
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∂t
− ρN Ṙ

c

(
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2Ṙ
2
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1
2
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c
Pg + R

c

dPg
dt

)
∂V

∂t
−N

(
4µLṘ
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+ R
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dt
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R
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−N
(
Ṙ

c
P + R

c

dP

dt

)
∂V

∂t
(7.21)

The mass of the liquid around the bubble can be calculated as

Ml = 1
2

∫ ∞
R

ρ4πr2dr (7.22)

Keller-Miksis type models are derived by assuming that the flow of the liquid [47] around the

bubble is non-rotational ~∇× v = 0. This assumption leads to definition of the velocity potential ϕ,

which is given by:

v = ∂ϕ

∂r
(7.23)
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Furthermore the kinetic energy of the liquid around the bubble can be written as [35]:

Kl = 1
2

∫ ∞
R

ρ

(
∂ϕ

∂r

)2
4πr2dr = 2πρR3Ṙ2 (7.24)

inserting Kl in to Eq. 20:

∂

∂t
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1
2
P 2

ρc2 + 1
2ρv

2
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+N
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1− Ṙ

c

)
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∂t
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c
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c
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R

+ Ṙ
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(7.25)

Eq.24 can be re-arranged as:

∂

∂t

(
1
2
P 2

ρc2 + 1
2ρv

2 +NKl

)
+∇.(Pv) =

N (Pg)
∂V

∂t
−N

(
4µLṘ
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c
Pg −

R

c
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(7.26)

We then can simplify Eq. 25 as

∂

∂t

(
1
2
P 2

ρc2 + 1
2ρv

2
)

+∇.(Pv) = −N (πThermal + πLiquid + πShell + πGs + πRadiation) (7.27)
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where



πThermal = −Pg
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(7.28)

where time dependent πThermal, πLiquid, πcoating and πRadiation describe damping due to thermal,

liquid viscosity, coating viscosity and re-radiation. The term πGs can be referred to as the damping

due to the stiffness of the coating. When averaged over all acoustic cycles this damping term always

return zero.

Averaging Eq. 26 over a time period T yields:

1
T

∫ T

0

∂

∂t

(
1
2
P 2

ρc2 + 1
2ρv

2
)
dt+∇. < Pv >= −N (Td+ Ld+ Cd+Gd+Rd) (7.29)
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Where Td,Ld,Cd,Rd and Gd are the dissipated powers due to thermal, Liquid viscosity , coating

viscosity, re-radiation and stiffness of the coating.



Td = −4π
T

∫ T

0
R2ṘPgdt
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R2Ṙ2

c
(P − Pg) + R3Ṙ
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ṘR̈

cR
− 3Ṙ3
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(7.30)

In case of using the model with no thermal damping effects Td=0 and in case of incorporating the

linear thermal effects Td = 16πµth
T

∫ T
0

(
RṘ2

)
dt

7.8.2 Mechanisms of damping in uncoated and coated bubbles at different

pressure amplitudes and sizes

7.8.2.1 The uncoated bubble with R0 = 10µm

In this section we investigate the dependence of Td, Ld, and Rd on pressure, frequency, bubble size

and gas core composition for 3 bubble sizes (R0 = 10, 2 and 1µm).

Fig. 7.7 shows Td, Rd, Ld and resonance frequency (RmaxR0
) of an uncoated bubble with R0 = 10µm

as a function of frequency for different pressure amplitudes. The right column plots the data for

an air bubble and the left column plots the data for the C3F8 gas core. All of the calculations are
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performed using the FTM. When the gas core is air (Fig. 7.7a), Td is the major energy dissipation

factor for frequencies below 2fr. These results are consistent with analytical predictions [50] where

Td>Ld>Rd. For a C3F8 gas core (Fig. 7.7b) , Ld is the dominant damping factor at 0.5fr < f <

1.4fr below which Td becomes dominant and above which Rd becomes dominant. The width of

the curve is considerably narrower due to weaker damping effects; for the bubble with R0 = 10µm

thermal damping for the air gas core is very high and leads to widening of the curve. Due to

smaller damping effects (Fig. 7.7b), the bubble is able to grow larger Rmax
R0

and achieve higher wall

velocities, thus energy dissipation due to Ld becomes significant at resonance.

Figs. 7.7c-d show the case of Pa=40 kPa. For the air gas core bubbles (Fig. 7.7c) there is a shift of

the resonance frequency to lower values as well as the generation of 2nd and 3rd SuH resonance.

Td is still the major damping factor for f < 2fr; however, Rd has grown faster compared to Ld

at resonance and is now stronger than Ld at pressure dependent resonance (PDfr) and higher

frequencies. This may increase the scattering to damping ratio (STDR); a parameter that we would

like to maximize in imaging applications. For bubble with C3F8 gas core (Fig. 7.7d), we witness the

generation of sub-harmonic (SH) resonance peak at ≈ 2fr. The SH peak occurs at lower pressures

for C3F8 due to weaker damping compared to air. Rd is the major damping factor at PDfr and

2nd SuH resonance and Rd and Ld are comparable at 2fr and 3rd SuH resonance. Due to a weaker

Td (an order of magnitude smaller compared to Fig. 7.7c) in case of the C3F8 bubble (Fig. 7.7d)

amplitude of the bubble oscillations are higher at the resonances. Application of C3F8 as the gas

core can potentially increase STDR in bigger bubbles by suppressing the effect of Td.

For an air bubble, when Pa=80 kPa Rd dominates damping at frequencies below PDfr (Fig. 7.7e).

This shows that compared to Ld and Td, Rd grows at a faster rate with Pa. Thus contrary to

predictions of the linear models, we can find a pressure and frequency region in which Rd is higher

than Td and Ld and thus the STDR is optimized. For C3F8 (Fig. 7.7f) and at Pa=80 kPa Rd is the

strongest contributor to the dissipated power at the frequencies studied. At this pressure we also

witness the generation of 3
2 and 5

2 UH resonance (e.g. the peak between PDfr and 2nd SuH) with

Rd as the strongest damping factor.

For Pa=110 kPa, Fig. 7.7g shows that SH resonance peak appears at f =≈ 2fr. Rd becomes the

major damping factor at frequencies below fr; however, due to the fact that Rmax
R0

have exceeded 2

the bubble can not sustain long lasting stable oscillations and will undergo destruction [24,59]. We
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observe the same phenomenon in the C3F8 gas core bubbles (Fig. 7.7h) with Rd being the strongest

damping mechanism. In case of the C3F8, Rd>Ld>Td and in case of air gas core, Rd>Td>Ld.

7.8.2.2 The uncoated bubble with R0 = 2µm

Fig. 7.8 shows the dissipated power due to Td, Ld and Rd in the oscillations of a 2 µm bubble.

The left column represents an air bubble and the right column represents the C3F8 bubble. Fig.

7.8a shows that at Pa = 1kPa, Td and Ld are the major mechanisms of energy dissipation in the

bubble oscillations. Because the bubble is smaller than the previous case (see Fig. 7.8a where Td

is an order of magnitude greater than Ld), Td and Ld have equal contributions to damping. Fig.

7.8b represents the C3F8 bubble. Due to further weakening of the thermal effects, Ld is an order

of magnitude higher than Td.

Increasing Pa to 40 kPa leads to the generation of 2nd and 3rd SuH resonance frequencies and

the decrease in the fundamental resonance (PDfr) (Fig 7.8c-d). Due to a weaker Td in the

case of the C3F8 bubble (Fig. 7.8d), the amplitude of the bubble oscillations are higher at the

resonances. For the air bubble Td and Ld are the major dissipation mechanisms for f < 2fr. For

C3F8 Ld > Rd > Td for frequencies of and above the 2ndSuH; this suggests that the STDR can be

higher for the C3F8 bubble.

For Pa=100 kPa and for an air bubble (Fig. 7.8e) Td becomes less significant at f=PDfr; with

Ld > Rd > Td. This implies a higher STDR at this frequency and pressure. For f=2nd SuH and

f=3rd SuH we witness a fast growth of Rd however still Ld > Td > Rd. These results indicate

that as pressure increases Rd grows faster than Ld and Td. In case of C3F8 (Fig. 7.8f) bubble

we see the generation of SH resonance at f ≈ 2fr and Ld > Sd � Td. Because of a higher Rd,

when the gas core is C3F8, a higher STDR may be expected. Further increasing the pressure to

150 kPa leads to the generation of SH resonance peak at f ≈ 2fr (Fig. 7.8g) for the air bubble.

The later appearance of the SH peak is due to the higher Td in the air bubble. For an air bubble at

Pa=100 kPa, Rd > Ld > Td at PDfr , 2ndSuH and 3rdSuH and 3
2UH resonances. However, for

frequencies above fr, Td and Ld are the major damping factors. Results of Figs. 7.7 and 7.8 suggest

a relationship between Rmax
R0

and the order of damping factors for the air bubble. With an increase

in the incident pressure, Rd grows faster than other damping factors; at Rmax
R0

≈ 2, Rd becomes

stronger than the other damping factors. These results suggest that in the case of air bubbles, in
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Figure 7.6: Dissipated power due to Cd, Td, Ld and Rd as predicted by the full thermal model as a function of frequency for an uncoated
bubble with R0= 10 µm at various pressures (left column is for an air gas core and right column is for a C3F8 core).
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Figure 7.7: Dissipated power due to Td, Ld and Rd as predicted by the full thermal model as a function of frequency for an uncoated
bubble with R0= 2 µ m at various pressures (left column is for an air gas core and right column is for a C3F8 gas core).
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order to increase the STDR one needs to sufficiently increase the pressure; however we should also

consider the lower threshold of bubble destruction which is Rmax
R0

> 2. At Pa=100 kPa and in case

of C3F8 bubble (Fig. 7.8h), Rd > Ld > Td for the studied frequency range. Also we see a stronger

SH oscillations compared to the air bubble.

7.8.2.3 The coated (encapsulated) bubble with R0 = 1µm

Fig. 7.9 shows the power dissipated due to Cd, Ld, Rd and Td for a coated bubble with R0 = 1µm,

Gs=45 MPa, θ=4 nm and µsh = 1.49(R0(µm)−0.86)
θ(nm) . The right column represents the air gas core

bubble and the left column represents the C3F8 gas core bubble. Compared to Fig. 7.9, Td is

further suppressed as the smaller bubble has smaller surface area for temperature exchange. At

Pa = 1kPa (Fig. 7.9a-b), we see a similar behavior for the air and C3F8 gas core. Rmax
R0

, Cd, Ld

and Rd are similar for both cases;this is because the bubble with R0 = 1µm Td is negligible and

change of gas doesn’t make a big difference in the oscillation amplitudes or the dissipated powers.

Cd > Ld > Rd > Td with Cd ≈ 20 and 62 times larger than Td for the air and C3F8 bubble

respectively.

Increasing the pressure to 100 kPa (Fig. 7.9c-d) results in the generation of 2nd SuH frequency

with Cd > Ld > Rd > Td for 0.2fr < f < 1.5fr. At higher frequencies (f > 2fr) Rd becomes the

strongest damping factor.

When Pa=200 kPa a shift in the fundamental frequency occurs (f=fr at 1kPa) to PDfr (0.756fr

and 0.76fr for air (Fig. 7.9e) and C3F8 (Fig. 7.9f) bubbles, respectively). Furthermore, a 3rd SuH

resonance also appears below the 2nd SuH resonance frequency. For f < 1.5fr Cd > Ld > Rd > Td

with Rd becoming the major damping factor at f > 2fr. At this pressure Cd is 22.5 and 100 times

larger than Td for air and C3F8 respectively.

Increasing the pressure to 300 kPa (Figs 7.9g-h) leads to a higher Rmax
R0

at 3rd SuH, 2nd SuH and

PDfr and a decrease in the value of the resonances of the system. For example at 300 kPa PDfr

is ≈ 0.65fr and 0.66fr respectively for air and C3F8. For f < 1.5fr, Cd is the major damping factor

with Cd > Ld > Rd > Td. As the pressure increases, Rd grows faster and approaches Ld and will

eventually have a greater contribution to the total damping compared to Ld. Td on the other hand

has the slowest growth with Pa increase at the main resonance. At Pa =300 kPa unlike at the lower
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Figure 7.8: Dissipated power due to Cd, Td, Ld and Rd as predicted by the full thermal model as a function of frequency for a coated
bubble with R0= 1 µ m at various pressures (left column is for an air gas core and right column is for a C3F8 gas core

).
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pressures, the highest dissipation occurs at 2nd SuH resonance and not at the main resonance.

239



Bibliography

[1] Lauterborn, W., & Kurz, T. (2010). Physics of bubble oscillations. Reports on progress in physics, 73(10),

106501.

[2] Yang, X., & Church, C. C. (2005). A model for the dynamics of gas bubbles in soft tissue. The Journal of

the Acoustical Society of America, 118(6), 3595-3606.

[3] Xu, Zhen, Timothy L. Hall, J. Brian Fowlkes, and Charles A. Cain. ”Effects of acoustic parameters on

bubble cloud dynamics in ultrasound tissue erosion (histotripsy).” The Journal of the Acoustical Society

of America 122, no. 1 (2007): 229-236.

[4] Dogan, H., & Popov, V. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in

a cavitating bubbly liquid inside a sonochemical reactor. Ultrasonics sonochemistry 30 (2016): 87-97.

[5] Mantouka, Agni, Hakan Dogan, P. R. White, and T. G. Leighton. ”Modelling acoustic scattering, sound

speed, and attenuation in gassy soft marine sediments.” The journal of the acoustical society of America

140, no. 1 (2016): 274-282.

[6] Collings, Anthony F., Anthony D. Farmer, Paul B. Gwan, AP Sosa Pintos, and Chin Jian Leo. ”Processing

contaminated soils and sediments by high power ultrasound.” Minerals Engineering 19, no. 5 (2006):

450-453.

[7] Bigelow, Timothy A., Trevor Northagen, Thomas M. Hill, and Frances C. Sailer. ”The destruction of

Escherichia coli biofilms using high-intensity focused ultrasound.” Ultrasound in medicine & biology 35,

no. 6 (2009): 1026-1031.

[8] Suslick, Kenneth S. ”Sonochemistry.” science 247, no. 4949 (1990): 1439-1445.

[9] Storey, Brian D., and Andrew J. Szeri. ”Water vapour, sonoluminescence and sonochemistry.”

Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences

456, no. 1999 (2000): 1685-1709.

240



[10] Crum, Lawrence A., Timothy J. Mason, Jacques L. Reisse, and Kenneth S. Suslick, eds. Sonochemistry

and sonoluminescence. Vol. 524. Springer Science & Business Media, 2013.

[11] Roovers, Silke, Tim Segers, Guillaume Lajoinie, Joke Deprez, Michel Versluis, Stefaan C. De Smedt, and

Ine Lentacker. ”The role of ultrasound-driven microbubble dynamics in drug delivery: from microbubble

fundamentals to clinical translation.” Langmuir (2019).

[12] Qin, Shengping, Charles F. Caskey, and Katherine W. Ferrara. ”Ultrasound contrast microbubbles in

imaging and therapy: physical principles and engineering.” Physics in medicine & biology 54, no. 6

(2009): R27.

[13] Coussios, Constantin C., and Ronald A. Roy. ”Applications of acoustics and cavitation to noninvasive

therapy and drug delivery.” Annu. Rev. Fluid Mech. 40 (2008): 395-420.

[14] Brenner, Michael P., Sascha Hilgenfeldt, and Detlef Lohse. ”Single-bubble sonoluminescence.” Reviews

of modern physics 74, no. 2 (2002): 425.

[15] Esche R 1952 Untersuchung der Schwingungskavitation in Flussigkeiten (Investigation of acoustic

cavitation in liquids) Acustica 2 AB208–18

[16] Holt, R. Glynn, and D. Felipe Gaitan. ”Observation of stability boundaries in the parameter space of

single bubble sonoluminescence.” Physical review letters 77, no. 18 (1996): 3791.

[17] Holt, R. Glynn, D. Felipe Gaitan, Anthony A. Atchley, and Joachim Holzfuss. ”Chaotic

sonoluminescence.” Physical review letters 72, no. 9 (1994): 1376.

[18] Lauterborn, Werner, and Claus-Dieter Ohl. ”Cavitation bubble dynamics.” Ultrasonics sonochemistry

4, no. 2 (1997): 65-75.

[19] R. Lauterborn, Werner, and Andreas Koch. ”Holographic observation of period-doubled and chaotic

bubble oscillations in acoustic cavitation.” Physical Review A 35, no. 4 (1987): 1974.

[20] Lauterborn, Werner, and Eckehart Cramer. ”Subharmonic route to chaos observed in acoustics.”

Physical Review Letters 47, no. 20 (1981): 1445.

[21] Parlitz, U., V. Englisch, C. Scheffczyk, and W. Lauterborn. ”Bifurcation structure of bubble oscillators.”

The Journal of the Acoustical Society of America 88, no. 2 (1990): 1061-1077.

241



[22] Haghi, H., Sojahrood, A.J. and Kolios, M.C., 2019. Collective nonlinear behavior of interacting

polydisperse microbubble clusters. Ultrasonics sonochemistry, 58, p.104708.

[23] Sojahrood, A.J., Wegierak, D., Haghi, H., Karshfian, R., & Kolios, M. C. A simple method to analyze

the super-harmonic and ultra-harmonic behavior of the acoustically excited bubble oscillator. Ultrasonics

sonochemistry 54 (2019):99-109

[24] A.J. Sojahrood et al., Influence of the pressure-dependent resonance frequency on the bifurcation

structure and backscattered pressure of ultrasound contrast agents: a numerical investigation, Nonlinear

Dynamics 80 (2015): 889-904.
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Chapter 8

Classification of the mechanisms of ultrasound

energy dissipation from the nonlinear

oscillations of coated and uncoated bubbles

8.1 Abstract

Acoustic waves are dissipated when they pass through bubbly media. Dissipation by bubbles takes

place through thermal damping (Td), radiation damping (Rd) and damping due to the friction of

the liquid (Ld) and friction of the coating (Cd). Knowledge of the contributions of the Td, Rd,

Ld and Cd during nonlinear bubble oscillations will help in optimizing the bubble and ultrasound

exposure parameters for relevant applications by maximizing a desirable parameter. In this work

we investigate the mechanisms of dissipation in bubble oscillations and their contributions to

the total damping (Wtotal) in various nonlinear regimes. By using bifurcation analysis, we have

classified nonlinear dynamics of bubbles that are sonicated with their 3rd superharmonic (SuH)

and 2nd SuH resonance frequency (fr), pressure dependent resonance frequency (PDfr), fr,

subharmonic (SH) resonance (fsh = 2fr), pressure dependent SH resonance (PDfsh) and 1
3 order

SH resonance. The corresponding Td, Rd, Ld, Cd, Wtotal, scattering to dissipation ratio (STDR),

maximum wall velocity and maximum back-scattered pressure from non-destructive oscillations of

bubbles were calculated and analyzed using bifurcation diagrams. We classified different regimes

of dissipation and provided parameter regions in which a particular parameter of interest (e.g. Rd)

can be enhanced. Afterwards enhanced bubble activity is linked to some relevant applications

in ultrasound. This paper represents the first comprehensive analysis of the nonlinear bubble

248



oscillations regimes and the mechanisms of dissipations in bubble oscillations.1.

8.2 Introduction

An ultrasonically excited bubble is a highly nonlinear oscillator in which deterministic chaos man-

ifests itself [1, 2, 3]. When a high pressure acoustic field is generated in an aqueous medium, the

rare faction cycle may exceed the attractive forces among liquid molecules generating cavitation

bubbles. Bubbles begin oscillating and emit sound [4, 5, 6]. The spectral components of the

emitted sound consist of harmonics and subharmonics of the incident sound wave center frequency

and broadband noise (Lauterborn & Holzfuss 1991 [3]). The nonlinear frequency content of the

emitted sound by bubbles has found its applications in contrast enhanced diagnostic ultrasound to

visualize the vascular structure [7,8,9] with superior contrast. Bubbles signatures are also used for

monitoring treatments in therapeutic ultrasound [10,11,12].

The pressure emitted by collapsing bubbles may form a shock wave (Radek 1972; Vogel et al.

1986) [5,13], that can mechanically damage nearby nearby structures. Bubble oscillations generate

micro-streaming in the liquid which results in shear stresses on the objects in its vicinity and

micro-mixing in the liquid [14, 15]. The induced shear stresses and the emitted shock-waves has

found their applications in industry (cleaning the micro-structures [14,15,16]) and medicine (e.g.

enhanced drug and gene delivery [17,18,19], blood brain barrier opening [20,21] and shock wave

lithotripsy and histotripsy [22,23]).

Ultrasonically excited bubbles can focus and concentrate the acoustic energy from the macro-scale

(acoustic wave) to the micro-scale and nano-scale [19,24] generating extremely high temperatures

and pressures as the bubbles collapse. This leads to molecular disassociation which triggers the

production of highly reactive free radicals [24, 25, 26] which then interact with other substances

in the solution. This phenomenon has been shown useful in numerous industrial processing

applications ranging from sonochemistry [24, 25, 26] (chemical reaction rate enhancement and

treatment of organic compounds) to the food industry [27] and medicine (sonodynamic therapy

[28]). Bubbles can focus and amplify the energy of the sound field by more than 11 orders of

magnitude, which is sufficient not only to break chemical bonds but also to induce luminescence

1To be submitted as: A.J. Sojahrood, H. Haghi, R. Karshafian and M.C. Kolios, Classification of the mechanisms of
ultrasound energy dissipation from the nonlinear oscillations of coated and uncoated bubbles.
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[29]. Local sound amplification and enhanced dissipation of acoustic energy by bubbles been used

to enhance the heating generated by ultrasound during ultrasound thermal therapies and high

intensity focused ultrasound (HIFU) tumor ablation [30].

Understanding and enhancing a specific type of bubble oscillatory pattern can help in enhancing the

outcome of the relevant application. For example, in contrast enhanced ultrasound the goal is max-

imizing the radiated pressure by the bubbles while keeping the dissipation of energy due to bubble

attenuation minimum [31, 32, 33]. This will lead to enhanced contrast and better visualization of

the target and eliminating the shadowing in ultrasonic images [31, 32, 33]. Shadowing [34, 35]

is caused by the dissipation of the ultrasonic energy by bubbles which leads to a weaker signal

intensity from underlying tissue. In HIFU the goal is to increase the dissipation at the focus while

reducing pre-focal shielding and energy dissipation by bubble oscillations. Here, knowledge of the

pressure dependent dissipation effects and the advantage of the sharp pressure gradients of HIFU

transducers facilitate the desired effect [32,33,36].

Bubbles dissipate the acoustic energy through radiation damping (Rd), thermal damping (Td),

damping due to the viscosity of the liquid (Ld) and damping due to the friction of the coating

(Cd) [37, 38, 39, 40, 41]. Despite the importance of detailed knowledge of the energy dissipation

mechanisms in bubble oscillations, the majority of previous studies have been limited by linear

approximations [37, 42, 43, 44, 45]. Linear studies simplify the bubble oscillations to very small

amplitudes at low excitation pressures (e.g. 1 kPa) [37,42]. However, bubble oscillations are non-

linear and energy dissipation depends highly on the excitation pressure [39,40,41,46]. Moreover,

the majority of the applications are based on sending ultrasound pulses of high pressure amplitude;

thus, linear approximations are inappropriate to model bubble oscillations.

Despite the importance of the knowledge on nonlinear energy dissipation by bubbles; however,

there are only few recent studies that explored the pressure dependent effects on energy dissipation

[38, 39, 40, 41, 46, 47]. Louisnard [38] derived the pressure dependent energy equations by con-

sidering the conservation of mass and momentum in a bubbly media and used the Rayleigh-Plesset

equation for bubble oscillations [48]. He derived the dissipation equations for Ld and Td. His

analysis showed that energy dissipation is pressure dependent and predictions of the linear model

can be orders of magnitude smaller than the pressure dependent model. Jamshidi & Brenner used

Louisnard’s approach and Keller-Miksis equation [49] to incorporate the compressibility effects
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up to the first order of Mach number. They were able to derive Ld, Td and Rd. Their analysis

showed that Rd has an important role in energy dissipation and as is typically done cannot be

neglected [39]. In our recent work, we showed that equations derived by Jamshidi & Brenner need

to be corrected as their model predicts non-physical values for Rd near resonance and predictions of

Rd are not consistent with the predictions of the scattered pressured energy (Sd) by bubbles [40].

We presented the corrected forms of Ld, Rd and Td. We showed that dissipation terms are highly

pressure dependent and as pressure increases Rd may grow faster than Td and Ld; thus, there exist

optimum pressure and frequency ranges where the scattering to dissipation ratio (STDR) can be

maximized [40, 41]. Moreover, we showed that the STDR which can be used as standardization

parameter to assess the efficacy of bubble oscillations [40] in applications is pressure dependent.

STDR should be used in conjunction with Rd and the maximum scattered (re-radiated) pressure

by bubbles for a more complete assessment of a given control parameter for bubble oscillation

optimization [40].

Using the same approach as in [40], we derived the nonlinear energy dissipation equations for a

coated bubble [41]. We analyzed the resonance power curves for free and encapsulated bubbles

and showed that Td can be neglected for coated bubbles that have C3F8-like gas cores. We also

showed that although Td is the dominant dissipation mechanism for large uncoated bubbles; at

higher pressures Rd can supersede Td. Moreover, Cd is the strongest dissipation mechanism in the

oscillations of the coated bubbles; pressure increase however, there are instances in which Rd is

stronger than Ld and Td.

In this paper we provide a detailed analysis of the pressure dependent dissipation mechanisms by

bubble oscillations and role of each of the dissipation components (Td, Ld,Rd and Cd) at various

nonlinear regimes. Knowledge of the pressure dependent dissipation effects and the examination

of each contributing component will help us better understand bubble related phenomena and

enhance a desirable effect in bubble oscillations.

In this paper we have classified major nonlinear regimes of the oscillations for free and coated

bubbles. In this regard, our recent comprehensive approach is used to analyze the bubble oscilla-

tions [50] as a function of pressure. The major nonlinear regimes that are considered here are 2nd

and 3rd SuH resonant oscillations, 3
2 , 5

2 and 7
2 UH regimes, pressure dependent resonance effects,

excitation with linear resonance (fr), pressure dependent resonance(PDfr), 1
2 , 1

3 and higher order
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SH resonance. Afterwards, the pressure dependent dissipation mechanism and the role of each

contributing factor to the total dissipation is analyzed in detail for each category of oscillations.

STDR, maximum bubble wall velocity and maximum re-radiated pressure amplitude are analyzed

for each regime. We show that depending on the specific oscillation regime, there is a exposure

condition in which a particular parameter (e.g. maximum wall velocity, the maximum re-radiated

pressure amplitude, Rd, Wtotal) can be maximized or minimized. These findings are then related

to some of the current applications of bubbles.

8.3 Methods

8.3.1 Coated bubble model

The dynamics of a coated bubble oscillator including compressibility effects to the first order of

Mach-number can be modeled using the Keller-Miksis-Church-Hoff (KMCH) model [41,42,49]:

ρ

[(
1− Ṙ

c

)
RR̈+ 3

2Ṙ
2
(

1− Ṙ

3c

)]
=(

1 + Ṙ

c
+ R

c

d

dt

)(
Pg −

4µLṘ
R
− 12µshεR2

0Ṙ

R4 − 12GsεR2
0

( 1
R3 −

R0
R4

)
− P0 − P

) (8.1)

Where ρ and c are respectively the density and sound speed of the medium, R is the radius

at time t, Ṙ is the bubble wall velocity, R̈ is the bubble wall acceleration, R0 is the initial radius

of the bubble, µ and µsh are the viscosity of the liquid and shell (coating) respectively, ε is the

thickness of the coating, Gs is the shell shear modulus, Pg is the gas pressure inside the bubble, P0

is the atmospheric pressure (101.325 kPa) and P is the acoustic pressure given by P = Pasin(2πft)

with Pa and f are respectively the excitation pressure and frequency. In this paper for all of the

simulations of the coated bubbles Gs=50 MPa and µsh = 1.49(R0(µm)−0.86)
θ(nm) [51] with θ = 4nm. The

gas inside the bubble was chosen to be C3F8 and the surrounding medium water.
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Thermal parameters of the gases at 1 atm

Gas type L( W
mK ) cp( kJ

kgK ) cv ( kJ
kgK ) ρg ( kg

m3 )
Air [53] 0.01165 + C × T 2 1.0049 0.7187 1.025

C3F8 [54] 0.012728 0.79 0.7407 8.17

Table 8.1: Thermal properties of the gases used in simulations.2 C=5.528× 1025 W
mK2 .

8.3.2 Uncoated Bubble model

The dynamics of the uncoated bubble including the compressibility effects to the first order of Mach

number can be modeled using Keller-Miksis (KM) equation [49]:

ρ[(1− Ṙ

c
)RR̈+ 3

2Ṙ
2(1− Ṙ

3c)] = (1 + Ṙ

c
)(G) + R

c

d

dt
(G) (8.2)

where G = Pg − 4µLṘ
R − 2σ

R − P0 − Pasin(2πft).

In this equation, R is radius at time t, R0 is the initial bubble radius, Ṙ is the wall velocity of the

bubble, R̈ is the wall acceleration, ρ is the liquid density (998 kg
m3 ), c is the sound speed (1481

m/s), Pg is the gas pressure, σ is the surface tension (0.0725 N
m), µ is the liquid viscosity (0.001

Pa.s), and Pa and f are the amplitude and frequency of the applied acoustic pressure. The values

in the parentheses are for pure water at 293 K. In this paper the gas inside the uncoated bubble is

air and water is the host media.

8.3.3 Thermal effects

If thermal effects are considered, Pg is given by Eq. 5 [49,50,51,52,53]:

Pg = NgKT
4
3πR(t)3 −NgB

(8.3)

Where Ng is the total number of the gas molecules, K is the Boltzman constant and B is the

molecular co-volume of the gas inside the bubble. The average temperature inside the gas can be

calculated using Eq. 6 [49]:

Ṫ = 4πR(t)2

Cv

(
L (T0 − T )

Lth
− ṘPg

)
(8.4)
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where Cv is the heat capacity at constant volume, T0=293K is the initial gas temperature, Lth is

the thickness of the thermal boundary layer. Lth is given by Lth = min(
√

aR(t)
| ˙R(t)|

, R(t)
π ) where a is the

thermal diffusivity of the gas which can be calculated using a = L
cpρg

where L is the gas thermal

conductivity and cp is specific heat capacity at constant pressure and ρg is the gas density.

Predictions of the full thermal model have been shown to be in good agreement with predictions

of the models that incorporate the thermal effects using the PDEs [55] that incorporate the tem-

perature gradients within the bubble. To calculate the radial oscillations of the coated bubble and

uncoated bubble while including the thermal effects Eqs. 1 and Eq. 2 are respectively coupled with

Eq. 3 and 4 and then solved using the ode45 solver of Matlab.

8.3.4 Nonlinear terms of dissipation for the KMCH model

We have derived the equations for the average power loss in the oscillations of the KMCH model

[41]: 

Td = −4π
T

∫ T

0
R2ṘPgdt

Ld = 16πµL
T
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0
RṘ2dt

Cd = 48πµshεR2
0
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Ṙ

R
− R0Ṙ
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dt
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R2Ṙ2

c
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c
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+12µshεR02
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+ 3R0Ṙ
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cR2

)]

−ρR
2Ṙ4

2c − ρR3Ṙ2R̈

c

)
dt

(8.5)

Where Td,Ld,Cd,Rd and Gd are the dissipated power due to thermal, Liquid viscosity , coating

viscosity, re-radiation and stiffness of the coating. In simulations we did not present the values for
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Gd since it is always zero for a full cycle. T is the integration time and can be given as n/f where

n=1,2...... . In this paper the integrals are performed over the last 20 cycles of a 500 cycles pulses

to avoid the transient bubble behavior.

8.3.5 Nonlinear terms of dissipation for the KM model

We have derived the dissipation power terms of the KM model as follows [40]:



Td = −1
T
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0
(Pg)

∂V

∂t
dt

Ld = 16πµL
T
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0

(
RṘ2
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dt
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∫ T

0

[4π
c
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2ρṘ
3 − ρRṘR̈

))
−
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Ṙ

c
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c
Ṗg
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∂V
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+ 16πµLR2ṘR̈

c

]
dt

(8.6)

All the dissipated powers were calculated for the last 20 cycles of pulses with 500 cycles length.

Simulations were carried out in Matlab using ODE45 with the highest possible relative and absolute

tolerance. The time steps for integration in each simulation were ≤ 10−4

f .

8.3.6 Bifurcation diagrams

Bifurcation diagrams are valuable tools to analyze the dynamics of nonlinear systems where the

qualitative and quantitative changes of the dynamics of the system can be investigated effectively

over a wide range of the control parameters. In this paper, we employ a more comprehensive

bifurcation analysis method introduced in [50,56].

2.3.a) Conventional bifurcation analysis

When dealing with systems responding to a driving force, to generate the points in the bifurcation

diagrams vs. the control parameter, one option is to sample the R(t) curves using a specific point
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in each driving period. The approach can be summarized by:

P ≡ (R(Θ)){(R(t), Ṙ(t)) : Θ = n

f
} where n = 480, 481...500 (8.7)

Where P denotes the points in the bifurcation diagram, R and Ṙ are the time dependent radius and

wall velocity of the bubble at a given set of control parameters of (R0, P0, PA, c, k, µ, Gs, µsh, θ, σ,

f) and Θ is given by n
f . Points on the bifurcation diagram are constructed by plotting the solution

of R(t) at time points that are multiples of the driving acoustic period. The results are plotted for

n = 480− 500 to ensure a steady state solution has been reached.

2.3.b) Method of peaks

As a more general method, bifurcation points can be constructed by setting one of the phase space

coordinates to zero:

Q ≡ max(R){(R, Ṙ) : Ṙ = 0} (8.8)

In this method, the steady state solution of the radial oscillations for each control parameter is

considered. The maxima of the radial peaks (Ṙ = 0) are identified (determined within n =

480 − 500 cycles of the stable oscillations) and are plotted versus the given control parameter

in the bifurcation diagrams. The bifurcation diagrams of the normalized bubble oscillations ( R
R0

)

are calculated using both methods a) and b). When the two results are plotted alongside each

other, it is easier to uncover more important details about the SuH and UH oscillations, as well as

the SH and chaotic oscillations.

8.4 Results

In this section various nonlinear oscillation regimes of coated and uncoated bubbles are introduced

by visualizing the radial oscillations of the bubble as a function of pressure at various frequencies.

Then we build a link between different nonlinear oscillation regimes and the dissipated powers.

In the simulations, the uncoated bubbles that enclose air and have initial radii of 10 µm and 2 µm.

The bubble with R0 = 10µm is chosen as it will have strong thermal damping due to its bigger size.

The bubble with R0 = 2µm is chosen as viscous effects are strong due to its size. For the coated
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bubbles we investigated the bubbles with initial radii of 1 and 4µm. This is because the bubble with

R0 = 4µm is probably the largest bubble that can be used in medical applications (as the capillaries

have diameters around 8µm [8]). This bubble possibly also has the highest possible size dependent

Td. The bubble with R0 = 1µm is also chosen as it is in the typical range of the contrast agents

that are used in medical applications and viscous effects strongly influence its dynamics.

8.4.1 Bifurcation structure and dissipation mechanisms of uncoated bubbles

8.4.1.1 The case of an uncoated air bubble with R0 = 10µm

Figure 8.1 shows the bifurcation structure of the normalized oscillations ( R
R0

) as a function of

acoustic pressure of an uncoated air bubble with R0 = 10µm and the corresponding dissipated

powers due to Ld, Td and Rd for (0.25fr ≤ f ≤ 1). Throughout the manuscript and in this

Figure the blue diagram is constructed using the method of maxima and the red diagram is

constructed through conventional analysis. When f=0.25fr (Fig. 8.1a) an increase in pressure

results in the generation of 3rd order SuH oscillations at Pa u 63kPa (the blue curve shows three

maxima for a period one oscillation (1 solution in the red graph)). The red curve undergoes

a period doubling (Pd) bifurcation concomitant with 3 Pds in the blue graph at Pa u 90kPa.

This results in 7
2 UH oscillations. The period 2 (P2) oscillations undergo symmetry breaking to

period one (P1) oscillations with thee maxima at Pa u 100kPa. With a slight pressure increase

a saddle node bifurcation takes place to P1 oscillations with 3 maxima of higher amplitude. At

this point the bubble may not sustain stable oscillations as R
R0

> 2 (black horizontal line) [57]

(for further discussion on the minimum threshold for bubble destruction please refer to [32]).

Further pressure increase results in period doubling cascades to chaos. The corresponding power

losses are presented in Fig. 8.1b. For Pa ≤ 63kPa, Rd is the weakest damping mechanism with

Td the strongest mechanism (approximately 2 orders of magnitude larger). Rd grows faster than

other damping mechanisms with increasing pressure and at Pa u 90kPa concomitant with the

appearance of 3rd SuH oscillations, Rd becomes equal to Ld. Rd becomes stronger than Ld when

UH oscillations occur; later, simultaneous with the saddle node bifurcation Rd undergoes a large

increase and becomes the strongest damping mechanism. Td is the dominant mechanism for

pressures below 100 kPa (the saddle node bifurcation) and at ≈ 130 kPa Rd > Td = Ld.
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Figure 8.1: Bifurcation structure (left column) and the dissipated power as a function of pressure (right column) of the oscillations of
an uncoated air bubble with R0 = 10µm for f = 0.25fr (a-b),f = 0.5fr (c-d), f = 0.9fr (e-f) & f = fr (g-h).
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When f = 0.5fr (Fig 8.1c); 2nd order SuH occurs in the oscillations of the bubble at Pa u 20kPa;

this manifests itself as a P1 oscillation (1 red line) with 2 maxima (two solutions for the blue curve).

Radial oscillations grow with increasing pressure and at Pa u 90kPa the red curve undergoes

a Pd which is coincident with 2 Pds for the blue curve; this results in 5
2 order UH oscillations.

Oscillations become chaotic (sudden unset of chaos at Pa u 110kPa ); further at Pa u 125kPa a

giant P1 resonance emerges out of chaos. Possible bubble destruction occurs at ≈ 110kPa (black

horizontal line ( R
R0

> 2)). For pressures below 50 kPa Td > Ld > Rd. Later, concomitant with

saturation of 2nd order SuH oscillations at ≈ 50kPa (red line becomes equal to one of the maxima

indicating resonant oscillations as the wall velocity becomes in phase with the driving acoustic

pressure). Rd becomes equal to Td and gets stronger than Ld during UH oscillations. Td is the

dominant mechanism at Pa < 90kPa; however, when UH oscillations are saturated, Rd supersedes

Td and stays higher during the chaotic oscillation regime. Occurrence of the giant resonance is

concomitant with a large increase in Rd as it becomes approximately two orders of magnitude

higher than Td.

When f = 0.9fr (Fig. 8.1e), P1 oscillations (with 1 maxima) undergo a saddle node bifurcation to

P1 oscillations of higher amplitude at Pa u 40kPa. The bubble possibly is destroyed at Pa u 50kPa

(black horizontal line). Further increase in pressure results in Pd at 175 kPa; P2 oscillations

undergo a cascade of Pds to chaos at 210 kPa. The corresponding dissipated power is presented

in Fig. 8.1f. For pressures below the saddle node (SN) bifurcation Td is the strongest damping

mechanism (an order of magnitude larger) with Td > Ld u Rd. Concomitant with the SN, (note

that at this pressure the wall velocity becomes in phase with the driving pressure) Rd becomes

stronger than Ld and at 100 kPa it surpasses the initially larger Td. Further increase in pressure

results in the fastest growth rate in Rd and the slowest growth rate in Td. Simultaneous with

Pd and during majority of the P2 oscillation regime, Rd, Ld and Td stay approximately constant

(this can be due the decrease in wall velocity concomitant with Pd when bubble is sonicated with

a frequency near its resonance frequency [32]). During chaotic oscillations Rd > Td > Ld with

fluctuations due to sporadic oscillations.

For f = fr (Fig. 8.1g), at lower pressures (Pa < 25kPa) oscillations are P1 and the wall velocity

is in phase with the driving acoustic force (blue and red curve are on top of each other) indicating

resonant oscillations. Further pressure increases result in possible bubble destruction at Pa =
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100kPa (black horizontal line meets the blue line R
R0

> 2). At Pa u 175kPa, Pd occurs and choas

appears for 205 < Pa < 295 followed by the emergence of a giant P2 resonance. The corresponding

power graph is presented in Fig. 8.1h. For Pa < 25kPa where wall velocity is in phase with

the driving pressure Td > Rd = Ld and there is a very sharp growth for all the damping factors

(possibly due to the resonant nature of oscillations). Rd becomes bigger than Ld above 25 kPa and

grows faster than both Ld and Td until it becomes equal to Td at At Pa u 150kPa. Rd becomes

sightly higher than Td when Pd occurs; however, the occurrence of Pd decreases the rate of growth

of the damping powers and they which stays relatively constant during P2 oscillations (due to

possibly the decrease of the wall velocity during P2 oscillations when f = fr [32, 58]). Chaotic

oscillations result in a slight decrease in Td but Rd keeps growing and at the giant resonance

Rd undergoes a large increase and becomes approximately two orders of magnitude larger than

the other damping factors. Occurrence of the P2 giant resonance is concomitant with a decrease

in Td. The reduction in Td is concomitant with the occurrence of the giant resonance may lead to

better sonochemical efficacy as higher temperatures are created while at the same time their escape

becomes more limited.

Figure 8.2a shows the case of sonication with f = 1.2fr. We have chosen this frequency to allow the

bubble to undergo non-destructive Pd ( R
R0

< 2). We have previously [58] shown that for uncoated

bubbles sonication with f = fr most likely results in bubble destruction before development of any

P2 oscillations. This was also seen in Fig. 8.1g (f = fr). Fig. 8.2a shows that when f = 1.2fr

radial oscillations are initially of P1 and monotonically increase in amplitude as excitation pressure

increases. At Pa u 180kPa Pd takes place; P2 oscillations then undergo a SN bifurcation to a P3

oscillations (properties of this P3 oscillation has been studied in [58]) which can be concomitant

with bubble destruction as R
R0

> 2. The bubble oscillations return to P2 after a very small window

of chaos. Another chaotic window appears through successive Pd. A giant P2 resonance emerges

out of the chaotic window when Pa > 220kPa which later undergo successive Pds to chaos. The

dissipated powers are shown in Fig. 8.2b. Td is the strongest damping factor for pressures below

190 kPa. For Pa < 80 kPa, Td > Rd u Ld. Rd becomes stronger than Ld as increasing pressure

above 80 kPa. At Pa=190 kPa, Rd becomes stronger than Td simultaneous with the SN bifurcation

for P3 oscillations; however, as soon as P3 converts to P2, Td becomes larger than Rd. Emergence

of the P2 giant resonance is simultaneous with a large increase in Rd and Ld and a subsequent
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Figure 8.2: Bifurcation structure (left column) and the dissipated powers (right column) of the oscillations of an uncoated air bubble
with R0 = 10µm for f = 1.2fr (a-b),f = 1.75fr (c-d), f = 2fr (e-f) & f = 3fr (g-h).
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decrease in Td. This can be due to the faster collapse with higher wall velocity and acceleration

resulting in an increase in Rd and Ld; however, due to the fast collapse there is not enough time for

temperature conduction thus Td decreases. In this region Rd is an order of magnitude larger than

Ld and Td and its the only region in this pressure range where Ld is stronger than Td.

Fig. 8.2c displays the case of sonication f = 1.75fr which is the pressure dependent SH resonance

frequency of the bubble (PDfsh [59]). This freqeuncy is chosen so that the SN bifurcation leads

to non-destructive oscillations. Oscillations are of P1 initially; pressure increase results in Pd at

u 130kPa. P2 oscillations (with two maxima) undergo a SN bifurcation to P2 oscillations (with

one maximum) of higher amplitude u 130kPa. At u 180kPa second maxima re-emerges with the

same amplitude of the smaller solution in the red curve (indicating that wall velocity is in phase

with the excitation pressure once every two acoustic cycles). At u 200kPa R
R0

= 2 (black horizontal

line); beyond this pressure the bubble may not sustain non-destructive oscillations. P2 oscillations

undergo Pds to a P4 solution which later undergoes successive Pds to chaos at Pa = 300kPa. A giant

P3 (with two maxima) resonance emerges out of the chaotic window at u 390kPa. Fig. 8.2d shows

that for Pa < 130kPa Td > Rd > Ld. Occurrence of the SN bifurcation (over-saturation of SH

signal [59]) results in a fast increase in Rd and enhancement in the STDR. Rd grows with pressure

increase during the P2 oscillations; however Td and Ld do not increase. Rd, Td and Ld undergo

sporadic fluctuations during chaos. Emergence of giant resonance results in a sharp increase in Rd

and Ld and a small decrease in Td. Rd > Ld > Td for the P3 giant resonance oscillations regime.

The decrease in Td and the faster and larger radial collapses indicate that higher temperatures

are generated while the heat conduction becomes limited. The higher temperatures can have

consequences in enhancing chemical reactions within the bubble.

When sonicated with f = 2fr (fsh) oscillations undergo a Pd at Pa = 100kPa; P2 oscillations

increase in amplitude and evolve in a shape of a bow-tie (Chapter 4) [59]. Consistent with

previous observations [59] sonication with fsh results in the largest pressure range with stable

P2 oscillations. At Pa u 280kPa a small window of P6 oscillations appear through a SN bifurcation

with each solution undergoing Pds to P12 (the properties of this rare oscillation regime have been

studied in the appendix of (Chapter 4) [59]). Oscillations return to P2 which then undergo Pd

to P4 oscillations. For a small window of excitation pressure P12 oscillations appear through a

SN bifurcation; however, here because R
R0

> 2 the bubble most likely undergoes destruction. P12
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oscillations undergo P24 oscillations for a small window and then disappear as P4 oscillations

emerge. At u 320kPa chaos appears. A P3 giant resonance emerges out of the chaotic window

which later undergo successive Pds to chaotic oscillations. For Pa < 220kPa, Td > Rd > Ld.

After the occurrence of Pd, Td remains relatively constant with increasing pressure while Rd grows

faster than Ld as pressure increases. Eventually at Pa u 200kPa Rd becomes equal to Td. The

occurrence of giant resonance results in sharp increase in Rd and Ld and Rd becomes the strongest

damping factor with Rd > Ld > Td. Regeneration of chaos results in a decrease in Rd and Ld with

Rd u Td > Ld.

When f = 3fr (Fig. 8.2g); radial oscillations grow very slowly and monotonically with pressure; at

Pa u 300kPa a SN bifurcation takes place and oscillations become P3 (3 solutions for the red curve

with 2 maxima). Properties of these oscillations have been studied in [60, 61, 62]. At u 410kPa

oscillations undergo a SN bifurcation to P6 oscillations for small excitation pressure window which

then transition to P12 and then back to P3 oscillations. P12 occurs at ≈ 450kPa through Pds. P12

oscillations then switch to P1 oscillation with pressure increase. Power dissipation curve is shown

in Fig. 8.2h. Here Rd is the strongest damping mechanism for all the studied pressure ranges with

Rd > Td > Ld. SN bifurcation results in a sharp increase in the dissipated powers at 300 kPa with

Td exhibiting the largest increase.

8.4.1.2 The case of an uncoated air bubble with R0 = 2µm

The same nonlinear oscillations regimes are also studied for an uncoated air bubble withR0 = 2µm.

Due to the smaller size of the bubble, a larger contribution from viscous effects and a smaller

contribution for thermal effects are expected.

