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ABSTRACT 

 

On the development of photoacoustic imaging biomarkers of cancer treatment response 

Eno Hysi 

Doctor of Philosophy, Biomedical Physics 

Department of Physics, Ryerson University, 2020 

 

This dissertation describes the development of functional and structural photoacoustic (PA) 

imaging biomarkers that can be used to monitor cancer treatment response and potentially predict 

treatment outcome. An imaging method that can indicate individualized treatment success could 

improve therapeutic outcome. Assessing the effectiveness of therapies as early as possible may 

spare the patient from unnecessary treatments and save precious clinical resources. In order for PA 

imaging to enter mainstream radiology and become a treatment monitoring tool, rigorous 

development of biomarkers that are easy-to-use and representative of the treatment-induced 

changes in the tumor microenvironment are needed. In this work, I have developed imaging 

biomarkers that rely on the analysis of the radiofrequency signals in acoustic resolution PA 

imaging. Specifically, I show through simulations and experiments that biomarkers sensitive to 

the size, number density and spacing of tumor blood vessels can be extracted through time and 

frequency domain analysis of PA signals. This information is encoded in the speckle that forms 

during diffuse optical illumination, which was previously thought to be noise. Moreover, I 

demonstrate that PA imaging can detect the response of a thermosensitive liposome by measuring 

a >10% drop in the oxygenation of the tumor as early as 30 minutes post-treatment. This change 

in oxygenation is due to vascular disruption, a phenomenon that can be detected through frequency 

analysis of the PA signals. The spectral slope parameter decreases by as much as 73% in 2 hours 

post-treatment and can be used to differentiate alongside the oxygenation biomarker between 

responders and non-responders. Lastly, I demonstrate that these PA imaging biomarkers correlate 

well with the histologically measured biophysical changes of two novel, bubble-based cancer 

treatments. In this dissertation, PA imaging biomarkers for cancer treatment monitoring are 

developed, advancing the modality towards clinical translation. 
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1 Introduction 

 Cancer and personalized medicine 

Cancer is a complex disease that is being treated with multiple approaches. Despite the fact that 

treatments such as surgery, chemotherapy and radiation therapy have become standards of care 

[1], overall survival rates remain modest. The five year survival rates for pancreatic (4%), lung 

(15%), liver (7%) and glioblastoma (5%) still remain “abysmally low” [2]. Even breast and 

prostate cancers which are highly responsive to treatments (5-year survival rate >80%), respond 

very poorly at later stages. In Canada, women with locally advanced breast cancer exhibit only a 

5-10% complete response rate, dying within 2 to 5 years [3]. Prostate cancer treatment prolongs 

life but often causes impotence, incontinence, hot flashes and even risk of bone fractures [4]. 

Moreover, cancer treatments are accompanied by a wide array of side effects. The systemic 

cytotoxicity of chemotherapy regimens often results in acute and delayed nausea, ulcerations of 

the mouth and mild cognitive impairments. Furthermore, the rapid increase in the number of older 

adults (25 to 35 million in 1980-2000, 72 million by 2030) suggests that there will be a significant 

increase in cancer diagnoses [5]. 

 

These statistics and shortcomings have prompted a shift in the paradigm of cancer care. Treatment 

approaches are no longer simply driven from tumor histological grading. Human genome mapping 

advances suggest that “access to genetic information will radically and dramatically improve the 

way medicine is practiced…” [6]. Understanding cancer causation and progression has resulted in 

the discovery and development of molecularly targeted drugs for personalized, precision 

treatments. These rely on individualized drug administration based on prognostic and predictive 

markers of response [7]. The importance of the aforementioned approaches to cancer treatment 

has prompted the announcement of the Precision Medicine Initiative®, a 2016 enterprise which 

will invest $215 million in disease (including cancer) management by taking into account the 

generic variability, environment and lifestyle of each patient [8]. The ultimate hope is that such a 

personalized strategy in cancer therapy will ultimately replace the “one-size-fits-all” conventional 

approach and increase the overall survival rates. 
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 Personalized treatments require personalized imaging 

New drugs or experimental treatments challenge clinicians to understand efficacy on a patient-by-

patient basis. In order for a new treatment to gain enough traction, its preliminary effectiveness 

must be assessed with inexpensive and readily available means. Personalized cancer treatments 

have already revealed problems caused by the tumor molecular heterogeneity which in turn leads 

to individualized and dynamic treatment-induced changes in tumor morphology and structure [9]. 

Current treatment assessment approaches might not be suitable for handling the complexities of 

personalized cancer treatments. Personalized imaging for treatment monitoring should be sensitive 

to biophysical changes in tissue related to the proposed drug’s activity. There is a clear need for 

imaging modalities which are sensitive to specific, early biomarkers (structural and functional) of 

treatment response and that can be used to provide fast, reliable feedback on treatment efficacy.  

 

 Current imaging standards of treatment monitoring 

The goal of treatment monitoring is the classification of interventional outcome. Conventionally, 

solid tumor response is assessed by standard anatomical-based imaging [10]. The Response 

Evaluation Criteria In Solid Tumors (RECIST) has standardized how response should be assessed 

when determining the effect of cytotoxic agent(s) [11]. The endpoint of any cancer treatment must 

be measured in a uniform, objective and reproducible manner using a standardized method of 

assessment [12]. RESIST is a resource which can be implemented using readily available 

standardized imaging modalities. These criteria can be used to identify ineffective therapies, which 

should be abandoned early in favor of treatments which benefit patients and reduce the burden on 

the health-care system [13]. As such, medical imaging has played an integral role is utilizing 

RECIST to determine the treatment response [14] and key modalities are reviewed in Table 1-1. 

The use of these modalities in oncology has given rise to imaging biomarkers which are described 

in detail in Section 1.4.  
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Table 1-1: Summary of clinical imaging modalities used for clinical treatment monitoring. 

Abbreviations: CT – computed tomography; PET – positron emission tomography; SPECT – 

single positron emission tomography; MRI – magnetic resonance imaging; DCE-US – dynamic 

enhanced contrast ultrasound.  

Modality Features/Examples of treatment monitoring/Challenges 

X-Ray CT • Series of X-ray projection images make 3D volume 

• Routinely used for diagnosis, treatment planning and monitoring  

• Resolution (0.5-0.6 mm) improves with increasing radiation exposure  [15] 

PET/SPECT • Capture of positrons (PET) or gammas (SPECT) from intravenous isotopes 

• Low spatial resolution (6-8 mm) requires co-registration with CT [13], [15] 

• FDG uptake can differentiate response within 24 hours but limited to slowly 

growing tumors (prostate, thyroid and endocrine) [16] 

• Expensive on-site facilities, SPECT isotopes hard to couple to probes [10] 

MRI • Proton relaxation measures rate of water exchange within cells 

• Apoptosis-induced membrane size and integrity measured at 36 hours [17] 

• Contrast agents can assess angiogenesis and vessel permeability [18] but high 

concentrations are needed since resolution depends on signal to noise ratio 

[13] 

DCE-US • Can assess blood volume, vessel size and flow speed changes through 

microbubble contrast agents 

• Metastatic renal carcinoma responders identified 2 weeks post-treatment [19] 

• Imaging only limited to intravascular space due to size of microbubbles 

 

 Biomarkers of cancer treatment response 

Broadly defined, a biomarker is any objectively and quantitatively measured characteristic that can 

serve as an indicator of “normal biological processes, pathologic processes, or pharmacologic 

responses to a therapeutic intervention” [20]. The current FDA-NIH Biomarker working group 

recognizes examples of biomarkers to be molecular, histological, imaging or physiological 

characteristics [21]. The measurement of biomarkers during cancer therapies has the potential to 

relate clinical responses to the effect that intervention has on molecular and cellular pathways. 

Moreover, biomarkers can aid in the evaluation of novel cancer therapies [22], thus assisting with 

a more rigorous selection of drug compounds for clinical trials. Table 1-2 summarizes a selected 

list of imaging biomarkers which have been use in various aspects of clinical oncology. These 

biomarkers have found widespread use in oncology whether its screening for the disease, diagnosis 

and staging, targeting and guiding surgical/radiotherapy treatments and predicting and monitoring 

therapeutic efficacy and toxicity [23]. With the exception of US imaging, the remainder of the 

modalities summarized in Table 1-2 are relatively expensive, thus limiting the availability and 
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practicability of these modalities for treatment response monitoring. Moreover, conventional 

approaches using MRI or CT rely on gross changes in tumor size, limiting their feasibility as 

volumetric changes in the size of tumors sometimes require months of therapy even in the presence 

of a positive pathological response [24]. Functional imaging biomarkers such as PET require long 

scan times and the administration of exogenous contrast agents to detect response-related changes 

in tumors thus constraining how often a patient can be scanned during the course of months-long 

treatments [25], [26].  

 

Table 1-2: Representative imaging biomarkers currently used for clinical decision-making in 

oncology. Abbreviations: TNM – tumor, lymph node, metastasis; XR – X-ray; DXA – dual-energy 

X-ray absorptiometry; AUC – area under the curve; FDG – fludeoxyglucose; SUVmax – maximum 

standardized uptake value of FDG tracer. 18F – fluorine 18; 99mTc – metastable technetium 99.  

Imaging 

biomarker 

Imaging modality Decision-making role 

Clinical TMN stage XR, CT, MRI, 

PET, SPECT, US, 

endoscopy 

Prognostic in nearly all cancers 

Bone scan index  SPECT Prognostic in nearly all cancers 

Objective response CT, MRI, PET Guides decision to continue, discontinue, or switch 

therapy 

ACR BI-RADS 

breast morphology 

Mammography Diagnosis of breast cancer 

Left ventricular 

ejection fraction 

Scintigraphy, US Safety biomarker which can also guide therapy 

T-Score DXA Safety biomarker which can guide prescription of 

medication for therapy-induced bone and hair loss 

Uptake of 99mTc-

sestamibi 

SPECT Rapid clearance can predict lack of tumor response 

to chemotherapy 

Splenic volume CT, MRI Assessment of response in patients with 

myelofibrosis  

Microbubble AUC US  Pharmacodynamic and putative predictive imaging 

biomarker 

Δ18F-FDG SUVmax PET Monitoring imaging biomarkers for other of 

therapies and used in dose-finding and to provide 

evidence of treatment efficacy 

 

1.4.1 Emerging imaging biomarkers 

In this section, two imaging modalities that have shown potential for non-invasive, contrast-free 

cancer treatment monitoring are described. Both modalities can generate biomarkers that 

overcome some of the limitations described in Section 1.4. 
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1.4.1.1 Quantitative ultrasound 

Quantitative ultrasound (QUS) is a variant of conventional ultrasound imaging. It relies on the 

analysis of the frequency components of the radiofrequency (RF) signals whose envelope 

amplitude is typically used to generate B-mode images. Since its inception in the 1970’s, QUS has 

been used to provide more quantitative, system independent readings [27]–[29]. US images are 

affected by a large number of parameters such as gain compensation, low-pass filters, transducer 

aperture and dynamic range compression. One cannot rely on the B-mode images for quantitative 

comparisons between different machines or even the same machine when different settings are 

used. The latter becomes important in treatment monitoring where multiple users/settings might 

be utilized for longitudinal imaging sessions [30]. QUS removes the system dependencies by 

relying on reference phantoms whose images are used to normalize each acquisition. As such, 

post-normalization QUS can be used to generate parameters that provide information about the 

size, concentration, shape and spatial distribution of ultrasonic scatterers from a wide array of 

tissue types [31].  

 

In cancer treatment monitoring, QUS has been used to detect chemotherapy-induced cellular death 

(apoptosis) [32]–[34]. This led to recent clinical studies where QUS parameters yield meaningful 

information about the structural properties of cancer tissue and cells as they undergo treatment 

[24], [35]. The technique has been successful in detecting treatment response of locally advance 

breast cancer patients with 100% sensitivity and 93% specificity one week after the administration 

of treatment. However, QUS can only measure the tissue structural changes that occur during 

treatment. There is evidence in the literature that these structural changes are dependent on the 

tumor and treatment type. This may not allow QUS to be extended towards all treatment types 

[36]. Moreover, as functional and metabolic changes may appear at earlier time points, QUS may 

not be able to detect these changes, thus limiting the sensitivity and robustness of the approach for 

detecting treatment response [37]. 

 

1.4.1.2 Diffuse optical spectroscopy imaging 

Diffuse optical spectroscopy imaging (DOSI) represents a family of optical imaging techniques 

that use diffused, near-infrared light to probe the absorption and scattering properties of tissue for 

the purposes of diagnosis and cancer treatment monitoring [38]. DOSI techniques quantify the 
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photon migration within tissue to calculate bulk tissue optical properties [39], [40]. Unlike QUS, 

DOSI is sensitive to the metabolic activity of tissue and the detected signals can be related to 

changes in the water, lipid, and hemoglobin concentrations.  

 

DOSI does not require exogenous contrast agents and it has found broad applications in providing 

functional information of brain activity [41]. It has also been used to monitor the response of breast 

cancer patients during neoadjuvant chemotherapy [42]–[44]. These landmark studies suggest that 

treatment-induced functional and metabolic changes appear earlier than structural changes, thus 

allowing DOSI to differentiate treatment responders as early as 24 hours post-treatment. An 

oxyhemoglobin flare present in treatment responders is attributed to the rapid increase in cellular 

metabolism due to chemotherapeutic-induced cellular damage [43]. At 4 weeks post-treatment, the 

non-responders show little-to-no changes in the water, oxy/deoxyhemoglobin and scattering power 

optical properties [42]. The combination of QUS spectral parameters and DOSI-estimated markers 

of response showed 100% sensitivity/specificity at 1 week post-treatment [44]. The correlations 

of DOSI parameters with vascular changes (ex. vessel collapse or angiogenesis) reinforce the idea 

that it is possible to follow treatment progression by relying on non-anatomical changes in tumors.  

 

However, as an optical imaging modality, DOSI suffers from insufficient spatial resolution 

(comparable to PET) due to scattering of photons in the ballistic regime, on the order of 

centimeters. DOSI can probe centimeters deep into tissue, but the chaotic path of diffuse photons 

in tissue due to scattering renders the image reconstruction mathematically ill-posed, leading to 

poor spatial resolution [45]. It remains quite difficult for pure optical imaging to attain spatial 

resolution at depths beyond the optical diffusion limit that surpasses conventional imaging 

modalities [46]. This presents challenges in identifying the anatomical source of the metabolic 

changes without assistance from external modalities such as US, mammography, or MRI. 

Additionally, the commercially available DOSI system is limited to breast studies as it is restricted 

by the geometry of multiple source/detector pairings [44].  

 

 Vascular biomarkers of treatment response 

Both QUS and DOSI demonstrate that it is possible to develop imaging biomarkers for cancer 

treatment response that do not rely on conventional RESIST-based changes in tumor volume. It is 
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well known that many solid tumors are relatively resistant to ionizing radiation, chemotherapy and 

other non-surgical treatment modalities [47]. This lack of responsiveness is attributed to genetic 

factors that influence how certain cancer cells respond to drugs or physiological properties created 

primarily from inadequate and non-uniform vascular networks [48]. In this section, the role of the 

tumor vasculature in cancer and its implications for therapies are discussed. The need for imaging 

biomarkers that can monitor the vascular response to cancer treatments is also identified. 

 

1.5.1 Blood vessels in cancer  

The importance of the vasculature in tumor growth and metastasis has been long recognized [49]. 

Angiogenesis, or the formation of new blood vessels from pre-existing ones, is a hallmark of 

cancers. In 1971 Folkman hypothesized that the growth of tumors is angiogenesis dependent, 

permitting the new blood vessels to bring in fresh nutrients and growth factors thus enabling the 

tumor mass to expand beyond 1-2 mm in diameter [50]. This seminal observation has significant 

implications in understanding cancer development and has been dogma of nearly 50 years of active 

research in cancer biology and oncology [51]. At the microvascular level, there are significant 

differences in the organization of tumor vasculature compared normal tissue with implications for 

therapeutic outcome, as shown in Figure 1-1. Normal tissue vessels branch in a hierarchical fashion 

to ensure adequate delivery of nutrients to all cells. On the other hand, chaotic tumor angiogenesis 

creates vascular trees with uneven diameters, random patterns of interconnectivity and shunts thus 

making some regions of the tumor impermeable to drugs [52]. Furthermore, oversized vascular 

pores cause fluid leakage into the interstitum. This also creates irregular blood flow patterns which 

produce conditions of hypoxia and high acidity [53], [54]. At a molecular level, the angiogenesis 

of tumors may be triggered by hypoxia, hypoglycemia and acidosis, all of which activate pro-

angiogenic proteins that promote the formation of new capillaries by recruiting and simulating 

endothelial cells [55].  
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Figure 1-1: Pictorial representation of the tumor microenvironment illustrating the features of 

tumor blood vessels and implications of their structural organization in cancer therapy. Adapted 

from reference [56].  

 

1.5.2 Role of tumor vasculature in cancer therapy 

The tumor vascular architecture has significant implications in cancer therapy (Figure 1-1). The 

hypoxic areas present significant challenges for radiation therapy since radiation requires the 

presence of oxygen to function effectively [57]. The highly acidic environment prevents the 

immune response of natural defense mechanisms and contributes to overall resistance [50]. In 

addition, hypoxia affects gene activity and promotes metastasis and angiogenic factors [58]. In 

conjunction with complex hemodynamic flow patterns within the tumor vasculature, it is well 

recognized that hypoxia and the lack of perfusion leads to poor overall survival rates [48], [59]–

[61]. In fact, the imaging of tumor hypoxia has been proposed as a method for improving our 
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ability to predict outcome in patients that respond poorly to radiotherapy [62]. The interstitial fluid 

pressure buildup blocks the transport of drugs outside of vessels, preventing therapeutic molecules 

from reaching the tumor tissue. The fluid buildup also causes swelling pain and physically drives 

proteins and cells from the tumor towards healthy tissues through lymphatic pathways, promoting 

metastasis [63]. Several therapeutic approaches have been developed to either shut down the tumor 

nutrient supply (anti-angiogenic therapy) [64] or re-establish regular flow patterns (normalizing 

therapy) [65]. The first approach attempts to prevent angiogenesis in tumor growth, while the latter 

aims to improve the delivery of drugs uniformly throughout the tumor therefore maximizing 

therapeutic efficiency [66]. Antiangiogenic drugs targeting the vascular endothelial growth factor 

have been approved by the FDA either as standalone therapies or in combination with 

chemotherapy for six tumor types [67]. However, their full potential has yet to be realized as the 

clinical trials have revealed that many cancer patients are either intrinsically resistant to 

antiangiogenic drugs and do not respond at all. Other patients who respond initially, acquire 

therapeutic (evasive) resistance after several months of clinical benefit [68], [69]. Moreover, 

conventional therapies such as radiation and chemotherapy impact the vasculature of tumors, 

inducing changes to endothelial cells [70]–[73] as well as the blood oxygenation via  alterations in 

hemoglobin levels due to tumor cell metabolism and blood vessel density [74]–[76].  

 

The above-mentioned properties of tumor vasculature suggest that that monitoring vascular 

changes during treatments could be of considerable benefit. Therapy-induced vascular changes 

have the potential of serving as surrogate markers of therapeutic efficacy. Biomarkers that revolve 

around blood vessels can be useful in monitoring angiogenesis, quantifying drug 

activity/inactivity, facilitating the development of combination therapies and identifying treatment 

resistance [77]. An imaging modality that is: (1) easy-to-use, (2) inexpensive/accessible and (3) 

can measure changes that the tumor vasculature undergoes shortly after the administration of 

treatment does not exist. Given the importance of blood vessels on tumor growth and response to 

therapy, a modality that can detect in-vivo changes in tumor vasculature could provide clinicians 

with immediate feedback, potentially maximizing the impact of the treatment and improving 

patient outcomes. 
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 Photoacoustic imaging and its potential 

1.6.1 Principles of photoacoustic imaging 

The origins of photoacoustic (PA) imaging (which is also referred to as optoacoustic imaging) can 

be traced back to the 1880 discovery of Alexander Graham Bell who demonstrated the conversion 

of optical energy to audible sound [78]. No significant progress was made until the invention of 

the laser which enabled flexibility in the illumination of the sample. First the approach was used 

in gas spectroscopy and then later in biomedical applications [79], when PA became a modality 

that combines ultrasonic resolution with optical contrast. Figure 1-2 shows a schematic overview 

of the PA effect in biological tissue. PA imaging utilizes optical absorption of pulsed laser light to 

generate mechanical sound waves from the thermoelastic expansion of chromophores [80]. The 

subsequent sound wave travels within the medium carrying an infinite number of frequencies 

which are filtered by the transducer or the intervening tissue. Once the sound wave is produced, it 

follows the same propagation principles in both US and PA imaging. Commercially available US 

transducers can be used in PA imaging systems [81].  

 

Figure 1-2: Overview of PA imaging. Short (nanosecond) laser pulses delivered through an 

illumination source (denoted by S) illuminate tissues which may contain endogenous or exogenous 

chromophores. The light absorption from the chromophore biomolecules thermoelastically 

induces an initial pressure rise which subsequently propagates as ultrasonic waves. An acoustic 

detector (denoted by D) receives the acoustic waves which are then reconstructed to form a PA 

image. Adapted from reference [82].   

 

In US imaging, the incident sound wave scatters due to differences in the structural composition 

of the target and the background (i.e. density and speed of sound). In PA imaging, the strength of 

the signal heavily depends on the tissue chromophore identity and concentration. In addition to the 

structural/anatomical information provided by single wavelength illumination, PA imaging also 

takes advantage of the differential optical absorption of tissue chromophores (Figure 1-3) to probe 
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for the presence of multiple chromophores simultaneously by sweeping the wavelength of 

illumination [83]. Of great interest is hemoglobin (Hb), the second-most abundant highly 

absorbing protein (after melanin) localized inside red blood cells (RBCs; 280 million Hb proteins 

per RBC). With its two oxygenated and deoxygenated states, Hb exhibits an oxygen-dependent 

absorption profile [84], introducing a source of contrast in PA images.  Due to the abundance of 

blood in tissue, contrast in PA imaging is typically higher than US images. This has allowed PA 

imaging to provide functional information by sweeping the laser source to measure the 

concentration and spatial distribution of various chromophores [85]. Additionally, the US 

resolution and reduced sound scattering (approximately 1000 smaller than optical scattering) 

provides PA imaging with better contrast and penetration depth compared to pure optical imaging. 

The latter relies on the detection of diffuse photons whose chaotic paths in tissue limit spatial 

resolution and its penetration depth in typical biomedical applications [83].  

 

Figure 1-3: Optical absorption coefficients for commonly used endogenous chromophores in PA 

imaging. Adapted from reference [82]. 
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1.6.2 Configurations and applications of PA imaging 

Since the late 1980’s the field has exponentially grown in terms of publication output as well as 

breadth of biomedical applications [86]. Advances in light source technologies have contributed 

to PA imaging systems that are more mobile, tunable, compact and affordable [87]. The scalability 

of PA imaging illumination and acoustic detection schemes has given rise to multiple 

configurations which are broadly depicted in Figure 1-4. The focus of the laser source, choice of 

acoustic transducer and physical orientation relative to one another dictates the biological length 

scale which can be probed [88]. In optical resolution PA microscopy (Figure 1-4a), the optical 

excitation focus is co-aligned with the acoustic transducer focus through a layer of silicone oil that 

acts as an optical/acoustical splitter [89]. This approach can achieve sub-micron resolution but it 

is restricted to a few hundred microns in depth in order to maintain the optical focusing (depth-to-

resolution ratio of about 200) [90]. In acoustic resolution PA microscopy (Figure 1-4b), the light 

is delivered around the transducer to achieve uniform illumination, which also allows for greater 

penetration. The acoustic focal region determines the spatial resolution (axial and lateral) of the 

system [91]. To achieve deeper imaging depth required for clinical applications, neither the light 

nor the sound is focused in acoustic resolution PA tomography (Figure 1-4c), achieving sub-

millimeter resolution at depths of several centimeters through beamforming reconstructions [92]. 

 

Figure 1-4: PA imaging configurations. (a) Optical resolution photoacoustic microscopy, (b) 

Acoustic resolution photoacoustic microscopy and (c) Acoustic resolution photoacoustic 

tomography. Abbreviations: US – ultrasound; MO – microscope objective, UST – ultrasound 

transducer, Vis – visible, NIR – near infrared. Adapted from reference [93].  
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Broadly speaking, the microscopy variants of PA imaging shown in Figure 1-4a and Figure 1-4b 

have already made significant contributions to fundamental life sciences research at multiple 

biological length scales from the single vessel, single cell, or even subcellular levels [94], [95]. 

Among numerous applications, worth highlighting is photoacoustic microscopy (PAM) for the 

non-invasive imaging of the variations in hemoglobin oxygen saturation (sO2) in the subcutaneous 

microvasculature of rats in vivo [96]. Additionally, Wang and colleagues used high-speed, high 

frame rate PAM to measure the release of oxygen from single red blood cells in the mouse brain 

[97]. Recent work has demonstrated the capabilities of PAM to explore the intrinsic sensitivity of 

DNA and RNA for label-free, histology-like assessment of tumor margins in human lumpectomy 

specimens [98]. Single pulse panoramic photoacoustic computed tomography and spiral 

volumetric optoacoustic tomography have been developed to achieve real-time, whole-body small 

animal imaging capabilities for tracking circulating tumor cells [99] and the mapping of exogenous 

contrast agent distribution [100], respectively. Functional PA imaging contributions include the 

mapping of the resting-state neuronal functional connectivity in the mouse brain [101]. Genetically 

encoded, photo-switchable molecular probes with near infrared absorption have been optimized or 

engineered as PA contrast agents [102]. Optical pH indicators encapsulated inside nanoparticles 

have been developed to quantify the tumor acidity using multispectral PA imaging [103].  

 

In addition to pre-clinical/fundamental research applications, PA imaging has made significant 

strides towards clinical translation, achieving imaging depths far beyond those of optical PA 

microscopy. Figure 1-5 summarizes a few representative PA imaging applications in humans. The 

early detection of breast cancer through imaging of hypoxia and angiogenesis have yielded very 

promising clinical data that have the potential to replace mammography (Figure 1-5a) [104]–[109]. 

Portable imaging systems have also been developed for the superficial detection of oral cancers 

(Figure 1-5b, [110]) and skin cancer/eczema/dermatitis (Figure 1-5c, [111]). The clinical potential 

of acoustic resolution PA imaging has also been demonstrated by imaging thyroid tumor 

vasculature to a depth of 2 cm (Figure 1-5d, [112]). Multispectral optoacoustic tomography has 

shown clinical utility in the assessment of Crohn’s disease by evaluating the hemoglobin content 

present during intestinal wall inflammation (Figure 1-5e, [113]). More recently, a hand-held PA 

imaging probe allowed for a 2 cm3 field of view imaging of the human carotid artery, opening 

doors to early assessment of stroke risk through plaque imaging (Figure 1-5f, [114]). Lastly, the 
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use of clinically approved optical contrast agents such as indocyanine green for the PA imaging 

aids in the identification of sentinel lymph node metastases from melanoma patients [115].  

 

Figure 1-5: Representative clinical PA imaging applications. (a) Overview of the Twente PA 

mammoscope for breast cancer imaging (left) and a maximum amplitude projection image (right) 

showing a breast lesion (red). (b) PA imaging of oral vasculature showing blood vessels of the 

human lip (left), corresponding projection image (middle) and image of a deeper region. (c) 3D 

PA imaging of palm vessels (left) and the system schematics (right). (d) US/PA imaging of human 

thyroid (left) and the system schematics (right). Multispectral optoacoustic imaging of (e) 

inflammatory bowel disease, (f) human carotid artery bifurcation and (g) sentinel lymph node 

using indocyanine green exogenous contrast agents. Adapted from reference [94]. 

 

1.6.3 The role of the radiofrequency signal 

All applications summarized in Section 1.6.2 rely on the detection of acoustic signals as a result 

of the thermoelastic conversion of light absorption into pressure waves. Figure 1-6 shows the steps 

followed for the reconstruction of structural and functional PA images. The temporal acoustic 

signals are detected using passive ultrasonic detectors, typically operating in the megahertz range 

to ensure sufficient spatial resolution [116]. Collectively, these signals are referred to as 

radiofrequency or RF signals. The RF signals collected at a single wavelength are reconstructed to 

form a PA image (Figure 1-6a). Various image reconstruction algorithms are available depending 

on the biomedical application, illumination scheme and acoustic detection employed [117]. 
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Irrespective of the reconstruction algorithm used to generate a PA image, the input to each 

algorithm will always be the time domain PA signal recorded by a device that measures pressure 

transients, which is typically an ultrasound transducer. The universal back-projection algorithm 

developed by Xu and Wang in 2005 has been the most commonly used inversion approach 

reconstructing the initial PA pressure distribution from a collection of absorbers [118]. This has 

given rise to multiple types of inversion schemes, including model-based inversion [119]. 

Additionally, it has been extended to finite sized detection elements through selective-plane 

detection [120], virtual detector concept [121] and line detector setups [122]. Limited-view 

geometries arising from instances when the imaged region is not fully accessible are also dealt 

with reconstruction approaches proposed by Xu et al in 2004 [123].  

 

Figure 1-6: Typical reconstruction of PA images. (a) Upon the absorption of a single wavelength 

𝜆, the time-domain ultrasound signals recorded from 𝑛 acoustic detectors are used to reconstruct 

a PA image which reveals only structural information. (b) This procedure is then repeated for every 

𝜆 used to illuminate the tissue and each pixel amplitude 𝑝𝑜 at every location in the image (𝑥𝑜 , 𝑦𝑜) 

is (c) spectrally unmixed using dedicated algorithms from known chromophore spectra. (d) The a 

single-wavelength grayscale frame obtained at 800 nm reveals the PA image of the forearm of a 

healthy volunteer while the spectral unmixing quantifies the content of (e) hemoglobin, (f) lipid 

and (g) water present. The pseudo color image intensity denotes relative chromophore 

concentration. The scale bars represent 5 mm while 𝑥 and 𝑦 denote the lateral and axial directions 

relative to the transducer. Adapted from reference [82].  

 

(a)

(b) (c)

(d)

(f)

(e)

(g)
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Single wavelength illumination produces PA images that reveal information about the absorber 

structure. This often serves as the baseline image used to inform the overall anatomy of the system 

[94]. In order to obtain functional information regarding the chromophores, multiwavelength 

illuminations are required in accordance with the optical absorption spectra of the chromophores 

of interest. The RF signals acquired at each wavelength are used to reconstruct PA images as 

shown in Figure 1-6b. To recover the relative or absolute concentrations of each chromophores, 

spectral unmixing is employed on the RF-reconstructed PA image [117]. The per-pixel unmixing 

is used to calculate the contribution of each chromophore relative to their known optical absorption 

(Figure 1-6c). This enables the quantification of the spatial distributions of each chromophore of 

interest such as hemoglobin (Figure 1-6e), lipids (Figure 1-6f) and water (Figure 1-6g) while 

providing anatomical information (Figure 1-6d).  

 

1.6.4 Frequency domain analysis of PA signals 

In the aforementioned applications and reconstructions of PA images, only the amplitude of the 

time-domain signals is utilized. Figure 1-7a shows the theoretical solutions (dashed line) for a fluid 

layer, a cylinder and a sphere. These temporal waveforms easily differentiate the shapes from one 

another as the broadband nature of PA signals contains virtually infinite frequencies [124]. 

However, ultrasonic transducers and their acquisition hardware act as lowpass or bandpass filters, 

suppressing the high frequency components, altering the PA waveforms. The solid lines of Figure 

1-7a show the impact of bandlimiting the PA waveforms, making it difficult to differentiate 

between objects with different morphologies based only on the time domain RF signals [125]. Sole 

reliance on the time domain becomes even more challenging during acoustic resolution PA 

imaging (Figure 1-4c) where numerous PA sources of various sizes, shapes and orientations may 

be present within the illumination/resolution volume. Their presence results in constructive and 

destructive interference of the bandlimited temporal PA RF signals [126], leading to the formation 

of PA speckle.  

 

Generally considered detrimental for resolving individual PA absorbers, the grainy appearance of 

images that contain speckle obscures boundaries between tissues. Speckle is typically suppressed 

through image post-processing tools to preserve spatial resolution [127]. In doing so, PA 

researchers ignore the information that is encoded in the PA RF signals beyond the time domain. 



CHAPTER 1 

 

17 

However, just like for the US RF signals in QUS, the frequencies of the PA signals carry 

information on the structure (size, shape and orientation) of the underlying absorber [124], [128], 

[129]. Figure 1-7b and Figure 1-7c show the time domain PA RF signals from RBCs (at two 

different orientations relative to the transducer) and a melanoma cell. It is difficult to identify the 

source of each time domain signal until they are brought into the frequency domain through Fourier 

transformations (Figure 1-7d). Distinct spectral features in the frequency domain (maxima and 

minima) are now evident, allowing for differentiation of the cell types and their orientation. The 

frequency-based analyses methods have been used in high frequency (> 100 MHz) PA microscopy 

to characterize biological samples [128], [130], [131] and develop a new imaging mode called 

frequency or F-mode to study zebrafish vasculature [132].   

 

Figure 1-7: (a) Theoretical time domain PA solutions for a fluid layer, cylinder and sphere. The 

dashed lines show the analytical solutions while the solid lines show the same signals after a 

bandpass filter (200-500 MHz bandwidth) emulating the transducer response is applied. 𝜏 denotes 

the dimensionless retarded time (courtesy of Dr. Michael Moore, Ryerson University). 

Experimentally measured time domain PA signals for (b) red blood cells (RBCs) at two different 

orientations relative to a 400 MHz single element transducer and (c) a melanoma cell. (d) PA 

power spectra for the signals shown in (b) and (c). Adapted from reference [130].  

 

1.6.5 Can PA imaging contribute to treatment monitoring? 

Despite impressive advances, applications of PA imaging to cancer treatment monitoring have 

been limited to a few feasibility studies (excluding work from this dissertation and published 

concurrently/after this work) which have focused on the mapping of tumor oxygenation changes 

RBC (horizontal)
Melanoma cell

RBC (vertical)

(d)(c)(b)

(a)



CHAPTER 1 

 

18 

post-treatment (assessed through surrogate measurements of  oxygen saturation) [133]–[137]. The 

studies from Bohndiek [134] and Johnson [138] demonstrated the visualization of individual blood 

vessels with exquisite resolution but were limited to sub-millimeter depths using PA microscopy 

illumination and detection approaches (Figure 1-8a). The remainder of the studies focused on 

acoustic-resolution PA imaging without resolving the individual tumor vessels, thus being able to 

image preclinical tumor models up to 10 mm in diameter (Figure 1-8b). All studies attempted to 

quantify the longitudinal, post-treatment relative changes in tumor sO2, hemoglobin levels and PA 

signal using the only the information provided by the PA signal amplitude. These studies have 

established the potential of PA imaging for cancer treatment monitoring, particularly due to its 

ability to study both the anatomical changes in tumor vasculature as well as metabolic/functional 

changes provided by multiwavelength spectroscopy [94]. 

 

Figure 1-8: Representative examples of optical (top row) and acoustic (bottom row) resolution PA 

imaging for cancer treatment monitoring. (a) Single wavelength maximum amplitude projection 

PA images of tumors before and after treatment with a vascular disrupting agent (adapted from 

reference [138]). (b) Oxygen saturation (sO2) images of tumors before and after a single 9 Gy 

radiation treatment dose. Scale bars denotes 2 mm (adapted from reference [137]).  

(a) Optical resolution PA imaging

(b) Acoustic resolution PA imaging
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1.6.6 Acoustic resolution PA imaging 

Acoustic resolution PA imaging allows for illuminating a larger field of view, flexibility in 

targeting multiple anatomical sites and achieving more clinically relevant penetration depths [93]. 

However, as seen in Figure 1-8b, one cannot resolve individual vessels within the tumor but only 

view the resultant image arising from the superposition of signals from multiple vascular length 

scales within the field of view [139]. This typically occurs when more than ~10 absorbers per 

resolution volume are simultaneously illuminated by a laser pulse and cannot be individually 

resolved. This is demonstrated in the US and PA imaging of phantoms of Figure 1-9. In this 

example, the scattering and photoacoustic sources are the same and the images both contain fully 

developed speckle [140]. The formation of PA speckle is governed by the same physical principles 

that produce the conventional “grainy” US images of tissue [141].  

 

Figure 1-9: US and PA B-mode images and RF signals from a gelatin-based phantom containing 

spherical carbon beads (1-12 µm diameter). The phantom is imaged with a 40 MHz center 

frequency linear array illuminating the sample at 680 nm. 

 

The RF signals in both US and PA imaging contain information regarding the 

shape/size/orientation of the underlying absorbers. This is dictated by the physics of ultrasonic 
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scattering [142], [143] or the physics of PA wave generation [95], [128]. Therefore, analysis of 

the RF signals in acoustic resolution PA imaging can be used to retrieve properties of the 

unresolved optical absorbers. In the context of cancer treatment monitoring, the focus of this 

dissertation, it is possible to combine the functional aspects of PA imaging (based on 

multiwavelength spectroscopy) with the functional information that would be provided from 

detailed analysis of the RF signals.  

 

While our group and others have explored the use of RF analysis beyond the time domain for 

various biomedical applications [95], [144]–[146], this approach has not been used to study 

vascular changes during cancer treatments. Given the large optical absorption cross-section of 

RBCs [147], it is reasonable to expect that vascular structures will dominate the PA signal 

generated from cancerous tumors. In order to develop clinically relevant PA biomarkers of 

treatment response based on the analysis of the RF signals, the histopathology of tumors must be 

analyzed to identify the vascular structures giving rise to the PA signals, and how these change 

with treatment. The latter is crucial in assessing the feasibility of using such biomarkers for 

quantifying the biophysical changes that occur during cancer treatments. This is particularly 

important for facilitating the clinical translation of PA imaging so that it can enter mainstream 

radiology. 

 

 Thesis hypothesis, aims and organization 

The research presented in this dissertation reports on development of novel biomarkers of cancer 

treatment response in acoustic resolution photoacoustic imaging. I demonstrate the feasibility of a 

family of RF-based analysis techniques for identifying and quantifying the early changes to tumor 

vasculature following treatment. This was shown through simulations of PA absorbers, fractal 

modeling of tumor vasculature, in vitro tissue mimicking phantoms and in vivo experiments on 

preclinical models of cancer. The in vivo treatments included a variant of a temperature-sensitive 

liposome that is currently in clinical trials in addition to an experimental nanobubble-mediated, 

radiation treatment targeting tumor vasculature.  
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1.7.1 Thesis hypothesis 

The hypothesis guiding this investigation is that photoacoustic imaging biomarkers can quantify 

the structural and functional vascular changes during cancer treatments that can then be used to 

monitor cancer therapies. 

  

1.7.2 Thesis aims 

The aims of this thesis are: 

 

Aim 1: To apply a mathematical formulation for deriving structural and functional 

parameters that can characterize photoacoustic sources.  

Aim 2: To monitor the early therapeutic effect of cancer therapies using biomarkers 

derived from Aim 1. 

Aim 3: To determine if histologically measured metrics of tumor cell death and vasculature 

correlated with photoacoustic-derived biomarkers of treatment response. 

 

1.7.3 Thesis organization 

The hypothesis and aims of this thesis are addressed in a series of four papers which have either 

been published (Chapters 2, 3 and 4) or submitted for publication (Chapter 5). The contents of 

each paper are described in the following sections: 

 

Chapter 2: Insights into photoacoustic speckle and applications in tumor characterization 

In ultrasound imaging, speckle arises from the spatiotemporal superposition of pressure waves 

backscattered by randomly distributed scatterers. Perhaps due to the dominance of optical 

resolution photoacoustic microscopy where speckle is suppressed, PA was generally thought to be 

a speckle-free imaging modality. In this chapter, I present theoretical and experimental evidence 

for the formation of speckle in acoustic resolution PA imaging. More importantly, I demonstrate 

through numerical and physical phantoms that PA speckle carries information related to the 

unresolved absorber structure in a manner similar to US speckle derived from unresolved 

scattering structures. A fractal-based model of the tumor vasculature was used to study PA speckle 

from unresolved cylindrical vessels. I show that speckle characteristics and the frequency content 
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of PA signals can be used to monitor changes in average vessel size, linked to tumor growth. These 

parameters form the theoretical and experiment basis for PA biomarkers that can be used to 

characterize the unresolved vasculature in acoustic-resolution PA imaging from murine tumors. 

 

Chapter 3: Photoacoustic imaging of cancer treatment response: Early detection of therapeutic 

effect from thermosensitive liposomes 

The goal of this chapter was to develop a functional biomarker of early treatment response and in 

the process demonstrate how PA imaging can be used to assess the success of an individualized 

treatment course, during or immediately following the treatment. The latter has the potential to 

improve therapeutic outcomes. In this chapter, I used thermosensitive liposomes to deliver 

chemotherapeutics to a localized tumoral area heated to mild-hyperthermia. The doxorubicin 

inside the liposomes was burst released into the tumor vasculature, inducing hemorrhaging, blood 

coagulation and vascular shut down. To probe the effects of this treatment, I developed an oxygen 

saturation algorithm based on the amplitude of the PA signals at two wavelengths. This histogram-

based approach to quantify the distribution of oxygenation across the entire tumor volume as well 

as longitudinally following treatment (from 30 minutes to 7 days post-treatment). The PA 

functional biomarker developed in this chapter could be used to monitor the effects of the 

temperature sensitive liposome by measuring the oxygenation drop as a function of time post-

treatment. The latter led to tumor regression in 90% of the cases. The changes in tumor 

oxygenation (as assessed from the oxygen saturation values) were further corroborated with 

histological data using vascular perfusion markers. These results allowed me to propose a plausible 

mechanism of the cellular events taking place in the chemotherapeutic-treated tumor regions over 

the first 24 hours post-treatment. The work shown here demonstrates for the first time the potential 

of PA-derived oxygenation biomarkers as a surrogate prognostic marker for predicting the 

therapeutic outcome of a vascular targeting cancer treatment.  

