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Abstract

The need for 3D mapping is on the rise to meet the requirements of a growing and diverse group
of end-users. Existing 3D mapping systems, which have been classified according to the mode of
operation as stationary, mobile and aerial, tend to serve one mode of operation only and are
considered cost-prohibitive for many end-users. Unmanned aerial vehicles (UAVs) have
experienced rapid growth since their introduction and their usage in 3D mapping is likewise
accelerating at a rapid pace. This dissertation presents the design, development and
implementation of a LiDAR-based generic 3D mapping system that can be used in the three
mapping modes (stationary, mobile and UAV-based). The system provides direct georeferencing
capabilities through optimized selected multimodal sensors. A fundamental part of this dissertation
is the smart integration of the 3D mapping system components both on the hardware and software
levels, along with a new mapping scheme that enables platform-independent deployment ability.
This research project also presents a rigorous non-linear uncertainty predictive model for the
generic developed system and introduces a very low-cost variant of the system to be used in
stationary and handheld mode. The developed multipurpose mapping system is tested in different

environments for the three modes of operation, demonstrating its practicality, versatility and ease



of deployment. To maximize the ease of deployment for diverse end-users, careful consideration
is given to the mapping system components so that the developed system is ultra-lightweight,
compact, and multipurpose. Additionally, this dissertation proposes a colorization workflow to
make use of available optical imagery in the colorization process of the LIDAR point cloud. Lastly,
the study compares two different 3D mapping approaches: 3D LiDAR-based mapping and a low-
cost optical-based 3D structure from motion (SfM) workflow. The comparison is achieved by
performing a real-world case study of digital surface model (DSM) generation by the two
aforementioned approaches. Real-world testing that includes qualitative and quantitative
validation against accurate state-of-the-art high-end LiDAR equipment proves the successful
design, development and deployment of the developed crosscutting LiDAR-based 3D mapping

system.
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1.INTRODUCTION

1.1 Background

Using maps is an integral part of our life, whether for navigation, geographic information systems,
resources monitoring, surveying, or other pursuits and uses. Three-dimensional (3D) maps serve
as an essential component in the aforementioned as well as in many new indoor and outdoor
applications, such as smart cities, autonomous vehicles, asset management, virtual and augmented
reality, as-built drawings, etc. Thus, the number of end-users who require 3D maps has expanded
exponentially in recent years and is anticipated to expand even more in the future.

At the same time, the pace of technological progress in 3D scanning sensors is also rapidly
accelerating. The two main remote sensing sensor (RSS) types typically used in the 3D mapping
process are active and passive. The active sensors used in 3D mapping are mainly Light Detection
And Ranging (LiDAR) sensors, while the passive sensors are mainly optical cameras. LiDAR
sensors are currently considered the standard sensors used for 3D scanning. The quality of the
scans obtained depends on a number of factors, including LiDAR sensor capabilities, data
acquisition mode, scanned environment, target reflectivity, and the algorithms used to stitch
multiple scans together. Advances in sensor technology allow a higher rate and volume of data
acquisition, adding to the challenge of 3D mapping.

There are two main mapping approaches in the 3D mapping process. The first is the indirect
georeferencing approach, where the relation between the mapped environment and the RSS
intrinsic and extrinsic parameters is defined through the use of ground control points (GCPs). The
second approach is the direct georeferencing (DG) approach, where a global navigation satellite
system receiver/inertial navigation system (GNSS/INS) sensor is used to provide the position and
orientation of the RSS. GNSS/INS-provided measurements enable the building of a relation
between the RSS and the environment being mapped. Since the second approach can be utilized
without the need of GCPs and is better suited to the irregular nature of the LIDAR data (reflective
targets are needed if the first approach is to be used with LiDAR), DG is considered more practical
and time-efficient, especially for mapping large areas. The choice of the second approach could
also be attributed to recent technological advances in GNSS/INS sensors.

In the DG approach, the mapping system consists mainly of three components: 1) the active and/or
passive RSS to sense the environment; 2) the GNSS/INS system to allow the DG; and 3) the data
management unit for control, power and data acquisition storage. The mapping system is mounted
on a platform which defines the acquisition mode. Single/multi-LiDAR scanners are used in
LiDAR-based mapping systems. The acquisition mode may be either Terrestrial Laser Scanning
(TLS) or Airborne Laser Scanning (ALS). More specifically, TLS can be categorized according to
the platform onto which the mapping system is mounted, as being either a stationary STLS (usually
a tripod) or Mobile Mapping Systems (MMS) (a kinematic platform, typically a vehicle or on an
operator backpack); the ALS platforms may be either a manned aircraft or an Unmanned Aerial
Vehicle (UAV).



The mapping system characteristics differ significantly according to the intended acquisition
platform used. For instance, the constraints regarding the mapping system Size, Weight, and Power
(SWaP) consumption are much more stringent with a UAV-based mapping system than those for
a STLS. There has been a paradigm transferral in the mapping process since the introduction of
MMS almost two decades ago, as it allowed for rapid data acquisition over large mapping areas
that is time- and labour-prohibitive with traditional TLS.

ALS is a proven aerial mapping technology that has been deployed for decades, typically using
manned airplanes. The ability of multiple LiDAR return measurements proved beneficial in
forestry applications and in the Digital Surface Model (DSM) and Digital Terrain Model (DTM)
generation. ALS tends to be very expensive with high operational costs and extensive pre-mission
planning and requirements. The recent technological advancement in this sector was the
introduction of the Teledyne multispectral LIDAR that operates in three bands. However, as this
version is still quite costly and also has extensive pre-deployment requirements, it suits few end-
user segments and is more suited to specific types of applications such as bathymetry or land-water
delineation. In contrast, recent advances in UAV technology, including its low cost as a mapping
platform, relative ease of deployment, high maneuverability, ability to be deployed in human-risky
environments and appeal to many end-user segments, could explain the rapid growth in the UAV
market. A great deal of research has been geared towards the development of UAV
photogrammetry-based mapping, despite LiDAR-based UAV mapping being a relatively new
research area.

Another mapping sector that has experienced recent rapid growth is indoor mapping. For instance,
the required data for the Building Information Model (BIM) and the new end-user segment that it
represents has allowed for the introduction of a number of indoor mapping systems. Some of these
systems are deployed as a handheld or backpack mapping systems. Typically, the mapping utilizes
the Simultaneous Localization and Mapping (SLAM) approach, whether visual-SLAM or LiDAR-
based SLAM. However, these mapping systems are intended for indoor environments, so they are
not well-suited for outdoor mapping.

Additionally, advances in computer vision algorithms are positively affecting the 3D mapping
process. One workflow for 3D mapping from optical imagery is the Structure from Motion (SfM)
technique. The recent advances in SfM photogrammetric technique, coupled with its relatively low
cost compared to LiDAR scanners and its ability to produce dense point clouds and comparable
results, prove it to be a viable alternative. Nevertheless, one shortcoming of the SfM is its relatively
low performance in poorly textured areas and places with repetitive patterns, as well as its
dependency on lighting conditions and imagery-capturing geometry to produce reliable results.

Digital Surface Model (DSM) is a crucial component in many fields, such as hydrological studies,
watershed analysis, and orthophoto generation. With the recent advances in SfM workflow and
UAV-photogrammetry, a number of studies were conducted utilizing UAV-SfM in the DSM
generation. Nevertheless, its reliable application is dependent on the aforementioned conditions,
as it is considered error-prone in poorly textured areas. The integration of SfM and LiDAR data
will complement the strengths of each methodology while mitigating their drawbacks.



Despite the increased demand for 3D mapping as more end-user segments require 3D maps for
their respective domain applications, traditional mapping systems remain relatively cost-
prohibitive. In addition, the technical resources required for the mobilization of these mapping
systems adds to their impracticality to wider end-user groups. This is further complicated by the
fact that a mapping system is usually developed to suit one mode of operation, whether STLS,
MMS, or ALS. Moreover, despite the preference for UAV-SfM in DSM generation, its
shortcoming in poorly textured areas and the adverse effect of vegetation cover need to be
addressed. Thus, the primary focus of this research is the development of a generic framework for
a LiDAR-based 3D mapping system that follows a plug-n-go concept with platform-switching
capabilities. The research will also pursue the accurate 3D reconstruction of LiIDAR data through
a smart integration workflow at the hardware and software levels, along with a new mapping
scheme.

1.2 Motivation

In today’s highly integrated technological environment, more and more applications require 3D
mapping products that traditional mapping systems are unable to deliver. Applications include
precision agriculture, powerline mapping and inspection, pipeline mapping and inspection,
forensic scene reconstruction, corridor mapping, mine monitoring, archeological site
documentation, and DSM generation for small areas. The recent technology advances in mapping
system hardware components and processing workflows provide an opportunity to address the
non-traditional demand on 3D mapping from diverse end-users if the 3D mapping system
components are effectively integrated on the hardware (HW) and software (SW) levels. Finding
the right balance between accuracy and mapping system costs further adds to the 3D mapping
challenge. The utilization of low-end system components will meet the cost constraints but will
add to the complexity of the research effort and innovative nature required to maximize the
attainable accuracy.

Unmanned aerial vehicles (UAVs) as a mapping platform have gained momentum in recent years
to bridge the gap between the unfeasibility of using manned ALS for mapping small areas and the
intensive time and labour requirements associated with using STLS. Research using UAV
photogrammetry-based equipment for 3D mapping has accelerated rapidly over the past few years
due to the introduction of the SfM workflow and technology advances in optical cameras.
Nevertheless, few research efforts were directed towards LiDAR-based UAV mapping, as it is a
new area of research.

Despite the latest technology advances (especially for DG sensors and LiDAR scanners, including
their increased miniaturization), MMS is still generally bulky, expensive, difficult to deploy, and
requires a higher level of expertise from the end-user. Major investment and operational costs,
unease of deployment and the required level of expertise hinder the current MMS usage for many
user segments that may need this technology. A crosscutting LiDAR-based 3D mapping system
will address the needs of diverse end-users and meet the ever-increasing demand for 3D mapping
that can be applied to a plethora of applications. The advances in computer vision algorithms (more
specifically, SfM) provides a means to augment the interpretation of the mapped environment
when adequately fused with LiDAR-based 3D mapping.



1.3 Problem Statement and Research Challenges

An accurate cost-effective 3D mapping pipeline is a research challenge. The existing 3D mapping
systems are out of reach of many end-users, as they are considered cost-prohibitive. In addition,
the level of technical expertise required for the system mobilization hinders the system utilization
by many end-users. Thus, meeting diverse end-users needs and the emerging new applications that
requires 3D mapping with traditional 3D mapping systems is uncertain.

The utilization of the state-of-the-art compact LiDAR sensors, originally developed for the
autonomous vehicles industry, as the RSS in 3D mapping systems is a new research area. A number
of research challenges need to be addressed in order to meet the diverse ever-increasing need for
3D mapping with novel mapping systems. The efficient fusion of multimodal sensor data is yet
another research challenge that needs to be resolved. The following research problems are of
significant interest to the research community regarding non-traditional 3D mapping systems and
their data integration algorithms.

1) The optimization of the mapping system sensors’ selection and placement: the SWaP and
placement of the mapping system components need to be prudently considered in order to
allow optimal mobilization independent of the platform used, along with the proper
handling of the Electro-Magnetic Interference (EMI) of system components.

i1) The precise signal synchronization of the different mapping system components; sensors
synchronization is a major concern, as it is critical for ensuring the accurate outcome of the
mapping system.

ii1) Reliable system control and time-efficient data processing: the reliability and ease of
controlling the mapping system in different data acquisition modes adds to its robustness
and ease of deployment, so this is another important aspect that needs to be addressed. The
time-efficient data processing is vital for minimizing the turnaround time of the 3D
mapping outcome, especially for mapping large areas.

iv) A complete rigorous uncertainty predictive model to predict the uncertainty in the 3D
georeferenced point cloud is essential to quantify the relation between the precision of the
system components and the system data output uncertainty.

v) Enhancing the visual interpretation of the LiDAR data: the color encoding of LiDAR with
optical imagery data serves to enhance visual interpretation, thus meeting wider user-base
requirements.

vi) Enhancing the UAV-SfM DSM generation: research efforts need to be exerted to enhance
the UAV-SfM 3D mapping and DSM generation workflow, especially in poorly-textured
areas, to extend its applicability, serve as a new workflow for the fusion of LiDAR point
cloud color encoding, and enhance its visualization.



1.4 Research Objectives

As discussed in the previous sections, to address the ever-increasing 3D mapping demand from
heterogeneous end-user types and to suit diverse applications, a new 3D mapping pipeline is
essential. Accordingly, the objective of this dissertation is to develop a novel, accurate, cost-
effective 3D mapping framework that entails a unique LiDAR-based mapping system.

The design criteria for the LiDAR-based mapping system can be summarized as being 1) cost-
efficient with ii) survey-grade accuracy iii) platform-independent iv) plug-n-go capability, in
addition to being v) versatile and modular, vi) flexible to be adopted indoor and vii) easily
modifiable concerning the components used to easily integrate any upgraded sensors.

The steps to fulfill the design criteria can be summarized as i) starting with the optimization of the
multimodal sensors selection, ii) relative placements of the system components, iii)
synchronization and the iv) sensors integration on the hardware HW and software SW levels

Thus, this research main objectives are as follows:

e The design, development and implementation of a LIDAR-based DG generic 3D mapping
system that can smoothly be applied in stationary, mobile and UAV-based mapping modes.

e The development of a new mapping scheme that enables platform-independent deployment
ability

1.5 Dissertation Outline
This dissertation is organized as follows:

e Chapter 2 provides a literature review of the existing pertinent literature, starting with the
LiDAR data acquisition principle, various types of LIDAR sensors, 3D mapping systems
in different data acquisition modes, and system orientation optimization. This is followed
by the SfM algorithm and DSM generation, along with more in-depth coverage of UAV-
based DSM generation. Finally, LIDAR and optical imagery data fusion is reviewed.

e Chapter 3 introduces the proposed strategy for the new mapping scheme and the
development of the LiDAR-based mapping system architecture.

e Chapter 4 presents the proposed mapping system’s various modes of operation and the
uncertainty predictive model.

e In Chapter 5, the mapping system realization in stationary and mobile modes of operation
and the point cloud colorization are discussed.



¢ The mapping system realization in the UAV mode of operation, along with SfM and DSM
generation are investigated in Chapter 6.

e Finally, in Chapter 7, a summary of the dissertation and its major findings is provided,
together with conclusions, key contributions and recommendations for future research
work.



2.LITERATURE REVIEW

2.1 Overview

As discussed in Chapter 1, the main objective of this research is the development of a novel,
accurate, cost-effective 3D mapping framework utilizing an in-house-developed LiDAR-based
mapping system, which can be operated in the three traditional mapping modes. The research will
also test the ability of generating DSM as a derived product from the system output and comparing
that to the SfM-based DSM generation workflow. The review of the existing literature pertaining
to 3D mapping systems, the SfM algorithm, DSM generation and LiDAR-optical imagery data
fusion is the focus of this chapter. The first part will cover the LIDAR data acquisition principle,
various contemporary types of LIDAR sensors, 3D mapping systems in different data acquisition
modes, and system orientation optimization. The second part of the chapter highlights the STM
algorithm and DSM generation, and provides a more in-depth coverage of UAV-based DSM
generation and LiDAR and optical imagery data fusion.

2.2 LiDAR Data Generation

A LiDAR scanner is an active Remote Sensing Sensor (RSS) like radar and sonar, but it uses light
as the source of target illumination. The LiDAR unit emits a pulsed light beam or a continuous
wave that hits the target area and reflects back. The precise measurement of the Range (R) follows
one of two main methods [1]. The first method is the accurate measurement of the Time Of Flight
(TOF), which is the time interval that has elapsed between the emission of a short but intense light
pulse by the sensor and its return after being reflected from an object. From this, R can be
calculated, as illustrated in Equation (2.1). The precision of the time measurement determines the
range measurement precision, as defined in Equation (2.2).

R=v.t/2 (2.1
Where
R is the range
v is the speed of the electromagnetic radiation(very accurately known)
t is the time interval measured
And the range precision can be determined as follows
AR = Av.t/2 + v.At/2 (2.2)
Where
AR is the range precision
Av is the speed of the electromagnetic radiation precision

At is the time interval



In the second method, the sensor emits a continuous beam of laser radiation instead of a pulse. The
accurate measurement of the phase difference between the emitted wave signal and the signal
received by the sensor after being reflected from the target determines the slant range to the object,
as shown in Equation (2.3). The first method is more common.

R = (MA+ AX)/2 (2.3)
Where
R is the range
M is the integer number of wavelengths (1)
AA is the fractional part of the wavelength

The laser unit steers the light beam through a mirror or a prism mechanism to cover the vertical
direction which, when coupled with a controlled and measured motion in the azimuth direction (in
the STLS case), a sequence of profiles around the vertical axis of the laser unit is measured and a
3D point cloud of the area around the laser unit is generated. However, if the laser unit is mounted
on a moving platform, the controlled and measured motion in the azimuth direction may be
substituted by the platform movement, as it covers the third dimension.

Another factor that affects the 3D point cloud generated is beam divergence [1]. Beam divergence
is an angular measure that relates the increase in the beam radius or diameter to the distance it
travels after being emitted by the laser unit. Although the light beam is collimated when emitted
from the laser unit, the beam will diverge as it propagates, and the divergence will affect the
footprint that is measured by the beam. Thus, the measured distance will represent a wider area on
the target and, in turn, will decrease the specificity of the measured distance, as it will miss any
position variation within the footprint. The effect is further stressed with long-range sensors, such
as those used in ALS. This explains the narrow beam divergence in the sensors used for ALS
(which is typically 0.5 mrad or less), as this translates to a laser footprint of 50 cm or less at a
flying height of 1000 m.

In addition, laser scanners can measure the amount of energy that has been reflected from the target
after being illuminated with the scanner emitted pulse. The amount of reflected energy from each
point measured constitutes the intensity as measured by the sensor. This measurement can prove
valuable in a number of applications [2]. The intensity measured depends on the target reflectivity,
which affects the amount of energy reflected that can be detected by the sensor [3]. As the target
reflectivity decreases, the amount of reflected energy diminishes, thus weakening the signal
returned to the sensor and deeming the target undetectable. The range and incidence angle to the
target also affects the measured intensity [4].

Unlike 2D laser scanners that depend on the platform movement to cover the third dimension, a
new type of laser scanners was introduced recently to meet autonomous vehicle industry
requirements. These new LiDAR scanners are known as spinning multi-beam LiDAR scanners.
Instead of having a single beam laser and a rotating mirror or prism, the new sensors have multiple
beams with pairs of an emitter and a receiver for each beam. Each beam is oriented at a fixed



vertical angle from the sensor origin. The multiple beams spin mechanically around a spinning
axis with up to a frequency of 20Hz with Velodyne LiDAR sensors covering a 360° Horizontal
Field of View (HFOV) [5]. This builds a fast and rich 3D point cloud of the vehicle’s environment,
enhancing its 3D perception. Velodyne laser VLP-32c and Quanergy M8 [6] are two examples of
these sensors, as shown in Fig. 2.1.

(a) (b)

Fig 2.1: Examples of spinning multi-beam laser sensors,
a) The velodyne VLP-32¢ and b) Quanergy M8

Another laser scanning technology is the solid-state flash LiDAR. Unlike the previously discussed
sensor data measurement mechanisms, this new technology illuminates large areas simultaneously
and measures the reflected energy on a photonic phased array [7]. The measuring mechanism is
an analogous resemblance of the digital camera complementary metal-oxide—
semiconductor (CMOS) sensor. The sensor does not have any moving parts and the
miniaturization allows on-chip lasers. Velodyne velarray, Quanergy S3 and Leddartech M16 are
examples of these sensors, as shown in Fig. 2.2.

It is worth noting that the current rapid increase in laser sensor technology is being driven by the
automotive autonomous vehicle application domain. The solid state LIDAR sensors are a very
promising technology but are not yet well-suited for 3D mapping applications, as they are
specifically designed for vehicle environment grid occupancy detection and collision avoidance
[8], [9]. As the technology advances, however, it is anticipated that the solid-state LiDAR
technology will have a positively disruptive effect on the 3D mapping field.

(a) (b) (c)
Fig 2.2: Examples of solid state LiDAR,

a) The velodyne Velarray b) Quanergy S3 and (c¢) Leddartech M16-LSR



2.3 LiDAR-based Mapping Systems

The introduction of MMS has dramatically altered the 3D mapping process since its introduction
almost two decades ago. The rapid mobile terrestrial-based data acquisition and mapping of large
areas in a short time has been considered a major breakthrough in the mapping field. One of the
earliest research efforts in the development of a MMS is the work of the center of mapping at Ohio
State University, where the MMS GPS-VAN was developed by integrating a code-only GPS
receiver, passive sensors (CCD and video cameras), and dead-reckoning sensors [10]. LiDAR-
based mapping systems followed in the late 2000s and early 2010s. Large companies like
TOPCON and Trimble along with medium-sized companies like OPTECH, RIEGL, MDL,
SITECO, 3D LASER MAPPING and IGI are well-established suppliers of MMS for the mapping
community [10, 11]. Examples of these high-end commercially available MMS are the OPTECH
Lynx system and the Trimble MX8, shown in Fig. 2.3. A detailed comparison between these two
MMS and other high-end mapping systems can be found in [10]. Although these mapping systems
provide a very dense accurate point cloud, they are still bulky and expensive and require skilled
operators along with a lengthy time for data processing. These issues make them difficult to obtain
for a wide spectrum of end-users that may need the technology.

Fig 2.3: Examples of Commercial MMS,

a) Optech Lynx and b) Trimble MX8

Some of the innovative MMS that were recently developed by commercial companies are the
Optech Maverick, Trimble Mx2, and Topcon IP-S3 (Fig. 2.4). These three MMS have a smaller
form-factor, and two of them (the Maverick and the IP-S3) use one of the new spinning multi-
beam LiDAR SMbL scanners. Mapping-grade MMS normally achieves sub-meter accuracy and
costs ~$400 k US, while survey-grade MMS achieves cm-level accuracy and typically costs ~$1
million US [11]. Thus, these MMS are considered cost-prohibitive for many end-users, along with
the difficulty of special considerations that are required for mounting.

10



Fig 2.4: Examples of recently developed commercial MMS,

a) Optech maverick b) Trimble MX2 and ¢) Topcon IP-S3

The technological advances in LiDAR sensors coupled with the advances in the GNSSS/INS
sensors prompted a number of recent research efforts to exploit the development of purpose-built
mapping systems that utilize the new spinning multi-beam LiDAR SMbL scanners. This is a very
new area of research, as these sensors were released only a few years ago. As discussed previously,
a mapping system can be categorized according to the platform on which it is deployed. A few
studies capitalized on the usage of the SMbL in MMS. Julge et al. [12] utilized a VLP-16 LiDAR
sensor and an unspecified INS system to build an MMS, reporting errors of up to 5 m while
cornering and swerving. Sairam et al. [13] used the HDL-32E LiDAR scanner and Geodetics Geo-
iNav INS system for road asset management. Julge et al. [14] employed a VLP-16 and an SBG
Ellipse-D INS system, reporting accuracies of 15 cm. These research efforts, however, only
address the design and development requirements for systems to be utilized in the MMS mode,
without taking into consideration the design and development challenges that need to be addressed
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in order to offer the crosscutting ability of the system to be utilized in all three mapping modes
(i.e., stationary, mobile and ULS).

The development of UAV-based LiDAR ULS constitutes most of the new research efforts for the
development of purpose-built mapping systems that utilize the new spinning multi-beam LiDAR
SMbL scanners. This could be attributed to the compact size and light weight of the new spinning
multi-beam LiDAR scanners, which prove advantageous, as they satisfy the stringent SWaP
requirements for UAV deployment. UAV originated for military applications [15] and then quickly
gained utilization in civilian applications almost a decade ago. UAV can be categorized according
to different parameters. The most common one used is the UAV ready-to-fly system weight, as
this is the weight that is compared to the aviation regulations. The different UAV platform classes
are enumerated in Table 2.1. Note that the UAV platforms used in civilian mapping applications
generally belong to the micro and mini classes [16].

Table 2.1: UAV classes, adopted after Rehak [16]

Mass(kg) Range(km) Flight Alt. (m) Endurance (h)
Micro <5 <10 250 1
Mini <20-25 <10 500 <2
Close range 25-150 10-30 3000 2-4
Short range 50-250 30-70 3000 3-6
Medium-range 150-500 70-200 5000 6-10

UAVs have a number of different types and sizes, with the selection of a UAV as a mapping
platform depending on several factors. The key ones that need to be considered are endurance,
payload capacity, type of equipment to be deployed, take-off and landing method, cost, and ease
of use. The endurance will affect how long and how far the system can be deployed, consequently
defining the area that can mapped. UAVs suitable for small-area mapping and close-range
photogrammetry are different from those required to suit aerial mapping of large areas. Payload
capacity is another defining factor in the selection of a UAV, as this will limit the type of sensors
that can be deployed on the UAV. It also defines the total system weight, which has to meet the
regulations. Additionally, vibration performance and system interference will affect the type of
equipment that can be used. According to UAV type, special considerations may be required for
take-off and landing, which affects the UAV selection process. Cost also plays a role. Lastly, how
easy the UAYV is to operate and whether or not manual flying of the UAV is required likewise
affects the selection process [16].