Fig. 8.3a shows the case of sonication with f = 0.3fr. P1 oscillations undergo a 3rd SuH resonance

at Pa u 60kPa (P1 oscillations with 3 maxima). At Pa u 62kPa, the amplitude of one of the

maxima coincides with the amplitude of the red curve indicating that the wall velocity becomes in

phase with the driving pressure every acoustic cycle. At Pa u 133kPa the red curve undergoes a

Pd and P1 oscillations become P2. At the same time three concomitant Pds occur in the blue curve

and UH oscillations of 7/2 order develop. The red curve grows fast within increasing pressure with

the occurrence of 3rd order SuH and Pd, the amplitude of the red curve becomes the same as the

highest amplitude of the blue curve right when Pd takes place, indicating an UH resonance. During
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Figure 8.3: Bifurcation structure (left column) and the dissipated powers (right column) of the oscillations of an uncoated air bubble
with R0 = 2µm for f = 0.3fr (a-b),f = 0.5fr (c-d), f = 0.9fr (e-f) & f = fr (g-h).
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UH oscillations the value of the upper and lower branch of P2 oscillations in red curve are exactly

the same as the two highest amplitudes of the blue curve. A small chaotic window appears at 170

kPa and then a 2nd order SuH giant (P1 with 2 maxima) resonance emerges out of the chaotic

window which later undergoes successive Pds to chaos. Due to the smaller bubble size compared

tothe 10 µm bubble oscillations analyzed in Fig. 8.1b, Ld and Td have the same value for pressures

below 120 kPa and Td is no longer the dominant power dissipation mechanism. Rd grows faster

a pressure increases and the contributions of Td, Ld and Rd become similar when Pd takes place.

Rd > Ld > Td for the UH regime of oscillations. The giant resonance is concomitant with a sharper

increase in Rd making Rd the dominant damping mechanism during giant resonant oscillations.

When f = 0.5fr (Fig. 8.3c) oscillations are of P1 with one maximum for Pa < 25kPa; 2nd order

SuH oscillations occur at u 25kPa (2 maxima appear in the blue curve). At Pa = 90kPa, the

amplitude of the red curve becomes equal to the highest amplitude maximum of the blue curve.

This is concomitant with the saturation of 2nd order SuH frequency component of the scattered

pressure (Psc). At 127 kPa, the red curve undergoes a Pd concomitant with two Pds in the blue

curve resulting in a P2 oscillation with 4 maxima (3
2 UH resonance [50]). At u 140 kPa R

R0
= 2

and the bubble possibly can not sustain non-destructive oscillations beyond this pressure. For

Pa > 150kPa a chaotic window emerges and later at Pa u 184kPa a giant period one resonance

emerges out of the chaotic window. Fig. 8.2d shows the corresponding dissipated powers. Ld

and Rd are approximately equal for pressures below the occurrence of Pd and UH resonance.

Simultaneous with the 3
2 UH resonance, Rd becomes stronger than Ld and Td with Rd > Ld > Td.

Rd undergoes the sharpest increase concomitant with the generation of giant resonance, making it

the strongest dissipation mechanism at higher pressures.

When f = 0.9fr (Fig. 8.3e), which is a PDfr [32], the oscillations are of P1 and grow mono-

tonically with increasing pressure and at Pa u 60kPa (the pressure of the PDfr) the oscillation

amplitude undergo a sharp increase with the red and blue curve coinciding with each other. Above

Pa u 75kPa R
R0

exceeds 2 (black horizontal curve) and beyond this point bubble destruction is

likely. Oscillations undergo Pd at u 220 kPa and a small chaotic window occurs at Pa u 260kPa

through successive Pds. At u 275 kPa a P3 oscillations with 3 maxima emerges out of the chaotic

window until Pa u 350 kPa where chaos is regenerated. The power dissipation graph in Fig. 3f

indicates that Td > Ld > Rd before the SN bifurcation takes place. Above Pa u 60kPa (pressure
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for SN bifurcation) Ld becomes stronger and the dissipation order is Ld > Td > Rd. After SN, Rd

grows faster with pressure increase while Td stays constant. Rd supersedes Td at Pa u 125 kPa

and becomes equal to Ld when Pd takes place. Ld, Rd and Td then stay relatively constant for the

P2 oscillations regimes (this can be due to the decrease in wall velocity and acceleration when Pd

takes place in cases where the bubble is sonicated with a frequency near f = fr [32]). Emergence

of the P3 oscillations of the chaotic window with high amplitude is concomitant with an increase in

Rd and decrease in Ld and Td; this will lead to an increase in the STDR, however, with the possible

trade off the loss of stable oscillations.

When f = fr (Fig. 8.3g); at lower pressures (Pa < 60kPa) oscillations are of P1 and the wall

velocity is in phase with the driving acoustic force (blue and red curve are on top of each other)

indicating resonant oscillations. Further pressure increase results in possible bubble destruction at

Pa = 120kPa (black horizontal line meets the blue line). At Pa u 220kPa, occurrence of Pd results

in P2 oscillations for 220 < Pa < 260 followed by the emergence of a small chaotic window through

successive Pds. Similar to the previous case, a P3 emerges from the chaotic window followed by

regeneration of chaos for 320kPa < Pa < 425kPa. At u 425kPa a giant P2 resonance emerges out

of the chaotic window. The corresponding dissipated powers illustrated in Fig. 8.3h show that for

pressures below ≈ 60kPa, Td > Ld > Rd. Above this pressure Ld > Td > Rd until the excitation

pressure reaches u 190 kPa and Rd becomes equal to Td. When Pd occurs, Rd overcomes Td; then

Rd, Ld and Td stay constant during P2 oscillations. Generation of P4 results in an increase in Rd and

a subsequent decrease in Ld and Td. Emergence of P3 results in an increase in Rd making the order

as Rd > Ld > Td followed by a sharp increase of Rd when giant resonance takes place. Similar to

previous cases Td decreases when giant resonance occurs, and Ld increases however with a smaller

percentage compared to Rd. Once again, the giant resonance can lead to a significant increase in

STDR; however this may lead to bubble destruction. The generation of higher temperatures due to

stronger collapses and the decrease in Td may have consequences in enhancing chemical reactions

within the bubble.

The case of f = 1.2fr is shown in Fig. 8.4a. Oscillation amplitude increases monotonically with

pressure and bubble undergoes Pd at u 225kPa. Unlike the case of sonication with f = fr, (and

similar to the uncoated air bubble with R0 = 10µm) Pd occurs when R
R0

< 2 thusthe bubble is more

likely to sustain P2 oscillations. At u 225kPa oscillations become chaotic through successive Pds
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Figure 8.4: Bifurcation structure (left column) and the dissipated power (right column) of the oscillations of an uncoated air bubble
with R0 = 2µm for f = 1.2fr (a-b),f = 1.85fr (c-d), f = 2fr (e-f) & f = 3fr (g-h).
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and chaos stretches until Pa u 390kPa. At this pressure a P2 giant resonant oscillation emerges

out of the chaotic window (the solution with the higher amplitude in red curve is exactly equal to

the smaller maximum indicating wall velocity becomes in phase with the driving acoustic pressure

once every two acoustic cycles). The P2 giant resonance undergoes successive Pds to chaos at

u 500kPa. The corresponding dissipated power graphs (Fig. 8.4b) show that Ld u Td > Rd for

Pa . 225 kPa. When Pd occurs, Ld becomes stronger than Td with Ld > Td > Rd; once again,

during P2 oscillations, Ld, Td and Rd stay relatively constant as pressure increases. Generation

of P4 and chaos is concomitant with an increase in Rd making Ld u Rd > Td. This is similar

to the previous cases when the giant resonance emerges Rd and Ld undergo a sharp increase (Rd

exhibits the sharpest increase), while Td decreases slightly. This makes the contribution order of

the dissipation mechanisms as Rd > Ld > Td.

When f = 1.85fr (the PDfsh [59]) the P1 oscillation amplitude grows slowly with increasing

pressure and the bubble undergoes a Pd at u 190kPa. Generation of Pd is concomitant with a

sharp increase in the oscillation amplitude (oscillations are P2 and have two maxima). At 200

kPa P2 oscillations undergo a SN bifurcation to P2 oscillations of higher amplitude (here the signal

looses one of its maxima [59]). As pressure increases the second maxima is generated at u 290kPa.

At 300 kPa, R
R0

becomes larger than 2 (black line). P2 oscillations undergo period doubling to P4-2

oscillations and a chaotic window appears at 405 kPa through successive Pds of the P4-2 signal.

Later at 440 kPa, a P6 oscillation with 6 maxima emerges out of the chaotic window which through

successive Pds translate to P12 and chaos at u 500 − 505kPa. The corresponding power graphs

(Fig. 8.4d) show that Td = Ld > Rd below Pa u 190kPa where Pd takes place. Generation of Pd

results in a decrease in Td and Ld becomes stronger than Td. Simultaneous with the SN bifurcation

at Pa = 200kPa, Rd, Ld and Td undergo a sharp increase (with Rd exhibiting the highest increase).

This makes Rd approximately equal to Ld and for the rest of the P2 oscillations, power dissipation

stays relatively constant with increasing pressure and Rd = Ld > Td. Generation of chaos results

in some sporadic fluctuations and when P6 emerges out of chaos Ld and Td decrease resulting in

Rd > Ld > Td.

When f = fsh (f = 2fr in Fig. 8.4e), P1 oscillations slowly grow with increasing pressure and

at Pa u 140kPa, a Pd takes place, and concomitant with Pd, oscillation amplitude start growing

quickly. P2 oscillations evolve in the form of a bow-tie. We have shown in (Chapter 4) [58] that this
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is the characteristic of micron size bubbles when they are sonicated with f = 2fr. Right when Pd

occurs, oscillations have two maxima, one of the maxima disappears shortly after Pd but reemerges

with a value equal to the higher amplitude of the red curve at u 290kPa (in [58] we have shown

that this may be the point where 1
2 SH frequency component of the Psc gets saturated). Oscillations

undergo Pds at 395 kPa to P4-2 oscillations and when Pa u 410kPa R
R0

exceeds 2 (black horizontal

line collides with the blue curve). A small window of P6-2 ( [58]) occurs right before 400 kPa.

Later chaos appears at u 440kPa. For Pa < 300kPa, Td = Ld = Rd and simultaneous with Pd,

dissipation powers undergo a fast increase; but, they quickly plateau with pressure increase. At

Pa = 300kPa Td=Ld=Rd. Further increase in pressure results in a slight decrease in Td and a

slight increase in Rd and Ld. At Pa u 580kPa where the amplitude of the chaotic oscillations

sharply increases; Rd becomes stronger than Ld.

When f = 3fr (Fig. 8.4g), oscillations grow very slowly with pressure increase until at u 420kPa

at which P1 oscillations undergo a SN bifurcation to P3 oscillations with 2 maxima. Oscillation

amplitude increase slowly with increasing pressure and a small P6 window appears at ≈ 590-598

kPa followed by a return to P3 oscillations and then 3 simulations Pds to P6 oscillations. P6

oscillations return to P1 oscillations at Pa u 610kPa. The corresponding dissipated power graphs

(Fig. 8.4h) show that similar to the case of unacoated air bubble with R0 = 10µm, Rd > Ld > Td

before the occurrence of the SN bifurcation. Occurrence of SN bifurcation is concomitant with a

sharp increase in Rd and Ld and Td with (Rd > Ld > Td). As pressure increases the difference

between Rd, Ld and Td diverges. A return to P1 oscillations is concomitant with a decrease in the

dissipation. Due to the larger increase in Td when P3 occurs, the STDR decreases. The increase

in Td is due to the large average surface area of the bubbles and a slower rebound during P3

oscillations.

8.4.2 Bifurcation structure and power dissipation of the oscillations of the coated

bubbles

8.4.2.1 The case of a coated C3F8 bubble with R0 = 4µm

In this subsection we analyze the dynamics of the coated bubbles that are often used in medical

ultrasound. The gas core is chosen to be C3F8 as it is typically used in coated bubbles and the
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Figure 8.5: Bifurcation structure (left column) and the dissipated power as a function of pressure (right column) of the oscillations of
a coated C3F8 bubble with R0 = 4µm for f = 0.25fr (a-b),f = 0.45fr (c-d), f = 0.8fr (e-f) & f = fr (g-h).
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maximum size of the bubbles that are chosen for our study is 8µm (R0 = 4µm) since capillaries are

typically below 8 µm in diameter [8].

Figure 8.5a displays the bifurcation structure of a coated bubble with R0 = 4µm when f = 0.25fr.

The oscillation amplitude grows with pressure and at Pa = 80kPa, 3 maxima appear in the P1

oscillations (3rd order SuH [50]). The 3rd order SuH undergoes a SN bifurcation to another 3rd

order SuH oscillations at Pa u 140kPa. The signal is still P1 with 3 maxima and at Pa u 160kPa Pd

takes place in the red curve (concomitant with 3 Pds for each maxima in the blue curve) and 7
2 order

UH oscillations are generated. A small chaotic window appears before Pa = 200kPa followed by a

P1 signal of 2nd order SuH, then 5
2 UH resonance and later again chaos. At approximately 295 kPa

a giant P1 resonance with one maximum emerges out of the chaotic window. The corresponding

power dissipation curves are shown in Fig. 8.5b. Cd is the strongest dissipation mechanism with

Cd > Ld > Td for Pa < 80kPa. When SuH oscillations occur, Rd becomes equal to Td and keeps

growing faster than other dissipation mechanisms until Pd takes place where Rd undergoes the

sharpest increase and becomes larger than Ld. Rd keeps growing faster with the SN bifurcation to

2nd order SuH oscillations, Rd undergoes another sharp increase and becomes equal to Cd during

chaotic oscillations. Emergence of the giant resonance out of chaos is concomitant with another

sharp increase in Rd, making Rd the strongest dissipation mechanism afterwards.

Figure 8.5c shows the case of sonication with f = 0.45fr. As pressure increases, the P1 oscillation

amplitude increases and at u 25kPa two maxima appear in the P1 oscillations. At approximately

105 kPa; bubble collapses two times in each acoustic cycles with the wall velocity of one of the

collapses in phase with the driving acoustic pressure (red and blue line have the same value). Pd

takes place at u 140kPa (5
2 UH oscillations are generated (signal is P2 with 4 maxima)) and R

R0

becomes equal to 2 at the pressure at which chaos is generated at Pa u 180kPa. Slightly below 200

kPa a giant P1 resonance emerges out of the chaotic window which later undergoes successive Pds

to chaos at Pa u 470kPa. The corresponding power dissipation curves in Fig. 8.5d shows that for

pressures below the SuH oscillations, Cd > Ld > Td u Rd. After the generation of SuH oscillations

Rd supersedes Td and becomes equal to Ld at about 105 kPa (when red curve meets the blue curve

in Fig. 8.5c). Power dissipation curves plateau and when Pd occurs. Rd, Cd, Ld and Td increase.

During 5
2 UH oscillations Cd > Rd > Ld > Td. Emergence of giant resonance is concomitant with

an increase in all the dissipation mechanisms with Rd exhibiting the sharpest growth. Afterwards
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Rd grows faster and becomes u to Cd during chaotic oscillations. Similar to Fig. 8.5b, Rd and Cd

are 3 orders of magnitude larger than Td and about an order of magnitude stronger than Ld.

When f = 0.8fr (PDfr [32]) a SN bifurcation takes place at Pa = 80kPa and the oscillation am-

plitude R
R0

exceeds at Pa u 190kPa (black line meets the blue curve). At u 220kPa, Pd takes place

and afterwards P2 oscillations undergo successive period doubling to chaos at u 280kPa. A P2

giant resonance with 2 maxima emerges out of the chaotic window at 520 kPa. The corresponding

dissipation curves in Fig. 8.5f reveal that when the SN occurs, Cd, Ld, Rd and Td undergo a sharp

increase with Td exhibiting the smallest increase. Before the SN, Cd > Ld > Rd > Td and after

the SN, Cd > Ld = Rd > Td. When R
R0

exceeds 2, Rd becomes stronger than Ld and power

dissipation contribution is in the following order for the rest of the pressure range that studied:

Cd > Rd > Ld > Td. Emergence of the giant resonance is simultaneous with an increase in Rd,

Cd and Ld (with Rd demonstrating the largest increase) and Td decreases.

When f = fr (Fig. 8.5g) the oscillation amplitude grows monotonically with pressure. For

excitation pressures below 50 kPa, the red curve and blue curves have the same value (wall velocity

is in phase with the driving acoustic pressure). The two curves diverge as pressure increases and

at 230 kPa Pd takes place. P2 oscillations amplitudes exceed R
R0

= 2 at 260 kPa; afterwards

successive Pds take place in the bifurcation structure resulting in chaotic oscillations at ≈ 300kPa.

The chaotic window continues up to 420 kPa; whereby, large amplitude P2 oscillations emerge out

of the chaotic window (one of the red solutions is equal to the smallest maxima in blue curve).

Chaos is then generated through successive Pds at 520 kPa. Power dissipation curves in Fig. 8.5h

show that Cd > Rd u Ld > Td; however, when Pd occurs, Rd slightly exceeds Ld due to the

fact that both Cd and Ld undergo a slightly higher decrease compared to Rd. This is possibly due

to decrease in the wall velocity when Pd takes place when bubble is sonicated with a frequency

close to its resonance frequency (Chapters 2 and 4) [32]. Emergence of the giant P2 oscillations is

concomitant with a very sharp increase in Rd and Cd, a slight increase in Ld and minimal changes

in Td.

When f = 1.2fr (Fig. 8.6a), the oscillation amplitude grows monotonically with pressure. A Pd

takes place at u 230kPa. Bubbling bifurcation takes place in each of the branches of the P2 regime

and a small window of chaos appears followed by a small P3 window which undergoes Pd to P12

after which there is an interesting symmetry breaking leading to a sudden onset of chaos. The
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Figure 8.6: Bifurcation structure (left column) and the dissipated powers (right column) of the oscillations of a coated C3F8 bubble
with R0 = 4µm for f = 1.2fr (a-b),f = 1.6fr (c-d), f = 2fr (e-f) & f = 3fr (g-h).
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oscillation amplitude exceeds R
R0

= 2 at u 390kPa. The chaotic window extends until Pa = 1MPa

where a giant P3 emerges out of the chaotic window which then undergoes Pd to P12 oscillations.

The corresponding dissipation curves in Fig. 8.6b show that Cd > Ld = Rd > Td until Pd after

which Rd becomes slightly larger than Ld. Pd results in a notable decrease in Cd and Ld. Td remains

two orders of magnitude less than Cd (Fig. 8.5b). When the first P3 oscillation occurs, Cd, Rd and

Ld undergo a sharp increase with the most notable increase in Rd. Symmetry breaking bifurcation

results in a decrease in dissipation due to lower oscillation amplitudes. Initiation of chaos leads to

a sharp increase in dissipation with Cd > Rd > Ld > Td. Rd grows faster than other mechanisms

as pressure increases and becomes equal to Cd at ≈ 820kPa. Finally when the P3 giant resonance

occurs Cd, Rd and Ld undergo an increase with Rd experiencing the largest growth. Td undergoes

a small decrease during P3 giant resonance oscillations.

Fig. 8.6c represents the case of sonication with f = 1.6fr (PDfsh [59]). P1 oscillations grow

slowly with pressure and at u 230kPa a SN bifurcation from P1 oscillations of lower amplitude to

P2 oscillations (with one maximum) of higher amplitude takes place. Second maxima emerges at

u 320kPa; afterwards oscillations undergo Pd at u 380kPa which are then followed by successive

Pds to chaos at u 400kPa. Chaotic window stretches until u 700kPa with a small window of P6

oscillations. A P6 oscillation regime with high amplitude emerges out of the chaotic window; later

undergoing Pds to P12 and then chaos. The corresponding dissipation curves are shown in Fig.

8.6d. For pressures below the SN bifurcation Cd > Rd > Ld > Td. Occurrence of SN bifurcation

is concomitant with a sharp increase in the dissipated powers. Cd > Rd > Ld > Td until at higher

pressures (> 1 MPa) Rd surpasses Cd.

f = 2fr (Fig. 8.6e) is the fsh of the bubble [58]. P1 oscillations undergo Pd at u 180kPa. The

P2 oscillations loose one maxima right after the generation of Pd and then evolve in a form of a

bow-tie with the second maxima re-emerging with an amplitude equal to the larger branch of the

red curve u 280kPa. Consistent with previous observations in [58], sonication with f = 2fr results

in the largest pressure range of stable P2 oscillations. Oscillations undergo Pd to P4 oscillations

followed by a SN bifurcation to P4 oscillations of higher amplitude at u 570kPa; before successive

Pds to chaos. Amplitude of the chaotic oscillations increases at u 710kPa which can possibly

lead to bubble destruction as R
R0

> 2. Chaos continues until 1.1 MPa where a P6 oscillation of

large amplitude emerges out of chaos which later undergoes successive Pds to P12 and chaos. The
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corresponding dissipation curves are depicted in Fig. 8.6f. Cd > Rd > Ld > Td with dissipated

powers undergoing a fast growth concomitant with Pd. When chaos appears Rd becomes equal to

Cd and later at 1.5 MPa onward Rd > Cd > Ld > Td. When f = 2fr, Td is in average two orders

of magnitude smaller than Cd and Rd.

The case of sonication with f = 3fr is shown if Fig. 8.6g. Oscillations grow slightly with pressure

and at u 620kPa a SN bifurcation takes place and P1 oscillations turn into P3 oscillations of higher

amplitude. P3 then grows in amplitude until it turns to P1 oscillations for a small pressure window

and then again re-emerges through a SN bifurcation. P3 oscillations undergo Pds to P6 and then

return to P1 oscillations for Pa u 1.04MPa. Corresponding dissipated power curves are shown in

Fig. 8.6h. Unlike previous cases here Rd > Cd > Ld > Td. The SN bifurcation results in a large

increase in dissipated powers specially in case of Td. This is because during these P3 oscillations the

bubble collapses 3 times out of which two are very gentle and thus a large average bubble radius

is maintained during oscillations. This increases the surface area for the heat exchange and Td

increases. Moreover, bubble collapses strongly only once in every three cycles; thus high velocity

and re-radiated pressure are achieved only once in every three acoustic cycles. This is why the

average for Ld, Cd and Rd are small. During P3 and P6 oscillations Cd > Rd > Ld > Td and

elsewhere Rd > Cd > Ld > Td.

8.4.2.2 The case of a coated C3F8 bubble with R0 = 1µm

Fig. 8.7a shows the dynamics of a C4F8 coated bubble with R0 = 1µm when f = 0.25fr.

Oscillations are initially P1 with one maximum, later at about Pa = 160kPa, 3 maxima are

generated in the bubble oscillations which grow in amplitude as pressure increases, undergoing

a SN bifurcation to higher amplitude oscillations at about 320 kPa. In this region (P1 with 3

maxima) the 3rd harmonic of the backscattered pressure is maximum and the bubble is in the 3rd

order SuH oscillation mode. Pd occurs at about 350 kPa, leading to a P2 signal with 6 maxima and

7
2 UH oscillations. Oscillations become chaotic through successive Pds at u 365kPa; at the same

time R
R0

exceeds 2 thus, the bubble may not sustain long lasting non-destructive oscillations beyond

this pressure. At 405 kPa, a P2 oscillation regime with large amplitude emerges out of the chaotic

window. Oscillations become chaotic again through successive Pds of the P2 signal and the chaotic
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Figure 8.7: Bifurcation structure (left column) and the dissipated power as a function of pressure (right column) of the oscillations of
a coated C3F8 bubble with R0 = 1µm for f = 0.25fr (a-b),f = 0.45fr (c-d), f = 0.8fr (e-f) & f = fr (g-h).
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window extends until ≈ 970kPa. Above this pressure a P2 giant resonance emerges out of chaos,

and later undergoes successive Pds to chaos. Fig. 8.7b shows that at pressures lower than 160 kPa

(generation of 3 maxima in the osculations) Cd > Ld > Td > Rd. Above 160 kPa, Rd increases

beyond Td and Cd > Ld > Rd > Td until SN bifurcation occurs at about 320 kPa. Rd grows faster

and when SN occurs it undergoes a sharp increase alongside Ld and Cd. Cd > Ld = Rd > Td

above SN bifurcation and during UH oscillations. Rd exceeds Ld when R
R0

> 2 and during the

chaotic oscillations. When the large amplitude P2 oscillations are generated Rd undergoes the

sharpest increase and becomes equal to Cd. Thereafter Cd = Rd > Ld > Td until about 900 kPa

where Rd slightly exceeds Cd. Emergence of the giant P2 resonance leads to a sharp increase in Rd

and a decrease in Td similar to previous cases.

When f = 0.45fr (Fig. 8.7b) P1 oscillations increase in amplitude with pressure and at about 85

kPa a second maxima appear in the bubble oscillations. Oscillations keep growing and at about

300 kPa the red curve becomes equal in amplitude to the highest amplitude maxima (indicating

the wall velocity of one of the maxima becomes in phase with the driving acoustic field). At about

320 kPa, Pd occurs and oscillations become P2 with 4 maxima indicating the generation of 5
2 UH

resonance. A small chaotic window appears, and at about 400 kPa a P2 oscillation regime with

higher amplitude emerges out of the chaotic window. At this point, since R
R0

exceeds 2 the bubble

possibly undergoes destruction. The dissipation curves are shown in Fig. 8.7d. For lower pressures

Cd > Ld > Rd = Td; however, due to the faster growth of Rd compared to other dissipation

mechanisms, it supersedes Td at about 40 kPa and becomes equal to Ld when Pd takes place.

When the P2 oscillations with higher amplitude emerge out of the chaotic window, the dissipation

powers undergo a sharp increase with Cd > Rd = Ld > Td.

The case of sonication with f = 0.8fr (PDfr) is presented in Fig. 8.7e. P1 oscillations undergo

SN bifurcation to higher amplitude at u 150kPa and at the same time the value of the red curve

becomes equal to the maxima in the blue curve (indicating the wall velocity is in phase with the

driving signal). Oscillations grow with pressure increase and at 410 kPa, Pd takes place leading

to P2 oscillations until 500 kPa. Chaos is then generated through successive period doubling

bifurcations at 510 kPa. For this frequency Cd > Ld > Rd > Td in the studied pressure range.

There is a sharp increase in the dissipation power when SN takes place. Furthermore concomitant

with Pd, Cd, Ld and Rd decrease due to reduced wall velocities [32].
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Fig. 8.7g displays the case of sonication with f = fr. Initially value of the red curve is equal to the

oscillation amplitude in the blue curve and above 100 kPa the two curve diverge (this is because

fr shifts to PDfr as pressure increases [32] and when f = fr oscillations are only resonant at

lower pressures) and Pd takes place at u 480kPa. P2 oscillations undergo successive Pds to chaos

at 620 kPa. Chaos stretches beyond 1 MPa with oscillation amplitudes exceeding R
R0

= 2 at 700

kPa. The dissipated power curves are presented in Fig. 8.7h. Similar to the case of f = 0.8fr,

Cd > Ld > Rd > Td and occurrence of Pd leads to a slight decrease in Cd, Rd and Ld.

Fig. 8.8a displays the case of sonication with f = 1.2fr. The P1 oscillation amplitude increases

with pressure and Pd occurs at about 570 kPa. A small period bubbling window takes place for

u 760 − 800kPa and initiation of chaos is at about 860 kPa. When chaos is initiated, R
R0

> 2.

The corresponding power curves in Fig. 8.8b show that similar to the case of f = 0.8fr and

fr, Cd > Ld > Rd > Td for Pa < 760kPa where period bubbling takes place. Occurrence

of Pd at 570 kPa is concomitant with a decrease in Cd, Ld and Rd and when bubbling occurs

Cd u Ld u Rd > Td. Generation of sudden chaos at ≈ 880kPa is simultaneous with a sudden

increase in Cd, Ld and Rd with Cd > Ld > Rd > Td right after the onset of chaos.Further increases

in pressure result in a faster growth in Rd making Rd u Cd at ≈ 1.1 MPa.

Figure 8.8c shows the dynamics of the bubble in case of sonication with f = 1.6fr (Pdfsh).

P1 oscillation amplitude grow with pressure increase and at 580 kPa a SN bifurcation from P1

oscillations to P2 oscillations of higher amplitude takes place. P2 oscillations then grow with

pressure increase and undergo further Pds. After a small window of P6-P12 oscillations chaos

is generated. At 1.2 MPa oscillation amplitude exceeds 2 and possible bubble destruction may take

place. The corresponding power graphs are depicted in Fig. 8.8d. Cd > Ld u Rd > Td for

Pa < 800kPa. Occurrence of the SN results in a sharp increase in Cd, Rd, Ld and Td with Td

exhibiting the highest increase.

When f = 2fr (Fig. 8.8c) P1 oscillations undergo Pd at 400 kPa; P2 oscillations later evolve in a

form of a bow-tie (Chapter 4) [58] (red curve) undergoing successive Pd to chaos. For Pa less than

the pressure threshold of Pd, Rd u Cd > Ld > Td. When Pd occurs, Cd grows larger than Rd and

Rd becomes equal to Ld. Td exhibits the largest growth when Pd occurs. During P2 oscillations Rd

grows faster than other damping factors exceeding Ld at u 900kPa.

When f = 3fr (Fig. 8.8g) P1 oscillations undergo a SN bifurcation to P3 oscillations of higher
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Figure 8.8: Bifurcation structure (left column) and the dissipated power as a function of pressure (right column) of the oscillations of
a coated C3F8 bubble with R0 = 1µm for f = 1.2fr (a-b),f = 1.6fr (c-d), f = 2fr (e-f) & f = 3fr (g-h).
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amplitude. Pressure increase results in an increase in the amplitude of the P3 oscillations and

at u 2.7MPa Pd takes place and oscillations become P12. Later through multiple Pds a small

chaotic window appears which is followed by a sudden onset of P1 oscillations for the rest of the

pressures studied here. The corresponding dissipated power graphs are shown in Fig. 8.8h. Rd

is the strongest dissipated power for the studied pressure range here with Rd > Cd > Ld > Td.

When SN takes place, similar to the case of R0 = 4µm all dissipated powers undergo a sharp

increase; however, Td exhibits the largest growth potentially due to more surface area available for

heat transfer.

8.4.3 Concluding graphs of | ˙R(t)|max, |Psc|max, total dissipated power and STDR

In the previous subsection section we investigated the evolution of the Cd, Ld, Rd and Td as a

function of pressure at different frequencies and related their changes to the nonlinear behavior of

the bubble. In this section we consider only stable non-destructive bubble oscillations (RmaxR0
≤ 2

[57] and for a more thorough review on bubble destruction threshold please refer to [32]). Here

we study maximum wall velocity amplitude (| ˙R(t)|max), maximum amplitude of the re-radiated

pressure (|Psc|max), total dissipated power (Wtotal = Rd+Ld+ Td+Cd), scattering to dissipation

ratio (STDR) when bubble is sonicated with the frequencies that are studied in Figs. 8.1-8.8 and

for excitation pressures below the bubble destruction threshold. | ˙R(t)|max is abbreviated with Vm

from here on for simplicity and |Psc|max is abbreviated with Pm. STDR = Rd
Rd+Ld+Td+Cd where Cd

is equal to zero for the uncoated bubble.

Figure 8.9a plots Vm as a function of pressure for different frequencies for an uncoated air bubble

with R0 = 10µm. Vm is only presented for the oscillation regimes that most probably results

in non-destructive bubble oscillations R
R0
≤ 2 [57]. Results show that when bubble is sonicated

with f = 0.5fr, Vm reaches the maximum value for non-destructive oscillations. This can have

advantages in drug delivery applications since higher wall velocity results in faster streaming and

lower frequency of oscillations leads to smaller values for the thickness of the boundary layer [63].

Since shear stress on the nearby objects is proportional to wall velocity and inversely proportional

to the thickens of the boundary layer [64] sonication in this regime may result in higher shear

stress values compared to other frequencies.

Fig. 8.9b shows Pm as a function of pressure for the studied frequencies in Figs. 8.1-8.2. Sonication
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Figure 8.9: Nondestructive ( R
R0
≤ 2) values of: a)| ˙R(t)|max (Vm), b) |Psc|max (Pm), c)Rd, d)Wtotal and e)STDR as a function of

pressure in the oscillations of an uncoated air bubble with R0 = 10µm.
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with f = 3fr leads to the highest Pm; thus if the goal of the application is to increase the absolute

amplitude of Psc and enhance echogenecity then sonication with f = 3fr and pressures above the

pressure threshold for generation of P3 oscillations will be the optimized frequency and pressure.

Rd can be used as a measure for continuous bubble activity. In contrast to Pm which denotes the

maximum spontaneous back-scattered (re-radiated) pressure, Rd is a measure of sustained bubble

activity as it is averaged over time. Fig. 8.9c shows that the maximum non-destructive Rd occurs

for f = 0.25fr and frequencies below resonance display the largest non-destructive Rd.

The total dissipated power (Wtotal = Rd + Ld + Td) is shown in Fig. 8.9d. Maximum dissipated

power occurs for f = 0.25fr. Sonication below resonance have the advantage of higher dissipated

powers. This is useful in applications where bubbles are used to enhance the power deposition

by ultrasound to increase the generated heating. Furthermore, when compared to f = fr, below

100 kPa, the dissipated power is lower when f = 0.3fr and above 100 kPa the dissipated power

undergoes a sharp increase and becomes approximately 4.8 times larger than the case of sonication

with f = fr. This has advantages in focused ultrasound heating enhancement; by taking advantage

of the sharp pressure gradients of the focused ultrasound transducers, spatial heating prior to the

focal point is limited and heating at the focal region can be enhanced.

Fig. 8.9e displays the STDR as a function of pressure. Frequencies above fr have larger STDR; the

higher the freqeuncy the larger is the STDR which leads to the maximum STDR at f = 3fr. It is

interesting to note that for frequencies above resonance the onset of non-linear oscillations results

in a decrease in STDR; STDR then grows as pressure increases. This is mainly due to the increase in

other damping parameters especially Td. As pressure increases, due to the faster growth rate of Rd,

STDR raises again. Freqeuncies below resonance have lower STDRs compared to f = fr. This is

because of the increased Td and decreased Rd; however, the onset of SN bifurcation is concomittant

with an increase in STDR for f = 0.8fr (PDfr) and f = 0.5fr (2nd SuH) oscillations.

Figure 8.10 represents the uncoated air bubble with R0 = 2µm. The exact same behavior of

the previous case (R0 = 10µm) is observed here. Maximum non-destructive Vm and Pm occurs

for f = 0.5fr (2nd SuH) and f = 3fr respectively. Maximum Rd and Wtotal are achieved when

f = 0.25fr (3rd SuH). STDR is higher for higher frequencies with the maximum at f = 3fr. Similar

to Fig. 8.9e, the onset of nonlinear oscillations results in a decrease and then increase in STDR if

the bubble is sonicated above resonance.
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Figure 8.10: Nondestructive ( R
R0
≤ 2) values of: a)| ˙R(t)|max (Vm), b) |Psc|max (Pm), c)Rd, d)Wtotal and e)STDR as a function of

pressure in the oscillations of an uncoated air bubble with R0 = 2µm.
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The case of the C3F8 coated bubble with R0 = 4µm is shown in Fig. 8.11. The same conclusions

can be drawn as the two previous cases (Figs. 8.9 and 8.10). The case of the C3F8 coated bubble

with R0 = 1µm is shown in Fig. 8.11. Same conclusions can be drawn as the three previous cases

in (Figs. 8.9, 8.10 and 8.11).

8.5 Discussion and summary

Acoustic waves are highly dissipated when they pass through bubbly media. Dissipation by bubbles

takes place through thermal damping (Td), radiation damping (Rd) and damping due to the friction

of the liquid (Ld) and friction of the coating (Cd). Td, Rd, Ld and Cd are nonlinear and depend on

the complex dynamics of the bubbles. The correct estimation of dissipation events in the bubble

oscillations will help in optimizing the relevant applications by maximizing a desirable parameter.

Most previous studies were limited by linear approximations [37, 66, 67, 68, 69, 70, 71]. These

approximations lead to inaccurate estimation of the dissipation phenomenon in applications as

they are only valid for low pressures and linear regimes of low amplitude oscillations. Despite

the importance of understanding the nonlinear dissipation events; only a few recent studies have

attempted to investigate the problem accounting for the full non-linearity of the subject [38,39,40,

41,46,47].

At present, the pressure dependence of the dissipation events is not well understood. Thus, in this

paper we attempt to classify the bubble oscillations at various excitation frequencies as a function

of pressure. Using a recent comprehensive approach [50, 56] in studying the nonlinear bubble

dynamics we have classified the nonlinear oscillations of the uncoated and coated bubbles as a

function of pressure excited with frequencies that result in 3rd and 2nd SuH regimes, pressure

dependent (PD) resonance (fr) oscillations, bubbles sonicate with fr (linear resonance frequency),

PD subharmonic (SH) resonance (PDfsh), 1
2 order SH resonance (fsh) and 1

3 order SH resonance

(f = 3fr). We have considered the nonlinear thermal and radiation effects in modeling the

oscillations of the bubbles. Dynamics of the bubble including the generation of (2nd and 3rd

order) SuH and (7
2 and 5

2 order) UH oscillations, P1 resonant oscillations, cases of the occurrence

of different types of giant resonances as well as different SH regimes of oscillations were revealed.

Moreover, nonlinear dissipated powers due to Rd, Ld, Td and Cd were calculated and results were
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Figure 8.11: Nondestructive ( R
R0
≤ 2) values of: a)| ˙R(t)|max (Vm), b) |Psc|max (Pm), c)Rd, d)Wtotal and e)STDR as a function of

pressure in the oscillations of a coated C3F8 bubble with R0 = 4µm.
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Figure 8.12: Nondestructive ( R
R0
≤ 2) values of: a)| ˙R(t)|max (Vm), b) |Psc|max (Pm), c)Rd, d)Wtotal and e)STDR as a function of

pressure in the oscillations of a coated C3F8 bubble with R0 = 2µm.
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presented in tandem with the bifurcation curves. Using this approach different regimes of the

evolution of the dissipative phenomena are linked to the responsible nonlinear effect in the bubble

oscillations.

Our main results can be summarized as follows:

8.5.1 Classification of the main nonlinear regimes of oscillations and the

corresponding dissipative powers

1- When a bubble (coated or uncoated) is sonicated with a frequency which is approximately

between fr
4 and fr

3 , and above a pressure threshold 3 maxima occur in the P1 oscillations. The third

harmonic component of the backscattred pressure (Psc) is larger than other frequency components.

This is suitable for applications like SuH imaging [72, 73]. Above a second pressure threshold

period doubling (Pd) takes place and oscillations become P2 with 6 maxima. At this point the 7
2

UH component of the Psc is larger than the SH and other UHs components of the signal. This

frequency and pressure range is suitable for high resolution UH imaging [74, 75, 76] and passive

cavitation mapping techniques [77]. Further pressure increases beyond this region most probably

results in bubble destruction as R
R0

exceeds 2. Pressure increase also result in the generation of

chaos and periodic oscillations of higher amplitudes. At higher pressures a giant resonance (2nd

order SuH) emerges out of the chaotic window. The corresponding evolution of the dissipative

powers at different nonlinear regimes are summarized in table 2.

2- When f u 0.4 − 0.6fr both of the cases of the coated and uncoated bubbles start with P1

oscillations and above a pressure threshold a second maxima occur in the P1 oscillations. This

is simultaneous with a fast growth of the 2nd harmonic component of the Psc (2nd harmonic

component becomes the strongest frequency component in the spectra). This frequency and pres-

sure range is suitable for 2nd harmonic imaging applications of ultrasound [72, 73]. Above a

second pressure threshold Pd happens and oscillations become P2 with 4 maxima. At this point

between the SH and UH components of the frequency spectrum of the Psc, the 5
2 has the highest

amplitude. This can be used to enhance contrast and resolution in UH imaging applications of

ultrasound [74,75,76] and passive cavitation mapping techniques [77] or high resolution treatment
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Dissipation mechanisms when f = 0.25− 0.35fr
Oscillation shape Linear P1(3 max-

ima)
P2(6 max-
ima)

chaos giant
2nd SuH
resonance

Oscillation type fundamental 3rd SuH 7
2 UH broadband P1/p2

Uncoated air bub-
ble with R0 =
10µm

Td > Ld >
Rd

Td > Rd =
Ld

Td = Rd >
Ld

Rd > Td >
Ld

Rd > Ld >
Td

Uncoated air bub-
ble with R0 =
2µm

Td u Ld >
Rd

Td u Ld u
Rd

Ld u Rd >
Td

Rd > Ld >
Td

Rd > Ld >
Td

coated C3F8 bub-
ble with R0 =
4µm

Cd > Ld u
Td > Rd

Cd > Ld u
Rd > Td

Cd > Rd u
Ld > Td

Cd u Rd >
Ld > Td

Rd > Cd >
Ld > Td

coated C3F8 bub-
bles with R0 =
4µm

Cd > Ld >
Td > Rd

Cd > Ld >
Rd > Td

Cd > Rd u
Ld > Td

Cd u Rd >
Ld > Td

Rd > Cd >
Ld > Td

Table 8.2: Evolution of dissipation powers at different nonlinear regimes for uncoated air and coated C3F8 bubbles when f = 0.25 −
0.3fr

monitoring using UH emissions [78]. Further pressure increase results in chaos and R
R0

exceeding

2. Pressure increase beyond this point leads to emergence of a P1 giant resonance out of the chaotic

window. The corresponding evolution of the dissipative powers at different nonlinear regimes are

summarized in table 3.

3- When f = 0.7 − 0.9fr (the pressure dependent resonance frequency (PDfr (Chapter 2)

[32])), at lower pressures oscillations are P1 with 1 maximum. Above a pressure threshold, a

saddle node (SN) bifurcation takes place and P1 oscillations undergo a large increase in amplitude

to another P1 oscillation with 1 maximum. Higher amplitude oscillations after the SN are resonant

at this frequency as the maxima curve and the conventional curve has the same value (the wall

velocity is in phase with the excitation force). The conventional and maxima curve diverge from

each other as pressure increases beyond the SN. The occurrence of the SN can have significant

advantages in imaging techniques based on amplitude modulation [32, 74, 79, 80]. Beyond the

SN, the increase in excitation pressure leads to a monotonic increase in oscillation amplitude and

above a second pressure threshold Pd takes place and oscillations become P2 with 2 maxima.
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Dissipation mechanisms when f = 0.45− 0.55fr
Oscillation shape Linear P1(2 max-

ima)
P2(4 max-
ima)

chaos P1 giant
resonance

Oscillation type fundamental 2nd SuH 5
2 UH broadband P1/P2

Uncoated air bub-
ble with R0 =
10µm

Td > Ld >
Rd

Td > Rd u
Ld

Td u Rd >
Ld

Rd > Td >
Ld

Rd > Ld >
Td

Uncoated air bub-
ble with R0 =
2µm

Td u Ld >
Rd

Td u Ld >
Rd

Ld u Rd >
Td

Rd > Ld >
Td

Rd > Ld >
Td

coated C3F8 bub-
ble with R0 =
4µm

Cd > Ld u
Td > Rd

Cd > Ld u
Rd > Td

Cd > Rd u
Ld > Td

Cd > Rd >
Ld > Td

Rd u Cd >
Ld > Td

coated C3F8 bub-
ble with R0 =
1µm

Cd > Ld >
Td > Rd

Cd > Ld >
Rd > Td

Cd > Rd u
Ld > Td

Cd > Rd >
Ld > Td

Rd u Cd >
Ld > Td

Table 8.3: Evolution of dissipation powers at different nonlinear regimes for uncoated air and coated C3F8 bubbles when f = 0.45 −
0.55fr .

Apart from the coated bubble with R0 = 1µm, other studied bubbles in this frequency range most

probably destroyed as Rmax
R0

exceeds 2 before any P2 is generated. Further pressure increase leads

to successive Pds to chaos with a possible window (of P3/P6 oscillations with 3/6 maxima) which

is located inside chaotic window. At higher pressures a P2 giant resonance may emerge out of

the chaotic window. The corresponding evolution of the dissipative powers at different nonlinear

regimes are summarized in table 4.

4- When f = fr (linear resonance frequency of the bubbles) oscillations are P1 with 1 maxima

at lower pressures. At the beginning of the bifurcation diagrams; the curve that is constructed

with the method of peaks has the exact value as the conventional method. This indicates that

the wall velocity is in phase with the driving signal and oscillations are resonant. As the pressure

increases the two curves start diverging as the resonance frequency changes with pressure. At

higher pressures resonance frequency shifts to smaller values [32] (Pdfr). Above a pressure

threshold, bubbles undergo Pd and oscillations become P2 with two maxima. For coated bubbles

when, Pd can occur when Rmax
R0

< 2 (bubbles may sustain non-destructive oscillations); however,

in case of uncoated bubbles Pd only occurs when Rmax
R0

> 2 (uncoated bubbles may not sustain
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Dissipation mechanisms when f = 0.7− 0.9fr
Oscillation shape Linear SN-P1(1

maxima)
P2(2 max-
ima)

chaos P2 giant
resonance

Oscillation type fundamental
(F)

2nd SuH/F 3
2 UH/ 1

2 SH broadband P1/P2

Uncoated air bub-
ble with R0 =
10µm

Td > Ld >
Rd

Td > Rd u
Ld

Td u Rd >
Ld

Rd > Td >
Ld

Rd > Ld >
Td

Uncoated air bub-
ble with R0 =
2µm

Td u Ld >
Rd

Td u Ld >
Rd

Ld u Rd >
Td

Rd > Ld >
Td

Rd > Ld >
Td

coated C3F8 bub-
ble with R0 =
4µm

Cd > Ld >
Rd > Td

Cd > Ld u
Rd > Td

Cd > Rd >
Ld > Td

Cd > Rd >
Ld > Td

Rd u Cd >
Ld > Td

coated C3F8 bub-
ble with R0 =
1µm

Cd > Ld >
Rd > Td

Cd > Ld >
Rd > Td

Cd > Ld >
Rd > Td

Cd > Rd >
Ld > Td

Rd u Cd >
Ld > Td

Table 8.4: Evolution of dissipation powers at different nonlinear regimes for uncoated air and coated C3F8 bubbles when f = 0.7 −
0.9fr .

non-destructive P2 oscillations when they are sonicated with their fr). The two main routes of Pd

has been extensively studied in our previous work [58] without the inclusion of thermal damping

effects. P2 oscillations undergo successive Pd to chaos. At higher pressures a P2 (with two maxima)

giant resonance may emerge out of the chaotic window. The giant resonance oscillations undergo

successive Pds to chaotic oscillations of higher amplitude. The corresponding evolution of Cd, Rd,

Ld and Td are summarized in table 5.