 

Chapter 4: Photoacoustic signal characterization of cancer response: Correlation with changes 

in tumor oxygenation 

In Chapter 4, I develop a new imaging biomarker of cancer response which is based on the 

frequency analysis of the PA RF signals. Building on the findings of Chapter 2, I tested whether 

the spectral slope of the normalized PA power spectra acquired at various timepoints post 
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thermosensitive liposome treatments changes as a function of time. This parameter showed 

sensitivity to absorber size in numerical simulations, in vitro phantoms and in vivo tumor 

vasculature. Most importantly, in combination with the tumor oxygenation biomarkers (i.e. oxygen 

saturation) developed in Chapter 3, treatment responders were identified as early as 30 minutes 

post-treatment. It was shown that the spectral slope parameter correlated with treatment-induced 

hemorrhaging, which we postulate increased the optical absorber effective size via interstitial red 

blood cell leakage. Combining frequency analysis and oxygen saturation estimates differentiated 

treatment responders from non-responders/control animals by probing the treatment-induced 

structural changes of blood vessels. 

  

Chapter 5: Photoacoustic imaging biomarkers for monitoring biophysical changes during 

nanobubble-mediated radiation treatment 

In this chapter, I explore the feasibility of using PA biomarkers to quantify therapeutic response 

to a novel nanobubble-mediated radiation treatment. This was done using new class of submicron, 

vascular disrupting, ultrasonically simulated nanobubbles which were used to test whether they 

could enhance radiation therapy. In vivo experiments were conducted on mice bearing prostate 

cancer tumors. Nanobubble and radiation treatments were compared against conventional 

microbubbles and radiation alone. Histology provided metrics of tumor vascularity and tumoral 

cell death, both of which were compared to PA-derived biomarkers (structural and functional). PA 

metrics of oxygen saturation reveal a 20% reduction within 24 hours post-treatment and that the 

spectral slope could separate the tissue response to the nanobubble treatments from the 

microbubble counterparts. Histopathological assessment was found to correlate well with PA 

biomarkers of treatment response, demonstrating their practicality in PA imaging for studying the 

biophysical changes during cancer treatments.  

 

Finally, in Chapter 6 of this thesis I will provide an overview and summary of the findings and 

conclusions of Chapters 2-5. I will also address the limitations of this work and provide a roadmap 

for future studies on PA of cancer treatment monitoring. The thesis Appendix provides the journal-

specific permissions to reproduce copyrighted published materials.
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2 Insights into photoacoustic speckle and applications 

in tumor characterization 

The contents of this chapter have been previously published in Photoacoustics. Permission to 

reproduce this article was granted by Elsevier and is provided in Appendix A.1.1.  

 

E Hysi, MN Fadhel*, MJ Moore*, J Zalev, EM Strohm and MC Kolios. “Insights into 

photoacoustic speckle and applications in tumor characterization” Photoacoustics 2019; 14 37-48 

https://doi.org/10.1016/j.pacs.2019.02.002 
*These authors contributed equally to this work. 

 

  Introduction 

Photoacoustic (PA) imaging allows for high contrast visualization of the vasculature [83], 

pharmacokinetic drug distribution [148] and neuronal functional connectivity [101]. Clinical 

applications include melanoma detection [149], assessment of Crohn’s disease [113], breast 

imaging [106] and cancer treatment monitoring [133], [150]–[153]. PA images are affected by the 

light illumination geometry, choice of optical wavelength and ultrasonic detection characteristics. 

Speckle is a ubiquitous property of all coherent modalities such as laser imaging [154], ultrasound 

(US) [155] and optical coherence tomography [46]. Due to the similarities between the two 

techniques, PA speckle is analogous to US speckle, which results from the spatiotemporal 

superposition of waves backscattered from randomly positioned objects within the imaging 

transducer’s resolution volume. At clinical frequencies, ultrasound speckle is considered fully 

developed for a scatter density of  >100/mm3 or, more generally, when there are at least 10 

scatterers per transducer resolution volume [156]. In US, acoustic impedance mismatches from 

sub-resolution inclusions scatter the incident US pulse. The scatterer’ spatial position gives rise to 

phase differences which produce fluctuations in image intensity (i.e. speckle) due to wave 

superposition. Such patterns are deterministic and described by first and second-order statistics. 

As long as the position of the scattering sources does not change with time, the speckle patterns 

remains unchanged. Therefore, speckle encodes spatial information about the scatterers. The 

distribution of signal amplitudes (first-order statistics) is independent of the transducer aperture 

[157]. Second-order statistics, e.g. the spatial autocovariance function (ACVF), provide an 

estimate of speckle size, which in turns depends on pulse bandwidth, beamwidth, transducer f-

number, working distance and consequently, the spatial resolution of the US system [158].   

https://doi.org/10.1016/j.pacs.2019.02.002
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The physics of PA acoustic wave propagation is the same as US wave propagation. The main 

difference between the signals produced by both modalities lies in the broadband nature of PA 

imaging. Theoretically, PA signals are infinitely broadband [124] while the frequency content of 

backscattered US signals is only a subset of the frequencies emitted in the initial transmit pulse 

from the transducer [140]. While PA signals are also bandpassed by the receiving transducer, they 

contain a larger range of frequencies than in the case of US signals. This might be desirable in 

approaches involving frequency analysis of PA signals and images such as F-Mode [159] or 

radiofrequency spectroscopy [95]. For this reason, frequency-dependent attenuation, diffraction 

and the transducer focus, geometry, frequency and bandwidth affect PA images [160]. PA pressure 

waves from multiple absorbers also generate constructive and destructive interference [126]. At 

boundaries between media, constructive interference typically produces a high amplitude signal, 

while both constructive and destructive interference occurs between boundaries. The signal from 

the boundary usually saturates the dynamic range of the resultant PA images giving the impression 

that acoustic resolution PA imaging is a speckle-free modality [127], [161], [162] even though 

speckle is present in applications involving non-resolvable absorbers [144], [163]. The prominence 

of this boundary “edge-effect” is strongly influenced by the transducer properties, system response 

and absorber concentration. Our group has demonstrated through simulations [126], [164] and 

experiments [145], [165], [166] that the signals giving rise to speckle are dependent on the 

reconstruction approach, spatial distribution of PA sources and the bandwidth of the ultrasound 

detector.  

 

In US imaging, the “grainy” appearance of speckle makes it difficult to differentiate between 

different types of soft tissues which suffer from low contrast due to the narrow range in their 

mechanical properties. To overcome this limitation, quantitative ultrasound (QUS) has emerged 

as a system-independent approach relying on the analysis of the radiofrequency (RF) signals from 

the backscattered US waves [30]. QUS has been used to quantify scatterer shape, size, 

concentration, spatial organization or mechanical properties [167] and characterize blood [168] or 

breast cancer treatment response [169]. Given the parallels between US and PA imaging, it is 

hypothesized that the similar analysis techniques can be applied to extract quantitative parameters 

in PA without having to resolve the individual absorbing structures.  
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PA speckle has been largely considered to be a detrimental aspect of imaging and most 

illumination and detection geometries as well as image post-processing tools attempt to suppress 

its formation [83]. However, in cases where high resolution PA images cannot be attained, and 

speckle is present, the deterministic nature of speckle permits quantitative analysis of the 

underlying absorbers. In this work, we demonstrate the formation of PA speckle in limited-view 

transducer geometries and demonstrate how speckle patterns are affected by the imaging 

transducer properties. Theoretical and experimental evidence shows that PA speckle encodes 

structural information about non-resolvable absorbers. Lastly, we illustrate how tumor vascular 

development can be monitored in cases where PA speckle is present in acoustic-resolution PA 

imaging. In this paper, we establish the mathematical formulation of PA speckle in limited-view 

transducer geometries and demonstrate experimentally how speckle patterns are affected by 

imaging transducer properties. We also discuss how the structural information encoded in PA 

signals can be extracted by RF analysis of signals in the temporal and frequency domain and how 

this approach can be applied to monitor tumor vascular development. 

 

 Mathematical formulation of PA speckle 

PA speckle arises from the linear superposition of the pressure waves generated as a result of the 

short-pulse, optical excitation of a medium consisting of optical absorbers. Figure 2-1 shows a 

visual representation of PA speckle formation from a collection of randomly positioned absorbers 

(Figure 2-1a) imaged with a linear array transducer with 𝑁 elements. The mathematical formation 

of PA speckle begins with derivations of the time-dependent PA emission obtained by solving the 

wave equation for pressure 𝑝 [124], [139], [170]. Using Green’s functions for spherical and 

cylindrical absorbers, the solution for the wave equation can be represented in terms of a velocity 

potential 𝜙: 

 

 
𝜙(𝒓, 𝑡) = −

𝛽

4𝜋𝜌𝐶𝑃
∫ 𝑑𝑡′ ∫ 𝑔(𝒓, 𝑡|𝒓′, 𝑡′)𝐻(𝒓′, 𝑡′)𝑑𝒓′

𝑡

0

 (2.1) 

 

where, 𝛽 is the thermal expansion coefficient, 𝜌 is the density, 𝐶𝑃 is the heat capacity per unit 

mass, 𝑟 is the spatial position, 𝐻 is the heating function defined as the energy per unit volume and 

time 𝑡 deposited by the incident radiation beam in the sample. The pressure is the first time 
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derivative of the velocity potential, namely 𝑝 = −𝜌
𝜕𝜙

𝜕𝑡
⁄  (Figure 2-1b). In our model, the time 

domain impulse response of the transducer as a function of center frequency is given by [164]: 

 

 
𝑔𝑇(𝜔0, 𝜉, 𝑡) =

𝜉

√2𝜋
𝑒𝑥𝑝 (−

𝜉2𝑡2

2
) cos(𝜔0𝑡) (2.2) 

where, 𝜛0 is the center frequency, 𝜉 is the -6dB bandwidth. To account for the limited-view 

geometry, a directivity function 𝐷(𝛼) was computed for each element as a function of angle 𝛼 

relative to the center of each transducer element [171]:  

 

 
𝐷(𝛼) = |

2𝒥1(𝑘𝑅 sin 𝛼)

𝑘𝑅 sin 𝛼
| (2.3) 

 

where, 𝒥1 is the first order Bessel function, 𝑘 is the wavenumber and 𝑅 is the transducer aperture. 

The bandlimited (BL) PA signal from 𝑀 absorbers (Figure 2-1c) is the temporal convolution of 

the directivity-corrected pressure from each absorber 𝑝𝑚(𝒓, 𝑡) with Eq. (2.2): 

 

 

𝑝𝐵𝐿(𝑡) = ∑[𝑝𝑚(𝒓, 𝑡) × 𝐷(𝜃)]

𝑀

𝑚

∗ 𝑔𝑇(𝜔0, 𝜉, 𝑡) (2.4) 

In acoustic-resolution PA imaging using linear array transducers, the image is generated from the 

recorded PA signals using delay-and-sum beamforming by dynamically focusing to a point in the 

imaging space using 𝑁𝐴 sub-aperture elements. The 𝑝𝑛
𝐵𝐿(𝑡) generated from an absorbing source 

located at location 𝒓𝑚 will arrive at the 𝑛𝑡ℎ transducer element at time 𝑡 = (|𝒓𝑛 − 𝒓𝑚|)/𝑣𝑠. At the 

(𝑛 + 1)𝑡ℎ element, the RF signal from the same source will be delayed by 𝑡 = (|𝒓𝑛+1 − 𝒓𝑚| −

|𝒓𝑛 − 𝒓𝑚|)/𝑣𝑠 due to the path difference created by the spatial separation of adjacent elements. 

Signals received from the spatial position
mr were compensated for the relative delays on sub-

aperture 𝑁𝐴 and adding their contributions. The beamformed (BF), bandlimited PA RF line (Figure 

2-1d) then becomes: 

 

 

𝑝𝑛
𝐵𝐿(𝑡) = ∑ 𝑝𝑛

𝐵𝐿(𝑡 − 𝜏𝑛)

𝑁𝐴−1

𝑛=0

 (2.5) 



CHAPTER 2 

 

28 

The summation/interference of all time-delayed PA signals is the source of PA speckle, as is the 

case in US imaging [155]. The phase of each wavelet is determined by the time delay, and thus 

spatial position, of each absorber within the transducer’s resolution volume. The summation of the 

wavelets contributes to an interference pattern. The interference pattern depends on the spatial 

distribution and physical properties of the absorbers and can be analyzed using speckle envelope 

statistics [172] and frequency-based techniques [169], as described in the next section. Following 

beamforming, the PA images are displayed using the logarithmically compressed Hilbert 

transform of the RF matrix at each scanning location. The final, reconstructed image shown in 

(Figure 2-1e) is derived by taking the envelope of the RF signals using the Hilbert transform ℋ: 

 

 

The spatial coordinates (𝑥, 𝑧) are obtained using the transducer pitch and speed of sound in the 

lateral (𝑥) and axial (𝑧) directions, respectively. 

 
Figure 2-1: Formation of PA speckle. (a) 3D visualization of the geometry of a numerical phantom 

containing randomly positioned spherical absorbers of different diameter. (b) Typical non-

bandlimited PA signals from absorbers of three different diameters. (c) Bandlimited version of PA 

signals shown in (b). The range of frequencies is determined by the ultrasound detector used. (d) 

Representative, beamformed PA RF line with contributions from all absorbers. (e) Resultant PA 

B-mode image obtained by delay-and-sum beamforming. 
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 Materials and methods 

In this section, three analysis techniques will be introduced for probing the morphological 

properties of non-resolvable absorbing structures giving rise to speckle. Simulations of media 

containing spherical and cylindrical absorbers will be used to demonstrate the formation of PA 

speckle. Experimental phantoms containing non-resolvable absorbers will illustrate the effect of 

the imaging transducer spatial resolution on speckle size. As the primary source of the 

photoacoustic signals in tissues is red blood cells, simulations of vascular trees and PA images of 

mouse tumors will be used to illustrate changes in speckle characteristics in growing tumors. 

 

2.3.1 Analysis methods 

Figure 2-2 shows an overview of the three techniques used in this paper for analyzing PA signals. 

Each method was applied to both simulations and experimentally acquired PA images containing 

speckle from spherical and cylindrical absorbers. The major distinction between the techniques 

was whether the signal analysis was performed in the temporal or frequency domain. In 

combination, these techniques will be used to evaluate the changes in PA images due to variations 

in the concentration and size of unresolvable absorbers (Sections 2.4.1.1 and 2.4.1.2) and identify 

periodic patterns present in PA images containing speckle (Section 2.4.1.3). Each analysis 

technique is described below: 

 

(i) The envelope statistics method models the amplitude of the envelope of the RF signals by 

a statistical distribution. The distribution characteristics depend on the physical size, 

concentration, and spatial distribution of absorbing structures [172]. The amplitude of the 

envelope of the RF signals, 𝐴, for each RF signal in a phantom was compared to three 

statistical distributions: Rayleigh, Generalized Gamma, and Nakagami (Figure 2-2b). Fully 

developed speckle was established when the ratio of the mean to the variance of the 

amplitude (also known as the speckle signal to noise ratio, SNR) is equal to 1.91 [173]. 

The fit parameters of each distribution were recorded as a function of absorber size and 

concentration.  

 



CHAPTER 2 

 

30 

(ii) The radiofrequency spectroscopy technique is based on the analysis of the frequency 

content of the PA signals which changes based on the size and shape of the absorbing 

structures [124]. The spectral slope (SS) of the normalized or non-bandlimited power 

spectrum (Figure 2-2c, middle box) was computed by linear regression within the -6 dB 

bandwidth of the transducer for a range of absorber sizes and increasing absorber size 

polydispersity. The normalized PA power spectra were obtained either from the non-

bandlimited PA frequency spectra in the case of the simulations, or by normalizing the 

power spectra by spectra acquired from a reference signal for experiments. This approach 

is similar to what is used in ultrasound tissue characterization [29]. A straight line was fit 

to the resultant normalized spectra within the -6 dB bandwidth of the transducer in order 

to extract the spectral parameters: 

 

 𝑃𝑆𝑓𝑖𝑡(𝑓) = 𝑆𝑆 × 𝑓 + 𝑌𝑖𝑛𝑡 (2.7) 

 

where, 𝑃𝑆𝑓𝑖𝑡 is the result of performing linear regression on the normalized spectra, 𝑆𝑆 is 

the spectral slope measured in dB/MHz and 𝑌𝑖𝑛𝑡 is the y-intercept of the fit measured in 

dB. The average SS was computed for all the spectra included in a ROI, for various of 

absorber sizes and increasing absorber size polydispersity. 

 

(iii) The cepstral analysis technique uses the frequency content of the RF signals to estimate 

the absorber spacing [174]. This technique determines the temporal location of the 

dominant (first) cepstral peak which can be converted to a physical distance by accounting 

for the speed of sound within the medium, 1540 m/s in this case (Figure 2-2c, bottom box). 

The Euclidean norm was used to calculate the true absorber spacing from spatial 

coordinates.   
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Figure 2-2: Overview of analysis techniques. (a) Representative PA RF signal (red) and its 

envelope (black). (b) Temporal domain analysis obtained through envelope statistics (top box). (c) 

Frequency domain analysis obtained through the Fourier transform of PA signals yields 

radiofrequency spectroscopy (middle box) and cepstral analysis (bottom box).  

 

For each technique, the PA B-mode images obtained from Eq. (2.6) were divided into overlapping 

(75%), square-shaped ROIs whose size was ~10 ultrasonic wavelengths (estimated from the center 

frequency of the imaging transducer). The average size of the speckle in a PA B-mode image was 

calculated by the 2-D ACVF which is a descriptor of the spatial correlation of texture [158]. In the 

frequency domain, the ACVF is given by: 

 

 

where, 𝑈(𝜔𝑥, 𝜔𝑧) is the 2-D Discrete Fourier transform of the PA image obtained from Eq. (2.6) 

which contained within the ROI over the spatial frequencies 𝜔𝑥 and 𝜔𝑧, and 𝑈∗(𝜔𝑥, 𝜔𝑧) is its 

complex conjugate. After transforming the 𝐴𝐶𝑉𝐹(𝜔𝑥, 𝜔𝑧) back to the spatial domain through an 
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inverse Fourier transform, the cross-sections of the corresponding 2-D ACVF in the axial and 

lateral directions is taken to calculate the respective speckle sizes.  

 

2.3.2 Simulations 

2.3.2.1 Modeling spherical absorbers 

Numerical phantoms of dimensions 10 × 10 × 10 mm were constructed within a 1000 mm3 region 

of interest (ROI). Spherical beads of radius 𝑎 were randomly positioned within the phantom. PA 

signals were computed from the time derivative of Eq. (2.1). The transducer modeled was the 

VevoLAZR (Fujifilm-VisualSonics Inc., Toronto, Canada) which is a 21 MHz linear array probe 

(LZ250 model, 256 elements, 90 μm pitch, 9-33 MHz -6dB bandwidth, 5.44×106 µm3 resolution 

volume) [151], [175], [176]. It was positioned 5 mm above the phantom. A total of 86 distinct, 

numerical phantoms were simulated to test analysis techniques described in Section 2.3.3: 

 

(i) The envelope statistics phantoms (27 phantoms) were simulated by changing the size (5-

60 μm) and the concentration of beads (0.1, 1 and 10 beads per resolution volume).  

 

(ii) The radiofrequency spectroscopy phantoms (50 phantoms) were simulated by changing the 

bead radius from 5 to 135 μm to test the effect of size and polydispersity (achieved by 

changing the standard deviation (𝜃 parameter) of a Generalized Gamma distribution for 

bead size).  

 

(iii) The cepstrum analysis phantoms (11 phantoms) were simulated with different populations 

of periodic and random absorbing structure (defined as the grid-to-random or G:R ratio). 

The beads were either placed in a 3D grid of defined spacing (100:0% ratio) or partially 

randomized (50:50% and 15:85% ratios). For the latter, the beads concentration ranged 

from 8 to 1469/mm3. 

 

2.3.2.2 Modeling cylindrical absorbers 

A 3D computational vascular network model was generated to investigate the impact of the 

geometrical arrangement of cylindrical absorbers (blood vessels) on the formation of PA speckle. 
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The approach is based on a fractal geometrical model described elsewhere [139], [177], [178]. 

Briefly, the network begins with a parent vessel bifurcating to give rise to two daughter branches 

which bifurcate further. Using cylindrical segments, the vascular trees evolved successively down 

to the arteriole level (diameter ~20 µm). For the purposes of this study, chaotic tumor vasculature 

[179] was modeled by randomly changing the branching angle between 25-140◦ [178]. It was not 

our intention to model the complex vascular morphology of a tumor but rather to investigate the 

effects that increasing the vessel diameter, branching order and vessel length might have on PA 

speckle signals. These changes in vessel characteristics are well documented in animal models of 

tumor growth [180], [181].  

 

The simulation parameters were based on histological measurements of vessel size from in-vivo 

mouse tumors at 7 and 14 days post-inoculation (sees Section 2.3.3.2) [150], [151]. The following 

simulation parameters were used to achieve a mean diameter of all cylinders as close to the 

experimentally measured vessel size: 

 

(i) Day 7 tumors: 184 μm parent vessel diameter; 0.75 mm parent vessel length; 37.8 μm 

mean diameter; 360 μm mean vessel length; branching order of 9; 508 total vessels. 

 

(ii) Day 14 tumors: 460 μm parent vessel diameter; 1 mm parent vessel length; 48.2 μm 

mean diameter; 352 μm mean vessel length; branching order of 12; 4092 total vessels.  

 

For every cylinder in the vascular tree, the PA signals were computed by solving Eq. (2.1) for the 

radii 𝑟 and lengths 𝐿 listed above. For these simulations, the transducer modeled was a VevoLAZR 

40 MHz linear array probe (LZ550 model, 256 elements, 50 μm pitch, 9-50 MHz -6 dB 

bandwidth).  

 

2.3.3 Experiments 

2.3.3.1 Construction and imaging of physical phantoms 

To study the dependence of PA speckle dimensions on the properties of the imaging transducer, 

three physical phantoms were constructed and imaged with four transducers (5-400 MHz) using 

three different PA imaging systems, the Ultrasonix RP linear array, the VevoLAZR US/PA linear 
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array, and the SASAM PA microscope (Supplementary Figure 2.A). The dimension of the 

phantoms, the acoustic properties of the imaging transducers and the phantom preparation methods 

are summarized in Supplementary Figure 2.B. The optical absorbers for each system were either 

black glass (5 MHz transducer) or black polystyrene (40/200/400 MHz transducer) beads. The 

phantoms were constructed so that there were at least 10 beads per resolution volume of each 

transducer. For images acquired using the 5, 40, and 200/400 MHz transducers, the speckle size 

was estimated by computing a single ACVF for 305, 315, and 120 different overlapping ROIs 

within the image, respectively. All ACVFs from the same image were then averaged to obtain the 

mean speckle size. For each phantom, envelope statistics techniques were applied to obtain the 

SNR and the Nakagami 𝑚 parameter. For the 40 MHz transducer, each of the analysis techniques 

described in Section 2.3.1 were performed for two different spherical absorber diameters (3.5 and 

15 μm). 

 

2.3.3.2 In-vivo imaging of tumors  

All experimental protocols were approved by the University Health Network (Toronto, Canada) 

Animal Care Committee. A murine breast cancer cell line (EMT-6) was inoculated subcutaneously 

on the footpad of BALB/c mice. Volumetric PA images of the tumors were acquired using 750 nm 

illumination with the VevoLAZR system (Fujifilm-VisualSonics, Toronto, Canada). Imaging was 

performed 7 days (n = 3 mice) and 14 days (n = 4 mice) post-inoculation with mice sacrificed after 

imaging. CD31 histological staining was used to compute the average vessel size at each imaging 

time point for comparisons with the vascular trees (see Section 2.3.2.2). A PA reference phantom 

consisting of black carbon beads (1-12 μm diameter) was used as a measure of the system 

dependencies and to remove the system response for RF spectroscopy [151], as described in 

Section 2.3.1. The size of speckle (estimated from the 2D ACVF) from images of in-vivo tumors 

as well as simulated vascular trees were compared to the transducer spatial resolution. 
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 Results and discussion 

2.4.1 Probing the structural properties of non-resolvable, spherical 

absorbers 

2.4.1.1 Envelope statistics  

Figure 2-3a shows PA B-mode images from collections of randomly positioned, spherical 

absorbers for increasing bead concentration. The images are normalized to the maximum image 

pixel amplitude of the image containing approximately 10 beads per resolution volume (b/rv) of 

the imaging transducer (5.44 × 106 µm3). As absorber concentration increased, the PA signal 

amplitude increased, resulting in a shift of the envelope histograms to the right (Figure 2-3b). The 

envelope histograms can be used to assess the presence of fully developed speckle by relying on 

the either SNR  metric and/or the fit to the Rayleigh probability density function (PDF) [172]. 

Fully developed speckle was observed as the speckle SNR approached the value of 1.91 with 

increasing bead concentration (Figure 2-3b). The other two statistical models, the Generalized 

Gamma and Nakagami provide better fits than Rayleigh in cases of lower number densities (0.1 

and 1 b/rv) and become identical to Rayleigh for ≥10 b/rv (SNR = 1.91). These results agree well 

with those obtained with envelope statistical analysis  in US imaging [182] and support the 

assertion that speckle statistics can be used to characterize acoustic-resolution PA images. Studies 

from US imaging show that the Generalized Gamma 𝑎 parameter is sensitive to scatterer size and 

concentration. Additionally, the Nakagami 𝑚 parameter approaches 1 for fully developed speckle, 

independent of scatterer size [183]. Our simulations demonstrate that the same trend holds when 

considering PA emission from uniformly illuminated spheres. Specifically, the 𝑎 parameter 

increases monotonically with absorber radius (Figure 2-3c) and the 𝑚 parameter becomes 1 for 

>100 absorbers/mm3 (Figure 2-3d). The Ω parameter (Figure 2-3e) increases 36x for the range of 

number densities examined. In US imaging, the Nakagami fit parameters have been used to 

characterize the scatter properties in malignant and benign breast tumors [183]. We hypothesize 

that application of similar statistical analysis techniques to experimentally acquired PA data can 

be used for characterizing changes during vascular-targeted cancer treatments [65].  
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Figure 2-3: Simulation results for the envelope statistics method. (a) PA Bmode images of 5 μm 

spherical bead phantoms for increasing b/rv. (b) Corresponding PA signal envelope histograms 

fitted to the Rayleigh, Generalized Gamma (GG) and Nakagami (NG) statistical distributions. (c) 

GG 𝑎, (d) NG 𝑚 and (e) NG Ω parameters plotted as a function of size and concentration. 

 

2.4.1.2 Radiofrequency spectroscopy 

Given that PA signal amplitude is affected by absorber morphology, size, concentration, optical 

absorption and laser fluence [160], it can be difficult to isolate the impact that any one of these 

factors has when imaging biological tissue [184]. Here, we investigate a subset of these parameters 

(size and concentration) in a well-controlled simulation. Figure 2-4a and Figure 2-4b show PA 

speckle in simulated PA B-mode images for various absorber sizes and degree of polydispersity. 

The mean image intensity increased with size (14.5x from 10 to 30 μm) and polydispersity (2x 

from 0.2 to 12.6 μm). Figure 2-4c shows the PA spectral slope (SS) as a function of bead radius 

for two different absorber concentrations. Increasing absorber size decreases the SS regardless of 

concentration, suggesting that the PA RF spectra contain information about the absorber size. This 
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is consistent with previous studies in which the SS was used to quantify microstructure in 

biological tissue and for red blood cell aggregation in blood suspensions [145], [185]–[187]. 

 

Figure 2-4: Simulation results for the radiofrequency spectroscopy method. PA B-mode images 

for (a) monodisperse and (b) polydisperse collection of beads at a concentration of 10 beads per 

resolution volume. SS as a function of (c) bead radius and concentrations and (d) polydispersity 

(controlled by the 𝜃 parameter).  

 

These results suggest that the PA SS can be used to monitor changes in size without resolving 

absorbing structures. This is in agreement with previous PA studies at lower ultrasonic frequencies 

[188]. Figure 2-4c reveals that beyond 30 μm, the SS remains constant with increasing size for the 
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frequencies considered in these simulations. Thus, it may be possible to determine when the 

absorber radius is above or below a certain threshold (30 μm in this case) by computing the SS 

parameter from an experimentally acquired PA B-mode image. The SS curve flattening for larger 

sphere size seen in Figure 2-4c is due to the relation of absorber size to the wavelength of the 

detected US wave. In US imaging, Rayleigh and Faran scattering regimes are defined for 

scatterering structures whose size is smaller and similar to/larger than the US wavelength, 

respectively [140]. Due to the broadband nature of PA signals, frequencies from equivalent 

regimes are present in PA imaging. For 𝑘𝑎 > 1 (where 2𝜋𝑓/𝑐 is the ultrasonic wavenumber of 

the detected ultrasound as determined by the transducer characteristics), the SS does not 

significantly change with absorber size and no variations in spectral features (minima and maxima) 

are apparent. This is seen in Figure 2-4d where the PA SS becomes more negative for increasing 

polydispersity, but only up to 30 μm. In biological tissues, polydispersity exists at multiple 

biological length scales [95] but is difficult to identify in PA B-mode images alone (Figure 2-4b). 

The PA SS provides a tool for assessing the presence of polydispersity (observing a decreasing SS 

as a function of size) and quantifying its degree (changing magnitude of slope) with potential 

applications in monitoring vascular therapies longitudinally [133], [150]–[153]. 

 

2.4.1.3 Cepstral analysis  

Figure 2-5a shows the geometries of numerical phantoms with various percentages of regularly 

spaced 10 μm absorbers (denoted by the grid-to-random or G:R ratio). The number density of 

absorbers was 8/mm3. B-mode images are shown in Figure 2-5b. When all the absorbers are 

arranged in a grid pattern (i.e. G:R = 100:0%), their periodicity enhances the PA signal at specific 

spatial positions of the absorber (or, equivalently, absorbers separated by specific distances). It 

should be noted that the apparent size of the beads in Figure 2-5b is not an accurate representation 

of their physical dimensions (10 μm) but determined by the transducer’s point spread function.  

 

As the percentage of randomly positioned absorbers increases, the PA image begins to look like 

the B-modes shown in Figure 2-3 and Figure 2-4 but fully developed speckle does not form (SNR 

< 1.91). A challenge with such images is identifying whether the underlying tissue structure 

contains periodicity in the spatial arrangement of absorbers. This is of particular interest in imaging 

the vascular development in tumors [65]. The tumor vasculature does not have the structural 
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organization characteristic of normal tissue. PA imaging of whole tumors could in principle be 

used to quantify such changes in organization in cases where individual vessels cannot be fully 

resolved.  

 

Figure 2-5: Simulation results using the cepstral analysis method. (a) Geometries of phantoms for 

various grid (G) to random (R) ratio and (b) their corresponding PA B-mode images. (c) Power 

cepstrum of the 15:85% phantom with star denoting the location of the first peak. (d) Comparison 

of the estimated absorber with the true spacing for various number densities. 

 

Figure 2-5c shows the average power spectrum when 15% of all absorbers are arranged 

periodically. The location of the first cepstral peak (denoted by the star) is a measure of the most 

commonly occurring spacing between absorbers [174]. In the 15:85% case, the periodic absorbers 

were spaced approximately 1 mm apart, with randomly positioned absorbers occupying the space 

between. The spacing calculated through spectral analysis in Figure 2-5c agrees well with the a 

priori known grid spacing. The cepstral-estimated absorber spacing was compared for various 
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absorber concentrations ranging from 8/mm3 to 1469/mm3 (fully developed speckle). The results, 

shown in Figure 2-5d, suggest that the technique can be used to estimate the most predominant 

spacing of an ensemble of sub-resolution absorbers (without having to resolve individual 

constituents). This demonstrates the potential of speckle cepstral analysis in biomedical 

applications such as monitoring therapeutic microwave lesions in the liver [189]. We believe that 

this approach can find applications in PA imaging using limited-view geometries for 

understanding the physical properties of various biological tissues such cancerous tumors [152] 

and liver [144].    

 

2.4.2 Experimental evidence for PA speckle 

Figure 2-6 shows experimental results of PA speckle formation in imaging systems of multiple 

transducer frequencies (5-400 MHz). Speckle is ubiquitous to all images and extends from the 

centimeter (Ultrasonix RP Figure 2-6a) to the micrometer (SASAM, Figure 2-6d) length scales. 

For the Ultrasonix RP (Figure 2-6a), the large-scale pattern with speckle forms in accordance to 

the shape of the diffuse light distribution profile (see Supplementary Figure 2.A(a)). Additionally, 

because of the limited-view geometry, speckle size changes as a function of depth. These effects 

are also present in the VevoLAZR system (Figure 2-6b) with light emission from two rectangular 

strips oriented at 30◦ relative to the acoustic aperture [175]. SASAM images at 200 and 400 MHz 

(Figure 2-6c and Figure 2-6d, respectively) reveal different speckle patterns for the same phantom. 

The speckle size at 400 MHz is smaller than the 200 MHz image, consistent with the effects of 

transducer properties on image speckle.  
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Figure 2-6: Effects of the imaging transducer on PA speckle size. PA B-mode images from speckle 

phantoms imaged with the (a) Ultrasonix RP, (b) VevoLAZR and the SASAM at (c) 200 and (d) 

400 MHz. (e) Comparison between estimated speckle size and the spatial resolution of each 

system. (f) A representative 2D ACVF function from the VevoLAZR. (g) The lateral cross-section 

of the ACVF was used to estimate speckle size by measuring its FWHM.    

 

Figure 2-6e shows the speckle size estimations for all transducers. The speckle size is obtained 

from the 2D ACVF (Figure 2-6f) along with the lateral profile of the ACVF maximum amplitude 

(Figure 2-6g) shown for the 40 MHz probe. For each transducer, the speckle size was estimated 

from the FWHM of the horizontal and vertical line profiles through the center of the ACVF. The 

speckle size estimates for all systems were within 8.5% of the spatial resolution (see 

Supplementary Figure 2.C). The speckle size in US imaging predominantly depends on the 

physical properties of the imaging transducer [173]. The transducer pulse bandwidth and beam 

width significantly affect the qualitative appearance of US speckle texture. As the size of the 

transducer focal zone decreased, the lateral width of the speckle, similar to US imaging. This was 

observed in images of the same phantom with two different transducers (Figure 2-6c and Figure 

2-6d). Moreover, the calculated ACVF is comparable to the resolution volume [158], with axial 

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Lateral direction (m)

A
x
ia

l 
d

ir
e
c
ti

o
n

 ( 
m

)

 

 

Ultrasonix @ 5 MHz

Vevo LAZR @ 40 MHz

SASAM @ 200 MHz

SASAM @ 400 MHz

Spatial resolution

cm

c
m

 

 

1 2 3

0

2

4

6

d
B

-30

-20

-10

0

mm
m

m

 

 

0 5 10

5

10

15

d
B

-30

-20

-10

0

m


m

 

 

100 200

200

300

400

500

600

d
B

-30

-20

-10

0

m


m

 

 

100 200

100

200

300

400

d
B

-30

-20

-10

0

mm
m

m

 

 

3 3.5 4 4.5

4

4.5

5

5.5 0.5

0.6

0.7

0.8

0.9

(a)
5 MHz 40 MHz 200 MHz 400 MHz

(b) (c) (d)

(e)

(f)

3.6 3.8 4 4.2
0

0.5

1

Lateral distance (mm)

A
m

p
li

tu
d

e
 (

a
.u

.)

 

 ( ) ( ) 
2

, ,x zACVF FFT I x z  =

(g)



CHAPTER 2 

 

42 

speckle size inversely proportional to pulse bandwidth and the lateral speckle size increasing with 

range and beam width.  

 

Figure 2-7 shows the application of the three analysis techniques (outlined in Figure 2-2) to PA 

phantom images. The statistical distributions of the signal envelope histograms (Figure 2-7a to 

Figure 2-7d) establish that fully developed speckle formed across all the imaging systems spanning 

frequencies of 5 to 400 MHz. The criteria for fully developed speckle [172], namely the Rayleigh 

SNR equal to 1.91 and the Nakagami 𝑚 parameter approaching 1, were met for all phantoms. This 

agrees with the simulation results (Figure 2-3). When comparing two different sizes of absorbers 

(e.g. 3.5 and 15 μm), the Generalized Gamma 𝑎 fit parameter to the envelope histograms (Figure 

2-7e) increases by 4.5x with increasing size. The PA SS of the normalized spectra decreases by a 

factor of 1.4x with increasing absorber size. The decrease in SS is consistent with the simulation 

results shown in Figure 2-4. The power cepstra (Figure 2-7f) reveal the presence of a peak for the 

15 μm phantom around 220 μm while no discernable peak is visible for the phantom containing 3 

μm beads. Even though these phantoms contain a randomized distribution of absorbers, it might 

be possible that periodicities might arise within the phantom for higher concentration of absorbers. 

The location of the cepstral peak would depend on spacing of the absorbers within one resolution 

volume [174]. Moreover, the prominence/amplitude of the peak would be affected by the degree 

of randomness in the distribution of absorbers. Comparing these peaks to the simulation results 

shown in Figure 2-5c, one might postulate that the number density of periodically spaced absorber 

is most likely smaller than 15% in the entire phantom.  
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Figure 2-7: Speckle analysis techniques applied to experimental phantoms. Nagakami fits to the 

PA signal envelope for the phantoms imaged at (a) 5 MHz, (b) 40 MHz, (c) 200 MHz and (d) 400 

MHz. The calculated SNR and Generalized Gamma 𝑚 parameter are provided on top of each 

figure. For the VevoLAZR 40 MHz probe, the three analysis techniques presented in this paper, 

namely (e) Envelope statistics, (f) Radiofrequency spectroscopy and (g) Cepstral analysis were 

applied to phantoms consisting of 3 and 15 μm polystyrene beads. The arrow denotes a peak 

forming for the 15 μm absorber phantom. 
 

2.4.3 Photoacoustic speckle from tumor vasculature 

2.4.3.1 B-mode images from simulated and measured tumor blood vessels 

Tumor angiogenesis is required to sustain the metabolic demands of the tumor growth [64]. The 

tumor vasculature typically does not have the hierarchical organization present in normal tissue 

[177]. Fractal models of the vasculature offer a means of studying vascular growth by focusing on 

the size, shape and orientation of each vessel while modeling the PA wave propagation from 

vascular trees. The effect of vessel size and number was studied using models of vascular 

architecture for breast tumors [150], [151]. Figure 2-8a shows the simulation geometry and PA B-

mode images of simulated vascular trees at 7- and 14-days post-inoculation. Using histologically 
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measured data of vessel diameters for breast tumors in mice [151], we simulated a representative 

subset of the vascular architecture. The simulated PA B-mode images of the vascular trees show 

the presence of speckle arising from several hundred non-resolvable vessels at various orientations 

contained within the imaging resolution volume. Much like the spherical absorbers shown in 

Figure 2-3 – Figure 2-6, cylindrical PA sources also give rise to speckle when a sufficient number 

are contained within the resolution volume of the imaging transducer. Speckle is also present in 

the US and PA images of the in-vivo mouse tumor (Figure 2-8b). It is present at all stages of mouse 

tumor growth vessel growth. Changes in the vasculature with tumor growth were modeled by 

increasing the branching order (and therefore the total number of vessels), consistent with previous 

in-vivo reports [180], [181].  

 

The US and PA speckle patterns are similar to each another for the in-vivo mouse tumors (Figure 

2-8b). Supplementary Figure 2.D shows that estimates of the speckle size for US and PA images 

of tumors are within 10% of the spatial resolution of the VevoLAZR transducer used to image 

these tumors. However, the speckle texture differs between PA simulations and experiments. 

While the experimental tumor speckle size is comparable to the transducer spatial resolution, the 

lateral size of the simulated speckle (estimated from Eq. (2.8)) is larger than the lateral resolution. 

This could be because the directivity of the linear array implemented in the simulations through 

Eq. (2.3) might differ from the true directivity of the transducer. Additionally, the effects of light 

fluence [190] and acoustic attenuation [191] on PA images are not taken into account, potentially 

affecting the pattern observed.  

 

2.4.3.2 Radiofrequency spectroscopy analysis from tumor vasculature  

Figure 2-8c – Figure 2-8f show analysis of the growing tumor vasculature using radiofrequency 

spectroscopy and cepstral analysis. In simulations and in-vivo tumors, the PA SS (Figure 2-8c and 

Figure 2-8e) decreases by 20% and 17%, respectively as the tumor vasculature network grows in 

size from 7 to 14 days. The decrease in SS suggests that the average absorber size increases as the 

tumor grows [180]. Our previous work with vascular targeted treatments [151] has shown that the 

PA SS can be used to monitor changes in vessel size within tumors post vascular disrupting 

treatment. These results suggest that PA radiofrequency spectroscopy has the potential to 

differentiate changes in tumor vasculature (either due to tumor growth or treatment). This is an 
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area of interest to multiple research areas, including drug discovery [192], where modalities such 

as PA imaging can have a translational impact.  

 

Figure 2-8: PA speckle from simulated and experimentally measured tumor vasculature. (a) 

Geometry of the vascular tree alongside the PA B-mode for the numerical simulations of breast 

tumor vasculature. The average vessel diameters used for the simulated vasculature were 37.8 μm 

and 48.2 μm at 7 and 14 days, respectively, and were all based on histological sectioning of in-

vivo tumors. (b) US and PA images (750 nm) of in-vivo EMT-6 tumors at 7 (n =3) and 14 (n = 4) 

days post-inoculation. (c)+(e) Spectral slope and (d)+(f) power cepstra for the numerical 

simulations of tumors modeling vascular growth and the in-vivo EMT-6 tumors. The arrows 

denote the location of the largest amplitude cepstral peaks.  