The propulsion mechanism used for UAV operation can be used to classify UAVs. Fixed wings,
multirotor and helicopters are the main airborne-based platforms used for ALS. Table 2.2 provides
a comparison between the advantages and drawbacks of each type, along with the relevant
applications. Some UAV examples are shown in Fig. 2.5.
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Table 2.2: Comparison of different UAV types, adopted after Chapman [17]

Advantages Drawbacks Application | Price Example
Multirotor -Accessibility -Short flight | -Aerial SK-65K -DJI
-Ease of use times photography | CADS for M600
-Good camera - small and video pro UAVs
control payload aerial
-Can be capacity inspection
operated in (recently
confined spaces LiDAR as
well)
Fixed wing -Long flight -A lot of Aerial 25K-120K -Sirius
times space mapping, CADS for Pro
-Large area required for | Pipeline and | pro UAVs
coverage take-off and | Power line
-Fast flight landing inspection
speed -Harder to
fly, more
experience
needed
-Expensive
Helicopter(more | -Long - Harder to Aerial 25K-300K Single-
used as a endurance fly, more Mapping CADS$ rotor
manned -Heavier training heli
aircraft) payload needed
capacity -Expensive
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Fig 2.5: Examples of different UAVs types, Multirotor a) DJI M600, b) Topcon Falcon

and Fixed wing ¢) Topcon Sirius pro, d) ebee sensefly

A handful of research efforts are geared towards ULS LiDAR-based mapping systems. Li et al.
[18, 19] integrated a VLP-16 LiDAR scanner along with Xsens MTI-300 INS on a DJI M600,
utilizing the system in forest mapping applications, while Roca el al. used a 2D LiDAR scanner (a
Hokuyo UTM-30LX along with a decoupled IMU and GNSS sensors [Spatial IMU and the
Trimble BD920, respectively]). Christiansen et al. [20] used a VLP-16 scanner along with a
vectornav INS deployed on a DJI Matrice 100 platform for agriculture surveying. Teng et al. [21]
developed a UAV-based LiDAR mapping system, without specifying the component types used,
and demonstrated its usage in power line inspection and sag determination.

A number of commercial state-of-the-art UAV-ready LiIDAR systems have also been developed
recently. For example, Phoenix LiDAR systems developed the Alpha AL3-32, integrating the
HDL-32E and a fiber-optic INS and giving a position accuracy of 1 cm + 1 ppm RMS horizontal
and attitude and heading RMS errors of 0.019 / 0.074° [22]. This system is shown in Fig. 2.6. In
addition, Routescene developed a compact UAV LiDAR-based system known as the Lidarpod,
which encompasses a HDL-32E scanner along with an RTK GNSS/INS and a radio telemetry to
send the RTK corrections from the provided ground base station. The stated absolute positional
accuracy is given as 4 cm at a 20 m range [23]. Figure 2.7 illustrates the system.
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Fig 2.6: Phoenix AlphaAL3-32

Fig 2.7: Routescene Lidarpod
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The Yellowscan surveyor is yet another UAV-ready LiDAR-based lightweight mapping system,
thus adding to the suitability of its usage on UAVs with small payload capacity. The Yellowscan
surveyor system employs a VLP-16 scanner and the APX-15 GNSS/INS system, giving a
positional accuracy of 5 cm (1o at 50 m) nadir [24], as shown in Fig. 2.8. The Rigel VUX-240 is
a new LiDAR-based mapping system offered by Riegl which entails a high-end Riegl continuous
waveform LiDAR scanner with a constantly rotating polygon mirror and a measurement rate of up
to 1.5 million measurement/sec. It gives a reported accuracy of 2 cm (1o at 150 m) [25] and is
shown in Fig. 2.9.

One advantage of purpose-built mapping systems over commercially available ones is the ease of
applying modification and upgrading system components as needed. Moreover, purpose-built
mapping systems tend to have substantial cost reductions compared to commercial ones. However,
it is worth noting that both the few research efforts and the commercially available aforementioned
mapping systems were initially designed to serve one mode of operation (ULS), and so lack the
flexibility and ease of deployment in the other two mapping modes (MMS and stationary).

Fig 2.8: Yellowscan surveyor

® RIEGL
VUX-240

Fig 2.9: Riegl Vux-240
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Static Terrestrial LIDAR Systems (STLS) is another type of LIDAR scanners that is intended to
be used in stationary mode. STLS technology is considered relatively new, as its development
started in the early 2000s, mainly for surveying applications [26]. These scanners tends to have
higher accuracy and richer 3D data than the MMS and ALS. Its enhanced accuracy is in the cm or
even mm range [26]. The Trimble SX10 , released October, 2016, has a maximum measurement
range of 600 m and is one example of a recently developed STLS. It provides a reported accuracy
of 2.5 mm at a 300 m measuring range [27]. Furthermore, the Faro focus-350 is another example
of an STLS with a measuring range of 350 m and a stated accuracy of 1 mm [28§].

It is worth noting that the weight of STLS is usually around 10 kg, so the Faro focus-350 (weighing
just 5 kg) is considered a lightweight STLS. Moreover, Teledyne Optech recently released (March,
2017) Polaris a new STLS that can survey targets up to a 1,600 m range, with a stated range
accuracy of 5 mm (1o at 100 m). The scanner weight is 11.2 kg and a few of its usage applications
are in civil engineering, construction, mining, geology and transportation [29].

STLS typically use indirect georeferencing techniques if real world coordinates are required.
Another STLS recently (November, 2016) introduced by Leica is the BLK360, which has a very
small form factor and is quite lightweight compared to the other scanners in the STLS category.
The dimensions of this scanner are height 165 mm, diameter 100 mm, and weight 1 kg, and it has
a maximum range of 60 m. The BLK360’s stated accuracy is 7 mm (1o at 20 m) [30]. All of these
STLS (the Trimble SX10, the Faro focus-350, the Polaris and the BLK360) are enumerated in Fig.
2.10.

c) d)

Fig 2.10: Examples of different STLS, a) Trimble SX10, b) Faro Focus-350
c¢) Optech Polaris, and d) Leica BLK360
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As mentioned and highlighted, LiDAR-based mapping systems can be categorized according to
the platform used either as MMS, ULS (a special case of ALS), and STLS. The turn-key mapping
systems provided by the commercial vendors tend to be cost-prohibitive to many end-user
segments and require a higher level of technicality from the operator. They also lack the flexibility
that custom-made mapping systems offer regarding sensor manipulation and modification, thus
leading to a limitation in the applications in which they can serve. To the best of our knowledge,
a generic mapping system with crosscutting capabilities that can be readily deployed in the three
different modes is non-existent. Hence, a primary objective of this dissertation is the design and
development of a system architecture of a cost-efficient LIDAR-based mapping system that can
be utilized in three different modes (STLS, MMS, and ULS). Such a system would not only
provide the versatility of being able to be used in different modes, thereby addressing the needs of
diverse end-user segments and application domains, but would also attain survey-grade accuracy.

2.4 System orientation impact on the generated point cloud

As discussed previously in section 2.3, there are a number of LiDAR-based mapping systems from
commercial vendors, in addition to a few research attempts for developing new mapping systems
that utilize the SMbL scanners. Although system orientation can help maximize the information
that can be captured in the point cloud, limited information is available about the optimal system
orientation for roadside surveys [31]. Moreover, after performing an exhaustive literature review
in this regard, it was found that there is a lack of research efforts analyzing the impact of the
mapping system orientation on the generated point cloud, more specifically on the point density,
point spacing, and narrow features extraction capabilities.

Rieger et al. [32] studied the effect of MMS configurations on point density, showing a significant
impact of the measurement range on the attainable density. The researchers found that the
measurement range is affected by system orientation [31]. In addition, system orientation affects
the characteristics of the point cloud that are needed to enable the successful features extraction
through automated algorithms [33]. The work in [31-33] was performed on a 2D single beam full-
circle scanner, which exhibited a data acquisition mechanism that yields a simpler scanning
pattern. On the other hand, the SMbL has a multi-beam scanning mechanism that yields a more
complex scanning pattern [34], adding to the challenge of finding optimal system orientation.
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2.5 Structure from Motion SfM Photogrammetry

As highlighted in the previous sections, LIDAR scanners and platforms have experienced rapid
technological advances in the past few years. At the same time, there has been swift progress in
computer vision processes, contributing to the phases of photogrammetry workflows.
Photogrammetric principles are embedded in the SfM workflow [35]. One of the landmarks in
computer vision discipline is the 8-point algorithm developed by Higgins [36] for the
reconstruction of a scene from two projections. Remarkably, it included only four references, one
of which was the photogrammetric principle of relative orientation, as detailed in Thompson’s
work [37]. Hartley [38] further modified the 8-point algorithm, increasing its robustness. These
classical algorithms, along with the more recent automatic feature corresponding algorithms,
resemble the computer vision part in the SfM workflow. Though, the interior, exterior orientation
parameters, coplanarity constraints, epipolar lines, self-calibration and bundle block adjustment
entities used in the SfM workflow are deeply rooted in the photogrammetry domain.

Topographic mapping applications have traditionally dominated photogrammetry but require
metric cameras and a number of well-established workflows [37]. This is traditionally associated
with high capital and logistical costs [39]. One of the main photogrammetry applications is
extracting 3D information from 2D imagery, but this requires overlapping imagery. SfM is used
to build the 3D representation of an object by using overlapping 2D images acquired from a wide
array of different viewpoints and by solving the correspondence and matching problem in
photogrammetry the 3D representation is generated. Automatic image matching has been boosted
by the influential work of Lowe [40], who developed the correspondence and matching Scale
Invariant Feature Transform (SIFT) algorithm. The SIFT algorithm is invariant to change in scale,
rotation, translation and to some extent is invariant to change in illumination and viewpoint [40].
It is one of the most popular and robust algorithms for solving the automatic correspondence and
matching of features within images. Several other automatic image-matching techniques followed,
mainly to speed up the processing time, as they are less computationally demanding. These
techniques include Speed Up Robust Feature (SURF) [41], Robust Independent Elementary
Features (BRIEF) [42], and Oriented Fast and Rotated (ORB) BRIEF [43].

SfM uses matching features in multiple overlapping images to solve for the interior and exterior
orientation parameters and scene geometry simultaneously. This can be achieved by highly
redundant matched features, along with a bundle block adjustment process [39]. Furthermore,
camera-posing information and/or a sufficient number of ground control points are not a
prerequisite to solve for scene triangulation and reconstruction in the SfM workflow. Nevertheless,
in the absence of this information, the output of SfM will lack the scale and orientation provided
by ground-control coordinates or the external camera pose measurements by a GNSS sensor [39].
The result of applying SfM only is a sparse 3D point cloud, which is typically followed by a multi-
view stereopsis (MVS) algorithm to densify the 3D point cloud to several orders of magnitude
[35]. Knowing the camera parameters from the SfM workflow helps to simplify the matching
between pixels to that constraint with the epipolar geometry. Thus, instead of doing a 2D search
between pairs of images to find pixel correspondence, the search is reduced to a 1D search along
the epipolar line. One of the most used MVS algorithms is the Patch MultiView Stereopsis
(PMVS) [44].
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The SfM algorithm consists of three main steps. The first step is to find the correspondence
between features in the collected overlapping imagery. The Scale Invariant Feature Transform
(SIFT) algorithm [40] is used to find the correspondence of features in the collected imagery. The
second step is to calculate relative orientation and camera poses in an arbitrary 3D coordinate
system after defining the tracks of matched features between images. The third step is to further
refine the second step’s output through Bundle Block Adjustment (BBA). SfM algorithm
workflow, as defined in [45], can be summarized as follows.

The SIFT is used to solve the correspondence and matching of features within images. The
algorithm starts by finding key-points. These are distinct points that can be localized within the
image. This is achieved by applying Gaussian smoothing with different standard deviation, as
shown in Equation 2.4. The smoothing is performed by convolving the original image with the
Gaussian kernels and then applying the difference of Gaussians DoG between the smoothed
images, according to Equation 2.5. This will find extrema (maximum or minimum) in the image
space.

_x%+y?
Gxy) =5—e 27 (2.4)
Where
x is the horizontal distance from the origin,
y is the vertical distance from the origin,
o is the standard deviation
The difference of Gaussian is calculated from
_x%+y? 1 _x?+y?
GO',kO' (xr Y) = I * 27_[0.2 e 262 - I * 27Tk20'2 e 2k20'2 (25)

Where

x is the horizontal distance from the origin,
y is the vertical distance from the origin,

o is the standard deviation

I is the image intensity

k is a constant factor > 1

Afterwards, pyramid layers are calculated to resemble different scales. The Gaussian smoothing is
applied to the scaled images, followed by the difference of Gaussians of the scaled smoothed
images. The extrema (maximum or minimum) are now calculated in the scale space. Thus, the
distinct local key-points in image and scale space can now be identified. Figure 2.11 summarizes
the steps for key-point identification.
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Difference of
Gaussian Gaussian (DOG)

Fig 2.11: SIFT key-points identification (adopted from [40])

Key-point descriptor

The local 16*16 pixels around the key-point is used to build the key-point descriptor. The gradient
direction is calculated for each pixel in the 16*16 window. Then, a 4*4 histogram with an 8 bin
orientation (every 45° and normalized) is calculated, forming an 8*4*4 = 128 vector descriptor.
Figure 2.12 shows the key-point descriptor according to [40].
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A kevpoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gauvssian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summearizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

Fig 2.12: Key point descriptor (adopted from [40])

The next step, after identifying the key- points and defining the key-point descriptor, is the
matching of key-points between images. The matching is performed by comparing the key-point
descriptors and finding the nearest neighbor in the descriptor space. Let a key-point z in image |
denoted by I (z) be compared to the key-points in image J. Only correct correspondences will
satisfy the epipolar constraint. The epipolar constraint relates the corresponding features between
the two pairs of images through the fundamental matrix F. The F-matrix, shown in Equation 2.6,
encompasses the relative orientation and positions of the two cameras and the internal camera
settings.

X
[x"y' 1]F [yl =0 (2.6)
1

where x’y’ and x y are the feature coordinates in the images. RANdom SAmple Consensus
(RANSAC) is used to model-fit the F-matrix and identify the correct matching correspondences.
For every camera position, a set of six exterior orientation parameters and three interior orientation
parameters are defined. For every correct matched correspondence, a set of three coordinates X,
Y, Z is defined. Tracks of corresponding features are calculated by creating a chain-like
correspondence between the same features appearing in different images. The Bundle Block
Adjustment (BBA) with self-calibration is then used as a non-linear least-square optimization to
solve for the scene geometry and cameras pose information simultaneously by minimizing the
reprojection errors of the features tracks presented in Equation 2.7, thereby solving the SfM
problem. The BBA reprojection error is also shown in Fig. 2.13

22



G(C,X) =

Where
n is the number of views,
m is the number of tracks

w1 X7awijllg; — PCL XD (2.7)

i=1

wij=1 if Ci see X]j or zero otherwise
llqii-P (Ci, Xj) |I* is the reprojection error

P (Ci, Xj) is the projection of Xj on the image of camera Ci through the perspective projection
equations, where Xj is converted to the camera’s coordinate system through a rigid transformation
Equation 2.8, followed by perspective division and scaling with focal length f, as shown in

Equation 2.9.

n/ ® Computed 3D point

11\ . Point marked on the
[ \ image

Reprojected point

| Reprojection error

-

|
« » N

Fig 2.13: BBA Reprojection error

X'
X' =|x,| =Ri (Xj-ci) (2.8)
X,

FXTy

I __ X1z
x' =y (2.9)
X1,

x’ 1s a 2D point on the image with coordinates (x’x, X’y). Sparse BBA is then implemented to solve
for the scene geometry and camera poses while minimizing the reprojection error. The

aforementioned steps are presented in detail in [45].
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Multi-view stereopsis MVS

The SfM algorithm output is a sparse point cloud. This sparse point cloud is used as an input for
MVS that increases the point cloud by about two orders of magnitude [35]. Knowing the camera
parameters from the SfM workflow simplifies the matching between pixels to that constraint with
the epipolar geometry. Thus, instead of doing a 2D search between pair of images to find pixel
correspondence, the search is reduced to a 1D search along the epipolar line. The point
correspondence may be densified up to each pixel in the image. One of the most used MVS
algorithms is the Patch Multiview Stereopsis (PMVYS).

The PMVS algorithm, as presented in [44], can be summarized as follows. The algorithm is defined
through its main three steps: initial feature matching, patch expansion, and patch filtering. The
expansion and filtering are iterated thrice to densify the patches and remove erroneous ones.

The first step is to apply the DoG and Harris operator to find corner features. For every feature f
in the image Ii, the corresponding DoG/Harris feature along the epipolar line within two pixels are
selected f°. Triangulation is done between (f, f*) to their 3D points. A patch candidate center c(p)
is initialized from the (f,f*) triangulation and the normal n(p) is initialized from Equation 2.10.

n(p) fromc(p)O(I)/ |c(p)OU)]| (2.10)

where O (i) is the optical center of the image Ii. The ¢ (p) and n (p) parameters are then optimized
by considering the visible images of p, v (p). The images retained from the visible imagery are the
ones with photo-consistency measurements with an Ii > threshold. The patch is kept if the retained
number of images is > 3

The second step is the expansion step, which aims to find a patch for every image cell Ci(x.,y),
where Ci(x,y) is 2*2 grid of pixels. Existing patches are used to generate new patches in empty
places. The neighboring empty cells (p) to an existing patch p is identified, as in Equation 2.11.

Cells(p) = {Ci(x"y’) | p € Qi(x, y), Qi(x’,y’) = @ |x—x’| + [y—y’| = 1} (2.11)

where Qi(x, y) forms the set of patches that project to the cell Ci(x, y). To generate a new patch
p’, its n(p’) and v(p’) are initialized by the values for p, while c(p’) is initialized as the point of
intersection between the ray passing through the center of Ci(x,y) and the plane containing p. Then
c (p’) and n (p’) are refined as shown previously. Images are removed from v (p’) if their average
pairwise photo-consistency is less than a threshold, and images are added if pairwise photo-
consistency is more than the threshold. If the remaining images in v (p’) are > 3, the patch is created
and the patch set updated.

The third step is the filtering step. Two filters are used to filter out any erroneous patches that
may arise from the previous two steps. The first filter uses visibility consistency to filter out

erroneous patches. For patches p and p’ to be neighbors, the distance along the normal should be
less than a threshold, as shown in Equation 2.12.

(c(p) —c@)) n@|+Icp)—c@)) np)l<yd 2.12)
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Let U (p) be the set of patches p’ that do not satisfy Equation 2.12. Here, p. p’ is shown in the
same cell in one of the images where p is visible. However, p is filtered out if the inequality
(Equation 2.13) is satisfied.

vP)I(1 = C(P)) < Xp;cypy 1 —Cp)  (2.13)

where C (p) is the average pairwise photo-consistency of p. The second filter involves applying a
weak form of regularization. If the proportion of neighboring patches to p is < 0.25 of the number
of patches in the same cell as p (plus its adjacent cells in all images in which p is visible), the patch
is filtered out. The output of the MVS is a dense point cloud.

As it has been highlighted, a key step in the SfM workflow is the correspondence and matching of
features between different images. A successful SfM-MVS depends on the correct
correspondences between features in different images; thus, its performance is failure prone in
homogeneous areas (areas with poor textures) [39, 47-50]. In addition, the presence of vegetation
cover adversely affects the accuracy of the generated point cloud from the SfM workflow [51, 52].
Moreover, Furukawa et al [44] lists the MVS algorithm limitations as its need for reliable texture
information and that the algorithm does not perform well in narrow baseline cases. Thus, in the
present research, a new data acquisition and fusion framework between the developed MMS and
the SfIM-MVS workflow is proposed to enhance the 3D reconstruction in such challenging
scenarios. The following section presents a literature review of the state-of-the-art LiDAR and
optical imagery fusion approaches, in addition to DSM/DEM generation.

2.6 LiDAR and Optical imagery data Fusion

Due to the complementary nature of the LIDAR data and optical imagery, a number of studies
have exploited the fusion between these data sources to infer more accurate information [53].
Gneeniss et al. [54] utilized a robust least square surface matching algorithm to align the
photogrammetric data to the LiDAR-based induced surface and extract LIDAR control points
accordingly, which are then used in bundle adjustment to calibrate the optical camera. Lin et al.
[55] introduced an efficient 3D registration method based on matching key features between the
optical 2D images and 2D bearing angle images transferred from the point cloud. Persad and
Armenakis [56] used a wavelet kernel, a log-polar descriptor for the key points and an NNDR
(Nearest Neighbor Distance Ratio) to register optical-based DSM and LiDAR-based DSM. Li et
al. [18] utilized SfM to enhance the trajectory used for the LiDAR point cloud georeferencing.
Zieher et al. [53] employed a voxel-based approach with an expert-based rules criteria to integrate
the point clouds from optical and LiDAR data for landslide monitoring.

Rizeei and Pradhan [57] proposed a 3D rational polynomial coefficients 3D RPC model for ortho
rectifying a very high resolution imagery of the Worldview-3 satellite using derived ground control
points GCP from LiDAR-based generated DSM. Yao et al. [58] registered LiDAR data and
panoramic camera images through the selection of key points within different blocks of the point
cloud. Javanmardi et al. [59] applied road-based features to register LIDAR-based data to optical
data through a Gaussian mixture model GMM and a normal distribution transform NDT. Zhang et
al. [60] used terrestrial fagade images to generate a 3D point cloud and incorporated a modified
coherent point drift algorithm with (surface) normal consistency to use 2D points outlined on
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buildings to register the optical data to ALS data. Berrio et al. [61] utilized a deep neural network
to extract semantic information from optical imagery and superimpose that information on the
LiDAR point cloud.

Habib et al. [62] extracted linear features from optical imagery and LiDAR datasets and used the
extracted linear features in the registration between the LiDAR and optical data. Besides, Tochi et
al. [63] investigated the precision of a hybrid sensor (the Leica citymapper), which consists of an
active LiDAR and passive optical cameras, an all-in-one mapping solution, in two study areas
reporting a 3 cm deviation between the LiDAR data point cloud and the optical data dense image
matching DIM point cloud.

As can be deducted from the aforementioned studies, the extraction of conjugate features is mainly
a prerequisite for the fusion process which may be suited to urban areas, where distinct features
such as corners, building outlines and linear features are abundant. These features can be scarce in
rural or other environments, hindering the applicability of these methods in such challenging
environments. An alternative approach to the data fusion process would be the utilization of a very
expensive hybrid sensor, as was done in [63], which may be out of reach for many end-users.
Hence, in this research, a data fusion framework is proposed that utilizes the developed cost-
efficient LiDAR-based mapping system and the SfM-MVS workflow, thus increasing the
generality of the framework application in different environments and its utilization by diverse
end-users.

2.7 DSM and DEM generation Approaches

High-resolution DSM and DTM are crucial geospatial products [64] that are used in many
applications, such as hydrology [50, 65-66], 3D city modeling and building change detection [67],
geomorphology [68-69], glaciology [46, 70-71], modelling of mass movements,
telecommunication, and many others [72]. A variety of methods may be applied to obtain elevation
data used in DSM generation, with the approaches differing with regard to cost, equipment, labor
and time requirements. The resolution and accuracy of the generated DSM depend on the method
used, the complexity of the area, and the sampling interval.

The two main remote sensing techniques typically used for DSM generation are stereo imagery
photogrammetry and LiDAR. In the 1980s and 1990s, optical imagery photogrammetry was the
standard practice used for DSM generation, whereas over the past two decades, advances in
LiDAR technology have made it the standard practice for DSM generation. Although very high
resolution satellite stereo imagery is still used for DSM generation [73-74], the so-called standard
practice for DSM generation is the utilization of LIDAR data [48, 75-79]. Millions or even billions
of non-selective sampling points can be produced by using LiDAR scanners, whether airborne
LiDAR ALS, Mobile LiDAR MMS or terrestrial LIDAR STLS [34, 48]. However, one main
drawback of using such scanners is the associated high capital and operational costs [34, 50],
especially if temporal analysis is needed. The measured sampling points are then converted into a
regular grid representing DSM, which is a 2.5D representation of the environment, with each pixel
storing the elevation [62, 80].
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In recent years, stereo imagery photogrammetry has gained momentum due to advances in the
computer vision field. New approaches include automatic image matching techniques like SIFT
and SURF, in addition to MVS algorithms and SfM photogrammetric techniques. One reason why
SfM-MVS techniques have gained such momentum is that their output is 3D point cloud with
higher point density than that from LiDAR scanners, but at a fraction of the cost and effort [48,
50, 81]. Another key advantage of the SfM is the greater number of viewpoints used, which
minimize the occlusion and shadowing that may be experienced with STLS [34].

Nevertheless, reliable results are dependent on the accurate correspondence and matching of
features between images [62, 82]. Structure from motion as a tool for topographic mapping was
used in a number of studies. Leitdo et al. [83] generated a fine (5 cm) DSM that was used for
overland flow modelling in urban areas, reporting 0.1 to 0.2 m vertical accuracy utilizing stereo
imagery captured from a UAV for the DSM generation. Ouedraogo et al. [84] mapped the micro
topography of an agriculture watershed using a generated 1 m resolution DEM and reporting a 0.5
m vertical RMSE.