5- When f = 1.2fr, at lower excitation pressures, oscillations are P1 with 1 maximum. Contrary

to the case of f = fr, the conventional curve and the curve constructed by method of peaks start

diverging right at the beginning of the bifurcation diagram. Increasing pressure leads to Pd and

oscillations becomes P2 with two maxima. At this frequency P2 oscillations can be non-destructive

(in case of both coated and uncoated bubbles) as when Pd occurs since Rmax
R0

is below 2. Sonication

with this frequency and in pressure ranges responsible for P2 oscillations may lead to 3
2 UH resonant

oscillations. Further pressure increase results in successive Pds to chaos. At higher pressures a

P2 giant resonance may emerge out of the chaotic window, undergoing successive Pds to chaotic
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Dissipation mechanisms when f = fr

Oscillation shape Linear reso-
nance

Linear P2(2 max-
ima)

chaos P2 giant
resonance

Oscillation type fundamental fundamental 3
2 UH/1

2 SH broadband 1
2 SH &3

2
UH

Uncoated air bub-
ble with R0 =
10µm

Td > Ld >
Rd

Td > Rd u
Ld

Td u Rd >
Ld

Rd > Td >
Ld

Rd > Ld >
Td

Uncoated air bub-
ble with R0 =
2µm

Td > Ld >
Rd

Ld > Rd Ld u Rd >
Td

Rd > Ld >
Td

Rd > Ld >
Td

coated C3F8 bub-
ble with R0 =
4µm

Cd > Ld >
Rd > Td

Cd > Ld u
Rd > Td

Cd > Rd >
Ld > Td

Cd > Rd >
Ld > Td

Rd u Cd >
Ld > Td

coated C3F8 bub-
ble with R0 =
1µm

Cd > Ld >
Rd > Td

Cd > Ld >
Rd > Td

Cd > Ld >
Rd > Td

Cd > Rd >
Ld > Td

Rd u Cd >
Ld > Td

Table 8.5: Evolution of dissipation powers at different nonlinear regimes for uncoated air and coated C3F8 bubbles when f = fr .

oscillations of higher amplitude. The lower amplitude branch of the curve that is generated by the

method of peaks has the same value as the higher amplitude branch of the curve created by the

conventional method. This is suggests that wall velocity is in phase with excitation frequency once

every two acoustic cycles. The corresponding evolution of the dissipative powers are summarized

in table 6.

6- When f = 1.6 − 1.8fr (pressure dependent subharmonic (SH) resonance frequency PDfsh

Chapter 5 [58]) at lower pressures oscillations are P1 with 1 maxima. Pressure increase leads

to one of the following scenarios: 1- generation of Pd above a pressure threshold; then, a SN

bifurcation from P2 oscillations of lower amplitude to P2 oscillations (1 maximum) of higher

amplitude. 2- SN bifurcation above a pressure threshold from P1 oscillations with 1 maxima to

P2 oscillations with 1 maxima. This happens while Rmax
R0

is below 2; therefore, the bubbles may

sustain non-destructive P2 oscillations when insonated with frequencies f = 1.6 − 1.8fr. Further

pressure increases lead to the generation of a second maximum (with the same amplitude of the

higher branch of the conventional curve). Occurrence of the SN can provide significant advantages

for amplitude modulation techniques [78,79,80] and in this case because of the higher sonication
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Dissipation mechanisms when f = 1.2fr
Oscillation shape Linear Linear P2(2 max-

ima)
chaos chaos/P2

giant
resonance

Oscillation type fundamental fundamental 3
2 UH/1

2 SH broadband broadband/1
2

SH &3
2 UH

Uncoated air bub-
ble with R0 =
10µm

Td > Ld u
Rd

Td > Rd >
Ld

Td > Rd >
Ld

Rd u Td >
Ld

Rd > Ld >
Td

Uncoated air bub-
ble with R0 =
2µm

Td > Ld >
Rd

Ld > TD >
Rd

Ld > Td >
Rd

Ld u Rd >
Td

Rd > Ld >
Td

coated C3F8 bub-
ble with R0 =
4µm

Cd > Ld >
Rd > Td

Cd > Ld u
Rd > Td

Cd > Rd >
Ld > Td

Cd > Rd >
Ld > Td

Cd u Rd >
Ld > Td

coated C3F8 bub-
ble with R0 =
1µm

Cd > Ld >
Rd > Td

Cd > Ld >
Rd > Td

Cd > Ld >
Rd > Td

Cd > Rd >
Ld > Td

Rd u Cd >
Ld > Td

Table 8.6: Evolution of dissipation powers at different nonlinear regimes for uncoated air and coated C3F8 bubbles when f = 1.2fr .

frequency, we can expect higher resolution. Moreover, we have shown in [59] that occurrence of

SN leads to oversaturation of the 1
2 SH and 3

2 UH frequency content of the Psc. This can provide

higher contrast to tissue and signal to noise ratio in SH imaging techniques [81,82,83] and possibly

SH and UH monitoring of treatments [77,78,84,85]. Oscillations undergo successive Pds to chaos.

Further pressure increase may lead to the emergence of a P3 giant resonance which will undergo

successive Pds to chaotic oscillations of higher amplitude. The dynamics of the bubble sonicated

with their PDfsh (in the absence of thermal damping) has been extensively studied in our previous

work [59]. The corresponding evolution of dissipative powers are summarized in table 7.

7- when f = 2fr (linear SH resonance frequency fsh [58]) oscillations are P1 with 1 maximum

at lower pressures. Above a pressure threshold Pd takes place and oscillations become P2 with 2

maxima. As pressure increases one of the maxima disappears with pressure increase and the P2

oscillations evolve in the form of a bowtie (the curve that is constructed using the conventional

method). Later the second maxima re-appears with an amplitude equal to the higher branch

of the conventional curve. Oscillations undergo successive Pds to chaos. When f = 2fr, P2
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Dissipation mechanisms when f = 1.6− 1.8fr
Oscillation shape Linear P2 through

SN
P4(4 maxima) chaos chaos/P3 giant

resonance(Gfr)

Oscillation type fundamental 1
2 SH/3

2 UH 1
4 ,

1
2 ,

3
4SH&UHs broadband P1/P2

Uncoated air bub-
ble with R0 =
10µm

Td > Rd >
Ld

Rd >
TD > Ld

Rd > Td > Ld Rd > Td >
Ld

Rd > Ld >
Td(Gfr)

Uncoated air bub-
ble with R0 =
2µm

Td u Ld >
Rd

Ld > Rd >
Td

Ld u Rd¿Td Ld u Rd >
Td

Rd > Ld > Td

coated C3F8 bub-
ble with R0 =
4µm

Cd > Rd >
Ld > Td

Cd > Rd >
Td

Cd > Ld u
Rd > Ld > Td

Cd > Rd >
Ld > Td

Cd u Rd >
Ld > Td

coated C3F8 bub-
ble with R0 =
1µm

Cd > Ld u
Rd > Td

Cd > Ld u
Rd > Td

Cd > Ld u
Rd > Td

Cd > Ld u
Rd > Td

Cd > Rd >
Ld > Td

Table 8.7: Evolution of dissipation powers at different nonlinear regimes for uncoated air and coated C3F8 bubbles when f = 1.6 −
1.8fr .

oscillations occur for the widest excitation pressure range and Rmax
R0

is below 1.5; therefore, bubbles

have the highest probability of sustaining non-destructive P2 oscillations. Analytical solutions

[86,87,88,89,90,91] predict the generation of P2 oscillations at the lowest pressure threshold when

the bubble is sonicated with f = 2fr. Later, it was shown in [92,93] in case of smaller bubbles (e.g.

R0 = 0.6µm) that the lowest pressure threshold occurs when bubble is sonicated with a frequency

near its fr. They concluded that the increased damping is responsible for shift the lowest frequency

threshold. However, none of the previous studies included both of the pressure dependent thermal

and radiation damping effects. In this work, we have included both of these effects with their full

non-linearity and observed that the lowest pressure threshold of P2 oscillations occurs at none of

the f = fr or f = 2fr, but it occurs at frequencies below PDFfr. As an instance, for the uncoated

air bubble R0 = 10µm pressure thresholds for P2 oscillations are 87.5, 82, 88, 170 and 96kPa

respectively at f=0.25, 0.35, 0.5, 1 and 2fr. Thus for this bubble lowest P2 pressure threshold

is 0.35fr. This may be explained with the increased damping effects due to thermal damping

and pressure dependent non-linear coupling. The study of the lowest pressure threshold for P2

oscillations and the reasons behind it is not within the scope of this paper and can be the subject of

future studies. The corresponding evolution of dissipation powers are summarized in table 8.
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Dissipation mechanisms when f = 2fr
Oscillation shape Linear P2 through

SN
P4(4 maxima) chaos chaos/P3 giant

resonance(Gfr)

Oscillation type fundamental 1
2 SH/3

2 UH 1
4 ,

1
2 ,

3
4SH&UHs broadband P1/P2

Uncoated air bub-
ble with R0 =
10µm

Td > Rd >
Ld

TD >
Rd > Ld

Td u Rd > Ld Td u Rd >
Ld

Rd > Ld >
Td(Gfr)

Uncoated air bub-
ble with R0 =
2µm

Td u Ld >
Rd

Td u Ld >
Rd

Ld u Rd¿Td Ld u Rd >
Td

Rd > Ld > Td

coated C3F8 bub-
ble with R0 =
4µm

Cd > Rd >
Ld > Td

Cd > Rd >
Ld > Td

Cd > Rd >
Ld > Td

Cd u Rd >
Ld > Td

Rd > Cd >
Ld > Td

coated C3F8 bub-
ble with R0 =
1µm

Cd u Rd >
Ld > Td

Cd > Ld u
Rd > Td

Cd > Rd >
Ld > Td

Cd u Rd >
Ld > Td

Cd u Rd >
Ld > Td

Table 8.8: Evolution of dissipation powers at different nonlinear regimes for uncoated air and coated C3F8 bubbles when f = 2fr .

8- When f = 3fr oscillations are P1 with 1 maximum at lower pressures. Oscillation amplitude

grow very slowly withe excitation pressure increase and above a pressure threshold P3 oscillations

of higher amplitude are generated through a SN bifurcation. Later P3 oscillations undergo Pd to

P12 followed by successive Pds to a small chaotic window before the oscillations convert to P1 with

lower amplitude. The corresponding evolution of the dissipative powers is summarized in table 9.

The SN bifurcation is concomitant with a sharp increase in Psc. This has advantages for amplitude

modulation imaging techniques [74, 79, 80] at higher frequencies [94]. The pressure amplitudes

for the pulses shoudl be chosen below and above the SN pressure.

9- within the pressure ranges that were investigated here, occurrence of the giant resonances

were in the form of a large amplitude periodic oscillations that emerge out of the chaotic window

at higher pressures. These oscillations were concomitant with a sharp increase in Rd, Ld and Cd

(in case of coated bubbles) and at the same time concomitant with a decrease in Td. This implies

that oscillations have larger wall velocity amplitudes and acceleration; moreover due to the larger

instantaneous changes of the Rmax to Rmin higher core temperatures are expected. The faster
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Dissipation mechanisms when f = 3fr
Oscillation shape Linear P3 through

SN
P6(6 maxima) chaos linear

Oscillation type fundamental 1
3 & 2

3
SH&3

4UHs

1
6 ,

1
3&..SHs&higher

order UHs
broadband fundamental

Uncoated air bub-
ble with R0 =
10µm

Rd > Td >
Ld

Rd > Td >
Ld

Rd > Td > Ld Rd > Td >
Ld

Rd > Td >
Ld

Uncoated air bub-
ble with R0 =
2µm

Rd > Ld >
Td

Rd u Ld >
Td

Rd > Ld > Td Rd > Ld >
Td

Rd > Ld >
Td

coated C3F8 bub-
ble with R0 =
4µm

Rd > Cd >
Ld > Td

Cd > Rd >
Ld > Td

Cd > Rd > Ld >
Td

Cd u Rd >
Ld > Td

Rd u Cd >
Ld > Td

coated C3F8 bub-
ble with R0 =
1µm

Rd > Cd >
Ld > Td

Rd > Cd >
Ld > Td

Rd > Cd > Ld >
Td

Rd > Cd >
Ld > Td

Rd > Cd >
Ld > Td

Table 8.9: Evolution of dissipation powers at different nonlinear regimes for uncoated air and coated C3F8 bubbles when f = 3fr .

collapses and rebound in these oscillation regimes leaves very little time for heat transfer thus Td

decreases. This approach has advantages for sonochemical applications of ultrasound as higher

core temperatures are achieved and thermal loss is decreased.

8.5.2 | ˙R(t)|max, |Psc|max, Rd, Wtotal and STDR during non-destructive Rmax
R0
≤ 2 and

their possible applications

In this section we summarize some important parameters related to the bubble behavior and

link them to possible medical and sonochemical applications. These parameters are extracted

for excitation pressures that leads to non-destructive regime of oscillations (RmaxR0
≤ 2) and for

excitation frequency range of f = 0.25fr − 3fr.

1- The maximum wall velocity amplitude (| ˙R(t)|max) was the largest for the bubbles that were

sonicated with f = 0.45− 0.5fr. Higher wall velocities results in faster micro-streaming. The shear

stress induced by bubbles on nearby objects is proportional to the micro-streaming velocity and to

the thickness of the boundary layer [63, 64, 96]. The thickness of the boundary layer is inversely

proportional to frequency [63,64,96]. Thus, sonication with f = 0.45−0.5fr not only can produce

the highest non-destructive micro-streaming, but it also has a small boundary layer. Sonication in
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this frequency range may therefore enhance the shear stress and drug delivery efficacy. Moreover,

non-destructive and non-inertial high shear stresses in this frequency may enhance the surface

cleaning [97, 98, 99] while avoiding damage to delicate micro-structures (e.g. semi-conductor

industry, optical devices & precision apparatus) usually stemming from violent inertial collapse of

bubbles [98,99]. Quantification of the shear stress at various non-linear regimes is a complex task

and is the subject of future studies.

2- The maximum amplitude of the back-scattred pressure (|Psc|max) from bubbles was the largest

for bubbles sonicated with 3fr. Echogencity of the ultrasound images is directly proportional to

|Psc|max. Thus, in applications like B-Mode imaging [82] using contrast agents, higher frequencies

(f = 1.6 − 3fr) may be desired. However, one must also note that the higher |Psc|max occurs at a

higher pressure for f = 3fr; thus, the signal intensity from the background tissue can be higher. In

the absence of any non-linear signal acquisition (as an instance amplitude modulation [74,79,80]

or phase inversion [100]) that suppresses the tissue response in the final image, the effect of higher

scattering from tissue at higher pressures should also be considered. On the other hand the abrupt

increase in the |Psc|max of the bubble when SN bifurcation takes place (e.g. at f = 1.6fr or f = 3fr

(Fig. 8.12b)) can be used to increase the residual signal in amplitude modulation techniques and

increase the contrast to tissue ratio and signal to noise ratio. In amplitude modulation technique

two pulses are sent to the target with different amplitudes. The received signals from the target are

then scaled and subtracted; due to the linear tissue response the two signals cancel each other

after subtraction. However, the nonlinear response of the bubbles with respect to increase in

pressure results in a considerable residue which leads to enhanced CTR. Another application for

the non-inertial higher Psc can be in drug delivery or surface cleaning. The increased pressure

radiated by the bubbles can increase the permeability [96] of the cells or objects in their vicinity

and contribute to the drug delivery enhancement or cleaning.

3- Rd and Wtotal were maximum for bubbles that were sonicated with 0.25− 0.3fr. Higher Rd and

Wtotal are of great importance for applications related to bubble enhanced heating in high intensity

focused ultrasound (HIFU) [30, 101, 102] and ultrasound thermal therapies and hyperthermia.

Enhanced heating is of particular interest especially in cases like liver and brain where there is

strong cooling of tissue due to high blood perfusion and the presence of skull [103] and rib cage

limits the amount of ultrasound energy that can be delivered to target. In [104], it was shown
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that enhancing the deposited power by increasing the wave dissipation or enhancing the pressure

amplitude can decrease the effect blood flow cooling until full necrosis takes place. Sonication with

f = 0.25 − 0.3fr can provide Rd and Wtotal of at least 6 times greater when compared to the case

of sonication with fr. Moreover, the higher frequency component of the Psc signal (e.g. 3rd SuH, 7
2

UHs) increases the absorption of the Rd in tissue and furthermore enhances the localized heating.

Another advantage of sonication with f = 0.25− 0.3fr is that Rd and Wtotal are very small for low

pressures; however, above a pressure threshold (concomitant with the generation of UHs and SHs

in the Psc) Rd andWtotal significantly increase. This finding is in line with experimental observation

[30], where enhanced heating was concomitant with SH and UH emissions and broadband noise.

The lower dissipation of acoustic waves below the pressure threshold leads to minimum enhanced

heating and wave dissipation in the pre-focal tissue [32, 105, 106, 107, 108]. This allows higher

energy delivery for bubbles in the target (especially in cases where delivery of higher acoustic

energy is challenging) and enhances the safety of the treatment as the off-target bubble activity is

minimized. Moreover, the generation of UHs at the target can be used to monitor and control the

treatment using methods like passive cavitation detection [77, 85]. Wtotal and Rd were minimum

for higher frequencies f = 1.6 − 3fr. Thus, in addition to higher Psc which leads to higher

echogenecity in ultrasonic imaging, sonication with these frequencies results in lower heating due

to bubble activity. This is another reason why higher frequencies may be more suitable for contrast

enhanced ultrasound imaging. Moreover, enhanced absorption (Wtotal) in the target can be used

to shield [34] structures with higher ultrasound attenuation (as an instance post-target bone [104]

in brain).

4- The STDR as a function of pressure is nonlinear. The highest STDR belongs to f = 3fr. In

the absence of super-harmonic resonance, generation of SHs and UHs are concomitant with a

decrease in STDR. As it was discussed in previous sections for f = 1.6− 3fr, Td undergoes a large

increase when SHs are generated which consequently leads to a decrease in STDR. Despite the

decrease, STDR still remains higher than f < 2fr. The higher STDR have great advantages for

contrast enhanced imaging. Higher STDR means bubble scatters more and dissipates less. This

has consequences in increasing the echogenecity of the target and the underlying tissue. However,

higher STDR by itself does not imply that a set of exposure parameters are suitable for imaging

applications. As an instance when f = 3fr STDR is very high at lower pressures (e.g. 10 kPa);
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however, at the same time Psc is very small. This means that despite a high STDR, because

of the weaker scattering by the bubble, the contrast signal may not be distinguishable from the

background noise. Thus, STDR should be used in tandem with the Psc and Rd curves to study the

suitable exposure parameters for the relevant application.

8.6 conclusion

In this work we investigated the mechanisms of energy dissipation in bubble oscillations and their

contribution to the total damping (Wtotal) at various nonlinear regimes of bubble oscillations.

By using a comprehensive bifurcation analysis, we have classified the nonlinear dynamics of the

bubbles and the corresponding dissipative mechanisms. The bifurcation structure of the uncoated

and coated bubbles including the full thermal and radiation effects have been classified for the first

time. Using our recently developed equations for energy dissipation in the oscillations of coated

and uncoated bubbles [40, 41], the pressure dissipation mechanisms of ultrasonic energy were

analyzed in detail. Results were presented in tandem with the bifurcation diagrams and several

nonlinear features of dissipation phenomenon were revealed and classified. We have shown that

by choosing suitable frequency and pressure a particular bubble related effect can be enhanced.

Possible applications that could benefit from these oscillation regimes were presented.
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[4] Holzfuss, Joachim, Matthias Rüggeberg, and Andreas Billo. ”Shock wave emissions of a

sonoluminescing bubble.” Physical review letters 81, no. 24 (1998): 5434.

[5] Holzfuss, Joachim. ”Acoustic energy radiated by nonlinear spherical oscillations of strongly driven

bubbles.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466,

no. 2118 (2010): 1829-1847.

[6] Dollet, Benjamin, Philippe Marmottant, and Valeria Garbin. ”Bubble dynamics in soft and biological

matter.” Annual Review of Fluid Mechanics 51 (2019): 331-355.

[7] D’Onofrio, Mirko, Stefano Crosara, Riccardo De Robertis, Stefano Canestrini, and Roberto Pozzi

Mucelli. ”Contrast-enhanced ultrasound of focal liver lesions.” American journal of roentgenology 205,

no. 1 (2015): W56-W66.

[8] K. Ferrara, R. Pollard, and M. Borden, Ultrasound microbubble contrast agents: fundamentals and

application to gene and drug delivery, Annu. Rev. Biomed. Eng. 9 (2007): 415-447.

[9] Schinkel, Arend FL, Mathias Kaspar, and Daniel Staub. ”Contrast-enhanced ultrasound: clinical

applications in patients with atherosclerosis.” The international journal of cardiovascular imaging 32,

no. 1 (2016): 35-48.

299



[10] C.C Coussios, et al. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by

high-intensity focused ultrasound (HIFU), International Journal of Hyperthermia 23(2) (2007) 105-

120.

[11] M.A. O’Reilly and K. Hynynen, Blood-brain barrier: real-time feedback-controlled focused ultrasound

disruption by using an acoustic emissions-based controller, Radiology 263, (2012)96–106

[12] K.J. Haworth, et al., Passive imaging with pulsed ultrasound insonations, The Journal of the Acoustical

Society of America, 132(1) (2012) 544-553.

[13] Soluian, Stepan Ivanovich. Theoretical foundations of nonlinear acoustics. Consultants Bureau, 1977.

[14] Rivas, David Fernandez, Bram Verhaagen, James RT Seddon, Aaldert G. Zijlstra, Lei-Meng Jiang, Luc

WM van der Sluis, Michel Versluis, Detlef Lohse, and Han JGE Gardeniers. ”Localized removal of layers

of metal, polymer, or biomaterial by ultrasound cavitation bubbles.” Biomicrofluidics 6, no. 3 (2012).

[15] Maisonhaute, Emmanuel, Cesar Prado, Paul C. White, and Richard G. Compton. ”Surface acoustic

cavitation understood via nanosecond electrochemistry. Part III: Shear stress in ultrasonic cleaning.”

Ultrasonics sonochemistry 9, no. 6 (2002): 297-303..

[16] Ohl, Claus-Dieter, Manish Arora, Rory Dijkink, Vaibhav Janve, and Detlef Lohse. ”Surface cleaning

from laser-induced cavitation bubbles.” Applied physics letters 89, no. 7 (2006): 074102.

[17] Roovers, Silke, Tim Segers, Guillaume Lajoinie, Joke Deprez, Michel Versluis, Stefaan C. De Smedt,

and Ine Lentacker. ”The role of ultrasound-driven microbubble dynamics in drug delivery: from

microbubble fundamentals to clinical translation.” Langmuir (2019).

[18] Kooiman, Klazina, Hendrik J. Vos, Michel Versluis, and Nico de Jong. ”Acoustic behavior of

microbubbles and implications for drug delivery.” Advanced drug delivery reviews 72 (2014): 28-48.

[19] Marmottant, Philippe, and Sascha Hilgenfeldt. ”Controlled vesicle deformation and lysis by single

oscillating bubbles.” Nature 423, no. 6936 (2003): 153.

[20] M.A. O’Reilly and K. Hynynen, Blood-brain barrier: real-time feedback-controlled focused ultrasound

disruption by using an acoustic emissions-based controller, Radiology 263, (2012)96–106

300



[21] O’Reilly, Meaghan A., Adam C. Waspe, Milan Ganguly, and Kullervo Hynynen. ”Focused-ultrasound

disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication

parameters and injection rate.” Ultrasound in medicine & biology 37, no. 4 (2011): 587-594.

[22] Pishchalnikov, Yuriy A., Oleg A. Sapozhnikov, Michael R. Bailey, James C. Williams Jr, Robin O.

Cleveland, Tim Colonius, Lawrence A. Crum, Andrew P. Evan, and James A. McAteer. ”Cavitation

bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves.” Journal of

endourology 17, no. 7 (2003): 435-446.

[23] Johnsen, Eric, and Tim Colonius. ”Shock-induced collapse of a gas bubble in shockwave lithotripsy.”

The Journal of the Acoustical Society of America 124, no. 4 (2008): 2011-2020.

[24] Gong, Cuiling, and Douglas P. Hart. ”Ultrasound induced cavitation and sonochemical yields.” The

Journal of the Acoustical Society of America 104, no. 5 (1998): 2675-2682.

[25] Suslick, Kenneth S. ”Sonochemistry.” science 247, no. 4949 (1990): 1439-1445.

[26] Suslick, Kenneth S., S. J. Doktycz, and E. B. Flint. ”On the origin of sonoluminescence and

sonochemistry.” Ultrasonics 28, no. 5 (1990): 280-290.

[27] Mason, Timothy J., Larysa Paniwnyk, and J. P. Lorimer. ”The uses of ultrasound in food technology.”

Ultrasonics sonochemistry 3, no. 3 (1996): S253-S260.

[28] Canavese, Giancarlo, Andrea Ancona, Luisa Racca, Marta Canta, Bianca Dumontel, Federica

Barbaresco, Tania Limongi, and Valentina Cauda. ”Nanoparticle-assisted ultrasound: a special focus

on sonodynamic therapy against cancer.” Chemical Engineering Journal 340 (2018): 155-172.

[29] Holt, R. Glynn, D. Felipe Gaitan, Anthony A. Atchley, and Joachim Holzfuss. ”Chaotic

sonoluminescence.” Physical review letters 72, no. 9 (1994): 1376.

[30] Holt, R. Glynn, and Ronald A. Roy. ”Measurements of bubble-enhanced heating from focused, MHz-

frequency ultrasound in a tissue-mimicking material.” Ultrasound in medicine & biology 27, no. 10

(2001): 1399-1412.

[31] Bouakaz, Ayache, Nico De Jong, and Christian Cachard. ”Standard properties of ultrasound contrast

agents.” Ultrasound in medicine & biology 24, no. 3 (1998): 469-472.

301



[32] Sojahrood, Amin Jafari, Omar Falou, Robert Earl, Raffi Karshafian, and Michael C. Kolios. ”Influence of

the pressure-dependent resonance frequency on the bifurcation structure and backscattered pressure

of ultrasound contrast agents: a numerical investigation.” Nonlinear Dynamics 80, no. 1-2 (2015):

889-904..

[33] Segers, Tim, Pieter Kruizinga, Maarten P. Kok, Guillaume Lajoinie, Nico De Jong, and Michel Versluis.

”Monodisperse versus polydisperse ultrasound contrast agents: Non-linear response, sensitivity, and

deep tissue imaging potential.” Ultrasound in medicine & biology 44, no. 7 (2018): 1482-1492.

[34] Zderic, Vesna, Jessica Foley, Wenbo Luo, and Shahram Vaezy. ”Prevention of post-focal thermal damage

by formation of bubbles at the focus during high intensity focused ultrasound therapy.” Medical physics

35, no. 10 (2008): 4292-4299.

[35] Soetanto, Kawan, and Man Chan. ”Fundamental studies on contrast images from different-sized

microbubbles: analytical and experimental studies.” Ultrasound in medicine & biology 26, no. 1

(2000): 81-91.

[36] Sojahrood, Amin Jafari, and Michael C. Kolios. ”The utilization of the bubble pressure dependent

harmonic resonance frequency for enhanced heating during high intensity focused ultrasound

treatments.” In American Institute of Physics Conference Series, vol. 1481, pp. 345-350. 2012.

[37] Commander, Kerry W., and Andrea Prosperetti. ”Linear pressure waves in bubbly liquids: Comparison

between theory and experiments.” The Journal of the Acoustical Society of America 85, no. 2 (1989):

732-746.

[38] Louisnard, Olivier. ”A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory,

nonlinear attenuation and traveling wave generation.” Ultrasonics sonochemistry 19, no. 1 (2012):

56-65.

[39] Jamshidi, Rashid, and Gunther Brenner. ”Dissipation of ultrasonic wave propagation in bubbly liquids

considering the effect of compressibility to the first order of acoustical Mach number.” Ultrasonics 53,

no. 4 (2013): 842-848.

302



[40] Sojahrood, A.J., Haghi, H., Karshafian, R. and Kolios, M.C., 2020. Critical corrections to models

of nonlinear power dissipation of ultrasonically excited bubbles. Ultrasonics Sonochemistry, 66,

pp.105089-105089.

[41] Sojahrood, A.J., Haghi, H., Li, Q., Porter, T.M., Karshafian, R. and Kolios, M.C., 2020. Nonlinear power

loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating

shell damping at various excitation pressures. Ultrasonics sonochemistry, 66, p.105070.

[42] Hoff, Lars, Per C. Sontum, and Jens M. Hovem. ”Oscillations of polymeric microbubbles: Effect of the

encapsulating shell.” The Journal of the Acoustical Society of America 107, no. 4 (2000): 2272-2280.

[43] Mantouka, Agni, Hakan Dogan, P. R. White, and T. G. Leighton. ”Modelling acoustic scattering, sound

speed, and attenuation in gassy soft marine sediments.” The journal of the acoustical society of America

140, no. 1 (2016): 274-282.

[44] Dogan, Hakan, Paul R. White, and Timothy G. Leighton. ”Acoustic wave propagation in gassy porous

marine sediments: The rheological and the elastic effects.” The Journal of the Acoustical Society of

America 141, no. 3 (2017): 2277-2288.

[45] Segers, T. J., N. de Jong, and Michel Versluis. ”Uniform scattering and attenuation of acoustically

sorted ultrasound contrast agents: Modeling and experiments.” Journal of the Acoustical Society of

America 140, no. 4 (2016): 2506-2517.

[46] Dogan, Hakan, and Viktor Popov. ”Numerical simulation of the nonlinear ultrasonic pressure wave

propagation in a cavitating bubbly liquid inside a sonochemical reactor.” Ultrasonics sonochemistry 30

(2016): 87-97.

[47] Sojahrood, A. J., Q. Li, H. Haghi, R. Karshafian, T. M. Porter, and M. C. Kolios. ”Pressure dependence

of the ultrasound attenuation and speed in bubbly media: Theory and experiment.” arXiv preprint

arXiv:1811.07788 (2018).

[48] Plesset, Milton S. ”The dynamics of cavitation bubbles.” Journal of applied mechanics 16 (1949):

277-282.

[49] Keller, Joseph B., and Michael Miksis. ”Bubble oscillations of large amplitude.” The Journal of the

Acoustical Society of America 68, no. 2 (1980): 628-633.

303



[50] Sojahrood, A. J., D. Wegierak, H. Haghi, R. Karshfian, and M. C. Kolios. ”A simple method to

analyze the super-harmonic and ultra-harmonic behavior of the acoustically excited bubble oscillator.”

Ultrasonics sonochemistry 54 (2019): 99.

[51] Morgan, Karen E., John S. Allen, Paul A. Dayton, James E. Chomas, A. L. Klibaov, and Katherine

W. Ferrara. ”Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted

phase and bubble size.” IEEE transactions on ultrasonics, ferroelectrics, and frequency control 47, no.

6 (2000): 1494-1509.

[52] Toegel, Ruediger, Bruno Gompf, Rainer Pecha, and Detlef Lohse. ”Does water vapor prevent upscaling

sonoluminescence?.” Physical review letters 85, no. 15 (2000): 3165.

[53] Lide, David R., and Henry V. Kehiaian. CRC handbook of thermophysical and thermochemical data.

Crc Press, 1994.

[54] http://detector-cooling.web.cern.ch/Detector-Cooling/data/C3F8−Properties.pdf

[55] Stricker, Laura, Andrea Prosperetti, and Detlef Lohse. ”Validation of an approximate model for the

thermal behavior in acoustically driven bubbles.” The Journal of the Acoustical Society of America

130, no. 5 (2011): 3243-3251.

[56] Sojahrood, A.J., Wegierak, D., Haghi, H., Karshafian, R. and Kolios, M.C., 2018. A comprehensive

bifurcation method to analyze the super-harmonic and ultra-harmonic behavior of the acoustically

excited bubble oscillator. arXiv preprint arXiv:1810.01239.

[57] Flynn, H.G., Church, C.C.: Transient pulsations of small gas bubbles in water. J. Acoust. Soc. Am. 84,

985–998 (1988)

[58] Sojahrood, A.J., Earl, R., Kolios, M.C. and Karshafian, R., 2020. Investigation of the 1/2 order

subharmonic emissions of the period-2 oscillations of an ultrasonically excited bubble. Physics Letters

A, p.126446.

[59] A.J. Sojahrood, R.E. Earl, M.C. Kolios and R. Karshafian, Nonlinear dynamics of acoustic

bubbles excited by their pressure dependent subharmonic resonance frequency: oversaturation and

enhancement of the subharmonic signal, arxiv: 2019

304



[60] Sojahrood A.J. & M.C. Classification of the nonlinear dynamics and bifurcation structure of ultrasound

contrast agents excited at higher multiples of their resonance frequency. Physics Letters A, 376(33),

pp.2222-2229.
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[62] Hegedűs, F., 2016. Topological analysis of the periodic structures in a harmonically driven bubble

oscillator near Blake’s critical threshold: Infinite sequence of two-sided Farey ordering trees. Physics

Letters A, 380(9-10), pp.1012-1022.

[63] J.A. Rooney, Hemolysis near an ultrasonically pulsating gas bubble, Science 169 (1970) 869–871.

[64] J. Wu, W.L. Nyborg, Ultrasound, cavitation bubbles and their interaction with cells, Adv. Drug Deliv.

Rev. 60 (2008) 1103–1116.

[65] Bouakaz, A., De Jong, N. and Cachard, C., 1998. Standard properties of ultrasound contrast agents.

Ultrasound in medicine & biology, 24(3), pp.469-472.

[66] Goertz, D.E., de Jong, N. and van der Steen, A.F., 2007. Attenuation and size distribution

measurements of DefinityTM and manipulated DefinityTM populations. Ultrasound in medicine &

biology, 33(9), pp.1376-1388.

[67] Raymond, J.L., Haworth, K.J., Bader, K.B., Radhakrishnan, K., Griffin, J.K., Huang, S.L., McPherson,

D.D. and Holland, C.K., 2014. Broadband attenuation measurements of phospholipid-shelled

ultrasound contrast agents. Ultrasound in medicine & biology, 40(2), pp.410-421.

[68] Shekhar, H., Smith, N.J., Raymond, J.L. and Holland, C.K., 2018. Effect of temperature on the size

distribution, shell properties, and stability of Definity R©. Ultrasound in medicine & biology, 44(2),

pp.434-446.

[69] Shekhar, H., Kleven, R.T., Peng, T., Palaniappan, A., Karani, K.B., Huang, S., McPherson, D.D. and

Holland, C.K., 2019. In vitro characterization of sonothrombolysis and echocontrast agents to treat

ischemic stroke. Scientific reports, 9(1), p.9902.

305



[70] Helfield, B.L., Leung, B.Y., Huo, X. and Goertz, D.E., 2014. Scaling of the viscoelastic shell properties

of phospholipid encapsulated microbubbles with ultrasound frequency. Ultrasonics, 54(6), pp.1419-

1424.

[71] Xia, L., Porter, T.M. and Sarkar, K., 2015. Interpreting attenuation at different excitation amplitudes

to estimate strain-dependent interfacial rheological properties of lipid-coated monodisperse

microbubbles. The Journal of the Acoustical Society of America, 138(6), pp.3994-4003.

[72] Bouakaz, A., Frigstad, S., Ten Cate, F.J. and de Jong, N., 2002. Super harmonic imaging: a new

imaging technique for improved contrast detection. Ultrasound in medicine & biology, 28(1), pp.59-

68.

[73] Cherin, E., Yin, J., Forbrich, A., White, C., Dayton, P.A., Foster, F.S. and Démoré, C.E., 2019. In Vitro
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Chapter 9

Universal classification of the nonlinear

dynamics of acoustically excited bubbles and the

corresponding nonlinear changes in the

attenuation and sound speed of the bubbly

media: Theory, experiments, and applications

9.1 Abstract

Attenuation and sound speed of bubbly media are one of the fundamental problems in acoustics.

The problem is of general interest due to the wide range of applications related to the physics of the

bubbly media including but not limited to underwater acoustics & oceanography, sonochemistry,

and several medical applications (e.g. contrast-enhanced imaging of vasculature, enhanced drug

delivery, etc). However, the problem has remained unsolved; data regarding pressure-dependent

changes of the attenuation and sound speed of a bubbly medium are not available. Our theoretical

understanding of the problem is limited to linear or semi-linear models; thus predictions are not

accurate in the regime of large amplitude bubble oscillations. Secondly, the nonlinear dynamics

of bubbles are complex and not fully understood. We propose a universal and straightforward

attenuation-sound speed model that is not restricted to any linear approximations. The model is

global; it is valid for free bubbles, bubbles encapsulated with different shell types and bubbles

immersed in elastic mediums (e.g., sediments, tissue, etc.). The predictions of the model are

verified against the linear and semi-linear models for all the mentioned cases above. Predictions
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of the model are tested with the results of experiments using monodispersions of lipid-coated

microbubbles. We report for the first time, observations of the pressure dependence of sound speed

in a bubbly medium. The nonlinear radial oscillations of the bubbles are universally classified

utilizing our recently proposed comprehensive bifurcation analysis of the radial oscillations of

the bubbles. Radial oscillations were studied as a function of pressure at various frequencies

including pressure dependent resonance, linear resonance, 1
2 & 1

3 order SHs, super harmonic &

ultra-harmonic resonance oscillations. Using the classified regimes of oscillations, the nonlinear

attenuation and sound speed of the bubbly media are characterized. By taking advantage of the

characterized scheme and finite element simulation of the propagation of focused ultrasonic waves,

it is shown that the attenuation and sound speed of the bubbly media can be engineered through

adjusting the sonication frequency; through which, the pre-focal acoustic loss can be minimized.

Thus ultrasonic waves can tunnel through dense populations of bubbles with minimum loss1.

9.2 Introduction

Acoustically excited microbubbles (MBs) are present in a wide range of phenomena; they have

applications in sonochemistry [1]; oceanography and underwater acoustics [2,3]; material science

[4], sonoluminescence [5] and in medicine [6, 7, 8, 9, 10, 11, 12]. Due to their broad and exciting

biomedical applications, it has been stated that ˝ The future of medicine is bubbles ˝ [12]. MBs

are used in ultrasound molecular imaging [6, 7] and recently have been used for the non-invasive

imaging of the brain microvasculature [7]. MBs are being investigated for site-specific enhanced

drug delivery [8, 9, 10, 11] and for the non-invasive treatment of brain pathologies (by transiently

opening the impermeable blood-brain barrier (BBB) to deliver macromolecules [9]; with the first

in human clinical BBB opening reported in 2016 [8]). However several factors limit our under-

standing of MB dynamics which consequently hinder our ability to optimally employ MBs in these

applications. The MB dynamics are nonlinear and chaotic [13, 14, 15]; furthermore, the typical

lipid shell coating adds to the complexity of the MBs dynamics due to the nonlinear behavior of the

shell (e.g., buckling and rupture [16]). Importantly, the presence of MBs changes the sound speed

1Part one of this chapter is under review as: AJ. Sojahrood, Q. Li, H. Haghi, R. Karshafian, T.M. Porter and M.C. Kolios,
Development of a universal model for pressure dependence of sound speed and attenuation of the bubbly media: Theory
and experiments. Part two will be submitted as: A.J. Sojahrood, H. Haghi, R. Karshafian and M.C. Kolios, Classification
of the nonlinear attenuation and sound speed in bubbly media with applications.
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and attenuation of the medium [17,18,19,20,21]. These changes are highly nonlinear and depend

on the MB nonlinear oscillations which in turn depend on the ultrasound pressure and frequency,

MB size and shell characteristics [17, 18, 19, 20]. The increased attenuation due to the presence

of MBs in the beam path may limit the pressure at the target location. This phenomenon is called

pre-focal shielding (shadowing) [20,21]. Additionally, changes in the sound speed can change the

position and dimensions of the focal region; thus, reducing the accuracy of focal placement (e.g.,

for targeted drug delivery). In imaging applications, MBs can limit imaging in depth due to the

shadowing caused by prefocal MBs [14, 20, 21, 23]. In sonochemistry, changes in the attenuation

and the sound speed impact the pressure distribution inside the reactors and reduces the procedure

efficacy [18,19].

An accurate estimation of the pressure dependent attenuation and sound speed in bubbly media

remains one of the unsolved problems in acoustics [25]. Most current models are based on linear

approximations which are only valid for small amplitude MB oscillations [17]. Linear approx-

imations, however, are not valid for the typical exposure conditions encountered in biomedical

applications. In an effort to incorporate the nonlinear MB oscillations in the attenuation estimation

of bubbly media, a pressure-dependent MB scattering cross-section has been introduced [2, 26].

While the models introduce a degree of pressure dependency (e.g. only the pressure dependance

of the scattering cross section were considered while the damping factors were estimated using

the linear model), they still incorporate linear approximations for the calculation of the rest of

the damping factors (e.g. liquid viscous damping, shell viscous damping and thermal damping).

Additionally, they neglect the nonlinear changes of the sound speed in their approximations. We

have shown in [27,28], that the changes in liquid and shell viscous damping and thermal damping

are pressure dependent and significantly deviate from linear predictions even at moderate pressures

(e.g. 40 kPa).

Louisnard [18] and Holt and Roy [29] have derived models based on employing the energy con-

servation principle. In Louisnard´s approach [18] the pressure dependent imaginary part of the

wave number is calculated by computing the total nonlinear energy loss during bubble oscillations.

However, this method still uses the linear approximations to calculate the real part of the wave

number; thus, it is unable to predict the changes of the sound speed with pressure. Holt and Roy

calculated the energy loss due to MB nonlinear oscillations and then calculated the attenuation
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by determining the extinction cross-section. Both approaches in [18] and [29] use the analytical

form of the energy dissipation terms. In the case of coated MBs with nonlinear shell behavior, such

calculations are complex and can result in inaccuracies. The existing approaches for sound speed

computations based on the Woods model [29, 30] are either limited to bubbles whose expansion

are essentially in phase with the rarefaction phase of the local acoustic pressure, or encounter

difficulties in nonlinear regimes of oscillations because of their dependence on dP
dV (e.g. [31]) where

P is pressure and V is the MB volume.

Experimental investigation of the pressure and frequency dependence of the attenuation of bubbly

media has been limited to few studies of coated MBs suspensions [23, 26, 32]. The pressure

dependence of the sound speed in bubbly media has not been experimentally investigated. In the

absence of a comprehensive and nonlinear model to calculate the sound speed and attenuation, the

relationship between the changes in the pressure and variations in the sound speed and attenuation

has remained incomplete.

The objective of this work is to provide a universal comprehensive model describing the relationship

between the acoustic pressure and the sound speed and attenuation in a bubbly medium, as well

as testing the predictions experimentally. Here, we report on our controlled observations on the

pressure dependence of the sound speed of a bubbly medium for the first time. A theoretical model

is derived that can predict the pressure dependent attenuation and sound speed; the model is free

from any linear approximations and treats the MB oscillations with their full nonlinearity. We have

first proposed this model in [33,34], and reported its initial experimental validation in [35]; initial

results were featured as conference papers in [34,36].

In the second part of this paper, we will classify the nonlinear regimes of bubble oscillations

and apply the classification to characterize the changes of the sound speed and attenuation in

a bubbly media over a wide range of acoustic exposure parameters. Afterwards, we will apply

the characterized scheme to optimize the sonication conditions to reduce the high attenuation of

sound waves during focused ultrasound exposures (e.g. using the pressure dependent resonance

frequency).
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9.3 Methods

9.3.1 Derivation of the comprehensive model

To drive the model, we start with the Caflisch equation [37] for the propagation of the acoustic

waves in a bubbly medium:

∇2 (P ) = 1
C2
l

∂2P

∂t2
−

N∑
i=1

ρl
∂2βi
∂t2

(9.1)

In this equation, P is pressure, Cl is the speed of sound in the liquid in the absence of bubbles, ρl is

the liquid density and βi is the local volume fraction occupied by the gas at time t of the ith MBs.

βiis given by βi(t) = 4
3πRi(t)

3Ni where Ri (t) is the instantaneous radius of the MBs with initial

radius of R0i and Ni is the number of the corresponding MBs per unit volume in the medium. The

summation is performed over the whole population of the MBs. Eq. 9.1 can also be written in

terms of the complex conjugate of the acoustic pressure as in equation 9.2:

∇2
(
P̄
)

= 1
C2
l

∂2P̄

∂t2
−

N∑
i=1

ρl
∂2βi
∂t2

(9.2)

where P̄ is the complex conjugate of P . To calculate the attenuation and sound speed we need to

determine the wave number (k=kr-iα); the sound speed can be calculated from kr which is the real

part of the wave number, and the attenuation α from the imaginary part of the wave number. To

obtain the expressions for the imaginary and real part of the wave number, we first need to write

Eq. 9.1 and its complex conjugate in the form of the Helmholtz equation; then the nonlinear wave

number will be given by: k2 = −∇
2(P )
P .

To achieve this, Eq. 9.1 was multiplied by P̄
P P̄

and Eq. 9.2 was multiplied by P
PP̄

where P̄ is the

complex conjugate of P . The pressure dependent real and imaginary parts of k2 were derived using

the time average of the results of the addition and subtraction of the new equations and applying

the boundary conditions of the problem:

〈<(k2)〉 = −ω
2

C2
l

− 2ρl
T |P | 2

N∑
i=1

∫ T

0
<(P )∂

2βi
∂t2

dt (9.3)
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〈=(k2)〉 = − 2ρl
T |P | 2

N∑
i=1

∫ T

0
=(P )∂

2βi
∂t2

dt (9.4)

where < and = denote the real and imaginary parts respectively, <> denotes the time average,

ω is the angular frequency of a propagating wave, and T is the time averaging interval. The

contribution of each MB with βi is summed. Using Eqs. 9.3 and 9.4, we can now calculate

the pressure-dependent sound speed and attenuation in a bubbly medium. To do this, the radial

oscillations of the MBs in response to an acoustic wave need to be calculated first. Then equation

3 and 4 were solved by integrating over the βi of each of the MBs in the population.

9.3.2 The bubble models

The volume fraction occupied by a bubble with βi depends on the R(t) of each bubble. R(t) of each

bubble is determined by solving the model that describe the bubble oscillations. The predictions of

equations 3 and 4, will be numerically verified in case of an uncoated free bubble model, a coated

bubble model and a model of a bubble immersed in sediment or tissue. In each case the model

predictions are validated against the linear regime of oscillations at very low pressures (1kPa) by

comparing the predictions with the linear models. Linear models are derived using the Commander

& Porspereti approach in [17]. Afterwards, predictions of the imaginary part of the wave number

are verified numerically with modifications to the Louisnard model [18] at different pressures. The

Louisnard model was modified by Jamshidi & Brenner [19] to include the compressibility effects

to the first order of Mach number. Using this approach, they were able to present the nonlinear

terms that describe the power loss due to radiation effects. In chapter 6 [27] we provided critical

corrections to the derived terms in [19] for uncoated bubbles. Using our approach in chapter 6

( [27]), we have derived the terms describing the nonlinear power loss in the case of the coated

bubbles in chapter 7( [28]). Here, we will also derive the terms describing the nonlinear power

loss for bubbles that are immersed in sediments or tissues using our approach in [27].
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9.3.2.1 Uncoated free bubble

Radial oscillations of an uncoated bubble can be modeled to the first order of Mach number by

solving the Keller-Miksis [22] (KM) model:

ρ

(
(1− Ṙ

Cl
)RR̈+ 3

2Ṙ(1− R

3Cl
)
)

= (1 + Ṙ

Cl
)(G) + R

Cl

d

dt
(G) (9.5)

where G = Pg − 4µLṘ
R − 2σ

R − P0 − Pasin(2πft).

In this equation, R is radius at time t, R0 is the initial bubble radius, Ṙ is the wall velocity of the

bubble, R̈ is the wall acceleration, ρ is the liquid density (998 kg
m3 ), Cl is the sound speed (1481

m/s), Pg is the gas pressure, σ is the surface tension (0.0725 N
m), µ is the liquid viscosity (0.001

Pa.s), P0 is the atmospheric pressure (101.325 kPa), and Pa and f are the amplitude and frequency

of the applied acoustic pressure. The values in the parentheses are for pure water at 293 K. In this

paper the gas inside the bubble is either air or C3F8 and water is the host media.