 

2.4.3.3 Cepstral analysis from tumor vasculature 

Cepstral techniques can be used to probe the spatial arrangement of tumor blood vessels by 

identifying periodicities arising from non-resolvable absorbing structures. Figure 2-8d and Figure 

2-8f show the average cepstra for simulated mouse xenograft breast tumor vasculature networks 

as well as in-vivo tumors. Both simulation and experiment contain an increasing number of total 

vessels from 7 to 14 days post-inoculation. As the overall number of vessels increased, the location 

of the most prominent (largest amplitude) peak in the cepstra decreased by 100 μm for both 

simulations (Figure 2-8d) and experiments (Figure 2-8f). The presence of ceptral peaks suggests 

the existence of periodicities in the vessel spatial distribution. These periodicities can arise due to 
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specific vessel separation distances in the chaotic tumor vasculature being more common than 

others. Increasing the number of blood vessels in simulations or allowing the tumors to grow to 14 

days (in-vivo) reduces the physical separation between each vessel. This is expected to result in a 

decrease in the mode (i.e. most commonly occurring) of the blood vessel separation distance. 

While tumor vasculature is known to lose much of its periodicity and order [177], [179], it is 

possible that scant organization detectable with the cepstral analysis technique remains. While it 

may be the case that fewer than 10% of vessels have organized, periodic spacing, the results shown 

here point to differences between the periodic spacing of vessels in the 7 and 14-day old tumors.  

 

According to the simulations and experiments, it might be possible to study the spatial separation 

of non-resolvable blood vessels in a tumor using cepstral analysis [174].  The PA signal detected 

is a superposition of PA waves, with greater contributions to the signal energy from vessels of the 

relevant length scale (as determined by the ultrasound wavelengths associated with the detection 

transducer bandwidth). The branching level of the vascular tree that would principally contribute 

to the PA signal is determined by a combination of the PA signal strength of the vessel size at that 

branching level and the detection bandwidth of the US transducer [193]. The former is itself a 

combination of the size and number of such vessels within the transducer resolution volume. 

Cepstral peaks could be associated with spacings at that branching level. Future studies will focus 

on understanding the location of cepstral peaks and how these are related to the structural 

organization of vessels within growing tumors [194]. 

 

2.4.4 Remarks on the nature of speckle in photoacoustic imaging 

Our experimental findings show that PA speckle arises when PA waves from sub-resolution 

sources interfere. PA speckle is deterministic and can be described using speckle statistics. There 

are numerous references that describe PA imaging as a “speckle-free” modality [127], [161], [162]. 

The results of this work show that is not always the case. The presence of speckle in PA imaging 

depends on the imaging approach, as it is present in acoustic-resolution PA imaging but not in the 

optical resolution PA imaging. The pressure of the waves generated in PA imaging are more 

broadband compared to the backscattered waves in US imaging. The transducers and acquisition 

hardware act as lowpass or bandpass filters suppressing the high frequency components of the 

inherently broadband PA signals. In acoustic-resolution resolution PA imaging there are instances 
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in which speckle is suppressed compared to the signal from boundaries. For example, when 

imaging individual blood vessels with diameters larger than the acoustic resolution volume, the 

vessel boundaries are accentuated, and the comparatively weak signal from speckle in the vessel 

interior cannot be readily appreciated. These effects are especially prominent in the cases of images 

with limited dynamic range [127] and occur in US imaging as well. However, as we demonstrate 

here, the inability to visualize PA speckle in such cases does not preclude its existence.  

 

Formation of PA speckle from the tumor vasculature using limited-view geometries demonstrates 

the fundamental nature of the concept in-vivo. Much like the spherical absorbers shown in Figure 

2-1 through Figure 2-6, cylindrical PA sources also give rise to speckle when a sufficient number 

are located within a resolution volume of the imaging transducer. PA speckle texture is also 

affected by acoustic attenuation [191] and light fluence [190] which were not incorporated into the 

theoretical model. Additionally, in-vivo tumors contain an unknown, but rather significantly large 

number of capillary beds [64] that would increase the number of non-resolvable PA absorbers in 

the transducer resolution volume. Moreover, for some imaging resolution volumes, vessels of the 

order larger than the resolution volumes exist. These parameters would influence the appearance 

of the speckle texture. Accounting for these effects would allow for more direct comparisons to 

experimentally measured tumors using limited-view PA geometries [133], [136], [137], [150], 

[151], [195]. The presence of speckle in PA imaging may be perceived as undesirable noise, as it 

is sometimes in US imaging, where it can obscure boundaries. However, since it is a deterministic 

signal, it has potential applications in the tissue characterization and speckle tracking [196].  

 

 Conclusions  

Speckle in PA imaging arises from the spatiotemporal superposition of non-resolvable absorbers. 

In this work, we demonstrate that speckle carries information about the underlying absorber 

structure of individual sub-resolution sources. This paper introduced several analysis techniques 

(envelope statistics, radiofrequency spectroscopy and cepstral analysis) that can be applied to 

acoustic-resolution PA imaging with speckle. A fractal-based vascular model of tumors revealed 

that PA speckle also arises from complex tumor geometries consisting of cylindrical sources. 

These models were corroborated using PA data acquired from mouse tumors in-vivo. We also 

demonstrated the feasibility of the analysis techniques in quantifying absorber size and 
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distribution. These findings have potential applications in monitoring changes in vessel size during 

vascular targeted cancer therapies. 
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 Supplementary information 

2.7.1  Supplementary Figure 2.A 

 
PA imaging setups for the (a) Ultrasonix RP (5 MHz linear array, 128 elements) (b) VevoLAZR 

(40 MHz linear array, 256 elements). (c) Kibero SASAM (200 MHz and 400 MHz single element 

transducers). 

 

(a) Ultrasonix RP clinical system (BK Ultrasound, Richmond, BC, Canada) 

 

The laser source was an Nd:YAG-pumped optical parametric oscillator (OPO, Opotek Inc., 

Carlsband, CA, USA) operating at 760 nm. It was focused into the phantom using a focusing lens 

and a mirror tilted at 45◦. The laser was operated at a 10 Hz pulse repetition frequency (PRF), with 

each pulse emission triggering the acquisition of a passive 5 MHz center frequency linear array 
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transducer with 7 MHz -6 dB bandwidth. The non-beamformed PA signals were acquired using 

an external DAQ attached to the RP unit. A total of 15 frames were acquired and beamformed 

offline using a delay-and-sum approach prior to temporal averaging of all frames at 14 Hz frame 

rate.     

 

(b) VevoLAZR pre-clinical system (Fujifilm-VisualSonics Inc., Toronto, ON, Canada) 

 

A linear array probe with 256 elements and 40 MHz center frequency (41 MHz -6 dB bandwidth) 

with an integrated laser operating at 680 nm was used to image the phantom through water. The 

laser source was a Nd:YAG pumped OPO (Opotek Inc.) operating at 10 Hz PRF [175]. The light 

is emitted from two rectangular strips on both sides of the acoustic aperture of the transducer, at a 

30◦ angle relative to the imaging plane. A total of 5 non-beamformed PA frames were acquired, 

beamformed and averaged offline. 

 

(c) Kibero SASAM photoacoustic microscope (Kibero GmbH, Saarbrucken, Germany) 

 

The SAarland Scanning Acoustic Microscope (SASAM) was used with two different single 

element focused transducers operating at center frequencies of 200 MHz (aperture diameter/focal 

depth 500 μm, 138 MHz -6 dB bandwidth) and 400 MHz (aperture diameter/focal depth 350 μm, 

218 MHz -6 dB bandwidth). A fiber-coupled 532 nm Nd:YAG laser (Teem Photonics, Meylan, 

France) operating at 4 kHz PRF was used to generate the PA waves within the phantom. A variable 

neutral density (ND) filter (Thorlabs Inc., Newton, NJ, USA) was used to vary the energy at the 

input end of a single mode fiber (Costal Connections, Venura, CA, USA). The laser output was 

passed through a beam splitter; the transmitted portion was focused onto the phantom using a 4X 

microscope objective, and the reflected portion was directed into a Mach6 energy meter (Gentec 

Electro-Optics Inc., Quebec City, QC, Canada). The transducer and laser were coaxially aligned 

and a phantom region of 200 μm × 100 μm was scanned through the confocal zone. A total of five 

B-mode images were acquired 20 μm apart and were spatially averaged. The same phantom was 

imaged using both the 200 and 400 MHz transducers. 
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2.7.2 Supplementary Figure 2.B 

 
(a) Summary of the characteristics of the phantoms and the PA imaging system. (b) Spatial 

resolution of each transducer as a function of its center frequency. (c) PA frequency response for 

the transducers using in this study measured using a 200 nm gold film.  

 

Phantom preparation 

Phantoms imaged by the linear arrays were prepared using 10% (w/v) porcine skin gelatin while 

the phantom imaged by the single element system consisted of 1.5% (w/v) agarose (Sigma-Aldrich 

Co., St. Louis, MO, USA) as the suspending medium. The concentration of gelatin was chosen in 

order to achieve a frequency dependent attenuation of approximately 0.25 dB cm-1 MHz-1. The 

optical absorbers for each system were: (i) 5 MHz linear array: 250 μm black glass beads 

(Corpuscular Inc., Cold Spring, NY, USA); (ii) 40 MHz linear array: 15 μm black polystyrene 

beads (Merck Millipore, Pithiviers, France); (iii) 200/400 MHz single elements: 0.2 μm black 

polystyrene beads (Polysciences Inc., Warrington, PA, USA). The number of beads per each 

phantom was calculated based on the criterion that at least 10 beads per resolution volume of each 

imaging transducer. 

 

In order to construct the phantoms imaged by the linear array systems, degassed water was heated 

to 35◦C along with the beads before the gelatin powder was slowly added. This suspension was 
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magnetically stirred in order to achieve homogeneity until it reached 65◦C and the gelatin was 

entirely dissolved. It was then placed inside a custom-made rotisserie for 3 hours at room 

temperature to ensure homogenous mixing of the beads inside each phantom. Each phantom was 

then kept at 4◦C for 24 hours prior to imaging in order to achieve full solidification of the gelatin. 

The 0.2 μm beads for the single element transducer phantom were centrifuged, supernatant 

aspirated and then re-suspended in molten agarose. The agarose was then sandwiched between two 

microscope coverslips and kept at 4◦C for 15 minutes.  

2.7.3 Supplementary Figure 2.C 

 
Speckle size estimations and comparison with spatial resolution for (a) the Ultrasonix RP, (b) the 

VevoLAZR and the Kibero SASAM at (c) 200 MHz and (d) 400 MHz in the axial and lateral 

directions. Each symbol represents the average speckle size estimated from a sliding window ROI 

through each image. Cross bars represent the standard deviation of the mean speckle size estimates 

in both dimensions. 
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2.7.4 Supplementary Figure 2.D 

 
Ultrasound and photoacoustic speckle size estimates for a representative Balb/c mouse EMT-6 

tumor imaged 14 days post-inoculation. The images were acquired with the VevoLAZR system at 

40 MHz and 750 nm illumination. Each circle represents the average speckle size estimated from 

a sliding window ROI through each image. Cross bars represent the standard deviation of the mean 

speckle size estimates in both dimensions.
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3 Photoacoustic imaging of cancer treatment 

response: Early detection of therapeutic effect from 

thermosensitive liposomes 

The contents of this chapter have been previously published in PLOS ONE. Permission to 

reproduce this article was granted by the Public Library of Science and is provided in 

Appendix A.1.2.  

 

JP May*, E Hysi*, LA Wirtzfeld, E Undzys, S-D Li and MC Kolios. “Photoacoustic imaging of 

cancer treatment response: Early detection of therapeutic effect from thermosensitive liposomes” 

PLOS ONE 2019; 11(10): e0165345 – https://doi.org/10.1371/journal.pone.0165345 
*These authors contributed equally to this work. 

 

 Introduction 

During cancer treatment it is normal practice to monitor the tumor for changes indicative of 

treatment response. Conventionally, studies monitor volumetric changes in tumor size which 

typically occur weeks after the administration of treatment and thus are not suitable as markers of 

early treatment response [197]. Instead, dynamic or functional imaging techniques capable of 

monitoring the relative effectiveness of drug delivery [198]–[201], or better still detecting the 

corresponding therapeutic effect, during or immediately after treatment are highly sought after 

[202]. With this in mind, we recognized that many drugs and delivery therapies induce changes to 

the tumor microenviroment long before the overall volume visibly changes, and through further 

investigation it might be possible to use these for an early detection method of therapeutic effect.  

 

TSLs are a drug delivery technology that allows the targeting of a drug payload to a localized area 

through the application of mild-hyperthermia (39-42°C) [203], [204]. The release temperature of 

a TSL can be tuned though the incorporation of lipids with different transition temperature (Tm) or 

by adding other compounds (e.g. lyso-lipids, surfactants) to the lipid membrane. This approach 

has the potential to be particularly effective in cancer treatment, where heating (and so the drug 

release) can be confined to just the tumor area. This minimizes the uptake of drug elsewhere in the 

body and significantly reduces any unwanted side-effects associated with chemotherapy regimens 

[205]. A feature of the most clinically advanced ultra-fast temperature sensitive liposomes (uTSLs) 

is their ability to rapidly burst-release their drug payload (in seconds) when entering an area heated 

https://doi.org/10.1371/journal.pone.0165345
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to mild-hyperthermia, but remain intact and retain the majority of their payload (for more than an 

hour) at normal physiological temperatures (Figure 3-1). Hence, mild hyperthermia is usually 

applied within the first hour or two of uTSL treatment, for maximized concentration of 

encapsulated drug in circulation. 

 

Figure 3-1: Schematic of the mode of action of a temperature sensitive liposome (TSL) for 

intravascular release. The TSL passes through normal unheated vasculature intact (a), but on 

reaching the heated tumor (b) drug is released in a burst-release fashion, creating a high local drug 

concentration which permeates into the tumor tissue. 

 

Lyso-lipid Temperature Sensitive Liposome (LTSL; DPPC/MSPC/DSPE-PEG, 86:10:4 mol%) is 

an example of such a burst-release TSL formulation [205], [206], which has progressed into late 

stage clinical trials delivering the drug doxorubicin (ThermoDox®, Celsion Corporation, 

Lawrenceville, NJ). This formulation is currently in clinical trials for hepatocellular carcinoma 

(phase III), for recurrent chest wall breast cancer (phase I/II) and for liver cancer (proof-of-

principle study). Our group has previously reported on an improved TSL formulation, HaT (Heat-

activated cytoToxic, DPPC:Brij78, 86:4 mol%), which exhibited increased release of doxorubicin 

(DOX) relative to LTSL (2-fold at 40ºC and 1.2-fold greater at 41ºC) [207]–[210]. In vivo, these 

release increments translated to improved tumor regression for HaT-DOX relative to LTSL-DOX.  

The mechanism of action for an ultrafast TSL has been investigated and discussed in the literature 

for LTSL-DOX [211], [212]. These studies suggest that the mechanism and biological sequelae of 
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events are different for an ultrafast TSL-DOX treatment compared to an infusion of free DOX, 

when each is combined with mild-hyperthermia. More pronounced activity is observed with the 

TSL treatment, where the rapid drug release leads to high levels of DOX in the vasculature. 

Subsequently, the drug attacks endothelial cells, and diffuses into the interstitial space, leading to 

tumor cell death. In such a case, the damaged endothelial cells may no longer offer the necessary 

support to contain the blood and its contents. This leads to vascular hemorrhage across the 

microvessel boundary, blood coagulation and vascular shutdown [207], [210]. These effects are 

more prominent for tumor vessels due to their inherent permeability, structural immaturity, and 

high proliferation in these regions of active angiogenesis [212]. Therefore, it is hypothesized that 

these events could be used as an endogenous physiological marker for an effective treatment and 

a potential surrogate marker of therapeutic effect. One such marker is the tumor blood oxygenation, 

and we sought to investigate this parameter in the context of relative levels of oxygen saturation 

(sO2) throughout the treatment period with HaT-DOX and mild-hyperthermia.  

 

Longitudinal monitoring of blood sO2 as a function of treatment response requires an imaging 

modality which can non-invasively monitor oxygenation with sufficient spatial resolution and 

accessibility. Optical imaging techniques are capable of measuring oxygenation, but are severely 

limited in their penetration depth and spatial resolution due to the dominance of ballistic photon 

scattering [43]. Blood Oxygenation Level Dependent contrast (BOLD) MRI and oxygen-enhanced 

(OE) MRI are the only clinical imaging modalities capable of assessing volumetric tumour 

oxygenation [213]–[215]. However, these techniques are limited by their cost and accessibility 

which renders them impractical for assessing the early changes in oxygenation. Photoacoustic (PA) 

imaging has shown a great deal of promise in combining the most advantageous features of optical 

modalities (contrast) and ultrasound (US) technologies (resolution) [83], [87], [190], [216]–[218]. 

Indeed, there are also recent reports correlating PA imaging data with that of the aforementioned 

MRI methods [136], [219]. PA images are acquired by detecting the ultrasonic pressure waves 

which are generated from the thermoelastic expansion of tissue as a result of short laser 

illumination. Sweeping of the optical wavelengths of illumination allows for functional PA 

imaging as selective absorption of the tissue chromophores would give rise to the multiple sources 

of contrast contained within the PA data. In the case of oxygenation, PA imaging has been able to 

compute absolute values of sO2 by taking advantage of the oxygen-dependent optical absorption 
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of the hemoglobin (Hb) inside red blood cells [160]. Photoacoustic imaging has yielded a great 

deal of interest over the past few years, with its ability to provide co-registered structural and 

functional information on a wide variety of biomedical applications. However, most approaches 

have focused on engineering advances with the aim of improving the spatial resolution of the 

technique [184]. The application of PA imaging to the treatment monitoring problem has only 

begun recently with several encouraging studies demonstrating the potential of the technique for 

detecting changes of sO2 in the tumor vasculature as a function of treatment [133] as well as during 

tumor development [220] and even imaging vascular perfusion [221].  

 

Our study utilizes PA imaging to provide new insights into understanding the mechanism of action 

of the HaT-DOX TSL formulation and investigates the feasibility of PA imaging for cancer 

treatment monitoring. We utilize PA imaging to map the changes in the oxygenation of multiple 

slices within a murine breast cancer model in the footpad treated with our TSL formulation, HaT-

DOX. The efficacy of this treatment was studied relative to a saline control, and all treatments 

were combined with an application of mild hyperthermia (HT). Very early changes in sO2 were 

examined for each tumour and these were correlated to the long-term treatment outcomes.  

 

 Materials and methods 

3.2.1 Materials 

1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was purchased from Avanti Polar 

Lipids (Alabaster, AL). Brij78 [(polyethyleneglycol-20) stearyl ether], sepharose CL-4B and 

FITC-lectin were bought from Sigma Aldrich (Oakville, ON, Canada). DOX was purchased from 

Tocris Bioscience (Ellisville, MO). All other reagents were of analytical grade. 

 

3.2.2 Preparation of HaT-DOX liposomes 

HaT liposomes were prepared by thin lipid-film hydration followed by membrane extrusion to 

control size, as described in previous reports [207], [208]. Briefly, 45 mg of lipids (DPPC/Brij, 

96:4 mol%) were dissolved in isopropanol and the solvent was evaporated under a flow of nitrogen 

gas at ~60°C. The resultant lipid film was dried further under high vacuum overnight to remove 

any residual organic solvent. Lipid films were hydrated with 300 mM citric acid (1 mL) to form 
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multilamellar vesicles, which were then extruded 21 times through polycarbonate filters (pore size: 

0.1 µm) at 65°C to adjust the liposome size. Following extrusion, formulations were cooled to 

room temperature and checked for size and polydispersity index (PDI) by dynamic light scattering 

(DLS). 

 

To load DOX into the liposomes, a pH gradient was used to obtain a high loading of drug via a 

remote loading strategy. This method concentrates the drug into the liposome core through the 

protonation and trapping of DOX upon entering the liposome core. The pH gradient was generated 

by first exchanging the exterior buffer with HBS (25 mM HEPES buffered saline, pH 7.4) via 

dialysis (Slide-A-lyzer 10 kDa MWCO, Pierce Biotechnology, Rockford, IL). The dialysis buffer 

(500 mL) was exchanged every hour for 3 hours, at which point the pH was checked to ensure it 

was close to neutral. The liposome and DOX were then incubated at 37°C for 90 min at a 20:1 

ratio (w/w), respectively. Following incubation, the un-encapsulated DOX was removed by 

purification with a sepharose CL-4B column eluting with HBS. The liposome fraction was 

analyzed for any change in size, PDI and drug content. DOX concentration was determined using 

fluorescence (excitation: 485 nm; emission: 590 nm), before and after liposome membrane 

disruption (Triton X-100) using a fluorescence plate reader (Hidex, Finland) as described 

previously [207], [208]. Particle size distributions were measured by dynamic light scattering 

(Zetasizer Nano-ZS, Malvern Instruments Ltd, UK). All experiments were performed with freshly 

prepared formulations. 

 

3.2.3 Cell culture and animal models 

The murine breast cancer cell line EMT-6 was purchased from ATCC (Manassas, VA). EMT-6 

cells were maintained in DMEM supplemented with 10% FBS, penicillin (100 U/mL) and 

streptomycin (100 µg/mL) at 37°C with 5% CO2. Female BALB/c mice (aged 5–6 weeks, 18–20 

g) were purchased from Harlan (Mississauga, ON, Canada). All experimental protocols in this 

study were approved by the Animal Care Committee of the University Health Network (Toronto, 

ON, Canada) in accordance with the policies established in the Guide to the Care and Use of 

Experimental Animals prepared by the Canadian Council of Animal Care. Mice were housed in 

individually ventilated cages (up to 5 mice per cage) supplied with acidified automatic watering 

system. Teklad irradiated rodent diet #7912 ad lib, autoclaved corn cob bedding or iso-PADS 
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bedding was used to minimize agitation of tumors. Every cage provided with autoclaved 

enrichment (a translucent, red polycarbonate house and nestlets for nest building). The animal 

room operates at 20-22°C, 40-70% relative humidity, with a light/dark cycle of 12/12 hr. All 

animals were sacrificed with Isoflurane anesthetic followed by CO2 asphyxiation. If any signs of 

pain or suffering were observed, then analgesics were applied. Animals were under veterinary 

observation on a routine basis. 

 

3.2.4 In-vivo treatment protocol  

The murine breast cancer cell line, EMT-6, was inoculated (1 × 106 cells/50 μL medium) 

subcutaneously into the footpad of BALB/c mice. The footpad thickness was monitored, and after 

∼7 days a measurable change in thickness (1.0-2.0 mm) was observed due to tumor growth. At 

this point, the mice were deemed ready to undergo the treatment/imaging protocol as depicted in 

Supplementary Figure 3.A. Following the initial pre-treatment image, each mouse was treated with 

one of the formulations: HaT-DOX (10 mg DOX/kg, n = 13) or Saline (HBS pH 7.4, n = 15), via 

intravenous tail vein injection. This was immediately followed by localized heating of the tumor-

bearing hind limb footpad with a water bath at 43°C for 1 h (Supplementary Figure 3.A(a)). This 

temperature and time period was determined to be optimal for maintaining the tumor in the mild-

hyperthermia range in previous studies [207]–[210]. During the treatment period, mice were 

anesthetized with a flow of isoflurane (1.5%) in oxygen (0.5-1 L/min). Following treatment, the 

mice were returned to their cage and monitored closely to ensure full recovery and taken for 

imaging at further timepoints as described below. Mice were monitored regularly (every 1-2 days) 

for changes in footpad thickness (measured by standard calipers) and body weight. Mice were 

euthanized when the tumors reached double their original size (original size = treatment day = day 

0) in a single dimension or reached endpoint via some other means (e.g. open tumor, 20% body 

weight loss, immobility etc.). If a treatment showed a reduction in tumor size at endpoint relative 

to the tumor’s original size at day 0, this was defined as regression. Regression rate for a particular 

group was defined as the number of mice that showed regression divided by the total number of 

mice for each particular group. 
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3.2.5 In-vivo imaging protocol 

Imaging of each animal was performed with the Vevo LAZR US/PA small animal imaging device 

(Fujifilm VisualSonics Inc., ON, Canada). This is a commercial system that consists of a 256-

element, 40 MHz center frequency, linear array US/PA probe coupled to an Nd:YAG laser 

operated through an optical parametric oscillator with a 6 ns pulse length, 20 Hz pulse repetition 

frequency and 680-970 nm output. For the purposes of this study, the tumors were independently 

illuminated with 750 and 850 nm wavelengths. These two wavelengths were chosen to probe the 

optical properties of blood either side of the isosbestic point (805 nm, the optical wavelength at 

which the absorption of oxygenated and deoxygenated blood is the same). During imaging, all 

mice were anesthetized with a flow of isoflurane (1.5%) in oxygen (0.5-1 L/min). Clear ultrasonic 

gel was used to acoustically couple the footpad of each animal with the imaging probe, while the 

core body temperature was maintained at ~37°C using a heating platform (Supplementary Figure 

3.A(b)). Co-registered, 3D US and PA images were acquired by scanning the imaging probe over 

the entire tumor volume (81 frames, 80 µm apart).  

 

Imaging was performed at set timepoints before and after treatment (Supplementary Figure 

3.A(c)). A pre-treatment image was taken 30 min prior to treatment for each animal. Each animal 

then received its dose of formulation and was immediately placed in the water bath heating set-up 

to receive localized mild hyperthermia (HT) to the tumor bearing hind limb as described above. 

Following treatment, the animal was imaged at 5 further timepoints: at 30 min, 2 h, 5 h, 24 h and 

7 days post-treatment.  

 

3.2.6 Ultrasound and photoacoustic imaging and data processing 

At each imaging timepoint, a total of 21 US/PA, 2D B-mode frames (80 µm apart) were analyzed 

(10 on either side of the anatomical center of the tumor determined from the US B-mode image). 

Each 2D US image was used to anatomically segment the tumor in each frame, while avoiding the 

skin, bone and artifacts. The same region of interest (ROI) was applied to segment the PA images 

acquired at 750/850 nm for all of the 21 frames. The energy of each pulse at the two wavelengths 

was measured in real-time using an energy meter (Ophir-Spiricon, North Logan, Utah, USA) that 

was coupled to the image acquisition sequence. The PA images at each wavelength were 
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normalized by their respective, real-time energies in order to remove the wavelength-dependent 

laser energy variations present within the system. The PA pressure in tissue is directly proportional 

to the absorbed energy in tissue with the same constant of proportionality (Grüneisen parameter) 

throughout tissue. Given that the tumors were small and superficial, no corrections were made for 

the differences in tissue optical fluence for the two wavelengths. Oxygen saturation (sO2) maps 

were generated by measuring the PA signal at 750/850 nm for each pixel within the tumor ROI. 

The sO2 was calculated based on the underlying assumption that the PA signal at the two 

wavelengths is primarily dominated by the optical absorption of hemoglobin (Hb) in its 

oxygenated (𝜇𝐻𝑏𝑂) and deoxygenated (𝜇𝐻𝑏) forms. Eq. (3.1) shows the derivation of the sO2 from 

the relationship between optical absorption and chromophore concentration (oxygenated 

hemoglobin [𝐻𝑏𝑂], or deoxygenated hemoglobin [𝐻𝑏]) [222], [223], 

  

 𝑃𝐴𝑆𝐴(𝜆1) ∝ 𝜇(𝜆1) = [𝐻𝑏]𝜀𝐻𝑏(𝜆1) + [𝐻𝑏𝑂]𝜀𝐻𝑏𝑂(𝜆1) 

𝑃𝐴𝑆𝐴(𝜆2) ∝ 𝜇(𝜆2) = [𝐻𝑏]𝜀𝐻𝑏(𝜆2) + [𝐻𝑏𝑂]𝜀𝐻𝑏𝑂(𝜆2) 

𝑠𝑂2 =
[𝐻𝑏𝑂]

[𝐻𝑏𝑂 + 𝐻𝑏]
=

𝑃𝐴𝑆𝐴(𝜆2) × 𝜀𝐻𝑏(𝜆1) − 𝑃𝐴𝑆𝐴(𝜆1) × 𝜀𝐻𝑏(𝜆2)

𝑃𝐴𝑆𝐴(𝜆1) × Δ𝜀𝐻𝑏(𝜆2) − 𝑃𝐴𝑆𝐴(𝜆2) × Δ𝜀𝐻𝑏(𝜆1)
 

Δε(𝜆) = 𝜀𝐻𝑏𝑂(𝜆) − 𝜀𝐻𝑏(𝜆) 

(3.1) 

 

where, 𝜇𝑎 is the optical absorption coefficient, 𝑃𝐴𝑆𝐴(𝜆) is the photoacoustic signal amplitude at a 

particular wavelength of illumination (𝜆), calculated as the envelope of the time-domain PA signal 

within the region of interest; 𝜀𝐻𝑏 and 𝜀𝐻𝑏𝑂 are the extinction coefficients of deoxygenated and 

oxygenated hemoglobin, respectively; Δε represents the difference in extinction coefficient 

between the oxygenated and deoxygenated hemoglobin. The wavelengths 𝜆1 and 𝜆2 correspond to 

750 and 850 nm, respectively. 

 

A schematic of the algorithm used to compute the sO2 maps and histograms is shown in 

Supplementary Figure 3.B. In order to quantify the sO2 distribution of each tumor slice, a novel 

approach was employed where the sO2 intensity of all pixels within a given frame was represented 

in the form of a histogram. At each imaging timepoint, for each mouse, the average of 21 

histograms was computed along with the standard deviation of the pixel count of each sO2 value. 

The resultant plot represents the temporal change in sO2 for each tumor, which were used to 
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quantify the changes in tumor sO2 as a function of time and treatment type. This approach allows 

for quantification of the tumor oxygenation without relying on image processing algorithms that 

might affect the estimated sO2. All image and signal processing were performed in Matlab2014a 

(The MathWorks Inc., Natick, MA). 

 

3.2.7 Tumor histology 

For each treatment, at least 6 mice were used to study tumor histology at two key timepoints; 2 h 

and 7 days post-treatment. These mice were randomly pre-selected for FITC-imaging prior to 

treatment with 3 mice being used for each timepoint of a particular treatment. Timepoints were 

chosen to represent both a very early timepoint post-treatment and a timepoint sufficiently late 

enough to begin to observe the early signs of treatment efficacy via conventional tumor 

measurement methods. Animals used for tumor histology were injected intravenously with FITC-

lectin (0.25 mg/mL, 200 µL) following their final US/PA image and returned to their cage. After 

1 h, mice were euthanized and their footpad tumors were removed and cryogenically frozen in 

Optimal Cutting Temperature (OCT) gel for sectioning, staining and processing by the Pathology 

department at the STTARR facility (Toronto, ON, Canada). Sections were stained with H&E; 

fluorescent immunohistochemical stains for the vascular marker, CD31; and cell nuclei marker, 

DAPI. The sections were then scanned to identify the presence of FITC-lectin (green channel), 

cyanine dye labelled CD31 Ab (red channel) and DAPI (blue channel). Images were then 

processed using the Definiens software package (Munich, Germany) to quantify the intensity and 

distribution of each stain.  

 

3.2.8 Statistical analysis  

All data are expressed as mean ± standard deviation (S.D.). Statistical analysis was conducted with 

the two-tailed unpaired t test for two-group comparison, or one-way ANOVA, followed by the 

Tukey multiple comparison test by using GraphPad Prism (for three or more groups). A p-value 

of less than 0.05 was considered to be statistically significant. 
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 Results 

3.3.1 Characterization of HaT-DOX TSLs 

The HaT-DOX liposomes were prepared as described in our earlier publications [207]–[209]. 

These liposomes were studied for size and drug loading to ensure all batches of liposomes 

possessed comparable physical characteristics (Supplementary Table 3.A). In all cases, the size 

observed by dynamic light scattering was within 90-100 nm with a PDI of ~0.06. Drug loading 

efficiency was generally very high (~100%) for the remote loading method used, and final drug 

loaded liposome concentrations were adjusted to 1 mg/mL with a drug-to-lipid ratio of ~0.05 

(w/w). 

 

3.3.2 Tumor efficacy for a murine footpad model 

Previous studies have demonstrated improved efficacy with the HaT-DOX treatment relative to 

LTSL-DOX or DOX [207]–[210]. In preliminary studies, the DOX fluorescence of EMT-6 tumors 

was measured after treatment with equal doses (10 mg DOX/kg) of each of these 3 treatments 

(Supplementary Figure 3.C). HaT-DOX showed considerably greater tumoral drug uptake, and on 

this evidence, together with work from previous studies [207]–[210], HaT-DOX was chosen as 

the TSL for further study in this work. The therapeutic effect of the HaT-DOX (10 mg DOX/kg) 

and Saline control (sterile HBS pH 7.4) formulations were studied in a subcutaneous footpad EMT-

6 tumor model with mild-hyperthermia (HT) for a period of 1 h. Tumor size and animal body 

weights were then followed to assess the relative efficacy of each treatment. All treatments that 

show a reduction in tumor size at endpoint relative to day 0 were classified as showing regression. 

The relative tumor sizes (%) over the study period were plotted for each animal (Figure 3-2). It is 

worth mentioning that many treatments underwent a transient inflammation and swelling of the 

treated area for a few days post-treatment – this was particularly noticeable for many of the HT-

HaT-DOX treated mice (Figure 3-2a).  
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Figure 3-2: Tumor growth plots for mice treated with 1 hour of hyperthermia (HT) and an 

intravenous dose of (a) HaT-DOX (n = 10) or (b) Saline (n = 12). Tumors were grown 

subcutaneously in the footpad of the right hind limb and changes in size were measured regularly 

with calipers. HT-HaT-DOX treatments were dosed at 10 mg DOX/kg. The dashed line (-----) 

represents the endpoint due to tumor load. The † symbol indicates mice which reached a premature 

endpoint due to tumor ulceration or lack of sufficient mobility. The f symbol indicates all mice 

that were sacrificed for histology at 7 days post-treatment.  

 

The HT-Saline treated mice may also have shown some inflammation although it was more 

challenging to differentiate this from tumor growth. Although there was some natural variation 

with each treatment, it can be seen that HT-HaT-DOX treatments generally resulted in good tumor 

regression (9/10 mice showed regression over 25 days), whereas HT-Saline treatments (Figure 

3-2b) showed no regression, and the majority of these tumors reached endpoint by 14 days post-

treatment (tumor size 200% relative to the size on day 0). The trends are consistent with results 

reported previously by our group and others for TSL and buffer control treatments combined with 

mild-hyperthermia [204], [208]. None of the treatments demonstrated signs of significant toxicity 

as represented by each of the animal’s changes in body weight (<10% variation) during the 

treatment/imaging course (Supplementary Figure 3.D).    

 

3.3.3 Longitudinal mapping of tumor sO2 

In previously unpublished preliminary work (Supplementary Figure 3.E), the HT-HaT-DOX 

treatment was studied with a window chamber tumor model indicating what appeared to be 

localized hemorrhage and bleeding in the vicinity of the tumor. This not only highlighted to us an 

interest in imaging a blood dependent parameter, but also provided guidance for the selection of 

the appropriate timepoints for the subsequent study. Hence, the HT-HaT-DOX and HT-Saline 
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treated animals in this study were imaged at several timepoints using non-invasive, co-registered 

ultrasound and photoacoustic methods in order to test the hypothesis that sO2 might be a surrogate 

prognostic marker for effective HT-HaT-DOX treatment.  

 

The sO2 maps derived from two-wavelength photoacoustic imaging of tumors represent the 

relative spatial distribution of oxygen saturation within the tumor (Supplementary Figure 3.F). A 

time-dependent change of sO2 was observed for the HT-HaT-DOX group and to demonstrate this 

visually the overall trend of the group can be represented nicely in just a few imaging timepoints 

from one of these animals (Figure 3-3). Each 2D map denotes the sO2 of blood inside the 

segmented tumor ROI at 30 min pre-treatment, and 2 h and 7 days post-treatment. For HT-HaT-

DOX treated mice, a significant drop in the tumor sO2 was observed at 2 h post-treatment 

compared to the 30 min pre-treatment image. At 2 h post-treatment, while some blood within the 

tumor still contained moderate to high sO2 values (orange/red color in Figure 3-3), the majority of 

the tumor exhibited very low sO2 (blue color in Figure 3-3). It is important to note that the 

significant drop in the tumor sO2 for the HT-HaT-DOX treated mice was apparent as early as 30 

min post-treatment and it remained at these levels for more than 5 h (Supplementary Figure 3.F). 

 

Figure 3-3: Representative sO2 maps. These are shown for HT-HaT-DOX (top row) and HT-

Saline (bottom row) treated tumors at 30 min pre-treatment (1st column), 2 h post-treatment (2nd 

column) and 7 days post-treatment (3rd column). The scale bar (2 mm) and sO2 color bar (0-

100%) apply to all sO2 maps shown. 

 

The HT-Saline group received injections of HBS (pH 7.4) prior to undergoing an identical mild-

hyperthermia treatment protocol to the other animals that received drug formulation. The sO2 for 
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the HT-Saline group did not show the decrease in sO2 observed for the HT-HaT-DOX mice at 2 h 

post-treatment (Figure 3-3, bottom row). For the specific HT-Saline treated mouse represented in 

this figure, the sO2 shows a slight increase from the 30 min pre-treatment timepoint to the 2 h post-

treatment timepoint image, as represented qualitatively by the increase in red and decrease in blue 

color in the image.  

 

The trends represented in Figure 3-3 were consistent across each respective group, i.e. HT-HaT-

DOX treatment led to an immediate drop in tumor sO2 which was sustained for at least the first 5 

h post-treatment, while for HT-Saline no such drop in sO2 was observed and levels remained 

relatively constant for the same period with minor fluctuations (Supplementary Figure 3.F). Upon 

reaching the 7-day timepoint both groups exhibited a similar behavior, where the overall sO2 rose 

above the level observed for their respective 30 min pre-treatment images.  

 

3.3.3.1 Oxygen saturation (sO2) histograms and quantification of the changes 

in oxygenation 

In order to quantify the relative sO2 of the blood in tumors and capture the heterogeneity of the 

entire tumor volume, histograms of the distribution of sO2 values (number of pixels with a certain 

sO2 value as a function of that sO2 value) were calculated (Figure 3-4). The histogram of every 

imaging slice was combined to create an average histogram representing a treatment group at a 

given timepoint (30 min pre-treatment and at 30 min, 2 h, 5 h, 24 h and 7 days post-treatment, 

Supplementary Figure 3.B).  
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Figure 3-4:Oxygenation histograms. (a) Average sO2 histograms at 30 min pre-treatment and 30 

min, 2 h, 5 h, 24 h and 7 day timepoints post-treatment for HT-HaT-DOX (n = 12) and HT-Saline 

(n = 15). Two time courses have been plotted to compare the treatments studied using the mode 

(b) and mean (c) averages of the histogram data plotted in (a) relative to their starting values at 30 

min pre-treatment. Error bars represent the standard deviation on the pixel count for each sO2 

value from each mouse which had 21 different histograms per imaging timepoint. The black arrows 

represent the points at which the treatments were made (i.e. defined in this plot as 0 h). Datapoints 

that show a drop in sO2 which is significantly different to pre-treatment are represented by * where 

p < 0.05. 

 

Regardless of the timepoint or treatment type, all histograms showed a distribution of sO2 values. 

The histogram of the HT-HaT-DOX treated animals revealed a significant shift to the left during 

the first few timepoints, representing a drop (>15% in histogram mode) in oxygen saturation 

(Figure 3-4a). This shift was apparent as early as 30 min post-treatment and it persisted for the 
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first 5 h, in agreement with the sO2 map images (Figure 3-3 and Supplementary Figure 3.F). The 

histogram shifted to higher sO2, approaching that of pre-treatment levels by 24 h, and by 7 days it 

had surpassed the values of the pre-treatment histogram. This dynamic shift in the distribution of 

blood sO2 values within the tumor was quantitatively represented by the early drop (30 min to 5 h 

post-treatment) and late (7 day) increase in tumor sO2 observed following HT-HaT-DOX 

treatment. 

 

Histograms for the HT-Saline group exhibited comparable 30 min pre-treatment sO2 distributions 

to the HT-HaT-DOX group (modes ~ 40%). However, there was no significant drop in the average 

sO2 (either mean or mode) during the first 5 h post-treatment, and again an increase was observed 

by 7 days post-treatment. In general, the post-treatment histograms of the HT-Saline group 

appeared to have broader distributions and displayed increased bimodal character (e.g. 2 h 

histogram for HT-Saline in Fig 4a), than observed for the HT-HaT-DOX group.  

 

Given that a distribution of sO2 values exists within the tumor, one must quantify the changes in 

the sO2 over time by focusing on the statistics of the histograms. The mode of the sO2 within the 

tumor, represented by the peak of a histogram, can be representative of how the sO2 distribution 

varies over time, and this is particularly effective for HT-HaT-DOX, but this is less meaningful 

for the broad distributions for the HT-Saline treatment, particularly when bimodal character is 

observed. For this reason, we studied both the mode and mean sO2 change over time (Figure 3-4b 

and Figure 3-4c). For the HT-HaT-DOX treated mice, a significant drop in the mean (~10%) and 

mode (~15%) of the histogram was observed from 30 min pre-treatment to 30 min post-treatment. 

This is indicative of an overall shift of the entire tumor region to reduced sO2 after treatment, and 

is visually represented as a shift of the entire histogram distribution to the left (Figure 3-4a). The 

drop in the mean sO2 value was sustained for the first 5 h. Following this initial period, a gradual 

increase in mean and mode sO2 for HT-HaT-DOX was observed until day 7, reaching levels 15-

20% above those at 30 min pre-treatment.  

 

The changes in mode and mean of the sO2 histogram for the HT-Saline group (Figure 3-4b and 

Figure 3-4c) were quite different to those of the HT-HaT-DOX group over time. The histogram 

mode showed very little change from pre-treatment during the first 5 h post-treatment. The mean 
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sO2 also varied much less than for HT-HaT-DOX but showed a slight increase (2-3%) in sO2 over 

the first 5 h post-treatment relative to pre-treatment. By the 7 day timepoint, the mean sO2 had 

increased to ~10% above pre-treatment levels.  