Furthermore, Tejada et al. [85] was able to quantify tree heights from the DSM with a 0.35 m
RMSE, while Reu et al. [86] conducted a thorough analysis of an archaeological site, generating a
3 cm resolution DSM and reporting a vertical accuracy of 0.06 m. In addition, Ajayi et al. [87] was
able to generate a DSM with a vertical accuracy of 0.1 m using images with approximately 15-
20% side overlap, while Aguera-Vera et al. [88] combined UAV images acquired horizontally and
at a 45° tilt to study a near-vertical road cut-slope.

One should note, however, that the environments where the above-referenced studies were applied
are generally considered rich-textured. Another concern regarding these studies is the black-box
approach used in applying the UAV-SfM algorithm. In such an approach, very few details are
known about the underlying algorithms used, thus hindering a full understanding of the processing
steps as well as the types of errors and their impact on the final product [89].

In order to cover every aspect, the Digital Elevation Model (DEM) generation method is also
described. DEM, which is a bare land elevation model, can be extracted from the raw data point
cloud or from the generated DSM. DEM extraction algorithms can be designated as slope-based
or linear-prediction-based, according to the morphological filtering.

Moreover, directional scanning filters have also proved to be capable algorithms for DEM
generation from ALS data [80]. A slope-based algorithm depends on the assumption that the slope
change between ground points is less than the slope change between ground and non-ground
points, while linear-prediction-based algorithms start by assuming rough terrain and height
differences between points. The estimated rough terrain is then minimized by linear least squares
interpolation. Classical morphological filtering such as erosion and dilation have been commonly
implemented in DEM extraction [80].

Alternatively, the extraction of DEM from the raw 3D point cloud can be achieved by using filters
such as 1) Multiscale Curvature Classification (MCC), ii) surface-based filtering, iii) progressive
TIN-based, or iv) physical simulation processing (Cloth Simulation Filtering [CSF]) [90]. The
MCC filtering algorithm procedure begins by determining the vertical component (Z), after which
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the thin plate spline interpolation is used to generate a surface model with user-defined scale
parameters and tolerance. The surface-based filtering method begins by giving weight to individual
points. It commences by assuming the whole point cloud is ground, after which conditions are
checked iteratively and residuals are calculated for the points. The points satisfying the conditions
are kept as ground; otherwise, they are labelled as non-ground. One disadvantage of the surface-
based filtering method is that it needs the user to define some parameters for the conditions
generation, which requires that the user have some sort of experience with the field data.

In the progressive TIN-based approach, tiles or point cloud data blocks are created, while for each
data block, points with the lowest elevation are selected as seed points. These seed points are then
used to generate TIN surfaces. A distance and a height threshold for the points to these TIN
surfaces are used to segment the points to either ground or non-ground. Lastly, the CSF strategy
starts by inverting the LiDAR point cloud and simulating a cloth surface on the inverted point
cloud, and then intersecting the generated surface with the LIDAR nodes. This yields the ground
points, which are the points that are limited to move down [90].

Although there are a number of studies that used the multimodal point clouds from LiDAR-based
and Dense Image Matching (DIM) workflows, the majority of the studies used the LiDAR-based
data as a reference to the DIM data, whereas only a few studies used the multimodal data for
comparison purposes [63]. As a consequence, and to test the ability of the developed system to
produce derived data such as DSM, the generation of DSM surfaces from the two multimodal data
is investigated and compared.
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3.LIDAR-BASED PLATFORM-INDEPENDENT MAPPING
SYSTEM ARCHITECTURE DEVELOPMENT

3.1 Introduction

As discussed in the previous chapters, there is an ever-increasing demand for 3D mapping from
diverse end-user segments towards a variety of applications. Due to technical and financial
constraints, the existing traditional mapping systems are out of reach for many end-users.
Moreover, the current mapping systems are designed to be utilized in one mode of operation,
whether ULS, MMS or STLS. A generic mapping system that is accurate, cost-efficient, and can
readily be used in the three aforementioned mapping modes is currently non-existent. Such a
system would meet many end-user requirements and could be deployed across numerous
application domains. The development of such a system is far from being easy, however, as several
different challenges need to be addressed, especially with regard to the usage of low-end sensors,
in order to be cost-efficient while maintaining surveying-grade accuracy. The challenge becomes
even more complex, given the need for such a system to be platform-independent and to follow a
plug-n-go concept. Furthermore, it has to be highly versatile in order to be easily deployed in the
different acquisition modes in addition to having optimum SWaP characteristics to meet stringent
ULS requirements. As well, the system should be modular to allow for extra sensors to be easily
added, and should allow minimal modification to extend its applicability to indoor mapping.

This chapter presents the development of the system architecture for a generic LiDAR-based
mapping system, starting with the optimization of sensor selection, placement, synchronization,
and integration at the Hardware (HW) and Software (SW) levels.

3.2 Optimized Selection of Sensors

The main building blocks of a mapping system that utilizes the Direct Georeferencing (DG)
approach in 3D mapping are: 1) the Remote Sensing Sensor (RSS), ii) the GNSS/INS module, and
iil) the system management unit. The RSS may be an active and/or a passive sensor. Passive
sensors may include digital cameras (monocular or stereo), multispectral cameras, or hyperspectral
cameras, while active sensors may include LiDAR or radar sensors. The GNSS/INS module
consists of a GNSS receiver and an Inertial Navigation System (INS). Higher accuracy is attained
with multi-frequency GNSS receivers, as more errors can be corrected, such as ionospheric delay,
which is corrected through ionosphere-free linear combinations. Moreover, with multi-frequency
receivers, the GNSS signal is more immune to interference. In addition, if the GNSS receiver is a
multi-constellation receiver, it can access signals from several constellations, such as GPS,
GLONASS, BeiDou and Galileo, resulting in an increased number of satellites within the receiver
field of view. The increase in the number of satellites that can be tracked has several benefits, such
as reduced signal acquisition time, improved position and time accuracy and improved distribution
of satellite geometry, resulting in improved dilution of precision.

An INS consists of an Inertial Measurement Unit (IMU) and a computer chip that uses the IMU
readings to provide the position, orientation, and velocity relative to a known starting point. An
IMU uses a number of accelerometers and gyros in a defined orientation in order to measure the
movement of its body in 3D space [91]. Although there is no standard categorization of IMU types,
they can generally be grouped according to their performance into four group types: marine and
navigation grade, tactical grade, industrial grade, and consumer grade. Marine grade inertial
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sensors are the most expensive, but they also provide the highest performance. As expected, the
lower the performance provided by the other IMU group types, the less their cost.

There are three main technologies used for IMU manufacturing, namely, the Ring Laser Gyros
(RLG), the Fiber Optic Gyros (FOG), and the Micro Electro-Mechanical System (MEMS)-based
gyros. The RLG are generally the most accurate, but are very expensive. The FOG sensors provide
a lower-cost alternative to the RLG and give a high level of accuracy, but they are still relatively
expensive and have a large form-factor and high power demands. The MEMS, on the other hand,
are not only less expensive but generally have a small form-factor and consume less power.
Moreover, with recent technology advances, MEMS have closed the performance gap on some
FOGs. It is worth noting that the GNSS/INS module is generally the most expensive entity in a
mapping system and is crucial for accurate 3D reconstruction of a mapped environment. The
system management unit is responsible for the mapping system control and provides storage for
the data collected by the sensory RSS and the GNSS/INS module.

3.2.1 LiDAR RSS optimized selection

LiDAR scanners are active RSS sensors. The LIDAR sensor measures the range to the surrounding
environment. Hence, with precisely known azimuth and elevation angle of the LIDAR beam, the
3D coordinates of the illuminated target point can be calculated. The requirements for the
autonomous vehicle domain stimulated the development of new LiDAR scanners. The new LiDAR
scanners are generally lightweight, compact and relatively low-cost, making them an attractive
option to be considered for the mapping system RSS.

The latest LIDAR scanners can be classified as either solid-state or SMbL. The solid-state versions
are lower cost and have a smaller form-factor, but because of their unsuitability for 3D mapping
(they are built to provide grid occupancy only), they were not considered in this research. As the
technology advances, the solid-state LiDAR is a promising technology that may cause an
archetype shift for the 3D mapping domain in the near future. Regarding the SMbL and the task at
hand of selecting a LIDAR RSS for the mapping system, a number of commensurate SMbL sensors
were investigated. More specifically, the Velodyne HDL-32E, the VLP-16, and the Quanergy M8
were compared. Tables 3.1[5], 3.2[5] and 3.3[6] show the specifications of the HDL-32E, the VLP-
16 and the M8 sensors, respectively, while Fig. 3.1 depicts the three scanners.
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Table 3.1: The HDL-32E specifications overview

Attribute Value
Number of LiDAR beams 32
Range 100 m
Accuracy +2 cm
Vertical field of view (VFOV) +10° to -30°
Horizontal field of view (HFOV) 360°
Spinning frequency 5-20 Hz
Angular resolution (horizontal) 0.1°-0.4°
Angular resolution (vertical) 1.33°

Data Points Per Second

695,000 points/sec (single return)
1,390,000 points/sec (dual return)

Power consumption 12 w

Weight 1 Kg

Scanner Diameter/Height 85.3mm/144.2mm

LiDAR class type Class 1 Eye-safe per IEC 60825-1:2007 &
2014

Wavelength used 903 nm

Operating Temperature -10°C to +60°C

An overview of the specification of the VLP-16 scanner is provided in Table 3.2 below

Table 3.2: The VLP-16 specifications overview

Attribute Value
Number of LiDAR beams 16
Range 100 m
Accuracy +3 cm
Vertical field of view (VFOV) +15°to -15°
Horizontal field of view (HFOV) 360°
Spinning frequency 5-20 Hz
Angular resolution (horizontal) 0.1°-0.4°
Angular resolution (vertical) 2°

Data Points Per Second

300,000 points/sec (single return)
600,000 points/sec (dual return)

Power consumption

8w
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Weight

830 g

Scanner Diameter/Height

103.3mm/71.7mm

LiDAR class type Class 1 Eye-safe per IEC 60825-1:2007 &
2014

Wavelength used 903 nm

Operating Temperature -10°C to +60°C

An overview of M8 specifications is provided in Table 3.3 below.

Table 3.3: The M8 specifications overview

Attribute Value
Number of LiDAR beams 8
Range 100 m
Accuracy +5cm
Vertical field of view (VFOV) +3°to -17°
Horizontal field of view (HFOV) 360°
Spinning frequency 5-30 Hz
Angular resolution (horizontal) 0.03°-0.13°
Angular resolution (vertical) 3°

Data Points Per Second

420,000 points/sec (single return)
840,000 points/sec (dual return)
1,260,000 points/sec (triple return)

Power consumption 18 w
Weight 900 g
Scanner Diameter/Height 103mm/87mm

LiDAR class type Class 1 Eye-safe per IEC 60825-1:2007 &
2014

Wavelength used 905 nm

Operating Temperature -20°C to +60°C
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By investigating the specifications of the three scanners, as shown in Tables 3.1, 3.2 and 3.3, the
HDL-32E provides the highest accuracy and number of LiDAR beams with the best vertical
angular resolution among the three scanners. However, this scanner also has the largest form-
factor, heaviest weight, and a power consumption that is 50% higher than that of the VLP-16.
Furthermore, it is the most expensive sensor among the three scanners. On the other hand, the M8,
though providing more points/sec compared to the VLP-16, along with triple returns, has only 8
beams and thus can only scan among 8 planes. It also has the worst vertical angular resolution (3°)
and the highest power consumption, more than double the power consumption of the VLP-16. In
addition, the M8 provides a field of view of only 3° above the sensor horizon compared to the
VLP-16’s field of view of 15° above the horizon.

Based on the above comparison, the VLP-16 was found to be a cost-effective alternative for the
mapping system RSS, given that it features the best Size, Weight And Power (SWaP)
characteristics, which is crucial for the ULS. Moreover, it provides the largest field of view above
the sensor horizon (+15°) among the three compared scanners and gives a very adequate accuracy
of £ 3 cm. Nonetheless, due to continuous technological advances, a SMbL scanner has been
introduced recently (the Velodyne VLS-128) which features 128 LiDAR beams and a measuring
range of 300 m. However, as with many new devices, the sensor is very expensive (around 150,000
USD, which is almost twenty times more expensive than the VLP-16). Another recently introduced
sensor is the VLP-16 LITE, which features the exact same specifications as the VLP-16 but with
a lighter weight (only 530 g). It is worth highlighting that one aspect of the design criteria for the
system architecture proposed in this dissertation is its flexibility to easily integrate any upgraded
Sensors.

c)

Fig 3.1: Examples of SMbL scanners, a) Velodyne HDL-32E, b) Quanergy M8
and c) Velodyne VLP-16
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3.2.2 GNSS/INS optimized selection

In order to maintain survey-grade accuracy of the mapped environment, an accurate GNSS/INS
module is essential. One of the key components of a DG 3D mapping system is the GNSS/INS
module, as the positional and attitude accuracy attainable by the module has a direct impact on the
accuracy of the generated point cloud. Integrated GNSS/INS modules provide a better option than
separate GNSS and INS modules. The integrated module has the same timestamp for both the
GNSS and the INS, thus facilitating the data fusion between the GNSS and the INS.

With regard to the optimized selection of the GNSS/INS module for the proposed mapping system,
a number of GNSS/INS modules were investigated and compared. The comparative performance
analysis of GNSS/INS integrated modules includes the SBG Ellipse2-D, Novatel PwrPak7D-E1,
SBG Quanta UAV and Quanta UAV extra, Novatel SPAN CPT7, Novatel SPAN-IGM-A1 and
Applanix APX-15 (version-3 V3). The specifications for the investigated modules are presented
in Table 3.4. Images for the GNSS/INS modules are shown in Fig. 3.2. Note that all the modules
utilize multi-constellation, multi-frequency GNSS receivers.

As highlighted in Table 3.4, the SPAN CPT7 provides the highest accuracy in the roll, pitch and
yaw after post-processing of the data in the inertial explorer Novatel software. In addition, it
features a £2.5 cm accuracy with the TerraStar-C pro corrections. Although its size is adequate, it
has the highest power consumption and weighs 500 g. Moreover, it is the most expensive among
the investigated GNSS/INS modules. The Quanta UAV extra exhibits slightly less accurate attitude
values, while only accepting RTK corrections for positions and weighing 345 g. On the other hand,
the SPAN-IGM-AT1 and the PwrPak7D-E1 show a larger form-factor and an almost similar weight
(510 g and 515 g, respectively), while featuring comparable attitude accuracy values after post-
processing. The ellipse 2-D exhibits the lowest attitude accuracy of pitch and roll of 0.05° and 0.2°
heading, while only accepting RTK corrections with 2 cm +2 ppm positional accuracy and
weighing 180 g.

Both the Quanta UAV and the APX-15 V3 boast the best SWaP characteristics among the
investigated modules, having identical attitude post-processing accuracy of 0.025° pitch/roll with
a heading accuracy of 0.08°. However, the APX-15 V3 has a slightly lighter weight (60 g) and a
smaller form-factor. The key advantageous factor of the APX-15 V3 is its ability to directly receive
the new satellite-based corrections (Trimble RTX CenterPoint with +2 cm accuracy). This feature
boosts the practicality of the APX-15 utilization, as it lessens the need for base stations or the HW
required for RTK corrections, which can be interrupted by radio or cellular network connectivity
stability. Thus, the APX-15 V3 was found to be a cost-efficient practical GNSS/INS module that
exhibits survey-grade accuracy with best-in-class SWaP characteristics, in addition to its ability to
directly receive a satellite broadcast of the Trimble RTX CenterPoint corrections. Hence, for the
present work, the selected GNSS/INS module will be the APX-15 V3 and, as mentioned earlier,
the RSS will be the VLP-16. The system management unit, which is the last building block in the
mapping system, is discussed in the next section.
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Fig 3.2: Examples of GNSS/INS Modules, a) Ellipse2-D, b) PwrPak7D-E1, c¢) Quanta UAV

d) Quanta UAV extra, e) SPAN CPT7, f) SPAN-IGM-A1 and g) APX-15 V3
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3.2.3 System Management Unit SMU optimized selection

The SMU constitutes the third and final building block of the mapping system. The SMU allows
for control of the mapping system and includes the power source that provides the power needed
for the various system components. It also provides a means of storage for the RSS and the
GNSS/INS. Minicomputers or ARM boards, such as the Raspberry-pi, were investigated as
potential SMUs for the present study. The minicomputers weigh around 500 g and constitute
almost 10% of a UAV mapping platform, like the DJI M600 payload capacity. On the other hand,
although ARM boards like the Raspberry-pi weigh only 50 g, which is much lighter than the
minicomputers, they do not provide a user-friendly environment (e.g., a Windows-based
minicomputer, more RAM, or advanced networking capabilities).

Thus, for the task at hand, a Windows-based minicomputer with a very small form-factor (9.6 cm
x 9.6 cmx 1.98 cm), weighing only 200 g and operating on just a 5V power supply was selected.
The minicomputer runs a Quad-Core Intel Atom x5-Z8350 processor with 2MB cache, a 2GB
RAM, and 64 GB of built-in storage with an expandable SD-card of up to 128 GB. It also has a
number of USB ports that support external storage devices.

The selected minicomputer features an Ethernet port that is essential to interface with the VLP-16
and receive-store its data packets. Additionally, a 3.5 inch screen and a mini wireless keyboard
and mouse touchpad were selected to facilitate the practical control of the minicomputer and allow
the efficient control of the mapping system as a whole. For the power supply source needed for
the RSS, the GNSS/INS and the minicomputer, the power consumption from the different
components was used to calculate the appropriate power supply. Two power supply sources were
investigated: the anti-gravity XP-10 battery (Table 3.10 [95]) and the Talentcell rechargeable
battery (Table 3.11 [96]).

Table 3.5: The XP-10 and Talentcell specifications overview

Attribute XP-10 Talentcell
Capacity 18000 mAh 3000 mAh
Output voltage 19V + 12V + Two USB 5V 12V + USB 5V
Weight 500 g 190 g
Dimensions 228.6 x 81.3 x 30.5 mm 105x 63 x 24 mm

As shown in Table 3.10, although the XP-10 provides a higher capacity (18,000 mAh), it is still
more than 2.5 times the weight of the talentcell and more than triple the size, since the components
selected for the mapping systems are considered on the low-end regarding power consumption.
After calculating the power demand from the mapping system’s various components, it was found
that the talentcell would satisfy the power demand for the mapping system and have a reduction
of more than 60% of the weight and more than 70% of the size. Having a lighter weight and smaller
size is crucial to satisfy stringent ULS requirements. In addition, the smaller size of the power
supply adds to the flexibility of placement on the tight space within the ULS platforms.
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3.3 Mapping system building blocks Signal Synchronization

A precise integration of the mapping system building blocks on the HW level is essential to ensure
an accurate mapping process. The HW integration is achieved by the proper wiring connections to
be able to synchronize data streams from the various system components. Proper configuration
between HW system components is implemented to ensure that proper signal communications are
in place so that accurate synchronization can be attained. More specifically, the precise and
accurate signal synchronization between the RSS and the GNSS/INS module is of utmost
importance to allow for accurate 3D map production. The DG process requires accurate connection
of the position and orientation data recorded by the GNSS/INS module and the laser beams fired
by the RSS. In order to maintain this accurate connection, the VLP-16 and APX-15 data need to
be time-stamped to the same time reference.

The APX-15 generates a sequential synchronization Pulse Per Second (PPS) signal and a NMEA
$GPRMC message. The VLP-16 then receives the PPS signal through a dedicated wire and the
$GPRMC message through a serial RS-232 interface at a baud rate of 9600. Upon signal reception
and synchronization of the PPS and the SGPRMC message, the VLP-16 data is time-stamped
according to the embedded Coordinated Universal Time (UTC). In order to ensure precise
synchronization, the S§GPRMC message reception should conclude no later than 500 ms after the
rising edge of the PPS signal, as depicted in Fig. 3.3.

Subsequently, the VLP-16 time-stamped data is send to and stored on the minicomputer through
the Ethernet interface, as the VLP-16 lacks an internal storage media. The measured data is sent at
a rate of up to 16 Mbps. The connection between the VLP-16 and the minicomputer is secured by
adjusting the corresponding link-local non-overlapping IP addresses of both the VLP-16 and the
minicomputer. In the present study, an external mini Ethernet interface was utilized to
simultaneously allow the monitoring of the APX-15 over a different IP local-link address.

I ]
=1 | Typ.20-200 ms

Logical 1 5v

Logical 0

Logical 1

SGPRMC

Logical 0 OV . ... . rwwrrrrrrrrvrrrrrerrerh ety rmprrrmrermrrmsompmrmpmpmrmymie s o 5 560 50 6 05 6 5 6 5 6 5 0.8 5605 /0

~ 70 ms @9600 bps

Fig 3.3: Signal Synchronization between the VLP-16 and APX-15
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Due to the significance of precise synchronization process on 3D mapping accuracy, the
synchronization should be carefully monitored both in real-time and in the post-processing phase.
Precise synchronization ensures that the firing time of the VLP-16 beam is accurately time-
stamped, thus allowing the corresponding position and orientation data to be matched and ensuring
accurate mapping of the surrounding environment. The VLP-16 web UI allows the monitoring of
the status of the PPS synchronization between the VLP-16 and APX-15, as shown in Fig. 3.4.
Moreover, a data packets network reader, such as the Wireshark program, can be used to ensure
that the SGPRMC and PPS synchronization is valid through the position packet, as shown in Fig.
3.5.
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Fig 3.4: Synchronization status through the VLP-16 web Ul
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| No. | Time | Source | Destination | Protocol| Length]|Info
UDP 1230 Source port: 2368 Destination port: 2368
554 Source port: 8308 Destination port: 8368

T3 0. 007504 192. 168, 1,200 255.255.255.255

16 0.008042 192.168.1.200 255.255.255.255 uppP 1248 Source port: 2368 Destination port: 2368
e —_—
Frame 15: 554 bytes on wire (4432 bits), 554 bytes captured (4432 bits)
Ethernet II, Src: Velodyne_00:00:00 (60:76:88:00:00:00), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Internet Protocol Version 4, Src: 192.168.1.200 (192.168.1.200), Dst: 255.255.255.255 (255.255.255.255)
User Datagram Protocol, Src Port: 8308 (8308), Dst Port: 8308 (8308)
D Data (512 bytes)
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000 00 00O 00 00 60 00 KD OO 60 00 HO OO 00 60 00 ......

00fo [10 18 79 653]02 00 00 00 24 47 50 52 4d 43 2c 32 i
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0180 GO 00 0O 0O 0O G0 00 VO 00 0O 00 DO OO 60 00 0O
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Fig 3.5: Synchronization status through Wireshark and position packet

As mentioned, precise wiring between the VLP-16 and the APX-15 circuit elements is essential to
maintain the required synchronization. As experienced in the present research work, the VLP-16
pin responsible for the reception of the APX-15 PPS signal was defective by being slightly bent
within the VLP-16 interface box, as shown in Fig. 3.6, causing imprecise synchronization (Fig.
3.7). After finding the cause of this imprecision, a fix was put in place by straightening the
defective pin. The fix proved sufficient, as the synchronization status has been continuously
monitored through the VLP-16 web UI and the position packets through the Wireshark packets
reader. However, to increase the reliability of the connection, hardwiring of the APX-15 PPS signal
directly to the VLP-16 circuit board has been applied.

Fig 3.6: VLP-16 PPS defective pin
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The building blocks diagram showing the signals connections, wiring and communications ports
between the mapping system components is illustrated in Fig. 3.8. Note that the processing of the
range data and the corresponding position and orientation data in the same time-stamp range is
possible through the sensor data fusion on the SW level.
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To facilitate the deployment of the mapping system in the different data acquisitions modes,
(namely, ULS, MMS and STLS), a carefully designed housing was developed, as depicted in Fig.
3.9. Moreover, smart placement of the mapping system components allowed for the minimization
of the size of the mapping system while allowing for other sensors to be easily added. In addition,
the smart placement enhanced the robustness of the system when mounted, as the system center of
gravity is nearer to the mounting point. Additional sensors (active and/or passive) can be mounted
on one of the free surfaces of the mapping system housing box. The side of the box to be used is
decided upon the platform of the system (tripod, car, UAV) and the required field of view.
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Fig 3.9: Mapping system housing

3.3.1 Mapping system Components’ EMI

Due to the number of electronic components within the mapping system, Electromagnetic
Interference (EMI) between the different electronics may occur. EMI is a disturbance caused by
interactions between the electromagnetic fields generated by a circuit’s elements. The GNSS
antenna that receives the GNSS signals necessary for the GNSS receiver is subject to undue
performance degradation caused by EMI. Furthermore, depending on the magnitude of EMI, the
GNSS signals may be completely lost. The quality degradation of the received GNSS signals has
a negative effect on the mapping process, as it hinders the ability to maintain an accurate position
fix, which is crucial to ensure accurate 3D mapping. The close physical proximity of different
mapping system circuit elements generally increases EMI.
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It is worth noting that EMI may be further complicated in the case of ULS mapping due to the
limited space available on the UAV platform to deploy the VLP-16, the APX-15, and the SMU
along with the UAV brushless motors and UAYV electronics elements. In order to address the EMI
challenge, precise wiring between the mapping system components must be ensured. Additionally,
physically separating between the controller SMU and the GNSS antenna most often resolves the
EMI issue. The housing designed to host the APX-15 and the wiring between the necessary
electronic circuits may also contribute to lessening EMI. Physically separating the GNSS antenna
and the other electronic components in the MMS case has been implemented by decoupling the
controller SMU entity apart from the VLP-16 and the APX-15. This process greatly reduced the
EMI effect on the GNSS antenna. In a ULS event, a mast may be utilized to elevate the GNSS
antenna to a higher level than the UAV platform electronic components, motors, and mapping
system elements.