9.3.2.2 Coated bubble

The dynamics of the coated bubble can be modeled using the Keller-Miksis-Church-Hoff model

(KMCH) [28]. We have derived this model by adding the compressibility effects to the first order

of Mach number in [28]. The model is presented in Eq. 9.6:

ρ

((
1− Ṙ

Cl

)
RR̈+ 3

2Ṙ
2
(

1− Ṙ

3Cl

))
=(

1 + Ṙ

Cl
+ R

Cl

d

dt

)(
Pg −

4µLṘ
R
− 12µshεR2

0Ṙ

R4 − 12GsεR2
0

( 1
R3 −

R0
R4

)
− P0 − P

) (9.6)

in this equation µsh is the viscosity of the shell (coating), ε is the thickness of the coating, Gs is

the shell shear modulus, Pg is the gas pressure inside the bubble, P0 is the atmospheric pressure

(101.325 kPa) and P is the acoustic pressure given by P = Pasin(2πft) with Pa and f are

respectively the excitation pressure and frequency. In this paper for all of the simulations related

to coated bubbles Gs=45 MPa and µsh = 1.49(R0(µm)−0.86)
θ(nm) [38] (sh stands for shell (coating)) with

θ = 4nm (unless otherwise stated).
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9.3.2.3 Bubble in sediment or tissue

The Yang and Church model [39] describes the radial oscillations of an uncoated bubble in a

viscoelastic medium (e.g. marine sediments or tissue):

ρ

(
1− Ṙ

Cl

)
RR̈+ 3

2ρṘ
2
(

1− Ṙ

3Cl

)
=(

1 + Ṙ

Cl
+ R

Cl

d

dt

)(
Pg −

2σ
R
− 4µsṘ

R
− 4G

3R3

(
R3 −R3

0

)
− P0 − Pasin(2πft)

) (9.7)

This equation, similar to Eq. 9.5 and 9.6 accounts for compressibility effects to the first order of

Mach number, thus inherits the acoustic radiation losses. Several approaches for the incorporation

of such losses into a Rayleigh-Plesset type equation were outlined in [26]. The introduced new

constant G describes the shear modulus and µs describes the shear viscosity of the sediment or

tissue. In this paper we considered a tissue with G = 0.5MPa, µs = 0.00287Pa.s and σ =

0.056N/m (blood surface tension) [39].

9.3.2.4 Gas pressure and thermal effects

4a-Linear thermal model

The linear thermal model [17, 40] is a popular model that has been widely used in studies related

to oceanography [4, 5] and the modeling and charecterization of coated bubble oscillations [41,

42, 43, 44, 45]. In this model through linearization, thermal damping is approximated by adding

an artificial viscosity term to the liquid viscosity. Furthermore, a variable isoentropic index is used

instead of the polytropic exponent of the gas.

In this model Pg is given by:

Pg = Pg0

(
R0
R

)3ki
(9.8)

Where the polytropic exponent γ is replaced by isoentropic indice (ki):

ki = 1
3<(φ) (9.9)
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The liquid viscosity is artificially increased by adding a thermal viscosity (µth) to the liquid viscosity.

This thermal viscosity (µth) is given by:

µth = Pg0=(φ)
4ω (9.10)

In the above equations the complex term φ is calculated from

φ = 3γ

1− 3 (γ − 1) iχ
[(

i
χ

) 1
2 coth

(
i
χ

) 1
2 − 1

] (9.11)

where γ is the polytropic exponent and χ = D
ωR2

0
represents the thermal diffusion length where D

is the thermal diffusivity of the gas. D = L
γCpρg

where Cp, ρg, and L are specific heat in constant

pressure, density and thermal conductivity of the gas inside the bubble.

To calculate the radial oscillations of the coated bubble and uncoated bubble while including the

linear thermal effects Eqs.11.3 , 9.6 & 9.7 are coupled with Eq. 8 and the liquid viscosity is

increased by µth. The linear thermal model is used to derive the attenuation and sound speed

terms in the regime of linear oscillations. In case of the uncoated bubble and the uncoated bubble

in viscoelastic medium (Eq.11.3 &9.7 ) Pg = P0 + 2σ
R0

. In the case of the coated bubble (Eq.9.6 )

Pg = P0.

4b- Full thermal model

If thermal effects are considered, Pg is given by Eq. 9.12 [47]:

Pg = NgKT
4
3πR(t)3 −NgB

(9.12)

here Ng is the total number of the gas molecules, K is the Boltzman constant and B is the molecular

co-volume. The average temperature inside the gas can be calculated using Eq. 13 [47]:

Ṫ = 4πR(t)2

Cv

(
L (T0 − T )

Lth
− ṘPg

)
(9.13)

here Cv is the heat capacity at constant volume, T0=300K is the initial gas temperature, Lth is the

thickness of the thermal boundary layer. Lth is given by Lth = min(
√

DR(t)
| ˙R(t)|

, R(t)
π ) where D is the

thermal diffusivity of the gas. D can be calculated using D = L
cpρg

where L is the gas thermal
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Thermal parameters of the Air at 1 atm [42]

L ( W
mK ) cp( kJ

kg0C ) cv( kJ
kgK

) ρg ( kg
m3 )

0.01165+C×T 1.0049 0.7187 1.025

Table 9.1: Thermal properties used in simulations. (C=5.528× 1025 W
mK2 )

conductivity, cp is specific heat at constant pressure and ρg is the gas density.

Predictions of the full thermal model have been shown to be in good agreement with predictions

of the models that incorporate the thermal effects using the PDEs [48]. To calculate the radial

oscillations of the coated bubble and uncoated bubble while including the full thermal effects

Eqs.11.3 (coated bubble) or Eq.9.6 (uncoated bubble) or Eq. 9.7 (bubble in sediment or tissue) are

coupled with Eq. 12 & 13 and then solved using the ode45 solver in Matlab.

9.3.3 Attenuation and sound speed equations for linear regime of oscillations

The linear thermal equations (Eqs.9.8,9.9, 9.10 & 9.11) were coupled to the bubble models (Eqs.11.3,9.6

& 9.7) to derive the attenuation and sound speed terms.

For the linear regime, radial oscillations can be considered as R = R0(1 + x) where x is a small

displacement amplitude. Thus, Ṙ = R0ẋ and R−n = R0(1 − nx) (higher order small terms are

neglected in the Taylor series expansion of R−n). We also define a function g(t) = eiωt. The

incident pressure can be linearized as [2,51]:

Pag(t) = ρR̈R0(
1− iωR0

Cl

) (9.14)

Using these linear approximations we can provide a linear analytical solution to Eqs. 5, 6 and 7.

These solutions can be written in the following general form of forced damped oscillations:

αẍ+ 2βẋ+ γx = −Paeiωt (9.15)

where constants α, β and γ can be defined by solving the appropriate equations. We can transfer

Eq.9.15 to the frequency domain by setting x(t) = x(ω)eiωt:

−αω2x(ω)eiωt + 2iβωx(ω)eiωt + γx(ω)eiωt = −Paeiωt (9.16)
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Eq.9.16 can be simplified by dividing both sides by αeiωt and inputting ω0 = γ
α (ω0 is resonance

angular frequency). Thus:

x(ω)
[
ω2

0 − ω2 + 2iβ
α
ω

]
= −Pa

α
(9.17)

9.3.3.1 Free uncoated bubble (KM model) constants

In case of the uncoated bubble model Eq. 11.3, the constants α, β and γ of Eq.9.16 can be derived

using an approach similar to [2,51]:



α = ρR2
0 + 4µR0

Cl

β = 2µth −
σ

Cl
+ 2µ+

(
ωR0
Cl

)
1 +

(
ωR0
Cl

)2
ω

2
(
ρR2

0

)

γ = Pg0<(φ)− 2σ
R0

+ ω2ρR2
0

1 +
(
ωR0
Cl

)2

(9.18)

and the angular resonance frequency ω0 = 2πfr (fr is the linear resonance frequency) is given by:

ω0 =

√√√√√√√
Pg0<(φ)− 2σ

R0
+ ω2ρR2

0

1+
(
ωR0
Cl

)2

ρR2
0 + 4µ R0

Cl

(9.19)

The constant δtotal is the total damping and is defined as δtotal = β
α (in left hand side of equation

9.17). Thus:

δtotal = β

α
=

2µth − σ
Cl

+ 2µ+

(
ωR0
Cl

)
1+
(
ωR0
Cl

)2
ω
2
(
ρR2

0
)

ρR2
0 + 4µR0

Cl

(9.20)
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where δV is, δth, δRad & δint are damping constants due to liquid viscosity, thermal loss, re-radiation

and interfacial effects. 

δV is = 2µ
ρR2

0 + 4µR0
Cl

δth = 2µth
ρR2

0 + 4µR0
Cl

δRad =

(
ωR0
Cl

)
1+
(
ωR0
Cl

)2
ω
2
(
ρR2

0
)

ρR2
0 + 4µR0

Cl

δint = −σ
ρR2

0 + 4µR0
Cl

(9.21)

9.3.3.2 Coated bubble (KMCH) model

Linearzing Eq. 9.6 for coated bubbles we can arrive in an analytical solution in the form of Eq. 9.17

where the angular linear resonance frequency is given by

ω0 =

√√√√√√√
Pg0<(φ) + 12Gsε

R0
+ ω2ρR2

0

1+
(
ωR0
Cl

)2

ρR2
0 + 4µR0

Cl
+ 12µshε

Cl

(9.22)

and 

α = ρR2
0 + 4µR0

Cl

β = 2µth + 2µ+

(
ωR0
Cl

)
1 +

(
ωR0
Cl

)2
ω

2
(
ρR2

0

)
− 2GR0

γ = Pg0<(φ)− 2σ
R0

+ ω2ρR2
0

1 +
(
ωR0
Cl

)2 + 4G

(9.23)
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In this case, due to the addition of the shell due to the addition of shell we have an extra term for

damping due to shell viscosity δshell. Thus δtotal = δliquid + δradiation + δshell + δthermal where:



δliquid = 2µ
ρR2

0 + 4µR0
Cl

+ 12µshε
Cl

δradiation =

(
ωR0
Cl

)
1+
(
ωR0
Cl

)2
ω
2
(
ρR2

0
)

ρR2
0 + 4µR0

Cl
+ 12µshε

Cl

δshell =
6µshε
R0

+ 6Gsε
Cl

ρR2
0 + 4µR0

Cl
+ 12µshε

Cl

δthermal = 2µth
ρR2

0 + 4µR0
Cl

+ 12µshε
Cl

(9.24)

9.3.3.3 Bubble immersed in tissue or sediment

The linear analytical solution to Eq.9.7 for bubbles immersed in tissue or sediments can be written

again in the form of Eq. 9.17. The constants of the equation can be written as follows [2,51]:

ω2
0 =

Pg0<(φ)− 2σ
R0

+ ω2ρR2
0

1+
(
ωR0
Cl

)2 + 4G

ρR2
0 + 4µR0

Cl

(9.25)

and 

α = ρR2
0 + 4µR0

Cl

β = 2µth −
σ

Cl
+ 2µ+

(
ωR0
Cl

)
1 +

(
ωR0
Cl

)2
ω

2
(
ρR2

0

)
− 2GR0

γ = Pg0<(φ)− 2σ
R0

+ ω2ρR2
0

1 +
(
ωR0
Cl

)2 + 4G

(9.26)
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The total damping this case has a term related to the elasticity of the sediment or the tissue (δSed).

Thus the total damping is: δtotal = δliquid + δradiation + δSed + δthermal where:



δV is = 2µ
ρR2

0 + 4µR0
Cl

δth = 2µth
ρR2

0 + 4µR0
Cl

δRad =

(
ωR0
Cl

)
1+
(
ωR0
Cl

)2
ω
2
(
ρR2

0
)

ρR2
0 + 4µR0

Cl

δint = −σ
ρR2

0 + 4µR0
Cl

δSed = 2GR0

ρR2
0 + 4µR0

Cl

(9.27)

9.3.3.4 Derivation of the linear equations of attenuation and sound speed

Using the linear formulations for R, ∂
2β
∂t2 = 4πR0

3ẍ. Moreover x(ω) can be calculated from Eq. 9.17

:

x(ω) =
−Pa

α[
ω2

0 − ω2 + 2iδtotalω
] (9.28)

and ẋ(ω) = −ωx(ω) & ẍ(ω) = ω2x(ω). Inputting these into equation 1 and eliminating eiωt yields:

∇2 (P ) + k2P = 0 (9.29)

where k is the complex wave number (k = ω
C − iα):

k2 = ( ω
Cl

)2 + 4πω2
N∑
j=1

R2
0j

ω2
0 − ω2 + 2iδtotalω

(9.30)
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where R0j is the initial radius of the bubble number j. Attenuation and sound speed can easily be

obtained from equation 9.29.

9.3.4 Derivation of the equations of the sound speed and attenuation using the

semi-linear approach of Louisnard

The wave number (k) in equation 9.30 does not depend on pressure. Linear approximations are

not valid at large bubble oscillation amplitudes due to pressure dependent non-linear microbubble

oscillations. Louisnard [18] derived the pressure dependent term for the imaginary part of the

wave number. In this approach, firstly, the terms for the nonlinear energy dissipation are derived

accounting for large bubble oscillation amplitude. He started with the mass and momentum

conservation equations in a bubbly media [37]:


1
ρC2

l

∂P

∂t
+∇.v = ∂β

∂t

ρ
∂v

∂t
= −∇P

(9.31)

here P (r, t) & v(r, t) are the pressure and velocity field. He arrived at:

∂

∂t

(
1
2
P 2

ρC2
l

+ 1
2ρv

2
)

= NP
∂V

∂t
(9.32)

Where V (r, t) is the instantaneous volume of the bubbles at time t and N is the number of bubbles

per unit volume. V can be calculated by solving the related bubble model. In order to get an

energetic interpretation of the bubble radial motion, both sides of the bubble model (e.g. Eq. 11.3

or 9.6 or 9.7) can be multiplied by the time derivative of the bubble volume ∂V
∂t and using the

equation of the kinetic energy of the liquid [18] Kl = 2πρR3Ṙ2 and Eq.9.32, we can arrive at:

∂

∂t

(
1
2
P 2

ρC2
l

+ 1
2ρv

2 +NKl + 4NπR2σ

)
+∇.(Pv) = −N (πtotal) (9.33)

where πtotal is total dissipated energy term. Because Louisnard used the plain Rayleigh-Plesset

equation that does not incorporate the compressibility effects of the liquid; he was not able to

derive the terms that describe the nonlinear loss due to radiation effects. Jamshidi & Brenner [19]

used the K-M equation (Eq. 11.3) that incorporates the compressibility effects up to the first order
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of Mach number. Thus, they were able to derive the nonlinear radiation loss terms. In [27] we

provided critical corrections to the terms derived in [19].

By taking a time average of both sides of Eq.9.33 and eliminating terms that are zero:

∇. < Pv >= −N (ΠTotal) (9.34)

Where ΠTotal is the total dissipated power. Eq. 9.34 expresses the conservation of mechanical

energy averaged over one or many periods of oscillations. The physical interpretation of this

equation is that the the acoustic energy leaving a volume of bubbly liquid is always smaller than

the one incident on it [18]. This is due to the losses during the bubble oscillations. Each bubble

therefore acts as a dissipator of acoustic energy. The physical origin of wave attenuation is thus

self-contained in the Caflish model, even for nonlinear oscillations, provided that a correct model is

used to describe the losses in the bubble oscillation. In [37], Caflish et. al proposed a conservation

equation similar to Eq. 35; however, since they disregarded viscosity and assumed isothermal

oscillations, mechanical energy was conserved. Eq. (35) as derived by Louisnard [18] reverts the

same equation solved in 1D by Rozenberg [52] in the case of purely traveling waves, but in the

latter work, the dissipated power was fitted from experimental data, rather than being calculated

from single bubble dynamics as done by Louisnard [18].
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9.3.4.1 Nonlinear dissipation terms of the uncoated free bubble

In case of the uncoated bubble model Eq.11.3, ΠTotal is the sum of the following dissipated powers

[27]: 

ΠThermal = −4π
T

∫ T

0
R2ṘPgdt

ΠLiquid = 16πµL
T

∫ T

0
RṘ2dt

ΠRadiation = 1
T

∫ T

0

[4π
Cl

(
R2Ṙ

(
ṘP +RṖ − 1

2ρṘ
3 − ρRṘR̈

))
−
(
Ṙ

Cl
Pg + R

Cl
Ṗg

)
∂V

∂t
+ 16πµLR2ṘR̈

Cl

]
dt

(9.35)

where T is the integration time interval.
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9.3.4.2 Nonlinear dissipation terms of the coated bubble

For the coated bubble Eq.9.6, ΠTotal is the sum of the following dissipated powers [28]:



ΠThermal = −4π
T

∫ T

0
R2ṘPgdt

ΠLiquid = 16πµL
T

∫ T

0
RṘ2dt

ΠShell = 48πµshεR2
0

T

∫ T

0

Ṙ2

R2dt

ΠGs = 48πGsεR2
0

T

∫ T

0

(
Ṙ

R
− R0Ṙ

R2

)
dt

ΠRadiation = 1
T

∫ t

0

(
4π
[
R2Ṙ2

Cl
(P − Pg) + R3Ṙ

Cl

(
Ṗ − Ṗg

)
+ 4µLR2ṘR̈

Cl

+12µshεR02
(
ṘR̈

ClR
− 3Ṙ3

ClR2

)
+ 12GsεR02

(
−2Ṙ2

cR
+ 3R0Ṙ

2

ClR2

)]

−ρR
2Ṙ4

2Cl
− ρR3Ṙ2R̈

Cl

)
dt

(9.36)
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9.3.4.3 Nonlinear dissipation terms of the bubble in sediment or tissue

And in case of the bubbles immersed in sediments or tissue Eq.9.7, ΠTotal is derived using the same

approach in [27,28]:



ΠThermal = −4π
T

∫ T

0
R2ṘPgdt

ΠLiquid = 16πµL
T

∫ T

0
RṘ2dt

ΠRadiation = 1
T

∫ T

0

[
4π
Cl

(
R2Ṙ

(
ṘP +RṖ − 1

2ρṘ
3 − ρRṘR̈+ 4GṘ

3ClR3

(
R3 −R3

0

)))

−
(
Ṙ

Cl
Pg + R

Cl
Ṗg

)
∂V

∂t
+ 16πµLR2ṘR̈

Cl

]
dt

ΠSediment = −1
T

∫ T

0

16GπṘ
3R

(
R3 −R3

0

)
dt

(9.37)

9.3.4.4 Pressure dependent attenuation and sound speed in Louisnard model

Louisnard [18] used the equations of energy dissipation and obtained the imaginary part of the k2.

In this model Imaginary part of the k2 is pressure dependent; however, real part of the k2 is still

calculated by the linear model.

=(k2) = 2ρω
N∑
j=1

Π(R0j)Total
|P |2

(9.38)

where Π(R0j)Total is the total dissipated power due to the oscillations of the jth bubble with initial

radius of R0j. The real part of the k2 can be calculated from Eq. 9.30 as follows:

<(k2) = ( ω
Cl

)2 + 4πω2
N∑
j=1

R0j(ω2
0j − ω2)

(ω2
0j − ω2)2 − 4δ2

totaljω
2 (9.39)

The Louisnard model [18] (Eq. 33 & 34) incorporates the pressure effects in the imaginary part of

the wave number. However, because the real part of the wave number is still estimated from the
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linear approximations it loses accuracy in predicting the sound speed and attenuation, especially

in oscillation regimes where the sound speed changes are significant.

9.4 Results

9.4.1 Validation of the model at linear regimes against the linear models

The relevant models (Eq.11.3 (uncoated bubble), Eq.9.6 (coated bubble) and Eq. 9.7 (bubble in

tissue or sediment)) for large amplitude MB oscillations were coupled with the ordinary differential

equations describing the thermal damping effects (Eq.9.12 and Eq.9.13). The new set of differential

equations were solved to calculate the MB radial oscillations. Constants of the linear models were

calculated from Eq. 9.21 (uncoated bubble), Eq.9.24 (coated bubble) and Eq.9.27 (bubble in tissue

or sediment). Attenuation and sound speed were then calculated for each case using Eq.9.30.

Since the linear model is only valid for narrowband pulses with small pressure amplitudes, pulses of

1kPa amplitude with 60 cycles were chosen at each frequency, and the last 20 cycles of the bubble

oscillations were used (to eliminate the transient behavior) for the integration using Eqs.9.3 and

9.4. For the linearized model, the initial MB radius is 2 µm; the gas inside the MB is air and

the thermal properties are chosen from [49] (Table 1) and β was set to 10−5. Figures 9.1a-f

compare the attenuation and sound speed predictions between the linear model and the non-linear

model given by Eq.9.3 and 9.4. Model predictions are in excellent agreement with the linear

model for small amplitude radial oscillations (Rmax/R0 < 1.01). The simple model given by Eq.

3 and 4 predicted the attenuation and sound speed of the medium for the uncoated bubble, the

coated bubble and the bubble in tissue. The model only requires as input the radial oscillations

of the bubbles and reduces the complexity of deriving the linear terms in each cases. Fig. 9.1

also shows that the the effect of encapsulating shell (added viscosity and stiffness) reduced the

bubble expansion ratio which translated to smaller changes in attenuation and sound speed when

compared to the uncoated counterpart.
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Figure 9.1: Case of a bubbly medium with MBs with R0 = 2µm and β = 10−5. Attenuation calculated using the linear model
and nonlinear model (left) and sound speed calculated using the linear model and the nonlinear model at (P= 1kPa) (Right) for:
uncoated bubbles in water (a & b), coated bubbles in water (c & d) and uncoated bubbles in tissue (ρ = 1060 kg

m3 , Cl = 1540m
s

,
µs = 0.00287Pa.s, G = 0.5MPa, σ = 0.056 N/m [39]) (e & f).
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Figure 9.2: Case of a bubbly medium with MBs with R0 = 2µm and β = 10−5 sonicated at various pressures. Left:
〈
=
(
k2
)〉

calculated using the nonlinear model (Eqs.9.4) and Louisnard model (Eq.9.38) and Right:
〈
<
(
k2
)〉

calculated using the nonlinear
model (Eqs.9.3) and the Louisnard model (Eq.9.39) (Louisanrd model employs the linear model for the real part; thus it is pressure
independent) for: uncoated bubbles in water (a & b), coated bubbles in water (c & d) and uncoated bubbles in tissue (ρ = 1060 kg

m3 ,
Cl = 1540m

s
, µs = 0.00287Pa.s, G = 0.5MPa, σ = 0.056 N/m [39]) (e & f).

331



(a) (b)

(c) (d)

(e) (f)

Figure 9.3: Comparison between the predictions the Louisnard & the nonlinear model for sound speed and attenuation. Case of a
bubbly medium with uncoated MBs with R0 = 2µm and β = 10−5. a) attenuation at Pa = 40kPa, b) sound speed at Pa = 40kPa,
c) attenuation at Pa = 100kPa d) sound speed at Pa = 100kPa, e) attenuation at Pa = 150kPa and f) sound speed at Pa = 150kPa
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9.4.2 Validation of the model at higher pressures against the semi-linear Louisnard

model

As the pressure increases, assumptions (e.g. small amplitude MB oscillations) on which the linear

model is based on are no longer valid. To investigate the effect of pressure, the radial oscillations

of the MBs were simulated for exposures of various acoustic pressure amplitudes. For the uncoated

bubble Pa = 40, 70, 100, 150kPa, for the coated bubble Pa = 40, 70, 100, 150, 200kPa and for the

bubble in tissue Pa = 100, 500, 700, 1000kPa were chosen. The power dissipation expressions for

nonlinear damping effects which are given by Eq.9.35 (for uncoated bubble), Eq.9.36 for coated

bubble and Eq.9.37 for the bubble in tissue were used to calculated the total dissipated power. The

imaginary and real part of the wave number were then calculated using Eqs.9.4 and 9.3 in case of

our nonlinear model and Eq.9.38 and Eq.9.39 in case of the Louisnard model [18]. The predictions

of the two models are illustrated in Figs. 9.2a-f.

The left column of Fig. 9.2 shows that the
〈
=
(
k2)〉 calculated by Eq.9.3 is in excellent agreement

with the Louisnard model (Eq.9.38) for all the acoustic pressures and the bubble models that

investigated. Our simple model only needs the radial oscillations of the bubble as input and reduces

the complexity of the Louisnard model where the equations for different dissipation mechanisms

must be derived for each bubble case. Variations of
〈
=
(
k2)〉 with pressure shows the importance

of the considerations of the pressure effects as the linear model fails to predict phenomena like

the resonance shift (e.g. [14]), changes in the amplitude of the
〈
=
(
k2)〉 with pressure and the

generation of SuH (e.g. [53]) and subharmonic (SH) resonances (e.g. [54, 55]). As an instance in

case of the uncoated bubble in Fig. 9.2a
〈
=
(
k2)〉 u 8.5∗108m−2 at pressure dependent resonance(

f
fr

u 0.98) when Pa = 40kPa. However, as pressure increases to Pa = 150kPa resonance

shifts to f
fr

u 0.64 and
〈
=
(
k2)〉 u 7.3 ∗ 108m−2. Moreover, a SuH occurs at f

fr
u 0.34 with〈

=
(
k2)〉 u 2.4 ∗ 108m−2. When Pa = 40kPa and at f

fr
u 0.34,

〈
=
(
k2)〉 u 3.9 ∗ 106m−2. Thus, the

pressure increase has a significant influence on the resonances of the system and the magnitude of

the
〈
=
(
k2)〉 .

The Louisnard model uses the linear assumptions (Eq.9.39) to calculate the
〈
<
(
k2)〉 . The pre-

dictions of the nonlinear model Eq.9.3 for
〈
<
(
k2)〉 − ( ωCl )

2, are compared with the predictions

of Eq.9.39 in the right hand column of Fig. 9.2 and for 9.3 bubble cases (uncoated, coated
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and bubble in tissue). We have subtracted the constant ( ωC )2 from
〈
<
(
k2)〉 to better highlight

the pressure dependent changes. In each case, pressure increase leads to significant changes

in
〈
<
(
k2)〉 , and predictions of Eq. 9.3 significantly deviate from the linear values (Eq.9.39).

As an instance for the uncoated bubble (Fig. 9.2b) the linear model predicts a maximum for〈
<
(
k2)〉 − ( ωCl )

2 u 4.1 ∗ 107m−2 at f
fr

u 0.9 and a minimum for
〈
<
(
k2)〉 − ( ωCl )

2 u −5 ∗ 107m−2

at f
fr

u 1.12. However, when Pa = 100kPa the maximum is
〈
<
(
k2)〉 − ( ωCl )

2 u 1.9 ∗ 107m−2 at

f
fr

u 0.761 and the minimum is
〈
<
(
k2)〉 − ( ωCl )

2 u −8.5 ∗ 107m−2 at f
fr

u 0.773.

Our model incorporates the pressure-dependent changes in
〈
<
(
k2)〉 and thus can be used to predict

the changes of the
〈
<
(
k2)〉 with pressure. To our best knowledge this is the first time that the

frequency-pressure dependence of the
〈
<
(
k2)〉 in a bubbly medium has been calculated. The

ability of our model to calculate both the
〈
=
(
k2)〉 &

〈
<
(
k2)〉 with pressure changes increase the

accuracy of the predictions of the medium attenuation and sound speed changes.

Fig. 9.3 compares the attenuation and sound speed that are calculated using the nonlinear model

and the Louisnard model. The values are calculated for the uncoated bubble in Fig. 9.2a-b and

at Pa = 40kPa, Pa = 100kPa and Pa = 150kPa. At 40 kPa (Fig. 9.3a-b), the Louisnard model

fails to capture the sound speed fluctuation around f
fr

u 0.5 due to the occurrence of 2nd order

superharmonic (SuH) regime. Moreover, the Louisnard model over-estimates the attenuation at the

resonance frequency by about 10 %. The deviation in the predicted values between the two models

increases with increasing pressure. At Pa = 100kPa (Fig. 9.3c-d), Louisnard model overestimates

the attenuation by about 40 %. Moreover, Louisnard model can not capture the the shift in the

maximum sound speed to lower frequencies as well as the ≈ 15% increase in its magnitude.

At 150 kPa (Fig. 9.3e-f) the Louisnard model overestimates the attenuation peak by 77 % and

underestimates the sound speed peak by about 52 %. The nonlinear model predicts a shift in

the frequency of the sound speed peak by about 42 %. Once again, the frequency at which the

attenuation peaks ( ffr = 0.65) corresponds to the frequency at which C
Cl

= 1.

This, shows that pressure dependent effects of
〈
<
(
k2)〉 − ( ωCl )

2 can not be neglected and must be

included in the calculation of sound speed and attenuation. Our proposed model has the advantage

of calculating both of the pressure dependent
〈
<
(
k2)〉 − ( ωCl )

2 and
〈
=
(
k2)〉 .

As the pressure increases, the resonance frequency of the bubbles decreases [14], which is observed

as the peak of =(k2) in Fig. 9.2 and attenuation curve in Fig. 9.3 shift towards lower frequencies;
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Figure 9.4: Size distribution of the MBs in the experiments measured by coulter counter

this corresponds to the frequencies at which the sound speed in the bubbly medium is equal to

the sound speed in the absence of the bubbles. This is seen in Fig. 9.3 where the frequency in

which attenuation peaks corresponds to the frequency in which C
Cl

= 1 in the blue curves that can

only be captured by our proposed model. At pressure dependent resonances, the oscillations are

in phase with the driving acoustic pressure similar to the case of linear resonance(when f = fr

and at Pa u< 1kPa C
Cl

= 1 page 290 [56]). As the pressure increases, the maximum sound speed

of the bubbly medium increases and occurs at a lower frequency, which depends on the driving

acoustic pressure amplitude. The abrupt increases in the sound speed and attenuation at particular

frequencies in Fig 9.3c-d and in
〈
=
(
k2)〉 in Figs. 9.2a, 2c & 2d are due to the pressure dependent

resonance frequency which is described in detail in [14]. We have previously shown that when MBs

are sonicated with their pressure dependent resonance frequency, the radial oscillation amplitude

of the MBs undergo a saddle node bifurcation (rapid increase in amplitude) as soon as the pressure

increases above threshold [14] and the maximum stable scattered pressure increases considerably.

9.4.3 Experiments

To experimentally explore the pressure-dependent changes of the sound speed and attenuation for

coated MBs, monodisperse lipid shell MBs were produced using flow-focusing in a microfluidic

device as previously described [32, 57]. Fig. 9.4 shows the size distribution of the MBs in our

experiments. The setup for the attenuation and sound speed measurements is the same as the one

used in [57]. Fig. 9.5 shows the setup for the measurements of the attenuation and sound speed.
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Figure 9.5: The schematic of the setup for the measurements. A broadband pulse with 2.25 MHz center frequency is transmitted by the
transducer on the right hand. After propagation through the chamber, the pulse will be revived by the transducer on the left hand side.
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Figure 9.6: Experimentally measured a) attenuation and b) sound speed of the bubbly medium for four different pressures.

Figure 9.7: Experimentally measured (blue) and simulated (red) attenuation of the sample for a) 12.5 kPa, b) 25 kPa, c) 50 kPa and d)
100 kPa . Sound speed of the sample for e) 12.5 kPa, f) 25 kPa, g) 50 kPa and h) 100 kPa . Errors bars represent the standard deviation.
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The thermal properties for the gas can be found in the Table 9.1 ( [50]). However, the thermal

effects are neglected in the simulations as we have shown in chapter 7 that in case of coated

bubbles with C3F8 as the gas core, thermal effects can be neglected. A pair of single-element 2.25-

MHz unfocused transducers (Olympus, Center Valley,≈ PA; bandwidth 1-3.0 MHz) were aligned

coaxially in a tank of deionized water and oriented facing each other. Monodisperse MBs were

injected into a sample chamber that was made with a plastic frame covered with an acoustically

transparent thin film. The dimensions of sample chamber were 1.4 x 3.5 x 3.5 cm (1.4 cm acoustic

path length), and a stir bar was used to keep the MBs dispersed. The transmit transducer was

excited with a pulse generated by a pulser/receiver (5072PR, Panametrics, Waltham, MA) at a pulse

repetition frequency (PRF) of 100 Hz. An attenuator controlled the pressure output of the transmit

transducer (50BR-008, JFW, Indianapolis, IN), which was calibrated with a 0.2-mm broadband

needle hydrophone (Precision Acoustics, Dorset, UK). Electric signals generated by pulses acquired

by the receive transducer were sent to the Gagescope (Lockport, IL) and digitized at a sampling

frequency of 50MHz. All received signals were recorded on a desktop computer (Dell, Round

Rock, TX) and processed using Matlab software (The MathWorks, Natick, MA). The peak negative

pressures of the acoustic pulses that are used in experiments were 12.5, 25 and 50 and 100 kPa.

Figs. 9.6a-b show representative samples of the experimentally measured attenuation and sound

speed of the mixture respectively. The attenuation of the bubbly medium increases as the pressure

increases from 12.5 kPa to 100 kPa and the frequency of the maximum attenuation decreases from

2.045 MHz to 1.475 MHz. Maximum sound speed of the medium increases with pressure and

the corresponding frequency of the maximum sound speed decreases by pressure increases. To

our best knowledge this is the first experimental demonstration of the pressure dependence of the

sound speed. It is also interesting to note that at the pressure dependent resonance frequencies

(measured attenuation peaks) the sound speed is equal to the sound speed of the water in the

absence of bubbles.
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9.5 Comparison of the model predictions against experimental

observations

9.5.0.1 Lipid coated bubble model including bubble-bubble interaction

To numerically simulate the attenuation and sound speed, the Marmottant model [16], which

accounts for radial-dependent shell properties, was modified to include MB multiple scattering

using the approach introduced in [58]:

RiR̈i + 3
2Ṙi

2 = 1
ρ

([P0 + 2σ(R0i)
R0i

]( Ri
Ri0

)3k(1− 3k
Cl
Ṙi)

−2σ(Ri)
Ri

− 4µṘi
Ri
− 4κsṘi

R2
i

− Pac(t))−

∑
j 6=i

Rj
dij

(RjR̈j + 2Ṙj
2), i = 1, .., N

(9.40)

In this equation Ri0 is the initial radius of the ith bubble, P0 is the atmospheric pressure Cl is the

sound speed, k is the polytropic exponent, µ is the viscosity of the liquid. σ is the surface tension

which is a function of bubble radius and is given by :

σ =



0 if R <= Rb

χ

(
( R
Rb

)
2
− 1

)
if Rb < R < Rr

σwater if R >= Rr

(9.41)

where σwater is the water surface tension, Rb = R0√
1+R0

χ

is the buckling radius, Rr is the rupture

radius (=break up radius in this paper) and χ is the shell elasticity. κs in equation9.40, is the

surface diltational viscosity .
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Using our approach in [59], Eq.9.40 can be written in a matrix format as:



R̈1

R̈2

...

R̈N



=



R1
R2

2
d12

...
R2
N

d1N

R2
1

d21
R1 ...

R2
N

d2N

... ... ... ...

R2
1

dN1

R2
2

dN2
... RN



−1

A1

A2

...

AN



(9.42)

where:

Ai = 1
ρ

([
P0 + 2σ(R0i)

R0i

](
Ri
Ri0

)3k (
1− 3k

Cl
Ṙi

)
− 2σ(Ri)

Ri
−

4µṘi
Ri
− 4κṘi

R2
i

− Pac(t)−
3ρ
2 Ṙi

2
)
−
∑
j 6=i

2RjṘj
2

dij

(9.43)

The gas inside the bubble is C3F8 and the properties are given in Table 9.1. We have neglected the

thermal effects in the numerical simulations in this part. In [28] we have shown that in case of

the coated bubbles that enclose C3F8 gas cores, thermal dissipation has negligible contribution to

the overall dissipated power. Thus, thermal effects are neglected to reduce the complexity of the

multiple scattering equation that is used in the simulations (Eq.9.40).

9.5.0.2 Simulation procedure

At each frequency and pressure, 63 MBs were selected from the size distribution in Fig. 9.4 and

were randomly distributed in a cube with sides of 0.1 mm in length (to simulate the concentration

of 63000 MBs/ml in the experiments). The results were weighted by the number density of

the MBs in Fig. 9.4 and were implemented in Eqs.9.3 & 9.4. This procedure was repeated by

iterating different values for the shell elasticity (0.1N/m<χ <2.5 N/m), initial surface tension (0

339



N/m < σ(R0) < 0.072 N/m), shell viscosity (1e-9 Pa.s <µs< 1e − 7 Pa.s), and break up radius

(R0 < Rbreakup < 2R0) to fit the experimental curves.

To compare the predictions of the model with experiments, Figs. 9.7a-h illustrate the results

of the experimentally measured (blue) (with standard deviations of the 100 data points at each

condition) and numerically simulated (red) sound speed of the medium as a function of frequency,

for 4 different pressure exposures of (12.5, 25, 50 and 100 kPa). The shell parameters that

were used to fit the experimental results are χ=1.1 N/m, σ(R0)= 0.016N/m, µs=7e-9 Pa.s and

Rbreakup=1.1R0.

Figs. 9.7a-d show the results of the experimentally measured (blue) and numerically simulated

(red) medium attenuation for peak acoustic pressures of 12.5, 25, 50 and 100 kPa. As the pressure

increases, the frequency at which the maximum attenuation occurs (which indicates the resonance

frequency) decreases (from 2.02 MHz at 12.5 kPa to 1.475 MHz at 100 kPa) and the magnitude

of the attenuation peak increases (from 16.5 dB/cm at 2 MHz to 21.8 dB/cm at 1.475 MHz). At

12.5 kPa and for frequencies below ∼ 2 MHz, the speed of sound in the bubbly medium is smaller

than the sound speed of water. Above 2 MHz, speed of sound increases and reaches a maximum

at 2.25 MHz with a magnitude of ∼ 1.015Cl. At ∼ 2MHz the sound speed is equal to Cl. This

is also the frequency where the attenuation is maximum. According to the linear theory [56] at

the resonance frequency the sound speed of the bubbly medium is equal to the sound speed of the

medium without the bubbles. As the pressure increases to 25, 50 and 100 kPa the frequency at

which the speed of sound in the bubbly sample is equal to Cl decreases to 1.87, 1.65 and 1.48 MHz

respectively. The frequency at which the maximum sound speed occurs decreases as the pressure

increases and the magnitude of the maximum sound speed increases to ∼ 1.019Cl at 100 kPa. The

minimum sound speed decreases from ∼ 0.989Cl at 12.5 kPa (peak at1.6 MHz) to ∼ 0.981Cl at

100 kPa and (1.25 MHz). At each pressure, the frequency at which attenuation is maximized (the

pressure dependent resonance) is approximately equal to the frequency where the sound speed

becomes equal to Cl. Thus, it can be observed that, even at the pressure dependent resonance

frequency ( PDfr) which is a nonlinear effect [14], the velocity is in phase with the driving force

and C
Cl

= 1 (page 290 [56]). This observation is also consistent with the numerical results of the

uncoated bubble in Figs. 9.1a-f and Figs. 9.3a-d (blue curves).
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9.6 classification of the main nonlinear regime of oscillations and

the corresponding changes in the attenuation and sound speed

Knowledge of the changes of the attenuation and sound speed due to bubble pulsations is key to

optimize the applications involving bubble dynamics. The attenuation and sound speed changes

are dependent on the nonlinear bubble dynamics. MB oscillators can exhibit stable nonlinear

oscillations (e.g. period 2, 3, 4 or superharmonics, ultra harmonics and chaotic oscillations)

[13, 14, 15, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66]. However, our knowledge of the attenuation and

sound speed of the medium during nonlinear bubble oscillations is limited.

In this section, first we will introduce some main nonlinear oscillation regimes. Then, the sound

speed and attenuation changes are classified in these regimes for the first time. We then introduce

an optimization case where the lost focus due to ultrasound attenuation is reconstructed.

9.6.1 Bifurcation diagrams

Understanding the complex dynamics of nonlinear systems over extended control parameter re-

gions is easier when using bifurcation diagrams where the qualitative and quantitative changes of

the dynamics of the system can be investigated. In this section, we employ a more comprehensive

bifurcation analysis using the method introduced in chapter 3 ( [53]).

9.6.2 Nonlinear oscillation regimes of the coated bubble

A coated bubble in water with R0 = 2µm with a C3F8 gas core is considered. The shell parameters

are Gs = 20MPa, ε = 4nm and µsh = 0.265Pa.s. The number of the bubbles is calculated to

represent a clinical situation as follows:

Definity R© bubbles are one of the coated bubbles that are used clinically (e.g. [67,68]). The dosage

of Definity R© bubbles is 10µl per kg weight of the human body and each ml of Definity R© has

1.2 × 1010 bubbles [67, 68]. Thus, for a 100 kg patient with approximately 7500 ml total blood

volume, bubble density in blood will be 1.6 ∗ 1012 bubbles/m3. Since approximately 7% of the
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body is blood and considering homogeneous distribution of blood in the body for simplicity, this

number will be diluted to 7% for the simulations of the wave propagation through a sample of

tissue. It should be noted that the final value is only an approximation and in real cases factors like

different blood perfusion at different locations of the body as well as the presence of large blood

vessels in the beam path should be considered. Incorporation of these factors are beyond the scope

of this study. Moreover, we assumed no interaction between bubbles and possible effects of the

surrounding tissue is neglected.

In the next sections we present the bifurcation structure of a coated bubble irradiated at different

frequencies of interest (e.g. fr, fsh, ..)

9.6.2.1 Case of f = 0.3fr

Fig. 9.8a shows the bifurcation structure of the coated bubble as a function of the pressure.

The blue line is constructed using the method of peaks and the red line is constructed using the

conventional method. At ≈ 50kPa, 3 maxima appear in the period-1 bubble oscillations (blue line

has 3 branches while the red line consists of only one branch); this indicates the generation of

3rd order SuH in the oscillations of the bubble [53]. Oscillations amplitude grows with increasing

pressure and at ≈ 140kPa, the red graph experiences period doubling (Pd). The Pd in red graph

is concomitant with 3 Pds in the blue graph, indicating a 7
2 UH regime of oscillations [53]. A

further pressure increase above 168 kPa results in oscillations with Rmax
R0

> 2 and bubble may most

likely undergo destruction [69] (for a detailed review of bubble destruction threshold please refer

to [14]). At about 168 kPa a saddle node bifurcation results in 2nd order superharmonic (SuH)

resonance (P1 with 2 maxima) which undergo Pd and chaos. At about 270 kPa a P1 giant resonance

emerges out of the chaotic window which undergoes Pd above 500 kPa. Finally chaotic oscillations

appear at Pa ≈ 750kPa through successive Pds.

At lower pressures the attenuation of the bubbly medium is 0.24 Np/m (smallest compared to

the other frequencies (0.3fr < f ≤ 3fr) studied here). Concomitant with the appearance of the 3

solutions in the blue curve (3rd order SuH) attenuation increases rapidly with pressure and reaches

12.8 Np/m at ≈ 168kPa. The occurrence of saddle node bifurcation at 168 kPa is concomitant

with an abrupt increase in attenuation to 53 Np/m. Attenuation increases to ≈ 83Np/m before

the emergence of the giant resonance. The giant resonance is concomitant with another abrupt
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(a)

(b)

(c)

Figure 9.8: a) Bifurcation structure of the coated bubble as a function of pressure when f = 0.3fr , b) the corresponding attenuation of
the bubbly water and c) sound speed of the bubbly water.
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(b)

(c)

Figure 9.9: a) Bifurcation structure of the coated bubble as a function of pressure when f = 0.5fr , b) the corresponding attenuation of
the bubbly water and c) sound speed of the bubbly water.
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increase in attenuation to ≈ 212Np/m at Pa u 269kPa. Attenuation grows very slowly with

pressure increase and reaches ≈ 292Np/m at 800 kPa.

Sound speed C
Cl

= 0.982 − 0.980 barely changes for pressure below the occurrence of saddle-node

bifurcation at Pa = 168kPa. After the occurrence of saddle-node bifurcation C
Cl

increases with

pressure and reaches 1.12 at 263 kPa. Emergence of the giant resonance results in an abrupt

increase in C
Cl

to 1.34. Afterwards, C
Cl

increases rapidly with pressure and reaches ≈ 3.3 during the

chaotic oscillations at 800 kPa.

9.6.2.2 Case of f = 0.5fr

Bifurcation structure of the bubble when f = 0.5fr is shown in Fig. 9a. At Pa = 28kPa two maxima

occur (2 branches in the blue curve) for P1 (1 branch in red curve) oscillations. This indicates

the 2nd harmonic regime of oscillations [53]. Oscillations amplitude increases with pressure and

a Pd occur at ≈ 137kPa. This results in a P2 oscillations (two branches in red curve) with 4

maxima (4 branches in the blue curve) which indicates the 5
2 order UH resonance [53]. Oscillations

undergo further Pds to P4 oscillations with 8 maxima and at≈ 200kPa a giant P1 resonance appear.

Occurrence of the giant P1 resonance is most likely concomitant with bubble destruction R
R0

> 2.

Further pressure increase results in multiple Pds to chaos at ≈ 455kPa.

Attenuation of the bubbly medium increases with pressure increases and reaches ≈ 9.6Np/m at

137 kPa. The occurrence of the UHs is concomitant with fast increase in attenuation as it reaches

13.3Np/m at 165 kPa. A further Pd decreases the attenuation to 12.2Np/m right before the genera-

tion of giant resonance. The giant resonance is concomitant with a sharp increase in attenuation to

≈ 100Np/m. A further pressure increase results in a steady decline in attenuation. The occurrence

of Pd further decreases the attenuation until attenuation plateaus to small fluctuations around

≈ 37Np/m during chaotic oscillations.

Sound speed remains at C
Cl

= 0.98− 0.99 until the incident pressure approximately reaches to 200

kPa. Concurrent with the giant resonance, the sound speed abruptly increases to C
Cl

= 1.27. The

sound speed keeps increasing with pressure and reaches C
Cl

= 1.4 at Pa ≈ 317kPa. Concomitant

with the Pd at Pa ≈ 318kPa, the sound speed start decreasing with pressure increase and plateaus

to fluctuating values around C
Cl
≈ 1.37 during the chaotic oscillations.
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9.6.2.3 Case of f = 0.75fr

Fig. 9.10 shows the bifurcation structure of the bubble sonicated with f = 0.75fr. This frequency

is referred to as the pressure dependent resonance frequency of the bubble [14, 70]. Initially, the

bubble oscillations are of P1 with one maxima and the oscillation amplitude grows with increasing

pressure. At Pa = 85kPa the radial oscillations undergo a saddle node bifurcation to P1 oscillations

with higher amplitude.At the saddle node point, the red curve meets the blue curve; this indicates

that the wall velocity is in phase with the incoming wave and the bubble oscillations are at

resonance [56]. This also confirms our experimental observations in Fig. 9.6 and 9.7 in which

the frequency at which the sound speed becomes equal to the sound speed of the pure water at

pressure dependent resonances of the system. The pressure increase results in a monotonic increase

in oscillation amplitude and Rmax
R0

u 2 at Pa u 128kPa; thus any pressure increase above 128 kPa

most likely results in non-stable bubble oscillations. Pd occurs at Pa u 229kPa with the emergence

of chaos at about 310 kPa through successive Pds. A P2 giant resonance emerges out of the chaotic

window just above 600 kPa and later undergoes two Pds to P4 oscillations.

Attenuation of the medium slowly increases with pressure; however in the vicinity of the pressure

for saddle-node bifurcation attenuation increases abruptly (α u 16Np/m at Pa = 81kPa and

increases to approximately 80 Np/m at 85 kPa). After the occurrence of saddle-node bifurcation

attenuation decreases with increasing pressure until it plateaus to a fluctuating value around 11.5

Np/m during the chaotic oscillations. Concomitant with the generation of the giant resonance,

attenuation abruptly increases and plateaus to ≈ 21.5Np/m.