 

3.3.4 Correlation between early changes in sO2 and treatment efficacy 

The relationship between the change in tumor size (at endpoint relative to day 0) and the change 

in the mean sO2 (at 2 h post-treatment relative to 30 min pre-treatment) was plotted for the mice 

of both treatment groups (Figure 3-5). From analysis of the HT-HaT-DOX group there was a 

significant separation between the mice which showed regression and the one that did not. The 

mice that responded to treatment exhibited a decrease in tumor size of at least 50% by their 

endpoint and their mean sO2 at 2 h had dropped by an average of 10-15% from 30 min pre-

treatment values.  This figure demonstrates how a large drop (>10%) in mean sO2 at 2 h post-

treatment was typically correlated with a large tumor regression by endpoint. The majority (90%) 

of animals from the HT-HaT-DOX group are contained within one standard deviation of the mean. 

The HT-Saline treated mice did not show such a clear trend as represented by the wide distribution 

of data points and larger standard deviation on both axes. 

 

A single HT-HaT-DOX treated mouse (marked † in Figure 3-5) did not show the characteristic 

drop in sO2 of more than 10% by 2 h post-treatment as observed for the other HT-HaT-DOX 

treated animals. In fact, this treatment displayed no significant decrease in sO2 throughout the first 

5 h post-treatment. Furthermore, no regression was observed for this particular treatment, with the 

tumor increasing in size to >200% in just 7 days. 
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Figure 3-5: Size and oxygenation relationships. Correlation between the changes in the size of the 

tumor treated with (a) HT-HaT-DOX and (b) HT-Saline at endpoint (from day 0) and the changes 

in mean sO2 between the values observed for 30 min pre-treatment and 2 h post-treatment. Each 

point is the average of 21 sO2 histograms at the 2 h timepoint. The major and minor axes of each 

ellipse represent the standard deviations of the change in sO2 and change in tumor size, 

respectively. † identifies a datapoint for a HT-HaT-DOX treatment that did not show regression, 

nor a characteristic drop in sO2 at 2 h post-treatment. 

 

3.3.5 Histological analysis of tumor treatment 

To investigate the cause for the observed changes in sO2, a second experiment was performed 

where animals were sacrificed at two distinct timepoints post-treatment (2 h and 7 days) following 

treatment with mild-hyperthermia and either HaT-DOX or Saline. These timepoints were chosen 

in order to represent the key changes observed with PA imaging. Sections of HT-HaT-DOX treated 

tumor showed significant FITC-lectin perfusion and leakage from the vasculature at the 2 h 

timepoint (Figure 3-6a and Figure 3-6c). This level of FITC leakage was not observed for the HT-

Saline group at 2 h or 7 days (Figure 3-6b and Figure 3-6d), nor for the HT-HaT-DOX treated 

mice at 7 days post-treatment. The area of FITC positive tumor was analyzed with Definiens 

software to provide quantitative results (Figure 3-6e and Figure 3-6f), demonstrating an average 

area of ~ 60% FITC positive tumor for the HT-HaT-DOX mice at 2 h, while only 20-40% was 

observed for all timepoints with the HT-Saline treated animals. The level of vessel perfusion was 

also studied and showed a similar trend between treatments and timepoints (Supplementary Figure 

3.G). This data also correlates well with observations using the window chamber model 

(Supplementary Figure 3.E) with significant FITC-leakage/bleeding observed in both cases at the 

2 h post-treatment timepoint. 
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Figure 3-6: Tumor histology. Representative sections of footpad tumor harvested at the 2 h 

timepoint and stained with CD31 (red), DAPI (blue) and FITC-lectin (green) for (a) HT-HaT-

DOX, and (b) HT-Saline treated mice. The same sections displaying the regions defined as FITC-

positive tumor (green), FITC-negative tumor (orange) and normal tissue (maroon), after 

processing with Definiens software for (c) HT-HaT-DOX and (d) HT-Saline. Column scatter plots: 

Relative FITC-positive areas following quantification with a Definiens analysis at (e) 2 h and (f) 

7 days post-treatment; Significance is represented by * where p < 0.0005. 

 

(a) (c) 

(b) (d) 

(f) (e) 
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 Discussion 

There is a need for chemotherapies that are localized in their action; this could provide a means of 

limiting toxicity to normal tissue and improve the therapeutic window of the drugs involved [224]. 

Triggered release nanoparticles provide one way this could be achieved [225]–[227], an example 

of which are TSLs [203]. Regardless of the treatment type, emerging evidence suggests that early 

assessment of therapeutic effect has the potential to have a significant clinical impact [43], [228]–

[232]. The early readout of treatment efficacy could potentially be achieved directly through 

measurements of relative levels of endogenous biomarkers [233], [234]; an approach which is 

warranted by the complex nature of cancer growth and treatment response that requires 

personalized therapies as well as personalized means of assessing treatment outcome [234]. Even 

with the impressive advancements in personalized medicine and nanotechnology, current practice 

for assessment of cancer treatment efficacy is often limited to the anatomical information obtained 

through imaging studies using magnetic resonance or computed tomography. These methods can 

be prohibitively costly, often require the use of contrast agents with lengthy scan times, and most 

commonly measure the change in tumor size which may not be apparent until weeks after 

treatment. The motivation for this study stemmed from the desire to assess therapeutic effect 

shortly after treatment (< 6 h) in order to make reasonable estimates of treatment prognosis and 

potential success on a personalized level.  

 

Here, we have studied a TSL developed in our lab (HaT-DOX), designed to release its payload at 

mild-hyperthermia (HT, 39-42°C), and probed the tumor region in vivo with US-guided PA 

imaging throughout the course of the treatment period (from 30 min pre-treatment to 7 days post-

treatment). We sought to demonstrate improved treatment efficacy with the HaT-DOX formulation 

over that of Saline when each was combined with mild-hyperthermia. In addition to demonstrating 

therapeutic effect, we also investigated the structural and functional changes taking place within 

the tumor during and following treatment, by using the non-invasive methods of ultrasound (US) 

and photoacoustics (PA).  

 

HaT-DOX TSLs were prepared in a similar manner to that described previously [208], [209], and 

studied with a tumor footpad model, allowing the application of mild-hyperthermia (43°C) 

localized to just the tumor-bearing hind limb. In doing so, drug delivery was targeted to the tumor 
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region and compared with Saline (HBS pH 7.4) control using the same mild-hyperthermia heating 

method (HT). HT-HaT-DOX showed good efficacy with 90% of tumors demonstrating significant 

regression by endpoint. Meanwhile the HT-Saline treatment was essentially ineffective, with no 

treatments displaying regression. These data closely match responses observed in previous reports 

with this formulation [208] and other related intravascular “burst-release” TSLs [235]. It is worth 

noting that while tumor inflammation most likely influenced absolute measurements of tumor 

volume in the first 3-10 days post-treatment, but this had no effect on the relative change at the 

study endpoint necessary to classify tumor response. 

 

After demonstrating the differences in therapeutic effect, our study investigated the potential of 

US-guided PA imaging for non-invasive cancer treatment monitoring. PA imaging is relatively 

new to this field, but it offers a great deal of promise in being able to provide co-registered 

functional and structural information without any endogenous contrast [220], [236]. Within the 

resolution limits of our imaging system (45 µm axial, 90 µm lateral), PA imaging was capable of 

capturing the oxygenation of the blood up to a depth of 11 mm at 40 MHz. At lower frequencies, 

PA has even been shown to map the location of vessels as deep as 40 mm in breast tissue [88]. 

The added spatial resolution at clinically relevant depths yields a distinct advantage of PA imaging 

over other optical methods that are limited to sub-micron depths due to ballistic photon scattering 

[87]. 

 

Based on preliminary window chamber data (Supplementary Figure 3.E), prior studies, and the 

proposed TSL mechanism of action (vide supra), it was hypothesized that the drug induced damage 

to the vasculature and tumor tissue could lead to the entrapment of deoxygenated red blood cells 

(known as blood pooling) in the perivascular space of the HaT-DOX treated tumors. These 

deoxygenated red blood cells would likely remain in this state until injury repair mechanisms start 

to regenerate the treatment area. Hence, during this period it should be possible to observe a distinct 

drop in oxygen saturation (sO2) for all successful TSL treatments and this would be detectable 

with non-invasive PA imaging. Therefore, imaging timepoints ranging from 30 minutes to 7 days 

post-treatment were chosen based on the preliminary window chamber data collected, and the prior 

work on the mechanism of TSL drug action on the tumor vasculature [204]. 
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The potential for using the change in the sO2 as a surrogate marker for therapeutic effect following 

TSL treatment was investigated. Following treatment with the TSL HaT-DOX, we found a strong 

correlation between the early changes in the sO2 of a tumor, and the change in tumor volume in 

the longer-term. While the sO2 maps for both the HT-HaT-DOX and HT-Saline treated mice 

appeared very similar at 30 min pre-treatment, there was a clear change between the two groups 

at the 30 min post-treatment timepoint. At this early timepoint, the mode of the sO2 values was 

seen to drop significantly (~10-20%) for the HT-HaT-DOX treated mice, but not for the HT-Saline 

group; an effect that lasted for up to 5 h post-treatment. The drop in sO2 for the HT-HaT-DOX 

treatment correlated well with a significant tumor regression (90% regression rate) 28 days post-

treatment. No such drop in sO2 or tumor regression was observed for the HT-Saline treatment, 

indicating the significance of the HaT-DOX component. To the best of our knowledge this is the 

first time an imaging modality has been used to study the effect of a TSL on the tumor environment 

in order to predict the long-term therapeutic outcome. 

  

 The proposed mechanism for an ultrafast burst-release TSL (such as HaT-DOX) provides 

sufficient information to account for the significant drop in sO2 observed for the HT-HaT-DOX 

treated tumors between 30 min to 5 h post-treatment, as well as agreeing with the histological data 

obtained. Once vessels are disrupted due to the physiological effects of the HT-HaT-DOX 

treatment (likely more pronounced for the neo-vasculature of the tumor region), their ability to 

circulate oxygenated red blood cells is diminished, resulting in a drop of tumor sO2 levels (Figure 

3-7). The high concentrations of DOX released inside the tumor vasculature leads to damage of 

both endothelial and tumor cells as the drug rapidly permeates out of the vessels and into the 

surrounding tissue, aided by the damaged vasculature as demonstrated by the increased levels of 

FITC-lectin observed for these tumors (Figure 3-6) and significant hemorrhage within the tumor 

(as observed in the preliminary window chamber study (Supplementary Figure 3.E). The observed 

low sO2 environment persists for more than 5 h, after which a gradual increase in tumoral sO2 starts 

to be observed. During this time, the natural repair mechanisms of the body will be prevalent, 

leading to recruitment of macrophages and immune cells for clean-up and regeneration of the 

damaged vasculature and surrounding tissue [237]. This was observed as a transient inflammation 

and swelling of the treated area for the first few days post-treatment. Approximately three to ten 

days later this inflammation had begun to subside, and it appeared the vasculature had been 
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repaired, accounting for the increase in sO2 observed at 7 days. These findings are further 

supported by the relatively small changes in tumor size over the first week for the HT-HaT-DOX 

group, which could also be explained by such inflammation and tissue regeneration. 

 

Figure 3-7: Proposed mechanism and levels of oxygen saturation (sO2) following treatment with 

a burst-release TSL such as HaT-DOX triggered with mild-hyperthermia. The timecourse is 

represented as a number of snapshots which appear sequentially from A-E. 

 

Unlike the HT-HaT-DOX group, the HT-Saline group showed no regression, very little change in 

sO2 (30 min to 5 h post-treatment, Figure 3-4) and in most cases a significant increase in tumor 

size was observed. However, much like the HT-HaT-DOX group, by 7 days the HT-Saline group 

also showed a significant increase in sO2. In this case we speculate that the increase is due to the 

recruitment of new vessels required to maintain tumor growth. Consequently, the key difference 

observed in this study between the HT-HaT-DOX and HT-Saline groups remains the drop in sO2 

observed for HT-HaT-DOX within the first 5 hours after treatment, which corresponded to the 

desired therapeutic effect. In future work, it would be of interest to further investigate the 

mechanism of action by computing the total hemoglobin concentration as a function of time. 

Utilizing spectral unmixing approaches [195] might elucidate the up-conversion of 

oxyhemoglobin to its deoxygenated counterpart and provide further evidence of vascular shutdown 

due to HT-HaT-DOX.  

 

From studying the distribution of results expressed as change in tumor size (day 0 to endpoint) 

versus change in mean sO2 (30 min pre-treatment to 5 h post-treatment) a clear segregation 

between efficacious and non-efficacious treatments was observed. We propose that with further 

work a threshold sO2 drop could be identified, which would represent the “cut-off” drop in sO2 
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required for a treatment to show significant tumor regression. For example, in the current study a 

single HT-HaT-DOX treated animal may have been identified as an ineffective treatment; not 

reaching a threshold drop in sO2 and also not demonstrating a characteristic tumor regression 

response (Figure 3-2 and Figure 3-5). Treatment response is affected by a wide array of factors 

that stem from ineffective delivery of the targeted therapeutic payload, to biological variability in 

the tumor’s biology [238]. In the case of this HT-HaT-DOX treated animal, the tumor grew to 

200% of its original size in 2 weeks, while the mean change of the sO2 histogram mean between 

30 min and 2 h post-treatment was not significantly different to values recorded pre-treatment (p 

not less than 0.05). It is encouraging that this HT-HaT-DOX treated animal, which showed no 

regression, also did not reach the threshold sO2 that this work suggests is necessary for a 

therapeutic response. This reinforces our hypothesis that sO2 has the potential to be used as a 

predictor of therapeutic effect for ultrafast TSL treatments like HaT-DOX. The results of this study 

suggest that there is indeed added value to probing the tumor sO2 at depths that are clinically 

meaningful and may not be reached by means other than PA imaging.   

 

As PA imaging begins to make its transition into the treatment monitoring arsenal, it is encouraging 

to see that other treatment types, (namely photodynamic therapy, antiangiogenic approaches or 

novel vascular strategies for augmentation of radiation therapy) are capable of inducing changes 

in tumor vasculature that might also be detectable with PA imaging. As Mallidi and colleagues 

demonstrate in their recent study, treatment response following photodynamic therapy was 

strongly correlated with a significant drop in sO2 several hours post-treatment [133]. Our current 

study builds on the findings of that work, as we demonstrate that PA imaging of oxygen saturation 

is able to predict the therapeutic effect of a burst-release TSL just a few hours post-treatment. We 

believe that our work, combined with that of others, highlights the considerable potential of PA 

imaging for the rapid assessment of such treatments at a personalized level. 

 

 Conclusion 

This work provides the first example of the use of PA imaging for predicting the therapeutic effect 

of an ultrafast burst-release TSL treatment, though the study of endogenous sO2 values between 

30 min to 5 h post-treatment. Our TSL (HaT-DOX) was studied with mild-hyperthermia (HT) and 

demonstrated a significantly improved therapeutic effect (regression rate of 90%, n=10), relative 
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to HT-Saline (regression rate: 0%, n=12). Simultaneously, HT-HaT-DOX and HT-Saline 

treatments were probed with US-guided PA imaging and a significant drop in sO2 (>10%) was 

observed for every treatment that demonstrated tumor regression by experiment endpoint (i.e. 90% 

of HT-HaT-DOX treatments). No such drop in sO2 was observed for any HT-Saline treatment; nor 

the single HT-HaT-DOX treatment that showed no regression following treatment. From this data, 

we suggest a threshold sO2 drop can be identified which would be necessary to achieve an effective 

treatment, and through further investigation, we anticipate this methodology could provide a 

reliable means for predicting therapeutic outcome within the first few hours of TSL treatment. 
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 Supplementary information 

3.7.1 Supplementary Figure 3.A 

 
Schematic representation of the experimental set-ups. (a) The TSL treatment water bath, (b) the 

US/PA imaging configuration and (c) a schematic of a representative treatment and imaging time 

course with imaging timepoints indicated on the x-axis. 

3.7.2 Supplementary Figure 3.B 

 
Schematic showing the process for generating tumor sO2 maps and histograms. (a) US image of a 

mouse footpad tumor used for anatomically segmenting the tumor ROI; (b) ROI is applied to the 

PA images acquired from the 750 nm (top) and 850 nm (bottom) illuminations; (c) The sO2 map 

is reconstructed using the algorithm described in Section 3.2.6; (d) Oxygen saturation histograms 

were created from the sO2 map data for 21 2D slices within a given tumor. 
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3.7.3 Supplementary Figure 3.C 

 
Fluorescent microscopy of tumors treated with HaT-DOX, LTSL-DOX and DOX. Each treatment 

dosed i.v. (10 mg DOX/kg) and exposed to 1 h of mild hyperthermia. Following this, tumors were 

removed, sectioned and nuclei were stained with DAPI. Sections were then studied by fluorescent 

microscopy to ascertain the relative amounts of DOX present in each tumor. 
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3.7.4 Supplementary Figure 3.D 

 
Body weight plot for the 2 formulations studied. Animals were dosed with either HaT-DOX or 

Saline and treated with mild hyperthermia (1 h). Data points are the average of 5 or more animals 

± S.D. 

 

3.7.5 Supplementary Figure 3.E 

 
Window chamber model of HaT-DOX treatments. During our previous investigations into the 

HaT-DOX treatment we studied a window chamber model and observed what appeared to be 

localized hemorrhage and bleeding within the tumor area at 2h following treatment with HT-HaT-

DOX. From the timepoints we studied, it appeared that this effect occurred within the first few 

hours post-treatment. This not only gave us good reason to explore these early timepoints post-

treatment, but also suggested that suitable markers for detection of this effect could be something 

related to the blood–the oxygen saturation of hemoglobin (sO2) appeared to be a suitable 

endogenous marker, which could be studied quantitatively with non-invasive PA imaging. 
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3.7.6 Supplementary Figure 3.F 

 
Representative sO2 maps for mice whose endpoint was greater than 7 days. The denotes the HaT-

DOX-treated mouse that did not respond to treatment and whose tumor grew 100% in size. The 

scale (2 mm) and color bar (0–100%) apply to all images. 
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3.7.7 Supplementary Figure 3.G 

 
Assessments of vessel perfusion. Vessel perfusion for the HT-HaT-DOX treatment is indicated by 

the white arrows in the magnified image (a), where the overlap of FITC and CD31 appears yellow. 

Relative number of FITC-perfused vessels following quantification with a Definiens analysis at 

(b) 2 h and (c) 7 days post-treatment. Significance is represented by where p < 0.0005. 

3.7.8 Supplementary Table 3.A 

 
Physical parameters of the HaT-DOX liposomes used in this study. Values are mean ± S.D.



CHAPTER 4 

83 

4 Photoacoustic spectral characterization of cancer 

treatment response: Correlation with changes in 

tumor oxygenation 

The contents of this chapter have been previously published in Photoacoustics. Permission to 

reproduce this article was granted by Elsevier and is provided in Appendix A.1.1.  

 

E Hysi, LA Wirtzfeld, JP May, E Undzys, S-D Li and MC Kolios. “Photoacoustic spectral 

characterization of cancer treatment response: Correlation with changes in tumor oxygenation” 

Photoacoustics 2017; 5: 25-35 – https://doi.org/10.1016/j.pacs.2017.03.003 

 

 Introduction  

Personalized medicine initiatives aim to develop optimal cancer treatments that will direct patients 

towards “the right drug at the right dose at the right time” [239]. This is contingent upon not only 

personalized results of a highly specific/sensitive diagnostic test but also on assessing the 

effectiveness of the therapy post-administration. The cost of development of new drugs and 

treatments is estimated between $0.5-2 billion [240]. In order for such treatments to gain enough 

traction, preliminary effectiveness must be assessed with cost effective and readily available 

imaging tools. Conventional medical imaging is already in high demand and very expensive, 

making the addition of treatment monitoring within existing infrastructure a challenge [6]. In 

addition, imaging modalities commonly used to assess treatment efficacy become even more 

onerous when they are used on cancer patients for whom the physical and psychological toll of the 

treatment prohibits multiple imaging sessions. Often, contrast agents are required causing practical 

limitations to have the same patient imaged at multiple imaging timepoints after treatment [7], 

[241]. There is a need for imaging modalities which are sensitive to early treatment-induced 

structural and functional changes. These technologies could generate imaging biomarkers to be 

used in conjunction with personalized medicine treatment regimens and therefore would provide 

a means for an oncologist to assess treatment response rapidly.  

 

Quantitative ultrasound (QUS) [24], [35], [232], [242], [243] and Diffuse Optical Spectroscopy 

Imaging (DOSI) [26], [43], [44], [74], [244] are two promising modalities in early cancer treatment 

monitoring. QUS utilizes the frequency content of the ultrasound radiofrequency (US RF) signals 

to extract relevant information about the changes in the structural properties of cancer tumor tissue 

https://doi-org.ezproxy.lib.ryerson.ca/10.1016/j.pacs.2017.03.003
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during treatment [24]. 2D parametric maps scatterer size and concentration can be constructed. 

Ongoing clinical studies have used textural characterization of QUS spectral parametric maps to 

differentiate treatment response with 100% sensitivity and 93% specificity 1 week after treatment 

[232]. Despite its successes, QUS is only capable of measuring the structural changes of tumor 

cell morphology that occur during treatment. Evidence suggests that these structural changes are 

dependent on tumor and treatment type and may not allow this technique to be robustly extended 

towards all cancer types [37]. Moreover, DOSI has shown that functional and metabolic changes 

(ex. hemoglobin concentration) may appear at earlier timepoints in patients with locally advanced 

breast cancer. An oxyhemoglobin flare has been reported 24 hours post-treatment in responding 

patients due to the rapid increase in cellular metabolism from chemotherapeutic-induced cellular 

damage [43]. However, DOSI suffers from low spatial resolution rendering the anatomical 

localization of the metabolic changes difficult without assistance from external modalities such as 

MRI [244], or ultrasound and mammography [74]. Anatomical imaging must be merged with 

functional measures of tumor response for guiding therapy and avoiding an over-reliance on the 

“one-size-fits-all” conventional treatment and imaging approach.   

 

Photoacoustic (PA) imaging has successfully mapped structural and functional aspects of 

biological tissue [87], [148], [217], [245], [246] such as neuronal functional connectivity [101], 

breast carcinoma patterns [247] and early detection of malaria [248]. Translation of PA imaging 

into the mainstream of clinical radiology requires well-suited clinical applications, most likely in 

combination with another anatomical imaging modality. Of particular importance is the similar 

nature of PA imaging with US whose images are naturally co-registered when the same transducers 

are used. Just as with the US RF signals in QUS, the frequencies of the PA signals carry 

information on the structure (size, shape and orientation) of the underlying absorber [124], [128], 

[129]. Recently published work has shown how QUS based on analysis of RF backscatter data can 

be used for biological tissue characterization of sub-resolution scattering structures [30]. In a 

similar manner, analysis of the PA radiofrequency signals has the potential of offering a system 

independent method of inferring sub-resolution tissue structural properties [187], [249]. As red 

blood cells contained within vascular tissues generate the PA signal, the quantitative photoacoustic 

(QPA) method would be sensitive to the spatial distribution of RBCs contained within unresolved 

blood vessels (or locally hemorrhaged). This added sensitivity is of importance for pushing the 



CHAPTER 4 

85 

sensitivity of acoustic resolution PA imaging beyond the resolution limit dictated by the 

transducer’s bandwidth. Such advances would accelerate the clinical translation of PA imaging 

where clinically relevant ultrasound detection frequencies are used. In the past five years, several 

groups have employed the use of PA radiofrequency analysis to differentiate prostate 

adenocarcinoma tumors from normal tissue [250], detect the presence of red blood cell aggregation 

[187], [251], identify various stages of liver disease [249], [252] and characterize bone and joint 

microstructure in osteoporosis [253] and rheumatoid arthritis [254]. Theoretical models have also 

been developed for understanding the spectral features that arise from tissue microstructural 

changes [126], [139], [186], [188], [255]–[257]. Combining functional aspects of PA imaging 

(based on optical spectroscopy) with structural information (based on RF frequency analysis) can 

potentially be used to better monitor cancer treatment response.  

 

The use of PA imaging for cancer treatment monitoring is a relatively new endeavor [133], [150], 

[258]. In this study, we correlate the spectral information of the PA RF data (QPA) with the oxygen 

saturation (sO2) of in-vivo tumors treated with a novel thermosensitive liposome. The ultimate 

goal would be the development of robust quantitative imaging techniques capable of monitoring 

cancer treatments and predicting long term outcome. This will rely on the structural and functional 

changes that occur in tumor vasculature hours after the administration of treatment.  

 

 Methods 

4.2.1 Animal model and treatment 

Female, BALB/c mice (5-6 weeks old; 18-20 grams) were purchased from Harlan Sprague Dawley 

Inc. (Mississauga, Canada). The left hind footpad of each animal was inoculated with 1 × 106 

murine breast cancer (EMT-6, ATCC, Manassas, MA) cells in 50 μL DMEM medium. The tumor 

was grown for 7 days post-inoculation until a 1-2 mm increase in footpad thickness was measured. 

Animal protocols implemented in this study were approved by the Animal Care Committee of the 

University Health Network (Toronto, Canada) in accordance with the policies established by the 

Guide to the Care and Use of Experimental Animals (Canadian Council of Animal Care, Ottawa, 

Canada).  
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Treatment consisted of tail vein injections of the thermosensitive liposome containing doxorubicin 

(DOX) developed by our group (labeled Heat-activated cytoToxic – HaT-DOX) or control Saline. 

HaT-DOX preparation has been described elsewhere [204], [207]–[209]. Briefly, DOX inside the 

100 nm liposome was rapidly (< 20 seconds) released at mild-hyperthermic temperatures (39-

42ºC). HaT-DOX has shown improved release kinetics and tumor uptake relative to Lysolipid 

Temperature Sensitive Liposome (ThermoDox®, Celsion Corporation, Lawrenceville, NJ), which 

has progressed into late stage clinical trials for hepatocellular carcinoma [206], [259].  

 

HaT-DOX (10 mg DOX/kg) or Saline (HBS, pH = 7.4) was intravenously injected to 13 and 15 

animals, respectively. The tumor-bearing footpad was then immediately placed in a water bath at 

43ºC for 1 hour under general anesthesia. The animals were separated into 3 groups based on post-

treatment sacrifice timepoints: 2 hours (HaT-DOX n=3, Saline n=4), 7 days (HaT-DOX n=3, 

Saline n=4) and beyond 7 days (HaT-DOX n=7, Saline n=7). Body weight and caliper 

measurements of the tumor thickness were recorded every few days until the study termination (28 

days post-treatment) or at endpoints defined in the animal handling protocol.   

 

Tumor histology was obtained for two imaging timepoints of interest, 2 hours and 7 days post-

treatment. Prior to sacrifice, an intravenous injection of FITC-lectin (0.25 mg/mL, 200 μL) was 

administered to 6 HaT-DOX treated animals and 8 Saline treated animals. This perfusion stain was 

allowed to circulate for 60 minutes before euthanizing the animals and surgically removing the 

tumors. Multiple sections were stained with H&E and DAPI for tumor cell localization and CD31 

for endothelial cell presence. The FITC-lectin was used to establish the vessel structural integrity. 

Image analysis and quantification of each stain was performed using Definiens software 

(Definiens, Munich, Germany) at the STTARR facility (University Health Network, Toronto, 

Canada). 

 

4.2.2 Longitudinal US and PA imaging 

Co-registered US and PA images of the tumors were obtained longitudinally. The Vevo LAZR 

system (Fujifilm VisualSonics Inc., Toronto, Canada) was used to acquire 3D images at 40 MHz 

using a 256 element linear array transducer. The coaxial US cable and optical fiber bundle were 

integrated in a special enclosure [175]. The fiber bundle delivered wavelengths (680-970 nm) from 
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an optical parametric oscillator (20 Hz repetition rate) coupled to a tunable Nd:YAG laser (30 mJ 

per pulse, 10 ns pulse length). The optical fiber bundle bifurcated into two 14 × 1.25 mm 

rectangular strips 30º relative to the imaging plane. With the PA imaging mode on the system, US 

acquisition was synchronized with the laser output to ensure image co-registration. 

 

Anesthetized mice were placed prone on a heating platform at 37ºC. Clear, ultrasound gel 

acoustically coupled the tumor with the US/PA probe. Imaging was performed at six timepoints: 

30 minutes pre-treatment (Pre tx), 30 minutes post-treatment (30 min post tx), 2 hours post-

treatment (2h post tx), 5 hours post-treatment (5h post tx), 24 hours post-treatment (24h post tx) 

and 7 days post-treatment (7d post tx). At each timepoint, 3D US/PA data were acquired by 

mechanically scanning (80 μm step size) the transducer to cover the entire tumor volume. For each 

step, a 2D B-mode image was beamformed using 4 laser pulses at 750/850 nm at 5 Hz frame rate. 

The energy of the beam was monitored in real time. A total of 81 2D, US and PA frames were 

acquired for each animal at each imaging timepoint.  

 

Reference phantoms were used to remove the system dependencies and compute spectral 

parameters using techniques developed in QUS [31], [260]. The US reference phantom was 

constructed with glass beads (diameter 6.15 ± 1.15 μm, Potters Industries, Parsippany, NJ, US) in 

a gelatin background [261]. The top of the phantom was covered with 128 μm TPX® (Matsui 

Chemicals America, Inc., Rye Brook, NY, USA) for its tissue-like acoustic impedance [262]. The 

acoustic properties were measured using single element transducers (1541 m/s speed of sound; 

0.723 dB/cm attenuation at 40 MHz). The PA reference counterpart contained black, carbon 

spheres (diameter 1-12 μm) suspended in a gelatin background with similar acoustic properties to 

the US phantom [176]. Both reference phantoms were imaged at the end of each day using exacty 

the same settings as those used for the tumors.  

 

4.2.3 sO2/QUS/QPA signal processing 

A schematic of the signal processing that is performed using the US and PA tumor images are 

shown in Figure 4-1.  

 

 



CHAPTER 4 

88 

 
 

Figure 4-1: Schematic for generating tumor oxygenation maps and PA spectral parameters. The 

ROI segmented from the US images is applied to the co-registered PA images at 750 and 850 nm 

which are then used to generate a tumor sO2 map. Oxygenation histograms of every slice within 

the tumor provide a quantitative distribution of sO2 values from which the average mode is 

calculated. The ROI mask is also applied to the reference phantoms at both wavelengths. The 

frequency information of the PA phantoms is subtracted from the tumor RF spectra and the 

normalized power spectra are used to retrieve the spectral parameters. For the US normalized 

spectra, the US image and reference phantom is used to obtain the same parameters.  

 

The US/PA datasets at every timepoint were considered to be functions of tumor spatial location, 

(𝑥, 𝑦, 𝑧) and optical wavelength of illumination, 𝜆 for PA imaging. The 𝑧 direction refers to the 

transducer scanning direction over the entire tumor volume. In the temporal/spatial domain, the 

analysis region of interest (ROI) for the tumor was chosen by creating a spatial mask obtained by 

manual segmentation of the tumor for the US images:  

 

 𝑢(𝑥, 𝑦, 𝑧)𝑡𝑢𝑚𝑜𝑟 = 𝑢0(𝑥, 𝑦, 𝑧) × 𝑚(𝑥, 𝑦, 𝑧) 

𝑝(𝑥, 𝑦, 𝑧, 𝜆)𝑡𝑢𝑚𝑜𝑟 = 𝑝0(𝑥, 𝑦, 𝑧, 𝜆) × 𝑚(𝑥, 𝑦, 𝑧) 
(4.1) 

   

where, 𝑢0(𝑥, 𝑦, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧, 𝜆) are the US and PA images obtained within the entire field of 

view of the transducer, respectively; 𝑚(𝑥, 𝑦, 𝑧) is the binary mask that contains the tumor ROI 

which was obtained from the manual segmentation.  
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In order to compute the oxygen saturation (sO2) of the tumor, segmented PA images were 

normalized by the energy of the two laser wavelengths of illumination, 750 and 850 nm. No fluence 

corrections were performed due to the complexity of accounting for the effect of wavelength 

dependent optical extinction on light propagation in heterogeneous tumor tissue. Here we directly 

use the PA amplitude ratio between 750 nm and 850 nm to relate to oxygen saturation and how 

these change as a function of treatment time, without compensation for local fluence variations. 

For this reason, changes in relative sO2 values were analyzed rather than absolute values. The 

effect of fluence correction on sO2 estimations has been previously reported, particularly its effect 

on depths greater than 5 mm [190], [263]. The PA signal amplitude, 𝑝𝑆𝐴(𝑥, 𝑦, 𝑧, 𝜆) was calculated 

by computing the envelope of the time-domain PA signals within the region of interest. The sO2 

for each 2D slice was then calculated using the two-wavelength approach [223]:  

 

 
𝑠𝑂2(𝑥, 𝑦, 𝑧) =

𝑝𝑆𝐴(𝑥, 𝑦, 𝑧, 𝜆2) × 𝜀𝐻𝑏(𝜆1) − 𝑝𝑆𝐴(𝑥, 𝑦, 𝑧, 𝜆1) × 𝜀𝐻𝑏(𝜆2)

𝑝𝑆𝐴(𝑥, 𝑦, 𝑧, 𝜆1) × Δ𝜀(𝜆2) − 𝑃𝐴𝑆𝐴(𝑥, 𝑦, 𝑧, 𝜆2) × Δ𝜀(𝜆1)
 (4.2) 

 

where, 𝐻𝑏 refers to deoxygenated hemoglobin, 𝜀𝐻𝑏(𝜆) is the molar extinction coefficient of 

deoxygenated hemoglobin at wavelength 𝜆, and Δ𝜀(𝜆) is the difference between the extinction 

coefficient of oxygenated hemoglobin (𝐻𝑏𝑂) and its deoxygenated counterpart at 𝜆. In this case, 𝜆1 

and 𝜆2 correspond to 750 and 850 nm, respectively. Once the sO2 value for every point in the 

images was computed, histograms of the distributions of sO2 values, 𝐻(𝑠𝑂2) were calculated. The 

average mode (i.e. most commonly occurring sO2 value) was retrieved for all segmented slices 

within the tumor and all mice at that particular timepoint and treatment group, 

 

 

𝑀𝑜𝑑𝑒[𝑠𝑂2] =
1

𝑀𝑆
∑ ∑ 𝑚𝑜𝑑 (𝐻𝑖,𝑗(𝑠𝑂2))

𝑆

𝑗=1

𝑀

𝑖=1

 (4.3) 

 

where, 𝑀 and 𝑆 represent the number of mice and slices, respectively.   

 

To compute the US and PA spectral parameters as a function of time post-treatment, the average, 

normalized power spectrum (PSnorm) was computed by removing the system dependencies through 

the use of the reference phantom technique developed for QUS [242]: 
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𝑃𝑆𝑛𝑜𝑟𝑚𝑈𝑆(𝑓, 𝑧) =
1

𝑆
∑ log10 (

𝑈(𝑓, 𝑧𝑖)𝑡𝑢𝑚𝑜𝑟

𝑈(𝑓, 𝑧𝑖)𝑟𝑒𝑓
)

2𝑆

𝑖=1

 (4.4) 

 

where, 𝑈(𝑓, 𝑧)𝑡𝑢𝑚𝑜𝑟 and 𝑈(𝑓, 𝑧)𝑟𝑒𝑓 are the average, 𝑧 − 𝑡ℎ slice US power spectra for the tumor 

and US reference phantom in the axial dimension and averaged in the lateral dimension (at least 

100 RF lines per segmentation, depending on the size of the tumor). Similarly, the average PA 

power spectra for the tumor and the PA reference phantom can be written as: 

 

 

𝑃𝑆𝑛𝑜𝑟𝑚𝑃𝐴(𝑓, 𝑧, 𝜆) =
1

𝑆
∑ log10 (

𝑃(𝑓, 𝑧𝑖, 𝜆)𝑡𝑢𝑚𝑜𝑟

𝑃(𝑓, 𝑧𝑖, 𝜆)𝑟𝑒𝑓
)

2𝑆

𝑖=1

 (4.5) 

 

where, 𝑃(𝑓, 𝑧, 𝜆) is the Fourier Transform of the PA signals for the tumor and reference.  

 

The US and PA normalized spectra were fitted to a straight line within the -6 dB bandwidth of the 

transducer (25-40 MHz in this case) in order to extract the spectral parameters [28], [29]. The 

spectral slope was extracted from: 

 

 𝑃𝑆𝑓𝑖𝑡(𝑓) = 𝑆𝑆 × 𝑓 + 𝑌𝑖𝑛𝑡 (4.6) 

 

where, 𝑃𝑆𝑓𝑖𝑡 is the result of performing linear regression on either 𝑃𝑆𝑛𝑜𝑟𝑚𝑈𝑆(𝑓, 𝑧) or  

𝑃𝑆𝑛𝑜𝑟𝑚𝑃𝐴(𝑓, 𝑧, 𝜆), 𝑆𝑆 is the spectral slope measured in dB/MHz and 𝑌𝑖𝑛𝑡 is the y-intercept of the 

fit measured in dB. An additional parameter, the midband fit (MBF), a measure of scattering 

strength, was assessed by measuring the power spectrum amplitude in the middle of the bandwidth 

used for the analysis of the signals. The goal was to extract QUS/QPA parameters that could be 

used to monitor the structural aspects of the HaT-DOX treatment, namely changes in the size and 

concentration of optical absorbers. 
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 Results and discussion 

4.3.1 Treatment efficacy 

The progression of tumor size after the administration of the HaT-DOX and Saline treatments is 

shown in Figure 4-2. Each animal treated with HaT-DOX was classified as a responder if the tumor 

size showed a relative decrease of >50% at study termination [264]. An overall reduction in tumor 

size was observed for all HaT-DOX treated animals except a single non-responder which exhibited 

a 100% increase in tumor size 21 days post-treatment. This non-responder mouse was treated in 

an identical fashion and was included in this data set as its oxygenation and QUS/QPA behavior 

was significantly different from HaT-DOX responders. As reported in our previous study for a 

larger subset of animals, a 90% regression rate was observed 25 days after HaT-DOX treatment 

[150].  

 

Thermosensitive liposomes eliminate the systemic toxicity associated with chemotherapeutic 

drugs such as DOX [204]. The effectiveness of the HaT-DOX treatment was evident when 

compared to the Saline control group, whose tumors increased 200% in size. For the first 10 days 

post-treatment, the behavior of the two groups was similar. Although not independently assessed, 

this was likely due to transient inflammation of the footpad upon DOX release [206]. As the 

inflammation subsided, rapid tumor regression was observed in the HaT-DOX group and by 28 

days, normal footpad appearance and function (e.g. gripping) was restored. This is consistent with 

previous studies where the efficacy of HaT-DOX has been studied extensively [204], [208]. The 

variation in tumor size for the Saline group was significantly larger than for HaT-DOX. This could 

be a result of the random distribution of blood vessels in untreated tumors which leads to variable 

tumor growth rates [265] and arises as a result of the lack of DOX-induced vascular shutdown 

[266].   
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Figure 4-2: Average, relative tumor growth as a function of time post-treatment. Each point 

represents the average and standard deviation (error bars) of the relative tumor size for 6 HaT-

DOX treated mice and 7 Saline control mice. The HaT-DOX non-responder and the Saline control 

animals were euthanized at day 21.  

 

4.3.2 HaT-DOX tumor oxygenation and PA normalized power 

spectra 

In order to examine the changes in the oxygenation of the tumor vasculature after the 

administration of the HaT-DOX formulation, average sO2 histograms were plotted for the pre-

treatment and at the 2h/24h/7d post-treatment imaging timepoints (Figure 4-3a). These animals all 

responded to the HaT-DOX treatment (as assessed by caliper measurements) and experienced a 

2h post-treatment, 22% drop in oxygenation (as assessed by the sO2 mode). This drop in 

oxygenation was present as early as 30 min post-treatment and was sustained for the first 24h. 

Tumor oxygenation histograms can be used to quantify changes in blood vessel oxygenation 

throughout the entire tumor [150]. The early changes in blood vessel oxygenation correlate with 

treatment response: responders’ sO2 decreased 30 mins post-treatment.  

  

The PA PSnorm are shown for the same timepoints as the sO2 histograms to investigate whether the 

change in oxygenation is accompanied by a physical change in vascular structure (Figure 4-3b). 

At the middle of the transducer bandwidth (i.e. midband fit or MBF), an increase of 6.2 dB is 

observed for the 750 nm PSnorm at the 2h timepoint relative to pre-treatment; at 850 nm this increase 

was 2 dB. These changes persisted for the first 5h post-treatment. By 24h post-treatment, the PSnorm 
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amplitude approached pre-treatment levels, and by 7d post-treatment it decreased by 3.4 dB 

relative to the value at 2h for 750 nm.  

 

Figure 4-3: HaT-DOX-treated mice (a) tumor oxygenation histograms and the (b) normalized 

power spectra for PA images obtained at 750 (top) and 850 nm (bottom) for multiple imaging 

timepoints. The error bars on the histograms represent the standard deviation on the pixel count 

for each sO2 value obtained from 21 different histograms per timepoint per mouse. The power 

spectra are averages of at least 100 RF lines per 21 tumor slices per timepoint (6 total) per mouse 

(5 total). All linear regressions had a Chi-squared value ≥0.9. Treatment is abbreviated as tx. 

 

Changes in the MBF are known to correlate to changes in the concentration of optical absorbers 

[187], [250], [267]. Differences in signal strength between the two wavelengths arise from the 

changes in vessel oxygenation. Treatment-induced vascular collapse leads to the hypothesis that 

oxygenation decreases at the early timepoints. Therefore, it is expected that the PA signal at 750 

nm would be higher than for 850 nm, as predicted from the optical absorption spectra of 

oxygenated and deoxygenated hemoglobin. By 7d post-treatment, the sO2 of the blood vessels 

increased by over 20% compared to pre-treatment (Figure 4-3a). This resulted in the 7d, 750 nm 

MBF decrease suggesting that the MBF can differentiate between two different states of vessel 

oxygenation.  
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4.3.3 Saline tumor oxygenation and PA normalized power spectra 

The sO2 histograms for the Saline-treated mice are shown in Figure 4-4a. Unlike their HaT-DOX 

counterparts, no significant changes in oxygenation were measured. The sO2 histograms at 2h post-

treatment appear wider than pre-treatment but the histogram mode did not change. This could be 

due to significant variability within the oxygenation and tumor size (Figure 4-2). Mice with a low 

pre-treatment sO2 did not undergo changes post-treatment, while others increased. At the 7d 

timepoint, the average oxygenation of the tumor increased by 20% relative to oxygenation values 

pre-treatment.  