3.4 Mapping System Building Block Data Fusion

The integration between the system’s different components involved both hardware and software.
The SW integration follows the HW integration implementation, as described in section 3.3. One
of the main challenges of processing the data captured by a mapping system is the huge amount of
data captured (i.e., hundreds of millions or even billions of points). Furthermore, as these data
require processing, efficient data processing workflows are essential to ensure a reasonable
turnaround time of the 3D map.

The technological advances in the big data processing realm such as multi-threading, parallel
processing, and cloud computing allow for the efficient utilization of different HW resources to
expedite the processing task of the mapping system’s captured data. The proper workflows for the
fusion of the multimodal sensor data were designed to be cloud-computing- and parallel
processing-ready. Dedicated algorithms were also developed for the sensor data fusion on the SW
level. The coding of the developed algorithms followed the vectorization scheme. Vectorization is
an optimized method of coding which allows the utilization of the ability of modern CPUs to apply
a single instruction to multiple data SIMD, thus leading to orders of magnitude performance gains.
The main steps in the SW integration workflow are summarized as follows:

1- APX-15 GNSS and IMU integration
2- Processing and preparation of step 1, with output to be used in step 3
3- Integration of step 2 output (adjusted smoothed trajectory) and VLP-16

3.4.1 Data processing of GNSS and IMU data

In regard of the system integration on the SW level, there are three data streams involved. The first
is the remote sensing sensor data stream (i.e., VLP-16), denoted here by (S1). The second and third
data streams are the two APX-15 entities: the GNSS sensor data stream (S2), and the IMU sensor
data stream (S3). The GNSS data stream is characterized by a low update rate, but without suffering
data drift. The IMU data stream, on the other hand, is characterized by a high update rate and
highly accurate IMU calculated values; however, with time, it suffers data drift. GNSS readings
may be used to constrain this drift.

The integration of GNSS and IMU data streams is achieved by using a Kalman filter algorithm.
The forward and backward data smoothing is then applied to enhance the accuracy of the
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integration process, along with Zero velocity UPdaTes (ZUPT). These are points where the system
is not moving and are used to enhance the calculated position. Note that the APX-15 is equipped
with the proper sensors that can receive real-time GNSS corrections, whether satellite-based
corrections or base station corrections embedded in the GNSS/IMU sensor type selected. The
corrections can be included either directly in real-time or in post-processing, as the mapping
system architecture enables this flexibility. The output from the second and third data streams,
denoted here as (S2 3), provide highly accurate trajectory and orientation values that can be
integrated with the first data stream (S1). A UTC timestamp is used to link (S2 3) and (S1).

3.4.2 Preparation of LIDAR data

The workflow developed for (S1) data preparation allows for the full control of the amount of
data needed to be analyzed. This is achieved by having full access to each individual frame or
sweep of the sensor in the post-processing phase. Applying the workflow this way has the
following advantages:

i) More control is added to the operator to include the key frames or the convenient frame
rate that is needed.

ii) Parallel processing for data analysis is allowed, thus expediting the analysis process.

iii) The SW workflow allows for cloud computation to be easily applied.

iv) The designed workflow provides a dramatic decrease of the time required for the
turnaround of the final product while still having control up to the single sweep level,
thus increasing the efficiency and productivity of the mapping process.

3.4.3 Interpolation and joining with synchronized time-stamps

Since S1, S2 and S3 data streams have different frequency, a time-step interval is chosen to
interpolate the lower frequency (S2_3), which is then matched and joined with the higher (S1) one.
Since the APX-15 data (S2_3) update rate is much lower than the VLP-16 collection rate (S1), the
interpolation of S2 3 is indispensable, depending on the rate of change of the position or the
orientation the time-step interval changes. The higher the rate of change of the system position or
orientation, the smaller the time-step used for the interpolation. For example, the higher the vehicle
speed, the smaller the interpolation step needed.

The developed code is parallel-computing-ready and provides the operator with full control over
each individual sensor frame or sweep. Extracting each sweep and doing the processing for it
enables the efficient usage of the computer resources and also allows the usage of multiple
computers to process different parts of the data. In addition, to increase the user-friendly interaction
environment for diverse end-users, the processing applied on each sweep can be checked and can
exactly follow which frames are currently processed. Moreover, the algorithms developed enable
the utilization of the parts of the data that are already processed while the other parts are still in
process.

Additionally, the vectorization of the operations implemented within the developed code enhance
the processing time required for (S2 3) and (S1) data stream integration. Instead of using the
conventional loops to run the code on the data, each column of the data is treated as a vector and
the processing run on the complete vector, thus considerably decreasing the processing time. A
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flowchart summarizing the workflow for the sensor data fusion is illustrated in Fig. 3.10. Note that
the accurate matching between (S2_3) and (S1) data streams is an indispensable prerequisite for
the direct georeferencing DG process that is discussed in more detail in the next chapter.
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4. THE MAPPING SYSTEM’S DIFFERENT MODES OF
OPERATION AND THE UNCERTAINTY PREDICTIVE
MODEL

4.1 Overview

As highlighted in the preceding chapters, a key objective of this dissertation is the development of
a platform-independent, plug-n-go LiDAR-based mapping system that can be utilized in different
mapping modes, namely STLS, MMS, and ULS. The selected LiDAR RSS — the VLP-16 —is a
state-of-the-art sensor of this type. However, this option comes with a number of challenges,
including a relatively less dense measured point cloud, a limited Vertical Field of View (VFOV),
and a coarse vertical resolution. These challenges are further accentuated in the STLS mode, as
the sensor is originally developed for the kinematic autonomous vehicle domain.

In order to overcome the aforementioned VLP-16 drawbacks and to increase the potential usage
of the sensor, a thorough study of the sensor data capturing mechanism is conducted. A new VLP-
16 data capturing scheme is introduced to enable the usage of the mapping system in the STLS
mode. Moreover, the assessment of the usage of a low-cost Motion Capture (MoCap) sensor (~250
USS) is carried out. The new data capture scheme is tested in few different representative
environments, namely a building facade, and an outdoor area in a backpack platform mode. The
new scheme proved successful in increasing the potential usages of the sensor and overcoming its
drawbacks.

In addition, the usage of the mapping system in the MMS and the ULS is performed. Lastly, the
rigorous analysis for the system error budget is developed. Detailed discussions and presentation
are provided in the sections ahead.

4.2 VLP-16 Data Capture Mechanism

The VLP-16 consists of 16 pairs of emitters and receivers for 16 continuously-fired laser beams
with fixed orientation within the sensor. The 16 beams spin around the sensor’s internal spinning
axis to cover 360° at a customizable spinning rate of 5-20 HZ. The vertical angle of each laser
beam is fixed and can be retrieved by the laser beam ID. The reload and firing of the 16 laser
beams takes 55 s, thus enabling the firing of 300,000 pts/sec. Figure 4.1 depicts the 16 laser
beams, while Table 4.1 presents the fixed vertical angle for each beam.
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Table 4.1: VLP-16 Laser Beams Vertical Angles
[VLP-16 Manual]

Laser ID Vertical Angle
0 -15
1 1
2 -13
3 3
4 -11
5 5
6 -9
7 7
8 -7
9 9
10 -5
11 11
12 -3
13 13
14 -1
15 15

As shown in Fig. 4.1 and Table 4.1, the beams below the sensor horizon are numbered as even
numbers, starting with the Laser ID of zero as the furthest beam, with a vertical angle of -15°. The
beams above the sensor horizon are numbered as odd numbers and have positive vertical angles,
with beam number 15 being the furthest beam, with a vertical angle of 15°. Thus the VFOV of the
sensor is £15°, which is sufficient for the original usage of the sensor for the autonomous vehicles
but the utilization of the sensor for 3D mapping will suffer from such a limited VFOV. Moreover,
the vertical coarse resolution (¢) of 2° between the laser beams results in vertical scan gaps (y) in
the scanned environment that can reach 3.5 m at the sensor max scanning range (p) of 100 m. The
vertical scan gap () is directly proportional to the sensor scanning range (p) and vertical coarse
resolution (¢). The relation between the y, ¢ and p is expressed in Equation 4.1.

Y = 2psin (d/2) 4.1)
Where
¢ is the vertical scan gap
p is the range to the target

U is the vertical resolution
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The VLP-16 uses spherical coordinates in referencing the scanned environment to the sensor 3D
coordinates frame. The VLP-16 3D coordinate frame axes — horizontal angle (o) and vertical angle
(o) — are shown in Fig. 4.2. As can be seen in the figure, the Y-axis is defined along the sensor
cable direction going forward, the Z-axis is defined upwards, and the X-axis direction completes
a right-hand 3D coordinate system. The horizontal angle () is reported in the transmitted data
packet to the system management unit every other firing, while the vertical angle is fixed for each
laser beam and can be retrieved through the laser beam ID, which is also transmitted through the
data packets.
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Fig 4.2: VLP-16 Axes; Horizontal and Vertical angles
[VLP-16 Manual]

The measured point 3D Cartesian coordinate referenced to the sensor frame can be calculated
according to Equation 4.2.

y|=p |cos(w) cos(a) (4.2)
z sin(w)

[x] cos(w) sin(a)

Where
w is the vertical angle
p is the range to the target

a is the horizontal angle
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As discussed and highlighted in Chapter 3, the 3D coordinates of the measured points which are
time-stamped and synchronized can be matched with the GNSS and IMU data streams to produce
a 3D georeferenced point cloud.

4.3 Modes of Operation

In order to overcome the limited VFOV and coarse vertical resolution, especially in the stationary
mode of operation, a new mapping scheme is proposed. The system-positioning components (the
position GNSS and orientation IMU system [POS]) are mounted in the housing and attached to
the laser sensor in such a way that the possibility of having a gimbal lock is minimized. Three
different angles can describe the rotational motion of the mapping system components, as shown
in Fig. 4.3.

Fig 4.3: The system rotational motion angles

a is the laser sensor internal rotation angle
B is a vertical rotation angle about x-axis or y-axis
v is a horizontal rotation angle about the vertical

The three sensor orientation angles present three degrees of freedom around the sensor. Angle a is
the internal rotation angle around the LiDAR sensor spinning axis; angle B is a vertical angle about
X- or Y-axis; and angle vy is a horizontal angle about the vertical. Both B and y can be adjusted
manually or automatically to fill the sensor multi-beam scanline gaps, increase the system field of
view, and densify the point cloud. As well, B and/or y can be adjusted according to the platform
moving direction, the environment to be scanned, and the field of view directions, i.e., horizontal
or vertical field of view (HFOV or VFOV)). This physical rotation of the system as a whole allows
the efficient usage of the system for the three different scanning setups:
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1- Stationary Setup (STLS)

2- Mobile Setup (MMS)

3- Airborne (UAV) Setup (ALS)
4.3.1 Stationary mapping Setup

In stationary mode, the system is mounted in a fixed position, e.g., tripod. The physical setup
allows for either manual or automated rotation. The multi-beam spinning LiDAR sensor (VLP-16)
can be mounted with its spinning axis almost horizontal. The two components (the LIDAR and the
POS) then rotate manually or automatically around the vertical axis, as shown in Fig. 4.4(b). In
this way, the system has the widest possible coverage area ever, providing 360 HFOV and 360
VFOV. In addition, the gaps between the scan lines are greatly eliminated, thus densifying the
point cloud coverage. This is achieved by filling the coarse vertical resolution between the
scanning lines with the rotation of the system as a whole.

Another configuration, the multi-beam spinning LiDAR sensor, can also be mounted with its
spinning axis almost vertical. The two components (the LIDAR and the POS) then rotate manually
or automatically around the x-axis or y-axis (p), as depicted in Fig. 4.4(a).
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Fig 4.4: System Operation Method — Stationary Setup

It is worth noting that for the rotation process to be automated, a step-motor has been selected after
a thorough comparison of multiple motor types. The selected motor is ultra-compact and
lightweight, and its maximum payload exceeds the mapping system weight. Moreover, the motor
is low-cost (~200 US$) and weighs only 245 g. The reasonable cost and light weight add to the
ease and practicality of the new mapping scheme and can also be utilized if needed in the ULS
mode as well, since it meets the stringent UAV SW AP requirements. In addition, the motor can be
controlled wirelessly using an i0OS or Android app, further enhancing the versatility of the system
usage and user-friendliness of the system operation.
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4.3.2 Mobile mapping Setup

The system may also be used in mobile mode, mounted on a vehicle or any other moving platform
e.g., vehicle, backpack, etc. Unlike conventional mapping systems, which usually require specific
characteristics for the vehicle the mapping system is mounted to (making it difficult to move the
system from one vehicle type to another), the developed system’s light weight and small form-
factor add to the versatility and practicality usage of the system on any vehicle. A number of
coupling mechanism to mount the developed system to the moving platform were studied, and a
simple yet effective coupling mechanism has been chosen. A lightweight, compact, 3-point
suction-cup mount has been selected to be used as the coupling mount of the developed system to
any vehicle. The system’s light weight and small form factor adds flexibility to the mounting
location on the vehicle, enabling it to be mounted anywhere, whereas earlier MMS had to be
mounted on the car roof. Moreover, the system can be used as a handheld device, on a backpack
setup, or even attached to a person’s waist belt. The light weight and small form-factor is achieved
by opting for the smallest and lightest option for each component of the system, along with a smart
placement scheme.

The rotation angle used to physically rotate the sensor around its axis does not need be changed,
as the laser beams by default spin around the axis. Any initial orientation alignment of the system
can be used for angle P, as shown in Figs. 4.5 (a), (b), (c). The sensor can also rotate around the
vertical (y), as illustrated in Fig. 4.5 (d). The new mapping scheme that utilizes the new 3 and/or y
automated rotation would be available to be used in the mobile mapping mode as well, although
the added advantage is less obvious than in the stationary mode case.

55



Mobile setup

- Moving vehicle

()
<  \J

// \‘
<1+

o = 360° (Sensor internal rotation angle)
B=0<p=<90° (vl. Angle — Fixed about X- or Y-axis)
v =0 (hl. Angle — Fixed about Z-axis(vertical))
(a)

S

[
=g

.
e
LD

-

o = 360° (Sensor internal rotation angle)
B=0<p=<90° (vl. Angle — Fixed about X- or Y-axis)
v =0 (hl. Angle — Fixed about Z-axis(vertical))
(b)

Mobile setup - Backpack

a = 360° (Sensor internal rotation angle)
B=0<p<90° (vl. Angle — Fixed about X- or Y-axis)
v =0 (hl. Angle — Fixed about Z-axis(vertical))

()

NGB
a = 360° (Sensor internal rotation angle)
B=0<p<90° (vl. Angle — Fixed about X- or Y-axis)
v =360 (hl. Angle — Rotation about Z-axis(vertical))
(d)

Fig 4.5: System Operation Method — Mobile Setup
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4.3.3 UAV mapping Setup

In the UAV-mapping mode, the system can be mounted on any UAV (subject to the payload
capacity) or a plane. The system’s light weight (less than 2 kg) and small form-factor allow it to
be mounted on small-sized UAVs with a payload capacity of more than 2 kg. In the airborne mode,
the rotation angle used to rotate the sensor physically around its spinning axis does not need be
changed, as the laser beams, by default, spin around this axis. Any initial orientation alignment of
the system can be used, as shown in Fig. 4.6. In a drone-based airborne mapping application, the
ability to rotate the range sensor along these new rotation angles 3 and/or y provides an expanded
field-of-view to enable range data to be collected over a larger area when the drone is stationary.
In contrast, a drone with a conventional sensor system needs a larger flight path to collect the same
amount of range data. Thus, the new system provides more efficient ways to do UAV mapping
and inspection.

Drone setup - UAV
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o = 360° (Sensor internal rotation angle)
B = 0<p<180° (vl. Angle — Fixed about X- or Y-axis)

v =0 (hl. Angle — Fixed about Z-axis(vertical))

Fig 4.6: System Operation Method — UAV Setup
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It is worth noting that in typical UAV-mapping mode, the VLP-16 is mounted with its spinning
axis almost horizontal and along the UAV flying direction. This allows for better resolution and
less point spacing in the cross-track direction, while the UAV movement itself will enable the
filling of scanline gaps along the track.

4.4 System Uncertainty Predictive Model

The quality of the scans obtained depends on a number of factors. These include LiDAR sensor
capabilities, data acquisition mode, scanned environment, target reflectivity and the algorithms
used to stich multiple scans together. The developed mapping system consists of a number of
multi-modal sensors, each with a different level of precision, adding to the complexity of LiDAR-
based mapping as well as to the challenge involved in the verification and validation of the output
products [97]. The output mapping accuracy of the system depends on the precision of the RSS
and POS. A rigorous error propagation analysis is carried out in order to calculate the uncertainty
attached with the utilization of the new developed system. In order to do the error propagation
analysis, the georeferencing process is first explained, as follows.

The georeferencing process of the point cloud involves transforming the various sensor data sets
from different Coordinate System (CS) frames to a common mapping coordinate system frame
that uses real-world coordinates. The interpolated and matched data from the VLP-16 data stream
and the APX-15 data streams have different coordinate system frames. The multi-sensor mapping
system includes an IMU body CS frame, a GNSS CS frame ECEF, a local-level or navigational
CS frame, a vehicle CS frame, and a (range) sensor CS frame. The IMU body CS frame can be
used as a reference CS frame to which the other CS frames are related. For example, each point of
the range data can be transformed to have the corresponding position and orientation of the
orientation sensor through the boresight angles and level arms.

Figure 4.7 provides a visual representation of the different CS, boresight angles (e.g., relative
orientation) and lever arms (e.g., offsets) between the different coordinate system frames used in
the multi-sensor mapping system. The transformation may begin by detecting the relation between
the IMU body frame and the North East Down (NED) local frame. Alternatively, two right-handed
variants may be used in alternative implementations: East North Up (ENU) coordinates or North
East Down (NED) coordinates. The boresight angles and lever arms between the IMU body frame
and the sensor frame, and the boresight angles and lever arms between the sensor frame and the
vehicle frame are used to relate the sensor frame and the vehicle frame with the local frame. The
GNSS ECEF frame can be transformed to the local frame and used to aid in the pre-processing of
the orientation data. The data processing unit continuously maps the relation between the different
CS frames and combine the location and orientation data to map the trajectory and orientation of
the range sensor with reference to the local frame.
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The three data streams, i.e., the IMU (orientation) data, the GNSS (position/location) data and the
range data, are matched by first performing signal synchronization between the POS (APX-15)
and the range sensor (VLP-16). This is done through the PPS and the SGPRMC message to obtain
time-stamped range data that is on the same time-reference of the POS data. The GNSS and the
IMU data may then be combined to obtain enhanced trajectory (i.e., positions) and orientation
data. The enhanced trajectory and orientation data is then interpolated, as described previously,
and matched to the range data based on finding the same time-stamps in the enhanced trajectory,
orientation data, and range data. As a final step, the transformed trajectory and orientation data
from APX-15 with the time-stamped range data from the VLP-16 are combined to generate a 3D
geo-referenced point cloud data. At this point, the range data can be georeferenced using real-
world mapping coordinates.

Thus, the relation between the RSS, POS measurements and the georeferenced point cloud can be
expressed through the direct georeferencing DG mathematical model. The LiDAR-based DG
mathematical model can be expressed as a functional model through Equation 4.3 and a stochastic
model that is presented through Equation 4.4. The detailed derivation of the uncertainty predictive
model is provided in Appendix A.
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b
Py =ru(t) + Ry©®). Ry Ps() +15)  (43)
Where
Py; is the 3D coordinates of the point in the local level frame

ry;(t) is the time dependant 3D coordinates of the body frame origin in the local level
frame

Rf,l(t) is the time dependant rotation matrix from the body frame to the local level frame
(Defined through the time dependant roll, pitch, and yaw)
Ré’ is the boresight rotation matrix between the body frame and the sensor frame

P is the 3D point coordinates in the sensor frame

l? is the lever arm between the sensor CS frame origin and the body frame origin

While the stochastic part of the LiDAR-based DG mathematical model can be expressed through
the law of error propagation, the uncertainty in the 3D coordinates of the georeferenced point cloud
is related to the precision of the underlying VLP-16 and APX-15 measurements in addition to the
precision in boresight angles and lever arms determination. Equation 4.4 presents the stochastic
part of the model.

Csys = ]Cpar]T (4.4)

Where
Csys 1s the variance-covariance matrix of the georeferenced 3D coordinates;
It is a [3*3] matrix

Cpar 1s the variance-covariance matrix of the random variables in the DG Equation (the

POS position, POS attitudes, range, scan angles, boresight angles, lever arms); it is a
[15*15] matrix

J  is the Jacobian matrix; the partial derivatives of the DG Equation with respect to the
random variables involved; it is a [3*15] matrix
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In a more detailed representation and forward omitting the time dependent (t) symbol just for
clarity, the LIDAR-based DG Equation can be expressed as shown in Equation 4.5.

X, X, pcos(w) sin(a) Ix}
Yp| =|Ys| +RoRo R, *| Re R Ry *|pcos(w)cos(@)|+|1y°] | (4.5)
Zy I Zp|,, psin(w) lzf

Where
Xp, Yy, Z, are the 3D coordinates of the point in the local level frame

Xp, Yy, Z), are the body frame origin time dependant 3D coordinates in the local level
frame

Ry, is the time dependant rotation matrix from the body frame to the local level frame
around the z axis with a yaw angle 8,

Ro, is the time dependant rotation matrix from the body frame to the local level frame
around the y axis with a pitch angle 6,,

Ry, i1s the time dependant rotation matrix from the body frame to the local level frame
around the x axis with a roll angle 6,

R;,  is the rotation matrix from the sensor to the body frame around the z axis with a
boresight angle 7,

R, is the rotation matrix from the sensor to the body frame around the y axis with a
boresight angle 7,,

R; s the rotation matrix from the sensor to the body frame around the x axis with a
boresight angle 7,

w is the laser beam vertical angle
p is the range to the target

a is the laser horizontal angle

le, lyi’, lzg are lever arm components between the sensor and the body frame origin

It is worth noting that the rotation sequence applied is a rotation around z-axis, followed by a
rotation around the once-rotated y-axis, and lastly a rotation around the twice-rotated x-axis.
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Revisiting Equation 4.4 to calculate the uncertainty attached with the developed mapping system.

Csys = ]Cpar]T

The 15 random variables involved in Equation 4.4 can be grouped as shown in table 4.2

Table 4.2: The LiDAR DG Equation 15 random variables

Group Variables

POS position Xp, Yy, Zp
POS attitudes(roll, pitch, yaw) 6,0,,0,
LiDAR(range, vertical angle, horizontal scan p,w,a
angle)

Calibration-based parameters:
(Boresight angles) Ty Tys Ty

(lever arm sensor and body frame l?) I x? I yb lzb
) S} s

The Jacobian matrix J is computed through the partial derivatives of the DG Equation with respect
to the 15 random variables involved. The J matrix is a [3*15] matrix. The J matrix would be given
by Equation 4.6.
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[2Xp 0%, 0Xp OXp 0Xp O0Xp ox, 0x, 09X, 0Xp O0Xp 9Xp IXp OXp OXp
|ox, oy, o0z, 096x 06y 06; 49p dw da Oty Ity dT, Alx! Alyl dlzf
J= o, 9vp 9y OYp 0%y 0%y 0%, 0% 0% BV, 3V, I O O Y (4.6)
ax, oY, 0z, 96, 96, 936, ap dw da dt, T, oty okl awyd ol :
9z, 0z, 0%y 0z, 0z, 0z, 0Zp 0%y 0Zp 0z, 0z, 0z, 0%, 3Z, 3%

ax, ov, 0z, 06, @6, 090, Op  Odw da dt, 91, AT, OlxI AlyD alZSJ

N—

Differentiating X,, Y, Z, w.r.t the 15 random values, and evaluating at the initial values for the
15 random variables as listed in Table 4.3 allows populating the Jacobian matrix.

Table 4.3: The 15 random variables used in the error propagation and their initial values

Group Variables Initial values
POS position Xp, Y, Zp 0,0,0

POS attitudes(roll, pitch, yaw) 0,0,,0, 0°,0°,0°
LiDAR(range, vertical angle, horizontal pw,a 100, 0°,0

scan angle)

Calibration-based parameters:
(Boresight angles) T Ty Ty 07,0°,0°

(lever arm sensor and body frame [2) i 1yh 1 7 0,0,0
) Sl s

The variance-covariance matrix Cpg, can be populated with the 15 random variables variances,
which are typically reported as (15). Assuming that the variables are independent, the off-diagonal
elements for the €4, matrix would be zero. The developed system uncertainty predictive model
can be used to estimate the uncertainty of any DG LiDAR-based mapping system.