For pressures below the generation of saddlenode (SN) bifurcation the C
Cl

u 0.968. Just before the

occurrence of SN, sound speed decreases slightly, then it undergoes an abrupt increase. C
Cl

u 0.962

at Pa = 83kPa and increases to C
Cl

u 1.05 at Pa = 85kPa and plateaus to 1.1 at 159 kPa.

Concomitant with the Pd at 229 kPa, sound speed starts decreasing with pressure increase to

C
Cl

u 1.08 right before the occurrence of chaos. Sound speed fluctuates during chaotic oscillations

and then increases with the emergence of giant resonance.

In [14] we have shown that when the bubble is sonicated with its pressure dependent resonance

frequency (PDfr) the generation of Pd is concomitant with a decrease in the bubble wall velocity
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Figure 9.10: a) Bifurcation structure of the coated bubble as a function of pressure when f = 0.75fr , b) the corresponding attenuation
of the bubbly water and c) sound speed of the bubbly water.
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Figure 9.11: a) Bifurcation structure of the coated bubble as a function of pressure when f = fr , b) the corresponding attenuation of
the bubbly water, c) and sound speed of the bubbly water.
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amplitude and scattered pressure. Here, we show that generation of Pd is also concomitant with

the decrease in sound speed of the bubbly medium. Moreover, Fig. 9.10b show that the rate of

attenuation decrease further increases when Pd occurs.

9.6.2.4 Case of f = fr

When the bubble is sonicated with its resonance frequency, the oscillation amplitude increases

monotonically with increasing pressure (Fig 9.11a). The red curve and blue curve have the same

value for Pa < 23kPa. This indicates that the wall velocity is in phase with the incoming acoustic

waves. This is expected as the bubble is sonicated with its linear resonance frequency. As the

pressure increases the two curves diverge because of the change in the resonance frequency with

pressure. Oscillations undergo a Pd at 226 kPa; Rmax
R0

exceeds 2 at 248 kPa (possible bubble

destruction above this point) and chaos is generated through multiple Pds at 300 kPa. At 444

kPa a giant P2 resonance emerges out of the chaotic window and subsequently undergoes a Pd

cascade to chaos at about 600 kPa.

The attenuation decreases as pressure increases. Attenuation is 74 Np/m at 1 kPa and decreases

to 12.4 Np/m at 231 kPa. Concomitant with Pd, the rate of attenuation decrease with pressure

increases and attenuation further drops to 7.7 Np/m at 279 kPa. Within the chaotic window, the

pressure increase results in a further decrease of the attenuation in a fluctuating manner to 4.8

Np/m right before the emergence of the giant resonance. The giant resonance is concomitant with

an abrupt increase in attenuation to 15.8 Np/m at 445 kPa. Afterwards, the attenuation decreases

slowly with pressure and plateaus to a fluctuating value around 8.9 Np/m within the second chaotic

window.

At Pa = 1kPa, C
Cl

= 1 (Fig. 9.11c). The sound speed rises very fast with pressure increase and

reaches C
Cl

= 1.052 at 79 kPa. Further pressure increase results in a slow and steady decrease of

the sound speed. Concomitant with Pd, the rate of the sound speed decrease increases and speed

reaches C
Cl

= 1.034 right before the generation of chaos. Sound speed fluctuates around 1.03 within

the chaotic window and concurrent with the generation of giant resonance sound speed increases

abruptly to C
Cl

= 1.038. Sound speed plateaus to a fluctuating value around C
Cl

= 1.041.
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9.6.2.5 Case of f = 1.5fr

The bifurcation structure of the bubble sonicated with f = 1.5fr (Pressure dependent SH resonance

frequency PDfsh) is shown in Fig. 9.12a. The oscillations amplitude increases monotonically with

pressure and Pd occurs at u 249kPa. P2 oscillations undergo a SN bifurcation to P2 oscillations of

higher amplitude at Pa u 290kPa. In [55], we have shown that SN bifurcation is concomitant with

the over saturation of the SH component of the scattered pressure by the bubble. P2 oscillations

undergo another Pd and P4 oscillation amplitude increases beyond the destruction threshold of

Rmax
R0

= 2 [69] at Pa = 377kPa. Chaos appears at Pa u 426kPa and extends to Pa u 768kPa with

a small window of periodic behavior. A giant P3 resonance emerges out of the chaotic window at

Pa = 767kPa.

The attenuation (Fig. 9.12b) decreases very slowly with increasing pressure (from 3.5 at 1kPa to

3.2 Np/m at 249 kPa). Concurrent with Pd at 249 kPa, the attenuation decreases rapidly to 2.3

Np/m at Pa = 285kPa. SN occurrence results in an abrupt increase in the attenuation to 9.4 Np/m

at 291 kPa. The attenuation then decreases with pressure increase and fluctuates around a mean

value of 3.3 Np/m within the chaotic window and then abruptly increases to 6.5 Np/m when a

giant resonance occurs.

The sound speed remains constant around C
Cl

= 1.01 until Pd takes place under which the sound

speed decreases to C
Cl

= 1.009. Concomitant with SN, sound speed abruptly increases to C
Cl

= 1.013

and fluctuates within the chaotic oscillations. Sound speed changes are much smaller compared to

the resonance and below resonance oscillations.

9.6.2.6 Case of f = 2fr

Bifurcation structure of the bubble when f = 2fr (linear SH resonance frequency of the bubble

fsh) is shown in Fig. 9.13a. The oscillation amplitude grows slowly with pressure increase and

Pd occurs at 140 kPa. At this point oscillations have two maxima. One of the maxima quickly

disappears. At about 200 kPa Pd occurs and evolve in the shape of a bow-tie (chapter 4) [54] and

at Pa = 263kPa the second maxima re-emerges with a value equal to the higher branch of the red

curve. This indicates that wall velocity is in phase with the driving pressure once every two acoustic
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Figure 9.12: a) Bifurcation structure of the coated bubble as a function of pressure when f = 1.5fr , b) the corresponding attenuation
of the bubbly water c) and sound speed of the bubbly water.
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cycles and full SH resonance is developed. Oscillations undergo successive Pds to chaos and bubble

destruction may occur at Pa > 700 kPa for the chaotic oscillations.

The attenuation of the medium stays constant around 1.3 Np/m below the pressure for Pd. As

soon as Pd takes place the attenuation starts increasing rapidly until it reaches a maximum of 3.15

Np/m coincident with re-emergence of the second maximum in the bifurcation diagram. After that

attenuation decreases and fluctuates during the chaotic oscillations.

Sound speed changes are small. Sound speed decreases with Pd and starts increasing as soon as

one of the maxima disappears. Occurrence of the second Pd is also concomitant with a decrease

in sound speed. Sound speed fluctuates within the chaotic window and never increases above

C
Cl

= 1.0075 for the chaotic regime of oscillations.

9.6.2.7 Case of f = 3fr

The bifurcation structure of the bubble when f = 3fr is shown in Fig. 9.14a. The oscillation am-

plitude increases slowly with pressure and at Pa u 632kPa, P3 oscillations develop. P3 oscillations

result in the generation of 1/3, 2/3 SHs in the scattered pressure of the bubble [62]. Occurrence of

P3 oscillations are concomitant with a rapid increase in attenuation in Fig. 9.14b and sound speed

in Fig. 9.14c. P3 oscillations become P1 at Pa u 789kPa and subsequently attenuation and sound

speed decreases abruptly. Contrary to the common belief, attenuation of the bubbly medium when

the bubble is sonicated with multiples of its resonance frequency is very small even when the P2 or

P3 oscillations are generated.

9.6.2.8 Simulation of the propagation of focused waves through bubbly media

In the previous subsection, we revealed some major nonlinear regimes of oscillations by the analysis

of bifurcation diagrams. Attenuation and sound speed changes of the medium were investigated

alongside the bifurcation diagrams and the changes of the attenuation and sound speed were

classified in each category. In this section, propagation of the focused ultrasonic waves through

a bubbly medium is numerically simulated using finite element method. The Comsol R© software is

used for numerical simulations. The knowledge obtained in the previous section is used to optimize

the exposure parameters for ultrasound wave propagation.
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Figure 9.13: a) Bifurcation structure of the coated bubble as a function of pressure when f = 2fr , b) the corresponding attenuation of
the bubbly water (b) and c) sound speed of the bubbly water.
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Figure 9.14: a) Bifurcation structure of the coated bubble as a function of pressure when f = 3fr , b) the corresponding attenuation of
the bubbly water and c) sound speed of the bubbly water.
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In applications pertaining to bubble dynamics, the increased attenuation of the bubbly media

hinders the efficacy of applications by limiting the ultrasonic energy that can be delivered to the

target. We have proposed in [14, 71] that application of the pressure dependent resonance or

SuH resonance may help us to decrease the attenuation caused by bubbles in the pre-focal region.

Moreover, in focused ultrasound applications like high intensity focused ultrasound (HIFU), the

sharp pressure gradient by focused transducers can be used to only activate the focal bubbles which

may result in significant decrease in the attenuation as the pre-focal bubbles are non-resonant

[14, 71]. In [23], Pdfr is used to sonicate narrow size distribution of bubbles and it is shown that

this method enhances the ability of penetrating through a bubbly medium with minimum loss.

Here we first compare the attenuation and sound speed of the medium at the classified stages

below resonance oscillations. Then, the frequency and pressure of the sonication is optimized

to maximize the gain at the focus. Fig. 9.15a-b, compares the attenuation and sound speed

changes of the medium as a function of pressure and for frequencies equal to resonance and below

resonance. The higher frequencies are omitted from the figure for the simplicity of the comparison.

Attenuation and sound speed changes at f = 2fr & 3fr are negligible compared to resonance and

below resonance oscillations even when SH resonances occur. These frequencies are often used for

nonlinear imaging at 1/2 order SHs; however, due to stronger bubble activity frequencies around

resonance and below resonance are used for most applications.

Fig. 9.15a shows that the attenuation changes can be divided in 5 different regions. In region A,

Pa < 95kPa sonication with f = fr results in the highest attenuation. Thus, pressure waves will

be attenuated in the pre-focal region and the ultrasound focus may be destroyed. If one desires

to set the focal pressure at 100 kPa and have strong bubble activity, f = 0.75fr (PDfr) should be

the ultrasound frequency. Moreover, if the goal of the application is SuH harmonic imaging or UH

harmonic imaging at 100-170 kPa; f = 0.5fr&0.3fr are more suitable as not only are the SuH and

the UH component of the scattered pressure stronger, but also the pre-focal attenuation is orders

of magnitude smaller than when f = fr or f = 0.75fr. Thus, undesirable image artifacts like

shadowing would be minimized.

Sonication with f = 0.3fr and f = 0.5fr are desirable in case of achieving a target focal pressure

withing 100-170 kPa range. For higher bubble activity at the focus and to achieve effects like

enhanced heating within the 170-200 kPa range f = 0.3fr is the desirable frequency due to an
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Figure 9.15: Comparison between the pressure dependent attenuation and sound speed of the medium at different resonance and
below resonance for a bubbly medium composed of MBs with R0 = 2µm. a) attenuation b) sound speed.
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Figure 9.16: Geometry of the problem for the finite element simulations.

order of magnitude stronger bubble activity in this range.

Sonication with f = 0.3fr results in the highest attenuation for Pa > 266kPa with possible

application of enhanced heating at low ultrasound powers. When f = fr, the attenuation at 300

kPa is u 240Np/m. This can reduce the pressure required to achieve the same therapeutic pressure

by ≈ 14-15 times. Fig 9.15b shows that sound speed changes are pressure dependent and highest

sound speed in each category corresponds to the 5 different identified regions in Fig. 9.15a. As an

instance, when f = 0.75fr occurrence of SN is concomitant with a large increase in sound speed;

thus the maximum sound speed in region B belong to the case of f = 0.75fr.

Fig. 9.16 shows the geometry and boundary conditions of the problem for simulation of the

wave propagation through the bubbly medium. The transducer has an aperture of 4.8 cm and

a focal point at 3 cm. We have considered a small geometry to reduce the computation time and

memory requirements. The problem has a cylindrical symmetry. The coupling medium between

the transducer and the tissue is water. The sound speed an density of the tissue are set as 1530 m/s

and 1030 kg/m3 and the attenuation of the tissue is set as 5 Np/m. We have neglected the small

changes of the tissue attenuation with frequency. 4 frequencies of f = fr, 0.75fr, 0.5fr & 0.3fr
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Pressure distribution in the medium in the absence when f=0.75f
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Figure 9.17: Pressure distribution in the medium in the absence of bubbles (Left column) and in the presence of bubbles (Right column)
for: a&b)f = fr , c&d)f = 0.75fr , e&f)f = 0.5fr and g&h)f = 0.3fr
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are considered. When using the FEM to solve the Helmholtz equation the density of discretization

points should be at least ten points per wavelength in order to achieve a reasonable accuracy (i.e.,

λ
h = 10, where λ is the wavelength and h the side length of a finite element). Also, the density of

discretization points per wavelength must increase with the wave number to maintain a fixed level

of accuracy [72]. In this paper, similar to [73] the maximum element size of meshing was chosen

to satisfy λ
h ≥ 12 in each case. At each sonication the pressure at the surface of the transducer is

chosen so that the focal pressure in the tissue in the absence of bubbles is 250kPa < P < 255kPa.

In the next step, we consider the case of the bubbly tissue by updating the pressure dependent

attenuation and sound speed using the data in Fig. 9.15.

Fig. 9.17 shows the pressure distribution in the medium before and after the addition of the

bubbles. When f = fr and in the absence of bubbles, there is sharp focus at Z=0 cm with≈ 250kPa

(Fig. 9.17a). However, after the addition of bubbles the focus is attenuated heavily. Due to the very

large attenuation at lower pressures when f = fr, ultrasonic waves encounter large absorption in

the pre-focal path with low pressure. This results in weakening of the focal pressure to ≈ 40kPa

(Fig. 9.17b).

To reconstruct the focus, the attenuation in the pre-focal region with low pressures should be

decreased. This can be achieved to some degrees by using the PDfr (f = 0.75fr). Fig. 9.17d

shows that when f = 0.75fr a stronger focal pressure of ≈ 145kPa is achieved. The shape and

location of the focus are slightly different due to the higher sound speed at ≈ 145kPa. To increase

the focal pressure further, we need to further decrease the pre-focal attenuation. This can be

achived either by using f = 0.5fr or f = 0.3fr. Figures 9.17f and 9.17h shows that when f = 0.5fr

& f = 0.3fr the focal pressure can be recovered to ≈ 188 & ≈ 226kPa respectively.

To better compare the focal pressure before and after addition of the bubbles, Fig. 9.18 displays

the pressure variations along the Z axis from the center of the transducer (highlighted by red color

in Fig. 9.16). When f = fr the focal pressure decreases by 84% due to the presence of bubbles

(Fig. 9.18a). Moreover, the focal point remains more or less at the same location the sound speed

changes for most of the beam path is very close to that of the pure medium. When f = 0.75fr

(Fig. 18b), bubbles decrease the focal pressure by ≈ 45% and due to the large changes of the

sound speed in the vicinity and at the focal region, the center of the focal region moves 0.1cm

along the z-direction. When f = 0.5fr (Fig. 9.18c) bubbles decrease the focal pressure by 28% and
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(a) (b)

(c) (d)

Figure 9.18: Pressure profiles along the center axis of the geometry before (blue line) and after (red line) the addition of bubbles for
four different excitation frequencies: a)f = fr , b)f = 0.75fr , c)f = 0.5fr and d)f = 0.3fr .

the center of the focal region moves a small distance in the positive z-direction. Fig. 9.18d shows

that when f = 0.3fr the strongest focal pressure is achieved as the presence of bubbles results

only in 14% decrease in the focal pressure. The shift in the focal region is not noticeable as within

the pressure range in the medium, the changes of the sound speed were negligible. These results

further support the experimental observations in [23] that application of PDfr and narrow size

distribution of bubbles increase the focal pressure and enhances deep penetration in bubbly media.

Moreover, here we show for the first time that applications of 2nd SuH, 3rd SuH and etc can further

facilitate the reduction in pre-focal shielding, thus enhancing our ability to penetrate deeper target.
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9.7 Discussion

Pressure dependent changes of the attenuation and sound speed in bubbly media is one of the

open problems in acoustics [25]. The bubble activity in the target heavily depends on the acoustic

pressure that can reach the target. Thus, understanding the bubble related phenomena as well as

optimizing the applications related to bubble oscillations requires a detailed understanding of the

pressure distribution in the bubbly media. ’Due to the many applications of bubbles (ranging from

underwater acoustics [2, 3], sonochemsitry and material sciences [1, 4, 5] to medical applications

[7,8,9,10,11,12]) the problem is of general interest and findings will be beneficial to a large field

of physical and engineering applications.

There is no comprehensive model that can be used to estimate attenuation and sound speed

changes for large amplitude bubble oscillations. The majority of published work employs linear

models that are derived using the Comander & Prosperetti approach [17]. Since these models

are developed under the assumption of very small amplitude bubble oscillations (R = R0(1 + x)

where x � 1), they are not valid for most applications. On the other hand recent semi-linear

models [2, 18, 26] are able to address some pressure dependent effects. However, because of

some linear inherent assumptions (e.g. in Lousinard model [18] the real part of the wave number

squared is calculated from the linear model and the Segers Model employs the linear dissipation

constant for the liquid viscosity, thermal effects and shell viscosity [26]; and in all models, sound

speed changes are neglected) these models do not predict the attenuation and sound speed changes

accurately.

Another factor that increases the complexity of the problem is the nonlinear dynamics of bubbles

which are pressure dependent and influences the attenuation and sound speed of the medium.

Thus, for a better understanding of the bubble phenomenon and to take full advantage of the

bubble dynamics in applications, not only do we need to develop a model that is not limited by

linear assumptions but also we need to have a detailed understating of the nonlinear dynamics of

the bubble in the medium.

We developed a nonlinear model that is not restrained by linear assumptions. The model predic-

tions were validated against linear models at a very small pressure excitation (Pa = 1kPa) and

for three different cases of the uncoated bubble, the coated bubble and the bubble in viscoelastic
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media. At higher pressures, the predictions of the Imaginary part of k2 were validated by comparing

the predictions of the model with the Louisnard model [18] and for the three different cases

mentioned above. Advantages of the developed model in this paper are its simplicity and its

ability to calculate the pressure dependent real part and imaginary part of the k2. We showed

that pressured dependent effects of the real part of the k2 that are neglected in semi-linear models

are important. Attenuation and sound speed estimations using the Louisnard model that does not

take into account the pressure dependent effects of the real part of the k2 deviate significantly from

the predictions of the nonlinear model in this paper; and these deviations increase with increasing

pressure.

Predictions of the model were validated against experimentally measured attenuation and sound

speed of mono-dispersions of lipid coated bubbles, with good agreement. Here, we showed for

the first time, experimental observations of the pressure dependent sound speed in bubbly media.

Despite the good agreement between theory and experiment, there were small discrepancies be-

tween the model predictions and experimental measurements. The small discrepancies can be due

to the fact that we have not considered pressure variations within the MB chamber. Additionally we

assumed that all the MBs have the identical shell composition and properties, and effects like strain

softening or shear thinning of the shell [41], and possible MB destruction, were neglected. As the

purpose of the current work was to investigate the pressure dependence of the sound speed and

attenuation and to develop a model to accurately predict these effects, we have used the simplest

model for lipid coated MBs. Investigation of models that incorporate more complex rheological

behaviors of the shell which takes into account the effect of shell properties on sound speed and

attenuation is the subject of future work.

The changes of the magnitude of sound speed in our experiments were quite small; this is due to

the low concentration of the MBs in our experiments, as well as the small size of the microbubbles.

Bigger microbubbles have stronger effects on the sound speed changes of the medium because

of their higher compressibility as well as their more rapid changes in resonance frequency with

increasing acoustic pressure [14]. In many applications (e.g. drug delivery, ultrasound imaging)

much higher concentrations of microbubbles are employed, thus greater changes in the sound

speed amplitude is expected (e.g. please refer to Fig. 9.1 with β = 10−5). Nevertheless, although

the changes of the sound speed amplitude are small, we were able to measure these changes in
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experiments consistent with model predictions.

When fitting the shell parameters ( [22, 43, 44, 45, 46]), sound speed values are of great help for

more accurate characterizations of the shell parameters, especially in case of microbubbles with

more complex rheology [16, 41]. There may exist multiple combination of values of the initial

surface tension, shell elasticity and shell viscosity that fits well with measured attenuation curves;

however, only one combination provides good fit to both the measured sound speed and attenuation

values. Sound speed curves provide more accurate information on the effect of shell parameters on

the bulk modulus of the medium (e.g. Shell elasticity) while attenuation graphs are more affected

by damping parameters; thus the attenuation and sound speed curves can be used in parallel in

order to achieve a more accurate characterization of the shell parameters.

We have classified the sound speed and attenuation of bubbly media in some of the main regimes

of oscillations that are often used in applications. We can summarize the main findings as follows:

1- At lower pressures, the maximum attenuation occurs when f = fr (fr is the linear resonance

frequency of the bubble). When f = fr attenuation decreases with increasing pressure. Sound

speed initially increases with pressure and then starts decreasing. Occurrence of Pd, increases

the rate of decrease in attenuation and sound speed. The emergence of the giant resonance is

concomitant with abrupt increase in attenuation and sound speed.

2- At lower pressure, the minimum attenuation occurs for the lowest frequency (here f = 0.3fr).

Attenuation abruptly increases when a SN bifurcation takes place. Sound speed changes are

minimum before the occurrence of the SN. The SN is concurrent with an abrupt increase in the

sound speed. Maximum changes of sound speed occur in the vicinity of giant resonance and for

frequencies below resonance.

3- The attenuation of the medium in the regime of UH or SuH resonance is an order of magnitude

smaller than when fundamental resonance takes place (Pa = 1kPa and f = fr or f = PDfr and

pressure≥ SN pressure).

4- For f > 1.5fr, the attenuation is orders of magnitude smaller than the attenuation in case of

f = fr or f = Pdfr. Even after the generation of 1/2 or 1/3 order SHs, the attenuation and sound

speed changes of the medium are orders of magnitude smaller compared to the cases of sonication

with resonance or Pdfr. Attenuation in the regime of 1/2 order SHs is comparable to the UH

resonance at f ≤ 0.5fr.
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5- During nonlinear oscillations, the lowest changes in attenuation and sound speed occurs when

f u 3fr & 1/3 SHs are generated. Thus, this condition may be exploited for contrast enhanced

imaging with higher scattering to attenuation ratio and higher resolution. Moreover, due to the

stability of the oscillations, higher wall velocities and scattered pressures [60,74,75], this condition

may be applied for enhanced drug delivery for higher concentrations of bubbles and to target

deeper regions.

6- Depending on the focal pressure and the resonance frequency of the bubbles, the frequency of

the sonication can be chosen so that the attenuation of the pre-focal bubbles is reduced. This was

shown through finite element simulations of focused ultrasonic waves through a bubbly medium.

In this regard, the focal pressure can be set as the pressure above the SN pressure.

7- Sonication with frequencies ≤ 0.5fr has the potential of achieving a very high focal attenuation

and bubble activity while minimizing the pre-focal attenuation. The higher focal attenuation may

aid in decreasing the focal pressure in HIFU applications by more than an order of magnitude while

delivering therapeutic temperatures. This can be of great importance in the treatment of regions

in the body where the presence of obstacles like pre-focal bone (e.g. skull and rib-cage) limit the

energy that can be delivered to target. Moreover, the higher attenuation in the target and lower

focal pressure can significantly reduce artifacts like post-target bone heating [73,76,77,78].

9.8 Conclusion

In summary, we have presented a nonlinear model for the calculation of the pressure-dependent

attenuation and sound speed in a bubbly medium. The model is free from any linearization in

the MB dynamics. The accuracy of the model was verified by comparing it to the linear model

[17] at low pressures and the semilinear Lousinard model [18] at higher-pressure amplitudes.

The relationship between the sound speed and pressure was established both theoretically and

verified experimentally. The predictions of the model are in good agreement with experimental

observations. To our best knowledge, unlike current sound speed models, the model introduced in

this paper does not have a dP
dV term (e.g. [28]); thus it does not encounter difficulties addressing the

nonlinear oscillations. To accurately model the changes of the attenuation and sound propagation

in a bubbly medium we need to take into account how the sound speed changes with pressure and
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frequency. Another advantage of the model is that it uses as input only the radial oscillations of

the MBs. There is no need to calculate the energy loss terms, and thus our approach is simpler

and faster. Moreover, for the case of nonlinear shell behavior (e.g. [16, 41]) it may provide more

accurate estimates since there is no need for simplified analytical expressions. MB oscillator exhibits

stable nonlinear oscillations [14, 15, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66] (e.g. period 3, 4 or super

and ultra harmonics) and the effect of these nonlinear oscillations on the changes of sound speed

and attenuation is now revealed with this approach. Application of this model will help to shed

light on the effect of nonlinear oscillations on the acoustical properties of the bubbly medium (we

initially reported on this in [31]) and explore new potential parameters to further optimize and

improve the current applications.
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Chapter 10

Intensified non-linearity at very low amplitudes

high frequency ultrasound excitations of lipid

coated microbubbles

10.1 Abstract

Polydisperse solutions of lipid coated Definity R© microbubbles (MBs) were sonicated with 30 cycles

pulses of 25 MHz frequency and pressure amplitudes of 70kPa-300kPa. Here, we report the first

time observation and characterization of higher order subharmonics in the scattered signals of sin-

gle MB events at very low amplitude high frequency ultrasound excitations. Period 2(P2), P3, and

two different P4 oscillations were observed. Experimental observations contradict the perceived

behavior at such low excitations. To investigate the mechanism of the enhanced nonlinearity, the

bifurcation structure of the lipid coated MBs is studied for the first time. Consistent with the

experimental results, we show that this unique oscillator can exhibit chaotic oscillations and higher

order subharmonics at very low excitation amplitudes. Buckling or rupture of the shell and the

dynamic variation of the shell elasticity causes the intensified non-linearity at low excitations.1

10.2 Introduction

Even after over a decade of study, the dynamics of ultrasonically excited lipid coated microbubbles

(MBs) are not fully understood, owing to the complex dynamical aspects of their behaviour. Inter-

1Under review as: A.J. Sojahrood, H. Haghi, T.M. Porter, R. Karshafian and M.C. Kolios, Intensified non-linearity at
very low amplitudes high frequency ultrasound excitations of lipid coated microbubbles
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estingly, lipid coated MBs have been shown to exhibit 1/2 order subharmonic (SH) oscillations even

when the excitation amplitude is low (<30 kPa [1, 2, 3]). Despite the increased inherent damping

due to the coating, such low threshold values contradict the predictions of the theoretical models

as these values are even below the thresholds expected for uncoated free MBs [4,5].

Bubbles are known to be a complex oscillators and addition of coating introduces additional

nonlinearity to an already complex system. The lipid coating may cause compression dominated

oscillations [6] or limit the MB oscillations to only above a certain pressure threshold [7]. Through

experiments and numerical simulations it has been shown in [1] that the low pressure threshold for

SH emissions is due to the compression only behavior of the MBs due to the buckling of the shell.

More interestingly, Overvelde et al. [8] showed that the lipid coating may enhance the nonlinear

MB response at acoustic pressures as low as 10 kPa. In addition, even a small (≈ 10kPa) increase in

the acoustic pressure amplitude leads to a significant decrease in the main resonance frequency [8]

resulting to a pronounced skewness of the resonance curve. The origin of the “thresholding [7]”

behavior have been linked to the shift in resonance [8]. Nonlinear resonance behavior of the lipid

coating has also been observed at higher frequencies (5-15 MHz [9]), (8-12 MHz [10]) and (11-25

MHz [11]). Through theoretical analysis of the Marmottant model for lipid coated MBs [12],

Prosperetti [4] attributed the lower SH threshold of the lipid MBs to the variation in the mechanical

properties of the coating in the neighborhood of a certain MB radius (e.g. the occurrence of

buckling). Lipid coating may also result in expansion dominated behavior in liposome-loaded

lipid coatings [13]. Expansion dominated oscillations happen when the initial surface tension of

the lipid coated MB is close to that of the water [11,13]. In this regime, in contrast to compression

dominated behavior, the MB expands more than it compresses. Expansion-dominated behavior was

used to explain the reason behind enhanced non-linearity at higher frequencies (25 MHz) [11].

The Marmottant model effectively captures the behavior of the MB including expansion-dominated

behavior [11, 12, 14], compression only behavior [6], thresholding [7] and enhanced non-linear

oscillations at low excitation pressures [1,2,8,14,15,16].

Despite the numerous studies which employed the methods of nonlinear dynamics and chaos to

investigate the dynamics of acoustically excited MBs [17,18,19,20,21,22,23,24,25,26,27,28,29,

30,31,32,33,34,35,36,37,38,39,40,41,42,43,44], the detailed bifurcation structure and nonlinear

dynamics of the lipid coated MBs have not been studied.
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Lipid coated MBs are being routinely used in diagnostic ultrasound [2, 45, 46, 47, 48]. Moreover,

they have been used in cutting edge non-invasive treatments of brain disorders and tumors in

humans [49]. Currently there are several investigations on the potential use of lipid coated micro-

bubbles (MBs) in high resolution and high contrast imaging procedures [50] as well as non-invasive

ultrasonic treatments and localized drug/gene delivery [51]. Despite the promising results of these

investigations, the complex dynamics of the system makes it difficult to optimize the behavior of

lipid coated MBs. Moreover, from nonlinear dynamics point of view, the lipid coated MB oscillator

is a very interesting topic of investigation due to the highly nonlinear nature of the system. The

complex behavior of the uncoated MB is interwoven with the nonlinear behavior of the lipid coating

which enables unique dynamical properties for this oscillator.

In this work we study the bifurcation structure of the lipid coated MBs as a function of size

and frequency at different pressure values. Numerical results are accompanied by experimental

observations of single MB events at low pressure excitation. We show for the first time that in

addition to 1/2 order SHs, higher order SHs (e.g. 1/3, 1/4) can be generated at very low excitation

amplitudes. Moreover, analysis of the bifurcation structure of the system reveals a unique property

of the lipid coated MB which is the generation of chaos at excitation pressures as low as 5kPa.

10.3 Methods

10.3.1 Experimental method

Very dilute solutions of Definity R© MBs were sonicated with continuous pulse trains of 25 MHz

using the Vevo 770 ultrasound imaging machine (VisualSonics Inc. Toronto, Ontario). The pulse

length was held constant at 30 cycles while the applied acoustic pressure was varied over the range

of ≈ 70 − 300kPa. The backscattered signals from individual MBs were extracted and different

nonlinear modes of oscillations were identified. Acquisition of signals from single MB were similar

to the approach in [52]. Fig. 10.1 shows a schematic of an acquired signal from a single MB event

(≈ 250kPa and f = 25MHz).
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(a)
(b)

Figure 10.1: a) Schematic of the Vevo 770 (Visualsonics R©) machine which was used in the experiments to detect the signals from
single MB events in the region of interest (ROI). b) Left: ROI as seen by the machine for an ultrasound pulse train at 25 MHz and 250
kPa of pressure, and Right: Signal (red) from a single P3 MB event. The frequency spectrum of the received signal is shown in blue.
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10.3.2 Numerical procedure

10.3.2.1 Marmottant Model

Dynamics of coated MBs undergoing buckling and rupture can be effectively modeled using the

Marmottant equation [12]:

ρ

(
RR̈+ 3

2Ṙ
2
)

=[
P0 + 2σ(R0)

R0

]
( R
R0

)−3k
(

1− 3k
c
Ṙ

)
− P0 −

2σ(R)
R

− 4µṘ
R2 −

4ksṘ
R2 − Pa(t)

(10.1)

In this equation, R is radius at time t, R0 is the initial MB radius, Ṙ is the wall velocity of the bubble,

R̈ is the wall acceleration, ρ is the liquid density (998 kg
m3 ), c is the sound speed (1481 m/s), P0 is

the atmospheric pressure, σ(R) is the surface tension at radius R, µ is the liquid viscosity (0.001

Pa.s), ks is the coating viscosity and Pa(t) is the amplitude of the acoustic excitation (Pa(t) =

Pasin(2πft)) where Pa and f are the amplitude and frequency of the applied acoustic pressure.

The values in the parentheses are for pure water at 293 K. In this paper the gas inside the MB is

C3F8 and water is the host media.

The surface tension σ(R) is a function of radius and is given by:

σ(R) =



0 if R ≤ Rb

χ(R
2

R2
b

− 1) if Rb ≤ R ≤ Rbreakup

σwater if Ruptured R ≥ Rr

(10.2)

σwater is the water surface tension (0.072 N/m), Rb = R0√
1+R0

χ

is the buckling radius, Rr =

Rb
√

1 + σbrak−up
χ is the rupture radius (=break up radius in this paper similar to [11]) and χ is

the shell elasticity. Shear thinning of the coating is included in the Marmottant model using [53]:

ks = 4k0

1 + α |Ṙ|R

; (10.3)

where k0 is the shell viscous parameter and α is the characteristic time constant associated with

the shear rate. In this work shell parameters of χ = 0.975N/m, k0 = 2.98 × 10−10kgs−1 and
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α = 1 × 10−6s are used for the Definity R© MBs. These values are adopted from the estimated

parameters in [53,54].

10.3.2.2 Keller-Miksis model

The dynamics of the uncoated MBs were also visualized alongside the lipid coated MBs to highlight

the contributions of the coating to the nonlinear bheavior of the bubble. To model the uncoated

MB dynamics the Keller-Miksis model [55] is used:

ρ[(1− Ṙ

c
)RR̈+ 3

2Ṙ(1− R

3c)] = (1 + Ṙ

c
)(G) + R

c

d

dt
(G) (10.4)

where G =
(
P0 + 2σwater

R0

)
( RR0

)−3k − 4µLṘ
R − 2σ

R − P0 − Pasin(2πft).

10.3.2.3 Scattered pressure by MBs

The pressure scattered (re-radiated) by the oscillating MB can be calculated using [56,57]:

Psc = ρ
R

r
(RR̈+ 2Ṙ2) (10.5)

here r is the distance from the MB center. The scattered pressure (Psc) at 15 cm (approximate

path length of the MBs in experiments) is calculated for 30 cycle pulses to match experimental

conditions. The calculated Psc is then convolved with the one way transducer response account-

ing for attenuation effects in water (0.000221 dB
mmMHz2 [58]). Moreover, to better compare with

experimental observations, sample frequency for simulations is chosen to be equal to the sample

frequency in experiments which is 460MHz.

10.3.2.4 Investigation tools

The results of the numerical simulations were visualized using a comprehensive bifurcation analysis

method [43]. In this method the bifurcation structure of the normalized MB oscillations ( R
R0

) are

plotted in tandem versus a control parameter using two different bifurcation methods (Poincaré

378



section at each driving period and method of peaks).

2.2.4.a) Poincaré section (conventional method)

When dealing with systems responding to a driving force, to generate the points in the bifurcation

diagrams vs. the control parameter, one option is to sample the R(t) curves using a specific point

in each driving period. The approach can be summarized in:

P ≡ (R(Θ)){(R(t), Ṙ(t)) : Θ = n

f
} (10.6)

Where P denotes the points in the bifurcation diagram, R and Ṙ are the time dependent radius

and wall velocity of the MB at a given set of control parameters of (R0, PA and f), Θ is given by

n
f and n=1,2,....440. Points on the bifurcation diagram are constructed by plotting the solution of

R(t) at time points that are multiples of the driving acoustic period. The results are plotted for

n = 400− 440 to ensure a steady state solution has been reached for all MBs and thus 40 Poincaré

point are stored for each solution. Due to smaller viscous effects, bigger MBs require longer cycles

to reach steady state.

2.2.4.b) Method of peaks

Another way of constructing bifurcation points is by setting one of the phase space coordinates to

zero:

Q ≡ max(R){(R, Ṙ) : Ṙ = 0} (10.7)

In this method, the steady state solution of the radial oscillations for each control parameter is

considered. The maxima of the radial peaks (Ṙ = 0 and R̈ > 0) are identified (determined within

400-440 cycles of the stable oscillations) and are plotted versus the given control parameter in the

bifurcation diagrams.

The bifurcation diagrams of the normalized MB oscillations (R/R0) are calculated using both

methods a) and b). When the two results are plotted alongside each other, it is easier to uncover

more important details about the superharmonic (SuH) and ultraharmonic (UH) oscillations, as

well as the SH and chaotic oscillations. This gives insight into the nonlinear behavior over a wide

range of parameters, and enables the detection of SuH and UH oscillations alongside SH and chaotic

oscillations [43]. This approach reveals the intricate details of the oscillations. In this paper the
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bifurcation diagrams of the normalized radial oscillations of the Definity R© MBs were plotted

versus the MBs initial diameter for fixed frequencies of 25 MHz and for the range of the pressure

values studied in the experiments.

10.4 Results

10.4.1 Bifurcation structure

10.4.1.1 Bifurcation of R
R0

as a function of frequency for uncoated and coated MBs with

different σ(R0)

In order to visualize the dynamics of the MBs at low pressures, the bifurcation structure of a 2µm

MB is plotted as a function of frequency when Pa = 5kPa (Fig. 10.2). The blue graph represents the

results using the maxima method and the red graph represents the results using the conventional

method (Poincaré section at each period). The uncoated MB (Fig. 10.2a) exhibits a P1 signal over

1-30 MHz with one maximum and resonant oscillations at ≈ 4.7MHz. Contrary to Fig. 10.2a,

the lipid MB with σ(R0) = 0 exhibits significant non-linearity at 5 kPa (Fig. 10.2b). Higher

order SuHs (5th − 2nd order) are seen for f <≈ 2.88MHz. For example the 5th order SuH at

1MHz is a P1 signal with 5 maxima. P1 resonance occurs at f u 4.63MHz with P2 oscillations

over a wide frequency range of ≈ 6.9MHz < f < 12.22MHz with a small window of P4-2 and

chaos. We call this a P4-2 oscillations as it occurs when P2 oscillations undergo a period doubling

(PD) to P4 [23, 44]. P3 occurs between ≈ 12.85MHz < f < 18.2MHz. P4-1 happens in the

frequency range between 18.2MHz < f < 19.5MHz (highlighted in subplot within Fig. 10.2b).

We call this a P4-1 regime as it occurs when P1 oscillations undergo a saddle node bifurcation to

P4 oscillations [26,29,30].

The Lipid MB with σ(R0) = 0.01N/m (Fig. 10.2c) exhibits P1 oscillations with one maximum. The

pressure dependent resonance frequency (PDfr [42]) occurs at f ≈ 9.15MHz. The MB behavior

is of P1 with one maximum for all the studied frequencies.

The lipid MB with σ(R0) = 0.03N/m (Fig. 10.2d) exhibits P1 behavior with 1 maximum and a

resonance at ≈ 10.66MHz.

The behavior of the MB with σ = 0.062N/m (Fig. 10.2e) is similar to σ = 0.01N/m with
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Figure 10.2: The bifurcation structure (blue represent the maxima and the red represents the conventional method) of the R
R0

of
a 2µm MB as a function of frequency for Pa = 5kPa for the: a) uncoated MB and for the lipid MB with b) σ(R0) = 0N/m, c)
σ(R0) = 0.01N/m, d) σ(R0) = 0.03N/m, e) σ(R0) = 0.062N/m and f) σ(R0) = 0.072N/m.
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PDfr u 9.6MHz.

The MB with σ(R0) = 0.072N/m exhibits a similar behavior to the MB with σ(R0) = 0N/m

demonstrating 6th − 2nd order SuHs between the freqeuncy range of 1-3.7 MHz. Some of the

SuH between 1MHz < f < 2MHz are highlighted in a subplot within Fig. 10.2f). P2 occurs

between 9.3MHz < f < 16.5MHz. P3 occurs between 16.5MHz < f < 19MHz (highlighted as a

subplot inside Fig. 10.2f), between 19.7 < f < 20.7MHz and between 20.3MHz < f < 21.3MHz.

P4-1 regime occurs between 23.4MHz < f < 24MHz (highlighted within a subplot in Fig. 10.2f).

The MB also demonstrates P1 resonance frequency at ≈ 5.7MHz.

When Fig. 10.2a and 10.2f are compared, despite the higher damping due to the coating, the

coated MB undergoing shell rupture exhibits a higher oscillation amplitude.

10.4.1.2 Bifurcation R
R0

as a function of size (initial diameter) for uncoated and coated

MBs with different σ(R0)

In order to investigate the nonlinear behavior of the commercially available Definity R© MBs for

the experimental exposure conditions, the bifurcation structure of the R
R0

is studied as a function

of size when Pa = 250kPa and f = 25MHz. This is because of the polydisperse nature of the

Definity R© MBs, and since we are limiting our analysis to the focal zone with small variations

in pressure and the fixed sonication frequency. The size distribution in the simulations replicates

the distribution of the native Definity R© [54] Thus, the R
R0

plot versus size will provide insight

relevant to the experimental conditions in this study.

Fig. 10.3a, shows the bifurcation structure of an uncoated MB as a function of size. MB with sizes

between 0.27µm-0.28µm exhibit 2nd order SuH (P1 oscillation with 2 maxima as highlighted in

a subplot) and MBs with sizes 0.54µm are resonant. Fig. 10.3a shows that at f = 25MHz and

Pa = 250kPa the uncoated MB cannot produce SHs.

Fig. 10.3b, shows the bifurcation structure of the Definity@ MBs with σ(R0) = 0N/m. In stark

contrast to the uncoated MB (Fig. 10.3a), an abundance of nonlinear behavior is observed. This

includes 4th, 3rd and 2nd order SuHs for MB sizes smaller than 0.345µm (some are highlighted

in a subplot within Fig. 10.3b), P1 resonance for ≈ 0.59µm MBs , P2, P4-2 and chaotic behavior

for MB sizes of ≈ 0.74µm < 2R0 < 1.13µm, P3 oscillations for ≈ 1.13µm < 2R0 < 1.49µm, and

intermittent P4-1 oscillations for ≈ 1.49µm < 2R0 < 1.7µm (P4-1 is highlighted in a subplot within
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Figure 10.3: The bifurcation structure of the R
R0

(blue represent the maxima and the red represents the conventional method) as a
function of size (MB diameter) at Pa = 250kPa and f = 25MHz for the: a) uncoated MB and for the lipid MBs with b)σ(R0) =
0N/m, c)σ(R0) = 0.01N/m, d)σ(R0) = 0.03N/m, e) σ(R0) = 0.062N/m and f) σ(R0) = 0.072N/m.
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Fig. 10.3b).

Definity R© MBs with σ(R0) = 0.01N/m (Fig. 10.3c), exhibit enhanced nonlinear behavior includ-

ing 5th− 2nd order SuHs (highlighted in a subplot), P2, P4-2, P3 and chaos. Fig. 10.3d represents

the behavior of MBs with σ(R0) = 0.03N/m. 2nd order SuH (highlighted in a subplot), PDfr, P2

and P3 oscillations are observed.

Fig. 10.3e-f represent the MBs with initial surface tension close to that of water and thus with a

higher tendency for rupture and expansion dominated behavior. For σ(R0) = 0.062N/m and for

MB sizes 0.2µm < 2R0 < 0.5µm, 3rd and 2nd order SuH and 5/2 UH regimes are observed. 5/2

UH is a P2 with 4 maxima and is highlighted in a subplot within Fig. 10.3e. PDfr, P2, P4-2

and P3 (highlighted in a subplot) oscillations are observed for MB sizes 2R0 > 0.5µm. When

σ(R0) = 0.072N/m (Fig. 10.3f), in addition to the nonlinear behavior we observe in Fig. 10.3e, we

observe 4th order SuH regime (highlighted in a subplot as a P1 with 4 maxima) and P4-1 and the

absence of 5/2 UHs.

Results indicate that the nonlinear behavior of the MBs is highly sensitive to the initial surface

tension as well as the MB size. The closer the surface tension to 0 or that of water (σwater =

0.072N/m), the greater is the tendency of the MB to exhibit nonlinear behavior. In Fig. 10.3, P4-1

oscillations were only observed when σ(R0) = 0 and 0.072N/m.

The MBs with σ(R0) = 0.062 (Fig. 10.3e) and σ(R0) = 0.072 (Fig. 10.3f), exhibit higher oscillation

amplitude compared to uncoated MBs of the same size.

In order to better visualize the effect of the σ(R0) on the MB behavior, the bifurcation structure of

the R
R0

of the MB is plotted as a function of σ(R0) for two different MB sizes in Fig. 10.4. Bifurcation

structure of a MB with an initial diameter of 0.92µm is depicted in Fig. 10.4a. The nonlinear

behavior occurs only for the two extreme ends of the σ(R0). P2 occurs for σ(R0) < 0.011N/m

and σ(R0) > 0.061N/m with P4-2 happening for 0.0032N/m < σ(R0) < 0.048N/m and σ(R0) >

0.069N/m. For a MB with initial diameter of 1.89µm, the same general behavior is observed. For

initial surface tension values between 0.0127 < σ(R0) < 0.057N/m we observe P1 behavior with

1 maximum. As we approach to the lower and higher σ(R0), nonlinear behavior manifests itself

in the bifurcation diagrams. P4-1 oscillations occurs for 0.0035N/m < σ(R0) < 0.0041N/m and

σ(R0) > 0.07N/m. P3 occurs for 0.009N/m < σ(R0) < 0.012N/m and 0.058N/m < σ(R0) <

0.069N/m.
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(a) (b)

Figure 10.4: The bifurcation structure of R
R0

as a function of σ(R0) at f = 25MHz and Pa = 250kPa for a MB size of: a) 0.92 µm &
b) 1.89 µm

10.4.1.3 Experiments

In experiments at Pa ≈ 250kPa and f = 25MHz we observed 5 main types of backscattered

signals in the data collected from single MB events. A representative of each category is shown

in Fig. 10.5a (P1), Fig. 10.5d (P2), Fig. 10.5g (P3) , Fig. 10.5j (P4-2) and Fig. 10.5m (P4-1).

The results of the numerical simulations are presented in the second column and the frequency

spectrum of the experimental signals and the numerical simulations are plotted in the third column

(blue:experiments, red:simulations). Numerical simulations are for the Definity R© MBs with

σ(R0) = 0.072N/m with the corresponding sizes chosen from the bifurcation diagram (Fig. 10.3f)

to match the observed behavior in the experiments.

Fig. 10.5a displays a typical P1 signal observed in experiments. The calculated Psc for a 2 µm

Definity R© MB is displayed in Fig. 10.5b (in red color for distinction) and the power spectrum of

the signals in Fig. 10.5a and 5b are shown in Fig. 10.5c. The scattered pressure has one maximum

and the frequency spectrum has a peak at 25 MHz.