 

The PA PSnorm for this group did not significantly change compared to pre-treatment (Figure 4-4b). 

At 7d, the 750 nm MBF decreased by 3.2 dB. The lack of changes in the early timepoints suggested 

that the Saline treatment did not induce the same vascular changes in the tumor as HaT-DOX. The 

decrease of the MBF at 7d is correlated to a 20% increase in the sO2 of blood vessels thought to 

occur due to the recruitment of vessels required to maintain tumor growth [265]. 

 

Figure 4-4: Saline-treated mice (a) tumor oxygenation histograms and the (b) normalized power 

spectra for PA images obtained at 750 (top) and 850 nm (bottom) for multiple imaging timepoints. 

The error bars on the histograms represent the standard deviation on the pixel count for each sO2 

value obtained from 21 different histograms per timepoint per mouse. The power spectra are 

averages of at least 100 RF lines per 21 tumor slices per timepoint (6 total) per mouse (7 total). 

All linear regressions had a Chi-squared value ≥0.9. Treatment is abbreviated as tx. 
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4.3.4 Correlation of QPA parameters with tumor oxygenation 

The sO2 mode was plotted against the PA spectral slope (SS) for HaT-DOX responders, the lone 

HaT-DOX non-responder and the Saline-treated mice (Figure 4-5). At each timepoint, the SS and 

sO2 mode is represented by the average value across all mice within a treatment group. A total of 

21 planes were analyzed to examine the distribution of metrics across the entire tumor volume. 

The clustering of HaT-DOX responders by imaging timepoint was clear for both wavelengths 

(Figure 4-5a). The PA SS at 750 and 850 nm decreased by 45% and 73%, respectively when the 

sO2 mode dropped at 30 min post-treatment. These changes in SS persist for the first 24h post-

treatment until the oxygenation of the tumors increased by 10% from 30 min. During this interval, 

the SS further decreased by 8.5% and 11.5% for 750 and 850 nm, respectively. By 7d post-

treatment, an increase in the average sO2 mode of 22% from pre-treatment was accompanied by a 

decrease of the SS (79% for 750 nm and 113% for 850 nm). PA estimates of tumor oxygen 

saturation reported here are also described in other reports. Mallidi and colleagues have used the 

VevoLAZR  system to track the progression of photodynamic therapy and found tumor sO2 values 

to be around 40-60% before and after the administration of vascular disrupting therapies [133]. In 

a more recent report, Rich and Seshandri reported good correlations between PA estimates of sO2 

with oxygen-enhanced magnetic resonance imaging in head and neck xenograft tumors [136]. 

Additionally, PA estimates of sO2 reported here have also been previously correlated with hypoxia 

stains obtained from tumor sectioning and were found to adequately represent the tumor 

microenvironment [268].    
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Figure 4-5: Oxygen saturation (sO2) mode versus the PA spectral slope (PA SS). The PA SS is 

computed for 750 nm (top row) and 850 nm (bottom row) and for HaT-DOX (a) responders (n = 

5) and (b) non-responder (n = 1) and (c) Saline (n = 7). Each dot represents the average SS across 

at least 100 PSnorm within 21 tumor slices per timepoint, per mouse.  

 

The HaT-DOX non-responder (Figure 4-5b) does not exhibit the same behavior as the HaT-DOX 

responders. Vessel oxygenation did not significantly drop 24 hours post-treatment and a higher 

variation in the distribution of SS values was observed throughout the imaging timepoints. 

Furthermore, there were no identifiable trends in the SS during treatment other than a 0.2 dB/MHz 

difference in the PA SS for 850 nm compared to 750 nm observed at all imaging timepoints for 

this mouse.  

 

The Saline SS exhibited a distinctive behavior, differentiating them from the HaT-DOX mice 

(Figure 4-5c). The 750 nm SS did not significantly change at the early timepoints as shown by the 

clustering around -0.48 dB/MHz. This was also correlated with the lack of sO2 changes at early 

timepoints. The 850 nm SS increased by 14% from pre-treatment when the sO2 increased 20% at 

the 7d timepoint. For the 850 nm illumination, the SS increased slightly (3%) at the 24h timepoint 

before increasing by 16% at 7d post-treatment. Overall, the 850 nm SS is ~0.1 dB/MHz higher 

than 750 nm and lower than the HaT-DOX SS. The significance of these findings can be 

established by examining the correlation between the SS and the optical absorber (i.e. vascular 

morphology) [186], [187]. The lack of large changes in the SS for the Saline and HaT-DOX non-
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responder implies that the tumor vasculature is responding differently to treatments. It is worth 

noting that the differences in the SS trends post-treatment are sufficient to identify the non-

responder and the control group. 

 

4.3.5 Histological examinations post-treatment 

Representative cross-sections of tumors extracted after the 2h imaging timepoint are shown 

inFigure 4-6. A large amount of FITC-lectin leakage was observed in the of vicinity blood vessels 

(Figure 4-6a). Overall, 70% of all vessels within the HaT-DOX-treated tumor were FITC-lectin 

positive compared to just 30% for the Saline treatment at 2h (Figure 4-6b). Figure 4-6c shows the 

distribution of vessel size within the tumor measured 2h post-treatment. The Saline group had a 

larger number of intact vessels post-treatment compared to the HaT-DOX group, except for vessels 

smaller than 25 μm. 

  

The mechanism of action for treatments like HaT-DOX is the rapid (<20 seconds), burst-release 

of DOX upon exposure to mild-hyperthermia [235], [269]. The formation of large DOX 

concentration gradients from the tumor vasculature to the tumor interstitial space leads to DOX-

induced endothelial cell damage. The damaged endothelial cells become unable to support the 

circulating blood and its contents, eventually succumbing to hemorrhage, blood coagulation, 

pooling and localized vascular shutdown [212], [266]. This phenomenon was observed in Figs. 6a 

and 6b for tumors treated with HaT-DOX.  

 

The recently published study by our group examined the correlation between sO2 and vascular 

damage due to a single dose of HaT-DOX  released during mild-hyperthermia [150]. At the 2 hour 

timepoint, the drop in sO2 was correlated with an increase in FITC-lectin leakage within the tumor 

interstitium. At 750/850 nm, the most dominant optical absorber is RBC’ hemoglobin [223]. Given 

the significant amount of FITC in the vicinity of post-treatment blood vessels (Fig. 6a), treatment 

leads to an increased number of leaked RBCs in the interstitium, where they are no longer capable 

of circulating and unable to exchange pulmonary oxygen, and so eventually become deoxygenated. 

We hypothesize that this contributes to the post-treatment decrease in tumor oxygenation (Figure 

4-3a). Furthermore, the hemorrhage of RBCs in the intersitium of tumors inadvertently forms an 

optical target with the same absorption properties as RBCs but larger effective size (i.e. RBCs are 
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no longer confined to the blood vessels). The formation of this “pool” of RBCs outside the vessels 

may be responsible for the changes in the spectral slope shown in Figure 4-5a. Previous 

experimental studies by our group and others have demonstrated that an increase in the effective 

optical absorber size causes a decrease in the PA SS [144], [176], [187], [251], [267]. Moreover, 

this trend was also confirmed in a simulation study which examined the effect of vascular 

hemorrhaging on the QPA SS parameter [270]. By 7 days post-treatment, both groups had 

sufficient time to recruit and generate new blood vessels. The effects of re-vascularization 

following cancer treatments have been previously studied using other modalities [26], [43], [74] 

and are consistent with the observed increase in tumor sO2 reported in the current study at 7 days.  

 

The post-treatment changes in the PA SS at both wavelengths are expected to be dependent on the 

size of vessels inside the tumor post-treatment as compared to pre-treatment. Changes in the 

distribution of tumor vessels are shown in Figure 4-6c. This is consistent with the experimental 

results: the PA SS of the Saline group was more negative than for the HaT-DOX group (Figure 

4-5c). Additionally, the sub-resolution sized vessels were found to be more abundant in the HaT-

DOX treated group. Although smaller than the system spatial resolution (axial 45 μm, lateral 90 

μm) the PA signal from collections of these vessels can contribute to the recorded RF PA signal 

and the SS. This is a phenomenon that is observed during studies of acoustic-resolution PA 

imaging where speckle dominates the images due to collections of unresolved sources of PA waves 

[176], [249], [271]. 
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Figure 4-6: Tumor histology obtained 2 h post-treatment. (a) Representative images of HaT-DOX-

treated tumor blood vessels (2 h post-treatment) stained with CD-31 (red and yellow) showing the 

leakage of FITC-lectin (green) in their vicinity (red ellipse). The width of the image is 10 mm and 

the scale-bar in the zoomed inset is 100 mm. (b) Representative HaT-DOX and Saline tumors 

showing the proportion of FITC-lectin leakage (dark gray) outside of the tumor area (orange). 

Normal tissue is the teal color surrounding the tumor and the slide background is light gray. For 

more details on how these images were obtained refer to reference [43]. (c) Distribution of the size 

of tumor blood vessels for HaT-DOX and Saline measured at the 2 h timepoint. 

 

4.3.6 Quantitative ultrasound for detecting tumor cell death  

In order to compare the treatment monitoring capabilities of QPA with quantitative ultrasound 

(QUS), the SS from the US imaging of the tumors was computed for all the imaging timepoints 

and treatments (Figure 4-7). It is evident that QUS is unable to identify changes in the structure of 

the tumor as early as a few hours post-treatment in the same manner as the PA SS. The US SS 

does not significantly change in HaT-DOX treated tumors until the 7d timepoint despite the large 

drop in oxygenation (Figure 4-7a). At 7d, the US increased by nearly 35%, which is indicative of 

a decrease in the size of the scatterers (i.e. tumor cells seen) due to the structural changes that the 

tumor has undergone. No noticeable trend was observed in the SS of the HaT-DOX non-responder 

(Figure 4-7b). The SS of the Saline control (Figure 4-7c) increased by 24% at 7d compared to pre-
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treatment. It is important to note that by 7d there were no significant changes in the size of the 

tumors between all groups, as assessed through caliper measurements (Figure 4-2).  

 

Figure 4-7: The correlation between US SS and sO2 mode for HaT-DOX (a) responders and (b) 

non-responder and (c) Saline. Each dot represents the average SS across at least 100 RF spectra 

within 21 tumor slices per timepoint per mouse.  

 

The examination of the changes that the tumor cells undergo during and after treatment is another 

aspect of treatment monitoring. QUS has been successful in probing the structural changes that 

occur within tumor cells when they are exposed to changing environmental conditions [33], [34], 

[272]. Recently, the technique was used to evaluate the treatment response of breast and prostate 

cancer patients before conventional imaging modalities [24], [35], [232]. However, the technique 

is sensitive to localized changes in the structure of the tumor cells and cannot provide functional 

information on the tumor vasculature in the same manner as PA imaging. Additional complexity 

arises from the fact that inflammation of the tumors was present one week after treatment. This 

could complicate interpretation of results, as changes in the acoustic properties of the tumor 

microenvironment have been shown to affect QUS parameters such as the SS [273]. This renders 

the interpretation of changes in parameters more challenging than in QPA where the specific, 

oxygen dependent optical absorption of hemoglobin is known to dominate the PA signal 

generation. Therefore, there is a more direct link to the relation between the changes detected in 

the PA signals collected and how these can be interpreted based on the underlying biophysical 

changes in tissue structure that occur because of the treatment. The latter is an important 

consideration in using QPA for monitoring vascular-targeted therapies.  
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 Conclusions 

Our study demonstrates the potential of using PA imaging and QPA for monitoring treatment-

induced changes in the tumor vasculature. Changes in quantitative photoacoustics as early as 30 

minutes post-treatment are strongly correlated with a significant drop in oxygenation observed at 

the same timepoints. These correlated values continue through to 5 hours where they are shown to 

correlate with changes to the vasculature as observed via histology. In fact, the spectral analysis 

of the PA RF data provides evidence for the loss of oxygenation due to HaT-DOX-induced 

vascular destruction. Our results indicate that the frequency content of the PA data provides useful 

information related to the changes in the morphology of blood vessels during treatment. 

Comparisons with QUS suggest that the QPA technique is capable of identifying treatment 

responders as early as a few hours post-treatment for treatments that disrupt the vasculature. This 

study establishes the feasibility of using PA imaging and spectroscopy for treatment monitoring 

and should be used to assist with the translation of PA imaging to mainstream radiology.  
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5 Photoacoustic imaging biomarkers for monitoring 

biophysical changes during nanobubble-mediated 

radiation treatment 

The contents of this chapter have submitted for publication in Photoacoustics. 

 

E Hysi, MN Fadhel*, Y Wang*, JA Sebastian, A Giles, GJ Czarnota, AE Exner and MC Kolios. 

“Photoacoustic imaging biomarkers for monitoring biophysical changes during nanobubble-

mediated radiation treatment” Photoacoustics 2020; under review. 
*The authors contributed equally to this work.  

 Introduction 

Despite the standardization of treatments such as surgery, chemotherapy and radiation therapy, 

overall cancer survival rates remain modest [274], [275]. A deeper understanding of cancer 

causation and progression has driven the development of molecularly targeted drugs. These have 

led to personalized, precision treatments that rely on individualized drug administration based on 

prognostic and predictive markers of response [7]. The ultimate hope is that such a personalized 

strategy in cancer therapy will replace the “one-size-fits-all” conventional approach, increasing 

overall survival rates [8]. This however remains a monumental task because the selection of the 

right treatment is a complex decision based on continuously changing molecular diagnostics and 

rapidly evolving biomedical literature [276].   

 

Equally important to the developments of new drugs or experimental therapies is their assessment 

with inexpensive and readily available means, which can expedite their clinical translation [277]. 

A prime example of a successful biomarker-driven personalized cancer therapy is the development 

of trastuzumab for human epidermal growth factor 2 (HER2)-positive breast cancer [278]. 

However, the molecular heterogeneity of tumors can also lead to individualized and dynamic 

treatment-induced changes in tumor morphology and structure [9]. Unfortunately, current 

treatment efficacy assessment approaches might not be suitable for handling the complexities of 

personalized cancer treatments [9]. Studying the structural and functional markers of treatment 

response is thus imperative for providing fast and reliable feedback on treatment efficacy [276]. 
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Photoacoustic (PA) imaging is a relatively new modality that combines ultrasound (US) resolution 

with optical contrast. The optical absorption of pulsed laser light generates mechanical sound 

waves from the thermoelastic expansion of endogenous tissue chromophores [279]. In PA 

imaging, the strength of the signal depends on the tissue chromophore identity and concentration. 

As such, PA imaging has contributed to breast cancer diagnosis, mapping neuronal functional 

connectivity, quantifying pharmacokinetics of novel drugs and detecting the presence of malaria 

[101], [108], [148], [248].  

 

While a lot of strides have been made in the diagnostic realm [104], [106], [247], [280], PA 

imaging applications in cancer treatment monitoring are still in their infancy. A handful of pre-

clinical studies have illustrated the potential of PA imaging for the early monitoring of cancer 

therapies by mapping the tumor oxygenation changes post-treatment through measurements of 

oxygen saturation [133], [136], [150], [151], [258]. The clinical translation of PA imaging in 

cancer treatment monitoring warrants the development of non-invasive biomarkers whose 

detection and quantitative measurement is accurate, reproducible and feasible over time [7]. Just 

like for the US radiofrequency (RF) signals in quantitative ultrasound spectroscopy [29], [30], the 

frequencies of the PA signals carry information on the structure (size, shape and orientation) of 

the underlying absorber [124], [129], [176], [281]. In utilizing the frequency information of the 

PA RF signals, acoustic resolution PA imaging has the potential to probe non-resolvable optical 

absorbers and thus provide new PA biomarkers that can be linked to the success or failure of the 

therapy being evaluated.  

 

In this study, we investigate for the first time the therapeutic application of ultrasonically activated 

nanobubbles (NBs) for enhancing radiation therapy. Ultra-stable NBs (100-300 nm diameter) are 

a new class of US contrast agents with contrast-enhancing capabilities comparable to conventional 

microbubbles (MBs, 1-10 µm diameter) [282]–[285]. The size range makes MBs ideal vascular 

disrupting agents. Under US stimulation, they can cause increased vascular permeability for 

amplifying tumoral drug release [286], inducing thrombolysis of blood clots [287] and open the 

blood brain barrier [288]. In contrast, NBs have been shown to remain echogenic at the clinical 

frequency range (3-12 MHz) [289] while being able to exit tumor vasculature due to the enhanced 

permeability and retention effect [66]. Unlike conventional MBs that remain intravascular, NBs 
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can in principle directly target tumoral cells, thus having the potential to become multifunctional 

theranostic agents. The prolonged in vivo stability has allowed NBs to be used to open the blood 

brain barrier [282], enhance contrast in ovarian cancer [290] and increase chemotherapy uptake 

[283].  

 

The ultrasonic stimulation of conventional MBs has been shown to enhance radiation therapy 

[291]–[293]. This combination treatment synergistically damages the endothelial lining of tumor 

blood vessels in addition to causing radiation-induced damage of cancer cells in vivo. However, a 

limitation of any MB-based treatments remains their limited in vivo stability [294] which reduces 

their circulation time and usability [285]. NB-enhancement of radiation therapy has the potential 

to further maximize the tumoral cell death through their extravascular effect. Histopathological 

examinations post-treatment have provided insights into the biophysical mechanism of MB 

treatments [293]. The damage caused to the vascular endothelium through mechanical 

perturbations and the production of reactive oxygen species can lead to secondary tumor cell death 

and vascular collapse. Here we investigate whether PA imaging biomarkers can quantify the 

vascular damage induced by ultrasound excitations of NBs combined with radiation, and if these 

biomarkers can be used to monitor treatment efficacy. 

 

 Materials and methods 

5.2.1 Animal model and tumor growth 

Severe combined immuno-deficient (SCID) male mice (Charles River Laboratories International, 

Wilmington, MA, USA) were inoculated with 106 human prostate cancer cells (PC3, American 

Type Culture Collection, Manassas, VA, USA) in order to grow xenograft tumors in the right, 

upper hind leg of each mouse (n = 58). Tumors were grown to 8 to 10 mm in maximum diameter 

for approximately 4-6 weeks. Following treatments, all animals were euthanized by cervical 

dislocation under anesthesia after 24 hours in order to histologically assess the morphological 

changes to the tumor cells and blood vessels. The animal studies were approved by the Sunnybrook 

Research Institute Animal Ethics Committee and conformed to the Canadian Council on Animal 

Care guidelines. 
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5.2.2 Treatment groups 

A total of 58 mice were divided into six treatment groups as summarized in Table 5-1.  

Table 5-1: Experimental treatment groups for the MB and NB experiments.  

Treatment group (abbreviation) Number of animals 

Untreated control (0Gy) 14 

Radiation only, 8 Gy, single fraction (8Gy) 14 

Microbubbles + Ultrasound (MB+US)  8 

Nanobubbles + Ultrasound (NB+US) 5 

Microbubbles + Ultrasound + Radiation (NB+US+8Gy) 12 

Nanobubbles + Ultrasound + Radiation (NB+US+8Gy) 5 

 

5.2.3 Ultrasound-activated microbubble and nanobubble treatments 

5.2.3.1 Microbubble preparations and injections 

Commercially available Definity (Lantheus Medical Imaging, N. Billerica, MA, US) MBs (~3 µm 

mean diameter) were activated using the Lantheus Vialmix mechanical shaker device (45 seconds 

at 3000 rpm). An intravenous tail vein injection of a MB bolus (1.2 ×1010 MBs/ml) was 

administered to each mouse 5 minutes prior to the ultrasound activation.  

 

5.2.3.2 Nanobubble preparations and injections 

NBs were prepared using a previously established protocol [285]. The NBs consisted of a lipid 

shell and an octafluoropropane (C3F8, Electronic Fluorocarbons LLC, Hatfield, PA, USA) gas. The 

NB consisted of the following mixture of lipids (Avanti Polar Lipids, Inc.): 

• 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine 

• 1,2-dibehenoyl-sn-glycero-3-phosphocholine 

• 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] 

• 1,2-dipalmitoyl-sn-glycero-3-phosphate  

 

The lipid mixture with a 2:6:1:2 ratio was dissolved in propylene glycol and glycerol in Phosphate 

Buffered Saline (PBS) solution. The air present in the lipid-PBS solution was replaced by C3F8 

prior to mechanically agitating the lipid-gas solution for 45 seconds using the Lantheus Vialmix, 

generating a mixture of MBs and NBs. In order to isolate the NBs from the mixture foam and the 

MB solution, centrifugation was performed at 50g for 5 minutes. The NB solution was retrieved 
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with the headspace vial inverted and by using a 21G needle withdrawing from a fixed distance of 

5 mm from the bottom of the vial. 

 

The size and concentration of the resulting NB solution were assessed using resonant mass 

measurement (Archimedes®, Malvern Panalytical, Westborough, MA, USA) [284]. This device 

was equipped with a nanosensor which can measure particle sizes between 50 and 2000 nm. The 

NB solution was diluted by a factor of 1000 (v/v) in PBS prior to measurements. A size distribution 

representative of the NB formulation used in this study is shown in Supplementary figure 5.A. The 

average diameter of the NB was measured to be 205 ± 97 nm. NBs were injected 5 minutes prior 

to ultrasound activation with a tail vain injection concentration of 1 ×1011 NBs/ml. 

 

5.2.3.3 Low frequency ultrasound activation 

Following the MB or NB bolus injections, 500 kHz frequency US treatments were administered 5 

minutes post-injection. Figure 5-1 shows a schematic of the treatment and imaging setups used to 

expose the MB and NB post-injection. The mice were secured onto a mounting platform with the 

lower half of the mouse and the tumor immersed in a degassed water bath kept at 37°C (Figure 

5-1a). The platform was mounted coaxially to a therapeutic ultrasonic transducer such that the 

tumor was centered within the focus of the transducer through a micro-positioning system.  

 

The low frequency ultrasonic activation of the MBs and NBs was generated using a 500 kHz 

focused transducer (Valpey Fisher Inc., Hopkinton, MA, USA) [291]–[293]. The transducer had a 

diameter of 28.7 mm, a focal depth of 85 mm, peak negative pressure of 570 kPa, a -6 dB beam 

width of 31 mm and a depth of field greater than 20 mm. It was connected to a PC-controlled 

digital acquisition system (Agilent Technologies Inc., Monroe, NY, USA) which controls a 

waveform generator (Tektronix Inc., Beaverton, OR, USA), a power amplifier and receiver (Ritec 

Inc., Warwick, RI, USA) using the setup previously described [295].  

 

Following tail vein injection, bubbles were allowed to circulate for 5 minutes before ultrasonic 

activation. The ultrasonic activation treatment was administered for a total time of 5 minutes using 

16 cycle tone bursts of 500 kHz frequency with a pulse repetition frequency of 3 kHz. This resulted 

in a duty cycle of 0.24% or 720 ms of beam-on treatment time. This low duty cycle was designed 
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to avoid any bioeffects potentially rising from ultrasound heating. It was previously estimated that 

for this system the transducer spatial peak temporal peak intensity was 22.4 W/cm2 and the spatial 

peak temporal average intensity was 0.054 W/cm2 [295]. The -3 dB beam width was determined 

to be 15.6 mm, ensuring that the entire tumor volume (diameter 8-10 mm) is consistently exposed 

to the ultrasound pulse.  

 

Figure 5-1: Ultrasonic treatment and PA imaging setups. (a) Ultrasonic bubble activation setup. 

The tumor is positioned at the focus of the therapeutic ultrasonic transducer. (b) PA imaging 

platform illustrating the prone imaging position of the mouse during imaging. The mice are kept 

at physiological temperature through a heated stage and a heating lamp.  

 

5.2.4 Radiation treatments 

Following the MB or NB treatments, a single dose of 8 Gy X-ray radiation was delivered through 

a 160 kVp small animal irradiator (Faxitron Bioptics, LLC, Tucson, AZ, USA). The dose was 

delivered at a rate of 200 cGy/min (duration = 4 minutes), three hours following ultrasound 

treatments to maximize the degree of tumor cellular death [293]. The mouse was shielded with a 

lead sheet and a circular cutout in the hind leg enabled the irradiation of only the tumor. 
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5.2.5 Delayed tumor growth investigations 

Another cohort of mice (n = 19) bearing subcutaneous PC3 tumors were treated either with a single 

dose of 8 Gy (n = 5), NB+US (n = 5), NB+US+8Gy (n = 4) or were left untreated (n = 5). Instead 

of sacrificing at the 24-hour time point, the mice were followed longitudinally post-treatment for 

monitoring the growth delay effects of each treatment. The tumor size was measured via standard 

caliper measurements every 3-5 days for 30 days post-treatment.  

 

5.2.6 Photoacoustic imaging and biomarkers 

5.2.6.1 Imaging setup 

Figure 5-1b shows the positioning setup for performing PA imaging on the hind leg PC3 tumors 

of SCID mice. The VevoLAZR small animal PA imaging system (Fujifilm-VisualSonics, Toronto, 

Canada) was used to perform three-dimensional (3D) volume of the tumors. A 21 MHz linear array 

probe with 256 active transducer elements (LZ 250) was coupled to an Nd:YAG laser operating 

through an optical parametric oscillator in the 680-970 nm range [175]. The laser light (30 

mJ/pulse, 20 Hz pulse repetition frequency, 6 ns pulse length) was delivered through a pair of 

optical fibers terminating in two rectangular strips located at a 30° angle on both sides of the 

acoustic aperture. Co-registered US and PA images were acquired at a rate of 5 frames/second at 

750 nm and 850 nm. Each mouse was anesthetized using isoflurane (1.5%) to immobilize them 

during imaging (Figure 5-1b). The mice were imaged in the prone position in order to fully expose 

their hind leg tumor. Their core temperature was kept physiological with the help of an external 

heating lamp and a heated platform. The center of the tumor was positioned at the focus of the 

US/PA transducer (11 mm) and clear ultrasonic gel was used at provide acoustic coupling. The 

probe was scanned from the proximal towards the distal end of the tumor in 80 µm steps. At every 

step, a two-dimensional (2D), co-registered US and PA image was acquired for both imaging 

wavelengths at pre-treatment, 2 hours, and 24 hours post-treatment.  

 

5.2.6.2 Vessel oxygenation biomarkers  

Figure 5-2 shows a schematic overview of the PA biomarkers that were used in this work to 

examine the impact that ultrasound-simulated MB and NB treatments in combination with 

radiation have on the tumor viability and its blood vessels. Upon the administration of the MB or 
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NB/radiation treatments, two-wavelength (λ1 = 750 nm and λ2 = 850 nm) PA images were acquired 

at each scanning location in the tumor. The oxygen saturation (sO2) and the total hemoglobin 

(HbT) content present within the vessels were calculated by assuming that deoxy (Hb) and oxy 

(HbO) hemoglobin are the dominant absorbers inside tumor blood vessels [223]. At every 2D 

tumor slice, the sO2 and HbT are calculated by: 

 

 
𝑠𝑂2 =

[𝐻𝑏𝑂]

[𝐻𝑏𝑂] + [𝐻𝑏]
=

𝜇𝑎
𝜆2𝜀𝐻𝑏

𝜆1 − 𝜇𝑎
𝜆1𝜀𝐻𝑏

𝜆2

𝜇𝑎
𝜆1𝛥𝜀𝐻𝑏

𝜆2 − 𝜇𝑎
𝜆2𝛥𝜀𝐻𝑏

𝜆1
 (5.1) 

 
𝐻𝑏𝑇 = [𝐻𝑏𝑂] + [𝐻𝑏] =

𝜇𝑎
𝜆1𝛥𝜀𝐻𝑏

𝜆2 − 𝜇𝑎
𝜆2𝛥𝜀𝐻𝑏

𝜆1

𝜀𝐻𝑏
𝜆1 𝜀𝐻𝑏𝑂

𝜆2 − 𝜀𝐻𝑏
𝜆2 𝜀𝐻𝑏𝑂

𝜆1
 (5.2) 

 

where, 𝜇𝑎 is the absorption coefficient in units of cm-1; 𝜀𝐻𝑏𝑂 and 𝜀𝐻𝑏 are the known molar 

extinction coefficients (in units of cm-1 M-1) of HbO and Hb, respectively; 𝛥𝜀𝐻𝑏 = 𝜀𝐻𝑏𝑂 − 𝜀𝐻𝑏; 

and [HbO] and [Hb] are the concentrations (in units of M) of the two forms of hemoglobin, 

respectively. The optical absorption coefficients were estimated by the PA signal amplitude [190], 

[296]. The latter was estimated by calculating the envelope of the time-domain PA signal within 

the tumor region of interest. Using a histogram-based quantification approach developed by our 

group [150], [151], the sO2 and HbT values of each 2D slice within the tumor was calculated from 

the mode of the sO2 and HbT histograms, respectively. At every imaging timepoint, the average 

mode was computed throughout the entire tumor volume for every mouse and then averaged across 

all animals belonging to the same treatment group to examine inter-treatment variation in tumor 

oxygen saturation and total hemoglobin level. Additionally, the distribution of the sO2 and HbT 

across the tumor volume was also examined by plotting each sO2 or HbT mode value from 2D 

images as a single datapoint across multiple treatments/timepoints. Lastly, the differences relative 

to the pre-treatment timepoint for each mouse was calculated and the percent change from the 

control mice were computed.  
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Figure 5-2: PA imaging biomarkers of treatment response. The effects of the combination of 

ultrasound-simulated MB or NB treatments with radiation can be probed using PA imaging 

biomarkers (functional and structural) and can be correlated with histological metrics of tumor 

cells and blood vessels. Treatment and tumor illustrations were created with Biorender.com. 

Abbreviations: MB = microbubble; NB = nanobubble; sO2 = oxygen saturation; HbT = total 

hemoglobin.  

 

5.2.6.3 Vessel size and structure biomarkers 

The time/spatial domain PA radiofrequency (RF) signals acquired at both wavelengths of 

illumination 𝑝(𝑥, 𝑦, 𝑧, 𝜆) were used to compute the normalized PA power spectrum as a function 

of acoustic frequency 𝑓 [151], [297]. The wavelength-dependent, normalized power spectrum at 

every zth 2D scan of the tumor 𝑃𝑆𝑛𝑜𝑟𝑚(𝑓, 𝑧, 𝜆) was calculated by: 
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where, 𝑃𝑆(𝑓, z, 𝜆)tumor and 𝑃𝑆(𝑓, 𝑧𝑖, 𝜆)𝑟𝑒𝑓 are the power spectra for the tumor and reference 

phantom, respectively. They were computed by taking the Fast Fourier Transform of all the RF 

lines comprising each 2D scan within the tumor and the reference phantom. The latter was a 

gelatin-based construction of black carbon spheres (diameter 1-12 µm) [176] which was imaged 

at the end of each timepoint using the same imaging settings as the tumors to remove the system 

dependencies. The normalized power spectra were fitted to a straight line as shown in Figure 5-2 

and the PA spectral slope (SS) was extracted from: 

 

 𝑃𝑆𝑓𝑖𝑡(𝑓) = 𝑆𝑆 × 𝑓 + 𝑌𝑖𝑛𝑡 (5.4) 

 

where, 𝑃𝑆𝑓𝑖𝑡(𝑓) is the linear fit obtained from performing linear regression on the 𝑃𝑆𝑛𝑜𝑟𝑚(𝑓, 𝑧, 𝜆) 

in the 10-30 MHz -6 dB range of the linear array probe and 𝑌𝑖𝑛𝑡 is the y-intercept of the fit measured 

in dB. As was done with the sO2 and HbT parameters, the average SS value was computed for 

every 2D scan within the tumor in addition to the percent change from the pre-treatment values 

and untreated control group. This was done for both wavelengths of illumination 750 and 850 nm 

to examine the oxygen-dependent trends in SS.  

 

5.2.7 Histological analyses and correlations with PA imaging 

All animals were sacrificed after the 24 hours post-treatment imaging timepoint. The excised 

tumors were fixed in 10% paraformaldehyde (volume/volume in PBS) overnight and were 

subsequently embedded in paraffin. Representative sections were taken from the approximate 

center of each tumor and stained with standard hematoxylin and eosin (H&E). The vasculature of 

tumors was stained through endothelial cluster of differentiation 31 (CD31) staining (Figure 5-3a 

– Figure 5-3c). The degree of apoptotic cell death was assessed by deoxynucleotidyltransferase-

mediated-dUNP-biotin nick end labeling (TUNEL) staining (Figure 5-3d and Figure 5-3e). H&E, 

TUNEL and CD31 sections were sequentially acquired within 10 µm of each other.  

 

The slides were digitized using the ZEISS Axio Scan.Z1 (Carl Zeiss Canada, Ltd., Toronto, 

Canada) brightfield illumination microscope (20x/0.8 Plan-Apochromat objective) attached to a 

Hitachi 3-chip color camera (Hitachi Kokusai Electric Camera, Ltd., Woodbury, NY, USA). All 

quantification analysis was performed using the HALO® image analysis platform (Indica Labs, 
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Albuquerque, NM, USA). The tumor areas were manually segmented for each stain while 

excluding histological folding artifacts and non-tumor regions. Using the area quantification 

module, the CD31 (Figure 5-3b, tumor vascularity) and TUNEL (Figure 5-3e, degree of cell death) 

positive areas were calculated by separating the stain signal from the background signal. This was 

accomplished by training the HALO® software on the representative CD31, TUNEL or 

background intensity levels and automatically generating pseudo colored markups for all slides. 

In order to quantify the size of each CD31 positive ‘object’ (defined either as a cluster of 

endothelial cells or a vessel with the lumen intact, refer to Supplementary figure 5.B), the perimeter 

of all objects was automatically traced, and a histogram distribution was generated (Figure 5-3c). 

The mode of the histogram was used to compute the average vessel perimeter. The ratio of the area 

under the curve to the tumor area was used to compute the vascular density of each tumor in units 

of number of vessels/µm2.   

 

For each treatment group, the percentage of tumor vascularity, vascular density, average vessel 

size and tumor cell death were computed at 24 hours post-treatment as shown in Figure 5-3. These 

histological metrics were normalized by computing the percentage change relative to the untreated 

control group. The PA imaging biomarkers were correlated against the histological metrics of 

treatment response in order to assess the relation between the changes in the imaging biomarkers 

and the biophysical changes that tumors undergo post-treatment. Correlation plots were also 

generated between relevant histological metrics (vessel perimeter vs. vascular density) and 

imaging biomarkers (HbT vs. sO2) for every treatment group.  
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Figure 5-3: Histological metrics of tumor vessels and cells. (a) CD31 staining of tumor blood 

vessels can be used to estimate both the (b) vascularity of tumors by measuring the CD31 positive 

area and (c) the vascular density and vessels size by computing the total number and size of each 

vessel, respectively. The red pseudo color denotes the vessels and green and yellow denote the 

background and tissue-free areas, respectively. The cell-free areas are assessed by the presence of 

the hematoxylin nuclear counterstain. (d) TUNEL staining can be quantified by measuring the (e) 

TUNEL positive area in the tumor in order to estimate the extent of cell death. Red and yellow 

pseudo colors represent different intensities of TUNEL staining. Abbreviations: CD31 = cluster of 

differentiation 31; AUC = area under curve; TUNEL = Terminal deoxynucleotidyltransferase-

mediated-dUNP-biotin nick end labeling.  

 

5.2.8 Statistical analysis  

A two-way analysis of variance (ANOVA) test was utilized to determine if the changes in sO2, 

CD31 and TUNEL among treatment groups were statistically significant and whether the MB/NB 

treatments had an effect on the radiation treatment. A variable with a p value of 0.05 was 

considered statistically significant and post hoc comparisons using Tukey’s least significant 

differences identified 95% confidence intervals to determine the pairs which were significantly 

different [298]. All statistical analysis was performed using Matlab 2018b (The MathWorks, Inc., 

Natick, MA).  
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 Results and discussion 

5.3.1 Quantification of micro/nanobubble treatment response 

Figure 5-4 summarizes the PA-based and histology-based biomarkers post-treatment. The sO2 at 

2- and 24-hours post-treatment was compared against the untreated control mice (Figure 5-4a). All 

changes relative to the control mice are statistically significant at both timepoints (p < 0.05). A 

single fraction of 8 Gy increases the tumor oxygen saturation by as much as 10% at 2 hours post-

treatment, with a subsequent drop in sO2 at the 24-hour timepoint that is still above pre-treatment 

levels (p < 0.05). The oxygen consumption is driven by the metabolic demands of tumor cells with 

blood flow regulating the oxygen supply [71]. Radiation-induced vascular changes will affect the 

tumor sO2 [136] and disrupt endothelial cells [70]. The increase in CD31 staining observed for the 

8 Gy group (Figure 5-4b) is consistent with an sO2 increase (Figure 5-4a) and is supported by other 

studies of tumor neovascularization observed post-radiation treatments [299]–[301]. The acute 

inflammatory response which is triggered immediately post radiation-induced cellular damage 

(Figure 5-4c) may increase the blood flow to the tumor, increasing the oxyhemoglobin 

concentration within the tumor, thereby increasing the sO2.  

 

Czarnota and colleagues have demonstrated that MB+US treatments can be used as radiation-

enhancing antivascular agents [291]–[293]. Endothelial cells lining the tumor blood vessels 

undergo apoptosis through the release of ceramide in response to radiation exposure [293]. In 

addition, the ultrasonic-mediated, inertial cavitation of MBs induces vascular damage to the 

tumors. These vascular effects can be measured through PA sO2 estimates as shown in Figure 5-4a 

and the CD31 staining in Figure 5-4b. The decrease in CD31 staining is most likely related to the 

reduced vessel integrity, and thus blood flow to the tumor [292], leading to a decrease in the supply 

of oxygenated blood and thus, oxygenated hemoglobin. As the PA imaging biomarkers are 

sensitive to the oxygenation of the red blood cells, it can measure this treatment-induced vascular 

effect.  

 

NBs have shown promise as contrast agents [285]. This study presents the first time nanobubbles 

are used as vascular disrupting agents. As shown in Figure 5-4a and Figure 5-4b, the NB+US 

treatments induce a vascular effect that is stronger than the MB+US treatments (10.3% in tumor 
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sO2 and 10% drop in CD31 compared to 7.7% and 4% for MBs, respectively). This suggests that 

the NB+US exposure impacts the tumor vascularity in a manner similar to MBs, possibly inducing 

damage to blood vessels due to inertial cavitation in the vicinity of endothelial cells. 

 

Figure 5-4: PA imaging and histological biomarkers of treatment response. Change in (a) PA 

estimations in tumor sO2, (b) CD31 positive area and (c) TUNEL positive area relative to the 

untreated control as a function of treatment and imaging timepoint (sO2 only). The error bars 

denote the standard error of the mean change for all animals belonging in that treatment group. 

Statistical significance is doted by * (p < 0.05) and n.s. denotes not significant. The sO2 

comparisons denote statistical significance between the 2h and 24h imaging timepoints. For every 

biomarker, representative sO2 maps, CD31 and TUNEL histological images are shown for the 

untreated control and the NB+US+8Gy treatment. Axial and lateral distances in the sO2 maps are 

in relation to the imaging transducer.   

 

The combination of radiation with the MB and NB treatments amplifies the decrease in tumor 

oxygenation (as assessed by sO2) and vascularity. The largest decrease in sO2 (18%) was observed 



CHAPTER 5 

 

116 

for the NB+US+8Gy treatment at 24 hours post-treatment (Figure 5-4a) while the tumor 

vascularity assessed by CD31 staining decreased by nearly 50% at the same timepoint (Figure 

5-4b). The tumor sO2 decreased as early as 2 hours post-exposure for all bubble treatments. The 

drop in sO2 for the NB+US+8Gy treatment was approximately 10% greater compared to the 

NB+US treatment at both 2- and 24-hours post-treatment. These changes were also mirrored by 

changes in the CD31 staining (Figure 5-4b), all of which are significantly lower than the single 8 

Gy fraction of radiation. These findings support the hypothesis that ultrasonically simulated 

bubbles impact the vasculature of tumors [291].  

 

Histological analysis of tumors post-treatment offers insights into the mechanism of action for 

each treatment. Figure 5-4c shows the degree of cell death as a result of radiation, MB and NB 

treatments. As observed by the representative images of TUNEL staining for untreated control and 

NB+US+8Gy treatments, there is a notable increase in brown staining. Quantification of this 

apoptotic stain reveals more than 2-fold higher degree of cell death for the NB+US group 

compared to the MB+US counterpart (p < 0.05). This observation suggests that the NBs, for these 

ultrasound exposure parameters and bubble concentrations, are more effective at damaging the 

tumor cells than MBs, perhaps due to their ability to extravasate into the tumor interstitium [294]. 

When combined with radiation, the NB+US+8Gy treatment exhibited, on average, 40% more cell 

death compared to the untreated control 24 hours post-treatment. Apart from the MB+US 

treatment, all other treatments had a significantly higher degree of cellular death compared to the 

single fraction of radiation (p < 0.05). The vascular disruption from the cavitation of MBs and NBs 

leads to a drop in the tumor sO2 as measured by PA imaging. When accompanied by the radiation 

damage, this leads to an increase in tumor cell death.  

 

5.3.2 Changes in functional biomarkers during treatment 

The tumor vessel oxygenation has been previously showed as a reliable biomarker of cancer 

treatment response [133], [136], [150]. In order to further explore the biophysical mechanism of 

the MB and NB treatments, Figure 5-5 shows a direct comparison between PA biomarkers of tumor 

oxygenation (sO2 and HbT) and histologically measured biomarkers of tumor blood vessels 

(CD31) and cell death (TUNEL). Simultaneous sO2 and HbT measurements in the same imaging 

plane reveal an inverse relationship between the two (Figure 5-5a). As the oxygenation of tumors 
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decreases, there a significant increase in the concentration of total hemoglobin present in the tumor. 