The newly developed mapping system at hand uses the APX-15 as its POS and the VLP-16 as its
RSS. The APX-15 reported typical precision performance is shown in Table 4.4. The manufacturer
reports the precision values as RMS. Assuming unbiased normally distributed data, it is considered
that the reported precision is the standard deviation .

63



Table 4.4: APX-15 precision in different processing levels

SPS RTK PP RTX Post Processed
Position (m) 1.5-3.0 0.02 - 0.05 0.03 - 0.06 0.02 - 0.05
Roll & Pitch (deg) | 0.04 0.03 0.025 0.025
True Heading (deg) | 0.30 0.18 0.08 0.080

As shown in Table 4.4, the position precision when using only the Standard Positioning Service
(SPS) ranges from 1.5-3 m, while in the RTK using a base station and radio link, the position
accuracy ranges from 0.02-0.05 m. In addition, the PP RTX uses a post-processed CenterPoint®
RTX service from Applanix, yielding a typical positional accuracy in the range of 0.03-0.06 m.
The highest positional accuracy can be achieved with post-processing ranging 0.02-0.05 m, using
a short baseline operation. The roll and pitch precision is 0.025° for the PP RTX and the
Post Processed, and 0.04 and 0.03 in the SPS and RTK, respectively. The true heading precision
can reach 0.08 in the PP RTX and Post Processed, but remains 0.3 and 0.18 in the SPS and RTK,
respectively. The least precise reported value in the SPS mode will be used for the least favorable
uncertainty in the points’ georeferenced 3D coordinates.

According to the reported precision in the different processing levels for the APX-15, the
preferable case would achieve 0.02 m precision in the position and 0.025° in roll and pitch, while
achieving 0.08 precision in the heading with a post-processed solution. On the other hand, the least
precise would be using it in SPS mode and would achieve 3.0 m precision in the position, 0.04° in
roll and pitch, and 0.3° in the heading. To study the effect of the different achievable precisions
on the uncertainty of the georeferenced 3D coordinates of the point cloud, several simulation runs
have been carried out using different values of precision for the 15 parameters applied into the
developed uncertainty predictive model. Starting with the most precise values reported for the
APX-15, the precision value for each parameter was degraded and the effect on the output 3D
point coordinates calculated. The results are presented in the next section.

Starting with the best performance, of the APX-15 in a post processed solution with values shown
in Table 4.4 for the roll, pitch, yaw and position. For the LiDAR sensor, the VLP-16 range
precision is reported as 3 cm, assuming a calibrated sensor with very precise elevation angle o.
The VLP-16 horizontal angle precision is not reported and so it is assumed to be half the angular
resolution. For the calibration parameters, calibrated boresight angles precision of 0.03° and lever
arm precision of 0.02 m are assumed.

Subsequently, the uncertainty of the system with the least performance of the APX-15 in a SPS
solution using the values shown in Table 4.4 for the roll, pitch, yaw and position can be calculated.
The same precision for the VLP-16 as used in the favorable scenario. For the calibration parameters
it is assumed a less precise calibrated boresight angles of 0.06° and lever arms precision of 0.04
m. Both the system components’ precision values for the favorable (Post processed) and least
favorable (SPS) scenario are shown in Table 4.5.
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Table 4.5: The System favorable precision (post-processed) & least favorable SPS

Post-processed | SPS achievable
achievable precision
precision

Xp 0.02 m 3m

Y, 0.02 m 3m

Zy 0.02 m 3m

0x 0.025° 0.04°

Oy 0.025° 0.04°

0z 0.08° 0.3°
0.03 m 0.03 m

0 0° 0°

a 0.05° 0.05

T 0.03° 0.06°

Ty 0.03° 0.06°

1z 0.03° 0.06°

Ix? 0.02 m 0.04 m

lyb 0.02 m 0.04 m

Izt 0.02 m 0.04 m

The corresponding system performance metrics for three different ranges, namely, 25m, 50m, and
100m are shown in Table 4.6 below for the favorable and least favorable scenarios. The diagonal
elements represent the uncertainty in the X,, Y, Z,, coordinates respectively, while the off-diagonal
elements represent the co-variance values.
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Table 4.6: The system performance metrics (m), @ ranges 25m, 50m, 100m (favorable / least
favorable scenario; diagonal elements uncertainty in the X, Y,, Z,, georeferenced coordinates

respectively)
Favorable scenario Least favorable scenario
p= 25m p= 25m
0.05 0.01 0.01 3.00 0.03 0.03
0.01 0.04 0.01 0.03 3.00 0.03
0.01 0.01 0.03 0.03 0.03 3.00
pP= 50m pP= 50m
0.09 0.03 0.03 3.01 0.05 0.05
0.03 0.05 0.03 0.05 3.00 0.05
0.03 0.03 0.04 0.05 0.05 3.00
pP= 100m pP= 100m
0.18 0.05 0.05 3.05 0.10 0.10
0.05 0.07 0.05 0.10 3.00 0.10
0.05 0.05 0.07 0.10 0.10 3.00

As shown in Table 4.6, for the favorable scenario, the system output vertical uncertainty at 25 m
is 3 cm and the total horizontal uncertainty is 6 cm, while the corresponding vertical uncertainty
at the 100 m range is 7 cm and the total horizontal uncertainty is 19 cm. These results and the
horizontal-to-vertical uncertainty of a ratio of around two agrees very well with the results in [97],
[98] and [99]. Moreover, the results conform to what is known of LIDAR’s vertical accuracy being
better than the horizontal one [97]. In the case of the least favorable SPS scenario, the position
errors dominate the errors in the resulting point cloud, independently from the range which
conforms to the results reported in [100].

It is worth noting that the beam divergence uncertainty will add to the resulting uncertainty of the
point cloud, as the position will be recorded along the beam centerline, whereas the actual point
location may be anywhere within the beam footprint. The beam divergence uncertainty effect is
directly proportional to the range to the targets. The VLP-16 beam horizontal divergence is 3 mrad
and the vertical beam divergence is 1.5 mrad. By integrating the beam divergence to the
uncertainty of the resultant point cloud and assuming that the peak power occurs near the beam
centerline, one-quarter of the beam diameter would be a conservative estimate for the beam
divergence uncertainty [101]. Thus, integrating the VLP-16 beam divergence to the uncertainty of
the resultant point cloud yields the total uncertainty for ranges of 25 m, 50 m, and 100 m, as shown
in Table 4.7 for the favorable/least favorable scenarios
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Table 4.7: The system performance metrics (m), @ ranges 25m, 50m, 100m (favorable/ least
favorable scenario; uncertainty in the X,, Y, Z,, georeferenced coordinates including beam
divergence uncertainty)

Favorable scenario (with  beam | Least favorable scenario (with beam
divergence) divergence)
p= 25m p= 25m
Xpg 0.07 (m) Xpgy 3.02 (m)
Yoo 0.04 (m) Yoo 3.00 (m)
Zpg 0.04 (m) Zpg 3.01 (m)
p= 50m p= 50m
Xpg 0.13 (m) Xpg 3.05 (m)
Yoo 0.05 (m) Yoo 3.00 (m)
Zpgy 0.06 (m) Zps 3.02 (m)
p= 100m p= 100m
Xpg 0.25 (m) Xpg 3.12 (m)
Yoo 0.07 (m) Yoo 3.00 (m)
Zpgy 0.11 (m) Zps 3.04 (m)

Again, as shown in Table 4.8, the most dominant error source affecting the resultant point cloud
is poor GNSS positioning accuracy. In this case, the beam divergence effect is almost negligible
even with the 100 range, which is the max achievable range for the VLP-16. The rigorous
uncertainty predictive model developed in this study helps to provide a tool for the resultant point
cloud accuracy estimate, which is especially useful in instances where it is difficult to find a more
accurate data source for the accuracy-checking process

Applying the developed uncertainty predictive model with the favorable scenario and including
the beam divergence, the total horizontal uncertainty is 8 cm and the vertical uncertainty is 4 cm
(1o @ 25m). Thus, combining the specifications for the system components and its uncertainty the
system specifications can be summarized as shown in Table 4.8.
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Table 4.8: The developed mapping system specifications

Attribute Value

Scanner VLP-16 (easily upgradable)

POS APX-15V3

Wavelength 903 nm

System uncertainty (1o @25m) Horizontal: 8 cm, Vertical: 4 cm

Dimensions Dia 10.3 cm / height 15 cm

HFOV 360°

VFOV +15° to -15° (up to 360° with the new mapping
scheme)

Data Pts/Sec 300,000 (single return); 600,000 (dual return)

Power consumption 19 W (Autonomy ~ 1.2 hr)

Operating Temperature -10° C to +60° C

Mapping Modes ALL; stationary, mobile, ULS

It is worth highlighting that for the data processing of the system realization in the next chapters
the processing of the GNSS/INS data has been carried out in the POSPAC environment.

Four sets of measurements has been determined and programed in POSPAC:

1- The mounting angles from the Reference frame (the VLP-16 in the research at hand) to the
IMU body frame (APX-15), following the Tate-Bryant sequence of rotations (i.e rotation
around z, then rotation around y, then rotation around x)

2- The mounting angles from the Vehicle frame to the reference frame following the Tate-
Bryant sequence of rotations (i.e rotation around z, then rotation around y, then rotation
around x)

3- The lever arm between the Reference frame and the IMU body frame resolved in the
Reference frame

4- The lever arm between the Reference frame and the antenna phase center APC resolved in
the vehicle frame

POSPAC then uses these values in the trajectory calculation, then reports the position and
orientation considering the LiDAR sensor as the reference frame (i.e directly relating the position
and orientation of the LiDAR sensor to the ground), thus the applied equation for the data geo
referencing is as follows:
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Py =1 (t) + RY(L). Ps(t) (4.7)
Where
P,, is the 3D coordinates of the point in the mapping frame
Tm (t) is the time dependant 3D coordinates of the sensor frame origin in the mapping frame
RI'(t) is the time dependant rotation matrix from the sensor frame to the mapping frame

P is the 3D point coordinates in the sensor frame
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5.MAPPING SYSTEM REALIZATION: STATIONARY, MOBILE
MODES OF OPERATION, AND POINT CLOUD
COLORIZATION

Several different data collection missions utilizing the developed mapping system have been
carried out in diverse environments using the three modes of operation discussed in section 4.3
(stationary, mobile and airborne). The uniqueness of the developed system is the ability to readily
use it in different modes of operation, independent of the platform used and following a plug-n-go
concept. A detailed discussion of the data collection missions performed and the system
performance metrics for the different modes of operation is presented in the following section. In
addition, the usage of a very low-cost (~250 USD) MoCAP sensor in a new mapping scheme is
presented and evaluated.

5.1 Data Collection in Stationary Mode (LiDAR)

In order to test the system performance in stationary mode, a data collection mission has been
carried out in the form of the mapping of a building facade. The building chosen is the EPH
building fagade located at the intersection of Gerrard and Church Street on the Ryerson University
campus in downtown Toronto, Canada. As described in section 4.3.1, the VLP-16 sensor pitch
(nose up-down around the sensor’s X-axis) is incrementally changed to densify the resulting point
cloud by filling the gaps caused by the sensor coarse vertical resolution. This also serves to increase
the sensor’s limited vertical field of view. According to the results from the uncertainty predictive
model developed in this proposal, the short range to the target (~6 m) will limit the uncertainty
caused by the less precise measurements for the attitude angles, and thus a very low-cost IMU has
been tested.

The IMU selected after a thorough search is the yostlabs 3-Space™ Data Logger sensor. It is a
miniature Attitude and Heading Reference System (AHRS). The sensor specifications according
to its specifications sheet is presented in Table 5.1. The AHRS sensor was attached on top of the
VLP-16, with the aim of maintaining alignment between the VLP-16 and IMU centers. A
customer-grade Garmin GPS 18x LVC sensor has been used for the position recording and for the
time-stamping of the VLP-16. Both the IMU and the GPS sensors used are shown in Fig. 5.1. The
GPS 18x LVC sensor output data is given in NMEA 0183 format and provides a pulse-per-second
logic-level output with a rising edge aligned to within 1 microsecond of UTC to time-stamp the
VLP-16 data. Because it accepts the WAAS and EGNOS corrections, the position accuracy is in
the m-level. The interfacing of the GPS 18x LVC sensor and the VLP-16 has been carried out as
described in section 3.3. The system was mounted on a camera tripod with its spinning axis almost
vertical and the incremental pitch of the system B angle has been applied.

70



i@

b

Fig 5.1: Very Low cost IMU and GPS ,
a) The Yostlabs Data logger AHRS and b) Garmin GPS18x LVC

Table 5.1: The Yostlabs Datalogger AHRS specifications

Attributes
Dimensions 35mm x 60mm x 15mm
Weight 28 grams
Supply voltage +5v USB
Battery technology rechargeable Lithium-Polymer
Battery lifetime 5+ hours continuous use at full performance
Storage interface SD card
Communication interfaces USB 2.0
Orientation range 360° about all axes
Orientation accuracy +1° for dynamic conditions & all orientations
Orientation resolution <0.08°
Orientation repeatability 0.085° for all orientations
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The original VLP-16 readings, limited field of view, the incremental pitching applied and an
optical imagery of the facade are shown in Fig 5.2.

Original Readings

S o

B Rotation once
(Filled gaps, Larger field of view)

B Multiple Rotation
(Denser points, Larger field of view)

Fig 5.2: The system rotational motion 3 in stationary mode

(Facade image (left), original sensor reading (top row), B rotation once (middle row), Multiple
rotations (bottom row))

As can be seen in Fig. 5.2, the original reading of the sensor (shown in the top row) suffers from
the vertical gaps between the sensor scanlines and has a limited vertical field of view that does not
allow the scan of the building fagade. The rotation of the sensor around its X-axis with an angle 3
once (as shown in the middle row) increases the sensor field of view and densifies the point cloud;
it also decreases the vertical scanline gaps of the sensor readings. The incremental 3 rotation of
multiple times allows a much more densified point cloud of the building fagade. As well, to a very
large extent, it mitigates the vertical scanline gaps between the sensor scan lines, thus densifying
the point cloud and allowing the mapping of the building fagade (as shown in the bottom row).

The challenge to meet with the usage of the separate AHRS and GPS sensors is that the data must
be first referenced to the same time in order for the different data streams from the AHRS, GPS
and VLP-16 to be fused. The GPS sensor time-stamps the VLP-16 with UTC, but the AHRS has
a very imprecise internal clock, and the imprecise synchronization will negatively impact the data
fusion process. In response to this problem, the AHRS internal clock timing has been augmented
by the corrections from the Network Time Protocol (NTP) strata 1 servers to obtain a UTC time
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with higher precision, which is then linked to the time-stamped VLP-16 data. The NTP was
originally developed to synchronize the clocks of network infrastructure devices (e.g., servers,
routers, switches, and computers) over a network. The NTP synchronizes the time of the network
infrastructure devices to an external accurate time source (typically an atomic clock). Time
accuracies ranging from 1 to 50 ms are possible with NTP, based on different network conditions.
The DG equation is then applied to obtain a georeferenced point cloud for the building facade. A
sample of the raw readings of the VLP-16 point cloud is shown in Table 5.2 and the corresponding
facade scan is shown in Fig. 5.3.

Table 5.2: VLP-16 point cloud sample raw data

Intensity Laser id | Horizontal angle Distance m Adjusted time
7 0 15 5.112 73791131933
9 1 16 10.544 73791131935
9 2 17 5.822 73791131937
2 3 17 9.83 73791131940
7 4 18 6.722 73791131942
2 5 19 15.796 73791131944
3 6 20 7.954 73791131946
2 7 21 12.588 73791131949
21 8 22 8.646 73791131951
3 9 23 12.664 73791131953
15 10 23 8.896 73791131956
3 11 24 12.688 73791131958
10 12 25 9.424 73791131960
9 14 27 9.962 73791131965
5 15 27 11.784 73791131967
6 0 35 5.098 73791131988
4 1 36 9.48 73791131990
9 2 37 5.82 73791131992
3 3 37 12.462 73791131995
9 4 38 6.736 73791131997
5 5 39 12.464 73791131999
6 6 40 7.95 73791132002
5 7 41 12.54 73791132004
19 8 42 8.656 73791132006
3 9 43 12.596 73791132009
15 10 43 8.886 73791132011
3 11 44 12.688 73791132013
12 12 45 9.442 73791132016
34 14 47 9.482 73791132020
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Fig 5.3: Original VLP-16 scan with vertical coarse resolution and limited FOV

As can be seen in Fig. 5.3, the VLP-16 scanning mechanism originally designed for autonomous
navigation will not fit its utilization in stationary mode to map static objects, as its coarse vertical
resolution and limited VFOV will hinder its usability in such an application. According to the new
mapping scheme proposed in section 4.3.1, the sensor limitations in terms of the coarse vertical
resolution and limited VFOV are greatly mitigated. Consequently, the laser data was parsed and
the laser ID was used to retrieve the beam vertical angle o, the horizontal angle o, and the range
p. Equation 4.2 was then applied to calculate the points scanned referenced to the VLP-16
reference frame, and a virtual coordinate system for the AHRS was defined to align with the VLP-
16 axes directions. The measured attitudes from the AHRS, which is time-stamped with the
augmented NTP corrections, were then used to record the sensor orientation for each firing. The
NMEA received by the VLP-16 from the GPS18x LVC sensor was used to record the sensor
position at each beam-firing. Interpolating the recorded AHRS attitudes and joining them with the
VLP-16 beam-firing according to the linked time-stamp was then carried out. The DG equation
is applied to georeference the resultant point cloud. The resultant point cloud and the
corresponding optical imagery are depicted in Fig. 5.4.
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Fig 5.4: EPH building processed point cloud and the corresponding optical imagery

Both qualitative and quantitative assessments of the resultant point cloud have been implemented.
First, the qualitative assessment of the new mapping scheme has been done by comparing Figs.
5.3 and 5.4. The comparison of the two figures clearly proves that the new mapping scheme
mitigates the VLP-16 vertical coarse resolution and increases its vertical field of view. In addition,
small objects are detectable, as highlighted by the numbered objects 1, 2, 3 and 4 in the optical
imagery and the corresponding mapped objects in the georeferenced point cloud. Some fine details
captured by the proposed new mapping scheme are highlighted in a side and front view in Figs.
5.5 and 5.6, respectively. The objects denoted by the number 1 in Fig. 5.5 are the returns measured
from objects inside the building, as the laser beams penetrated the glass areas on the entrance
doors.

Fig 5.5: EPH side view fine details

75



Fig 5.6: EPH front view fine details

Figure 5.6 shows a number of fine details that are captured by the new mapping scheme. A narrow
tree stem (1), a sign (2), door openings (3), a fence (5), and even fine details such as the stair rails
(denoted by numbers 4 and 6) have been captured by the new mapping scheme. An optical imagery
for the EPH building entrance is depicted in Fig. 5.7.

Fig 5.7: EPH front view optical imagery
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Moreover, a quantitative assessment has been carried out by comparing the resultant point cloud
to a state-of-the-art terrestrial laser scanner point cloud. The Polaris scanner used for the
quantitative assessment is a high-end terrestrial laser scanner that costs ~150,000 USD and has a
5 mm accuracy. The Polaris scan is presented in Fig. 5.8.

Fig 5.8: EPH building (Polaris scan)

Figure 5.8 shows the level of fine details expected from a high-end terrestrial laser scanner
designed specifically to be used in stationary mode. However, its cost is considered prohibitive to
many end-user segments. Moreover, its ease of deployment is questionable, given its relatively
heavy weight and bulky size. The proposed alternative new mapping scheme costs less than one-
tenth of the price of the high-end laser and features ease of deployment as well as the ability to
capture enough fine details to be deemed sufficient for many applications, such as 3D models of
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buildings, statues and objects; video fly-throughs of a scene; and inspection-related tasks. As some
applications might be more interested in the geometry measurements of the fagade abstraction,
plane-fitting using RANdom SAmple Consensus (RANSAC) has been carried out for the point
cloud, along with measured dimensions for both the proposed system resultant point cloud and the
corresponding ground truth data. The comparison and deviation are presented in Table 5.3.

Table 5.3: Sample Measurements (point cloud-ground truth)

Dimension Measured (Ground Measured (3D point
Truth) Cloud)
Basket Dia 0.7m 0.6 m
Sign Width 0.7 m 0.67 m
Sign column 0.16 m 0.18 m
MON entrance 345 m 34m
Width
MON entrance 244 m 232m
Height
EPH entrance width | 5.52 m 5.56m
Half EPH entrance 2.86 m 2.84m
width
Height EPH 2.63m 2.65m
entrance
Fence(p1) 2.34 m 2.43 m
Fence(p2) 236m 23m
Fence(p3) 2.24m 23m
Wall Behind the sign | 3.63 m 3.64m
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Calculating the RMSE for the sample measurements extracted from the resultant point cloud and
the ground truth data yields a value of 0.06 cm, which is a highly promising result, considering the
very low cost of the IMU sensor used and the lack of boresight calibration. The rotation angles
within the new mapping scheme application (pitching the sensor around its X-axis) is depicted in
Fig. 5.9.
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As can be seen, Fig. 5.9 shows the incremental change in the pitching angle. This change is
intended to fill the gaps in the VLP-16 scanning due to the coarse vertical resolution; it is also
intended to increase its total VFOV. As well, the figure shows a small change in the yaw and roll
angle, caused by the interactive rotation applied to the system as a whole. The rising edge of the
incremental change in the pitching angle has been used in the analysis in order to decrease the
probability of duplicate points to be scanned, which proved sufficient in the fagade mapping by
increasing the VLP-16 total VFOV and densifying the resultant point cloud. The absolute
geolocation position of the scanned fagade will ultimately depend on the accuracy of the GNSS
receiver used.

The APX-15 POS has also been tested for fagade mapping. Although this device is originally
optimized to be used in UAV dynamic application, its new utilization in stationary mode for facade
mapping yielded a clear resultant point cloud, as depicted in Figs. 5.10. As can be seen, the
geometry measurements from the utilization of the APX-15 with the system are almost identical
to those obtained with the AHRS low-cost sensor, due to the proximity of the system to the mapped
target. On the other hand, the geolocation precision using the APX-15 even without a base station
reaches the decimeter level.

Fig 5.10: EPH facade (the system with APX-15) fine details

As it is shown in Fig 5.10 fine details are correctly mapped with the new system despite that the
APX-15 is originally designed for UAV dynamic application and its utilization in a stationary
application is a new type of its utilization. Object numbered 1 in Fig 5.10 correctly represent a
sloped surface, object 2,3 shows bike racks and bikes, while object number 4 clearly present the
van tire while object 5 represent the van’s front lights.
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It is worth noting that the Polaris scanner has a 120° vertical field of view, which is four times that
of the VLP-16; furthermore, it has an angular resolution of 12 prad, which is orders of magnitude
better than that of the VLP-16. These enhanced features explain the precise verticality of the
objects depicted by the Polaris. On the other hand, to be able to use the low-cost VLP-16 in such
an application, a complicated process has to be implemented as presented and summarized in
Chapter 3 and Fig 3.10.The process includes, to synchronise its readings with the attitudes and
position readings from the multimodal sensors and to apply a kinematical change to the sensor
pitch angle to be able to map the building facade. Additionally, a calibration mission is required
to solve for the boresight and lever arm misalignments.

Overall, fine details have been correctly mapped with the proposed system, and reasonably precise
measurements can be made with a RMSE of 0.06 m as calculated from the data presented in Table
5.3. The introduction of a very low-cost AHRS and customer-grade GPS sensor proved successful.
Thus, the Polaris output only depends on the scanner characteristics, whereas to be able to map the
building fagade with the new mapping system using the VLP-16, its pitch angle needs to be
incrementally changed with a POS. The new mapping scheme adds to the versatility of the
developed mapping system architecture and introduces a low-cost alternative through the
combination of the VLP-16, yostlabs AHRS, and the Garmin 18x LVC. The novel scheme allows
the VLP-16 and the APX-15, which were both developed for kinematic environments, to be used
in stationary mode.
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5.2 Data Collection in Stationary Mode (Optical Imagery)

The utilization of an SfM workflow to build a 3D point cloud from multiple overlapping imagery
has been implemented for the EPH building fagade. The facade has been captured with optical
imagery from a cellphone camera (specifications shown in Table 5.4). The images have been
captured from different positions and viewing angles to enhance the geometry needed for better
3D point geometry retrieval through bundle adjustment. The SfM model workflow was run in a
Pix4D environment. The produced 3D point cloud model is presented in Fig. 5.11.