A representative signal of the P2 oscillations is displayed in the second row of Fig. 10.5. Both

experimental and simulated (initial size of 0.955µm) signals have two maxima revealing a P2

oscillation regime. The power spectra in Fig. 10.5f consist of a SH peak at 12.5MHz and a 3/2

UH peak at 32.5 MHz. Good agreement between experiments and simulations can be achieved

when selecting the appropriate values for size and σ(R0).
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Figure 10.5: Demonstration of 5 main oscillation regimes acquired experimentally (blue) and simulated (red) choosing MB sizes based
on the feature similarity in Fig. 3f. Representative experimental data and simulations of: 1st row P1, 2nd row P2, 3rd row P3, 4th row
P4-2 and 5th row P4-1.
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A representative of the P3 signal is shown in the third row of Fig. 10.5. The experimental and

simulated (initial size of 1.39µm) signals have 3 maxima and the order of the maxima are consistent

between experiments and simulations. The power spectra shown in Fig. 10.5i shows a good

agreement between experiments and simulations with SHs at (1/3 order) 8.33 MHz, (2/3 order)

16.66 MHz and UHs at (4/3 order) 33.33 MHz and (5/3 order) 41.66 MHz.

P4-2 oscillations are shown in the 4th row of Fig. 10.5. There is a good agreement between

the experimental and the simulated signals (initial size of 0.92µm). Both signals have 4 peaks in

two envelopes and each envelope repeats itself once every two acoustic cycles. In each envelope

there are two peaks and the peaks repeat themselves in an amplitude order of (largest, small, large,

smallest). The frequency spectra of the signals are shown in Fig. 10.5l. There are 3 SHs at (1/4

order) 6.25 MHz, (1/2 order) 12.5 MHz and (3/4) order at 18.75 MHz. The 1/2 order SH is the

strongest detected SH and due to the weakness of the 1/4 SH, this peak is hardly detectable. This

is because the transducer sensitivity drops sharply away from the center frequency and especially

below 12.5 MHz (transducer bandwidth is 100%). While the numerically simulated Psc in the

387



(a) (b) (c)

0 10 20 30 40 50
freqeuncy (MHz)

-70

-60

-50

-40

-30

-20

-10

0

A
m

p
lit

u
d

e 
(d

B
)

P4-1 frequnecy spectrum

f/4
f/2

3f/4
f

(d) (e) (f)

Figure 10.7: Characteristics of the two P4 oscillations identified: a) P4-2 radial oscillations, b) P4-2 phase portrait, c) power spectrum
of the P4-2 Psc, d)P4-1 radial oscillations, e)P4-2 phase portrait and f) power spectrum of P4-2 Psc. Here Psc is not convolved with
the transducer response. (red circles shows the location of the R every 4 acoustic cycles)

abscense of convolution with transducer response had a clear peak at 6.25 MHz, however, after the

signal is convolved with the transducer response, the signal drops below the noise level of -70 dB

in our experiments.

The last row of Fig. 10.5 depicts the case of the P4-1 oscillations. Simulations are for a MB with

initial size of 1.89µm. The signals have one envelope with 4 maxima that repeats itself once every

4 acoustic cycles. Amplitudes repeats themselves in the order of smallest, largest, large and small.

Both experimental and simulated signals demonstrate the same pattern of peaks and their orders.

The power spectra in Fig. 10.5o shows a good agreement between the orders of the SHs and their

locations. There are 3 SHs at (1/4 order) 6.25 MHz, (1/2 order) 12.5 MHz and (3/4 order) at

18.75 MHz. The 3/4 order SH is the strongest detected SH. It should be noted that 1/4 order SH is

the strongest peak in the calculated Psc in the absence of convolution with transducer response (see

Fig. 10.7f). Due to the reduced sensitivity of the transducer at 6.25 MHz, the detected strength of

the 1/4 order SH diminishes strongly and it drops below all the other SHs.
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10.4.1.4 Difference between P4-1 and P4-2

Fig. 10.6a shows the bifurcation structure of a 0.92 µm Definity R© MB as a function of pressure

when f = 25MHz. At low pressures there are linear oscillations with period doubling (Pd) at

≈ 70kPa. P2 oscillations undergo further Pd to P4-2 oscillations at ≈ 210kPa. The process of P4-2

generation and disappearance is through a bubbling bifurcation. In case of the 1.89µm Definity@

(Fig. 10.6b), P4 oscillations are generated through a direct period quadrupling via a saddle node

bifurcation similar to [26]. This is the reason why we named this a P4-1 oscillations. Models

for uncoated MBs or coated MBs with pure viscoelastic behavior predict very high pressures for

the generation of P4-1 oscillations; however, here we show, for the first time, that the dynamic

variation of the shell elasticity including buckling and rupture enhances the generation of the P4-1

oscillations at very low acoustic pressures ( Pa = 16.625kPa in Fig. 10.6b).

Fig. 10.7 compares the radial oscillations, phase portraits and the power spectra of the Psc for both

P4 oscillation classification at f = 25MHz and Pa = 250kPa. P4-2 radial oscillations consist of two

envelops, with each envelope having 2 maxima or one with 2 maxima and the other with a maxima

and a critical point. These envelopes repeat themselves once every two acoustic cycles in Fig. 10.7a.

The phase portrait of the P4-2 oscillations consists of a loop undergoing two internal loops with the

largest loop undergoing another internal loop. The power spectrum depicts SHs with strength order

of 1/2 > 3/4 > 1/4. P4-1 oscillations in Fig. 10.7d have one envelope with 4 maxima which repeats

itself once every 4 acoustic cycles. The phase portrait consist of a main loop that has undergone 3

bends to create 3 internal loops. The frequency spectrum of Psc depicts SHs in the strength order

of 1/4 > 1/2 > 3/4. It should be noted that due to the lower sensitivity of the transducer as we

move away from central frequency, the strength order of the SHs that are detected in experiments

were different. After, convolving the simulations results with the one way transducer response,

experiments and simulations were in good agreement. To our best knowledge, this is the first time

that the two types of P4 oscillations are detected experimentally and characterized numerically for

a MB oscillator.
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10.5 Discussion

A MB oscillator is an extremely complex system that has beneficial applications in a wide range of

fields including material science and sonochemistry [59,60,61], food technology [62] underwater

acoustics [63,64] and medical ultrasound (ranging from imaging blood vessels [65], drug delivery

[51] to thrombolysis [66] and the treatment of brain through intact skull [49,67]). In addition to

these important applications, the complex dynamical properties of the MB system make it a very

interesting subject in the field of nonlinear dynamics. It is well known that an ultrasonically excited

MB is a highly nonlinear oscillator. Due to the importance of the understanding of the MB behavior

in several applications, numerous studies have employed the methods of nonlinear dynamics and

chaos to study the complex behavior of the system. Pioneering works of [18, 19, 20, 61, 68] have

revealed several nonlinear and chaotic properties of the MB oscillations (both numerically and

experimentally). Recent extensive studies on the nonlinear behavior of MBs in water [23, 24, 25,

26, 27, 43, 44], coated MBs [26, 27, 42], MBs in highly viscous media [28, 29, 30, 31, 32, 33], MBs

sonicated with asymmetrical driving acoustic forces [33, 34, 35, 36, 37, 38, 39, 40, 41] and MBs in

non-Newtonian fluids [37] have revealed many nonlinear features in the MB behavior. Occurrence

of P2, P3, P4-2, P4-1 and higher periods, as well as chaotic oscillations, has been shown in these

works. Moreover, the effect of nonlinear dynamics of MBs on the propagation of sound waves in a

bubbly medium is under recent investigation [26,69,70,71].

Despite these studies that employed the methods of chaos physics to investigate the nonlinear

dynamics of the uncoated and coated MBs with viscoelastic behavior, the effect of the lipid coating

on the dynamics of the MB especially in the realm of nonlinear dynamics and chaos has not been

investigated.

In this study we investigated the bifurcation structure of the lipid coated MBs and used the numer-

ical results to help interpret unique signals that we observed experimentally. In stark contradiction

to the results of classical theory of uncoated MBs, and despite the increased damping of the coated

MBs, lipid coated MBs exhibited higher order nonlinear behavior at low excitation amplitudes

(shown here both experimentally and numerically). The numerical and experimental findings can

be summarized as follows:

a- We have shown that even at pressures as low as 5kPa, 6th− 2nd order SuHs, P4-2, P2, P3 P4-1
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and chaotic regimes manifest themselves in the MB behavior. To our best knowledge the existence

of higher order SHs and chaotic behavior at such low excitation amplitudes is first reported here.

b- The initial surface tension of the MB plays a critical role in the enhanced nonlinear behavior. We

have shown that the closer σ(R0) is to 0 (leading to buckling and compression only behavior) or

to σwater (leading to shell rupture and expansion dominated behavior), the lower is the excitation

threshold for nonlinear behavior and the higher is the order of non-linearity.

c- Despite the increased damping of the lipid coated MBs we show that, the MBs with surface

tension ≥ 0.062N/m may have higher radial oscillation amplitude compared to the uncoated

bubble.

d- We have experimentally shown that single Definity R© MBs, can exhibit, P2, P3, P4-2 and P4-1

oscillations at high frequencies (25 MHz) and low pressures (250 kPa). These results can not be

predicted using conventional coated MB models (pure viscoelastic behavior) and they are even in

contrast with the predictions of the uncoated MB models with less damping effects.

e- Through numerical simulations of Marmottant model [12] and visualization of the results using

bifurcation diagrams we showed that Definity R© MBs, can exhibit enhanced nonlinear behavior.

Using this model and assuming MBs with initial surface tension close to 0 N/m or σwater could be

used to explain experimental observations.

f- The 5 main regimes of oscillations were identified as P1, P2, P3, P4-2 and P4-1. Simulation

results of the scattered pressure were in good agreement with experimental observations both in

terms of the shape of the amplitude versus time signal and also its frequency content and when a

MB size is used based on the exploration of the relevant parameter space.

g- For the first time, the two different P4 oscillations of the MB system were identified and char-

acterized experimentally and numerically. P4-2 oscillations are the result of two consecutive well

known period doublings while P4-1 oscillations occur through a single period quadrupling via a

saddle node bifurcation. The distinct features of the signal shapes and their unique frequency

spectrum were identified both experimentally and numerically. In general P4-1 oscillations require

larger MBs compared to P4-2 oscillations

Previous studies have shown that lipid coated MBs can exhibit 1/2 order subharmonic oscillations

even when the excitation amplitude is low (<30 kPa [1,2,3]) where such low pressure thresholds

are below the thresholds expected even for uncoated free MBs [4,5]. The low pressure threshold for
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SH emissions has been attributed to the buckling of the coating and compression only behavior [1].

Compression dominated oscillations [6] occur when the coating buckles and the effective surface

tension on the MB drops to zero. In such an instance, the MB compresses more than it expands.

In addition to compression only behavior, lipid coating may also result in expansion dominated

behavior where the MB expands more than it compresses [11,13]. Expansion-dominated behavior

occurs when the shell ruptures. This effect was used to explain the enhanced non-linearity at

at higher frequencies (25 MHz) [11, 72]. Theoretical analysis of the Marmottant model for lipid

coated MBs [12] by Prosperetti [4] attributed the lower SH threshold of the lipid MBs to the

variation in the mechanical properties of the coating in the neighborhood of a certain MB radius

(e.g. occurrence of buckling). In this work we show that there is a symmetry for enhanced

non-linearity in the bifurcation structure of the R
R0

of the MB as a function of σ(R0). Both buckling

and rupture can be responsible for enhanced non-linearity, where the closer the σ(R0) to the

buckling state (0 N/m) or rupture threshold (0.072 N/m), the lower the excitation threshold

required for the generation of nonlinear oscillations. Moreover, the closer the σ(R0) to these two

limit values, the higher the order of the nonlinearity.

Using the estimated parameters for the Definity R© MB in [54] and considering the shear thinning

[53], the observed experimental behavior was only replicated for MBs with initial surface tension

close to the two limit values of 0 and 0.072 N/m. However, it should be noted that during the

sonication of a polydisperse solution of lipid MBs different values in initial surface tension and

coating properties (coating elasticity and viscosity) are expected. It is been reported that even

for MBs of the same size, the lipid coating can be different from MB to MB and are shown

to be heterogeneous for MBs smaller than 10 µm [73, 74]. Despite the better homogenity of

lipid distribution in lipid coated MBs similar to Definity R© [73, 74], the small differences in the

lipid distribution in the coating influences the effective coating properties, thus changing the MB

response [75, 76, 77]. Moreover, its shown that the coating elasticity and coating viscoity changes

with the MB size [78,79,80]. Despite assuming the same coating properties for all MB sizes in this

work, we were still be able to replicate the observed behavior in experiments. Moreover, we used

the simplest model for lipid coated MBs and we neglected the possible stiffness softening [81]

or higher viscoelastic effects. Implementation of these effects are outside of the focus of this

study but can be used to better characterizing the coating. In addition, simulation results only
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implemented a monofreqeuncy ultrasound source, and the effects of nonlinear propagation of

sound waves in the medium are neglected. The generation of the SHs and UHs were not due to

the nonlinear propagation of waves as nonlinear propagation manifests itself through generation

of only harmonics.

Effects of the shape oscillations on the MBs response were also neglected in this paper. Holt and

Crum observed significant effects of shape oscillations on the nonlinear behavior of the larger

MBs with initial radii between 20µm < R0 < 100µm [82]. Versluis et al. [83] using high speed

optical observations identified time-resolved shape oscillations of mode n= 2 to 6 in the behavior of

single air bubbles with radii between 10µm and 45 µm. [83] concludes that the close to resonance

bubbles were found to be most vulnerable toward shape instabilities. Effect of non-spherical

bubble oscillations on nonlinear bubble behavior is studied in [84] through GPU accelerated large

parameter investigations. The active cavitation threshold has been shown to depend on the shape

instability of the bubble [84]. [84] also shows that shape instability can affect the subharmonic

threshold and nonlinear behavior of bubbles. Nonspherical oscillations of ultrasound contrast

agent coated MBs are investigated in [85] through high speed optical observations. They showed

that non-spherical bubble oscillations are significantly present in medically relevant ranges of

bubble radii and applied acoustic pressures. Non-spherical oscillations develop preferentially at

the resonance radius and may be present during SH oscillations [85]. Thus, for a more accurate

modeling of the MB oscillations, deeper theoretical modeling of bubble coating, accounting for

membrane shear and bending is required [85].

Generation of higher order SHs at low pressures may have potential in high resolution SH imaging

due to their higher frequencies, higher contrast to tissue and signal to noise ratio. A SH of order

2/3 or 3/4 can be detected more effectively by the transducer as they are closer to the transducer

center frequency when compared to 1/2 order SHs. Moreover, the higher scattered pressures,

faster oscillations and the lower frequency contents of the oscillations of the higher order SHs

may enhance the nondestructive shear stress on cells for enhanced drug delivery or in cleaning

applications. Mixing applications are another category of applications that can take advantage of

higher order SHs at high frequencies.
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10.6 conclusion

We have shown experimentally and for the first time that higher order SHs (e.g. 1/3,1/4,..) can

be generated in the oscillations of lipid coated MBs when insonated at high frequencies and low

excitation amplitudes. The bifurcation structure of a simple model of lipid coated MBs were studied

as function of frequency and size for the first time. We showed that compression only behavior

or expansion dominated oscillations respectively due to buckling and rupture of the coating and

dynamic variation of the effective surface tension can explain the observed enhanced non-linearity

in MBs oscillations.
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Superharmonic Contrast Imaging Using a Hybrid Dual-Frequency Probe. Ultrasound in medicine &

biology, 45(9) pp. 2525-2539.

[51] Roovers, S., Segers, T., Lajoinie, G., Deprez, J., Versluis, M., De Smedt, S.C. and Lentacker, I., 2019.

The role of ultrasound-driven microbubble dynamics in drug delivery: from microbubble fundamentals

to clinical translation. Langmuir. 35, 31, 10173-10191

[52] Falou, O., Rui, M., El Kaffas, A., Kumaradas, J.C. and Kolios, M.C., 2010. The measurement of

ultrasound scattering from individual micron-sized objects and its application in single cell scattering.

The Journal of the Acoustical Society of America, 128(2), pp.894-902.

[53] Doinikov, A.A., Haac, J.F. and Dayton, P.A., 2009. Modeling of nonlinear viscous stress in encapsulating

shells of lipid-coated contrast agent microbubbles. Ultrasonics, 49(2), pp.269-275.

[54] Goertz, D.E., de Jong, N. and van der Steen, A.F., 2007. Attenuation and size distribution

measurements of DefinityTM and manipulated DefinityTM populations. Ultrasound in medicine &

biology, 33(9), pp.1376-1388.

[55] Keller, J.B. & Miksis M., Bubble oscillations of large amplitude, ., J. Acoust. Soc. Am. 68 (1980)

628–633.

[56] Vokurka, K. On Rayleigh’s model of a freely oscillating bubble. I. Basic relations. Czechoslovak Journal

of Physics B, 35(1), (1985): 28-40.

[57] Hilgenfeldt, S., Lohse, D., & Zomack, M. Response of bubbles to diagnostic ultrasound: a unifying

theoretical approach. The European Physical Journal B-Condensed Matter and Complex Systems, 4(2),

(1998):247-255.

[58] Goertz, D.E., Cherin, E., Needles, A., Karshafian, R., Brown, A.S., Burns, P.N. and Foster, F.S.,

2005. High frequency nonlinear B-scan imaging of microbubble contrast agents. IEEE transactions

on ultrasonics, ferroelectrics, and frequency control, 52(1), pp.65-79.

[59] Suslick, Kenneth S. ”Sonochemistry.” science 247, no. 4949 (1990): 1439-1445.

400



[60] Crum, Lawrence A., Timothy J. Mason, Jacques L. Reisse, and Kenneth S. Suslick, eds. Sonochemistry

and sonoluminescence. Vol. 524. Springer Science & Business Media, 2013.

[61] Holt, R. Glynn, D. Felipe Gaitan, Anthony A. Atchley, and Joachim Holzfuss. ”Chaotic

sonoluminescence.” Physical review letters 72, no. 9 (1994): 1376.

[62] Mason, Timothy J., Larysa Paniwnyk, and J. P. Lorimer. ”The uses of ultrasound in food technology.”

Ultrasonics sonochemistry 3, no. 3 (1996): S253-S260.

[63] Loewen, M., 2002. Physical oceanography: Inside whitecaps. Nature, 418(6900), p.830.

[64] Leighton, T.G., 2004. From seas to surgeries, from babbling brooks to baby scans: The acoustics of gas

bubbles in liquids. International Journal of Modern Physics B, 18(25), pp.3267-3314.

[65] Liu, J.B., Merton, D.A., Forsberg, F. and Goldberg, B.B., 2019. Contrast-enhanced ultrasound imaging.

In Diagnostic Ultrasound (pp. 51-74). CRC Press.

[66] Holland, C.K., Kleven, R.T., Karani, K.B., Salido, N.G., Shekhar, H. and Haworth, K.J., 2019.

Sonothrombolysis: Effect of 220kHz insonation scheme. Ultrasound in Medicine & Biology, 45, p.S39.

[67] O’Reilly, M.A. and Hynynen, K., 2018. Ultrasound and microbubble-mediated blood-brain barrier

disruption for targeted delivery of therapeutics to the brain. In Targeted Drug Delivery (pp. 111-119).

Humana Press, New York, NY.

[68] R. Esche, “Investigations on oscillating cavities in liquids,” Acustica 2, 208–218 1952.

[69] Sojahrood, A.J., Li, Q., Haghi, H., Karshafian, R., Porter, T.M. and Kolios, M.C., 2018. Pressure

dependence of the ultrasound attenuation and speed in bubbly media: Theory and experiment. arXiv

preprint arXiv:1811.07788.

[70] Louisnard, O., 2012. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory,

nonlinear attenuation and traveling wave generation. Ultrasonics sonochemistry, 19(1), pp.56-65.

[71] Sojahrood, A.J., Haghi, H., Li, Q., Porter, T.M., Karshafian, R. and Kolios, M.C., 2020. Nonlinear power

loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating

shell damping at various excitation pressures. Ultrasonics sonochemistry, 66, p.105070.

401



[72] Shekhar, H. and Doyley, M.M., 2013. The response of phospholipid-encapsulated MBsto chirp-coded

excitation: Implications for high-frequency nonlinear imaging. The Journal of the Acoustical Society

of America, 133(5), pp.3145-3158.

[73] Kooiman, K., Kokhuis, T.J., van Rooij, T., Skachkov, I., Nigg, A., Bosch, J.G., van der Steen, A.F., van

Cappellen, W.A. and de Jong, N., 2014. DSPC or DPPC as main shell component influences ligand

distribution and binding area of lipid-coated targeted microbubbles. European journal of lipid science

and technology, 116(9), pp.1217-1227.

[74] Kooiman, K., Emmer, M., Kokhuis, T.J., Bosch, J.G., de Gruiter, H.M., van Royen, M.E., van Cappellen,

W.A., Houtsmuller, A.B., van der Steen, A.F. and de Jong, N., 2010, October. Lipid distribution and

viscosity of coated microbubbles. In 2010 IEEE International Ultrasonics Symposium (pp. 900-903).

IEEE.

[75] van Rooij, T., Luan, Y., Renaud, G., van der Steen, A.F., Versluis, M., de Jong, N. and Kooiman,

K., 2015. Non-linear response and viscoelastic properties of lipid-coated microbubbles: DSPC versus

DPPC. Ultrasound in medicine & biology, 41(5), pp.1432-1445.

[76] T. Faez, M. Emmer, M. Doctor, J. Sijl, M. Versluis, and N. de Jong, ”Subharmonic spectroscopy of

ultrasound contrast agents,” presented at IEEE Ultrasonics Symposium Proceedings, 2010.

[77] D. H. Kim, M. J. Costello, P. B. Duncan, and D. Needham, ”Mechanical properties and microstructure

of polycrystalline phospholipid monolayer shells: Novel solid microparticles,” Langmuir, vol. 19, pp.

8455-8466, 2003.

[78] Helfield, B.L., Leung, B.Y., Huo, X. and Goertz, D.E., 2014. Scaling of the viscoelastic shell properties

of phospholipid encapsulated microbubbles with ultrasound frequency. Ultrasonics, 54(6), pp.1419-

1424.

[79] Parrales, M.A., Fernandez, J.M., Perez-Saborid, M., Kopechek, J.A. and Porter, T.M., 2014. Acoustic

characterization of monodisperse lipid-coated microbubbles: Relationship between size and shell

viscoelastic properties. The Journal of the Acoustical Society of America, 136(3), pp.1077-1084.

402



[80] Segers, T., Gaud, E., Versluis, M. and Frinking, P., 2018. High-precision acoustic measurements of

the nonlinear dilatational elasticity of phospholipid coated monodisperse microbubbles. Soft matter,

14(47), pp.9550-9561.

[81] Paul, S., Katiyar, A., Sarkar, K., Chatterjee, D., Shi, W.T. and Forsberg, F., 2010. Material

characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic

response: Strain-softening interfacial elasticity model. The Journal of the Acoustical Society of

America, 127(6), pp.3846-3857.

[82] Holt, R.G. and Crum, L.A., 1992. Acoustically forced oscillations of air bubbles in water:

Experimental results. The Journal of the Acoustical Society of America, 91(4), pp.1924-1932.

[83] Versluis, M., Goertz, D.E., Palanchon, P., Heitman, I.L., van der Meer, S.M., Dollet, B., de Jong,

N. and Lohse, D., 2010. Microbubble shape oscillations excited through ultrasonic parametric

driving. Physical review E, 82(2), p.026321.
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Chapter 11

Bifurcation structure of ultrasonically excited

lipid coated microbubbles

11.1 Abstract

An ultrasonically excited micro-bubble (MB) is an example of a highly nonlinear oscillator. In

many applications, MBs are encapsulated by a lipid coating to increase their stability. However,

the complex behavior of the lipid coating including buckling and rupture significantly influences

the dynamics of the MBs and increases the nonlinearity of the system. The dynamics of the

lipid coated MBs (LCMBs) are not well understood. In this paper, we investigate the nonlinear

behavior of the LCMBs by analyzing their resonance curves and bifurcation diagrams as a function

of incident ultrasound pressure. We show that, the lipid coating can enhance the generation of

period 2 (P2), period 3 (P3), higher order subharmonics (SH), superharmonics and chaos at

very low excitation frequencies (as low as 1 kPa). For LCMBs sonicated by their SH resonance

frequency and in line with experimental observations with increasing pressure, P2 oscillations

exhibit three stages: generation at very low excitation pressures, disappearance and re-generation.

Within non-destructive oscillation regimes and by pressure increase, LCMBs can also exhibit two

saddle node (SN) bifurcations resulting in possible sudden enhancement of the scattered pressure.

The first SN resembles the pressure dependent resonance phenomenon in uncoated MBs and the

second SN resembles the pressure dependent SH resonance. Moreover, for a given frequency,

non-destructive P2 and P3 oscillations can coexist. Depending on the initial surface tension of the

LCMBs, the nonlinear behavior may also be suppressed for a wide range of excitation pressures1.

1To be submitted as: A.J. Sojahrood, H. Haghi, R. Karshafian and M.C. Kolios, Bifurcation structure of ultrasonically
excited lipid coated microbubbles
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11.2 Introduction

A bubble excited by an ultrasound pressure wave is an instance of a complex nonlinear dynami-

cal system with resonances, several attractors and their basins, multiple bifurcations and chaotic

behavior and not ”yet fully describable behavior” due to its infinite complexity [1, 2, 3]. In spite

of the complexity, bubbles behavior are used in industrial applications like cleaning [4, 5], food

production [6], sonochemistry [7, 8, 9], sono-luminescence [9, 10], mixing [11, 12], therapeutic

[13,14,15,16] and diagnostic [17,18,19,20] ultrasound.

One of the first nonlinear phenomena detected with bubbles in sound fields was through historical

observations of Esche [21]. Esche reported the generation of a frequency peak at half the excitation

frequency (f) in the power spectrum of the received signal [21]. In his investigation of bubbles

driven with 3Hz-3.3 MHz, he found the appearance of spectral lines at f/2 and in some cases

f/3 for sufficiently high acoustic pressures. In a continuation of Esche’s work, Bohn reported

spectral lines down to f/4 [22]. In the chaotic (broadband noise) region of the sound emitted

by the bubble, Holzfuss & Lauterborn [3] observed a surprisingly low-dimensional attractor with

correlation dimension of about 2.5 which is the characteristic for driven damped nonlinear oscil-

lators. Several other experimental studies investigated the nonlinear dynamics of ultrasonically

excited bubbles [23, 24, 25, 26, 27, 28, 29]; observing subharmonics, ultraharmonics and chaotic

behavior. Numerical investigations have demonstrated the existence of multiple resonance peaks

[2, 30, 31], period doubling route to chaos [32, 33, 34], strange attractors and chaotic behavior

(e.g. [1,2,3,28,29]).

Within the last decade several studies have employed the methods of dynamical systems to study

the behavior of bubbles. There have been successful attempts in classification of some of the

nonlinear dynamics of the bubble oscillator [35,36,37,38]. Hegedűs [39] found numerical evidence

for the existence of stable period 1 solutions beyond Blake’s threshold [39]. Occurrence of higher

order SHs (f/3, f/4, f/5 etc) has been extensively investigated in [38, 40] and for the case of

ambient pressures slightly below the vapor pressure [39]. They are experimentally observed and

numerically modelled in [41,42,43].

Hegedus [44] studied the topology of stable periodic solutions near Blake’s threshold. The effect

of high dissipation on the nonlinear evolution of the bubble behavior is considered in [45, 46]
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and it has been shown that bubble becomes an over-damped oscillator suppressing collapse-like

behavior. Moreover, they reported the existence of transient chaos [45]. Using two frequencies was

proposed in [47] and extended in [48, 49, 50, 51] to control the chaotic behavior of the bubbles.

The effect of multiple frequencies on the resonance behavior and nonlinear dynamics of the system

was investigated in [52,53,54,55].

Influence of the pressure on the resonance frequency and bifurcation structure of the bubble which

is driven by its resonance frequency is studied in [56]. It is shown that increasing the incident

ultrasound pressure decreases the resonance frequency of the bubble; when the bubble is sonicated

with its pressure dependent resonance frequency a saddle node bifurcation takes place at the

corresponding pressure which enhances the nondestructive back-scattered pressure by the bubbles.

Non-spherical bubble oscillations in a viscous liquid is studied in detail in [46] and its been shown

that the increased rate of dissipation can significantly extend the stable domains in the acoustic

excitation parameter planes. We have studied the ultraharmonic (UH) and super harmonic (SuH)

behavior of the bubble oscillator by introducing a more comprehensive method of construction of

bifurcation diagrams [57]. Using this method, the bifurcation structure of the bubbles undergoing

period doubling and 1/2 order sub-harmonic emissions have been extensively studied [34]. It

was found that sonication of bubbles with twice their linear resonance frequency results in period

doubling at a lower excitation and leads to non-destructive stable period 2 oscillations, however,

sonication with resonance will most likely result in bubble destruction before the appearance of

period 2 oscillations. We showed in Chapter 5 ( [58]) that SH resonance frequency decreases

with increasing pressure; and maximum SH strength is generated when the sonication frequency is

1.5-1.6 times the resonance frequency of the bubble.

In spite of numerous studies on the complex behavior of free (uncoated) bubbles, the dynamics of

the coated bubbles have not been thoroughly studied. Bubbles stabilized by a coating in the form

of phospho-lipid (e.g. Definity R© [59]), or albumin (e.g. Optison [60]) or polymer (Point [61])

are designed to be used in clinical and pre-clinical medical ultrasound applications. Addition of the

coating (more specifically in case of phospho-lipid coating) immensely increases the complexity

of the bubble oscillator. During bubble oscillations phospho-lipid shell can undergo buckling and

rupture [62] resulting in a dynamical system with varying stiffness. The dynamic stiffness of the

nonlinear oscillator enhances the generation of nonlinear signatures in the oscillation of the coated
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bubbles.

Buckling of the lipid shell has been shown to be one of the possible reasons for enhanced non-

linearity [62,63,64,65,66,67,68,69,70,71]. Phospho-lipid shell bubbles exhibit compression only

behavior [67] during which bubbles compress more than they expand. There exists a threshold

behavior for the onset of oscillations [72]; the bubble starts to oscillate only above a pressure

threshold. It has been experimentally observed that phospholipid shell bubbles can generate

SH oscillations even at very low acoustic pressures (<30 KPa [64, 66, 73]). Such low threshold

values not only contradict the predictions of the theoretical models for coated bubbles [65,74,75],

they are even below the threshold values expected for uncoated free bubbles [65, 76]. The low

pressure thresholds are despite the increased damping due to the presence of the shell. Through

experiments and numerical simulations it has been shown in [64] that the low pressure threshold

for SH emissions is due to the compression only behavior of the bubbles due to the buckling of the

shell.

In [68] the lipid shell was found to enhance the nonlinear bubble response at acoustic pressures

as low as 10 kPa. The increase in acoustic pressure lead to a substantial decrease of the frequency

of the maximum response even at very low acoustic pressures [68] resulting in a pronounced

skewness of the resonance curve. Such shift in resonance has been postulated in [68] to be the

origin of the “thresholding [72]” behavior. Nonlinear resonance behavior of the lipid shell bubbles

was also observed in higher frequencies (5-15 MHz) in [77]. It is shown in [66] that the shell

elasticity of the phospholipid shell varies with bubble oscillation amplitude and the magnitude

of “compression only” behavior depends on the initial phospholipid concentration on the bubble

surface [66]. Prosperetti [65] through theoretical analysis of the Marmottant model [62] attributed

the lower SH threshold of the lipid bubbles to the variation in the mechanical properties of the shell

in the neighborhood of a certain bubble radius (e.g. the occurrence of buckling).

In addition to the widely studied 1/2 order SHs, we have experimentally detected higher order

SHs (1/3,1/4 and 1/5) in the oscillations of lipid coated bubbles at very low acoustic pressures

and high frequencies (e.g. 25 MHz) [41, 42, 43, 59]. Through analyzing bifurcation diagrams

we concluded that buckling or rupture of the shell is responsible for the enhanced nonlinear

behavior [59]. The closer the initial surface tension of the water to the two limit values of the

buckling and rupture of the shell, the lower the pressure threshold for nonlinear oscillations.
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Variation of the mechanical properties of the shell can also manifest itself in expansion dominated

behavior in liposome-loaded lipid shells [69]. Expansion dominated oscillations occur for bubbles

with an initial surface tension near the water [69,77]. Upon expansion, the stiffness of the coating

weakens and the bubble expands more than it compresses. Expansion-dominated behavior was

used to explain the enhanced non-linearity at higher frequencies (25 MHz) [78]. The Marmottant

model effectively captures the behavior of the bubble including expansion-dominated behavior [43,

59,77], compression only behavior [67], thresholding [72] and enhanced non-linear oscillations at

low excitation pressures [41,43,63,64,66,68].

In this paper we perform a comprehensive analysis of the bifurcation structure of ultrasonically

excited lipid coated microbubbles. Knowledge of the effect of the shell behavior on the nonlinear

response of the bubble is essential to optimize the bubble response to an ultrasonic field. Moreover,

the comprehensive knowledge that can be obtained through analyzing the bifurcation diagrams of

the lipid coated bubbles may help in revealing potential parameter spaces in which bubble behavior

can be beneficial to various applications. Last but not least, revealing the intricate behavior of the

system and enhanced nonlinear effects is of potential interest in the field of nonlinear and chaotic

dynamical systems.

11.3 Methods

11.3.1 Marmottant Model

The dynamics of the coated bubbles undergoing buckling and rupture can be effectively modeled

using the Marmottant equation [59]:

ρ

(
RR̈+ 3

2Ṙ
2
)

=[
P0 + 2σ(R0)

R0

]
( R
R0

)−3k
(

1− 3k
c
Ṙ

)
− P0 −

2σ(R)
R

− 4µṘ
R2 −

4ksṘ(R)
R2 − Pa(t)

(11.1)

In this equation, R is the bubble radius at time t, R0 is the initial bubble radius, Ṙ is the wall

velocity of the bubble, R̈ is the wall acceleration, ρ is the liquid density (998 kg
m3 ), c is the sound

speed (1481 m/s), P0 is the atmospheric pressure, σ(R) is the surface tension at radius R, µ is

the liquid viscosity (0.001 Pa.s), ks is the viscosity of the coating, and Pa(t) is the acoustic driving
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Figure 11.1: Schematic of the effective surface tension on a coated bubble with R0 = 2µm, χ = 3.5N/m & σ0 = 0.036N/m. The
coating buckles when R ≤ Rb making the surface tension zero. The coating behaves elastically for Rb ≤ R ≤ Rbreakup. When
R ≥ Rbreak−up, the coating ruptures and exposes the gas to water, thus effective surface tension becomes equal to σwater (0.072
N/m).

force Pa(t) = Pasin(2πft) where Pa and f are the amplitude and frequency of the applied acoustic

pressure. The values in the parentheses are for pure water at 2930K. In this paper the gas inside

the bubble is C3F8 and water is the host media.

The surface tension σ(R) is a function of radius and is given by:

σ(R) =



0 if R ≤ R(b)

χ(R
2

R2
b

− 1) if Rb ≤ R ≤ Rbreakup

σwater if Ruptured R ≥ Rr

(11.2)

where σwater is the water surface tension and χ is the shell elasticity. Rr and Rb are the rupture

and the buckling radius respectively where Rb = R0√
1+R0

χ

and Rr = Rb
√

1 + σbrakup
χ . In this work

similar to [78], Rbreakup = Rr.

11.3.2 Keller-Miksis model

Dynamics of the uncoated bubbles were also visualized alongside the lipid coated bubbles to

highlight the effect of the lipid shell on the bubble dynamics. To model the uncoated bubble

dynamics the Keller-Miksis model [79] is used:

ρ[(1− Ṙ

c
)RR̈+ 3

2Ṙ(1− R

3c)] = (1 + Ṙ

c
)(G) + R

c

d

dt
(G) (11.3)
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where G =
(
P0 + 2σwater

R0

)
( RR0

)−3k − 4µLṘ
R − 2σ

R − P0 − PAsin(2πft).

In both models we have neglected the effects of thermal damping. This is to decrease the problem

complexity and to better highlight only the shell effects. Moreover, We have shown in Chapter 7

( [88]) that in case of C3F8 gas cores thermal damping is significantly smaller compared to air.

Moreover, in case of coated bubbles with C3F8 gas cores, thermal effects maybe be fully neglected.

However, in case of the uncoated bubble effects of thermal damping at higher pressures should be

considered using full ODEs [89] that account for the thermal damping. We have shown in Chapter

7 [88] that the generally used linear assumptions [90] for thermal effects may lead to inaccuracies

at pressures as low as ≈ 40kPa. However, since the main focus of the paper is to highlight the

coating effects and because the thermal effects of the C3F8 are weak [88], we have neglected the

thermal effects in this paper.

11.3.3 Investigation tools

Bifurcation diagrams are valuable tools to analyze the dynamics of nonlinear systems since quali-

tative and quantitative changes of the dynamics of the system can be investigated effectively over

a wide range of control parameters. In this paper, we employ a more comprehensive bifurcation

analysis method introduced in [73,74].

2.3.a) Conventional bifurcation analysis (Poincaré cross section at each driving period)

When dealing with systems responding to a driving force, to generate the points in the bifurcation

diagrams vs. the control parameter, one option is to sample the R(t) curves using a specific point

in each driving period. The approach can be summarized in:

P ≡ (R(Θ)){(R(t), Ṙ(t)) : Θ = n

f
} where n = 100, 101...150 (11.4)

where P denotes the points in the bifurcation diagram, R and Ṙ are the time dependent radius and

wall velocity of the bubble at a given set of control parameters of (R0, P0, PA, c, k, µ, σ, f) and Θ

is given by n
f . Points on the bifurcation diagram are constructed by plotting the solution of R(t) at

time points that are multiples of the driving acoustic period. In this work, the results are plotted

for n = 160− 200 to ensure a steady state solution has been reached.

2.3.b) Method of peaks As a more general method, bifurcation points can be constructed by
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setting one of the phase space coordinates to zero:

Q ≡ max(R){(R, Ṙ) : Ṙ = 0} (11.5)

In this method, the steady state solution of the radial oscillations for each control parameter is

considered. The maxima of the radial peaks (Ṙ = 0) are identified (determined within 160-200

cycles of the stable oscillations) and are plotted versus the given control parameter in the bifurca-

tion diagrams. The bifurcation diagrams of the normalized bubble oscillations ( R
R0

) are calculated

using both methods a) and b). When the two results are plotted alongside each other, it is easier to

uncover more important details about the SuH and UH oscillations, as well as the SH and chaotic

oscillations.

11.4 Results

11.4.1 Resonance curves

Compared to uncoated bubbles and coated bubbles with pure viscoelsatic behavior (e.g. Keller-

Miksis model [79], Hoff model [80], Morgan model [81]), the resonance behavior of lipid coated

bubbles are more complex. This is due to the buckling and rupture of the shell and dynamic

variation of the effective surface tension of the bubble. As an example [68, 77] have shown

numerically and experimentally that a pressure increase leads to a significant displacement of the

main resonance (frequency of maximum response) of the bubble leading to a significant shift of the

resonance curve.

Fig. 11.2 compares the resonance curves of a 2µm bubble at excitation pressure amplitudes 1, 6,

11, 16 & 21 kPa. In order to better understand the effect of the initial surface tension we have

presented the case of the uncoated bubble in Fig. 11.2a & the coated bubbles with σ0 of 0, 0.01,

0.036, 0.062 & 0.072 N/m in Figs. 11.2b-f respectively. The parameters for the bubble model are

χ = 3.5N/m & ks = 4 ∗ 10−9kg/s [82,83].

Upon a first glance at Fig. 11.2, the high sensitivity of the coated bubble to σ0 is evident. While the

resonance frequency of the uncoated bubble decreases slightly from ≈ 1.77MHz to ≈ 1.69MHz,

411



(a) (b)

(c) (d)

(e) (f)

Figure 11.2: Resonance curves of a bubble with R0 = 2µm at different pressures for: a) uncoated bubble, and the coated bubble with
b)σ0 = 0N/m, c)σ0 = 0.01N/m, d)σ0 = 0.036N/m, e) σ0 = 0.062N/m & f) σ0 = 0.072N/m .
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Figure 11.3: Resonance frequency as a function of pressure for the bubbles in Fig. 1.

the resonance frequency of the lipid coated bubble changes considerably over this relatively small

pressure range (1 kPa-21 kPa). The resonance frequency (fr) change as a function of PA signifi-

cantly depends on the σ0. The bubbles with σ0 = 0.01 & 0.062N/m display the largest change in

fr (fundamental frequency of the maximum response) which manifests itself in a skewness [68] in

the resonance curve (Fig. 11.2c & Fig. 11.2e). Meanwhile, the coated bubbles with σ0 = 0N/m

(at buckling stage) & σ0 = 0.072N/m (at rupture state) display the least change in the resonance

frequency; however, in both cases 1/2 and 1/3 subharmonic (SH) resonances are generated at the

lowest pressure thresholds. The reason for large change in the fr of the bubble with σ0 = 0.01 &

0.062N/m is that a very small change in pressure changes the state of the coating and changes the

coating in a manner that leads to buckle or rupture.

The resonance frequency (fr) as function of pressure is shown in Fig. 11.3. At 1 kPa, the bubble

with σ0 = 0.035N/m has the highest resonance frequency. A pressure increase to 11 kPa results in

a large change in the fr of the bubbles with σ0 = 0.01N/m (6.62 to 3.47 MHz), σ0 = 0.062N/m

(from 6.73 to 3.58 MHz) & for σ0 = 0.036N/m (6.89 MHz to 5.55 MHz). The uncoated bubble,

and the bubbles with σ0 = 0 & σ0 = 0.072N/m display very small changes in the fr as pressure

increases from 1 kPa to 5 kPa. This can be explained by the values of the buckling and rupture

(break-up) radii. Fig. 11.4 displays the buckling and the break-up radii as a function of σ0. The

bubble with σ0 = 0N/m is initially at the buckled state, and has the largest break up radius of
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Figure 11.4: Rb (blue curve) and Rbreakup (red curve) as a function of σ0. The circles mark the Rb & Rbreak−up with ones in
blue corresponding to σ0 = 0N/m, light blue corresponding to σ0 = 0.01N/m, green corresponding to σ0 = 0.036N/m, orange
corressponding to σ0 = 0.062N/m & red circles corresponding to σ0 = 0.072N/m.

≈ 1.07R0. The bubble with σ0 = 0.072N/m is initially at the ruptured state and has the lowest

buckling radius of ≈ 0.97R0. Thus, for these two bubbles higher acoustic pressures are required to

change the state of the coating and consequently the rates of change of their main resonance (fr)

with pressure are the smallest. The bubble with σ0 = 0.01N/m buckles at Rb = 0.99R0 and the

bubble with σ0 = 0.062N/m ruptures at ≈ 1.003R0, thus a very small pressure excitation is able

to change the state of the coating to buckled or ruptured respectively. Hence, these two bubbles

display the highest rates of change of fr with increasing pressure.

Similar to our previous work in [34, 37, 38, 48, 56], in this work we will attempt to classify the

nonlinear dynamics of the lipid bubbles as a function of pressure when they are sonicated with

fractions or multiples of their fr. However, the initial sharp decrease of the resonance frequency

with pressure will make the classification difficult. Moreover, characterization of the coating

parameters of the bubbles in experiments are generally through attenuation measurements of

the bubble solution when there is an excitation pressure amplitude above 1kPa is applied. As

an instance negative peak pressure of 25 kPa, 12.5 kPa, 30 kPa, 10 kPa & 5 kPa were applied

respectively in [84], [85], [86], [82] & [83] and Peak to peak pressures of 33 kPa were applied

in [86]. Very low pressures can not be applied experimentally due to the signal to noise constraints

of the measurements systems.

To simplify the classification method and to have a better comparison with experimental data

published we have calculated the resonance frequency at Pa = 10kPa and used it for further

study. Thus, in this paper for coated bubbles fr refers to the resonance frequency at Pa = 10kPa.
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11.4.2 Radial oscillations as a function of time and the corresponding changes in

the σ(R)

In Fig. 11.2, we observed the generation of SuH as well as SH resonances at very low pressures

in case of the coated bubbles. In this section, the enhanced nonlinear oscillations and their

relationship with the bubble surface tension are briefly investigated to have a better insight on

the mechanisms of enhanced nonlinearity. Fig. 11.5 shows the radial oscillations of the uncoated

bubble as a function of 10 acoustic driving periods (100-110). The left column shows the radial

oscillations when Pa = 1kPa and f = 0.3fr, 2fr and 3fr in Figs. 11.5a, 11.5c and 11.5e

respectively. the right column shows the radial oscillations when Pa = 60kPa and f = 0.3fr,

2fr and 3fr in Figs. 11.5b, 11.5d and 11.5f respectively. The red circles locate the amplitude of the

radial oscillations at each period. This is the Poincaré cross section at each driving period which

is used to generate the bifurcation diagram using the method introduced in 2.3.a. The bubble

oscillations in Fig. 11.5 are period 1 (P1) and the red circles have the same value at each driving

periods. This indicates the absence of any SHs. Only 3rd order SuHs are seen (P1 oscillations with

3 maxima) when pressure is 60 kPa in Fig. 11.5b.

Fig. 11.6, depicts the case of the coated bubble with R0 = 2µm when f = 0.3fr and Pa = 1kPa.

Top row is for σ0 = 0N/m with radial oscillations in Fig. 11.6a and the corresponding σ(R) in Fig.

11.6b. The oscillations are P1 (red circle only represents one value), however, the radial oscillations

have two maxima, indicating a 2nd order SuH regime of oscillations. The corresponding σ(R) drops

to zero and stay zero in the buckled state until the bubble expands above the buckling radius and

again drops to zero when the bubble buckles upon compression. The bubble with σ(R) = 0.072N/m

(Fig. 11.6c) exhibits P1 oscillation with 3 maxima and thus a 3rd order SuH regime. When the

bubble expands, σ(R) can not grow beyond the surface tension of water (0.072N/m) thus the

σ(R) curve becomes flat(Fig. 11.6d). Upon contraction σ(R) decreases and upon expansion it

grows until the coating breaks and surface tension becomes equal to 0.072N/m. In both cases, the

buckling and rupture of the shell results in the enhanced nonlinearity (in these cases enhanced

SuHs). For the bubble with σ0 = 0N/m there is compression dominated behavior and for the

bubble with σ0 = 0.072N/m expansion dominated behavior is observed.

Fig. 11.7, depicts the case of the coated bubble with R0 = 2µm when f = 2fr and Pa = 1kPa. For
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Figure 11.5: R/R0 as function of the driving periods for a C3F8 uncoated bubble with R0 = 2µm when: a)f = 0.3fr & Pa = 1kPa,
b)f = 0.3fr & Pa = 60kPa, c)f = 2fr & Pa = 1kPa, d)f = 2fr & Pa = 60kPa, e)f = 3fr & Pa = 1kPa & f)f = 3fr &
Pa = 60kPa. (Red circles correspond to the location of R(t) at each period)
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Figure 11.6: R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2µm when f = 0.3fr
& Pa = 1kPa for: a&b-σ0 = 0N/m, c&d-σ0 = 0.072N/m. (Red circles correspond to the location of R(t) at each period)
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Figure 11.7: R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2µm when f = 2fr &
Pa = 1kPa for: a&b-σ0 = 0N/m, c&d-σ0 = 0.072N/m. (Red circles correspond to the location of R(t) at each period)
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Figure 11.8: R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2µm when f = 3fr &
Pa = 1kPa for: a&b-σ0 = 0N/m, c&d-σ0 = 0.072N/m. (Red circles correspond to the location of R(t) at each period)

σ0 = 0N/m (Fig. 11.7a) compression dominated radial oscillations are P2 (red circle corresponds

to two values). The corresponding σ(R) (Fig. 11.7b) remains equal to zero for a time duration of

more than two periods followed by a short spike when the bubble expands above the buckling

radius. The surface tension exhibits 5 spikes for the duration of 10 cycles. The bubble with

σ(R) = 0.072N/m (Fig. 11.7c) exhibits expansion dominated P2 oscillation with 1 maximum.