A nearly 20% decrease in tumor sO2 (NB+US+8Gy) is accompanied by nearly 30% increase in 

HbT. Total hemoglobin has been shown to correlate with the overall blood volume in biological 

tissue [146], [223], [279], [302]. In the case of MB- and NB-enhanced radiation treatments, the 

disruption of the vasculature might lead to the hemorrhaging of red blood cells in the tumor 

interstitium. The decrease in CD31 staining when the tumor sO2 decreases (Figure 5-5b) and the 

HbT increases (Figure 5-5c) also supports this hypothesis. These results also suggest that there is 

a threshold of CD31 staining (~20%), beyond which the vascular damage induces an increase in 

HbT, potentially due to hemorrhaging. This may be probed further through dose-dependent studies 

in both MB/NB concentration and radiation dose [292]. 

 

Figure 5-5: Impact of treatments on oxygenation metrics. Correlations between the changes in (a) 

HbT and sO2, (b) CD31 and sO2, (c) CD31 and HbT, (d) TUNEL and sO2, and (e) TUNEL and 

sO2. Each parameter change is measured at 24 hours post-treatment and is calculated relative to 

the untreated control, for all treatment groups. Error bars denote the standard error of the mean 

change for all animals belonging in that treatment group.  

 

We then examined the relationship between tumor cell death (as assessed by TUNEL staining), 

the tumor sO2 (Figure 5-5d) and HbT (Figure 5-5e). The tumors which exhibited the largest degree 

of cellular death were also the ones with the largest drop in oxygenation and the largest increase 
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in total HbT. Much like the changes in tumor vascularity (as assessed by CD31 staining), the 

functional PA-measured biomarkers are correlated with the degree of cell death. NB cavitation can 

affect the integrity of the endothelial cells, modifying the tumor vascularity. Their extravasation 

into the tumor interstitium allows them to be in close proximity to the tumor cells. Ultrasonic 

caviation of gas filled bubbles has been shown to induce cellular death through sonoporation and 

related mechanisms [295], consistent with the hypothesis that NBs can act as anticancer agents.  

Figure 5-6 supports these findings by plotting the tumor size after NB-derived treatments. The 

NB+US+8Gy treatment yielded the largest growth delay, observable as early as 12 days post-

treatment where a 26% decrease in tumor volume was recorded. The ultrasound-activated 

nanobubble treatments and the radiation alone treatment also delay the growth of the tumor in 

comparison to the untreated control. By day 30 post-treatment, the NB+US+8Gy had suppressed 

the tumor volume by more than 70%. These observations are consistent with previously published 

results describing the growth delay effects of US+MB+8Gy treatments [292]. In order to examine 

the efficacy of NB-mediated radiation therapy in comparison to the MB equivalent treatment, 

rigorous comparisons must be conducted and are planned for future work. For instance, one must 

equalize the gas volume encapsulated within MBs and NBs in order to directly compare them 

[303], [304]. 

 

Figure 5-6: Tumor growth delay data for single nanobubble and radiation treatments. The tumor 

volumes were normalized to the size of the tumor on day 1 post-treatment, for each respective 

group. The error bars denote the standard error of the mean.  
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5.3.3 Changes in structural biomarkers during treatments  

Our group has demonstrated that PA imaging biomarkers can be used to study tumor blood vessels 

[151], [281]. MB and NB treatments appear to impact the structural integrity of tumor vasculature 

[293]. Figure 5-7 summarizes the histologically measured structural vessel parameters (perimeter 

and density) as a function of the PA-measured biomarkers (sO2, HbT and SS). The vascular density 

after the MB and NB treatments decreases, while the vascular density after the 8 Gy radiation dose 

increases (Figure 5-7a). However, the perimeter of vessels (assessed by CD31 staining, 

Supplementary figure 5.B) is higher for MB treatments compared to NBs. The addition of radiation 

decreases vascular density for both the MB+US+8Gy and NB+US+8Gy treatments when 

compared to MB+US and NB+US, respectively.  

 

The histologically measured changes in the tumor vascular network can be also probed through 

PA biomarkers. Specifically, the vascular density is correlated with the tumor sO2 (Figure 5-7b) 

and HbT (Figure 5-7c). The nearly 20% drop in tumor sO2 for the NB+XRT+8Gy group is likely 

due to the destruction of blood vessels. This is supported by an 80% drop in the vascular density 

(Figure 5-7b). Moreover, as blood vessels lose their integrity, hemorrhaging of the red blood cells 

creates interstitial blood pooling [135], [151]. This in turn causes the total hemoglobin in the tumor 

to increase by nearly 30% (Figure 5-7c) as blood flowing into the tumor leaks out and accumulates 

outside of damaged vessels.  

 

Our group and others have demonstrated experimentally and through simulations that the PA 

spectral slope is sensitive to the size of the source of PA signals [281], [297], [305]. Here we 

examine how the SS may be used to characterize the changes in vessel size post radiation, MB and 

NB treatments. Figure 5-7d and Figure 5-7e summarize the changes in SS and vessel perimeter at 

750 nm and 850 nm illuminations, respectively. Much like the histologic metrics shown in Figure 

5-7a, the PA SS can also be used to differentiate between the effects MB and NB-based treatments. 

Supplementary figure 5.C plots the absolute values of the pre-and post-treatment SS values 

reflecting the changes observed in Figure 5-7.  

 

The SS decreases at both illumination wavelengths for both the MB+US and NB+US groups. A 

decrease in the SS has been previously linked to an increase effective absorber size as was shown 



CHAPTER 5 

 

120 

through simulations and experiments in Chapter 2. In the context of vascular targeted treatments, 

we have shown that when tumors hemorrhage, the effective absorber size (i.e. pools of red blood 

cells) increases [151], [306]. The SS and vessel perimeter changed post-treatment further provide 

evidence that both the MB and NB treatments induce changes in the tumor vasculature. Using 

CD31 staining post-treatment, one can assess the size of the remaining vessels (i.e. endothelial 

cells which we hypothesize survived the MB/NB disruption). Figure 5-7d and Figure 5-7e show 

the changes in SS and vessel perimeter. The perimeter of the remaining vessels after the MB 

treatments is larger than the perimeter before treatment, whereas perimeter of the remaining 

vessels after the NB treatments is smaller than before the treatment. For both treatments, the 

vascular density is significantly reduced. Moreover, the SS drop for the tumors exposed to MB 

treatments is smaller than for the NB treatments. This SS difference between treatments suggests 

that the MBs and NBs affect different levels of the tumor vasculature, most likely due to the 

different size of the MBs (3 µm) compared to NBs (200 nm).   

 

Figure 5-7: Impact of treatments on tumor vascularity. Correlations between the changes in (a) 

Vessel perimeter and Vascular density, (b) Vascular density and sO2, (c) Vascular density and 

HbT, (d) Vascular density and SS at 750 nm and (e) Vascular density and SS at 850 nm . Each 

parameter change is measured at 24 hours post-treatment and is calculated relative to the untreated 

control, for all treatment groups. Error bars denote the standard error of the mean change for all 

animals belonging in that treatment group.  

 

(b) (c)

(d) (e)

(a)
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Moreover, differences in the changes in the SS arise between the 750 and 850 nm illuminations 

for both NB and MB treatments. At 750 nm, the decrease in spectral slope for the NB treatments 

is greater than at 850 nm. For 750 nm, the wavelength for which deoxygenated hemoglobin has a 

higher molar extinction coefficient [147], the decrease in spectral slope is greater. This might be 

an indication of larger pools of deoxygenated blood due to hemorrhaging. The decrease in both 

vessel perimeter and CD31 staining for NB treatments would support the hemorrhaging 

hypothesis, especially when considering the increase in HbT with the treatments with radiation.   

 

Conversely, for the MB treatments, at 750 nm the decrease in spectral slope is less than at 850 nm. 

At 850 nm, oxygenated hemoglobin has a higher molar extinction coefficient and contributes more 

to the PA signal, and therefore red blood cells outside the hemorrhagic pool would contribute more 

to the signal. The increase in the vessel perimeter and decrease in CD31 staining for MB treatments 

would indicate for the MB treatments there is less hemorrhage compared to the NB treatments. A 

wavelength dependence in the SS has been observed when monitoring PA sources of different 

absorption properties such as fat deposits in the liver [297] or benign tumors in ovarian tissues 

[307]. In this work, the difference between the SS at both wavelengths can be attributed to the 

oxygen dependence of hemoglobin, the most abundant absorber inside red blood cells [147].  

 

 Conclusions 

The goal of this work is to use histological metrics of cancer treatment response to understand 

biomarkers in acoustic resolution photoacoustic imaging and use these metrics to compare the 

cancer treatment responses to microbubble and nanobubble radiosensitization of the vasculature. 

This study demonstrates that PA biomarkers can be used to differentiate tumor treatment response 

to microbubble and nanobubble enhancements of radiation treatments. Biomarkers of tumor 

oxygenation and vascular structure are directly related to the changes that the blood vessels 

undergo during radiation-enhancements through bubble stimulation. The nanobubble-radiation 

combined treatments result in twice as much cellular death as nanobubbles alone and show an 

enhancement compared to the microbubble counterparts for the exposure parameters and bubble 

concentrations used in these experiments. These experiments offer a new insight into the use of 

functional and structural biomarkers of photoacoustic imaging for early cancer treatment 

monitoring.  
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 Supplementary information 

5.6.1 Supplementary figure 5.A 

 

Size distribution of NBs as measured with the Archimedes® device (Malvern Panalytical, 

Westborough, MA, USA).  
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5.6.2 Supplementary figure 5.B 

 

Representative CD31 images for three untreated control and three NB+US+8Gy mouse tumors. 

The red markups are generated by the HALO® image analysis platform and denote vascular 

‘objects’ which consist of either endothelial cell clusters (black arrows) or vessels with intact 

lumens (white arrows). 
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5.6.3 Supplementary figure 5.C 

 

Histogram distributions of the PA SS across the entire tumor volume at (a) 750 nm and (b) 850 

nm for the pre-treatment, 2h and 24h post-treatment imaging timepoints for all the mice belonging 

in that treatment group. The 0Gy represents the untreated control against which all the imaging 

parameters were normalized against. (c) Average PA SS values for all treatments. The error bars 

represent the standard error of the mean. 

(a)

(b)

(c)
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6 Conclusions and future directions 

 Thesis summary and conclusions  

The work described in this dissertation demonstrates that PA imaging can be used to measure the 

treatment-induced, structural and functional changes in tumor vasculature. I present a 

mathematical formulation for the formation of speckle in acoustic resolution PA imaging, that 

form the foundation for the development of PA biomarkers of treatment response. These structural 

and functional biomarkers were tested through numerical simulations and in vitro experiments in 

tissue mimicking phantoms. Subsequently, they were extended to in vivo imaging of pre-clinical 

mouse breast and prostate tumors. It was shown that PA imaging can be used to monitor the 

progression of two vascular-targeting treatments through multiparametric quantification of 

vascular changes. The early (hours post-treatment administration) changes in tumor vessel 

oxygenation and vessel size can be used to monitor treatment response. This work offers insights 

towards the clinical translatability of PA imaging, particularly towards the individualized 

monitoring of vascular-targeted cancer therapies. Below I summarize the main findings and 

conclusions of each chapter comprising this thesis. 

 

6.1.1 Formation of PA speckle and the derivations of biomarkers 

1) The laser illumination and ultrasonic detection in acoustic resolution PA imaging permits 

conditions that allow for the formation of speckle. Speckle arises from the spatiotemporal 

superposition of the pressure waves from non-resolvable absorbers.  

2) PA speckle was previously considered to be interfering noise that degrades image quality. For 

the first time, I demonstrate theoretically and experimentally that speckle encodes information 

related to non-resolvable absorbers. 

3) Time and frequency domain analysis of RF signals from acoustic resolution PA imaging can 

be used to investigate changes in the size, shape, number density and spacing between 

absorbers. In numerical and physical phantoms, the envelope statistics, radiofrequency 

spectroscopy and cepstral analysis techniques can probe PA absorber concentrations, sizes and 

periodicities, respectively. 

4) These analysis methods form the basis for the development of biomarkers of acoustic 

resolution PA imaging, to be later used for cancer treatment monitoring.  



CHAPTER 6 

127 

5) Fully developed speckle also arises from PA imaging of the tumor vasculature. This was shown 

through in silico, fractal-based models of tumor blood vessels and in vivo imaging of mouse 

breast cancer tumors. The frequency content of the PA signals revealed that a decrease in the 

spectral slope can quantify the increase in average tumor vessel size, linked to tumor growth. 

Moreover, the cepstral peaks reveal that the average spacing between cylindrical vessels 

decreases as tumors grow. This is consistent with the morphological changes tumor blood 

vessels undergo as a result of angiogenic processes. 

 

6.1.2 Tumor sO2 changes early after HaT-DOX cancer treatment 

1) The burst-release of doxorubicin encapsulated within HaT-DOX is an effective cancer 

targeting strategy. It caused a significant hemorrhaging, blood coagulation and vascular shut 

down of the tumor vasculature. This was due to increased tumoral drug uptake compared to 

tumors treated with DOX alone or comparable lyso-lipid temperature sensitive liposomes.  

2) The acoustic resolution PA images of breast cancer tumors contain speckle, which in turn was 

observed at multiple optical wavelengths. As such, it encoded functional information about the 

oxygenation of the tumors. The developed, histogram-based, tumor vessel oxygenation metrics 

could capture the distributions of PA sO2 estimations across the entire tumor volume. This 

could be used to track the longitudinal oxygenation changes.  

3) A drop in the PA sO2 biomarker is thought to be related to the hemorrhaging of red blood cells 

in the tumor interstitium. Moreover, the degree of response based on the 2 hours drop in tumor 

sO2 could also be quantified, with HaT-DOX showing the largest decrease.  

4) FITC-lection perfusion levels in the tumor interstitum and the window chamber setup reveal 

significant bleeding within treated tumors. The vascular damage of HaT-DOX treated tumors 

at 2 hours post-treatment is significantly higher than the saline-treated control. The vascular 

damage correlates well with the early drop in sO2, which in turn correlates with the long-term 

regression of tumors. This demonstrates the usefulness of the sO2 biomarker.  

5) A threshold in the tumor sO2 change post-treatment can offer a reliable means of predicting 

whether a tumor responds to treatment.   
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6.1.3 Oxygenation and frequency biomarkers can differentiate 

treatment response  

1) Frequency-domain analysis of PA RF signals is sensitive to sub-resolution changes in tumor 

vasculature. This enhances the capabilities of PA imaging beyond the resolution limit dictated 

by the transducer bandwidth.  

2) In treatments that disrupt the tumor vasculature such as HaT-DOX, the SS biomarker is the 

most robust of the frequency analysis variables for monitoring the progression of treatment. It 

can be used to detect treatment-induced hemorrhaging, which in turn increases the overall 

effective PA absorber size.  

3) The functional (sO2) and structural (SS) biomarkers are correlated to one another through the 

first 5 hours post-treatment. This provided further evidence for the loss of oxygenation due to 

HaT-DOX-induced vascular destruction.   

4) The frequency content of the PA data can be related to the morphological changes that tumor 

blood vessels undergo during treatment.  

5) The combination of sO2 and SS can identify treatment responders in as early as a few hours 

post-treatment. 

 

6.1.4 The biophysical interpretation of PA biomarkers 

1) PA biomarkers of treatment response can be used to elucidate the treatment-induced 

biophysical tissue changes. They can also be correlated to the gold standard histology stains.  

2) Nanobubble-mediated radiation therapy appears to impact the vasculature of tumors and 

induce cellular death. These changes are observed in PA imaging biomarkers and quantified 

through gold standard histological examinations.  

3) The tumor sO2 biomarker can be used to monitor: 

a. The acute inflammatory response triggered from the radiation-induced cellular damage. 

This is assessed by measuring oxyhemoglobin concentration within the tumor. 

b. The vascular damage most likely resulting from the ultrasonic simulations of 

microbubbles and nanobubbles inside the tumor blood vessels.  

c. The enhancement of the vascular damage when radiation is combined with bubble 

treatments. 
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4) The SS biomarker can be used to monitor:  

a. The changes in aggregate vessel size post radiation and bubble treatments.  

b. Hemorrhaging as a result of vascular disruption.  

c. The oxygenation level of hemoglobin following extravasation of red blood cells into 

the tumor interstitum post hemorrhaging.  

5) There is evidence that the microbubble and nanobubble treatments affect different levels of the 

tumor vasculature as a result of the order of magnitude differences in their sizes. 

 

 Significance and impact 

I demonstrated in this dissertation that PA imaging biomarkers derived from the time and 

frequency domain analysis of RF signals can quantify structural and functional vascular changes 

during cancer treatments (Figure 6-1). Most importantly, these changes can be used to monitor 

cancer therapies and potentially predict outcome by relying on early measurements post-treatment. 

Outside of this work, the potential of PA for cancer treatment monitoring remains largely 

unexplored. Moreover, I have contributed towards the development of a series of PA biomarkers 

that enhance the capabilities of PA imaging beyond the resolution limit of the imaging system. In 

acoustic resolution PA imaging, it is not always possible to visualize structures within the 

illumination field of view. This creates speckle patterns which are generally thought to be 

detrimental to the imaging resolution.  

 

In this thesis, I have developed PA imaging analysis methods that extend beyond the conventional 

approach for dealing with speckle, which is typically its suppression through imaging filters. The 

theoretical and experimental work discussed in this thesis establish that PA speckle encodes 

information about the underlying tissue microstructure. This information can be extracted by 

relying on RF signal analysis in the time and frequency domains. The imaging biomarkers derived 

from such techniques were used to probe the mechanisms of two separate vascular targeted 

treatments, namely thermosensitive liposomes and nanobubble-mediated radiation therapy. I 

showed how treatment induced biophysical changes to the vasculature are linked to the PA 

imaging biomarkers for both treatments. Even though the action of each treatment is fundamentally 

different (heat-activation vs. ultrasound excitation), the PA biomarkers derived are markers of 

vascular damage and could also be used to predict the outcome of each treatment. This is a new 
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contribution to the body of literature and most importantly, it has implications in the management 

of cancer therapies. Being able to provide oncologists with quantifiable metrics which have a 

meaningful biophysical interpretation can offer valuable insights into identifying the most 

efficacious treatments. As standard treatment monitoring relies on anatomical assessments which 

could take months to manifest, the identification of responders early could improve the overall 

survival. Additionally, this strategy can also spare patients unnecessary side effects of ineffective 

treatments.  

 

Figure 6-1: Schematic highlighting the work in this thesis. The development of PA imaging 

treatment biomarkers that induce vascular damages enable monitoring of cancer treatment 

response. Histological assessments of vasculature and tumor cell death enable the identification of 

treatment responders. Images were adapted from references [150], [151] and [293]. Illustrations 

were created with Biorender.com. 
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 Limitations 

The studies presented in this dissertation improve our understanding of how PA imaging can be 

used for non-invasive cancer treatment monitoring by quantifying the early changes in the tumor 

vasculature. As this is one of the first of its kind studies, it has some limitations, which form the 

basis of potential future extensions of this work. PA imaging depends on the tissue optical 

properties which impact the propagation of photons [308]. The PA image amplitude depends on 

the absorption coefficient spectrum and the local light fluence spectrum. The accuracy of the 

quantification of endogenous chromophores or tagged molecular markers is subject to debate 

[309]. One must correct for the effect of the tissue optical properties and model the optical 

scattering and absorption of tissue. 

 

The accuracy of sO2 quantification depends on the choice of illumination wavelength required to 

probe the oxygen-dependence of the HbO and Hb absorption spectra. Regardless of the wavelength 

selection, endogenous absorbers and scatterers in the surrounding illuminated region (ex. water, 

lipids or HbO/Hb in nearby microvasculature) will change the optical fluence. This effect is known 

as spectral coloring and is well documented in PA imaging [190]. Challenges remain with 

performing fluence correction in vivo because a priori information on the spatial distribution of 

the tissue optical properties are rarely available.  A few approaches (including recent attempts by 

our group) have been proposed to compensate for fluence effects in vivo in order to obtain accurate 

sO2 estimations [310]–[312]. However, the practical implementation of these approaches remains 

complex because of the need for estimating the non-uniform light distributions within the tissue, 

often requiring several approximations [308]. For these reasons, fluence corrections were not 

applied for the estimations of the sO2 in this work. As such, the computed values of the sO2 used 

throughout this thesis are not meant to be considered as absolute values and only the relative 

changes to pre-treatment values are utilized.  

 

As this technology translates towards larger animal models (ex. rabbits) and mainstream radiology, 

fluence compensation approaches become more important. Specifically, when imaging larger 

depths of field, illumination schemes involving ballistic photons are utilized as shown in Figure 

1-4c). As such, fluence compensation is warranted due to the strong dependence of the light 

distribution patterns on different optical wavelengths for ballistic photons [190]. Another 
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improvement on the accuracy of the treatment response quantification is the correction in the 

spectral slope estimations for acoustic attenuation. Due to the one-way travel of acoustic waves in 

PA imaging, the impact of ultrasonic attenuation is smaller than that in conventional ultrasound 

imaging [142]. The attenuation compensation could also improve the signal to noise ratio of PA 

images, thus enabling the development of efficient image reconstruction approaches [313].   

 

Both treatment types utilized in this thesis (HaT-DOX and MB/NB) are non-conventional cancer 

treatments tested in murine preclinical models of cancer. A commercially available variant of HaT-

DOX, ThermoDox® (Celsion Corporation, New Jersey, USA) is currently on Phase III clinical 

trials for hepatocellular carcinoma [314]. The combination of ultrasonically-simulated MB and 

radiation currently remains in the preclinical stage [315], with plans to transition the treatment in 

trials of locally advanced breast cancer. The significant vascular changes that accompany these 

treatments permit the use of PA imaging since the modality is sensitive to the hemoglobin present 

in red blood cells. These treatments are currently not used in routine clinical practice but are 

specifically designed to impact the tumor vasculature.  

 

One must test whether PA can detect vascular changes from clinical treatments that are designed 

to target cancer cells or other components (ex. chemotherapy, radiation therapy, immunotherapy, 

hormone therapy, bone marrow transplants, targeted drug therapy). PA imaging feasibility must 

be established in monitoring conventional treatments or combinations with experimental therapies. 

This is especially important in larger animal models of cancer such as rabbits or pigs where the 

presence of an immune system will have an impact on outcome. Moreover, although the sex of the 

animals was matched to the cancer cell line (PC3 prostate cancer cell line in male mice and EMT-

6 breast cancer cell line in female mice), the age of the mice at the time of tumor inoculation could 

be better chosen. The mice were inoculated at a 5-6 weeks old which corresponds to the puberty 

phase of the animal’s development [316]. To increase the clinical predictability of such mouse 

models on human diseases, tumors that grow in adult mice might more accurately model the tumor 

microenvironment of cancer patients [317], [318].  

 

In this thesis, acoustic resolution imaging was performed at two frequencies 21 MHz and 40 MHz. 

This high frequency imaging permits the interrogation of the tumor microvasculature on the order 
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of the transducer spatial resolution (45 – 130 µm). However, the frequency also limits the field of 

view which is 23 mm wide × 30 mm depth at 21 MHz and 14 mm wide ×15 mm depth at 40 MHz. 

This restricts the ability of the technique to image non-superficial tumors such as the subcutaneous 

tumors used in this thesis. The use of lower acoustic frequencies will permit imaging of tumors in 

a clinical setting as has been recently shown for breast cancers [106], [108]. In addition, 

improvements of the penetration depth is also dependent on the optical illumination schemes [93]. 

The impact of other types of illumination configurations on the quantification of vascular changes 

in tumors remains to be investigated. This is particularly important for those geometries where PA 

speckle is suppressed as is the case in tomographic or optical resolution PA systems [245].  

 

Lastly, a limitation of this dissertation lies in the histological analysis performed. Only 

representative slices were retrieved from the tumor volume, staining for several different types of 

histological markers. The slices were taken from the largest cross section of the tumor, in the same 

direction as the axial imaging plane. This potentially biases the histological analysis as it does not 

account for the intra-tumoral variations in treatment response. As PA imaging was performed in 

3D, it might be possible to carry out one-to-one spatial correlations with the stains if whole-mount 

histopathology is acquired. This would strengthen PA imaging’s role as a modality that can be 

used to study the treatment-induced biophysical changes inside tumors.  

 

 Future directions 

The directions presented here offer further extensions of this work with the goal of advancing the 

clinical translation of PA imaging by developing robust biomarkers of treatment response.  

 

6.4.1 Blood flow and metabolic oxygen consumption measurements 

The microcirculation plays a crucial role in supplying nutrients and removing waste products 

during tumor growth through angiogenesis. It also provides a pathway for cancer cells to 

metastasize to distant organs or tissues [319]. Moreover, the efficacy of radiotherapy treatments 

depends on the local oxygen concentration which is ultimately governed by the local blood flow. 

In chemotherapy or other types of systemic therapies, the flow of blood is an important determinant 

for the delivery of the therapeutic payload. In hyperthermia treatments, the blood perfusion rates 

impact the temperature distribution inside tumors. The rapid proliferation of tumor cells prevents 
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the modulation of blood flow, changing the oxygen consumption. As a result, hypoxia becomes a 

common feature of tumors, correlating with poor prognosis [47], [61]. For these reasons, blood 

flow and by extension, the metabolic rate of oxygen consumption are important indicators of tumor 

viability and its response to various therapies.  

 

Blood flow is conventionally assessed through Doppler ultrasound with applications in the 

diagnosis of vascular diseases and tumors [320]. Based on the Doppler effect, the flow of red blood 

cells can be characterized by measuring the frequency change that is produced when the scatterer 

moves through the ultrasonic beam. With multiple variants, namely continuous wave, pulsed wave, 

color and power Doppler, the approach is routinely used clinically to diagnose multiple 

cardiovascular flow conditions such as deep vein thrombosis or carotid artery stenosis [320]. 

However, Doppler ultrasound remains primarily limited to measurements of blood flow in large 

arteries and veins since the backscatter from microvessels is generally weaker. Additionally, 

microvessels exhibit slower flow speeds, making it difficult to distinguish their movement from 

that of surrounding tissue [321].  

 

Photoacoustic flowmetry and velocimetry techniques have the potential to overcome the 

limitations of conventional Doppler by relying on the strong optical absorption of red blood cells 

compared to the neighboring tissues [322]. PA measurements are made in a similar manner to 

conventional pulse-echo Doppler ultrasound, namely by recovering the Doppler frequency, phase, 

or time shift which is encoded in the PA waves emitted by flowing red blood cells [97], [323]. The 

biggest advantage of PA Doppler is the fact that unlike Doppler ultrasound, the acoustic signal 

recorded is directly emitted by red blood cells rather than being weakly scattered by them [324]. 

PA Doppler can therefore be used in its own right to study flow in tumor blood vessels. As the 

tortuous nature of tumor blood microvasculature leads to highly variable and chaotic blood flow 

patterns [59], [76], [135], [319], it inhibits therapeutic response. Moreover, as PA imaging is 

sensitive to the oxygen-dependence of the hemoglobin inside red blood cells, it is possible to 

estimate the metabolic rate of oxygen consumption inside tumors. The latter is defined as the total 

amount of oxygen delivered to tissue per unit time minus the amount of oxygen leaving the same 

region of interest per unit time [325]. This estimation depends on the sO2, mean flow speed and 

the cross-sectional area of blood vessels. All of these parameters that can be assessed by PA 
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imaging as shown in Figure 6-3 for photoacoustic microscopy applications. It would be 

advantageous to longitudinally map tumoral flow patterns along with the oxygen consumption. 

The development of these biomarkers for acoustic resolution PA imaging is still in its infancy 

[321] and tumor applications of blood flow remain unexplored. In conjunction with the structural 

and functional biomarkers of tumor vasculature developed in this thesis, one would be able to 

obtain a full snapshot of the tumor microenvironment, thus providing a multifaceted view of the 

progression of cancer treatments. 

 

Figure 6-2: (a) Photoacoustic microscopy image of total hemoglobin concentration (CHb) from the 

skin of a mouse. Scale bar denotes 500 µm. (b) sO2 map of the area indicated by the dashed box 

in the hemoglobin image. (c) PA flow map of dashed box area shown in (b). The pseudo colors 

indicate the direction of blood flow relative to the scanning direction. Scale bar denotes 125 µm. 

(d) Profile of blood flow speed across the dashed line in (c) showing the parabolic flow profiles 

expected from arteries and veins. Adapted from reference [326].  

(a) (b) 

(c) (d) 
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6.4.2 Imaging the extracellular matrix of tumors 

The tumor microenvironment contains a complex collection of cancer cells (malignant or non-

malignant), blood and lymphatic vessels which are all embedded in a fibrous material known as 

the extracellular matrix [54]. The matrix consists of interlocked meshes of water, minerals, 

proteoglycans and fibrous proteins, all of which are secreted by the very same cells that reside 

within the scaffold. The most abundant matrix protein polymers are collagens. Along other matrix 

constituents, collagen provides both structural support to the cellular components of the tumor and 

plays a significant biochemical supporting role [327]. Figure 6-3 summarizes the wide-ranging 

influences of collagen in cancer cell behavior. These effects arise since the collagen scaffolds 

compress blood and lymphatic vessels, causing a solid stress to many parts of the tumor. This 

stress, in turn, can reduce or even halt blood flow. The latter is caused from the lack of lymphatic 

drainage, leading to interstitial fluid buildup [179]. The increased interstitial fluid pressure 

negatively impairs drug delivery and compromises the ability of blood vessels to distribute oxygen 

and tumor-fighting immune cells. This also fosters hypoxic conditions which in turn can spur 

malignant and even normal cells to suppress the activity of immune anti-cancer regulators [328]. 

Moreover, the hypoxic conditions of the tumor increase the invasive tendencies of cancer cells to 

travel away from the primary tumor, leading to metastasis. Depletion of the extracellular matrix 

has been shown to improve survival rates by decompressing blood vessels [329], [330]. As a result, 

the solid stress in tumors decreases, thus increasing vascular perfusion, which in turn potentiates 

chemotherapy and reduces hypoxia [328].  

 

Figure 6-3: The contributions of collagen to the biological activities of cancer cells. Adapted from 

reference [331].  
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Collagen is also an endogenous optical chromophore and has been previously quantified in liver 

disease [332], intestinal fibrosis [333] or muscular dystrophy [334] using PA imaging. These 

studies all take advantage of the increased optical absorption of collagen in wavelengths higher 

than 1000 nm. However, water also efficiently absorbs light at the same wavelengths. This limits 

the penetration depth and the practical utility of the approach given the high-water content within 

tissue and the common use of water-based ultrasound coupling gels. Unrelated to the work of my 

dissertation, I have developed an approach that quantifies the spatial distribution and concentration 

of collagen at shorter wavelengths, where light can penetrate more efficiently inside tissue. This 

technique is applied to the quantification of the fibrosis burden of kidney transplants and it is 

currently under review in the Journal of Clinical Investigations Insights. As shown in Figure 6-4, 

this quantification approach can accurately unmix the concentration of collagen in the presence of 

blood, as is the case with tumors. Additionally, this algorithm can quantify the concentration of 

collagen in mouse kidneys when various degrees of fibrosis are induced (Figure 6-4d).  

 

Figure 6-4: (a) PA imaging setup for blood collagen phantom gels. (b) Representative co-registered 

US and PA images (at 850 nm) of a blood collagen phantom. (c) Validation of the unique spectral 

unmixing algorithm to quantify collagen. Error bars represent the standard deviation of the mean, 

with 60 measurements per phantom. The r2 denotes the goodness of the linear fit. (d) 

Representative PA and histology collagen maps of mouse kidneys with progressively higher 

degrees of fibrosis at day 7 and day 14 compare to sham.  

 

720 nm 
Nd:YAG OPO

40 MHz 
256 elements

Co-registered: US/PA

“Bloody”
phantom

US/PA transducer

Blood-collagen 
phantom

Laser unit
680-930 nm

(a)

Laser 
beam

(c)

(b)

(d)

PA 
collagen 

map

Histology 
collagen 

map

5 mm

10 mm

100 µm



CHAPTER 6 

138 

These results suggest that collagen can be quantified using PA imaging at clinically relevant 

optical illumination wavelengths (680-930 nm). This can be done non-invasively using a portable 

PA transducer (Figure 6-4a), thus facilitating the clinical translation of the approach. Given the 

role that collagen plays in the development of cancer and the attempts at managing hypoxia by 

alleviating the collagen-induced tumor solid stress [54], it might be possible to monitor tumor 

collagen content using PA imaging. This would provide a new cancer treatment PA biomarker that 

can be used to monitor the changes in extracellular matrix, expanding the vascular capabilities of 

this modality.  

 

6.4.3 Strengthening the predictive power of PA biomarkers 

This thesis shows the theoretical and experimental development of PA biomarkers that can be used 

for cancer treatment monitoring. In most preclinical and clinical PA imaging systems available, 

US and PA data are detected by the same transducer and therefore, inherently co-registered [82], 

[93], [279]. This permits simultaneous acquisitions of both anatomical and functional information 

which is available from US and PA, respectively. In the context of cancer treatment monitoring, 

Czarnota and colleagues have demonstrated that US imaging biomarkers can detect the response 

of primary tumors early after the start of neoadjuvant chemotherapy [24], [169], [232]. This 

approach can provide response classification as early as one week post-treatment with 78% 

accuracy when QUS, texture and molecular features of the tumor are combined [335]. The 

predictive accuracy reaches a maximum value of 86% at 4 weeks after the initiation of treatment. 

Moreover, Taddayyon et al explored the potential of using pre-treatment textural features of QUS 

parametric images of breast tumors and their margin zones to predict chemotherapy responsiveness 

[336], [337]. Figure 6-5 shows how textural analysis of the tumor core and margins before 

treatment can be used differentiate treatment responder from non-responders by quantifying the 

infiltration of the primary tumor into the surrounding normal tissue. 
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Figure 6-5: (a) Representative US B-mode of a locally advanced breast cancer tumor and (b) its 

corresponding ROI for the tumor core (red) and a 5 mm margin thickness (blue). (c) The 

corresponding spectral intercept (SI) parametric image which can differentiate (d) good vs. (e) 

poor treatment response. Scale bar denotes 1 cm. Adapted from reference [336]. 

 

These encouraging results have the potential to transform cancer treatment monitoring. PA 

imaging can contribute further to this quest, especially given the fact that it shares the presence of 

image speckle with the ultrasonic counterpart. This opens the possibility for performing textural 

analysis on multiparametric images of PA biomarkers, both on the functional (oxygenation, 

hemoglobin, oxy and deoxy) and structural (frequency-based parameters such as spectral slope, 

midband fit, intercept, cepstral spacing) types derived in Chapter 2. Moreover, since these 

parameters were shown to change early post-treatment, it might be beneficial to combine this 

analysis with the US structural biomarkers at those early timepoints. In particular, the tumor rim-

core textural analysis in QUS allowed for a deeper understanding of the tumor microenvironment 

and the changes it undergoes through treatment. PA can contribute further information about the 

level of hypoxia (by estimating the sO2), extracellular stiffness (by estimating the collagen matrix) 

or the degree of vascular damage (as shown in this thesis). Performing this analysis before the 

treatment commences can potentially lead to substantial savings in the cost and resources required 

to deliver cancer therapies which turn out to be ineffective. The proposed work offers a tool for 

oncologists to quantify the clinical decision making in hopes of improving cancer treatment 

outcomes. 

(a) (b) (c)

(d) (e)



 

140 

APPENDIX 

A.1 Permissions to reproduce copyrighted material 

A.1.1 Chapters 2 and 4 permissions from Elsevier 

 



 

141 

A.1.2 Chapter 3 permission from PLOS 

 



 

142 

 
 

 

 



 

143 

 



 

144 

REFERENCES 

[1] S. B. Edge and C. C. Compton, “The American Joint Committee on Cancer: the 7th Edition 

of the AJCC Cancer Staging Manual and the Future of TNM,” Ann. Surg. Oncol., vol. 17, 

no. 6, pp. 1471–1474, Jun. 2010, doi: 10.1245/s10434-010-0985-4. 

[2] D. Cross and J. K. Burmester, “Gene therapy for cancer treatment: past, present and future,” 

Clin. Med. Res., vol. 4, no. 3, pp. 218–227, 2006. 

[3] “Breast cancer statistics - Canadian Cancer Society,” www.cancer.ca. 

http://www.cancer.ca/en/cancer-information/cancer-type/breast/statistics/?region=on 

(accessed Apr. 27, 2016). 

[4] V. B. Shahinian, Y.-F. Kuo, J. L. Freeman, and J. S. Goodwin, “Risk of fracture after 

androgen deprivation for prostate cancer,” N. Engl. J. Med., vol. 352, no. 2, pp. 154–164, 

Jan. 2005, doi: 10.1056/NEJMoa041943. 

[5] B. D. Smith, G. L. Smith, A. Hurria, G. N. Hortobagyi, and T. A. Buchholz, “Future of Cancer 

Incidence in the United States: Burdens Upon an Aging, Changing Nation,” J. Clin. Oncol., 

vol. 27, no. 17, pp. 2758–2765, Jun. 2009, doi: 10.1200/JCO.2008.20.8983. 

[6] J. H. Thrall, “Personalized Medicine1,” Radiology, vol. 231, no. 3, pp. 613–616, Jun. 2004, 

doi: 10.1148/radiol.2313040323. 

[7] J. J. Smith, A. G. Sorensen, and J. H. Thrall, “Biomarkers in Imaging: Realizing Radiology’s 

Future,” Radiology, vol. 227, no. 3, pp. 633–638, Jun. 2003, doi: 10.1148/radiol.2273020518. 

[8] “Precision Medicine Initiative,” National Institutes of Health (NIH), 2015. 

https://www.nih.gov/precision-medicine-initiative-cohort-program (accessed Apr. 27, 2016). 

[9] R. K. Jain, “Normalizing Tumor Microenvironment to Treat Cancer: Bench to Bedside to 

Biomarkers,” J. Clin. Oncol., vol. 31, no. 17, pp. 2205–2218, Jun. 2013, doi: 

10.1200/JCO.2012.46.3653. 

[10] A. Sadeghi-Naini et al., “Imaging innovations for cancer therapy response monitoring,” 

Imaging Med., vol. 4, no. 3, pp. 311–327, Jun. 2012, doi: 10.2217/iim.12.23. 

[11] P. Therasse et al., “New guidelines to evaluate the response to treatment in solid tumors. 

European Organization for Research and Treatment of Cancer, National Cancer Institute of 

the United States, National Cancer Institute of Canada,” J. Natl. Cancer Inst., vol. 92, no. 3, 

pp. 205–216, Feb. 2000. 

[12] S. Litière, S. Collette, E. G. E. de Vries, L. Seymour, and J. Bogaerts, “RECIST — learning 

from the past to build the future,” Nat. Rev. Clin. Oncol., vol. 14, no. 3, pp. 187–192, Mar. 

2017, doi: 10.1038/nrclinonc.2016.195. 

[13] K. Brindle, “New approaches for imaging tumour responses to treatment,” Nat. Rev. Cancer, 

vol. 8, no. 2, pp. 94–107, Feb. 2008, doi: 10.1038/nrc2289. 

[14] L. C. Michaelis and M. J. Ratain, “Measuring response in a post-RECIST world: from black 

and white to shades of grey,” Nat. Rev. Cancer, vol. 6, no. 5, pp. 409–414, May 2006, doi: 

10.1038/nrc1883. 

[15] G. K. von Schulthess, H. C. Steinert, and T. F. Hany, “Integrated PET/CT: current 

applications and future directions,” Radiology, vol. 238, no. 2, pp. 405–422, Feb. 2006, doi: 

10.1148/radiol.2382041977. 

[16] S. Stroobants et al., “18FDG-Positron emission tomography for the early prediction of 

response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec),” Eur. J. 

Cancer Oxf. Engl. 1990, vol. 39, no. 14, pp. 2012–2020, Sep. 2003. 



 

145 

[17] C. Bailey, K. L. Desmond, G. J. Czarnota, and G. J. Stanisz, “Quantitative magnetization 

transfer studies of apoptotic cell death,” Magn. Reson. Med., vol. 66, no. 1, pp. 264–269, Jul. 

2011, doi: 10.1002/mrm.22820. 

[18] M. O. Leach et al., “The assessment of antiangiogenic and antivascular therapies in early-

stage clinical trials using magnetic resonance imaging: issues and recommendations,” Br. J. 

Cancer, vol. 92, no. 9, pp. 1599–1610, May 2005, doi: 10.1038/sj.bjc.6602550. 

[19] M. Lamuraglia et al., “Clinical relevance of contrast-enhanced ultrasound in monitoring anti-

angiogenic therapy of cancer: current status and perspectives,” Crit. Rev. Oncol. Hematol., 

vol. 73, no. 3, pp. 202–212, Mar. 2010, doi: 10.1016/j.critrevonc.2009.06.001. 

[20] “Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework,” 

Clin. Pharmacol. Ther., vol. 69, no. 3, pp. 89–95, 2001, doi: 10.1067/mcp.2001.113989. 

[21] FDA-NIH Biomarker Working Group, BEST (Biomarkers, EndpointS, and other Tools) 

Resource. Silver Spring (MD): Food and Drug Administration (US), 2016. 

[22] P. Rolan, “The contribution of clinical pharmacology surrogates and models to drug 

development--a critical appraisal,” Br. J. Clin. Pharmacol., vol. 44, no. 3, pp. 219–225, Sep. 

1997, doi: 10.1046/j.1365-2125.1997.t01-1-00583.x. 

[23] J. P. B. O’Connor et al., “Imaging biomarker roadmap for cancer studies,” Nat. Rev. Clin. 

Oncol., vol. 14, no. 3, pp. 169–186, Mar. 2017, doi: 10.1038/nrclinonc.2016.162. 