Table 5.4: Cellphone camera specs used to capture EPH facade imagery

Camera Model Sony IMX234 Exmor
LG-H831 4.4 5312x2988 (RGB),
LG-H831 1.5 3840x2160 (RGB)

Sensor size /1.8, 26mm (wide), 1/2.6", Laser AF, 3-axis
OIS
8 MP, /2.4, 9mm, 1/3.6", no AF

Features LED flash, panorama, HDR

Fig 5.11: EPH facade SfM point cloud (images positions are the green circles)
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Qualitatively assessing the 3D point cloud output from SfM shown in Fig 5.11 shows the general
layout and colors of the fagade are depicted, however, there are areas that are obviously
problematic which can be attributed to the poor lighting or texture conditions for example at the
EPH entrance, highlighting the dependability of the model created on the lighting and camera
imagery captures conditions. In addition, Quality check parameters for the SfM model processed
in the Pix4D processing environment are presented in Tables 5.5. While the bundle block
adjustment results is presented in Table 5.6. Table 5.7 presents the number of 3D points calculated
from 2D key points matches. Visiting the values presented in the three tables indicates an adequate
resultant model without alarming values as defined in the Pix4D processing environment. A
visualization of the average automatic tie points ATP pixel re-projection error magnitude and
direction is presented in Fig 5.12.

Table 5.5: SfM Quality check

Images 42 out of 44 images calibrated (95%)
Dataset median of 22639 key points per image
Camera Optimization 2.76% relative difference between initial and
optimized internal camera parameters
Matching median of 5814 matches per calibrated image

Table 5.6: Bundle block adjustment results

Number of 2D Key point Observations for | 273823
Bundle Block Adjustment

Number of 3D Points for Bundle Block 108700
Adjustment
Mean Re-projection Error [pixels] 0.325

Table 5.7: 3D points calculated from 2D key points matches

Number of 3D Points Observed

In 2 Images 81432 In 12 Images 139 In 22 Images 5
In 3 Images 16514 In 13 Images 119 In 23 Images 6
In 4 Images 4805 In 14 Images 80 In 24 Images 3
In 5 Images 2237 In 15 Images 41 In 25 Images 3
In 6 Images 1242 In 16 Images 27 In 26 Images 4
In 7 Images 798 In 17 Images 20 In 27 Images 2
In 8 Images 448 In 18 Images 19 In 28 Images 1
In 9 Images 318 In 19 Images 12 In 30 Images 1
In 10 Images 220 In 20 Images 10 In 32 Images 1
In 11 Images 186 In 21 Images 7
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Fig 5.12: Average automatic tie points ATP (darker color represents less points found)

Figure 5.12 shows the number of ATPs per pixel, averaged over all images of the camera model.
The image is color-coded between black and white. White indicates that, on average, more than
16 ATPs have been extracted at the pixel location, while black indicates that, on average, 0 ATPs
have been extracted. A larger dark portion indicates less ATP and a less optimal 3D calibrated
model, which is associated with sub-optimal imagery conditions. As will be shown later with the
SfM model in airborne mode, the geolocation information through the imagery EXIF geotags aids
in the 3D reconstruction of the environment. The strength of the ATP matches and the camera
positing uncertainty is highlighted in Fig. 5.13.
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Fig 5.13: 2D key points matches

Figure 5.13 shows the strength of the matches between the images through the number of point
matches; specifically, the darker the link, the more point matches are present. On the other hand,
dark green ellipses indicate the relative camera position uncertainty of the bundle block
adjustment. The light color links represent the need for manual tie point additions or to acquire
more images. The figure highlights the inversely proportional relation between the number of
matches and the uncertainty of the camera position solution from the SfM workflow. This
emphasizes the dependency of the SfM-resultant model on the key point matches between the
images. Note that, due to the close proximity of the image exposure stations and the unreliable
GPS readings from the cell phone used, the GPS readings were not incorporated into the SfM
model derivation and thus the resultant model is up to scale. This would be a disadvantage if
measurements needed to be taken from the resultant model.

The dependency of the resultant point cloud on the key point matches between the images
reemphasizes one of the SfM’s disadvantageous characteristics. In addition, unless the scale is
constrained by GPS or a known measured distance, the output is up to scale. It is, nevertheless, a
cheap alternative and has a true color visualization which might appeal to wider end-user segments.
On the other hand, in using the new LiDAR-based system, the 3D geometry is directly captured
but that it lacks the texture and color information. Thus, the fusion between both will mitigate the
drawbacks of each approach.
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5.3 System in Handheld Mode

The promising results acquired with the usage of the very low-cost yostlabs AHRS and the GPS
18x LVC sensor in stationary mode motivated to test the system in handheld moving mode. A
portion of Gould Street near the Church and Gould streets intersection on the Ryerson University
campus, Toronto, Canada, has been mapped. Figures 5.14 and 5.15 show a satellite image of the
area and a street-view image, respectively, as depicted from Google Earth. The area features trees,
building facades with different geometries and building materials, light poles, and parked vehicles

The system setup was similar to the one used in the stationary mode of operation with the yostlabs
AHRS and the Garmin GPS 18x LVC sensor attached to the top of the VLP-16. A virtual
coordinate system for the AHRS was defined to align with the VLP-16 axes directions. Further,
the VLP-16 firing synchronized and time-stamped with GPS position was linked to the AHRS
recorded attitudes through the aid of the NTP time synchronization.

Being light-weight and compact, the system was easily mounted on a small handheld camera
tripod. The pitch angle of the system (nose up-down around the sensor X-axis) has been
incrementally changed to densify the resultant point cloud and increase the total VFOV. The
recorded GPS positions in latitude- longitude format has been transformed to a local-level frame
of reference through an intermediate transformation to a Cartesian Earth-centered, Earth-fixed
ECEF coordinate system. Equation 4.2 has been applied to calculate the points scanned referenced
to the VLP-16 reference frame, while DG equation was applied after incorporating the time-
dependent attitudes and position data recorded by the AHRS and the GPS sensor. The resultant
point cloud is shown in Fig. 5.16. As anticipated, with the imprecise low-cost sensors used for the
DG of the LiDAR point cloud, features are unrecognizable within the resultant point cloud.
Nevertheless, applying the newly developed workflow allows examining each LiDAR data frame
individually revealing a clearer depiction of the features within the resultant point cloud, as shown
in Fig 5.17.
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Fig 5.15: A street-view image; Gould St and Church St intersection
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Fig 5.16: Gould St mapped with yostlabs AHRS and Garmin GPS 18x LVC (All frames)

Fig 5.17: Gould St mapped with yostlabs AHRS and Garmin GPS 18x LVC (One frame)

The results depicted in Fig. 5.16 and the frames’ misalignment may be explained by the following
factors, namely, the imprecise measurements of the sensor attitudes (but more critically the
imprecise measurements of the sensor position) are due to the very low-cost sensors used, coupled
with multiple readings from the VLP-16 for almost the same area due to its scanning mechanism
and the sensor horizontal orientation mounting. The utilization of the new workflow of data fusion
on the SW level allowed for examining up to one frame of the resultant georeferenced point cloud,
revealing a clear depiction of the features, as shown in Fig. 5.17. A parked vehicle is labeled as
object number 1, a person is object number 2, a tree is object number 3, the fence corner is shown
as object number 4, and the building corner is successfully mapped as object number 5. Frames
number 50 and 100 are depicted in Fig. 5.18 to show the misalignment of the same objects due to
the imprecise position and attitude measurements in addition to the boresight and lever arm
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misalignment effect, which can be alleviated with a calibration data collection mission.

Fig 5.18: Gould St mapped with yostlabs AHRS and Garmin GPS 18x LVC Frames; #50(blue)
&100(colored)

As shown in Fig. 5.18, the objects that are remapped from different sensor positions and attitudes
are misaligned due to the low precision associated with the low-cost sensors used and the VLP-16
multiple scanning of the same object. Examples of such objects are: a tree (object number 1), the
side of a fence (object number 2), and the side of building (object number 3). On the other hand, a
tree (object number 4) was only mapped once from the frame number 50. As it was out of the
scanning view of frame number 100, it is only mapped once and can be clearly depicted. Taking
into consideration the thousands of frames recorded by the VLP-16 and the misaligning of objects
which occurs, we can better understand the results shown in Fig. 5.16. The ability to analyse each
frame of the LiDAR data georeferenced through the new approach of frame discretization
proposed and implemented in this research for the DG process of LiIDAR data adds full control to
the operator to better interpret the results at hand and to select the level of details and abstraction
needed for a specific application purpose. Figures 5.19 and 5.20 show different levels of details
and abstraction of the area by using every other 50th frame, and every other 100th frame of the
georeferenced data.
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Fig 5.19: Gould St mapped with yostlabs AHRS and Garmin GPS 18x LVC (Every other 50th
frame)

Fig 5.20: Gould St mapped with yostlabs AHRS and Garmin GPS 18x LVC (Every other 100th
frame)

91



The new SW integration workflow, as explained in section 3.4, allowed for control up to the
sensor’s single sweep, adding flexibility to the abstraction and level of details that can be utilized.
As shown in Figs. 5.19 and 5.20, the level of detail and the point cloud density vary according to
the number of frames used in the area mapping. This level of control and flexibility in the output
data abstraction is made possible by applying the new SW integration workflow.

In order to decrease the misalignment between the different frames mapped, a new incremental
frame-to-frame registration applying the Iterative Closest Point (ICP) algorithm is implemented.
To decrease the effect of the noise within the point cloud data and its negative effect on the ICP
algorithm, a statistical outlier removal filter is applied to the data in advance of the ICP algorithm
application. The statistical outlier removal filter incorporates the information from the
neighbouring points, as it measures the distance to the surrounding points using filter criteria
presented in Equation 5.1. The ICP algorithm is then recursively applied to successive frames.

Dpax = Mg t+tn*xa (5.1)
Where
Dipax 18 the max distance
Wg  1s the mean distance
n is the n. sigma to be used for the filtering
o is the standard deviation

To speed up the processing applied on the point cloud data, which can easily reach millions of
points, octree portioning of the point cloud is applied beforehand. A summary of the ICP algorithm
is presented according to [101], as follows. The ICP is a simple yet effective method for point
cloud registration. An initial good alignment of the point clouds is required in order for the ICP to
perform adequately. The initial alignment is achieved through the direct georeferencing. Hence,
the problem of point cloud registration can be defined as an optimization problem aimed at finding
the best transformation that aligns the target dataset to the reference dataset. Let Pa be the points
of the target dataset defined in an A coordinate system, and let Qg be the points of the reference
dataset defined in a B coordinate system. The aim of the registration is to minimize an error
function in order to find the best required transformation of T(Pa) to Qg. Thus, the transformation
(Equation 5.2) can be expressed as:

TS = argminr (error (T(Pa), Q5)) (5.2)

The error function is computed on the match between point pairs. Let the match

M=match (P, Q) = {(p, ):pe P,q € Q} (5.3)
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The match is done on the bases of the closest point. Thus the error function can be defined as

error(P, Q) = Z(p,q) emd(®,q) (5.4)

The outliers are identified and removed through the pre-applied statistical outlier removal filter to
make the error function more robust. The ICP iterates through transformation, minimizing the error
every run and thereby enhancing the matching process. In this way, the ICP builds a sequence of

transformations. Let iteration ;_IT indicate the sequence of iteration. From the points’ relative

positions, a new match Mi is formed and a new transformation i+1iT is calculated by minimizing
the error:
AT e argminr (error (T(P4), Q5) (5.5)

The required transformation is the composition of the intermediate transformations
B .
Ta = AT )Tinie  (5.6)

Where (I1; i_fT ) is the composition of intermediate transformations and T,;; is the initial
transformation.

Applying the incremental frame-to-frame registration as described above reduces the
misalignment between the different frames, as illustrated with the whole data frames in Fig. 5.21.
The georeferenced point cloud shown in the figure depicts the mapped area mapped as the
augmented version of the georeferenced point cloud shown in Fig. 5.16, after the application of
the incremental frame-to-frame registration. A clearer depiction of the details within the area
mapped is thus achieved.
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Fig 5.21: Gould St mapped with yostlabs AHRS and Garmin GPS 18x LVC

Enhanced with the recursive ICP application

To obtain a quantitative assessment of the mapped area, the trajectory has been superimposed on
accurate LiDAR data captured through an aerial flying mission covering the Greater Toronto Area

(GTA). The summary of the aerial mission is presented in Table 5.8.

Table 5.8: The summary of the Aerial LIDAR mission used for the quantitative validation

| Acquisition Parameters
A 2 Pulse -
: Flying | Flying | o~ |Scan | Scan | .. | Point
[MM.?;I:H'I‘} Mission | Height| Speed Rep Freg Angle Lap % Density | LIDAR System
(m) | (knots) (kHz) (Hz) | (degree) (pts/m?)
04/06/15 7915056a 1300 160 400 52 40 50 10.0 Leica ALST0
04/07/15 7915057a 1300 160 400 52 40 50 10.0 Leica ALS70
04/11/15 79151013 1300 160 400 52 40 50 10.0 Leica ALS70
04/25/15 7915115h 1300 160 400 52 40 50 10.0 Leica ALSTO

Multiple Return Capabilities: YES Number of returns recorded: Maximum 4
Geodetic Control
Horizontal Datum: Nad83 CSRS Vertical Datum: CGVD28
Geoid Model: HT2.0 UTM Zone: 17
MNote: We established a local geodetic network fiwed to the following control:
Station ID Lat Long Ellp Height
61313 43 46 05.44812 -79 38 49.15723 154.971
653156 43 35 30.99772 -79 36 11.54776 92.610

Calibration Methodology

Airborne Imaging performs a complete calibration on every LIDAR acquisition flight, data is acquired over a calibration site
flowen with at least two passes in opposite directions before and after the flight. Any error in the attitude of the aircraft (roll,
pitch and heading) can be observed and corrected for within system specifications. To statistically quantify the accuracy, we

compare the LiDAR elevations with independently surveyed ground points.
on an open road, The kinematic positicns on the road are post-processed from a nearby base station (commen to the aenial

A GPS mounted truck collects data while driving

Fundamental Vertical Accuracy (on flat hard surfaces), 95% or 20:

survey)
[ Accuracy
Horizontal Accuracy, 95% or 2o: 30 em
10 cm
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The dataset used for the quantitative assessment is an aerial LiIDAR dataset captured in 2015 by
Airborne Imaging, a Canadian (Calgary-based) company. The datasets feature a point density of
10 pts/m?, a reported horizontal accuracy of 30 cm and vertical accuracy of 10 cm, both reported
with 95% confidence or 2. The horizontal datum is NAD83 CSRS and the vertical datum is
CGVD28 with the geoid model HT2.0. The data is projected to the UTM projection zone 17 N.

As expected with the low-cost customer-grade GPS receiver used, the position readings deviate
from the accurate positions. The deviations are shown in Fig. 5.22.

95



0510 20 30 40
HHE  Fimeters ¢ Trajectory

Fig 5.22: Deviation of the GPS readings to the accurate LIDAR ground truth

(Aerial captured 3D point cloud, color coded by height)
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Figure 5.22 indicates the positions recorded by the Garmin 18x LVC sensor positions reading. The
readings deviate considerably from the accurate ground truth data represented by the accurate
aerial LiIDAR dataset. The path followed during the data collection has been interpreted and
extracted from the aerial LiDAR data and the deviation to the superimposed GPS trajectory has
been measured. On average, the deviation is 15 m. Although the Garmin 18x LVC is a customer-
grade GPS sensor, the expected accuracy should still have been better than the deviation
experienced.

The large deviation in the readings may suggest the occurrence of unnoticed EMI while collecting
the data. In addition, part of the deviation could be attributed to the different datum used in each
of the two datasets, as the Garmin 18x LVC NMEA is referenced to WGS84 geographic, while
that of the aerial LIDAR dataset is referenced to NAD83 CSRS datum. Although the absolute
geolocation accuracy deviates from the ground truth data, the relative geolocation accuracy is quite
adequate, as depicted in the details captured and presented in Fig. 5.21. From a practical
perspective, the Garmin 18x LVC sensor could be used only for time-stamping the VLP-16 data.

5.4 The System as a Mobile Mapping System

In order to test the system in MMS data collection mode, a data collection mission has been
implemented. It is linked to the dynamics associated with using the system on a moving platform.
The original setup of the system uses the APX-15 as the POS sensor is used. Interestingly, the
APX-15 was originally developed and optimized for a UAV mapping application with an open
sky view for the GNSS signal reception. The new utilization of the sensor in an urban environment
with the multipath problem for the GNSS signal reception adds to the challenge of using it within
an MMS. Before reflecting on the MMS data collection mode of operation for the newly
developed system, a timeline of the system hardware integration versions is highlighted in Fig.
5.23.
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Fig 5.23: Timeline for the hardware integration a) Initial testing, b) Prototype version 1

c) Prototype version 2, d) Self-contained system

Initially, the system mounting on the vehicle relied on a tripod that was extended outwards from
the car sunroof panel, as illustrated in Fig. 5.24(a). Subsequently, a more practical and efficient
coupling has been achieved by introducing an ultra-light and compact three-arm suction-cup
mounting system originally used for DSLR cameras, as shown in Fig. 5.24(b). This practical and
efficient mounting system is achievable through the lightweight and small-form factor of the
system developed. The new mechanism enables the mounting of the system on any part of a
moving platform, which means it no longer has to be mounted on the car roof. Moreover, it does
not require a van, as is typically the case with the commercial mobile mapping systems currently
available on the market.
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Fig 5.24: System Car mounting a) initial b) practical and efficient

The data collection mission with the developed system deployed as an MMS has been carried out,
and a block within the Ryerson University campus has been mapped. The mapped area is depicted
through a satellite image from Google earth in Fig 5.25.

A base station was deployed in the middle of the area as shown in Fig 5.25 for around two hours
to enhance the accuracy of the post-processing trajectory solution. The Smoothed Best Estimate
of Trajectory (SBET) was calculated in a POSPac environment. The workflow depicted in Fig.
3.10 was followed to georeference the resultant point cloud. It is worth noting that the POSPac
environment was optimized for the UAV-based mapping application, as the utilization of the APX-
15 in an MMS as implemented in the present research is a new application for the sensor.
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Image

Fig 5.25: The area mapped in MMS mode

To quantitatively assess the output of the trajectory, it was superimposed on an orthophoto
depicting the area. The data collection followed two opposite direction movements of the car, as
is clearly depicted on the map by the double loops of the trajectory shown in Fig. 5.26.
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Fig 5.26: Double loops of the trajectory
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The performance metrics for the position and attitude determination from the SBET calculation
for the north, east, down position and the roll, pitch and heading attitudes are presented in Figs.
5.27 to 5.32, respectively.
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Pitch Error RMS (arc-min)
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As anticipated and shown in Figs. 5.27 to 5.32, the least precise measurements occur in the down
position and in the heading attitude determination. The north and east position RMS errors are 19
and 16 cm, respectively, while the down position RMS error is 0.57 cm. On the other hand, the
attitude RMS errors are 0.04° for the roll, 0.05° for the pitch, and 0.4° for the heading, which is
one order of magnitude worse than the roll and pitch precision. Keep in mind that the base station
was not deployed on a previously known control point, which means that the precision reported
should be regarded a measure of the relative accuracy.

To better enhance the absolute geolocation accuracy, the base station recorded readings have been
further processed through the NRCAN PPP service to provide decimeter-level absolute accuracy.
The assessment of the LiDAR data point cloud accuracy is challenging due to the non-selective
nature of the points captured. The challenge is further complicated if the assessment involves more
than one data source. A few of the differences between the data mapped by the developed system
and the accurate aerial LIDAR can be seen in the horizontal and vertical datum, the point spacing,
and the coverage field of view.

The resultant point cloud of the mapped area using the developed system is superimposed on the
accurate aerial LIDAR dataset along with the accurate orthophoto covering the area.

Comparing both of the data sources reveals that the aerial data misses the details of the building
sides, especially buildings of a few stories, whereas the system developed mainly captures the
building sides but lacks the top of the roofs. The orthophoto provides realistic true color imagery.
The data from the aerial LIDAR mission is shown in Fig. 5.33. Besides the ability to check the
accuracy of the mapped data by the fusion of the mapped data from the developed system and the
LiDAR aerial coverage, superimposing the data mapped by the developed system at hand
obviously fills in the missing building fagades from the aerial data coverage, proving the benefits
gained towards data completeness.
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Fig 5.33: Aerial LiDAR data coverage (color coded by height)

Fig 5.34: Aerial LiDAR data coverage (Missing areas);

Missing fagades are white

106



Fig 5.35: Data mapped by the developed system & Aerial LIDAR data coverage (color coded by
height); Missing facades are filled

Fig 5.36: Aerial LiDAR data coverage 2 (color coded by height); Missing facades are white
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Fig 5.37: Aerial LiDAR data coverage 2 (color coded by height); Missing fagades are filled

The qualitative assessment revealed a very good alignment between the two datasets, as
highlighted in the four immediate preceding figures. An added advantage is achieved by the fusion
of the two data sources to give coverage of both the fagades and the roof tops. Moreover, the street
furniture (e.g., traffic signs and light poles) is clearly mapped by the developed system while being
obviously missed by the aerial coverage. Due to the difference in vertical datum associated with
the two different datasets (the aerial LIDAR and the data mapped by the developed system), and
in order to estimate the height offset between the two datasets, a ground plan representing road
surfaces in both datasets has been extracted. Based on this, the vertical difference between the two
planes in the up direction has been measured and applied to the data mapped using the developed
system. Upon checking the aerial LIDAR data and the orthophoto, deviations in the order of ~2 m,
especially at the roof edges of high-rise buildings, as illustrated in Fig. 5.38 was observed.

Concerning the assessment of the mapped area using the developed system, the aerial LIDAR data
has been deemed the ground truth data and the orthophoto has been used for the better visual
interpretation for both point clouds (the aerial LIDAR and the MMS from the developed system).
In addition, the system repeatability and relative performance has been assessed by the utilization
of two opposite data collection directions. The deviations between the same features mapped from
the two opposite directions have been assessed as well, showing a very good alignment other than
the calibration for the boresight angles and lever arm misalignments. A sample of the results of
the assessment is shown in Figs. 5.39 to 5.43. .
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Fig 5.38: Aerial LiDAR data and the orthophoto deviations (same building side mapped by the
orthophoto and the LiDAR aerial coverage)

Fig 5.39: MMS data no deviation with Aerial LIDAR data; the orthophoto as background

(MMS data shown in yellow and Aerial coverage shown in cyan)
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Fig 5.41: Area coverage (MMS and aerial LIDAR)
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Fig 5.43: MMS & aerial LiDAR complementary coverage
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Qualitatively, the deviation between the data of the area mapped with the developed system and
the aerial LiIDAR data has been assessed and found to align well in many areas as highlighted in
Fig 5.41. On the other hand, the quantitative assessment of 3D point clouds is challenging. The
developed uncertainty model provides a statistically-based model that can be used for the data
validation for the 3D point gerorefrencing. The application of the uncertainty model provides the
accuracy estimate covering the whole point cloud area. This is in contrast with using reference
points. The accuracy estimated using reference points may not apply to the whole 3D point cloud
coverage and it requires more resources that may not be readily available.

Using the precision values reported for the position and attitude for the mission trajectory and the
precision values for the VLP-16 as described in section 4.4, the corresponding 3D georeferenced
point cloud positional accuracy is 64 cm (1o at 25m). Moreover, by the aid of the orthophoto
interpretation a number of measured distances between recognizable linear and planar primitives
in both the MMS point cloud and the aerial LIDAR ground truth data has been measured. The
deviation observed in many areas was in the decimeter level and the vertical deviation was less,
but still some areas with a deviation of around sub meter - 2m horizontal has also been observed
as shown in Fig 5.42. This may be attributed to the different reference datum both horizontally and
vertically for both MMS and the aerial LIDAR datasets, the base station has been on a non-known
coordinates control point. In addition, the APX-15 is originally optimized to be used in UAV-
applications with a clear open sky view for the GNSS signals, thus the multipath effect within the
urban area mapped will degrade the performance. The vibration and shaking of the system while
enclosed in the initial enclosure used. Figure 5.41 exhibits the very good alignment between the
aerial LIDAR data and the MMS data collected, while in Fig. 5.43, the added benefit of the
complementary coverage between both the MMS and the aerial coverage is clear.

The utilization of the new developed mapping system and its deployment as an MMS has been
proven to be successful, as illustrated by both the qualitative assessment of the visual interpretation
of the mapped area and the quantitative assessment with the validation against a survey-grade
aerial LiDAR dataset.

Moreover, the combination of two different coverages (aerial and MMS) shows complementary
data coverage with a higher percentage of data completion. This is another important factor that
highlights the significance of the developed architecture, as the developed system is platform-
independent and the same mapping system can readily be applied in MMS and ULS mode.
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5.5 MMS Tilted Orientation

The VLP-16 is a LiDAR sensor developed originally for autonomous vehicles navigation. The
deployment of the sensor with its spinning axis almost vertical is deemed more optimal, as it allows
for the use of the full range of the sensor to see objects far from the vehicle, enabling the
autonomous control system to act accordingly. This orientation of deployment is considered sub-
optimal for the mapping purposes, since it will still allow for vertical gaps between the LiDAR
beam readings. In addition, the relatively long range of scanning would map the features multiple
times, as the vehicle pass-by, which magnifies the effect of any imprecision in the DG mapping
process

In order to test the benefits gained in the mapping process and the effect on the mapped data, a
tilted orientation of the system is deployed in the MMS mode. The inclination of the system such
that the VLP-16 spinning axis is nearly vertical will flip the 360° field of view for the sensor across
track to scan the buildings and other features on both sides of the street, which is typically the main
focus of any MMS application. Using the same approach, the degradation caused by having coarse
gaps between the beams in the horizontal direction of the mapped objects (which may result in
missing thin objects) can be compensated for as the vehicle naturally moves along the track
direction.