The σ(R) curve (Fig. 11.7d) exhibits the same behavior of Fig. 11.7b with an inverted shape. The

surface tension displays 5 inverted spikes within 10 cycles.

Fig. 11.8, depicts the case of the coated bubble with R0 = 2µm when f = 3fr and Pa = 1kPa. For

σ0 = 0N/m (Fig. 11.8a) compression dominated radial oscillations are P3 (red circle corresponds

to three values) with 3 maxima. The corresponding σ(R) (Fig. 11.8b) remains zero for a time

duration of more than three periods followed by a short spike when the bubble expands above

buckling radius. The surface tension exhibits 3 spikes for the duration of 10 cycles. The bubble

with σ(R) = 0.072N/m (Fig. 11.8c) exhibits expansion dominated P3 oscillation with 2 maxima.
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Figure 11.9: R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2µm when f = 3fr &
Pa = 1kPa for: a&b-σ0 = 0.01N/m, c&d-σ0 = 0.062N/m. (Red circles correspond to the location of R(t) at each period)

The σ(R) curve (Fig. 11.8d) exhibits the same behavior of Fig. 11.8b with an inverted shape. The

surface tension displays 3 inverted spikes within 10 cycles.

Fig. 11.9 shows the radial oscillations and the surface tension of the coated bubble with R0 = 2µm

at Pa = 1kPa as a function of periods for bubbles with σ0 = 0.01N/m (Figs. 11.9a-b) and

σ0 = 0.062N/m (Figs. 11.9c-d). Both cases display a P1 oscillations with symmetric amplitude

around the initial bubble radius. The σ(R) curves display symmetric oscillations and absence of

sharp spikes that are seen in Figs. 11.6-8. When Pa increases the coating can buckle or rupture. Fig.

11.10 shows the the radial oscillations and surface tension of the coated bubble with R0 = 2µm

at Pa = 60kPa as a function of periods for bubbles with σ0 = 0.01N/m (Figs. 10a-b) and

σ0 = 0.062N/m (Figs. 11.10c-d). Both cases display P3 oscillations and 3 spikes in the σ(R)

within 10 periods.

Comparison between Figs. 11.5-10 shows that the sharp variations of the σ(R) in the neighborhood

of the buckling or rupture radii enhances the nonlinear behavior. The coated bubbles initially at
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Figure 11.10: R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2µm when f = 2fr
& Pa = 60kPa for: a&b-σ0 = 0.01N/m, c&d-σ0 = 0.062N/m. (Red circles correspond to the location of R(t) at each period)

buckled or ruptured state display this behavior at a pressure as low as 1 kPa. The coated bubbles

with σ0 = 0.01N/m and σ0 = 0.062N/m need slightly higher pressures for the enhanced nonlinear

oscillations. The uncoated did not show any enhanced nonlinearity.

11.4.3 Bifurcation structure of the uncoated bubble

In this section, we briefly highlight the main nonlinear regimes of the dynamics of the uncoated

bubble as a function of pressure at different frequencies. This data will be useful when analyzing the

behavior of the lipid coated bubble by highlighting the shell effects on the coated bubble dynamics.

Figure 11.11a shows the bifurcation structure of the uncoated bubble with R0 = 2µm sonicated

with f = 0.3fr. Pressure increase above ≈ 50kPa leads to the generation of 3 maxima in the

bubble oscillations (3 blue lines) for a period 1 (P1) oscillation regime. Thus 3rd SuH regime [57]

is generated. Oscillations undergo period doubling (PD) at about 124 kPa. The blue curve with

3 maxima undergoes 3 PDs concomitant with the 1 PD in the red curve; thus oscillations become
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Figure 11.11: Bifurcation structure of the R/R0 of the C3F8 uncoated bubble with R0 = 2µm as a function of pressure when:
a)f = 0.3fr , b)f = 0.5fr , c)f = 0.6fr , d)f = 0.7fr , e)f = fr & f)f = 1.2fr .
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P2 with 6 maxima and 7/2 UH oscillations are generated (124kPa < Pa < 178kPa). The 3rd

SuH region and the 7/2 UH region are highlighted as an inset in Fig. 11.11a. Further pressure

increase leads to SN bifurcation to 2nd order SuH oscillations of higher amplitude, followed by 5/2

UHs, and a small chaotic window. Finally a giant P1 resonance emerges out of the chaotic window

undergoing further PDs at higher pressures.

When f = 0.5fr (Fig. 11.11b), as pressure increases above 14 kPa, 2 maxima are generated in the

P1 oscillation regime (2nd SuH). Further pressure increase results in a PD in both the blue and red

graphs leading to a P2 oscillation with 4 maxima (5/2 UH oscillations). This region is highlighted

as an inset in Fig. 11.11b. Chaos occurs in a small window above 160 kPa with a tiny window of

periodic (P3 with 5 maxima) behavior within. Afterwards, a giant P1 resonance emerges out of the

chaotic window. The P1 oscillations undergo a multiple cascades of PDs to chaos.

When f = 0.6fr (Fig. 11.11c) 5/2 UH oscillations (P2 with 4 maxima) are developed and then

transition to P1 oscillations through a bubble in the pressure window of 116-150 kPa (highlighted

in an inset). P1 oscillations then undergo a saddle node bifurcation to a P1 oscillation with higher

amplitude at Pa ≈ 166kPa. This is due to the pressure dependent resonance behavior that has

been discussed in detail in [56]. Further pressure increase leads to a PD to P2 oscillations (at 406

kPa) which is followed by a cascade of PDs to chaos at ≈ 614kPa.

The dynamics of the bubble sonicated with f = 0.7fr (Fig. 11.11d) is similar to the case of

f = 0.6fr; however, 5/2 UH oscillations are not generated and SN bifurcation occurs at a slightly

lower pressure (117 kPa). At this pressure the red curve meets the blue curve. This is the pressure

dependent resonance and the wall velocity becomes in phase with the driving signal. This is

discussed in detail with numerical and experimental observations in [85]. PD occurs at 326 kPa

which is lower than the PD threshold in Fig. 11.11c. Chaos settles through a cascade of PDs at 504

kPa.

When f = fr (Fig. 11.11e) oscillations are P1 and the blue line and the red line have the same

value (highlighted in the inset) which indicates that the wall velocity is in phase with the acoustic

driving force due to the resonance (page 290 in [91]). The two curves start diverging as soon as

pressure increases above 18 kPa and at 215 kPa the oscillations undergo PD. Oscillations become

chaotic above 400 kPa with a small window of periodic behavior (P3 with 3 maxima).

When f = 1.2fr (Fig. 11.11f), we witness the similar behavior as the case of f = fr; however, P2
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oscillations are developed for Rmax/R0 < 2, thus P2 oscillations are more likely stable [92].

When f = 1.5fr (Fig. 11.12a), P1 oscillations undergo PD with 2 maxima at 236 kPa. P2

oscillations undergo a SN bifurcation to P2 oscillations of higher amplitude at 347 kPa. Right at

the SN point the lower branch of the red curve meets the lower branch of the blue curve indicating

wall velocity is in phase with the driving acoustic pressure once very two acoustic cycles. The SN

bifurcation is coincident with the pressure dependent SH resonance (Pdfsh) [58]. This results in

the over-saturation and enhancement of the SH signal from the pressure scattered by bubbles [58].

P2 oscillations undergo successive PDs to chaos at ≈ 494kPa.

When f = 1.8fr (Fig. 11.12b) P1 oscillations undergo a SN bifycation to P2 oscillations of higher

amplitude at 155 kPa. The P2 oscillations amplitude Rmax
R0

< 2 thus bubbles may have higher

stability compared to Fig. 11.12a. Further pressure increase leads to chaos through successive PDs.

At 931 kPa a giant P3 resonance emerges out of the chaotic window.

When f = 2fr (linear SH resonance frequency), PD occurs at the lowest pressure threshold of 77

kPa (highlighted in an inset) [34]. P2 oscillations undergo successive PDs and chaos appears at

400 kPa and extends to ≈ 600kPa where giant P3 resonance emerges out of the chaotic window.

Oscillations later become chaotic again through successive PDs.

When f = 2.2fr (Fig. 11.12d), PD occurs at 189 kPa which is higher than the PD threshold when

f = 2fr. This is an expected result from linear theory. P2 oscillations undergo PD to P4-2 at 445

kPa and then are followed by chaos through consecutive PDs at 482 kPa .

The case of f = 2.8fr is depicted in Fig. 11.12e. P1 oscillations undergo a SN to P3 oscillations

at 390 kPa. P3 oscillations undergo PD to P6 at 489 kPa and a small chaotic window appears at

587 kPa. Chaos disappears and low amplitude P1 emerges out of the chaotic window at 588 kPa

which later undergo a PD similar to Fig. 11.12d at 661 kPa. Further pressure increase results in

the occurrence of P4 through a SN at 819 kPa. P4 oscillations undergo PD to P8 at about 900 kPa.

When f = 3fr (Fig. 11.12f), P3 occurs at 353 kPa through SN bifurcation. P3 extends to 567

kPa where P6 oscillations are generated through a PD. A small chaotic window appears before the

low amplitude P1 which then undergoes a SN to P8 oscillations. Finally chaos is generated at

≈ 800kPa.
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Figure 11.12: Bifurcation structure of the R/R0 of the C3F8 uncoated bubble with R0 = 2µm as a function of pressure when:
a)f = 1.5fr , b)f = 1.8fr , c)f = 2fr , d)f = 2.2fr , e)f = 2.8fr & f)f = 3fr .
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11.4.4 Bifurcation structure of the coated bubble with σ0 = 0 & σ0 = 0.072N/m

Due to the sharp decrease of resonance frequency with pressure and for simplification of the

comparisons, as well as to consider the experimental constrains fr is chosen to be the frequency of

maximum response at 10 kPa. For the bubble with σ0 = 0N/m, fr = f10kPa = 1.012f1kPa which is

due to a slight stiffness hardening behavior of the buckled bubble at low pressures. For the bubble

with σ0 = 0.072N/m, fr = f10kPa = 0.865f1kPa.

Figs. 11.13a-b show the bifurcation structure of the coated bubble when f = 0.3fr & σ0 = 0

(a) and σ0 = 0.072 (b). This assumes the coatings are initially in the buckled and ruptured states

receptively. The bubbles start oscillation in a P1 with two maxima (2nd SuH) right from Pa = 1kPa.

The following evolution 2nd SuH → 3rd SuH (P1-3 maxima) → 4th SuH (P1 4 maxima) appears

as pressure increases (these are highlighted as insets in Figs. 11.13a-b). Compared to the uncoated

bubble case, the 2nd SuH appears at a very small pressure threshold (Pa = 1kPa). Wall velocity

is in phase with the driving acoustic pressure for most of the pressures below 200 kPa. Further

pressure increases results in the gradual disappearance of the maxima, and above 210 kPa, only

two maxima remain in the bubble oscillations for both cases. The radial oscillation amplitude

increases, until PD occurs in both graphs and 5/2 UH resonance occur (P2 oscillations with 4

maxima which is highlighted as an inset in Fig. 11.13b). For σ0 = 0 N/m, 5/2 UH resonance exists

for Pa = 431− 450kPa & for σ0 = 0.072 N/m, 5/2 UH resonance exist for Pa = 330− 365kPa. The

UH resonance occurs and disappears through a bubbling bifurcation. 2nd maxima is annihilated

soon after the disappearance of UH. Further pressure increase results in PD at very large oscillation

amplitudes Rmax
R0

> 5 where the bubble may not sustain non-destructive oscillations.

When f = 0.5fr (Figs. 13c-d), oscillations start with 2nd order SuH oscillations (P1 with 2 maxima)

right from the start at 1kPa and this stretches to ≈ 50kPa in both cases at which point 2nd maxima

disappears (highlighted as insets in Figs. 11.13c-d). For the case of σ0 = 0N/m (Fig. 13c),

second maxima re-appear at 147 kPa. At 190-231 kPa a bubbling bifurcation occurs where the

oscillations become P2 with 4 maxima (5/2 UH regime which is highlighted as an inset). The

second maxima disappears again at 230 kPa. Wall velocity stay in phase for most of the pressure

range of Pa < 262kPa for σ0 = 0N/m & Pa < 151kPa for σ0 = 0.072N/m. Further pressure

increase results in PD (Pa = 660kPa for σ0 = 0N/m & Pa = 473kPa for σ0 = 0.072N/m).
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Figure 11.13: Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2µm as a function of pressure (left: σ0 = 0N/m
and right: σ0 = 0.072N/m): a-b)f = 0.3fr , c-d)f = 0.5fr , e-f)f = 0.6fr , g-h)f = 0.7fr .
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Compared to the uncoated bubble case, the coating at its ruptured or buckled state reduces the

pressure threshold for SuH oscillations. UH oscillations, however, are suppressed and only occur at

higher pressures and for a much shorter range of excitation pressure. The pressure threshold for

the giant PD increases and chaotic oscillations are suppressed within the excitation pressure range

that is examined here. This can be due to the increased damping due to the coating.

When f = 0.6fr (Figs. 11.13e-f), oscillations are P1 and above a pressure threshold (100 kPa

for σ0 = 0N/m & 40 kPa σ0 = 0.072N/m), the rate of the growth of the oscillations amplitude

with pressure increases abruptly. This point is similar to a inflection point. When this occurs, the

wall velocity becomes in phase with the driving acoustic pressure as the red curve has the same

value of the blue curve (100kPa < Pa < 189kPa for σ0 = 0N/m & 41kPa < Pa < 90kPa &

σ0 = 0.072N/m). The bubble with σ0 = 0.072N/m undergoes a PD with 4 maxima (5/2 UHs) at

≈ 30 kPa which is highlighted as an inset in Fig. 11.13f. Further pressure increases results in the

divergence of the blue and red curve and PD occurs at Pa = 576kPa for σ0 = 0N/m & 369 kPa for

σ0 = 0.072N/m. Oscillations undergo further PDs to P4 as pressure increases. In case of the bubble

σ0 = 0N/m a P8 regime is created and then annihilated through a bubbling bifurcation within the

P4 window. Oscillations of the bubble with σ0 = 0.072N/m becomes chaotic through successive

PDs with intermittent windows of period behavior within.

When f = 0.7fr (Figs. 11.13g-h), oscillations start in a similar manner to the case of f = 0.6fr.

The growth rate of the P1 oscillation amplitude increases abruptly above a pressure threshold

which is lower than the case of the f = 0.6fr (90 kPa for σ0 = 0N/m & 29 kPa σ0 = 0.072N/m).

Consequently, wall velocity becomes in phase with the driving pressure (highlighted as an inset in

Fig. 11.13g) and further pressure increases result in the divergence of the blue and the red curve.

PD occurs at Pa = 495kPa for σ0 = 0N/m & 295 kPa for σ0 = 0.072N/m. Chaotic oscillations are

finally generated through successive PDs with some periodic windows within.

The cases of the coated bubbles in Figs. 11.13e-h are similar to the case of the uncoated bubble

sonicated with f = 0.8fr & f = 0.9fr (PDfr [56]). However, the pressure threshold for the SN

bifurcation or the increase in the growth rate of the oscillations (inflection point) is much lower

in case of the coated bubble with σ0 = 0.072N/m despite being excited with lower frequencies.

Moreover, the pressure threshold for PD and chaotic oscillations are higher for the coated bubbles

with PD occurring at a higher The Rmax
R0

. This can be due to the increased damping in the bubble
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oscillations.

When f = fr (Fig. 11.14a-b) (note that in this paper in case of the lipid coated bubbles fr

was considered the frequency of maximum response at 10 kPa) the red and blue curve have

the same value for Pa < 20kPa. The P1 oscillations amplitude grows as pressure increases and

the two curves diverge with pressure increase. PD occurs at at Pa = 267kPa for σ0 = 0N/m

& 317 kPa for σ0 = 0.072N/m which is higher than the PD pressure for the uncoated bubble

(Pa = 215kPa Fig. 11.11e). Rmax
R0

of the P2 oscillations of the coated bubble however, are below

2 while the oscillation amplitude of the P2 oscillations in uncoated bubble are above 2. In case of

the bubble with σ0 = 0N/m a further pressure increase leads to P4 oscillations through another

PD. P4 oscillations become P8 and then again P4 through a bubbling bifurcation; P4 oscillations

later undergo a PD cascade to chaos. At Pa ≈ 915kPa a P4 oscillation emerges out of the

chaotic window through symmetry breaking (SB) bifurcation. P4 becomes P2 through another

SB. For the bubble with σ0 = 0.072N/m, P4 oscillations are generated twice inside the P2 window

through bubbling bifurcation. At Pa = 600kPa the P2 oscillations undergo a SN bifurcation to P2

oscillations of higher amplitude. This is similar to the behavior of the uncoated bubble sonicated

by its Pdfsh =≈ 1.5 − 1.9fr (Chapter 5) [58] & Fig. 11.12a (f = 1.5fr). Thus, in case of the lipid

coated bubble the buckling and rupture of the coating significantly decreases the Pdfsh.

When f = 1.2fr (Fig. 11.14c-d), the P1 oscillation amplitude increases with increasing pressure

and PD occurs at Pa = 314kPa for σ0 = 0N/m & 238 kPa for σ0 = 0.072N/m. Pressure thresholds

for PD are higher than the pressure threshold of PD (218 kPa) in the uncoated bubble case in Fig.

11.11f. In both cases, with increasing pressure a SN bifurcation from P2 to another P2 with higher

amplitude (Pa = 796kPa for σ0 = 0N/m & 314 kPa for σ0 = 0.072N/m). This is similar to the

dynamics of the uncoated bubble bubble sonicated by its Pdfsh [58] & Figs. 11.12a-b (f = 1.5fr &

1.8fr). This shows that the dynamic variations of the effective surface tension including buckling

and rupture decreases the Pdfsh. In the case of σ0 = 0.072N/m chaos appears through successive

PDs, however, the bubble with σ0 = 0N/m does not exhibit chaotic oscillations in this pressure

range. Additionally at a given pressure, RmaxR0
is higher for the bubble with σ0 = 0.072N/m because

of the expansion dominated behavior of the bubble. This can be one of the reasons for lower

pressure threshold of P2 and chaotic oscillations in case of the bubble in ruptured state.

When f = 1.5fr (Fig. 11.14e-f), the bubble behavior is similar to the uncoated bubble sonicated
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Figure 11.14: Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2µm as a function of pressure (left: σ0 =
0.0N/m and right: σ0 = 0.072N/m): a-b)f = fr , c-d)f = 1.2fr , e-f)f = 1.5fr , g-h)f = 1.8fr .
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with its PDfsh. The pressure threshold for P2 oscillations are Pa = 338kPa for σ0 − 0N/m &

Pa = 98kPa for σ0 = 0.072N/m. In case of the bubble with σ0 = 0.072N/m pressure threshold for

PD is lower than the case of the uncoated bubble (Fig. 11.12a). Increasing pressure results in a

SN bifurcation from a P2 regime to a higher amplitude P2 regime only in case of the coated bubble

with σ0 = 0N/m. In case of the uncoated bubble the SN bifurcation results in Rmax
R0

> 2, however,

here P2 oscillations remain below 2 when SN occurs. The P2 oscillations undergo successive PDs to

P8 in both bubbles (Fig. 11.14e-f). However, only the bubble with σ0 = 0.072N/m, exhibits chaotic

oscillations. Similar to the previous cases, Rmax
R0

is higher for the bubble in the ruptured state due

to expansion dominated behavior.

When f = 1.8fr a very interesting phenomenon is observed (Fig. 11.14g-h). In both cases, the

bubble starts oscillating in the P2 regime at the very low pressure threshold of 1kPa. To our

best knowledge, such a low excitation threshold for P2 oscillations in nonlinear oscillators is first

reported here. The dynamic of the bubble exhibits three interesting stages. The generation of P2

oscillations (at very low pressure), the disappearance of P2 oscillations and regeneration of P2

oscillations. Such behavior as been observed experimentally in [73,93]. In [73], the disappearance

of SH oscillations is referred to as an ”unexpected standstill” of SHs. This will be discussed further

in discussion. Within the initial P2 window, a very small P4-2 window occurs for both bubbles. The

pressure threshold for the initiation of the P4-2 oscillations is as low as 5 kPa for the bubble with

σ0 = 0.072N/m. The P2 oscillations disappear with increasing pressure above 173 kPa and 299

kPa for the bubbles with σ0 = 0 & 0.072N/m respectively. A second P2 regime re-emerges through

a SN bifurcation at 412 & 514 kPa for the bubbles with σ0 = 0 & 0.072N/m respectively. This

dynamical feature is similar to the case of uncoated bubble sonicated with its PDfsh of 1.8fr (Fig.

11.12b); however, the SN occurs at a higher pressure. Similar to the uncoated bubble, after the SN

occurrence, the bubble with σ0 = 0N/m undergoes chaotic oscillations through successive PDs.

When f = 2fr (Figs. 11.15a-b), the dynamics are similar to Figs. 11.14g-h. P2 oscillations

are generated at 1kPa, and they disappear above 200 kPa. For the bubble with σ0 = 0N/m, P2

oscillations re-emerge at ≈ 600kPa and through a PD bifurcation. Similar to the coated bubble

sonicated with its Pdfsh in [58], P2 oscillations undergo a SN bifurcation to P2 oscillations with

higher amplitude. Further pressure increase results in chaotic oscillations through successive PDs.

In case of the bubble with σ0 = 0.072N/m, soon after the disappearance of the P2 oscillations, a
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Figure 11.15: Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2µm as a function of pressure (left: σ0 = 0N/m
and right: σ0 = 0.072N/m): a-b)f = 2fr , c-d)f = 2.2fr , e-f)f = 2.8fr , g)f = 3fr h)f = 3.1fr .
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rather small window (293-310 kPa) of P2 oscillations is generated through a SN. P2 oscillations

disappear and P1 oscillations undergo a SN to P3 at 707 kPa.This dynamical feature is similar to

Fig. 11.12f where the uncoated bubble is sonicated with f = 3fr.

The dynamics of the bubble sonicated with f = 2.2fr (Figs. 11.15c-d) is similar to f = 2fr and the

general dynamical features of the system stays the same.

The dynamics of the bubbles with σ0 = 0N/m & 0.072N/m sonicated with 1.8fr ≤ f ≤ 2.2fr

exhibits three main stages. In stage one the bubble shows enhanced non-linearity by which P2

oscillations are generated at very low pressure thresholds. The P2 oscillations disappear by pressure

increases however, they re-emerge as P2 or P3 oscillations above pressure threshold higher than

the uncoated counterpart, and in a similar fashion to the uncoated bubble sonicated by its PDfsh

or f = 2.8− 3fr.

The bifurcation structure of the bubbles when f = 2.8fr is shown in Figs. 11.15e-f. Right at

Pa = 1kPa, the bubble with σ0 = 0N/m starts P3 oscillations. The enhanced non-linearity of P3

at such a low excitation is reported for the first time here increases. Pressure increase leads to a

sudden chaos at 104 kPa, with the P3 attractor coexisting with chaos until its disappearance at 112

kPa. Chaos stretches to 156 kPa. Chaotic oscillations become P2 through a cascade of symmetry

breaking bifurcations.

Cases of f = 3fr & σ0 = 0N/m and f = 3.1fr & σ0 = 0.072N/m are shown in Figs. 11.18g

& h respectively 2. P3 oscillations start at Pa = 1kPa for both cases. For σ0 = 0N/m, sudden

chaos appear at 240 kPa. With pressure increase P2 oscillations emerge out of the chaotic window

through a cascade of symmetry breaking bifurcations. Lastly P1 oscillations appear above 400 kPa.

For σ0 = 0.072N/m, P4-2 oscillations emerge out of the P3 oscillations through a SN bifurcation

and undergo symmetry breaking bifurcation to P2 and then P1.

11.4.5 Bifurcation structure of the coated bubble with σ0 = 0.01 & σ0 = 0.062N/m

Bifurcation structures in this section are also plotted at multiples and fractions of the resonance

frequency. Similar to the previous section, the resonance frequency is set to be the frequency of

2case of f = 3fr and σ0 = 0.072N/m exhibits the similar dynamic as of Fig. 11.7h. Thus, here we decided to present
f = 3.1fr to highlight the generation of P3 at Pa = 1kPa
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Figure 11.16: Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2µm as a function of pressure (left: σ0 =
0.01N/m and right: σ0 = 0.062N/m): a-b)f = 0.3fr , c-d)f = 0.5fr , e-f)f = 0.6fr , g-h)f = 0.7fr .
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maximum response at 10 kPa. For the bubble with σ0 = 0.01N/m, fr = f10kPa = 0.52f1kPa & for

the bubble with σ0 = 0.062N/m, fr = f10kPa = 0.53f1kPa.

The bifurcation structures of the bubbles with σ0 = 0.01N/m & σ0 = 0.062N/m insonified by

0.3fr ≤ f ≤ 0.7fr are shown in Fig. 11.16. Figs 11.16a-b shows the cases of sonication with

f = 0.3fr. The dynamics of the bubbles are very similar to their counterparts with σ0 = 0N/m &

0.072N/m sonicated with f = 0.3 − 0.5fr (Figs. 11.13a-d). However, there are two differences:

1) Rmax
R0

is in generally lower than the initially buckled or the ruptured bubble over all pressures

studied and, 2) The threshold for the start of SuH oscillations is ≈ 11kPa which was 1 kPa in (Figs.

11.13a-d). The pressure threshold for SuH oscillations is still lower than the case of uncoated

bubble in Figs. 11.11a-b.

Sonication with f = 0.5fr is depicted in Figs. 11.16c-d. There is a general similarity with the

bubbles with σ0 = 0 & σ0 = 0.072N/m sonicated with f = 0.6fr & f = 0.7fr. Above a pressure

threshold in all cases there is a SN bifurcation or an increase in the growth rate of the bubble

oscillation amplitude (manifested in the form of an inflection point) which corresponds to the

PDfr. At this point the red and blue curve meet indicating the wall velocity with the acoustic

excitation is in phase. Referring to Fig. 11.3, the rate of the decrease of fr with pressure increase

is higher for the bubbles with σ0 = 0.1 & 0.072N/m compared to σ0 = 0 & σ0 = 0.072N/m. This

manifests itself in the occurrence of the SN or the inflection point at lower frequencies and lower

pressures in Figs. 11.16e-h.

The bubbles exhibit 2nd order SuH (P1- 2 maxima ) and 5/2 UHs within the pressure range of

10-28 kPa. Above 28 kPa, the bubble with σ0 = 0.062N/m undergoes a SN bifurcation from a

P1 oscillation to another P1 oscillation with higher amplitude. At the 57 kPa, the growth rate of

the oscillations amplitude increases for the bubble with σ0 = 0.062N/m. This indicates the PDfr

point. Further pressure increase results in PD and chaotic oscillations. The pressure threshold for

PD and Rmax
R0

are smaller than their counter part with σ0 = 0 and 0.072 N/m (Figs. 11.13c-f).

The dynamics of the bubbles with σ0 = 0.01 & 0.062N/m sonicated with f = 0.6fr (Figs. 16e-f)

are similar to the case of f = 0.5fr in Figs. 11.16c-d. A SN bifurcation takes place at ≈ 17kPa for

both bubbles and the oscillations amplitude increases abruptly (PDfr). Just before the occurrence

of SN, a small amplitude chaotic window appears. When SN occurs, blue curve and red curve

obtain the same value. As pressure increases oscillation amplitude increases and the two curve
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diverge. PD occurs at Pa = 300 and 267kPa respectively for σ0 = 0.01 and σ0 = 0.072N/m.

The bubble with σ0 = 0.01N/m exhibits the transition from P2 → P4 through a PD and P4 →

P8 → P4 through a bubbling bifurcation and then chaos with increasing pressure. The bubble

with σ0 = 0.062N/m undergoes P4 and chaos through multiple PDs which is followed by the

emergence of P2 oscillations through multiple symmetry breaking bifurcations out of chaos. The

case of sonication with f = 0.7fr is shown in Fig. 11.16g-h. There are two SN bifurcations

with pressure increase. The initial SN occurs at ≈ 15 kPa and results in P1 oscillations of higher

amplitude. After the first SN oscillation amplitude grows with increasing pressure and PD occurs in

both cases. A small P4 window is generated within the P2 window. For the case of σ0 = 0.01N/m

at Pa = 710kPa P4 oscillations are regenerated and then transition to P2 via symmetry breaking

at 982 kPa. For the bubble with σ0 = 0.062N/m at Pa = 479kPa P2 oscillations undergo a SN

bifurcation to P2 oscillations with higher amplitudes. This is similar to the dynamics of the uncoated

bubble sonicated with its PDfsh (Figs. 11.12a-b).

Case of the f = fr is shown in Fig. 11.17a-b. At Pa = 10kPa a SN bifurcation takes place

and oscillation amplitudes increase slightly (PDfr at 10 kPa). Oscillation amplitude increases

slowly with pressure and PD occurs at Pa = 326kPa & 148kPa respectively for σ0 = 0.01N/m

& σ0 = 0.062N/m. After the SN, the dynamics of the bubble with σ0 = 0.01N/m (Fig. 11.17a)

& σ0 = 0.062N/m (Fig. 11.17b) sonicated with f = fr are respectively similar to the dynamics

of the bubble with σ0 = 0N/m (Fig. 11.14e) & σ0 = 0.072N/m (Fig. 11.14f) sonicated with

f = 1.5fr. For the bubble with σ0 = 0.01N/m increasing pressure results in a SN bifurcation from

P2 oscillations to a higher amplitude P2 oscillations at 378 kPa. This is similar to the dynamics

of the uncoated bubble sonicated with its PDfsh (Fig. 11.12a) [58]. P2 oscillations then grow in

amplitude with pressure increase and oscillations become P4-2 through a PD at 624 kPa. Bubble

continues with P4-2 oscillations with a P8 window within, which is created and annihilated through

a bubbling bifurcation. The dynamics of the bubble with σ0 = 0.062N/m resembles the case of

the uncoated bubble sonicated with f = 2fr (Fig. 11.12c) [34]. P2 oscillations spread between

148 − 555kPa. At 555 kPa, P4-2 oscillations are generated via a PD and later undergo successive

PDs to chaotic oscillations at 638 kPa.

The case for f = 1.2fr is shown in Figs. 11.17c-d. In both cases we witness the generation of the P2

oscillations, their disappearance and re-generation which is similar to the dynamics of the initially
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Figure 11.17: Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2µm as a function of pressure (left: σ0 =
0.01N/m and right: σ0 = 0.062N/m) sonicated with: a-b)f = fr , c-d)f = 1.2fr , e-f)f = 1.5fr , g-h)f = 1.8fr .
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buckled and ruptured bubble in Figs. 11.14g-h. For bubbles with σ0 = 0.01N/m (Fig. 11.17c) &

σ0 = 0.062N/m (Fig. 11.17d) P2 oscillations occur via a PD at Pa = 47 & 48kPa respectively. With

pressure increase P2 oscillations transition to P1 (disappearance of 1/2 order SHs) at Pa = 140

& 269kPa respectively. P2 oscillations are then re-appear at Pa = 418 & 545kPa respectively.

Dynamics of the coated bubbles in this pressure region is similar to the dynamics of the uncoated

bubble sonicated with its PDfsh (Fig. 11.12b). In case of σ0 = 0.01N/m, further pressure increase

results in a cascade of PDs to chaos. In case of the σ0 = 0.062N/m further pressure increase results

in the appearance of P3 oscillations which later undergo PD to P6 oscillations.

The dynamic variation of the effective surface tension due to the lipid coating decreased the

frequency of Pdfsh to frequencies close to resonance. Moreover, P3 oscillations are unexpectedly

generated. Compared to the uncoated bubble, the pressure thresholds for P2 oscillations are

smaller. Also, Rmax
R0

are generally smaller than both the uncoated bubble and the bubbles with

σ0 = 0.0N/m & σ0 = 0.072N/m.

When f = 1.5fr (Figs. 11.17e-f), PD occurs at Pa = 16 & 21kPa for σ0 = 0.01N/m & σ0 =

0.062N/m respectively and they stretch up to approximately 224 kPa where they transition to

P1 oscillations via a SN bifurcation. Further pressure increase results in the generation of P3

oscillations via another SN bifurcation at Pa = 834kPa & Pa = 805kPa respectively for σ0 =

0.01N/m & σ0 = 0.062N/m. The dynamics of the bubble in this region is similar to the dynamics

of the uncoated bubble sonicated with f = 2.8− 3fr (Figs. 11.12e-f).

For f = 1.8fr (Figs. 11.17g-h), P2 oscillations occur via a PD at Pa = 14 & 18 kPa, respectively

for σ0 = 0.01N/m & σ0 = 0.062N/m. At 30 kPa P2 oscillations undergo a SN bifurcation to

P2 oscillations of higher amplitude. At 255 kPa, P2 oscillations transition to P1 oscillations via

another SN. The bubble oscillates with P1 for the rest of the studied pressure range. In this case

the dynamic variation of the effective surface tension of the lipid coating enhances the generation

of P2 oscillations at very low pressures. The coating lowers the pressure threshold for the Pdfsh;

however, at higher pressures suppresses the nonlinear oscillations.

For f = 2fr (Figs. 11.18a-b), PD is initiated at Pa = 17kPa for both bubbles. A SN bifurcations

transition the P2 oscillations to P2 oscillations of higher amplitude at 26 kPa. P4-2 oscillations are

generated and transition back to P2 oscillations through bubbling bifurcation. The P2 oscillations

undergo SN bifurcation to P1 oscillations at Pa = 268kPa & 230kPa respectively for the bubbles
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Figure 11.18: Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2µm as a function of pressure (left: σ0 =
0.01N/m and right: σ0 = 0.062N/m) sonicated with: a-b)f = 2fr , c-d)f = 2.2fr , e-f)f = 2.8fr , g-h)f = 3fr .
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with σ0 = 0.01N/m & σ0 = 0.062N/m. Oscillations of the bubble stay at P1 for the rest of the

pressure ranges that is studied here. Compared to the uncoated bubble in Fig. 11.12c the lipid

coating enhances the P2 oscillations at low acoustic pressures; however, the P2 oscillations of the

bubble is suppressed at higher pressures.

When f = 2.2fr (Figs. 11.18c-d), P2 oscillations are generated through a PD at Pa = 17kPa and

then at Pa = 20kPa undergo a SN bifurcation to P2 oscillations of higher amplitude. Oscillations

undergo a cascade of PDs to P4-2 and finally chaos at 71 and 95 kPa for the bubbles with σ0 =

0.01N/m & σ0 = 0.062N/m respectively. For the bubble with σ0 = 0.01N/m and through a cascade

of reverse PDs starting at 175 kPa, bubble oscillations transition to a P2 regime, which later undergo

a SN bifurcation to P1 at 274 kPa. For the bubble with σ0 = 0.062N/m, the transition from chaos

to P2 is via a SN bifurcation at 141 kPa. Oscillations transition to P4-2 via a SN at 173 kPa followed

by reverse PD to P2 and SN to P1 at 236 kPa. P3 oscillations are generated via a SN bifurcation for

a small window of pressure for both bubbles.

When f = 2.8fr (Figs. 11.18e-f), P2 oscillations are generated via SN bifurcations at Pa ≈ 20kPa.

Chaos sets in for a small pressure window of ≈ (39-51kPa) & (42-59kPa) for the bubbles with

σ0 = 0.01N/m & σ0 = 0.062N/m respectively. P3 oscillations emerge out of the chaotic window

via a SN bifurcation and then transition to P2 oscillations via another SN bifurcation at 179 kPa and

229 kPa for the bubbles with σ0 = 0.01N/m & σ0 = 0.062N/m, respectively. For the bubble with

σ0 = 0.01N/m, P3 oscillations are re-generated through SN bifurcation at 447kPa and undergo

a reverse period tripling at Pa = 530kPa to P1 oscillations. For the bubble with σ0 = 0.062N/m

P3 oscillations are generated at 334 kPa via a SN and the transition again to P1 oscillations via

another SN at 416 kPa. The oscillations remain P1 for the rest of the studied pressure range.

When compared to the uncoated bubble, the lipid coating enhanced the generation of P2 and P3

oscillations at lower pressures. The coating also, enhanced the onset of chaos at very low excitation

amplitudes and suppressed the chaotic oscillations at higher pressures.

Figs. 11.18g-h represent the case of f = 3fr. The dynamics at low pressures Pa < 200kPa

are similar to those in Figs. 11.18e-f. P2 oscillations are generated at low pressures through a

SN which then undergo a cascade of PDs to chaotic oscillations. P3 oscillations then emerge out

of the chaotic window through a SN at 49 and 55 kPa, respectively for bubbles with σ0 = 0.01

& σ0 = 0.062N/m. For the bubble with σ0 = 0.01N/m, the pressure increase results in P6-3
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oscillations via a PD at 124 kPa. At 144 kPa, P6-3 oscillations transition to P2 oscillations via a SN.

P2 transition to P6 via another SN at 164 kPa. At 178 kPa, P6 transition to P2 via another SN. At

213 kPa, P2 becomes P3 via a SN which is then followed by a SN from P3 to P2 and reverse PD

to P1 for the rest of the studied pressure range. For the bubble with σ0 = 0.062N/m within the

pressure range of 140-376 kPa, there are intermittent transitions between P2 and P3 via SNs. At

401 kPa, P1 oscillations give birth to a P4-1 oscillations which then transition to P3 via a SN at 411

kPa. P1 oscillations emerge out of the P3 window via a SN at 425 kPa. Compared to the uncoated

bubble, lipid coating enhances the P2, P3 and chaotic oscillations at very low acoustic pressures.

Moreover, P4-1 oscillations appear at 3fr. In case of the uncoated bubble and for the same initial

conditions however, P4-1 is expected to appear at frequencies near 4fr.

Compared to the case of σ0 = 0N/m & σ0 = 0.072N/m, P2 and P3 oscillations are not generated

right at the 1 kPa driving pressure and need pressures above 10 kPa. Moreover, the bubbles

generally have lower Rmax
R0

.

11.4.6 Bifurcation structure of the coated bubble with σ0 = 0.036N/m

In this section and for the bubble with σ0 = 0.036N/m, fr = f10kPa = 0.824f1kPa. Bifurcation

structure of the bubble with σ0 = 0.36N/m is shown in Figs11.11&11.12.

Fig. 11.19a shows the case of sonication with f = 0.3fr. P1 oscillations undergo a SN at Pa =

44kPa and the bubble oscillations amplitude increases abruptly (This is similar to the dynamics

of the bubble sonicated with its PDfr in Fig. 11.11c-d). Wall velocities are in phase (blue curve

meets the red curve) with the driving acoustic pressure for a range of acoustic excitation pressures

and with increasing pressure the two curves diverge. PD occurs at 371 kPa followed by a cascade of

PDs leading to chaos at ≈ 595kPa. Further pressure increase results in the intermittent transition

between chaos and periodic behavior. This behavior is similar to the dynamics of the uncoated

bubble sonicated with its pressure dependent resonance frequency (PDfr) in Figs. 11.11a-d. The

presence of the coating thus lowers the pressure threshold for the SN bifurcation. However, the

pressure threshold for PD is higher and the bubble oscillation amplitude is generally smaller than

the uncoated bubble.

When f = 0.5fr (Fig. 11.19b) the bubble undergoes two bifurcations that leads to two abrupt
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increases in the bubble oscillation amplitude. The first is a SN which takes place at 34 kPa

transitioning the P1 oscillations to a P1 with higher amplitude. The second one is an inflection

point at 460 kPa transitioning the P2 oscillations to P2 oscillations with slightly higher amplitude.

Here, the system exhibits dynamics that are similar to two different regimes of the oscillations in

the uncoated bubble. The low pressure transition is similar to the low pressure transition of the

uncoated bubble sonicated with PDfr (Figs. 11.11c-d). The second transition that occurs at a

higher pressure resembles the dynamics of the bubble sonicated with its PDfsh in Fig. 11.12b.

When compared to the uncoated counterpart, for the coated bubble the first transition occurs at a

lower pressure while the second transition occurs at a higher pressure.

When f = 0.6fr (Fig. 11.19c), we witness the same two pressure thresholds as the previous case.

Two SN occur, one at Pa = 29kPa and the second one at 327kPa. The first SN transition P1 to a

P1 oscillation of higher amplitude (PDfr) while the second SN transition the P2 oscillations to P2

oscillations of higher amplitude (PDfsh). Further pressure increases leads to P4-2 with bubbles of

P8-4 inside. Right after the bubble 4 small windows of chaos appear which transition to P4 and

then again to chaos.

When f = 0.7fr (Fig. 11.19d) two SN takes place; the first SN transitions a P1 oscillation to a P1

oscillation of higher amplitude at 25 kPa (PDfr) and the second SN transition the P1 oscillation to

P2 oscillations of higher amplitude at 277 kPa (Pdfsh). Pressure increase leads to P4-2 through PD

at ≈ 600kPa and later chaos at 671 kPa.

Looking at Figs. 11.19a-d, the dynamic variation of the surface tension of the lipid coating sig-

nificantly decreases the frequencies of pressure dependent resonance (PDfr) & and pressure

dependent SH resonance frequency (PDfsh). As an instance, PDfsh typically occurs for 1/5fr <

f < 2fr for the uncoated bubble ( [58] and Figs. 11.12a-b) while PDfsh occurred at frequencies

as low as 0.5fr for the coated bubble with σ0 = 0.036N/m.

When f = fr (Fig. 11.19e), an unexpected behavior is observed. P1 oscillations undergo a SN

to P3 oscillations at 833 kPa. In case of the uncoated bubble (Figs. 11.12e-f) or bubbles with

pure viscoelastic coating [38], this behavior only occurs for frequencies close to 3fr. Thus the

lipid coating here, decreased the P3 resonance frequency by 200 %. The pressure threshold for P3

oscillations, however is higher for the coated bubble when compared to the uncoated counterpart.

When f = 1.2fr (Fig. 11.19f), nonlinear oscillations are suppressed to only a P1 oscillation for the
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studied pressure range.

For f = 1.5fr − 2.2fr (Figs. 11.20a-d), P3 oscillations are enhanced. Compared to the P3

oscillations in cased of the uncoated bubble (Figs. 11.12e-f), P3 occurs at lower pressure thresholds.

For instance at f = 2.2fr P3 is generated at 157 kPa. This is however, higher than the pressure

threshold for P3 oscillations in case of the coated bubbles with σ0 = 0, 0.01, 0.62 & 0.072N/m.

When f = 2.8fr (Fig. 11.20e), P3 is generated through a SN at 134 kPa and later transition to P1

via another SN at 269 kPa. P5 oscillations are generated at 373 kPa through a SN and transition

to P1 at 433 kPa. P5 oscillations re-appear again for a short pressure window through the same

mechanism at 647 kPa.

When f = 3fr (Fig. 20f), P3 oscillations start at 128 kPa and stretch up to 279 kPa with a short

window of P1 oscillations within. P5 oscillations are generated at 351 and 592 kPa for two short

pressure windows. Compared to the uncoated bubble sonicated with 3fr (Fig. 11.12f), the pressure

threshold of P3 oscillations is lowered by about 276 %.

Coating with σ0 = 0.036N/m significantly reduced the frequency for P3 and P5 oscillations. Most

interestingly, the coated bubble with σ0 = 0.036N/m exhibits enhanced P3 oscillations over a very

large frequency range of fr ≤ f ≤ 3fr.

11.4.7 Investigation of the mechanism of the disappearance (standstill) and

regeneration of P2

In section 3.2 we showed that the enhancement of P2 oscillations at lower pressures can be caused

by the asymmetric variations of the effective surface tension due to buckling or rupture. Here, we

look in to the possible reasons of the disappearance of the P2 oscillations when increasing pressure.

Fig. 11.21a shows the radial oscillations as a function of the driving periods of the coated bubble in

Fig. 11.17d (R0 = 2mum and σ0 = 0.062N/m) at Pa = 400kPa. At this pressure the P2 oscillation

regime disappeared. Radial oscillations are P1, and the red circles return only one value. The

corresponding σ(R) curve, depicts a rather symmetrical variations in the buckling and rupture,

the bubble spends the same approximate time in the buckled stage as the ruptured stage. For 10

driving periods, the bubble buckles 10 times and ruptures 10 times.

As pressure increases, P2 is regenerated (Fig. 11.17d). At 650 kPa the radial oscillations vs period

curves have two maxima (Fig. 11.21c) and the red circles have 2 distinct values. σ(R) as a function
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Figure 11.19: Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2µm and σ0 = 0.36N/m as a function of
pressure when sonicated with: a)f = 0.3fr , b)f = 0.5fr , c)f = 0.8fr , d)f = 0.9fr , e)f = fr & f)f = 1.2fr .
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Figure 11.20: Bifurcation structure of the R/R0 of the C3F8 coated bubble with R0 = 2µm and σ0 = 0.36N/m as a function of
pressure when: a)f = 1.5fr , b)f = 1.8fr , c)f = 2fr , d)f = 2.4fr , e)f = 2.8fr & f)f = 3fr .
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Figure 11.21: R/R0 (left) & σ(R) (right) as function of the driving periods for a C3F8 coated bubble with R0 = 2µm with σ0 =
0.062N/m when f = 1.2fr for: a&b-Pa = 400kPa, c&d-Pa = 650kPa. (Red circles correspond to the location of R(t) at each period)
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of the driving periods (Fig. 11.21d) exhibits an asymmetrical behavior between the buckled and the

ruptured state. The bubble spends a longer time duration at the ruptured stage than the buckled

stage. As a result, the bubble buckles 5 times and ruptures 5 times within 10 driving periods. Thus

oscillations become P2 again.

11.5 Summary of the results and discussion

11.5.1 Sonication with f < fr

First the findings related to the sonications with frequencies smaller than resonance are presented.

11.5.1.1 σ0 = 0, 0.01, 0.062 and 0.072N/m

1- SuH regimes are generated at lower excitation thresholds compared to the uncoated bubbles.

The bubbles initially at the buckled or the ruptured stages exhibit SuH regime of oscillations at the

lowest pressure threshold of 1 kPa. Thus applications of coated bubbles with initial surface tension

close to 0N/m or 0.072N/m have the potential to increase the contrast in super harmonic imaging

(e.g. [94]). Due to the lower threshold of the SuH generation, the amplitude of the generated

harmonics in tissue will be smaller. Therefore, the contrast to tissue ratio may be higher.

2- The sudden increase in the bubble oscillation amplitude (SN bifurcation or the inflection point

in bifurcation diagrams) occurs at lower excitation amplitudes when compared to the uncoated

bubble and coated bubbles with linear viscoelastic behavior [56]. The SN bifurcation is more

pronounced in case of the bubbles with σ0 = 0.01N/m and σ0 = 0.062N/m. The wall velocity

stays in phase with the driving sound field for a larger pressure range. The reason for the lower

pressure threshold for the SN and lower frequencies of PDfr is the fast decrease of the resonance

frequency with increasing pressure. Overvelde et al. [68] has experimentally and numerically

shown that for coated microbubbles undergoing buckling, the nonlinear resonance behavior is

enhanced at pressures as low as 10 kPa. Helfield and Goertz [77] experimentally observed the

enhanced nonlinear resonance behavior of the lipid coated microbubbles at pressures of 13-25kPa.

The SN bifurcation can have applications in amplitude modulation techniques [95].