[24] A. Sadeghi-Naini et al., “Quantitative ultrasound evaluation of tumor cell death response in 

locally advanced breast cancer patients receiving chemotherapy,” Clin. Cancer Res. Off. J. 

Am. Assoc. Cancer Res., vol. 19, no. 8, pp. 2163–2174, Apr. 2013, doi: 10.1158/1078-

0432.CCR-12-2965. 

[25] R. J. Hicks, “The role of PET in monitoring therapy,” Cancer Imaging, vol. 5, no. 1, pp. 51–

57, Jun. 2005, doi: 10.1102/1470-7330.2005.0006. 

[26] A. Cerussi et al., “Predicting response to breast cancer neoadjuvant chemotherapy using 

diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 10, pp. 4014–

4019, Mar. 2007, doi: 10.1073/pnas.0611058104. 

[27] F. Lizzi, L. Katz, L. St. Louis, and D. J. Coleman, “Applications of spectral analysis in 

medical ultrasonography,” Ultrasonics, vol. 14, no. 2, pp. 77–80, Mar. 1976, doi: 

10.1016/0041-624X(76)90103-7. 

[28] F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical 

framework for spectrum analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am., 

vol. 73, no. 4, pp. 1366–1373, Apr. 1983. 

[29] F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, 

“Relationship of Ultrasonic Spectral Parameters to Features of Tissue Microstructure,” IEEE 

Trans. Ultrason. Ferroelectr. Freq. Control, vol. 34, no. 3, pp. 319–329, May 1987, doi: 

10.1109/T-UFFC.1987.26950. 

[30] J. Mamou and M. L. Oelze, Eds., Quantitative Ultrasound in Soft Tissues. Dordrecht: 

Springer Netherlands, 2013. 

[31] L. A. Wirtzfeld et al., “Cross-imaging platform comparison of ultrasonic backscatter 

coefficient measurements of live rat tumors,” J. Ultrasound Med. Off. J. Am. Inst. Ultrasound 

Med., vol. 29, no. 7, pp. 1117–1123, Jul. 2010. 

[32] G. J. Czarnota et al., “Ultrasonic biomicroscopy of viable, dead and apoptotic cells,” 

Ultrasound Med. Biol., vol. 23, no. 6, pp. 961–965, 1997. 



 

146 

[33] G. J. Czarnota et al., “Ultrasound imaging of apoptosis: high-resolution non-invasive 

monitoring of programmed cell death in vitro, in situ and in vivo,” Br. J. Cancer, vol. 81, no. 

3, pp. 520–527, Oct. 1999, doi: 10.1038/sj.bjc.6690724. 

[34] M. C. Kolios, G. J. Czarnota, M. Lee, J. W. Hunt, and M. D. Sherar, “Ultrasonic spectral 

parameter characterization of apoptosis,” Ultrasound Med. Biol., vol. 28, no. 5, pp. 589–597, 

May 2002. 

[35] A. Sadeghi-Naini et al., “Quantitative ultrasound spectroscopic imaging for characterization 

of disease extent in prostate cancer patients,” Transl. Oncol., vol. 8, no. 1, pp. 25–34, Feb. 

2015, doi: 10.1016/j.tranon.2014.11.005. 

[36] R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology, vol. 219, no. 2, pp. 316–

333, May 2001, doi: 10.1148/radiology.219.2.r01ma19316. 

[37] F. D. S. E. Melo, L. Vermeulen, E. Fessler, and J. P. Medema, “Cancer heterogeneity—a 

multifaceted view,” EMBO Rep., vol. 14, no. 8, pp. 686–695, Aug. 2013, doi: 

10.1038/embor.2013.92. 

[38] V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical 

imaging: applications to breast cancer,” Breast Cancer Res. BCR, vol. 3, no. 1, pp. 41–46, 

2001. 

[39] D. R. Leff et al., “Diffuse optical imaging of the healthy and diseased breast: a systematic 

review,” Breast Cancer Res. Treat., vol. 108, no. 1, pp. 9–22, Mar. 2008, doi: 

10.1007/s10549-007-9582-z. 

[40] T. Vo-Dinh, Biomedical Photonics Handbook. CRC Press, 2003. 

[41] D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: 

approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage, vol. 23 

Suppl 1, pp. S275-288, 2004, doi: 10.1016/j.neuroimage.2004.07.011. 

[42] H. Soliman et al., “Functional imaging using diffuse optical spectroscopy of neoadjuvant 

chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res. 

Off. J. Am. Assoc. Cancer Res., vol. 16, no. 9, pp. 2605–2614, May 2010, doi: 10.1158/1078-

0432.CCR-09-1510. 

[43] D. Roblyer et al., “Optical imaging of breast cancer oxyhemoglobin flare correlates with 

neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. 

U. S. A., vol. 108, no. 35, pp. 14626–14631, Aug. 2011, doi: 10.1073/pnas.1013103108. 

[44] W. T. Tran et al., “Multiparametric monitoring of chemotherapy treatment response in locally 

advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy,” 

Oncotarget, Mar. 2016, doi: 10.18632/oncotarget.7844. 

[45] J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode 

arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett., vol. 26, 

no. 10, pp. 701–703, May 2001, doi: 10.1364/OL.26.000701. 

[46] R. K. Wang and V. V. Tuchin, Advanced Biophotonics: Tissue Optical Sectioning. Taylor & 

Francis, 2016. 

[47] P. Vaupel and M. Hockel, “Blood supply, oxygenation status and metabolic micromilieu of 

breast cancers: characterization and therapeutic relevance,” Int. J. Oncol., vol. 17, no. 5, pp. 

869–879, Nov. 2000, doi: 10.3892/ijo.17.5.869. 

[48] H. J. Feldmann, “Oxygenation of human tumors—implications for combined therapy,” Lung 

Cancer, vol. 33, pp. S77–S83, Oct. 2001, doi: 10.1016/S0169-5002(01)00306-3. 

[49] J. Folkman, “Tumor Angiogenesis Factor,” Cancer Res., vol. 34, no. 8, pp. 2109–2113, Aug. 

1974. 



 

147 

[50] J. Folkman, “Fighting cancer by attacking its blood supply,” Sci. Am., vol. 275, no. 3, pp. 

150–154, Sep. 1996. 

[51] P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature, vol. 407, 

no. 6801, pp. 249–257, Sep. 2000, doi: 10.1038/35025220. 

[52] B. J. Vakoc et al., “Three-dimensional microscopy of the tumor microenvironment in vivo 

using optical frequency domain imaging,” Nat. Med., vol. 15, no. 10, pp. 1219–1223, Oct. 

2009, doi: 10.1038/nm.1971. 

[53] R. K. Jain, “Barriers to drug delivery in solid tumors,” Sci. Am., vol. 271, no. 1, pp. 58–65, 

Jul. 1994. 

[54] R. K. Jain, “An Indirect Way to Tame Cancer,” Sci. Am., vol. 310, no. 2, pp. 46–53, 2014. 

[55] W. H. AlMalki, I. Shahid, A. Y. Mehdi, and M. H. Hafeez, “Assessment methods for 

angiogenesis and current approaches for its quantification,” Indian J. Pharmacol., vol. 46, 

no. 3, pp. 251–256, 2014, doi: 10.4103/0253-7613.132152. 

[56] R. K. Jain, “Taming vessels to treat cancer,” Sci. Am., vol. 298, no. 1, pp. 56–63, Jan. 2008, 

doi: 10.1038/scientificamerican0108-56. 

[57] M. Molls, P. Stadler, A. Becker, H. J. Feldmann, and J. Dunst, “Relevance of oxygen in 

radiation oncology. Mechanisms of action, correlation to low hemoglobin levels,” 

Strahlenther. Onkol. Organ Dtsch. Rontgengesellschaft Al, vol. 174 Suppl 4, pp. 13–16, Dec. 

1998. 

[58] J.-T. Chi et al., “Gene Expression Programs in Response to Hypoxia: Cell Type Specificity 

and Prognostic Significance in Human Cancers,” PLOS Med., vol. 3, no. 3, p. e47, Jan. 2006, 

doi: 10.1371/journal.pmed.0030047. 

[59] B. A. Teicher, “Physiologic mechanisms of therapeutic resistance. Blood flow and hypoxia,” 

Hematol. Oncol. Clin. North Am., vol. 9, no. 2, pp. 475–506, Apr. 1995. 

[60] P. Okunieff, B. Fenton, and Y. Chen, “Past, present, and future of oxygen in cancer research,” 

Adv. Exp. Med. Biol., vol. 566, pp. 213–222, 2005, doi: 10.1007/0-387-26206-7_29. 

[61] M. Höckel and P. Vaupel, “Biological consequences of tumor hypoxia,” Semin. Oncol., vol. 

28, no. 2 Suppl 8, pp. 36–41, Apr. 2001. 

[62] M. R. Horsman, L. S. Mortensen, J. B. Petersen, M. Busk, and J. Overgaard, “Imaging 

hypoxia to improve radiotherapy outcome,” Nat. Rev. Clin. Oncol., vol. 9, no. 12, pp. 674–

687, Dec. 2012, doi: 10.1038/nrclinonc.2012.171. 

[63] R. K. Jain and P. F. Carmeliet, “Vessels of death or life,” Sci. Am., vol. 285, no. 6, pp. 38–

45, Dec. 2001. 

[64] J. Folkman, “Fundamental concepts of the angiogenic process,” Curr. Mol. Med., vol. 3, no. 

7, pp. 643–651, 2003. 

[65] V. P. Chauhan et al., “Normalization of tumour blood vessels improves the delivery of 

nanomedicines in a size-dependent manner,” Nat. Nanotechnol., vol. 7, no. 6, pp. 383–388, 

Apr. 2012, doi: 10.1038/nnano.2012.45. 

[66] R. K. Jain, “Delivery of molecular and cellular medicine to solid tumors,” Adv. Drug Deliv. 

Rev., vol. 64, pp. 353–365, Dec. 2012, doi: 10.1016/j.addr.2012.09.011. 

[67] A. Rapisarda and G. Melillo, “Overcoming disappointing results with antiangiogenic therapy 

by targeting hypoxia,” Nat. Rev. Clin. Oncol., vol. 9, no. 7, pp. 378–390, Jul. 2012, doi: 

10.1038/nrclinonc.2012.64. 

[68] G. Jiménez-Valerio et al., “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis 

in Renal Cell Carcinoma PDX Models and Patients,” Cell Rep., vol. 15, no. 6, pp. 1134–

1143, 10 2016, doi: 10.1016/j.celrep.2016.04.015. 



 

148 

[69] G. Bergers and D. Hanahan, “Modes of resistance to anti-angiogenic therapy,” Nat. Rev. 

Cancer, vol. 8, no. 8, pp. 592–603, Aug. 2008, doi: 10.1038/nrc2442. 

[70] Y. Liu et al., “Carbon Ion Radiation Inhibits Glioma and Endothelial Cell Migration Induced 

by Secreted VEGF,” PLOS ONE, vol. 9, no. 6, p. e98448, Jun. 2014, doi: 

10.1371/journal.pone.0098448. 

[71] H. J. Park, R. J. Griffin, S. Hui, S. H. Levitt, and C. W. Song, “Radiation-induced vascular 

damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy 

(SBRT and SRS),” Radiat. Res., vol. 177, no. 3, pp. 311–327, Mar. 2012, doi: 

10.1667/rr2773.1. 

[72] A. Sams, “Histological changes in the larger blood vessels of the hind limb of the mouse after 

X-irradiation,” Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., vol. 9, pp. 165–174, 1965, 

doi: 10.1080/09553006514550211. 

[73] M. Garcia-Barros et al., “Tumor response to radiotherapy regulated by endothelial cell 

apoptosis,” Science, vol. 300, no. 5622, pp. 1155–1159, May 2003, doi: 

10.1126/science.1082504. 

[74] D. B. Jakubowski et al., “Monitoring neoadjuvant chemotherapy in breast cancer using 

quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt., vol. 9, no. 1, pp. 

230–238, Feb. 2004, doi: 10.1117/1.1629681. 

[75] S. Ueda et al., “Baseline Tumor Oxygen Saturation Correlates with a Pathologic Complete 

Response in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy,” Cancer Res., 

vol. 72, no. 17, pp. 4318–4328, Sep. 2012, doi: 10.1158/0008-5472.CAN-12-0056. 

[76] H. S. Yazdi et al., “Mapping breast cancer blood flow index, composition, and metabolism 

in a human subject using combined diffuse optical spectroscopic imaging and diffuse 

correlation spectroscopy,” J. Biomed. Opt., vol. 22, no. 4, p. 045003, Apr. 2017, doi: 

10.1117/1.JBO.22.4.045003. 

[77] C. Sessa, A. Guibal, G. D. Conte, and C. Rüegg, “Biomarkers of angiogenesis for the 

development of antiangiogenic therapies in oncology: tools or decorations?,” Nat. Clin. 

Pract. Oncol., vol. 5, no. 7, pp. 378–391, Jul. 2008, doi: 10.1038/ncponc1150. 

[78] A. G. Bell, “LXVIII. Upon the production of sound by radiant energy,” Lond. Edinb. Dublin 

Philos. Mag. J. Sci., vol. 11, no. 71, pp. 510–528, Jan. 1881, doi: 

10.1080/14786448108627053. 

[79] A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy, Volume 57 ed. edition. 

New York: John Wiley & Sons Inc, 1981. 

[80] S. Hu and L. V. Wang, “Optical-Resolution Photoacoustic Microscopy: Auscultation of 

Biological Systems at the Cellular Level,” Biophys. J., vol. 105, no. 4, pp. 841–847, Aug. 

2013, doi: 10.1016/j.bpj.2013.07.017. 

[81] W. Choi, E.-Y. Park, S. Jeon, and C. Kim, “Clinical photoacoustic imaging platforms,” 

Biomed. Eng. Lett., vol. 8, no. 2, pp. 139–155, Apr. 2018, doi: 10.1007/s13534-018-0062-7. 

[82] A. Karlas et al., “Cardiovascular optoacoustics: From mice to men – A review,” 

Photoacoustics, vol. 14, pp. 19–30, Jun. 2019, doi: 10.1016/j.pacs.2019.03.001. 

[83] L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to 

organs,” Science, vol. 335, no. 6075, pp. 1458–1462, Mar. 2012, doi: 

10.1126/science.1216210. 

[84] S. Fox, Human Physiology, 13 edition. New York, NY: McGraw-Hill Education, 2012. 



 

149 

[85] S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the 

microvasculature,” J. Biomed. Opt., vol. 15, no. 1, p. 011101, Feb. 2010, doi: 

10.1117/1.3281673. 

[86] A. B. E. Attia et al., “A review of clinical photoacoustic imaging: Current and future trends,” 

Photoacoustics, vol. 16, p. 100144, Dec. 2019, doi: 10.1016/j.pacs.2019.100144. 

[87] P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, vol. 1, no. 4, pp. 602–631, 

Aug. 2011, doi: 10.1098/rsfs.2011.0028. 

[88] R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic 

angiography of the breast,” Med. Phys., vol. 37, no. 11, pp. 6096–6100, Nov. 2010, doi: 

10.1118/1.3497677. 

[89] C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: 

noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric 

spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology, vol. 255, 

no. 2, pp. 442–450, May 2010, doi: 10.1148/radiol.10090281. 

[90] A. Danielli et al., “Label-free photoacoustic nanoscopy,” J. Biomed. Opt., vol. 19, no. 8, p. 

086006, Aug. 2014, doi: 10.1117/1.JBO.19.8.086006. 

[91] S. Park, C. Lee, J. Kim, and C. Kim, “Acoustic resolution photoacoustic microscopy,” 

Biomed. Eng. Lett., vol. 4, no. 3, pp. 213–222, Sep. 2014, doi: 10.1007/s13534-014-0153-z. 

[92] L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and 

ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” 

Phys. Med. Biol., vol. 58, no. 1, pp. N1-12, Jan. 2013, doi: 10.1088/0031-9155/58/1/N1. 

[93] I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, 

“Photoacoustic clinical imaging,” Photoacoustics, vol. 14, pp. 77–98, Jun. 2019, doi: 

10.1016/j.pacs.2019.05.001. 

[94] T. Vu, D. Razansky, and J. Yao, “Listening to tissues with new light: recent technological 

advances in photoacoustic imaging,” J. Opt., 2019, doi: 10.1088/2040-8986/ab3b1a. 

[95] E. Hysi, E. M. Strohm, and M. C. Kolios, “Probing Different Biological Length Scales Using 

Photoacoustics: From 1 To 1000 MHz,” in Handbook of Photonics for Biomedical 

Engineering, A. H.-P. Ho, D. Kim, and M. G. Somekh, Eds. Springer Netherlands, 2014, pp. 

1–18. 

[96] H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of 

hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic 

microscopy,” Appl. Phys. Lett., vol. 90, no. 5, p. 053901, 2007, doi: 10.1063/1.2435697. 

[97] L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy 

in vivo,” Proc. Natl. Acad. Sci., vol. 110, no. 15, pp. 5759–5764, Apr. 2013, doi: 

10.1073/pnas.1215578110. 

[98] T. T. W. Wong et al., “Fast label-free multilayered histology-like imaging of human breast 

cancer by photoacoustic microscopy,” Sci. Adv., vol. 3, no. 5, p. e1602168, May 2017, doi: 

10.1126/sciadv.1602168. 

[99] L. Li et al., “Single-impulse panoramic photoacoustic computed tomography of small-animal 

whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng., vol. 1, no. 5, 

pp. 1–11, May 2017, doi: 10.1038/s41551-017-0071. 

[100] X. L. Deán-Ben, T. F. Fehm, S. J. Ford, S. Gottschalk, and D. Razansky, “Spiral volumetric 

optoacoustic tomography visualizes multi-scale dynamics in mice,” Light Sci. Appl., vol. 6, 

no. 4, pp. e16247–e16247, Apr. 2017, doi: 10.1038/lsa.2016.247. 



 

150 

[101] M. Nasiriavanaki, J. Xia, H. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, “High-

resolution photoacoustic tomography of resting-state functional connectivity in the mouse 

brain,” Proc. Natl. Acad. Sci., vol. 111, no. 1, pp. 21–26, Jan. 2014, doi: 

10.1073/pnas.1311868111. 

[102] J. Brunker, J. Yao, J. Laufer, and S. E. Bohndiek, “Photoacoustic imaging using genetically 

encoded reporters: a review,” J. Biomed. Opt., vol. 22, no. 7, 01 2017, doi: 

10.1117/1.JBO.22.7.070901. 

[103] J. Jo, C. H. Lee, R. Kopelman, and X. Wang, “In vivo quantitative imaging of tumor pH 

by nanosonophore assisted multispectral photoacoustic imaging,” Nat. Commun., vol. 8, no. 

1, p. 471, 07 2017, doi: 10.1038/s41467-017-00598-1. 

[104] M. Heijblom et al., “Visualizing breast cancer using the Twente photoacoustic 

mammoscope: what do we learn from twelve new patient measurements?,” Opt. Express, vol. 

20, no. 11, pp. 11582–11597, 2012. 

[105] T. Kitai et al., “Photoacoustic mammography: initial clinical results,” Breast Cancer Tokyo 

Jpn., vol. 21, no. 2, pp. 146–153, Mar. 2014, doi: 10.1007/s12282-012-0363-0. 

[106] E. I. Neuschler et al., “A Pivotal Study of Optoacoustic Imaging to Diagnose Benign and 

Malignant Breast Masses: A New Evaluation Tool for Radiologists,” Radiology, p. 172228, 

Nov. 2017, doi: 10.1148/radiol.2017172228. 

[107] E. I. Neuschler et al., “Downgrading and Upgrading Gray-Scale Ultrasound BI-RADS 

Categories of Benign and Malignant Masses With Optoacoustics: A Pilot Study,” AJR Am. 

J. Roentgenol., vol. 211, no. 3, pp. 689–700, 2018, doi: 10.2214/AJR.17.18436. 

[108] L. Lin et al., “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. 

Commun., vol. 9, no. 1, p. 2352, 15 2018, doi: 10.1038/s41467-018-04576-z. 

[109] B. E. Dogan et al., “Optoacoustic Imaging and Gray-Scale US Features of Breast Cancers: 

Correlation with Molecular Subtypes,” Radiology, vol. 292, no. 3, pp. 564–572, Sep. 2019, 

doi: 10.1148/radiol.2019182071. 

[110] T. Jin, H. Guo, H. Jiang, B. Ke, and L. Xi, “Portable optical resolution photoacoustic 

microscopy (pORPAM) for human oral imaging,” Opt. Lett., vol. 42, no. 21, pp. 4434–4437, 

Nov. 2017, doi: 10.1364/OL.42.004434. 

[111] B. Zabihian et al., “In vivo dual-modality photoacoustic and optical coherence tomography 

imaging of human dermatological pathologies,” Biomed. Opt. Express, vol. 6, no. 9, pp. 

3163–3178, Sep. 2015, doi: 10.1364/BOE.6.003163. 

[112] M. Yang et al., “Photoacoustic/ultrasound dual imaging of human thyroid cancers: an 

initial clinical study,” Biomed. Opt. Express, vol. 8, no. 7, pp. 3449–3457, Jul. 2017, doi: 

10.1364/BOE.8.003449. 

[113] F. Knieling et al., “Multispectral Optoacoustic Tomography for Assessment of Crohn’s 

Disease Activity,” N. Engl. J. Med., vol. 376, no. 13, pp. 1292–1294, 2017. 

[114] I. Ivankovic, E. Merčep, C.-G. Schmedt, X. L. Deán-Ben, and D. Razansky, “Real-time 

Volumetric Assessment of the Human Carotid Artery: Handheld                     Multispectral 

Optoacoustic Tomography,” Radiology, vol. 291, no. 1, pp. 45–50, Feb. 2019, doi: 

10.1148/radiol.2019181325. 

[115] I. Stoffels et al., “Metastatic status of sentinel lymph nodes in melanoma determined 

noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med., vol. 7, no. 317, 

pp. 317ra199-317ra199, Dec. 2015, doi: 10.1126/scitranslmed.aad1278. 

[116] M. A. A. Caballero, A. Rosenthal, A. Buehler, D. Razansky, and V. Ntziachristos, 

“Optoacoustic determination of spatio- temporal responses of ultrasound sensors,” IEEE 



 

151 

Trans. Ultrason. Ferroelectr. Freq. Control, vol. 60, no. 6, pp. 1234–1244, Jun. 2013, doi: 

10.1109/TUFFC.2013.2687. 

[117] C. Lutzweiler and D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction 

Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors, 

vol. 13, no. 6, pp. 7345–7384, Jun. 2013, doi: 10.3390/s130607345. 

[118] M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed 

tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 71, no. 1 Pt 2, p. 016706, Jan. 

2005, doi: 10.1103/PhysRevE.71.016706. 

[119] G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm 

for optoacoustic imaging,” J. Acoust. Soc. Am., vol. 112, no. 4, pp. 1536–1544, Oct. 2002, 

doi: 10.1121/1.1501898. 

[120] D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral 

optoacoustic tomography of biomarkers,” Nat. Protoc., vol. 6, no. 8, pp. 1121–1129, Jul. 

2011, doi: 10.1038/nprot.2011.351. 

[121] M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo 

photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett., vol. 31, no. 4, pp. 

474–476, Feb. 2006, doi: 10.1364/ol.31.000474. 

[122] P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic 

tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. 

Freq. Control, vol. 52, no. 9, pp. 1577–1583, Sep. 2005, doi: 10.1109/tuffc.2005.1516030. 

[123] Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-

view thermoacoustic tomography,” Med. Phys., vol. 31, no. 4, pp. 724–733, Apr. 2004, doi: 

10.1118/1.1644531. 

[124] G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic ‘signatures’ of particulate matter: 

optical production of acoustic monopole radiation,” Science, vol. 250, no. 4977, pp. 101–

104, Oct. 1990, doi: 10.1126/science.250.4977.101. 

[125] E. M. Strohm, I. Gorelikov, N. Matsuura, and M. C. Kolios, “Acoustic and photoacoustic 

characterization of micron-sized perfluorocarbon emulsions,” J. Biomed. Opt., vol. 17, no. 9, 

pp. 96016–96011, Sep. 2012, doi: 10.1117/1.JBO.17.9.096016. 

[126] R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical 

model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt., vol. 17, no. 

5, pp. 0550021–05500210, 2012. 

[127] X. L. Dean-Ben and D. Razansky, “On the link between the speckle free nature of 

optoacoustics and visibility of structures in limited-view tomography,” Photoacoustics, vol. 

4, no. 4, pp. 133–140, Dec. 2016, doi: 10.1016/j.pacs.2016.10.001. 

[128] E. M. Strohm, E. S. L. Berndl, and M. C. Kolios, “Probing Red Blood Cell Morphology 

Using High-Frequency Photoacoustics,” Biophys. J., vol. 105, no. 1, pp. 59–67, Jul. 2013, 

doi: 10.1016/j.bpj.2013.05.037. 

[129] E. M. Strohm, I. Gorelikov, N. Matsuura, and M. C. Kolios, “Modeling photoacoustic 

spectral features of micron-sized particles,” Phys. Med. Biol., vol. 59, no. 19, pp. 5795–5810, 

Oct. 2014, doi: 10.1088/0031-9155/59/19/5795. 

[130] E. M. Strohm and M. C. Kolios, “Classification of blood cells and tumor cells using label-

free ultrasound and photoacoustics,” Cytom. Part J. Int. Soc. Anal. Cytol., vol. 87, no. 8, pp. 

741–749, Aug. 2015, doi: 10.1002/cyto.a.22698. 



 

152 

[131] M. J. Moore, E. M. Strohm, and M. C. Kolios, “Assessment of the Nucleus-to-Cytoplasmic 

Ratio in MCF-7 Cells Using Ultra-high Frequency Ultrasound and Photoacoustics,” Int. J. 

Thermophys., vol. 37, no. 12, p. 118, Dec. 2016, doi: 10.1007/s10765-016-2129-y. 

[132] M. J. Moore et al., “Photoacoustic F-Mode imaging for scale specific contrast in biological 

systems,” Commun. Phys., vol. 2, no. 1, pp. 1–10, Mar. 2019, doi: 10.1038/s42005-019-0131-

y. 

[133] S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, and T. Hasan, “Prediction of Tumor 

Recurrence and Therapy Monitoring Using Ultrasound-Guided Photoacoustic Imaging,” 

Theranostics, vol. 5, no. 3, pp. 289–301, 2015, doi: 10.7150/thno.10155. 

[134] S. E. Bohndiek, L. S. Sasportas, S. Machtaler, J. V. Jokerst, S. Hori, and S. S. Gambhir, 

“Photoacoustic Tomography Detects Early Vessel Regression and Normalization During 

Ovarian Tumor Response to the Antiangiogenic Therapy Trebananib,” J. Nucl. Med. Off. 

Publ. Soc. Nucl. Med., vol. 56, no. 12, pp. 1942–1947, Dec. 2015, doi: 

10.2967/jnumed.115.160002. 

[135] A. Bar-Zion, M. Yin, D. Adam, and F. S. Foster, “Functional Flow Patterns and Static 

Blood Pooling in Tumors Revealed by Combined Contrast-Enhanced Ultrasound and 

Photoacoustic Imaging,” Cancer Res., vol. 76, no. 15, pp. 4320–4331, Aug. 2016, doi: 

10.1158/0008-5472.CAN-16-0376. 

[136] L. J. Rich and M. Seshadri, “Photoacoustic monitoring of tumor and normal tissue response 

to radiation,” Sci. Rep., vol. 6, p. 21237, Feb. 2016, doi: 10.1038/srep21237. 

[137] Laurie. J. Rich, A. Miller, A. K. Singh, and M. Seshadri, “Photoacoustic Imaging as an 

Early Biomarker of Radio Therapeutic Efficacy in Head and Neck Cancer,” Theranostics, 

vol. 8, no. 8, pp. 2064–2078, 2018, doi: 10.7150/thno.21708. 

[138] S. P. Johnson, O. Ogunlade, M. F. Lythgoe, P. Beard, and R. B. Pedley, “Longitudinal 

photoacoustic imaging of the pharmacodynamic effect of vascular targeted therapy on 

tumors,” Clin. Cancer Res., Jan. 2019, doi: 10.1158/1078-0432.CCR-19-0360. 

[139] J. Zalev and M. C. Kolios, “Detecting abnormal vasculature from photoacoustic signals 

using wavelet-packet features,” in Proc. SPIE, 2011, vol. 7899, pp. 78992M-78992M–15, 

doi: 10.1117/12.873911. 

[140] T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out, 2 edition. Amsterdam; Boston: 

Academic Press, 2013. 

[141] D. R. Foster, M. Arditi, F. S. Foster, M. S. Patterson, and J. W. Hunt, “Computer 

Simulations of Speckle in B-Scan Images,” Ultrason. Imaging, vol. 5, no. 4, pp. 308–330, 

Oct. 1983, doi: 10.1177/016173468300500403. 

[142] R. S. C. Cobbold, Foundations of Biomedical Ultrasound, 1 edition. Oxford ; New York: 

Oxford University Press, 2006. 

[143] G. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and 

three dimensions,” Phys. Rev. Lett., vol. 67, no. 24, pp. 3384–3387, Dec. 1991. 

[144] G. Xu et al., “High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In 

Vivo Biopsy,” Sci. Rep., vol. 6, p. 16937, Feb. 2016, doi: 10.1038/srep16937. 

[145] T.-H. Bok, E. Hysi, and M. C. Kolios, “In vitro photoacoustic spectroscopy of pulsatile 

blood flow: probing the interrelationship between red blood cell aggregation and oxygen 

saturation,” J. Biophotonics, Feb. 2018, doi: 10.1002/jbio.201700300. 

[146] E. Amidi et al., “Classification of human ovarian cancer using functional, spectral, and 

imaging features obtained from in vivo photoacoustic imaging,” Biomed. Opt. Express, vol. 

10, no. 5, pp. 2303–2317, May 2019, doi: 10.1364/BOE.10.002303. 



 

153 

[147] “S. Prahl, Tabulated data from various sources, http://omlc.ogi.edu/ spectra.” 

[148] A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast 

Multispectral Optoacoustic Tomography (MSOT) for Dynamic Imaging of Pharmacokinetics 

and Biodistribution in Multiple Organs,” PLoS ONE, vol. 7, no. 1, p. e30491, Jan. 2012, doi: 

10.1371/journal.pone.0030491. 

[149] J. Kim et al., “Multispectral ex vivo photoacoustic imaging of cutaneous melanoma for 

better selection of the excision margin,” Br. J. Dermatol., vol. 179, no. 3, pp. 780–782, Sep. 

2018, doi: 10.1111/bjd.16677. 

[150] J. P. May, E. Hysi, L. A. Wirtzfeld, E. Undzys, S.-D. Li, and M. C. Kolios, “Photoacoustic 

Imaging of Cancer Treatment Response: Early Detection of Therapeutic Effect from 

Thermosensitive Liposomes,” PLOS ONE, vol. 11, no. 10, p. e0165345, Oct. 2016, doi: 

10.1371/journal.pone.0165345. 

[151] E. Hysi, L. A. Wirtzfeld, J. P. May, E. Undzys, S.-D. Li, and M. C. Kolios, “Photoacoustic 

signal characterization of cancer treatment response: Correlation with changes in tumor 

oxygenation,” Photoacoustics, vol. 5, pp. 25–35, Mar. 2017, doi: 

10.1016/j.pacs.2017.03.003. 

[152] B. Xie et al., “Optoacoustic Detection of Early Therapy-Induced Tumor Cell Death Using 

a Targeted Imaging Agent,” Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res., vol. 23, no. 

22, pp. 6893–6903, Nov. 2017, doi: 10.1158/1078-0432.CCR-17-1029. 

[153] V. Neuschmelting et al., “WST11 Vascular Targeted Photodynamic Therapy Effect 

Monitoring by Multispectral Optoacoustic Tomography (MSOT) in Mice,” Theranostics, 

vol. 8, no. 3, pp. 723–734, 2018, doi: 10.7150/thno.20386. 

[154] J. C. Dainty, Laser Speckle and Related Phenomena. Springer Science & Business Media, 

2013. 

[155] C. B. Burckhardt, “Speckle in ultrasound B-mode scans,” IEEE Trans. Sonics Ultrason., 

vol. 25, no. 1, pp. 1–6, 1978. 

[156] J. M. Thijssen and B. J. Oosterveld, “Texture in B-Mode Echograms: A Simulation Study 

of the Effects of Diffraction and of Scatterer Density on Gray Scale Statistics,” in Acoustical 

Imaging, vol. 14, A. J. Berkhout, J. Ridder, and L. F. van der Wal, Eds. Boston, MA: Springer 

US, 1985, pp. 481–485. 

[157] S. W. Flax, G. H. Glover, and N. J. Pelc, “Textural variations in B-mode ultrasonography: 

a stochastic model,” Ultrason. Imaging, vol. 3, no. 3, pp. 235–257, 1981. 

[158] R. F. Wagner, M. F. Insana, and S. W. Smith, “Fundamental correlation lengths of coherent 

speckle in medical ultrasonic images,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 

vol. 35, no. 1, pp. 34–44, 1988, doi: 10.1109/58.4145. 

[159] M. J. Moore, S. El-Rass, Y. Xiao, Y. Wang, X.-Y. Wen, and M. C. Kolios, “Simultaneous 

ultra-high frequency photoacoustic microscopy and photoacoustic radiometry of zebrafish 

larvae in vivo,” Photoacoustics, vol. 12, pp. 14–21, Sep. 2018, doi: 

10.1016/j.pacs.2018.08.004. 

[160] J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics, vol. 2, 

no. 2, pp. 87–101, Jun. 2014, doi: 10.1016/j.pacs.2014.04.002. 

[161] Z. Guo, L. Li, and L. V. Wang, “On the speckle-free nature of photoacoustic tomography,” 

Med. Phys., vol. 36, no. 9, pp. 4084–4088, Sep. 2009, doi: 10.1118/1.3187231. 

[162] Z. Guo, Z. Xu, and L. V. Wang, “Dependence of photoacoustic speckles on boundary 

roughness,” J. Biomed. Opt., vol. 17, no. 4, p. 046009, Apr. 2012, doi: 

10.1117/1.JBO.17.4.046009. 



 

154 

[163] M. Mehrmohammadi et al., “In vivo Pulsed Magneto-motive Ultrasound Imaging Using 

High-performance Magnetoactive Contrast Nanoagents,” Nanoscale, vol. 5, no. 22, pp. 

11179–11186, Nov. 2013, doi: 10.1039/c3nr03669c. 

[164] S. Karmakar, E. Hysi, M. C. Kolios, and R. K. Saha, “Realistic photoacoustic image 

simulations of collections of solid spheres using linear array transducer,” presented at the 

Photons Plus Ultrasound: Imaging and Sensing 2015, Mar. 2015, vol. 9323, p. 932339, doi: 

10.1117/12.2080794. 

[165] T.-H. Bok, E. Hysi, and M. C. Kolios, “Simultaneous assessment of red blood cell 

aggregation and oxygen saturation under pulsatile flow using high-frequency 

photoacoustics,” Biomed. Opt. Express, vol. 7, no. 7, pp. 2769–2780, Jun. 2016, doi: 

10.1364/BOE.7.002769. 

[166] T.-H. Bok, E. Hysi, and M. C. Kolios, “Preliminary Photoacoustic Imaging of the Human 

Radial Artery for Simultaneous Assessment of Red Blood Cell Aggregation and Oxygen 

Saturation in Vivo,” Ultrason. Symp. IUS 2017 IEEE Int., pp. 1–4, 2017. 

[167] J. Mamou et al., “Three-Dimensional High-Frequency Backscatter and Envelope 

Quantification of Cancerous Human Lymph Nodes,” Ultrasound Med. Biol., vol. 37, no. 3, 

pp. 345–357, Mar. 2011, doi: 10.1016/j.ultrasmedbio.2010.11.020. 

[168] R. K. Saha, E. Franceschini, and G. Cloutier, “Assessment of accuracy of the structure-

factor-size-estimator method in determining red blood cell aggregate size from ultrasound 

spectral backscatter coefficient,” J. Acoust. Soc. Am., vol. 129, no. 4, pp. 2269–2277, 2011. 

[169] A. Sadeghi-Naini et al., “Chemotherapy-Response Monitoring of Breast Cancer Patients 

Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities,” Sci. Rep., vol. 7, no. 

1, p. 10352, Dec. 2017, doi: 10.1038/s41598-017-09678-0. 

[170] L. V. Wang, “Tutorial on Photoacoustic Microscopy and Computed Tomography,” IEEE 

J. Sel. Top. Quantum Electron., vol. 14, no. 1, pp. 171–179, Jan. 2008, doi: 

10.1109/JSTQE.2007.913398. 

[171] S. Umchid, “Directivity pattern measurement of ultrasound transducers,” Int. J. Appl. 

Biomed. Eng. IJABME, vol. 2, pp. 39–43, 2009. 

[172] P. M. Shankar, “A general statistical model for ultrasonic backscattering from tissues,” 

IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, no. 3, pp. 727–736, 2000. 

[173] D. R. Foster, M. Arditi, F. S. Foster, M. S. Patterson, and J. W. Hunt, “Computer 

Simulations of Speckle in B-Scan Images,” Ultrason. Imaging, vol. 5, no. 4, pp. 308–330, 

Oct. 1983, doi: 10.1177/016173468300500403. 

[174] K. A. Wear, R. F. Wagner, M. F. Insana, and T. J. Hall, “Application of autoregressive 

spectral analysis to cepstral estimation of mean scatterer spacing,” IEEE Trans. Ultrason. 

Ferroelectr. Freq. Control, vol. 40, no. 1, pp. 50–58, Jan. 1993, doi: 10.1109/58.184998. 

[175] A. Needles et al., “Development and initial application of a fully integrated photoacoustic 

micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 60, no. 5, 

pp. 888–897, May 2013, doi: 10.1109/TUFFC.2013.2646. 

[176] E. Hysi, D. Dopsa, and M. C. Kolios, “Photoacoustic tissue characterization using envelope 

statistics and ultrasonic spectral parameters,” in Proc. SPIE, 2014, vol. 8943, pp. 89432E-

89432E–9, doi: 10.1117/12.2038624. 

[177] J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res., vol. 60, no. 14, pp. 3683–

3688, Jul. 2000. 



 

155 

[178] R. Karshafian, P. N. Burns, and M. R. Henkelman, “Transit time kinetics in ordered and 

disordered vascular trees,” Phys. Med. Biol., vol. 48, no. 19, p. 3225, 2003, doi: 

10.1088/0031-9155/48/19/009. 

[179] R. K. Jain, J. D. Martin, and T. Stylianopoulos, “The Role of Mechanical Forces in Tumor 

Growth and Therapy,” Annu. Rev. Biomed. Eng., vol. 16, no. 1, pp. 321–346, Jul. 2014, doi: 

10.1146/annurev-bioeng-071813-105259. 

[180] L. von Baumgarten et al., “Bevacizumab Has Differential and Dose-Dependent Effects on 

Glioma Blood Vessels and Tumor Cells,” Clin. Cancer Res., vol. 17, no. 19, pp. 6192–6205, 

Oct. 2011, doi: 10.1158/1078-0432.CCR-10-1868. 

[181] T. Mathivet et al., “Dynamic stroma reorganization drives blood vessel dysmorphia during 

glioma growth,” EMBO Mol. Med., vol. 9, no. 12, pp. 1629–1645, Dec. 2017, doi: 

10.15252/emmm.201607445. 

[182] R. C. Molthen, P. M. Shankar, and J. M. Reid, “Characterization of ultrasonic B-scans 

using non-rayleigh statistics,” Ultrasound Med. Biol., vol. 21, no. 2, pp. 161–170, Jan. 1995, 

doi: 10.1016/S0301-5629(94)00105-7. 

[183] P.-H. Tsui et al., “Ultrasonic Nakagami Imaging: A Strategy to Visualize the Scatterer 

Properties of Benign and Malignant Breast Tumors,” Ultrasound Med. Biol., vol. 36, no. 2, 

pp. 209–217, Feb. 2010, doi: 10.1016/j.ultrasmedbio.2009.10.006. 

[184] T. J. Allen and P. C. Beard, “Optimising the detection parameters for deep-tissue 

photoacoustic imaging,” Feb. 2012, p. 82230P, doi: 10.1117/12.908813. 

[185] T. Feng et al., “Characterizing cellular morphology by photoacoustic spectrum analysis 

with an ultra-broadband optical ultrasonic detector,” Opt. Express, vol. 24, no. 17, pp. 19853–

19862, Aug. 2016. 

[186] G. Xu, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “Photoacoustic spectrum analysis for 

microstructure characterization in biological tissue: analytical model,” Ultrasound Med. 

Biol., vol. 41, no. 5, pp. 1473–1480, May 2015, doi: 10.1016/j.ultrasmedbio.2015.01.010. 

[187] E. Hysi, R. K. Saha, and M. C. Kolios, “Photoacoustic ultrasound spectroscopy for 

assessing red blood cell aggregation and oxygenation,” J. Biomed. Opt., vol. 17, no. 12, pp. 

125006–125006, 2012. 

[188] S. Wang, C. Tao, Y. Yang, X. Wang, and X. Liu, “Theoretical and experimental study of 

spectral characteristics of the photoacoustic signal from stochastically distributed particles,” 

IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 62, no. 7, pp. 1245–1255, 2015, doi: 

10.1109/TUFFC.2014.006806. 

[189] Z. Zhou, L. Sheng, S. Wu, C. Yang, and Y. Zeng, “Ultrasonic evaluation of microwave-

induced thermal lesions based on wavelet analysis of mean scatterer spacing,” Ultrasonics, 

vol. 53, no. 7, pp. 1325–1331, Sep. 2013, doi: 10.1016/j.ultras.2013.03.018. 

[190] B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic 

photoacoustic imaging: a review,” J. Biomed. Opt., vol. 17, no. 6, p. 061202, Jun. 2012, doi: 

10.1117/1.JBO.17.6.061202. 