The setup of the system with the applied orientation mounted using the practical efficient three-
arm suction cups mount is depicted in Fig 5.44.

1% IR
gl | y

Fig 5.44: The system deployed in MMS mode

1) The system , 2) The car mount, 3) The control unit, 4) Hyperspectral camera
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Figure 5.44 shows the orientation applied to the system while mounted in MMS mode of operation.
The control unit is decoupled from the system and placed apart to lessen the interference it may
cause to the light small GNSS antenna used. Furthermore, the control unit allows for the full
control and operation of the system without the need to use a laptop or any other device. The
interfacing with the control unit is achieved through a 3.5-inch screen. This adds to the ease of
deployment and practicality of the system usage. In addition, Fig. 5.44 show a hyperspectral
camera whose data would be integrated with the mapping system in a future phase.

The system’s multimodal sensor data integration follows the scheme described in Chapter 3, after
which the direct georeferencing procedure (as detailed in Chapter 4) is applied. The original
horizontal orientation sample reading is portrayed in Fig. 5.45, while the reading according to the
orientation at hand applied is illustrated in Fig. 5.46. In both of these figures, we can see that
differences between the horizontal and vertical fields of view in the two orientations are obvious.

Fig 5.45: System sample reading (system horizontally mounted)

1) Vertical gaps

Fig 5.46: System sample reading (system mounted tilted)

1) Better mapping for higher objects 2) street floor 3) fine details ,curb, 4) horizontal gaps
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Figure 5.45 shows a longer range in the along-the-track direction, meaning that the same area will
be mapped multiple times as the vehicle moves. This introduces cluttering in the resultant point
cloud, as the imprecision in the attitudes and position will be emphasized with the multiple
scanning of the same features while moving. Moreover, it misses mapping the street ground. On
the other hand, as indicated in Fig. 5.46, the frame-reading occurs when the system is oriented and
the street level floor is correctly mapped. The view in the across-track direction is considerably
shrunken compared to the horizontal orientation of the system, thus decreasing the cluttering
associated with mapping the features multiple times. In addition, fine details such as the street
curb are mapped, with higher features being better mapped.

It is worth noting that the vertical gaps experienced with the horizontal orientation shown in Fig.
5.45 are now flipped to horizontal gaps that are naturally filled by the car movement itself. This
is further illustrated in Fig. 5.47. The Fig portray a building with a very clear representation, a
traffic sign, a lamp post; even the intersection markings and hanging wires are correctly mapped
as shown in Fig 5.48.

Fig 5.47: A sample Mapped area with tilted system mount

115



Fig 5.48: Sample of road markings mapped

In order to have a better natural color representation, a new 3D point cloud colorization approach
is proposed and implemented. Several areas already have orthophoto imagery, and this imagery
can be utilized in the LiDAR data colorization. The proposed and implemented procedure can be
summarized as follows. To register the 3D LiDAR point cloud to the 2D imagery, the LiDAR data
3D point cloud is transformed to 2D imagery using the intensity values, following which the 2D-
2D image registration can be performed. The 2D-2D image registration is carried out using a semi-
automated process, where a high-pass filter is applied to the images to highlight edges and corners
that can then be used as candidates for the control points on both images to perform the registration.
Once the edges are highlighted, a number of interactively selected points on both imagery are used
in the polynomial 2D-2D image registration equations.

A more challenging environment has also been tested, the available 2D imagery from Google Earth
or Google Street View can be used in the colorization process, subject to receiving the proper
copyrights permissions. However, due to the lack of geolocation information associated with the
imagery, the different perspectives used to capture the images (in the case of Google Earth’s aerial
imagery), and to aid in the registration process, the point of view used to extract the images has
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been changed to resemble that of the LIDAR data MMS data collection. A number of interactively
selected points (typically at rood intersections) has been used to register the LiDAR-based
transformed 2D images and the Google Earth imagery

Once registered, the color information from the true color imagery is linked to the 3D point cloud
and used in the colorization.

Fig 5.49: System Original point cloud
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Fig 5.50: System colorized Point cloud

The original 3D point cloud and the colorized 3D point cloud after applying the colorization
procedure are shown in Figs. 5.49 and 5.50, respectively. A comparison of these figures clearly
shows the better visualization appeal when the point cloud is colorized. This improvement
enhances the visual interpretation related-tasks, thus satisfying more end-user requirements.

118



6. THE MAPPING SYSTEM REALIZATION: UAV MODE OF
OPERATION, SfM AND DSM GENERATION

The final mode of operation to be tested is the deployment of the developed system in UAV-based
mode. The system should meet the most stringent requirements to be deployed in UAV LiDAR
mapping system ULS mode, as the ULS mode poses the strictest SWaP system characteristics that
need to be met. This is due to the UAVs limited payload, short flight endurance, and the vibration
and interference from the UAV own electronics. In addition, the limited space on the UAV adds
another challenge to the ULS deployment.

For the number of advantages, the multirotor UAV feature, as ease of use, accessibility, operability
in confined spaces, and lack of need for specific conditions at the field environment for take-off
and landing (as opposed to the fixed-wing UAV), the multirotor type has been selected for the
UAYV deployment. Nevertheless, it worth highlighting that the developed system can also be
deployed on fixed wings UAV. The DJI M600 pro is selected to be the UAV platform for
deployment. The DJI M600 pro list of specifications is presented in Table 6.1 while its
performance is presented in Table 6.2. The M600 is a professional drone that can easily
accommodate the system developed and provide a descent time of flight.

Table 6.1: The DJI M600 pro UAV specs

Attribute
Diagonal Wheelbase 1133 mm

1668 mm x 1518 mm x 727 mm with propellers,

Dimensions frame arms and GPS mount unfolded (including
landing gear)

Weight (with six TB48S batteries) 10 kg

Max Takeoff Weight Recommended | 15.5 kg

Table 6.2: The DJI M600 pro Performance

Attribute
Hovering Accuracy (P-GPS) Vertical: £0.5 m, Horizontal: £1.5 m
Max Angular Velocity Pitch: 300°/s, Yaw: 150°/s

119



Max Pitch Angle 25°

Max Wind Resistance 8 m/s

Max Service Ceiling Above Sea 2170R propellers: 2500 m
Level 2195 propellers: 4500 m
Max Speed 40 mph / 65 kph (no wind)

Hovering Time (with six TB48S

batteries) No payload: 38 min, 5.5 kg payload: 18 min

Although the weight of the developed system is just 45% of the max payload for the DJI M600
pro UAV, the VLP-16 sensor used in the developed system can easily be replaced by the newer
lighter-weight VLP-16 Lite, which saves the difference in weight from the two versions. This
amounts to the difference between 830 g (the weight of the VLP-16) and 590 g (the weight of the
VLP-16 Lite), a savings that amounts to a 240 g. In addition, the version of VLP-16 used for the
present study features a long cable, which adds to the weight of the system as well. The new version
would feature the version with a shorter cable, thus saving extra weight. Hence, the developed
system can easily have a weight saving of around 0.5 kg, giving an overall weight of less than 2
kg. This represents a 20% reduction in the system weight and would add to the mission flying
time, which is critical in UAV-related tasks.

Other improvements have also been made. For instance, an easy and efficient way of mounting
the developed system to the M600 has been implemented. The mounting mechanism chosen is a
simple L-shaped angle bracket, along with an extra boxed shape just to add a layer of protection
to the system while mounted. The simplicity of the mounting mechanism allows the developed
system to be deployed to any other UAV without having to modify the platform. Another challenge
that needed to be met is the interference the UAV multirotor and other UAV electronics
components may pose on the developed system’s GNSS antenna signal reception. In order to
overcome this obstacle, the system’s antenna needed to be elevated above the UAV electronics
and rotors. This has been accomplished by a simple yet effective solution — by using a plastic cone.
The plastic cone is lightweight but can still resist wind and maintain the stability of the system
antenna. Further, its lightweight character will not add much weight to the max payload capacity.
In addition, a metallic circular plate has been attached to the bottom of the system antenna to
reduce the interference. The developed system mounted on the M600 is shown in Fig 6.1.
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Fig 6.1: The System mounted in ULS mode on the DJI M600

1) The M600 & batteries , 2) The developed mapping system , 3) box shaped cage, 4) M600
landing gears 5) The VLP-16 , 6) The M600 antenna , 7) The plastic cone , 8) The system
antenna

Figure 6.1 shows the various components of the ULS system modules and the M600 platform. As
can be seen, the VLP-16 has been mounted with its spinning axis almost horizontal, so that the
field of view will allow the mapping of the area under the M600 as it cruises. It is critically
important to calculate the mounting angles and lever arms and provide those calculations to the
APX-15 before the commission of the flying mission.
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Four sets of measurements need to be determined and entered, as follows:

1- The mounting angles from the Reference frame (the VLP-16 in the research at hand) to the
IMU body frame;

2- The mounting angles from the Vehicle frame to the reference frame;

3- The lever arms between the Reference frame and the IMU body frame resolved in the
Reference frame;

4- The lever arm between the Reference frame and the antenna phase center APC resolved in
the vehicle frame.

These parameters need to be correctly determined and entered before commencing the flight
mission, otherwise erroneous results would be reported by the POSPac from the SBET
calculations. One of the obstacles and challenges that has been experienced in one of the field data
collection mission is the drastically negative impact caused by EM interference. In one of the
missions, a hyperspectral camera was mounted, with a large-size lithium-ion battery used as its
power source. These items were deployed along the developed LiDAR mapping system, as
depicted in Fig. 6.2 below.

Fig 6.2: The System mounted in ULS mode with Hyperspectral camera

1) The Hyperspectral camera 2) The LiDAR-based system
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The effect of EMI is paramount on the GNSS signal reception, as demonstrated in Figs. 6.3 to 6.4
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Fig 6.3 shows the GPS L1 Signal-to-Noise Ratio which appears to be lower than the expected
average of ~40 dB/Hz during the flight. It returns to the average at the end, which appears to
coincide with the switching-off of the large-size lithium-ion and the hyperspectral camera,
suggesting these devices as the source of interference attenuating the GNSS signal for the
developed system. In addition, Fig. 6.4 depicts the GPS/GLONASS L1 Satellite Lock/elevation,
and it appears to show the occurrence of numerous cycle slips, which is not normal with satellites
at 30° or above relative to the horizon. The effect on the L2 signal is even more profound; in Fig.
6.5, complete outage of satellites is observed.

GPS/GLONASS L2 Satellite Lock/Elevation
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Fig 6.5: GPS/GLONASS L2 Satellite Lock/elevation

The effect of interference on the PPP solution is likewise apparent using the NRCAN PPP service,
as shown in Figs. 6.6 and 6.7.
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Analysis of the data presented in Figs. 6.3 to 6.7 reveals the drastically negative effect of EM
interference on the GNSS signal reception, highlighting the importance of mitigating such
interference. However, mitigation can be challenging, given the limited space available on board
the UAV and the electronics and circuits that must be present.

6.1 Pre-flight planning

In order to ensure a successful flight mission, a number of factors need to be taken into
consideration. These include parameters pertaining to the GNSS data, such as the number of
satellites at the area of collection, DOP, availability, and other telemetry data of the GNSS
constellations. In addition, weather conditions during the proposed flight time, such as wind, gusts,
humidity and precipitation must be considered, along with other measures such as the K-index,
which alerts for geomagnetic storms that might affect the GNSS signals. Other logistics measures
also need to be taken into consideration according to the airspace type where the flight will take
place (i.e., whether it is near an airport, hill port, a restricted airspace or not). Moreover, since
optical imagery is also collected for the SfM analysis, the flight plan need to include a flight
autopilot pre-defined trajectory, where the area under consideration for mapping is covered by
overlapping imagery to maintain the front-lap and side-lap percentage of coverage.

As well, the APX-15 needs to be initialized to be able to define a local level frame of reference.
This is achieved by applying cycles of accelerating and deaccelerating with hovering. In addition,
flying in a box-shape flying pattern (Fig. 6.8) during the initialization process ensures a proper
heading alignment.
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Fig 6.8: Box shape flying pattern for rotor UAV
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6.2 System Deployed as ULS

A ULS data collection mission has been planned and executed. The area mapped covers the Lion’s
Valley Park in Oakville, Ontario, Canada. A layout of the area covered is shown in Fig. 6.6. The
area has been selected to test the performance of both the LiDAR-based developed system at hand
and the SfM optical imagery workflow. The main features of the area are low vegetation, along
with tall trees, a creek, and a pedestrian walking corridor. In addition, some metal sheds with a
recognizable roof geometry are present.

As a first step, the system’s components have been checked, including the power sources. The
mounting angles between the APX-15, VLP-16, and M600 pro have been determined and
programed into the APX-15 interface. In addition, the lever arm between the reference frame and
APX-15 body frame has been measured (resolved in the VLP-16 reference frame), the lever arm
between the APC and the VLP-16 reference frame has been measured (resolved in the vehicle
(M600 pro) frame) and has been entered into the APX-15 configuration settings. All three
coordinate reference systems for the APX-15, the vehicle, and the VLP-16 are right-handed
coordinate systems. The VLP-16 has been mounted such that its Y-axis points down, its X-axis
points to the starboard, and its Z-axis points forward. On the other hand, the APX-15 is mounted
with its Y-axis pointing down, its X-axis pointing to the port, and its Z-axis pointing down. The
vehicle (M600 pro) has its X-axis in the flight direction, its Y-axis pointing to starboard, and its
Z-axis pointing down. These mounting parameters will not change unless the system needs to be
redeployed in another configuration.

The area covered is Lion’s valley park in Oakville, Ontario. The location of the park is presented
in Fig 6.9
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Fig 6.9: Lion’s park area layout (mapped area with the system in ULS mode)

The location of the Lion’s Valley Park is given in Fig. 6.9. As shown in the figure, the mapped
area includes tall and short trees, a water creek, a walking path, and sheds. A base station was set
at the area using a TRIMBLE R9S GNSS receiver and a Trimble Zephyr 2 antenna. The base
station recorded its static position for three hours for post-processing analysis. The system
components were rechecked at the field site. The APX-15 initialization was performed and the
POS data recorded onboard the APX-15, while the VLP-16 data was recorded on the system
control unit for further post-processing.

The overall area has been mapped by the developed system at hand, deployed on the M600 pro
UAV. The flying height was set to 20 m and a number of overlapping flight strips were flown to
map the area. In addition, the DJI Phantom 3 professional drone was utilized for the optical
imagery data capture needed for the SfM workflow analysis. The DJI Phantom 3 specifications
are shown in Table 6.3, while the specifications for the camera onboard the drone are shown in
Table 6.4 As can be seen in the figure, there is a huge difference in size between the M600 pro and
the LiDAR system deployed, relative to the Phantom 3 professional drone.
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Table 6.3: Phantom 3 professional specifications (AIRCRAFT)

Attribute
Max Flight Time Approx. 23 minutes
Satellite Positioning Systems GPS/GLONASS
Vertical:

Hover Accuracy Range

0.1 m (with Vision Positioning)
0.5 m (with GPS Positioning)
Horizontal:

1£0.3 m (with Vision Positioning)

1.5 m (with GPS Positioning)

Table 6.4: Phantom 3 professional specifications (Camera)

Attribute
Sensor 1/2.3" CMOS
Effective pixels: 12.4 M (total pixels: 12.76 M)
Lens FOV 94° 20 mm (35 mm format equivalent) /2.8 focus at o

Electronic Shutter Speed

8 - 1/8000 s

Image Size

4000x3000

Still Photography Modes

Single Shot

Burst Shooting: 3/5/7 frames

Auto Exposure Bracketing (AEB): 3/5 bracketed frames at
0.7 EV Bias

Timelapse

Video Recording Modes

UHD: 4096x2160p 24/25, 3840x2160p 24/25/30
FHD: 1920x1080p 24/25/30/48/50/60
HD: 1280x720p 24/25/30/48/50/60
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Fig 6.10: The system in ULS mode

1) Phantom 3 Professional 2) Base station

Fig 6.10 shows the huge difference in size between the M600 pro and the LIDAR system
deployed relative to the phantom 3 professional drone.
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6.2.1 LiDAR data collection

The developed system has been mounted on the M600 pro, the on-site pre-flight check has been
performed, and the APX-15 has been initialized at the field site, as described in section 6.1. The
hardware connections between the different components of the mapping system and the UAV
platform have been made. The VLP-16, which is a state-of-the-art, lightweight, compact-size
LiDAR scanner, is a time-of-flight laser scanner. Unlike laser scanners that use a mirror for data
collection, the VLP-16 consists of 16 pairs of emitters and receivers that rotate to cover 360°
around the scanner, thus providing 3D real-time scanning of the environment. The scanner can
measure 300,000 points/sec., enabling it to map an area while mounted on the M600 pro. Further,
the VLP-16 16 beams have been oriented to be at nadir by mounting the scanner with its spinning
axis almost horizontal. The form of mounting allows the device to capture the area under the UAV,
with a swath width depending on the LiDAR range

Although the advertised range for the VLP-16 is 100 m, practical testing shows that the typical
range is around 60 m. It is probable that the 100 m advertised range occurs with highly reflective
objects. The geometry of the VLP-16 capturing the area mapped is depicted in Fig. 6.11. As shown
in the figure, the 16 beams cover 16 circular arcs due to the rotation in 360°. Also, since the sensor
is, with its spinning axis, almost horizontal, the 16-beam coarse vertical resolution is highlighted
by the distance between the beams, as shown in Fig. 6.11. As the UAV cruises, the gaps are filled
by another set of firings for the 16 beams until the area of interest is mapped.

VLP-16 16beams

Fig 6.11: The VLP-16 beams and the gaps in-between

132



6.3 Optical Data collection

The DJI phantom 3 professional has been used for the optical imagery data collection. After doing
the flight plan to cover the area so the trajectory would be fed to the autopilot and maintain the
time requirements for the DJI battery running time, the frontlap has been set to 70% and the sidelap
to 50%. The flying mission to capture the overlapping images to cover the area of interest and
maintain the 50 m height to be safe from possible collisions with tall trees, lasted around 15
minutes.

The trajectory of capturing the images and to maintain the front and side lab is shown in Fig 6.12

Fig 6.12: DJI autopilot imagery capture trajectory

A sample of the imagery captured is presented in Fig 6.13
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Fig 6.13: DJI sample imagery captured

Although the DJI Phantom 3 Professional is a mid-cost drone, it has a powerful stabilized imagery-
capturing mechanism, which is evident by checking the sample imagery captured

6.4 Captured Data Analysis (LiDAR)

The VLP-16 data is time-stamped and synchronized by the APX-15 PPS signal. The APX-15 and
GNSS data are then combined and adjusted by the base station readings to produce the SBET of
the trajectory of the data collection mission. The data streams from the GNSS, the APX-15 and
the VLP-16 are then joined and the DG equation is applied to produce the georeferenced LiDAR
point cloud of the area. The processing of the LiDAR data and its fusion with the POS readings
follows the procedure described in section 3.4 and summarized in the workflow shown in Fig.
3.10.

The lay-out of the M600 trajectory and the performance metrics of the SBET file are shown in
Figs. 6.14 to 6.20.
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Fig 6.14: A top view of the M600 trajectory
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From Figs. 6.14 to 6.20, we can see that the SBET performance metrics showed the least precision
in the heading angle and the down position, respectively. The precision reported is considered
relative, as the base station was set at point with unknown coordinates.

The georeferenced LiDAR data are shown in Fig. 6.21 below

Fig 6.21: The geo referenced LiDAR data

The track numbered 1 in Fig. 6.21 is simply the result of the LiDAR scanner beams when rotating
360°. Because of the mounting setup deployed, the beams hit the M600 Pro’s belly and thus map
the trajectory followed by the M600 Pro. It serves as check for the georeferencing process and to
highlight the trajectory within the resultant point cloud. If the resultant data need to be visualized
without the track of the M600 Pro, the point cloud can easily be edited and the track removed.
Checking the data presented in Fig. 6.20, the qualitative assessment of the developed mapping
system performance at hand shows very good results. The only drawback is the effect of the
boresight and lever arm misalignment, resulting in a deviation between same mapped objects from
different strips which can be alleviated by performing a specialized system calibration.
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A sample of the data collected and the fine details mapped is shown in Fig 6.22 below.

VR0 Ry e

e,
-';.‘

<

s
Fig 6.22: Sample from Georeferenced point cloud

Figure 6.22 clearly shows the ability of the developed system to map fine details, which are marked
and highlighted in the figure, as follows:

1- The Shed

2- The BBQ

3- Part of the trajectory from the reflected laser beams on the M600 belly
4- The BBQ ash bin

5- A moving person

Figure 6.22 also shows an empty portion of the point cloud which follows the walking path present
in the mapped area. The lack of data in this area might be attributed to the path being wet at the
time of the LIDAR mapping. The LiDAR operates in the NIR wavelength range of 905 nm, which
is absorbable by water and which might explain this behavior. It is also important to point out the
presence of shadows within the mapped area. Specifically, the LIDAR data may get reflected by
an object, and the area behind that object would not be mapped, as it has been shadowed.

In order to quantitatively assess the noise present in the data, the georeferenced 3D point cloud
forming the southern side of the shed (shown in Fig. 6.22 above) was investigated. A plane was
fitted to the 3D point cloud using RANSAC, and a mesh was created from the fitted plane. The
normal distance between the points and the mesh surface was then calculated and the resulting
distances are color-coded and presented in Fig. 6.23. A histogram of the point distances to the
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mesh surface is shown in Fig. 6.24. As can be seen in the figure, the histogram follows a normal
distribution curve with a mean value equal to almost zero; the standard deviation of the point
distances to the mesh surface has been found to be 4 cm. This is a very good result, considering
that the VLP-16 range precision is 3 cm. Thus, having the 3D georeferenced point cloud deviate
only 4 cm to the fitted surface highlights the successful deployment of the developed system in
ULS mode and the high precision it attains. The results are also shown in Fig. 6.23, which presents
the points color-coded by the deviation distance. This has been qualitatively proven by the fine
details the system has been able to map, as illustrated in Fig. 6.22 above.

Fig 6.23: Georeferenced 3D points’ distances to the mesh surface of the southern side of the park
shed (m)
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In addition, the northern side of the shed’s 3D point cloud has also been assessed. The results of
the assessment, which show the 3D points color-coded by the distances to the mesh surface, are
presented in Fig. 6.25, while the histogram is shown in Fig. 6.26. The standard deviation has been
found to be slightly better, with a value of 3 cm.

0.0333

0.0000

Fig 6.25: Georeferenced 3D points’ distances to the mesh surface of the northern side of the park
shed (m)
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A part of the ground has been assessed as well, with the results of the assessment showing the 3D
points color-coded by the distances to the mesh surface depicted in Fig. 6.27; the histogram is
shown in Fig. 6.28. The standard deviation was found to be 4 cm, which is the same value observed
for the 3D georeferenced point cloud of the southern shed, again highlighting the system’s
successful mapping of different materials and shapes with precision.

0.0333

0.0000

Fig 6.27: Distances to the mesh surface from ground georeferenced 3D points (m)
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Correspondingly, Polaris data collected in STLS mode were subject to the same criteria of fitting
a plane using RANSAC. The 3D point cloud was part of the northern side of the shed. In the
process, a mesh surface was created and the normal distances between the points and the mesh
surface were calculated. Likewise, the same procedure was applied to a sample of 3D point cloud
representing the ground area. A sample of the original readings from Polaris is depicted in Fig.
6.29, while the results of the distances of the 3D points to the mesh surface for the northern part
and the corresponding histogram are shown in Figs. 6.30 and 6.31, respectively. Additionally, the
sample of the 3D point cloud representing the ground area results and calculated histogram are
shown in Figs. 6.32 and 6.33, respectively.

Fig 6.29: Sample 3D point cloud from Polaris

1) Polaris Occupying station 2) Shed with higher level of details 3) A sign
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Fig 6.30: Georeferenced 3D points’ distances to the mesh surface of the northern side of the park
shed (m) Polaris
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By examining Fig. 6.30, the level of detail that can be mapped by the high-end Polaris scanner can
be seen, in that the corrugated pattern of the shed is correctly mapped. The corrugated pattern is
represented by the two peaks in the histogram in Fig. 6.31. The standard deviation has been found
to be 2 cm. It is worth highlighting that the accuracy of the Polaris system is 5 mm, as per the
manufacturer’s provided specifications sheet. The corrugated pattern may explain the standard
deviation of the 2 cm observed.

0.0333

0.0000

Fig 6.32: Distances to the mesh surface from ground georeferenced 3D points (Polaris)
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As shown in Fig. 6.32, Polaris captured a high level of detail in the ground surface pattern, as there
is variation in the 3D point distances to the mesh surface. This is due to the nature of the vegetation
cover in the area. Figure 6.33 shows the histogram representing the distances calculated. As can
be seen in the figure, it follows the shape of a normal distribution curve with a mean value almost
equal to zero. The standard deviation was found to be 2 cm. Note that the Polaris’s observed
precision of 2 cm is much less than the 5 mm listed in the specifications, but this may be attributed
to the corrugated shape of the shed and the nature of the vegetative cover in the ground area. The
accuracy of the 3D point distance to the mesh surface from the developed system has been found
to be in the range of 3-4 cm, which is very good compared to the 2 cm deviation observed using
the high-end Polaris system. Nevertheless, the 3-4 cm range utilizing the developed system could
be attributed to the precision of the system itself, whereas the variation in the Polaris case would
likely be due to the nature of the surfaces mapped, such as the detailed corrugated pattern correctly
mapped in the shed area and shown in Fig. 6.30.