3- For the coated bubble with σ0 = 0N/m, PD occurs at a higher pressure threshold compared to

the uncoated bubble, and for other cases, PD occurs at lower pressure thresholds.
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4- For 0.6fr ≤ f ≤ 0.7fr and for coated bubbles with σ0 = 0.01 & 0.062N/m, P2 oscillations (with

resonant 3/2 UHs) are generated within non-destructive regimes of oscillations Rmax/R0 < 2. For

the uncoated bubble and coated bubbles with σ0 = 0 & 0.072N/m, PD most likely results in bubble

destruction. In [34, 58] we have shown that in case of uncoated bubbles PD may be concomitant

with bubble destruction when the bubble is sonicated with f ≤ fr. The stabilizing effect of the

coating with σ0 = 0.01 & 0.062N/m can enhance the non-destructive PD for the frequencies below

resonance.

5- In case of coated bubbles with σ0 = 0.01 & 0.062N/m, PDfsh can occur at frequencies as low as

0.6fr. In such cases two SN bifurcations are observed with increasing pressure. The first SN occurs

at a lower pressure threshold and transfers a P1 oscillation to a P1 oscillation of higher amplitude.

The second SN occurs at a higher pressure and transfers a P2 oscillation to a P2 oscillation of higher

amplitude. In [58] we have shown that PDfsh typically occurs at 1.5fr < f < 2fr and can lead

to oversaturation of the 1/2 order SH component of the scattered signal. The enhanced nonlinear

resonance behavior of the coating thus shifts the PDfsh to frequencies below resonance. The

occurrence of the two SNs may have potential applications in increasing the contrast in multi-pulse

amplitude modulation techniques.

11.5.1.2 Case of the coated bubble with σ0 = 0.036N/m

1- Compared to the uncoated bubble and coated bubbles with linear viscoelastic behavior (PDfr is

within 0.5fr < f < fr [56]), the frequency of PDfr is much lower (as low as 0.3fr).

2- PDfsh can occur even at f = 0.5fr. In case of the uncoated bubble PDfsh occurs at 1.5fr < f <

2fr [58].

3- For 0.5fr ≤ f ≤ 0.7fr and with increasing pressure, two SN occur; the first one transfers a

P1 oscillation regime to a higher amplitude P1 and the second one which is at a higher pressure

transfers a P1 or a P2 oscillation regime to a higher amplitude P2 regime.
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11.5.2 f ≥ fr

In this section findings of the sonications with frequencies above resonance are summarized. Such

a frequency range is typically used in SH imaging of microbubbles in contrast enhanced ultrasound

[20,68,78,96].

11.5.2.1 Cases of the coated bubbles wiht σ0 = 0, 0.01, 0.062 and 0.072N/m

1- For the coated bubbles with σ0 = 0N/m & σ0 = 0.072N/m sonicated with fr ≤ f ≤ 1.5fr and

for the ones with σ0 = 0.01N/m & σ0 = 0.062N/m sonicated with f = fr, the bifurcation structure

is similar to the case of sonication with PDfsh in case of the uncoated bubbles. P2 oscillations

undergo a SN from a P2 oscillation to a P2 oscillation of higher amplitude. The nonlinear behavior

of the coating thus reduces the PDfsh to frequencies below 1.5fr. Thus for the coated bubbles

with σ0 = 0N/m & σ0 = 0.072N/m, sonication with fr ≤ f ≤ 1.5fr may result in a stronger 1/2

order SH component of the scattered signal because of the over-saturation that takes place when

f = PDfsh.

2- For the coated bubbles with σ0 = 0N/m & σ0 = 0.072N/m that are insonated with 1.8fr ≤ f ≤

2.2fr, with increasing pressure, P2 oscillations are generated through a PD (at a pressure threshold

of 1 kPa), disappear and then are regenerated at a higher pressure as a higher amplitude P2 or

P3. The second P2 is similar to the dynamics of the uncoated bubble undergoing a SN to P2 when

f = PDfsh. The second P3 is similar to the dynamics of the uncoated bubble undergoing a SN to

P3 when f =≈ 3fr. In [73], the disappearance of SH oscillations is referred to as an ”unexpected

standstill” of SHs. This means that, in the case of a bubble able to generate a stable subharmonic

oscillation, the subharmonic emission disappears if the acoustic pressure is raised above a second

pressure threshold. The subharmonic standstill however, is a reversible [73]; that is, if the acoustic

pressure is decreased again, the bubbles start generating subharmonics one more time [73]. Thus,

disappearance is not due to the bubble destruction. Prior works on subharmonics performed on a

population of microbubbles did not report this kind of behavior because it was probably “masked”

by the overall response of the several other bubbles within the same sample volume that experience

different pressure amplitudes [73]. The standstill of subharmonic emission also was not explained

by the numerical studies of the nonlinear models of the bubble dynamics. Here, we show that the
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disappearance of the SHs is due to the symmetric buckling and rupture of the shell at moderate

pressures. At higher pressures, similar to the lower pressures the buckling and rupture of the shell

becomes asymmetric. This manifests itself in the re-generation of P2 signals. Above the second

pressure threshold, the bubble spends more time in the ruptured stage than the buckling stage.

This exposes the bare gas to water for a longer duration and thus can explain the reduced stability

of SH oscillations when they were re-generated [73].

In sensitive therapeutic applications like blood-brain barrier opening, the SH components of the

scattered pressure by microbubbles are commonly used as a signature for quantifying the nonlinear

oscillations of the bubble cloud and treatment efficacy [97,98]. Due to the strong interplay between

stable and inertial cavitation regimes, undersatning the origin and stability of P2 oscillation regimes

is crucial. Thus, the information on the generation, disappearance, amplification and stability of

the P2 oscillations that is obtained here, provides a framework for the analysis of the optimization

of SH oscillations in applications.

3- For the coated bubbles with σ0 = 0.01N/m & σ0 = 0.062N/m sonicated with f = 1.5fr, with

increasing pressure, P2 oscillations are generated through a PD and then disappear via a SN. Above

a second pressure threshold, a P3 oscillation regime occurs via a SN from a P1 regime. This is

similar to the dynamics of the uncoated bubble undergoing a SN to P3 when f ≈ 3fr. The pressure

threshold for PD is smaller than the uncoated bubbles [40] and the coated bubbles with linear

viscoelastic behavior [38].

4- For the coated bubbles with σ0 = 0.01N/m & σ0 = 0.062N/m sonicated with 1.8fr ≤ f ≤ 2fr,

with increasing pressure, P2 oscillations are generated through a PD and then are amplified via a

SN. P2 oscillations are then transfer to a P1 regime via another SN. Bubble oscillations remain P1

for the rest of the pressure range studied in this paper.

5- For the coated bubbles with σ0 = 0N/m & σ0 = 0.072n/m and for 2.8fr ≤ f ≤ 3.1fr, P3 may

occurs at very low pressure amplitudes (as low as 1 kPa). Chaos can emerge at pressures lower

than 200 kPa.

6- The lowest pressure threshold for the chaotic oscillations are for the coated bubbles with σ0 =

0.01N/m & σ0 = 0.062N/m when sonicated with 2.8fr ≤ f ≤ 3fr which is followed by the

emergence of P3 out of the chaotic window. To our best knowledge, such low pressure thresholds

for chaotic oscillations has not been observed in a bubble oscillator. The pressure threshold for P3
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is approximately 5 times smaller than the uncoated counterpart.

Here we identified several different types of SN that occur with increasing pressure in the oscil-

lations of the lipid coated bubbles. This information, can provide the fundamental framework

for the optimization of amplitude modulation techniques and SH imaging procedures. Moreover,

the enhanced P3 and higher order oscillations may find potential in mixing applications and drug

delivery.

In cases analyzed in this paper, Rmax
R0

was higher for the bubbles with a higher σ0 because of the

expansion dominated behavior of the bubble. This can be one of the reasons for the lower pressure

threshold of P2 and chaotic oscillations in case of the bubble in the ruptured state.

11.5.2.2 Case of the coated bubble with σ0 = 0.036N/m

1- For 1.5fr ≤ f ≤ 3fr with increasing pressure a P3 occurs via a SN through a P1 oscillation

regime. The pressure threshold for P3 is about half of the uncoated counterpart. P3 disappears via

a SN. A second or 3rd SN may occur with pressure increase that can lead to the regeneration of

P3 or the generation of P5 or P7 oscillations. Due to the wide range of the pressure and frequency

of P3 behavior for the bubbles with σ0 = 0.036N/m, engineering of the coatings with such initial

surface tensions may find potential in higher order SH imaging with potential higher resolution

and contrast. In (Chapter 10) [99] we have shown that the 2/3 or 3/4 order SHs are stronger than

1/2 order SHs and due to their close proximity to the transducer central frequency they may be

detected with superior sensitivity.

11.6 Conclusion and future work

In this work, the bifurcation structure of the lipid coated bubbles undergoing buckling and rupture

was studied extensively. Our results further confirmed that the rapid variation of the effective

surface tension and buckling and rupture of the coating enhances the generation of nonlinear

behavior including higher order SHs, SuHs and chaos. We showed for the first time that P2 and

P3 can occur at pressures as low as 1 kPa (≈ 1% of the ambient pressure). Existence of chaos was

confirmed at pressures as low as 10 kPa. The closer the initial surface tension of the bubble to the
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buckling stage or the ruptured stage, the lower the pressure threshold for the nonlinear behavior.

We showed that rapid variations of the surface tension on the bubble may not be enough for

enhanced non-linearity. In case of asymmetrical variations of the surface tension between buckling

and rupture, nonlinear behavior is enhanced. However, symmetrical behavior of the effective

surface tension may suppress the non-linearity.

In this paper and for simplicity we only analyzed the radial oscillations of the bubble. Future, work

can be extended by analyzing the scattered pressure of the bubbles to find the regions of SH power

enhancement. Bubble-bubble interaction should also be considered as in applications bubbles exist

in poly-disperse clouds. We have shown in [100] that the bubble cluster may exhibit collective

behavior dominated by the response of the larger bubbles. Future studies need to look into the

potential collective behavior of the lipid coated bubbles at lower excitation pressure amplitudes.
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[61] Chitnis, P.V., Lee, P., Mamou, J., Allen, J.S., Böhmer, M. and Ketterling, J.A., 2011. Rupture threshold

characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure.

Journal of applied physics, 109(8), p.084906.

[62] Marmottant, P., Van Der Meer, S., Emmer, M., Versluis, M., De Jong, N., Hilgenfeldt, S. and Lohse, D.,

2005. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture.

The Journal of the Acoustical Society of America, 118(6), pp.3499-3505.

[63] Versluis, M., 2010, December. Nonlinear behavior of ultrasound contrast agent microbubbles and why

shell buckling matters. In Proceedings of 20th International Congress on Acoustics, Sydney, Australia.

458



[64] Frinking, P.J., Gaud, E., Brochot, J. and Arditi, M., 2010. Subharmonic scattering of phospholipid-shell

microbubbles at low acoustic pressure amplitudes. IEEE transactions on ultrasonics, ferroelectrics, and

frequency control, 57(8), pp.1762-1771.

[65] Prosperetti, A., 2013. A general derivation of the subharmonic threshold for non-linear bubble

oscillations. The Journal of the Acoustical Society of America, 133(6), pp.3719-3726.

[66] Sijl, J., Dollet, B., Overvelde, M., Garbin, V., Rozendal, T., de Jong, N., Lohse, D. and Versluis, M., 2010.

Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles. The Journal

of the Acoustical Society of America, 128(5), pp.3239-3252.

[67] De Jong, N., Emmer, M., Chin, C.T., Bouakaz, A., Mastik, F., Lohse, D. and Versluis, M., 2007.

“Compression-only” behavior of phospholipid-coated contrast bubbles. Ultrasound in medicine &

biology, 33(4), pp.653-656.

[68] Overvelde, M., Garbin, V., Sijl, J., Dollet, B., De Jong, N., Lohse, D. and Versluis, M., 2010.

Nonlinear shell behavior of phospholipid-coated microbubbles. Ultrasound in medicine & biology,

36(12), pp.2080-2092.

[69] Luan, Y., Faez, T., Gelderblom, E., Skachkov, I., Geers, B., Lentacker, I., van der Steen, T., Versluis, M.

and de Jong, N., 2012. Acoustical properties of individual liposome-loaded microbubbles. Ultrasound

in medicine & biology, 38(12), pp.2174-2185.

[70] De Jong, N., Emmer, M., Van Wamel, A. and Versluis, M., 2009. Ultrasonic characterization of

ultrasound contrast agents. Medical & biological engineering & computing, 47(8), pp.861-873.

[71] Shekhar, H., Awuor, I., Thomas, K., Rychak, J.J. and Doyley, M.M., 2014. The delayed onset of

subharmonic and ultraharmonic emissions from a phospholipid-shelled microbubble contrast agent.

Ultrasound in medicine & biology, 40(4), pp.727-738.

[72] Emmer, M., Van Wamel, A., Goertz, D.E. and De Jong, N., 2007. The onset of microbubble vibration.

Ultrasound in medicine & biology, 33(6), pp.941-949.

[73] Biagi, E., Breschi, L., Vannacci, E. and Masotti, L., 2007. Stable and transient subharmonic emissions

from isolated contrast agent microbubbles. IEEE transactions on ultrasonics, ferroelectrics, and

frequency control, 54(3), pp.480-497.

459



[74] P. M. Shankar, P. D. Krishna, and V. L. Newhouse, “Subharmonic backscattering from ultrasound

contrast agents,” J. Acoust. Soc. Am., vol. 106, no. 4, pp. 2101–2110, 1999.

[75] E. Kimmel, B. Krasovitski, A. Hoogi, D. Razansky, and D. Adam, “Subharmonic response of

encapsulated microbubbles: Conditions for existence and amplification,” Ultrasound Med. Biol., vol.

33, no. 11, pp. 1767–1776, 2007.

[76] O. Lotsberg, J. M. Hovem, and B. Aksum, “Experimental observation of subharmonic oscillations in

Infoson bubbles,” J. Acoust. Soc. Am., vol. 99, no. 3, pp. 1366–1369, 1996

[77] Helfield, B.L. and Goertz, D.E., 2013. Nonlinear resonance behavior and linear shell estimates for

DefinityTM and MicroMarkerTM assessed with acoustic microbubble spectroscopy. The Journal of the

Acoustical Society of America, 133(2), pp.1158-1168.

[78] Helfield, B.L., Cherin, E., Foster, F.S. and Goertz, D.E., 2012. Investigating the subharmonic response

of individual phospholipid encapsulated microbubbles at high frequencies: A comparative study of five

agents. Ultrasound in medicine & biology, 38(5), pp.846-863.

[79] Keller, J.B. & Miksis M., Bubble oscillations of large amplitude, ., J. Acoust. Soc. Am. 68 (1980)

628–633.

[80] Hoff, L., Sontum, P.C. and Hovem, J.M., 2000. Oscillations of polymeric microbubbles: Effect of the

encapsulating shell. The Journal of the Acoustical Society of America, 107(4), pp.2272-2280.

[81] Morgan, K.E., Allen, J.S., Dayton, P.A., Chomas, J.E., Klibaov, A.L. and Ferrara, K.W., 2000.

Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase

and bubble size. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 47(6),

pp.1494-1509.

[82] Segers, T., Gaud, E., Versluis, M. and Frinking, P., 2018. High-precision acoustic measurements of

the nonlinear dilatational elasticity of phospholipid coated monodisperse microbubbles. Soft matter,

14(47), pp.9550-9561.

[83] Segers, T., de Jong, N. and Versluis, M., 2016. Uniform scattering and attenuation of acoustically

sorted ultrasound contrast agents: Modeling and experiments. The Journal of the Acoustical Society

of America, 140(4), pp.2506-2517.

460



[84] Helfield, B.L., Leung, B.Y., Huo, X. and Goertz, D.E., 2014. Scaling of the viscoelastic shell properties

of phospholipid encapsulated microbubbles with ultrasound frequency. Ultrasonics, 54(6), pp.1419-

1424.

[85] Sojahrood, A.J., Li, Q., Haghi, H., Karshafian, R., Porter, T.M. and Kolios, M.C., 2018. Pressure

dependence of the ultrasound attenuation and speed in bubbly media: Theory and experiment. arXiv

preprint arXiv:1811.07788.

[86] Shekhar, H., Smith, N.J., Raymond, J.L. and Holland, C.K., 2018. Effect of temperature on the size

distribution, shell properties, and stability of Definity R©. Ultrasound in medicine & biology, 44(2),

pp.434-446.

[87] Kopechek, J.A., Haworth, K.J., Raymond, J.L., Douglas Mast, T., Perrin Jr, S.R., Klegerman, M.E.,

Huang, S., Porter, T.M., McPherson, D.D. and Holland, C.K., 2011. Acoustic characterization of

echogenic liposomes: Frequency-dependent attenuation and backscatter. The Journal of the Acoustical

Society of America, 130(5), pp.3472-3481.

[88] Sojahrood, A.J., Haghi, H., Li, Q., Porter, T.M., Karshafian, R. and Kolios, M.C., 2020. Nonlinear power

loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating

shell damping at various excitation pressures. Ultrasonics sonochemistry, 66, p.105070.

[89] Toegel, Ruediger, Bruno Gompf, Rainer Pecha, and Detlef Lohse. ”Does water vapor prevent upscaling

sonoluminescence?.” Physical review letters 85, no. 15 (2000): 3165.

[90] Prosperetti, A., Crum, L.A. and Commander, K.W., 1988. Nonlinear bubble dynamics. The Journal of

the Acoustical Society of America, 83(2), pp.502-514.

[91] Leighton, T., 2012. The acoustic bubble. Academic press.

[92] Flynn, H.G., Church, C.C.: Transient pulsations of small gas bubbles in water. J. Acoust. Soc. Am. 84,

985–998 (1988)

[93] Perez, C., 2015. Characterization of Ultrasound Pressure Fields, Microbubbles and Their Interaction

(Doctoral dissertation).

461



[94] Cherin, E., Yin, J., Forbrich, A., White, C., Dayton, P.A., Foster, F.S. and Démoré, C.E., 2019. In
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Chapter 12

Discussion and Conclusions

12.1 Major contributions

In this thesis, the nonlinear dynamics of the uncoated and coated bubbles with linear visco-elasticity

has been extensively studied and classified using the methods of nonlinear dynamics and chaos.

Next, the complex influence of the coating undergoing buckling and rupture is investigated. Using

the information of the classified dynamics of the uncoated bubbles, the complex influence of the

coating on the bubble dynamics is analyzed and classified numerically and experimentally. The

effects of the nonlinear bubble pulsations on the attenuation and sound speed of the medium are

thoroughly investigated. A new nonlinear model for calculating the attenuation and sound speed of

bubbly media is developed and verified experimentally and numerically. Using the nonlinear model

and the information of the classified nonlinear behavior of the bubbles, the frequency and pressure

dependent attenuation and sound speed of the bubbly media are calculated and classified as a

function of pressure and frequency. The major contributions of this thesis to the field of ultrasound

contrast agents and bubble dynamics are as follows:

1- In Chapter 2, the analysis of the bifurcation structure of the coated bubbles with linear vis-

coelastic behavior revealed the possibility of maximizing the non-destructive scattered pressure by

bubbles when insonating them with their pressure dependent resonance frequency.

2- In Chapter 3 we introduced a comprehensive bifurcation method to analyze the nonlinear

dynamics of the acoustically excited bubbles. Using this method, in addition to the higher periods

(higher order subharmonics (SHs)) and chaotic oscillations, one can differentiate ultraharmonics

(UHs) from SHs. Moreover, superharmonic (SuH) regimes of the oscillations are also revealed
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within the same graph. Additionally, this method can reveal information about the phase of the

wall velocity with respect to the driving sound field which can be used for applications in imaging

and the identification of the nonlinear resonances of the system.

3- In Chapter 4, we investigate two main period 2 (P2) oscillation regimes (1/2 order SHs)

of the uncoated bubble oscillator. We show that for uncoated bubbles sonicated with f = fr,

P2 oscillations may be concomitant with bubble destruction. However, sonication with the SH

resonance frequency fsh = 2fr results in the generation of SHs at very low oscillation amplitudes

and very gentle wall velocities leading to non-destructive stable cavitation.

4- It is known that SHs grow as ultrasound pressure increases and get quickly saturated. In

Chapter 5, we show that for an uncoated bubble, the SH resonance frequency is pressure dependent

(PDfsh) and decreases with increasing pressure. Sonication with 1.5fr < PDfsh < 1.7fr results

in the enhancement and over-saturation of the upper limit of the SH power for non-destructive

regime of oscillations.

5- In Chapter 6, we provide critical corrections to the formulations of the nonlinear power dissi-

pation through thermal, liquid viscosity and radiation damping for the oscillations of the uncoated

bubbles. We then show the nonlinear behavior of the dissipated powers as a function of pressure

and frequency for the first time. We show that linear approximations can loose accuracy even at

pressures as low as 20 kPa.

6- In Chapter 7, we introduced a simple model for coated bubbles with linear visco-elasticity that

accounts for the radiation effects. The nonlinear terms for power dissipation through damping

due to the viscosity of the coating (Cd), liquid viscosity (Ld), thermal damping (Td) and radiation

damping (Rd) were derived. Through analyzing linear thermal models and full thermal models we

show that the commonly used linear thermal model losses accuracy at pressures as low as 20 kPa

and thus studies related to uncoated bubbles must apply the full thermal models. However, in case

of the coated bubbles enclosing C3F8 type gases that are commonly used as contrast agents, the

thermal effects can be ignored. We show that Rd grows faster than the other damping mechanisms

and can exceed Cd, Ld and Td. The faster growth of Rd can increase the scattering to dissipation

ratio (STDR) for some frequency and pressure ranges. This has several potential applications in

contrast enhanced imaging ultrasound (CEUS), enhanced heating in focused ultrasound applica-

tions (FUS), drug delivery and sonochemistry.
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7- In Chapter 8, using the method that is developed in Chapter 3 and extending the analysis of the

Chapters 2,4 and 5 we classified the dynamics of the uncoated bubbles and coated bubbles with

linear viscoelasticity. Using the derived nonlinear equations for power dissipation in Chapters 5

and 6, the power dissipations in the nonlinear regime of the oscillations are classified. Exposure

parameter domains where Rd is maximized as well as domains where Td can be maximized (or

minimized) are identified. Results provide the fundamental framework for the optimization of the

use of coated and uncoated bubbles in CEUS, focused ultrasound (FUS) applications, drug delivery

and soncohemistry.

8- In Chapter 9, we present a simple nonlinear model for the calculation of the attenuation and

sound speed changes in bubbly media. Unlike current models, there are no linear approximations

in this model. The accuracy of the model is verified against linear and semi-linear models and

experiments. Through controlled experiments on mondisperse bubble populations, the dependence

of the sound speed on the excitation pressure amplitude is identified experimentally and verified

numerically. Using the information of Chapter 7, we have calculated and classified the pressure

dependent attenuation and sound speed changes of the bubbly media. Using this classification

scheme, we examined the feasibility of focusing ultrasound through dense bubbly clouds with

minimal loss, with important applications to CEUS, FUS, drug delivery and sonochemistry. The

model derived here, has potential effects for accurate characterization of the complex rheological

properties of the encapsulating shell in coated bubbles. This work won the 2nd best paper award

in the 171st Meeting of the Acoustical Society of America in Salt Lake City, Utah in 2016 [1].

9- In Chapter 10, we show experimentally that in addition to the previously identified P2 oscil-

lations, P3, P4-1 and P4-2 oscillations can also be generated for lipid coated bubbles at very low

excitation amplitudes. There is strong evidence that the mechanism for the enhancement is due to

the buckling or rupture of the shell that results in asymmetrical variations of the effective surface

tension as a function of time. The effective surface tension on the bubble undergoes rapid changes

in the neighborhood of the buckling or rupture radii. These new identified regimes have potential

advantages in diagnostic and therapeutic ultrasound. This work won the best paper award in

the joint congress of the 21st International Congress on Acoustics, 165th Meeting of the Acoustical

Society of America and the 52nd meeting of the Canadian Acoustical Society in Montreal, Canada

in 2013 [2].
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10- In Chapter 11, the bifurcation structure of the coated bubbles are investigated. Using the

information of chapters 2,4,5 and 7 we were able to classify the complex effects of the coating on

the nonlinear behavior of the bubble. Here, we show that buckling and rupture may be needed to

induce asymmetric behavior in the effective surface tension that enhances non-linearity. In the case

of the symmetric variations in the effective surface tension, buckling and rupture may suppress the

nonlinear behavior. This could be one of the physical reasons behind the generation, disappearance

and regeneration of SH emissions in the oscillations of coated bubbles with increasing pressure. We

show that higher order SuHs, P2 and P3 can be generated at pressures as low as 1 kPa. Such low

pressure thresholds for nonlinear behavior have not been observed previously in a bubble oscillator.

Results of this work can be used as a fundamental framework for the optimization of the CEUS,

FUS, drug delivery and treatment monitoring applications of coated bubbles.

12.2 Detailed Contributions

12.2.1 Pressure dependent resonance

In most UCA applications, resonant UCA oscillations are of fundamental importance as they result

in the highest energy transfer from the ultrasonic field to the UCAs [3] and thus they can generate a

significant backscattered signal or wall velocities. Previous studies for uncoated and coated bubbles

have shown a shift in the UCA resonance with increasing pressure [4, 5, 6, 7, 8], however, despite

the well-known shift in the resonant frequency, the consequences of this shift in the UCA resonant

frequency on the dynamical behavior of the UCAs has not been examined thoroughly. Maximization

of the scattered pressure by resonant bubbles is of great importance in the stable cavitation and

many biomedical applications.

In Chapter 2 we studied the resonance frequency (fr) as a function of the pressure for different size

coated bubbles with linear viscoelasiticity. The bifurcation structure of the oscillations of the UCAs

was studied as a function of the driving pressure for excitation frequencies that were determined

using the UCAs pressure dependent resonances (PDfr). It was shown that when insonated with

the PDfr the radial oscillations of the bubble undergo a saddle-node (SN) bifurcation to radial

oscillations of higher amplitude. Consequently the scattered pressure from UCAs undergoes a

rapid increase. We show that using the optimum PDfr as the insonation frequency, the maximum
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possible non-destructive (ND) scattered pressure (Psc) can be enhanced up to 9 fold. In Chapter

8 and 11, we extended the analysis of the PDfr regime of oscillations to uncoated bubbles and

lipid coated bubbles (undergoing buckling and rupture) respectively. It was shown that due to the

reduced viscous damping of the uncoated bubbles, applications of the PDfr for nondestructive

scattered pressure (NDPsc) are limited to frequencies close to fr (e.g. f > 0.8fr for bubbles

with 1µm < R0). In case of the lipid coated bubbles and due to the rapid changes of the fr with

increasing pressure, the SN occurs at pressures significantly smaller than the uncoated and coated

bubbles with linear vsicoelastic behavior. This is due to the rapid changes of the fr with increasing

pressure (e.g. f10kPa = 0.5f1kPa) for the case of the lipid coated bubbles.

The sudden increase in the radial oscillations of the UCA at the SN pressure may provide advantages

to current diagnostic and therapeutic applications of the UCA. One of the diagnostic ultrasound ap-

plications that can benefit from this phenomenon is the amplitude modulation (AM) UCA imaging

technique [9, 10, 11]. The nonlinearity of the UCA system can be enhanced by choosing the first

pressure slightly below the SN pressure and the second pressure above the SN. In case of the lipid

coated bubbles, the bubble may exhibit two SNs with increasing pressure. The two SNs can be

further exploited in AM techniques that use multiple pulses.

Another benefit may be in the case of imaging a region of interest (ROI) deep within the body.

Because the UCAs are distributed within all the vessels among the pre-target tissue layers, they may

shield the signals along the beam path and from the target tissue and the UCAs in the ROI. This

tends to be more problematic in cases of deeper targets. This is because the signal encounters more

UCAs on its path to the target and back, therefore the signal significantly loses its strength. The

ultrasonic beams become attenuated by the superficial pre-focal tissue, which causes the loss of the

strength of the signal from the UCAs at the target, thus limits the visualization of the tissue layers

at deeper locations [12,13]. The accuracy of tissue perfusion measurements are largely affected by

this shadowing effect [12,13]. To allow accurate quantification, removal of the shadowing artifact

is crucial. Near resonance, the attenuation is higher because of increased scattering and energy

absorption by the UCAs. This is was shown in Chapter 9 where we showed that near the linear

resonance frequency and at lower pressures (close to the transducer surface) the attenuation is

maximum. The imaging procedure can be optimized by using focused transducers that produce

the pressures greater than the SN pressure in the ROI (focal region) and less than the SN pressure
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at the superficial tissue. This will decrease the pre-focal shadowing effect (because pre-focal UCAs

will be non-resonant) and at the same time increases the scattered pressure at the ROI (the UCAs at

the ROI are resonant because the focal pressure is more than the SN pressure) which can ultimately

improve the SNR and CTR. This was shown in Chapter 9 by analyzing the attenuation of the bubbles

sonicated with their PDfr both through numerical simulations and experimental observations. It

was shown that compared to fr, the pre-focal attenuation is smaller for the PDfr. Above the

SN pressure, attenuation abruptly increases. Thus application of the PDfr can limit the pre-focal

attenuation and increase the NDPsc. Using finite element simulations of the propagation of the

focused waves in a bubbly media, we showed that the altered focus due to strong dissipation of

dense bubble clouds can be reconstructed by optimizing the insonation frequency to PDfr. This

phenomenon was experimentally observed in [14].

One of the therapeutic applications that can benefit from this nonlinear behavior of UCAs is mi-

crobubble enhanced drug delivery. In drug delivery, UCA oscillations are used to enhance the

permeability of the cell to the drug [15]. These applications need higher concentrations of UCAs,

and pre-focal regions will attenuate the ultrasonic beams. Pre-focal UCAs may have undesirable

effects on the healthy (non-targeted) tissue while also distorting the focus at the target tissue [16].

Because of the steep pressure gradient of the highly focused therapy transducers, pressures above

the SN pressure can be generated at the target while the pressure in the surrounding tissue can

be kept below the SN pressure. This way, the microbubbles in the non-focal surrounding tissue

will oscillate below resonance and therefore the pre-focal scattering effects and attenuation are

minimized. In addition, the microbubble activity will be enhanced in the focal region, due to

enhanced oscillations in the pressure dependent resonance regime. This can lead to a more effective

and precise treatment and enhanced safety.

12.2.2 Superharmonic regime of oscillations

In Chapter 3, we showed that the conventional method of constructing the bifurcation diagrams

misses the identification of the intricate details of the bubble oscillations like superharmoncis

(SuH) and can not distinguish between ultraharmonics (UHs) and subharmonics (SHs). We have

introduced a simple alternative method to generate the bifurcation diagrams; the method extracts
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the peaks of the oscillations and plots them as a function of the given control parameter. When this

method is applied alongside the conventional method one can reveal hidden details of the bubble

oscillations and identify the parameter ranges where SuH, UH or SH oscillations occur. The method

was later used in chapter 8, 9, 10 and 11 in the analysis of the dynamics of the coated and uncoated

bubbles.

When the bubbles are sonicated with f < 0.5fr, SuHs are generated more efficiently. In the case

of the coated bubbles undergoing buckling and rupture, SuHs can be generated at pressures as low

as 1 kPa. The lower pressure threshold for the generation of SuHs, results in weaker nonlinear

propagation of the wave through the medium. Thus, this application of coated bubbles with initial

surface tension close to the ruptured or buckled state may have the potential to increase the CTR

in SuH imaging techniques [17]. It was shown in Chapter 10 and 11 that coated bubbles can emit

SuHs of higher order (6th order) even at very low excitation pressures (e.g. 5 kPa).

In Chapter 9, we showed that when the bubbly medium is sonicated with SuHfr (3rd or 4th

order) of the bubble, and for pressures below the generation of SuHs, the attenuation of the

medium is the lowest. The higher the order of the SuHs, the smaller the attenuation. As soon

as the pressure increases above the threshold of the generation of the SuHs, the attenuation of the

medium increases abruptly and becomes orders of magnitude stronger than the case of sonication

with fr or PDfr. The higher is the order of SuHs, the larger is the attenuation increase. This has

potential applications in reducing the pressure needed for UCA mediated tissue heating in focused

ultrasound. Through analysis of the classified attenuation diagrams in Chapter 9, we show that the

pressure needed for the same therapeutic efficacy can be reduced by 14-15 times. Through FEM

simulations of the propagation of the focused waves through a bubbly medium, we showed that

the focus can be reconstructed more efficiently when insonation frequency is chosen as the SuH

resonance frequency.

In Chapter 3, we show that as soon as the pressure is increased above the threshold for the

generation of the SuHs, the SuH components of the Psc undergo a rapid increase. For optimum

frequencies the SuH oscillation regime can also undergo a SN bifurcation to SuH oscillations of

higher amplitude. AM techniques can take advantage of this strong pressure dependence of the

generation of SuHs or the pressure at which SuH SN occurs.
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12.2.3 1/2 order SH regime of oscillations

Using the method developed in Chapter 3, we studied the bifurcation structure of the SH resonant

uncoated and coated bubbles in Chapters 4,5,7 and 11. We showed that in case of uncoated bubbles

sonicated by their fr, period doubling (PD) only occurs when the bubble expansion ratio is very

close to 2 or higher than 2. The expansion ratio of 2 is regarded as the lowest threshold for bubble

destruction [18]. Thus, uncoated bubbles may not be able to produce stable 1/2 order SHs when

sonicated with fr. When sonicated with f = 2fr, however, PD occurs at very small expansion ratios

and gentler wall velocities. P2 oscillations extend over a larger pressure domain. For bubbles with

initial radii bigger than 0.3 µm, the pressure threshold for PD is smaller when f = 2fr. In case of

sonication with f = fr wall velocity and Psc undergo a rapid decrease when PD occurs; however,

when f = 2fr, PD is concomitant with a fast increase in the wall velocity and the Psc. In therapeutic

applications of the bubbles, the occurrence of 1/2 order SHs is used an indicator for the efficacy

of the treatments (e.g. [19, 20]). In case of f = fr, however, due to the decrease in Psc and wall

velocity amplitude, occurrence of SHs may not result in increased treatment efficacy.

In case of coated bubbles (Chapter 7 and 11), however, due to the additional damping of the

coating, and at f = fr, PD can occur at expansion ratios below 2. Thus, coated bubbles may

produce nondestructive SHs when they are sonicated with fr.

In case of the uncoated bubbles, with increasing pressure, the SH resonance frequency decreases.

The pressure dependent SH resonance frequency (PDfsh), however, can be used to enhance the

SH component of the Psc. It is known that when the bubble is sonicated with its fsh = 2fr, SHs

are generated above a pressure threshold, they quickly grow with increasing pressure and saturate

(e.g. [21]). Thus, there is an upper limit of SH strength that can not be enhanced by increasing

the incident ultrasound pressure. To the contrary, we showed in Chapters 4 and 5 that pressure

increase can lead to the generation of chaos which leads to a significant drop in the SH amplitude.

In Chapter 5, we showed that when the bubble is sonicated with its PDfsh, increasing pressure

results in a SN bifurcation occurrence and transition of a P1 or P2 oscillation regime to a higher

amplitude P2 oscillation regime. This is concomitant with an abrupt increase in the SH amplitude

of the Psh and over-saturation of the signal above the perceived upper limit of the SH strength. For

the uncoated bubbles and for the ND regime of oscillations, the frequency at which the maximum
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SH amplitude is generated is at 1.5fr < f < 1.6fr. In case of lipid coated bubbles however, we

showed in Chapter 11, that the PDfsh may occur at frequencies as low as 0.5fr. Such a decrease

in PDfsh is because of the buckling and/or rupture of the shell.

In case of the lipid coated bubbles, SH oscillations can be generated at pressures as low as 1 kPa.

In this study the minimum pressure threshold was observed for 1.8fr < f < 2.2fr. The closer the

initial stage of the coating to the buckled or ruptured states, the lower the pressure threshold for

the P2 oscillations. Moreover, we numerically observed the unexpected disappearance of the SH

emissions by bubbles that were reported experimentally in [22, 23]. In line with the experimental

observations, our numerical results predicted the regeneration of SHs above a second pressure

threshold. The physical reason for the disappearance of the SHs may be due to the symmetric

buckling and rupture of the shell at moderate excitation pressures. Increasing the pressure above

the second pressure threshold introduces the asymmetry that is caused at lower pressures. The

bubble spends more time in the ruptured stage than the buckled stage (or vice versa) leading to

the enhancement of the P2 oscillations.

The fundamental framework provided here, is of great importance for the understanding of the

stable cavitation regimes used in the treatment monitoring especially in sensitive cases like the

use of bubbles to treat the brain [19, 20]. Moreover, the unique P2 dynamics of the lipid coated

bubbles that are revealed here can be used to better understand and optimize the SH emissions of

the bubble in nonlinear CEUS.

12.2.4 Higher order SH regimes

In our previous work [24,25], we have shown that higher order SHs (P3, P4, P5 ..) are generated

when the UCAs (with linear viscoelastic behavior of the coating) are sonicated with frequencies

that are around multiples of their fr (e.g. 3fr). P3 or P4 need higher pressure thresholds to

be generated. In [25], we presented results where we sonicated dilute solutions of Artenga R©

bubbles (coating is made of polymer and surfactants), and observed the generations of P3, P4 and

P5 at very high excitation amplitudes (>1.5 MPa at 25 MHz). Here, we show both numerically

and experimentally that higher order SHs can be generated at very low excitation amplitudes. We

have shown experimentally that P3 and P4 can be generated in the oscillations of the Definity R©

bubbles at pressures as low as 250 kPa and at 25 MHz. Analysis of the bifurcation structure of
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the Definity R© showed that, consistent with the experimental results, P3 and P4 can be generated

at very low acoustic pressures (e.g. 250 kPa) when the sonication frequency is 25 MHz. These

experimental results were in good agreement with the simulations results. In Chapter 11 we show

that P3 can also be generated at pressures as low as 1 kPa. Buckling or rupture of the shell is

responsible for the enhanced non-linearity at such low excitation amplitudes. P3 oscillations show

the similar dynamic of the P2 oscillations in case of the lipid coated bubbles. They are generated

at very low acoustic pressures, they disappear with increasing pressure and they are regenerated

above a second pressure threshold. P3 oscillations can be generated at frequencies as low as fr and

they exist over a much larger frequency range when compared to uncoated bubbles (e.g. for a lipid

coated bubble with initial surface tension of 0.036 N/m, P3 exists in fr < f < 3fr).

In Chapter 8, we showed that the scattered pressure amplitude is maximum when f = 3fr and

when P3 is developed. In Chapter 10, we showed that higher order SHs (2/3 order or 3/4 order)

can be 5-10 dB stronger than the 1/2 order SHs. They are also closer to the transducer center

frequency, thus the transducer has higher sensitivity in detecting them. The higher ordre SHs have

the potential to be used in CEUS to improve CTR, signal to noise ratio and resolution. Moreover,

for a fixed frequency, due to larger wall velocities of the higher order SHs and their stability, they

have potential to enhance the nondestructive shear stresses on the nearby cells. Therefore, they

may provide long lasting ND enhanced drug delivery. Mixing or surface cleaning are examples of

other non-biomedical potential applications.

12.2.5 Nonlinear energy dissipation in the oscillations of bubbles

Current models [26] for calculating the nonlinear energy dissipation during the oscillations of

acoustically excited bubbles generate non-physical values for the radiation damping (Rd) term for

some frequency and pressure regions that include near resonance oscillations. Moreover, the ratio

of the dissipated powers significantly deviate from the values that are calculated by the linear model

at low amplitude oscillations (acoustic excitation pressure of PA = 1kPa and expansion ratio of

<u 1.01). In high amplitude oscillation regimes (Pa ≥ 20kPa), the dissipated power due to Rd

significantly deviates from the dissipated power as calculated by the widely accepted approach

that uses the scattered power by the bubbles. In Chapter 6, we provided critical corrections for

the calculation of the power dissipation during the propagation of ultrasonic waves through a
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bubbly medium. The accuracy of the proposed models were verified against the linear analytical

expressions for low amplitude oscillation regimes and against acoustic power theory for higher

amplitude oscillation regimes. The correct models can be used to study the dissipation mechanisms

related to thermal damping, radiation loss and damping due to liquid viscosity. We show that

damping due to thermal effects, liquid viscosity and radiation heavily depend on the excitation

pressure and that the linear model estimations are not valid even at pressures as low as 20 kPa.

In Chapter 7, we introduced a simple model for the coated bubbles that accounts for radiation

effects up to the first order of Mach number. We then used the corrected approach to derive the

pressure dependent dissipation terms related to Rd, Td, Cd and Ld with no linear simplifications.

Despite the importance of the radiation effects, the majority of the previous models for coated

bubble oscillations neglected or simplified radiation effects. We showed that the often neglected

radiation effect is very important and can not be neglected even at low acoustic pressures (e.g.

50 kPa). Radiation damping becomes more important for certain exposure parameters. Even at

frequencies below resonance (where according to linear theory Td is the major dissipation effect),

dissipation due to radiation can become the major dissipation mechanism as pressure increases.

For the uncoated bubbles, thermal effects are very important and can not be neglected. Moreover

thermal effects must be applied using the full thermal models. The linear thermal model [27, 28]

which is typically used in studies related to bubble dynamics, loses accuracy even at pressures

as low as 20 kPa. In case of coated bubbles that encapsulate gas cores similar to C3F8, thermal

effects are not important and can be neglected even at higher pressures. We also showed that

scattering to damping ratio (STDR) is pressure dependent. At specific frequencies and pressures,

the dissipation due to radiation (scattering) becomes higher than the other dissipation mechanisms

and the STDR is maximized. The basic equations and the results in Chapters 6 and 7 can be used to

optimize the exposure parameters in applications that seek to enhance STDR and for more accurate

characterization of the bubbly media and coated bubbles.

In Chapter 8, we used the equations derived in Chapter 6 and 7 to classify the dissipation regimes

in the nonlinear oscillations of the coated and uncoated bubbles. The nonlinear oscillations of the

bubbles and the related pressure dependent dissipation mechanisms were classified over a wide

frequency range of 0.2fr ≤ f ≤ 3fr. We showed that by choosing the suitable frequency and

pressure, a particular bubble related effect can be enhanced (e.g. wall velocity, Psc or Rd). These
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results were then related to possible applications (e.g. drug delivery) that could benefit from these

parameters.

12.2.6 Pressure dependent attenuation and sound speed of the bubbly media

Pressure dependent changes of the attenuation and sound speed in bubbly media is one of the open

problems in acoustics [29]. The bubble activity in the target region heavily depends on the acoustic

pressure at the target. Thus, understating the bubble related phenomenon as well as optimizing

the applications related to bubble oscillations requires a detailed understanding of the pressure

distribution in the bubbly media. However, most of the studies employ linear models [27, 28], or

semi linear models [30, 31, 32, 33, 34] to study the attenuation and sound speed changes of the

bubbly media.

In Chapter 9, we presented a simple nonlinear model for the calculation of the pressure-dependent

attenuation and sound speed in a bubbly medium. The model is free from any linearization in the

bubble dynamics. The accuracy of the model (in cases of the uncoated bubbles, coated bubbles and

bubbles immersed in tissue or sediments) was verified by comparing it to the linear model [27,28]

at low pressures and the semilinear Lousinard approach [30] at higher-pressure amplitudes.

The pressure dependent relationship between the sound speed and pressure was established the-

oretically and verified experimentally. The predictions of the model were in good agreement with

the experimental observations. Unlike current sound speed models, the model introduced in this

paper does not have a dP
dV term (e.g. [35]); thus it does not encounter difficulties addressing

the nonlinear oscillations. We showed that, to accurately model the changes of the attenuation

and sound propagation in a bubbly medium, we need to take into account how the sound speed

changes with pressure and frequency. Otherwise, the prediction accuracy decreases, especially

for ultrasound exposure parameter ranges where the sound speed undergoes larger deviations

compared to linear predictions (e.g. at the SN pressure when bubble is sonicated with PDfr).

Another advantage of the model is that it uses as input only the radial oscillations of the bubbles.

There is no need to calculate the energy loss terms, and thus our approach is simpler and faster.

Using the information in Chapter 8, we have classified the pressure dependent regimes of attenua-

tion and sound speed over a wide frequency range (0.3fr ≤ f ≤ 3fr). The classified regimes are of

fundamental importance in choosing the exposure parameters in bubble related applications. This
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was shown through FEM simulations of the propagation of the focused ultrasonic waves through

bubbly media.

12.3 Limitations of this study

In the models that were used for bubble oscillations non-spherical bubble oscillations were ne-

glected. Non-spherical bubble oscillations may change the bubble behavior. Holt et al. [36]

investigated the subharmonic behavior of larger bubbles (≈ 100 − 200µm in size) and observed

the shape oscillations concomitant with subharmonic oscillations. They showed that, since the

frequency of the first shape oscillation is 1/2 of the driving frequency, its appearance could be

phenomenologically mistaken for a simple period-doubling of the radial mode. At higher pres-

sure amplitudes, the oscillations were shown to be very complex, with many subharmonic com-

ponents that are thought to result from nonlinear volume resonances and shape oscillations of

undetermined mode [36]. Recently Klapcsik and Hegedus [37] through GPU accelerated large

parameter investigations and 2 dimensional bifurcation diagrams, have studied the dependence of

the active cavitation threshold on the shape instability of the bubble. Shape instability can affect

the subharmonic threshold and nonlinear behavior of bubbles. More accurate predictions of the

oscillations requires the incorporation of the shape instability during bubble oscillations. Versluis

et al. [38] through using high speed optical observations were able to identify shape oscillations

of mode n= 2 to 6 in the behavior of single air bubbles with radii between 10µm and 45 µm.

Their study [38] concluded that the bubbles that are oscillating close to resonance were found to

be most vulnerable toward shape instabilities. For coated bubbles, nonspherical bubble oscillations

were investigated in [39] through high speed optical observations. It was shown that non-spherical

bubble oscillations are significantly present in medically relevant ranges of bubble radii and applied

acoustic pressures. Non-spherical oscillations develop preferentially at resonance and may be

present during SH oscillations [39]. Guerda et al [40] investigated the SH emissions of single

spherical bubbles. Their results show that when an acoustic bubble is driven at sufficiently large

pressure amplitudes, energy transfer from surface to volume oscillations results in triggering of

subharmonic spherical oscillations. At higher pressures and specially for larger bubbles, for a more

accurate modeling of the MB oscillations, more sophisticated theoretical modeling of the bubble
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coating, accounting for membrane shear and bending is required [39].

In the experiments of Chapter 9 broadband pulses were used to sonicate the bubble population.

Thus, the attenuation and sound speed analysis were only limited to transient bubble behavior

regimes. Application of narrow-band pulses can reveal nonlinear behavior at the steady state

regime of oscillations and may be better for estimating some shell parameters (e.g. shear thinning).

However, the general conclusions of the study are still valid for broadband and narrow-band pulses.

Moreover, the analysis was confined to near resonance bubble oscillations. A recent experimental

study [41], have shown that the near resonance attenuation measurements are not affected by

broadband or narrow-band excitations.

The analysis in this thesis was carried out by bubble models that are valid only at low mach numbers

(e.g. Keller-Miksis [42], Keller-Miksis-Church-Hoff [43] or Marmottant model [44]). Moreover, the

model developed in Chapter 9, was derived from the Caflisch model [45] which is only valid for

small Mach numbers (e.g. < 1). Effects of nonlinear propagation of sound in the medium were

also neglected. These assumptions were reasonable since the analysis in this thesis were limited to

small Mach numbers (e.g. < 0.3). For bubble oscillation regimes at higher mach numbers where the

bubble wall velocity approaches or exceeds the sound speed in the liquid, the appropriate models

(e.g. the Glimore model [46], the Kreider model [47], etc) must be used to model the bubble

behavior. Even in these cases the attenuation and sound speed should be derived by considering

the nonlinear propagation of sound waves.
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