[191] B. E. Treeby, “Acoustic attenuation compensation in photoacoustic tomography using 

time-variant filtering,” J. Biomed. Opt., vol. 18, no. 3, pp. 036008–036008, 2013. 

[192] K. J. Cash, C. Li, J. Xia, L. V. Wang, and H. A. Clark, “Optical Drug Monitoring: 

Photoacoustic Imaging of Nanosensors to Monitor Therapeutic Lithium in Vivo,” ACS Nano, 

vol. 9, no. 2, pp. 1692–1698, Feb. 2015, doi: 10.1021/nn5064858. 



 

156 

[193] J. Aguirre et al., “Precision assessment of label-free psoriasis biomarkers with ultra-

broadband optoacoustic mesoscopy,” Nat. Biomed. Eng., vol. 1, no. 5, p. 0068, May 2017, 

doi: 10.1038/s41551-017-0068. 

[194] J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain, “Microvascular architecture in a 

mammary carcinoma: branching patterns and vessel dimensions,” Cancer Res., vol. 51, no. 

1, pp. 265–273, Jan. 1991. 

[195] G. P. Luke, J. N. Myers, S. Y. Emelianov, and K. V. Sokolov, “Sentinel lymph node biopsy 

revisited: ultrasound-guided photoacoustic detection of micrometastases using molecularly 

targeted plasmonic nanosensors,” Cancer Res., vol. 74, no. 19, pp. 5397–5408, Oct. 2014, 

doi: 10.1158/0008-5472.CAN-14-0796. 

[196] J. Ophir et al., “Elastography: ultrasonic estimation and imaging of the elastic properties 

of tissues,” Proc. Inst. Mech. Eng. [H], vol. 213, no. 3, pp. 203–233, 1999, doi: 

10.1243/0954411991534933. 

[197] B. Zhao, L. H. Schwartz, and S. M. Larson, “Imaging Surrogates of Tumor Response to 

Therapy: Anatomic and Functional Biomarkers,” J. Nucl. Med., vol. 50, no. 2, pp. 239–249, 

Feb. 2009, doi: 10.2967/jnumed.108.056655. 

[198] H. Grüll and S. Langereis, “Hyperthermia-triggered drug delivery from temperature-

sensitive liposomes using MRI-guided high intensity focused ultrasound,” J. Control. 

Release Off. J. Control. Release Soc., vol. 161, no. 2, pp. 317–327, Jul. 2012, doi: 

10.1016/j.jconrel.2012.04.041. 

[199] A. H. Negussie et al., “Formulation and characterisation of magnetic resonance imageable 

thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused 

ultrasound,” Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. North Am. Hyperth. 

Group, vol. 27, no. 2, pp. 140–155, 2011, doi: 10.3109/02656736.2010.528140. 

[200] M. de Smet, E. Heijman, S. Langereis, N. M. Hijnen, and H. Grüll, “Magnetic resonance 

imaging of high intensity focused ultrasound mediated drug delivery from temperature-

sensitive liposomes: an in vivo proof-of-concept study,” J. Control. Release Off. J. Control. 

Release Soc., vol. 150, no. 1, pp. 102–110, Feb. 2011, doi: 10.1016/j.jconrel.2010.10.036. 

[201] T. Ta, E. Bartolak-Suki, E.-J. Park, K. Karrobi, N. J. McDannold, and T. M. Porter, 

“Localized delivery of doxorubicin in vivo from polymer-modified thermosensitive 

liposomes with MR-guided focused ultrasound-mediated heating,” J. Control. Release Off. 

J. Control. Release Soc., vol. 194, pp. 71–81, Nov. 2014, doi: 10.1016/j.jconrel.2014.08.013. 

[202] J. H. Thrall, “Personalized medicine,” Radiology, vol. 231, no. 3, pp. 613–616, Jun. 2004, 

doi: 10.1148/radiol.2313040323. 

[203] B. Kneidl, M. Peller, G. Winter, L. H. Lindner, and M. Hossann, “Thermosensitive 

liposomal drug delivery systems: state of the art review,” Int. J. Nanomedicine, vol. 9, pp. 

4387–4398, 2014, doi: 10.2147/IJN.S49297. 

[204] J. P. May and S.-D. Li, “Hyperthermia-induced drug targeting,” Expert Opin. Drug Deliv., 

vol. 10, no. 4, pp. 511–527, Apr. 2013, doi: 10.1517/17425247.2013.758631. 

[205] C. D. Landon, J.-Y. Park, D. Needham, and M. W. Dewhirst, “Nanoscale Drug Delivery 

and Hyperthermia: The Materials Design and Preclinical and Clinical Testing of Low 

Temperature-Sensitive Liposomes Used in Combination with Mild Hyperthermia in the 

Treatment of Local Cancer,” Open Nanomedicine J., vol. 3, pp. 38–64, Jan. 2011, doi: 

10.2174/1875933501103010038. 



 

157 

[206] D. Needham, G. Anyarambhatla, G. Kong, and M. W. Dewhirst, “A new temperature-

sensitive liposome for use with mild hyperthermia: characterization and testing in a human 

tumor xenograft model,” Cancer Res., vol. 60, no. 5, pp. 1197–1201, Mar. 2000. 

[207] T. Tagami, M. J. Ernsting, and S.-D. Li, “Optimization of a novel and improved 

thermosensitive liposome formulated with DPPC and a Brij surfactant using a robust in vitro 

system,” J. Controlled Release, vol. 154, no. 3, pp. 290–297, Sep. 2011, doi: 

10.1016/j.jconrel.2011.05.020. 

[208] T. Tagami, M. J. Ernsting, and S.-D. Li, “Efficient tumor regression by a single and low 

dose treatment with a novel and enhanced formulation of thermosensitive liposomal 

doxorubicin,” J. Controlled Release, vol. 152, no. 2, pp. 303–309, Jun. 2011, doi: 

10.1016/j.jconrel.2011.02.009. 

[209] T. Tagami et al., “MRI monitoring of intratumoral drug delivery and prediction of the 

therapeutic effect with a multifunctional thermosensitive liposome,” Biomaterials, vol. 32, 

no. 27, pp. 6570–6578, Sep. 2011, doi: 10.1016/j.biomaterials.2011.05.029. 

[210] T. Tagami, J. P. May, M. J. Ernsting, and S.-D. Li, “A thermosensitive liposome prepared 

with a Cu2+ gradient demonstrates improved pharmacokinetics, drug delivery and antitumor 

efficacy,” J. Controlled Release, vol. 161, no. 1, pp. 142–149, Jul. 2012, doi: 

10.1016/j.jconrel.2012.03.023. 

[211] A. M. Ponce, Z. Vujaskovic, F. Yuan, D. Needham, and M. W. Dewhirst, “Hyperthermia 

mediated liposomal drug delivery,” Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. 

North Am. Hyperth. Group, vol. 22, no. 3, pp. 205–213, May 2006, doi: 

10.1080/02656730600582956. 

[212] Q. Chen, S. Tong, M. W. Dewhirst, and F. Yuan, “Targeting tumor microvessels using 

doxorubicin encapsulated in a novel thermosensitive liposome,” Mol. Cancer Ther., vol. 3, 

no. 10, pp. 1311–1317, 2004. 

[213] C. K. Kim, S. Y. Park, B. K. Park, W. Park, and S. J. Huh, “Blood oxygenation level-

dependent MR imaging as a predictor of therapeutic response to concurrent 

chemoradiotherapy in cervical cancer: a preliminary experience,” Eur. Radiol., vol. 24, no. 

7, pp. 1514–1520, Jul. 2014, doi: 10.1007/s00330-014-3167-0. 

[214] J. P. B. O’Connor et al., “Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation 

in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors,” Int. J. 

Radiat. Oncol., vol. 75, no. 4, pp. 1209–1215, Nov. 2009, doi: 10.1016/j.ijrobp.2008.12.040. 

[215] I. V. Linnik et al., “Noninvasive tumor hypoxia measurement using magnetic resonance 

imaging in murine U87 glioma xenografts and in patients with glioblastoma,” Magn. Reson. 

Med., vol. 71, no. 5, pp. 1854–1862, May 2014, doi: 10.1002/mrm.24826. 

[216] C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. 

Med. Biol., vol. 54, no. 19, pp. R59–R97, Oct. 2009, doi: 10.1088/0031-9155/54/19/R01. 

[217] S. Y. Emelianov, P.-C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and 

therapy,” Phys. Today, vol. 62, no. 8, p. 34, 2009. 

[218] S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, 

diagnosis, and treatment guidance,” Trends Biotechnol., vol. 29, no. 5, pp. 213–221, May 

2011, doi: 10.1016/j.tibtech.2011.01.006. 

[219] L. J. Rich and M. Seshadri, “Photoacoustic imaging of vascular hemodynamics: validation 

with blood oxygenation level-dependent MR imaging,” Radiology, vol. 275, no. 1, pp. 110–

118, Apr. 2015, doi: 10.1148/radiol.14140654. 



 

158 

[220] K. E. Wilson, S. V. Bachawal, L. Tian, and J. K. Willmann, “Multiparametric 

spectroscopic photoacoustic imaging of breast cancer development in a transgenic mouse 

model,” Theranostics, vol. 4, no. 11, pp. 1062–1071, 2014, doi: 10.7150/thno.9922. 

[221] M. Gerling et al., “Real-Time Assessment of Tissue Hypoxia In Vivo with Combined 

Photoacoustics and High-Frequency Ultrasound,” Theranostics, vol. 4, no. 6, pp. 604–613, 

2014, doi: 10.7150/thno.7996. 

[222] R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, 

“Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility 

study,” Appl. Opt., vol. 41, no. 22, pp. 4722–4731, 2002. 

[223] X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin 

concentration and oxygenation in the rat brain using high-resolution photoacoustic 

tomography,” J. Biomed. Opt., vol. 11, no. 2, p. 024015, 2006, doi: 10.1117/1.2192804. 

[224] H. Maeda and Y. Matsumura, “EPR effect based drug design and clinical outlook for 

enhanced cancer chemotherapy,” Adv. Drug Deliv. Rev., vol. 63, no. 3, pp. 129–130, Mar. 

2011, doi: 10.1016/j.addr.2010.05.001. 

[225] S. Park, E. Kim, W. Y. Kim, C. Kang, and J. S. Kim, “Biotin-guided anticancer drug 

delivery with acidity-triggered drug release,” Chem. Commun., vol. 51, no. 45, pp. 9343–

9345, May 2015, doi: 10.1039/C5CC03003J. 

[226] T. L. Andresen, D. H. Thompson, and T. Kaasgaard, “Enzyme-triggered nanomedicine: 

Drug release strategies in cancer therapy (Invited Review),” Mol. Membr. Biol., vol. 27, no. 

7, pp. 353–363, Oct. 2010, doi: 10.3109/09687688.2010.515950. 

[227] I. M. Hafez and P. R. Cullis, “Tunable pH-sensitive liposomes,” Methods Enzymol., vol. 

387, pp. 113–134, 2004, doi: 10.1016/S0076-6879(04)87007-1. 

[228] R. S. Punglia, M. Morrow, E. P. Winer, and J. R. Harris, “Local Therapy and Survival in 

Breast Cancer,” N. Engl. J. Med., vol. 356, no. 23, pp. 2399–2405, Jun. 2007, doi: 

10.1056/NEJMra065241. 

[229] C. Furth et al., “Early and late therapy response assessment with [18F]fluorodeoxyglucose 

positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective 

multicenter trial,” J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol., vol. 27, no. 26, pp. 4385–

4391, Sep. 2009, doi: 10.1200/JCO.2008.19.7814. 

[230] N. G. Mikhaeel, M. Hutchings, P. A. Fields, M. J. O’Doherty, and A. R. Timothy, “FDG-

PET after two to three cycles of chemotherapy predicts progression-free and overall survival 

in high-grade non-Hodgkin lymphoma,” Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO, 

vol. 16, no. 9, pp. 1514–1523, Sep. 2005, doi: 10.1093/annonc/mdi272. 

[231] T. Terasawa et al., “Fluorine-18-fluorodeoxyglucose positron emission tomography for 

interim response assessment of advanced-stage Hodgkin’s lymphoma and diffuse large B-

cell lymphoma: a systematic review,” J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol., vol. 27, 

no. 11, pp. 1906–1914, Apr. 2009, doi: 10.1200/JCO.2008.16.0861. 

[232] A. Sadeghi-Naini et al., “Early prediction of therapy responses and outcomes in breast 

cancer patients using quantitative ultrasound spectral texture,” Oncotarget, vol. 5, no. 11, pp. 

3497–3511, May 2014. 

[233] M. R. Bernsen, K. Kooiman, M. Segbers, F. W. B. van Leeuwen, and M. de Jong, 

“Biomarkers in preclinical cancer imaging,” Eur. J. Nucl. Med. Mol. Imaging, vol. 42, no. 4, 

pp. 579–596, Apr. 2015, doi: 10.1007/s00259-014-2980-7. 

[234] J. A. Ludwig and J. N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment 

selection,” Nat. Rev. Cancer, vol. 5, no. 11, pp. 845–856, Nov. 2005, doi: 10.1038/nrc1739. 



 

159 

[235] A. A. Manzoor et al., “Overcoming limitations in nanoparticle drug delivery: triggered, 

intravascular release to improve drug penetration into tumors,” Cancer Res., vol. 72, no. 21, 

pp. 5566–5575, Nov. 2012, doi: 10.1158/0008-5472.CAN-12-1683. 

[236] T.-J. Yoon and Y.-S. Cho, “Recent advances in photoacoustic endoscopy,” World J. 

Gastrointest. Endosc., vol. 5, no. 11, pp. 534–539, Nov. 2013, doi: 10.4253/wjge.v5.i11.534. 

[237] S. R. Beanes, C. Dang, C. Soo, and K. Ting, “Skin repair and scar formation: the central 

role of TGF-beta,” Expert Rev. Mol. Med., vol. 5, no. 8, pp. 1–22, Mar. 2003, doi: 

10.1017/S1462399403005817. 

[238] T. Tirkes, M. A. Hollar, M. Tann, M. D. Kohli, F. Akisik, and K. Sandrasegaran, “Response 

criteria in oncologic imaging: review of traditional and new criteria,” Radiogr. Rev. Publ. 

Radiol. Soc. N. Am. Inc, vol. 33, no. 5, pp. 1323–1341, Oct. 2013, doi: 

10.1148/rg.335125214. 

[239] M. A. Hamburg and F. S. Collins, “The Path to Personalized Medicine,” N. Engl. J. Med., 

vol. 363, no. 4, pp. 301–4, Jul. 2010, doi: http://dx.doi.org/10.1056/NEJMp1006304. 

[240] C. P. Adams and V. V. Brantner, “Estimating The Cost Of New Drug Development: Is It 

Really $802 Million?,” Health Aff. (Millwood), vol. 25, no. 2, pp. 420–428, Mar. 2006, doi: 

10.1377/hlthaff.25.2.420. 

[241] D. Gonzalez de Castro, P. A. Clarke, B. Al-Lazikani, and P. Workman, “Personalized 

Cancer Medicine: Molecular Diagnostics, Predictive biomarkers, and Drug Resistance,” Clin. 

Pharmacol. Ther., vol. 93, no. 3, pp. 252–259, Mar. 2013, doi: 10.1038/clpt.2012.237. 

[242] H. Tadayyon et al., “Quantitative ultrasound assessment of breast tumor response to 

chemotherapy using a multi-parameter approach,” Oncotarget, Apr. 2016, doi: 

10.18632/oncotarget.8862. 

[243] L. Sannachi et al., “Non-invasive evaluation of breast cancer response to chemotherapy 

using quantitative ultrasonic backscatter parameters,” Med. Image Anal., vol. 20, no. 1, pp. 

224–236, Feb. 2015, doi: 10.1016/j.media.2014.11.009. 

[244] R. Choe et al., “Diffuse optical tomography of breast cancer during neoadjuvant 

chemotherapy: a case study with comparison to MRI,” Med. Phys., vol. 32, no. 4, pp. 1128–

1139, Apr. 2005, doi: 10.1118/1.1869612. 

[245] L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to 

Organs,” Science, vol. 335, no. 6075, pp. 1458–1462, Mar. 2012, doi: 

10.1126/science.1216210. 

[246] Y. Jin, C. Jia, S.-W. Huang, M. O’Donnell, and X. Gao, “Multifunctional nanoparticles as 

coupled contrast agents,” Nat. Commun., vol. 1, no. 4, pp. 1–8, Jul. 2010, doi: 

10.1038/ncomms1042. 

[247] M. Heijblom et al., “Photoacoustic image patterns of breast carcinoma and comparisons 

with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep., vol. 5, p. 

11778, 2015, doi: 10.1038/srep11778. 

[248] C. Cai et al., “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytom. 

Part J. Int. Soc. Anal. Cytol., Apr. 2016, doi: 10.1002/cyto.a.22854. 

[249] G. Xu et al., “The Functional Pitch of an Organ: Quantification of Tissue Texture with 

Photoacoustic Spectrum Analysis,” Radiology, vol. 271, no. 1, pp. 248–254, Jan. 2014, doi: 

10.1148/radiol.13130777. 

[250] R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-Domain Analysis of Photoacoustic 

Imaging Data From Prostate Adenocarcinoma Tumors in a Murine Model,” Ultrasound Med. 

Biol., vol. 37, no. 5, pp. 834–839, May 2011, doi: 10.1016/j.ultrasmedbio.2011.01.012. 



 

160 

[251] E. Hysi, R. K. Saha, and M. C. Kolios, “On the use of photoacoustics to detect red blood 

cell aggregation,” Biomed. Opt. Express, vol. 3, no. 9, pp. 2326–2338, 2012. 

[252] X. Wang et al., “Photoacoustic physio-chemical analysis of liver conditions in animal and 

human subjects,” in Proc. SPIE, 2016, vol. 9708, pp. 97081K-97081K–6, doi: 

10.1117/12.2213001. 

[253] Q. Li et al., “Photoacoustic spectrum analysis for microstructure characterization using 

ultra-broad bandwidth optical ultrasonic detector,” 2016, vol. 9708, pp. 970812-970812–5, 

doi: 10.1117/12.2211979. 

[254] G. Xu et al., “Photoacoustic and ultrasound dual-modality imaging of human peripheral 

joints,” J. Biomed. Opt., vol. 18, no. 1, pp. 010502–010502, 2013, doi: 

10.1117/1.JBO.18.1.010502. 

[255] R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood 

cells,” J. Acoust. Soc. Am., vol. 129, no. 5, pp. 2935–2943, May 2011, doi: 

10.1121/1.3570946. 

[256] R. K. Saha, “A simulation study on the quantitative assessment of tissue microstructure 

with photoacoustics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 62, no. 5, pp. 

881–895, May 2015, doi: 10.1109/TUFFC.2015.006993. 

[257] M. N. Fadhel, E. Hysi, J. Zalev, and M. C. Kolios, “Photoacoustic simulation of 

microvessel bleeding: spectral analysis and its implication for monitoring vascular-targeted 

treatments,” in Proc. SPIE, 2016, vol. 9708, pp. 97081B-97081B–10, doi: 

10.1117/12.2211774. 

[258] P. Shao, D. W. Chapman, R. B. Moore, and R. J. Zemp, “Monitoring photodynamic therapy 

with photoacoustic microscopy,” J. Biomed. Opt., vol. 20, no. 10, p. 106012, Oct. 2015, doi: 

10.1117/1.JBO.20.10.106012. 

[259] D. Needham and M. W. Dewhirst, “The development and testing of a new temperature-

sensitive drug delivery system for the treatment of solid tumors,” Adv. Drug Deliv. Rev., vol. 

53, no. 3, pp. 285–305, Dec. 2001, doi: 10.1016/S0169-409X(01)00233-2. 

[260] K. Nam et al., “Cross-imaging system comparison of backscatter coefficient estimates 

from a tissue-mimicking material,” J. Acoust. Soc. Am., vol. 132, no. 3, pp. 1319–1324, Sep. 

2012, doi: 10.1121/1.4742725. 

[261] E. Madsen, G. Frank, M. McCormick, M. Deaner, and T. Stiles, “Anechoic sphere 

phantoms for estimating 3-D resolution of very-high-frequency ultrasound scanners,” IEEE 

Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, no. 10, pp. 2284–2292, Oct. 2010, doi: 

10.1109/TUFFC.2010.1689. 

[262] E. L. Madsen, M. E. Deaner, and J. Mehi, “Properties of phantom tissuelike 

polymethylpentene in the frequency range 20-70 MHZ,” Ultrasound Med. Biol., vol. 37, no. 

8, pp. 1327–1339, Aug. 2011, doi: 10.1016/j.ultrasmedbio.2011.05.023. 

[263] L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional 

photoacoustic microscopy at depths,” J. Biomed. Opt., vol. 17, no. 10, pp. 1060071–1060075, 

2012, doi: 10.1117/1.JBO.17.10.106007. 

[264] E. A. Eisenhauer et al., “New response evaluation criteria in solid tumours: revised 

RECIST guideline (version 1.1),” Eur. J. Cancer Oxf. Engl. 1990, vol. 45, no. 2, pp. 228–

247, Jan. 2009, doi: 10.1016/j.ejca.2008.10.026. 

[265] R. K. Jain, “Molecular regulation of vessel maturation,” Nat. Med., vol. 9, no. 6, pp. 685–

693, Jun. 2003, doi: 10.1038/nm0603-685. 



 

161 

[266] Q. Chen, A. Krol, A. Wright, D. Needham, M. W. Dewhirst, and F. Yuan, “Tumor 

microvascular permeability is a key determinant for antivascular effects of doxorubicin 

encapsulated in a temperature sensitive liposome,” Int. J. Hyperthermia, vol. 24, no. 6, pp. 

475–482, Jan. 2008, doi: 10.1080/02656730701854767. 

[267] G. Xu, I. A. Dar, C. Tao, X. Liu, C. X. Deng, and X. Wang, “Photoacoustic spectrum 

analysis for microstructure characterization in biological tissue: A feasibility study,” Appl. 

Phys. Lett., vol. 101, no. 22, p. 221102, Nov. 2012, doi: 10.1063/1.4768703. 

[268] M. Gerling et al., “Real-time assessment of tissue hypoxia in vivo with combined 

photoacoustics and high-frequency ultrasound,” Theranostics, vol. 4, no. 6, pp. 604–613, 

2014, doi: 10.7150/thno.7996. 

[269] L. Li et al., “Mild hyperthermia triggered doxorubicin release from optimized stealth 

thermosensitive liposomes improves intratumoral drug delivery and efficacy,” J. Control. 

Release Off. J. Control. Release Soc., vol. 168, no. 2, pp. 142–150, Jun. 2013, doi: 

10.1016/j.jconrel.2013.03.011. 

[270] M. N. Fadhel, E. Hysi, J. Zalev, and M. C. Kolios, “Photoacoustic simulation of 

microvessel bleeding: spectral analysis and its implication for monitoring vascular-targeted 

treatments,” Mar. 2016, p. 97081B, doi: 10.1117/12.2211774. 

[271] T. N. Erpelding et al., “Sentinel Lymph Nodes in the Rat: Noninvasive Photoacoustic and 

US Imaging with a Clinical US System 1,” Radiology, vol. 256, no. 1, pp. 102–110, 2010. 

[272] R. M. Vlad, N. M. Alajez, A. Giles, M. C. Kolios, and G. J. Czarnota, “Quantitative 

ultrasound characterization of cancer radiotherapy effects in vitro,” Int. J. Radiat. Oncol. 

Biol. Phys., vol. 72, no. 4, pp. 1236–1243, Nov. 2008, doi: 10.1016/j.ijrobp.2008.07.027. 

[273] M. L. Oelze, W. D. O’Brien, J. P. Blue, and J. F. Zachary, “Differentiation and 

characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using 

quantitative ultrasound imaging,” IEEE Trans. Med. Imaging, vol. 23, no. 6, pp. 764–771, 

Jun. 2004. 

[274] M. B. Amin et al., “The Eighth Edition AJCC Cancer Staging Manual: Continuing to build 

a bridge from a population-based to a more ‘personalized’ approach to cancer staging,” CA. 

Cancer J. Clin., vol. 67, no. 2, pp. 93–99, Mar. 2017, doi: 10.3322/caac.21388. 

[275] D. Cross and J. K. Burmester, “Gene therapy for cancer treatment: past, present and 

future,” Clin. Med. Res., vol. 4, no. 3, pp. 218–227, Sep. 2006, doi: 10.3121/cmr.4.3.218. 

[276] E. I. Dumbrava and F. Meric-Bernstam, “Personalized cancer therapy—leveraging a 

knowledge base for clinical decision-making,” Cold Spring Harb. Mol. Case Stud., vol. 4, 

no. 2, Apr. 2018, doi: 10.1101/mcs.a001578. 

[277] M. Verma, “Personalized Medicine and Cancer,” J. Pers. Med., vol. 2, no. 1, pp. 1–14, Jan. 

2012, doi: 10.3390/jpm2010001. 

[278] C. L. Vogel et al., “Efficacy and safety of trastuzumab as a single agent in first-line 

treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. Off. J. Am. Soc. 

Clin. Oncol., vol. 20, no. 3, pp. 719–726, Feb. 2002, doi: 10.1200/JCO.2002.20.3.719. 

[279] T. Vu, D. Razansky, and J. Yao, “Listening to tissues with new light: recent technological 

advances in photoacoustic imaging,” J. Opt., vol. 21, no. 10, p. 103001, Sep. 2019, doi: 

10.1088/2040-8986/ab3b1a. 

[280] S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” 

Photoacoustics, vol. 16, p. 100134, Dec. 2019, doi: 10.1016/j.pacs.2019.04.004. 



 

162 

[281] E. Hysi, M. N. Fadhel, M. J. Moore, J. Zalev, E. M. Strohm, and M. C. Kolios, “Insights 

into photoacoustic speckle and applications in tumor characterization,” Photoacoustics, vol. 

14, pp. 37–48, Jun. 2019, doi: 10.1016/j.pacs.2019.02.002. 

[282] C. Bing et al., “Characterization of different bubble formulations for blood-brain barrier 

opening using a focused ultrasound system with acoustic feedback control,” Sci. Rep., vol. 8, 

no. 1, pp. 1–12, May 2018, doi: 10.1038/s41598-018-26330-7. 

[283] P. Nittayacharn, H.-X. Yuan, C. Hernandez, P. Bielecki, H. Zhou, and A. A. Exner, 

“Enhancing Tumor Drug Distribution With Ultrasound-Triggered Nanobubbles,” J. Pharm. 

Sci., vol. 108, no. 9, pp. 3091–3098, Sep. 2019, doi: 10.1016/j.xphs.2019.05.004. 

[284] C. Hernandez et al., “Sink or float? Characterization of shell-stabilized bulk nanobubbles 

using a resonant mass measurement technique,” Nanoscale, vol. 11, no. 3, pp. 851–855, Jan. 

2019, doi: 10.1039/c8nr08763f. 

[285] A. de Leon et al., “Contrast enhanced ultrasound imaging by nature-inspired ultrastable 

echogenic nanobubbles,” Nanoscale, vol. 11, no. 33, pp. 15647–15658, Sep. 2019, doi: 

10.1039/c9nr04828f. 

[286] X. Liang, Y. Xu, C. Gao, Y. Zhou, N. Zhang, and Z. Dai, “Ultrasound contrast agent 

microbubbles with ultrahigh loading capacity of camptothecin and floxuridine for enhancing 

tumor accumulation and combined chemotherapeutic efficacy,” NPG Asia Mater., vol. 10, 

no. 8, pp. 761–774, Aug. 2018, doi: 10.1038/s41427-018-0066-x. 

[287] C. Holland, “Ultrasound Contrast Agents Accelerate Sonothrombolysis,” Ultrasound Med. 

Biol., vol. 41, no. 4, p. S94, Apr. 2015, doi: 10.1016/j.ultrasmedbio.2014.12.377. 

[288] K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR 

imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology, vol. 220, no. 

3, pp. 640–646, Sep. 2001, doi: 10.1148/radiol.2202001804. 

[289] A. J. Sojahrood, L. Nieves, C. Hernandez, A. Exner, and M. C. Kolios, “Theoretical and 

experimental investigation of the nonlinear dynamics of nanobubbles excited at clinically 

relevant ultrasound frequencies and pressures: The role of lipid shell buckling,” in 2017 IEEE 

International Ultrasonics Symposium (IUS), Sep. 2017, pp. 1–1, doi: 

10.1109/ULTSYM.2017.8091934. 

[290] Y. Gao et al., “Ultrasound molecular imaging of ovarian cancer with CA-125 targeted 

nanobubble contrast agents,” Nanomedicine Nanotechnol. Biol. Med., vol. 13, no. 7, pp. 

2159–2168, Oct. 2017, doi: 10.1016/j.nano.2017.06.001. 

[291] J. Lee, R. Karshafian, N. Papanicolau, A. Giles, M. C. Kolios, and G. J. Czarnota, 

“Quantitative ultrasound for the monitoring of novel microbubble and ultrasound 

radiosensitization,” Ultrasound Med. Biol., vol. 38, no. 7, pp. 1212–1221, Jul. 2012, doi: 

10.1016/j.ultrasmedbio.2012.01.028. 

[292] G. J. Czarnota et al., “Tumor radiation response enhancement by acoustical stimulation of 

the vasculature,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 30, pp. E2033–E2041, Jul. 

2012, doi: 10.1073/pnas.1200053109. 

[293] A. A. Al-Mahrouki, S. Iradji, W. T. Tran, and G. J. Czarnota, “Cellular characterization of 

ultrasound-stimulated microbubble radiation enhancement in a prostate cancer xenograft 

model,” Dis. Model. Mech., vol. 7, no. 3, pp. 363–372, Mar. 2014, doi: 10.1242/dmm.012922. 

[294] H. Wu, E. C. Abenojar, R. Perera, A. C. De Leon, T. An, and A. A. Exner, “Time-intensity-

curve Analysis and Tumor Extravasation of Nanobubble Ultrasound Contrast Agents,” 

Ultrasound Med. Biol., vol. 45, no. 9, pp. 2502–2514, Sep. 2019, doi: 

10.1016/j.ultrasmedbio.2019.05.025. 



 

163 

[295] R. Karshafian, P. D. Bevan, R. Williams, S. Samac, and P. N. Burns, “Sonoporation by 

ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on 

cell membrane permeability and cell viability,” Ultrasound Med. Biol., vol. 35, no. 5, pp. 

847–860, May 2009, doi: 10.1016/j.ultrasmedbio.2008.10.013. 

[296] L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional 

photoacoustic microscopy at depths,” J. Biomed. Opt., vol. 17, no. 10, pp. 1060071–1060075, 

2012, doi: 10.1117/1.JBO.17.10.106007. 

[297] G. Xu et al., “The Functional Pitch of an Organ: Quantification of Tissue Texture with 

Photoacoustic Spectrum Analysis,” Radiology, vol. 271, no. 1, pp. 248–254, Apr. 2014, doi: 

10.1148/radiol.13130777. 

[298] G. A. F. Seber and A. J. Lee, Linear Regression Analysis. John Wiley & Sons, 2012. 

[299] O. V. Solesvik, E. K. Rofstad, and T. Brustad, “Vascular changes in a human malignant 

melanoma xenograft following single-dose irradiation,” Radiat. Res., vol. 98, no. 1, pp. 115–

128, Apr. 1984. 

[300] M. H. M. Janssen et al., “Tumor perfusion increases during hypofractionated short-course 

radiotherapy in rectal cancer: sequential perfusion-CT findings,” Radiother. Oncol. J. Eur. 

Soc. Ther. Radiol. Oncol., vol. 94, no. 2, pp. 156–160, Feb. 2010, doi: 

10.1016/j.radonc.2009.12.013. 

[301] A. G. Orlova et al., “Diffuse optical spectroscopy assessment of rodent tumor model 

oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express, vol. 5, no. 3, p. 

035010, Mar. 2019, doi: 10.1088/2057-1976/ab0b19. 

[302] G. Diot et al., “Multispectral Optoacoustic Tomography (MSOT) of Human Breast 

Cancer,” Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res., vol. 23, no. 22, pp. 6912–6922, 

Nov. 2017, doi: 10.1158/1078-0432.CCR-16-3200. 

[303] B. Cheng, C. Bing, Y. Xi, B. Shah, A. A. Exner, and R. Chopra, “Influence of Nanobubble 

Concentration on Blood–Brain Barrier Opening Using Focused Ultrasound Under Real-Time 

Acoustic Feedback Control,” Ultrasound Med. Biol., vol. 45, no. 8, pp. 2174–2187, Aug. 

2019, doi: 10.1016/j.ultrasmedbio.2019.03.016. 

[304] E. C. Abenojar et al., “Theoretical and Experimental Gas Volume Quantification of Micro- 

and Nanobubble Ultrasound Contrast Agents,” Pharmaceutics, vol. 12, no. 3, Mar. 2020, doi: 

10.3390/pharmaceutics12030208. 

[305] G. Yang et al., “Co-registered photoacoustic and ultrasound imaging of human colorectal 

cancer,” J. Biomed. Opt., vol. 24, no. 12, pp. 1–13, Nov. 2019, doi: 

10.1117/1.JBO.24.12.121913. 

[306] M. N. Fadhel, E. Hysi, J. Zalev, and M. C. Kolios, “Photoacoustic simulations of 

microvascular bleeding: spectral analysis and its application for monitoring vascular-targeted 

treatments,” J. Biomed. Opt., vol. 24, no. 11, pp. 1–8, 2019, doi: 

10.1117/1.JBO.24.11.116001. 

[307] X. Leng et al., “Feasibility of co-registered ultrasound and acoustic-resolution 

photoacoustic imaging of human colorectal cancer,” Biomed. Opt. Express, vol. 9, no. 11, pp. 

5159–5172, Nov. 2018, doi: 10.1364/BOE.9.005159. 

[308] B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from 

multiwavelength photoacoustic images,” J. Opt. Soc. Am. A Opt. Image Sci. Vis., vol. 26, no. 

2, pp. 443–455, Feb. 2009, doi: 10.1364/josaa.26.000443. 



 

164 

[309] R. Hochuli, L. An, P. C. Beard, and B. T. Cox, “Estimating blood oxygenation from 

photoacoustic images: can a simple linear spectroscopic inversion ever work?,” J. Biomed. 

Opt., vol. 24, no. 12, pp. 1–13, 2019, doi: 10.1117/1.JBO.24.12.121914. 

[310] L. An, T. Saratoon, M. Fonseca, R. Ellwood, and B. Cox, “Statistical independence in 

nonlinear model-based inversion for quantitative photoacoustic tomography,” Biomed. Opt. 

Express, vol. 8, no. 11, pp. 5297–5310, Nov. 2017, doi: 10.1364/BOE.8.005297. 

[311] B. T. Cox, J. G. Laufer, and P. C. Beard, “Quantitative Photoacoustic Image 

Reconstruction using Fluence Dependent Chromophores,” Biomed. Opt. Express, vol. 1, no. 

1, pp. 201–208, Jul. 2010, doi: 10.1364/BOE.1.000201. 

[312] S. Tzoumas et al., “Eigenspectra optoacoustic tomography achieves quantitative blood 

oxygenation imaging deep in tissues,” Nat. Commun., vol. 7, p. 12121, 30 2016, doi: 

10.1038/ncomms12121. 

[313] G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning 

focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt., vol. 

23, no. 12, pp. 1–11, 2018, doi: 10.1117/1.JBO.23.12.121607. 

[314] R. Lencioni and D. Cioni, “RFA plus lyso-thermosensitive liposomal doxorubicin: in 

search of the optimal approach to cure intermediate-size hepatocellular carcinoma,” Hepatic 

Oncol., vol. 3, no. 3, pp. 193–200, Aug. 2016, doi: 10.2217/hep-2016-0005. 

[315] H. C. Kim, A. Al-Mahrouki, A. Gorjizadeh, A. Sadeghi-Naini, R. Karshafian, and G. J. 

Czarnota, “Quantitative Ultrasound Characterization of Tumor Cell Death: Ultrasound-

Stimulated Microbubbles for Radiation Enhancement,” PLoS ONE, vol. 9, no. 7, Jul. 2014, 

doi: 10.1371/journal.pone.0102343. 

[316] S. Dutta and P. Sengupta, “Men and mice: Relating their ages,” Life Sci., vol. 152, pp. 244–

248, May 2016, doi: 10.1016/j.lfs.2015.10.025. 

[317] M. N. Bouchlaka et al., “Aging predisposes to acute inflammatory induced pathology after 

tumor immunotherapy,” J. Exp. Med., vol. 210, no. 11, pp. 2223–2237, Oct. 2013, doi: 

10.1084/jem.20131219. 

[318] C. H. Kugel et al., “Age Correlates with Response to Anti-PD1, Reflecting Age-Related 

Differences in Intratumoral Effector and Regulatory T-Cell Populations,” Clin. Cancer Res. 

Off. J. Am. Assoc. Cancer Res., vol. 24, no. 21, pp. 5347–5356, 01 2018, doi: 10.1158/1078-

0432.CCR-18-1116. 

[319] R. K. Jain, “Determinants of tumor blood flow: a review,” Cancer Res., vol. 48, no. 10, pp. 

2641–2658, 1988. 

[320] M. A. Pozniak and P. L. Allan, Clinical Doppler Ultrasound: Expert Consult, 3 edition. 

Elsevier Canada, 2013. 

[321] J. Brunker and P. Beard, “Acoustic resolution photoacoustic Doppler velocimetry in blood-

mimicking fluids,” Sci. Rep., vol. 6, p. 20902, 2016, doi: 10.1038/srep20902. 

[322] P. J. van den Berg, K. Daoudi, and W. Steenbergen, “Review of photoacoustic flow 

imaging: its current state and its promises,” Photoacoustics, vol. 3, no. 3, pp. 89–99, Sep. 

2015, doi: 10.1016/j.pacs.2015.08.001. 

[323] J. Brunker and P. Beard, “Pulsed photoacoustic Doppler flowmetry using time-domain 

cross-correlation: accuracy, resolution and scalability,” J. Acoust. Soc. Am., vol. 132, no. 3, 

pp. 1780–1791, Sep. 2012, doi: 10.1121/1.4739458. 

[324] J. Brunker and P. Beard, “Pulsed photoacoustic Doppler flow measurements in blood-

mimicking phantoms,” Feb. 2011, pp. 78991K-78991K–10, doi: 10.1117/12.874469. 



 

165 

[325] Y. Jiang and R. Zemp, “Estimation of cerebral metabolic rate of oxygen consumption using 

combined multiwavelength photoacoustic microscopy and Doppler microultrasound,” J. 

Biomed. Opt., vol. 23, no. 1, p. 016009, Jan. 2018, doi: 10.1117/1.JBO.23.1.016009. 

[326] J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic 

photoacoustic microscopy in vivo,” J. Biomed. Opt., vol. 16, no. 7, Jul. 2011, doi: 

10.1117/1.3594786. 

[327] C. Walker, E. Mojares, and A. del Río Hernández, “Role of Extracellular Matrix in 

Development and Cancer Progression,” Int. J. Mol. Sci., vol. 19, no. 10, Oct. 2018, doi: 

10.3390/ijms19103028. 

[328] V. P. Chauhan et al., “Angiotensin inhibition enhances drug delivery and potentiates 

chemotherapy by decompressing tumour blood vessels,” Nat. Commun., vol. 4, Oct. 2013, 

doi: 10.1038/ncomms3516. 

[329] B. Diop-Frimpong, V. P. Chauhan, S. Krane, Y. Boucher, and R. K. Jain, “Losartan inhibits 

collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in 

tumors,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 7, pp. 2909–2914, Feb. 2011, doi: 

10.1073/pnas.1018892108. 

[330] J. D. Martin, D. Fukumura, D. G. Duda, Y. Boucher, and R. K. Jain, “Reengineering the 

Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity,” Cold 

Spring Harb. Perspect. Med., vol. 6, no. 12, Dec. 2016, doi: 10.1101/cshperspect.a027094. 

[331] S. Xu et al., “The role of collagen in cancer: from bench to bedside,” J. Transl. Med., vol. 

17, no. 1, p. 309, Sep. 2019, doi: 10.1186/s12967-019-2058-1. 

[332] P. J. van den Berg, R. Bansal, K. Daoudi, W. Steenbergen, and J. Prakash, “Preclinical 

detection of liver fibrosis using dual-modality photoacoustic/ultrasound system,” Biomed. 

Opt. Express, vol. 7, no. 12, pp. 5081–5091, Nov. 2016, doi: 10.1364/BOE.7.005081. 

[333] Y. Zhu et al., “Identifying intestinal fibrosis and inflammation by spectroscopic 

photoacoustic imaging: an animal study in vivo,” Biomed. Opt. Express, vol. 9, no. 4, pp. 

1590–1600, Mar. 2018, doi: 10.1364/BOE.9.001590. 

[334] A. P. Regensburger et al., “Detection of collagens by multispectral optoacoustic 

tomography as an imaging biomarker for Duchenne muscular dystrophy,” Nat. Med., vol. 25, 

pp. 1905–1915, Dec. 2019, doi: 10.1038/s41591-019-0669-y. 

[335] L. Sannachi et al., “Response monitoring of breast cancer patients receiving neoadjuvant 

chemotherapy using quantitative ultrasound, texture, and molecular features,” PLoS ONE, 

vol. 13, no. 1, Jan. 2018, doi: 10.1371/journal.pone.0189634. 

[336] H. Tadayyon et al., “A priori Prediction of Neoadjuvant Chemotherapy Response and 

Survival in Breast Cancer Patients using Quantitative Ultrasound,” Sci. Rep., vol. 7, no. 1, 

pp. 1–11, Apr. 2017, doi: 10.1038/srep45733. 

[337] H. Tadayyon et al., “A priori prediction of breast tumour response to chemotherapy using 

quantitative ultrasound imaging and artificial neural networks,” Oncotarget, vol. 10, no. 39, 

pp. 3910–3923, Jun. 2019, doi: 10.18632/oncotarget.26996. 

 