6.5 Captured Data Analysis (SfM)

The captured imagery from the DJI Phantom 3 drone shows that, according to the pre-flight
trajectory programmed, the drone autopilot followed the path entered. The pre-defined flying path
for the autopilot maintained a 70% front lap and 50% side lap. The larger the front lap and side
lap, the greater the ability of the SfTM workflow to produce reliable results, as it increases the key-
points matched between the different overlapping imagery. Greater precision of the 3D geometry
of the area produced from the SfM workflow is related to an increased number of matched key-
points that appear in more than two images. Therefore, maintaining the front and side laps is crucial
for the SfTM workflow to operate reliably, so the usage of autopilot with a pre-programmed flight
trajectory is essential.

The overlapped captured images have been used to produce the 3D geometry of the mapped area
through a Pix4D environment. The presence of the geotagged information in the images EXIF
aided in optimizing the 3D data-making. The steps used for building the 3D map from the
overlapping imagery can be summarised as follows:

1- Reading the EXIF data to know roughly the image sequences and positions
2- Computing key-points in each image that are easily identifiable

3- Computing matches between the key-points

4- Calibrating the I0,EO camera parameters

5- Optimizing (recursive with steps 6,7 where uncertainties are calculated)

6- Optimizing with the geo information

7- Computing rematches

8- Dense-matching
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The area mapped by the DJI phantom 3 drone covers 7.5 acres and the average GSD is 2cm. The
resultant point cloud and the positions of the camera is shown in Fig 6.34.

Fig 6.34: Camera positions and the resultant point cloud

As seen in the figure, the general layout and the features and colors in the area are still adequate.
However, there are missing areas that are obviously problematic for the workflow to resolve. These
missing areas can be attributed to poor texture conditions and the presence of trees. For example,
the two trees that are clearly mapped and shown in Fig. 6.22 are missing in the produced 3D point
cloud from SfM. An example of the problematic areas for the SfM is illustrated in Fig. 6.35.

Fig 6.35: Missing area in the SfM output
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As shown, ray tracing is used to find the points in the different images that are used in the StM
processing. Again, it is obvious that the problematic areas are those covered by trees, as can be
seen in the right-hand side of the figure. The resultant 3D point cloud from the SfM has been
superimposed on top of an orthophoto covering the mapped area. This is depicted in Fig. 6.36.

Fig 6.36: 3D point cloud from the SfM workflow
(Color coded with elevation; lowest-blue; highest-red)

Figure 6.36 illustrates how the SfM workflow successfully captured the different elevation of the
features in the area. The high elevation red colored features represent the sheds and the increasing
sloped area at the top of the image. Nevertheless, the areas covered by trees are again problematic
and are missing, as Fig. 6.25 clearly depicts. This highlights the dependability of the STM workflow
on the features being mapped and the quality of the overlap and key matches between the images.
It still, however, shows very good results, correctly portraying the difference in elevation between
features. Moreover, it correctly depicts the water area and the walking path. These areas proved
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problematic for the LIDAR- based sensor, due to the nature of the LiDAR data operating in the
NIR, which is almost completely absorbable by water. Also, the SfTM output features the natural
colors and textures of objects, which is advantageous in visual interpretation-related tasks. Note
that the SfTM depends heavily on the matching between key-points and the number of images these
matches are present.

The quality-check parameters for the SfM model are presented in Tables 6.5, while the adjustment
results for the bundle block adjustment optimization are presented in Table 6.6. Table 6.7
highlights the number of 3D points calculated from 2D key-point matches. The values provided in
the three tables do not indicate any alarming values as defined by Pix4D processing environment,
suggesting an adequate resultant model. The average Automatic Tie Point (ATP) pixel re-
projection error magnitude and direction are visualized in Fig. 6.37.

Table 6.5: SfM Quality check

Images 62 out of 74 images calibrated (83%),

Dataset median of 8236.65 matches per calibrated
image

Camera Optimization 2.63% relative difference between initial and
optimized internal camera parameters

Matching median of 40425 keypoints per image

Table 6.6: Bundle block adjustment results

Number of 2D Key point Observations for | 498126
Bundle Block Adjustment

Number of 3D Points for Bundle Block 208501
Adjustment
Mean Re-projection Error [pixels] 0.223

Table 6.7: 3D points calculated from 2D key points matches

Number of 3D Points Observed
In 2 Images 160048 In 11 Images 94 In 21 Images 7
In 3 Images 31408 In 12 Images 50 In 22 Images 5
In 4 Images 9676 In 13 Images 23 In 23 Images 6
In 5 Images 3607 In 14 Images 3 In 24 Images 3
In 6 Images 1647 In 15 Images 3 In 25 Images 3
In 7 Images 949 In 16 Images 2 In 26 Images 4
In 8 Images 567 In 17 Images 20 In 27 Images 2
In 9 Images 286 In 18 Images 19 In 28 Images 1
In 10 Images 138 In 19 Images 12 In 30 Images 1
In 20 Images 10 In 32 Images 1
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Fig 6.37: Average automatic tie points ATP

Fig 6.37 shows the number of ATPs per pixel, averaged over all images of the camera model. The
image is color coded between black and white. White indicates that, on average, more than 16
ATPs have been extracted at the pixel location while black indicates that, on average, 0 ATPs have
been extracted. The larger the dark portion indicates less ATP and a less optimal 3D calibrated
model which is associated with sub-optimal imagery conditions. As it is shown with the SfM
model in airborne mode, the geolocation information through the imagery EXIF geotags aids in
the 3D reconstruction of the environment. The strength of the ATP matches and the camera
positing uncertainty is highlighted in Fig 6.38.

159



Pa =

; 7

&Y % :

L .,f" ; ) 4

(‘,{' SN / -4

L " “,i" ,f.

OIS ;i

6 NN "j.;

' js’ Fa 1
ey ;

S ;

a‘;ﬁf,” ?‘

LW

LA e st TUHER S 45 MRS

Lingriainty alipsas S00x magnifiod

25 222 444 GGG BEB 1111 1333 1555 1777 2000

Paurriber of mald o

Fig 6.38: 2D key points matches

Fig 6.38 demonstrates that the darker the link, the more point matches are present. The strength of
the matches is indicated by the images through the number of points matched. In addition, the dark
green ellipses indicate the relative camera position uncertainty of the bundle block adjustment.
The light color links represent the need for manual tie point additions, which would be problematic
in feature-less or poor texture areas. Simply acquiring more images (i.e., adding more information)
is not guaranteed to solve the challenge. Furthermore, the inversely proportional relation between
the number of matches and the uncertainty of the camera position solution from the SfM workflow
is also depicted in the figure, emphasizing the dependency of the SfM resultant model on the key-
point matches between the images.

The dependency of the resultant point cloud on the key-point matches between the images
reemphasizes one of the disadvantages of SfM, and unless the scale is constrained by GNSS or a
known measured distance, the output is up to scale. Nevertheless, it is still a cheap alternative and
has a texture and true color visualization which appeals to a wide range of end-users. Conversely,
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the 3D geometry is directly captured by the usage of the new LiDAR-based developed system, but
lacks texture and color information and performs sub-optimally in wet areas or over water bodies,
as has been highlighted in the data captured. Thus, to overcome the drawbacks of each approach,
the fusion between them is spontaneous.

6.6 DSM Generation:

To test the generation of the DSM from each data modality, the resultant 3D point cloud captured
by the LiDAR-based developed system at hand and the 3D point cloud built through the StM
workflow was used to generate a DSM for the mapped area. The conversion from the 3D
representation of the mapped area to a 2.5D representation of DSM followed the same unified
processing steps for the data modality of the LIDAR-based and optical imagery through SfM. The
3D data represented in las format has been projected to a raster format through applying a mean
filter to the data. Further, the data from both the LiDAR-based mapping system and the SfM optical
imagery has been masked with the exact same area boundary to unify the area covered by each.

A binning approach has been applied to the data to transform the 3D point cloud in the las format
to a raster-based format. The spatial resolution of the output raster data has been unified and
generalized for both data type sources to 20 cm to account for any misalignment or artifact that
may be present within the data. The same interpolation method (IDW and natural neighbor) has
been applied to fill in the areas with missing data, such as areas covered by trees (as was shown in
the SfM application) or wet and shadowed areas (as was shown in the LiDAR-based mapping
system utilization). The generated DSM from the data captured by the LiDAR-based mapping
system is presented in Fig. 6.39 and the DSM generated from the data resulting from the
application of the SfM workflow on the DJI Phantom 3 Professional optical imagery is given in
Fig. 6.40.
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Fig 6.39: LiDAR-based DSM
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Fig 6.40: SfM-based DSM
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By contrasting Figs. 6.39 and 6.40, which represent the LIDAR-based and StM DSM, respectively,
we can see the missing areas from the SfM approach caused by the presence of trees, as well as
the problematic wet and water areas from the LiDAR-based data. For a better interpretation, the
DSM from the LiDAR-based mapping system and the DSM from the SfM workflow are shown in
Figs. 6.41 and 6.42, respectively, overlaid on an orthophoto of the area.
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Fig 6.41: LiDAR-based DSM overlaid over Orthophoto
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Fig 6.42: SfM-based DSM overlaid over Orthophoto
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Quantitative assessment of the DSM generated from different data capturing mechanisms is
challenging. A DSM from a Polaris point cloud that covers the mapped area has been created. The
nature of producing the DSM and the georeferencing process is quite dissimilar to the LiDAR-
based developed mapping system, the SfM 3D output built from matching key-points in optical
imagery, and the Polaris dataset that has been captured with a terrestrial point of view. The
misalignment between the different datasets makes a simple subtraction between the pairs of DSM
error-prone. In order to neutralize any mismatching between the cell-by-cell positions from the
three datasets and to compensate for any misalignment between features, the relative height
differences between the same feature pairs on each dataset were compared independently. For
example, using the SfM DSM, for different random cells on each surface the height difference
between the shed surface and the ground surface was measured and compared to the height
difference between the shed surface and the ground surface in the Polaris dataset, which has been
deemed as the ground truth. Likewise, using the LiDAR-based USL DSM, for different random
cells on each surface, the height difference between the shed surface and the ground surface was
measured and compared to the height difference between the shed surface and the ground surface
in the Polaris dataset. It is worth noting that, typically in most of the applications (especially for
hydrology), height differences are more important than absolute elevation. The same applies for
line-of-sight-related applications.

Regarding differences between the highest and lowest points on the western shed and their
difference to the ground level, the Polaris dataset and the LiDAR based ULS developed system
showed good agreement in the shed height and the distance to the ground level. The agreement is
in the few decimeters range. The SfM showed slightly worse values.

The presence of GCPs and sufficient features in the area mapped might have provided a better
mean for the quantitative assessment task, especially for the tree-covered areas due to the different
viewing points of the ULS, SfM and Polaris. As noted, the ULS, SfM has an aerial viewing point,
while the Polaris has a terrestrial viewing point. Also, as stated in the qualitative assessment, the
StM workflow applied to the mapped area has been consistently problematic for tree-covered
areas. Still, the potential gain in augmenting both approaches through their fusion is evident for
the completeness and applicability of different environment coverage.

Additionally, the successful deployment of the developed LiDAR-based mapping system and the
good agreement of the derived data products from it (assessed qualitatively and quantitatively
against the state-of-the-art high-end terrestrial laser scanner, Polaris) proved the applicability and
versatility of the developed mapping system. To the best of the author’s knowledge, this is the
world’s first multipurpose LiDAR-based mapping system that is designed and developed to be
readily deployed in terrestrial, mobile and UAV modes of operation. The developed mapping
system has been successfully integrated on the hardware and software levels and successfully
deployed in the three different data acquisition modes, namely, static terrestrial laser scanning,
mobile mapping, and UAV laser scanning. The 3D point cloud of the mapped areas in the three
different modes of operation showed very good agreement against accurate datasets that had been
acquired by expensive, high-end LiDAR equipment.
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7. SUMMARY, CONCOLUSIONS, KEY CONTRIBUTIONS, AND
RECOMMENDATIONS FOR FUTURE RESEARCH

7.1 Summary and Conclusions

The main focus of the research presented was the development of a generic framework for a
multipurpose, platform-independent, LiDAR-based mapping system. The developed system uses
a direct georeferencing approach in 3D mapping and follows a plug-n-go concept, as it can readily
be deployed in three different modes of operation, regardless of the platform used. Although the
system uses non-high-end sensors, the qualitative and quantitative assessment of its deployment
in the three mapping modes proved its practicality, versatility, and accuracy for the final 3D
product. Further, the system’s ease of deployment and crosscutting ability in the three mapping
modes meets the needs of diverse end-user segments, and the system can easily be deployed in the
three modes of data acquisition, namely, stationary, mobile and UAV-based..

7.1.1 Generic framework of the system

A generic framework pertaining to system design and development processes was developed. The
system design criteria set in the present research was to develop a system that is cost-efficient yet
achieves up to survey-grade accuracy. Further, in order to have crosscutting deployment-ability,
the system needed to be platform-independent, while to meet the needs of diverse end-users, a
plug-n-go concept in the system design process was defined. Versatility and modularity were other
important design criteria for the mapping system. Finally, the flexibility of the system to be
adopted indoors and to have easily upgradable components was the last defining point in the design
criteria set.

To meet these criteria and to ensure the successful development of the system, a smart integration
scheme both on the HW and SW levels was implemented. Several processes were carried out,
starting with the optimized selection of the multimodal sensors constituting the building blocks for
a DG LiDAR-based mapping system. A balance was achieved between the cost, specifications and
function-ability of the components to be used in the three mapping modes. A carefully designed
housing for the system that allows for platform-switching capability was also developed, and the
relative placements of the system components were set in an innovative way that facilitates the
system deployment in stationary, mobile, and ULS modes. The efficient integration of sensors on
the hardware level between the POS and LiDAR sensor by the precise synchronization utilizing
the sequential PPS signal and the SGPRMC message was implemented. The fusion of the
multimodal sensors data streams was successfully carried out through the development of a new
workflow. The new SW integration workflow allows the operator full control up to the sensor
frame or sweep level. In addition, to decrease the turnaround time of the data products-generation,
the system is parallel processing- and cloud computing-ready

A new mapping scheme was defined that successfully enables the utilization of an originally-built
LiDAR scanner for dynamic environments to be used in stationary mode, thus allowing the
crosscutting deployment-ability of the developed system in both kinematic and static-related
mapping applications. The new mapping scheme overcomes the limited VFOV and vertical scan
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gaps associated with the LiDAR scanner by applying and measuring an incremental angular
change to the system.

A rigorous non-linear uncertainty predictive model of the system uncertainty was derived.
Moreover, aimed at to meet further end-user needs, a very low-cost variant of the developed system
was introduced to be used in stationary and handheld modes. To test the functionality and
operability of the developed system, the system realization was carried out covering different
environments and being deployed in the full three mapping modes. Additionally, a comparative
analysis of 3D point cloud generation through optical imagery SfM workflow and the LiDAR-
based ULS was implemented. The DSM generation using both approaches was carried out and
assessed.

7.1.2 System realization (Stationary mode)

Applying the new mapping scheme allowed for system deployment in stationary mode. The system
was used to map a building fagade, with the system mounted on a fixed tripod. The LiDAR scanner
limited VFOV and the vertical scan gaps between the scanning beams were substantially mitigated
by applying the new mapping scheme. A very low-cost variant of the developed system was also
introduced by using a (250 USD$) MoCAP sensor to measure the system’s incremental rotational
angular change. The data from the LiDAR scanner and the GPS customer-grade receiver was
synchronized and matched by the PPS and SGPRMC message, and the synchronization and
matching to the MoCAP sensor was achieved by using the NTP. The carefully designed housing
and the new relative placement of the system components permitted the practical and easy
deployment of the system in stationary mode. The qualitative assessment of the resultant point
cloud proved the successful application of the system in stationary mode, as fine details were
correctly mapped. The high-end Polaris system was used in a more quantitative assessment of the
system. A RMSE of 0.06 m in the measured dimensions of common extracted features from the
developed system point cloud and the Polaris point cloud was observed. The utilization of the
APX-15 had a slightly better result

7.1.3 System realization (MMS mode)

System realization in MMS mode was implemented in a challenging urban environment, and a
low-cost variant of the system with a MoCaP sensor was utilized in handheld mode. The developed
system’s light weight and small form-factor allowed for easy deployment in this mode. Also, the
newly developed system components’ data fusion workflow was applied to the mapped data. The
ability to control the LiDAR sensor data up to the frame level, as introduced with the developed
workflow, proved beneficial, as it allowed different levels of the mapped scene abstraction. Noise
filtering and a recursive ICP applied to each data frame greatly augmented the originally collected
data.

The developed system was deployed in MMS mode by mounting the system on a vehicle. The
system’s platform-switching capability (as a result of the carefully designed housing and the new
relative placement of the system components) allowed the system to be easily switched to be
mounted on a kinematic platform. Furthermore, the system’s small form-factor and light weight
enabled it to be mounted on a wide variety of vehicle types, from small sedans to SUVs.
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Additionally, street furniture and road surface markings were successfully mapped by the
developed system. The reported uncertainty values for the position and attitude of the SBET were
used in the developed uncertainty predictive model to estimate the georeferenced 3D point cloud
geolocation uncertainty. The geolocation uncertainty was found to be 64 cm. Deviations in the
decimeter to meter range were observed between linear and planar primitives in the developed
system’s 3D point cloud and in a more accurate aerial LIDAR data available for the area mapped.
The different perspective and horizontal/vertical datum between the aerial available data and the
MMS data may explain the deviations.

The developed system’s 3D point cloud was colorized through a new colorization approach that
made use of already available imagery of the mapped area or imagery in the public domain for the
mapped area. To register the 3D LiDAR point cloud to the 2D imagery, 3D-2D transformation
was applied to transform the 3D point cloud to 2D imagery using the intensity values. This was
followed by 2D-2D image registration using a semi-automated process. Once registered, the color
information from the true color imagery was linked to the 3D point cloud and used in the
colorization.

7.1.4 System realization (ULS mode)

The system was successfully deployed in ULS mode, with the system’s small form-factor and light
weight allowing for its deployment on a relatively small UAV platform. Moreover, the system’s
platform-switching capability (as a result of the carefully designed housing and the new relative
placement of the system components) allowed the system to be easily switched to be used in ULS
mode. EMI can have a drastic negative effect on the GNSS signal reception, as was experienced
in one of our missions. The presence of many electronics within the limited size of the UAV adds
to the challenge of EMI mitigation efforts.

Fine details were correctly mapped by the developed system in ULS mode. To measure the mapped
3D point spread of data, plane-fitting was applied to 3D point cloud samples, a mesh surface was
created, and the normal distance between the points and the mesh surface was calculated. The
standard deviation of the 3D point distances to the mesh surface was found to be 3-4 cm on
different surface materials. The same procedure was applied using the high-end Polaris system
data, with the standard deviation being 2-3 cm on different surface materials. The 3-4 cm range
utilizing the developed system could be attributed to the precision of the system itself, while the
variations in the Polaris case would likely be due to the nature of the irregular surfaces being
mapped and the amount of detail the Polaris can map.

7.1.5 SfM and ULS DSM generation

The 3D point cloud of the developed system deployed in ULS was used to test the system’s ability
to generate derived data and the accuracy, such as DSM. Mean filtering and IDW interpolation
were used to generate the DSM. A comparison of the system’s performance and the low-cost StM
photogrammetry-based workflow was carried out. A UAV equipped with optical camera was used
to capture overlapping images for the same mapped area. The SfM workflow provides an
economical way to generate 3D point clouds and derived products such as DSM. The SfM was
found to be problematic with tree-covered areas, as it was not generated in the resultant point
cloud. This may be attributed to the challenging nature of finding key-matching points in
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overlapping images with the presence of trees. On the other hand, a wet pedestrian corridor within
the mapped area was missed by the developed system. This may be attributed to the LiDAR
scanner being operating in the 905 nm, which is absorbable by water.

Relative height differences between the same feature pairs on the SfM and ULS datasets were
compared independently to the Polaris-generated DSM, which was deemed the ground truth data.
Some deviations in the decimeter range were observed between the Polaris dataset and the LiDAR-
based ULS developed system. The different data capturing perspectives may explain the deviation.
On the other hand, the SfM showed slightly worse values and was unable to map tree-covered
areas. The results showed that each approach application is challenging in a different type of
environment, such that SfM is problematic in tree-covered areas, while LiDAR-based mapping
degrades in wet areas.

The developed mapping system was successfully deployed in the three mapping modes, namely,
stationary, mobile and ULS. The results attained, as assessed both qualitatively and quantitatively,
proved the successful design and development of the DG LiDAR-based mapping system. The
platform-switching ability and the plug-n-go concept was experienced through system realization
in the different mapping modes. The new developed mapping scheme, the carefully designed
housing, the new innovative relative placement of the system components, and the system’s light
weight and small form-factor all enabled and contributed to the crosscutting deployment-ability of
the developed system.

7.2 Key Contributions

Some of the key contributions pertaining to the research presented are as follows:

e The generic system developed is a unique multipurpose 3D LiDAR-based mapping system
designed and developed to allow the crosscutting deployment-ability among the three
modes of operation.

e A new hardware-assembly approach was developed and implemented to allow such
versatility and ease of deployment for the developed system.

e A new software integration approach for the system’s multimodal data streams is
developed allowing for full control of the scanned data up to the single frame level and is
parallel processing- and cloud computing-ready

e A new application for an autonomous-vehicle-based sensor is tested in stationary mode

and a completely new use, namely, the mapping of building facades, were developed
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A new application of a UAV-based POS sensor in mobile and stationary modes was
introduced and is successfully tested, paving the way for the use of autonomous-vehicle-
based sensor as mobile mapping sensor in the three mapping modes

A complete rigorous uncertainty predictive model for any LiDAR-based mapping system
was developed and tested

The novelty of the generic system architecture and the developed mapping system allowed
patent filing; the research findings are patent pending.

The purpose-built developed system has a substantial cost-reduction compared to the state-
of-the-art commercial systems available. Furthermore, it has comparable performance
metrics, while adding the unique crosscutting deployment-ability in the three mapping

modes with maximum versatility and practicality.

7.3 Recommendations for future work

Suggestions and recommendations for future research work related to the present research work
are listed below:

A new data collection mechanism in stationary mode could be assessed by incrementally
changing the height of the system to allow for the vertical gaps to be filled.

The usage of two GNSS antennas could be assessed towards enhancing the accuracy of
heading determination, especially in stationary and low velocity-related applications.

Future work could also follow on the advantageous nature of LIDAR-based mapping and
SftM workflow by testing different environments and performing a more thorough
quantitative assessment.
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Appendices

Appendix A: Derivation of the Developed System Uncertainty Predictive Model

This appendix provides the complete derivation of the developed system uncertainty predictive
model. The relation between the RSS, POS measurements and the georeferenced point cloud can
be expressed through the direct georeferencing DG mathematical model. The LiDAR-based DG
mathematical model can be expressed as a functional model through Equation A.1 and a stochastic
model that is presented through Equation A.2. The complete derivation for the developed
uncertainty predictive model is provided below.

b
Py=ry(t) + RE(®).(R,.Ps() +12)  (A.D)
Where

Py; is the 3D coordinates of the point in the local level frame

ry;(t) is the time dependant 3D coordinates of the body frame origin in the local level
frame

Rf,l(t) is the time dependant rotation matrix from the body frame to the local level frame
(Defined through the time dependant roll, pitch, and yaw)
R? is the boresight rotation matrix between the body frame and the sensor frame

P is the 3D point coordinates in the sensor frame

l? is the lever arm between the sensor CS frame origin and the body frame origin

While the stochastic part for the LiIDAR-based DG mathematical model can be expressed through
the law of error propagation. The uncertainty in the 3D coordinates of the georeferenced point
cloud is related to the precision of the underlying VLP-16 and APX-15 measurements along with
the precision in boresight angles and lever arms determination. Equation A.2 presents the
stochastic part of the model.

Csys = ]Cpar]T (A.2)

Where
Csys 1s the variance-covariance matrix of the georeferenced 3D coordinates

It is a [3*3] matrix
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Cpar 1s the variance-covariance matrix of the random variables in the DG Equation (the

POS position, POS attitudes, range, scan angles, boresight angles, lever arms); it is a
[15*15] matrix

J  is the Jacobian matrix; the partial derivatives of the DG Equation with respect to the
random variables involved; it is a [3*15] matrix

In a more detailed representation and forward omitting the time dependent (t) symbol just for
clarity, the LIDAR-based DG Equation can be expressed as shown in Equation A.3.

Xy Xp pcos(w) sin(a) lx?
Yp| =|Ys| +ReRo R, *| ReRe Ry *|pcos(w)cos(@)|+[1y°] | (A3)
Zy I Zp|, psin(w) lzg

Where
Xp, Yp, 2, are the 3D coordinates of the point in the local level frame

Xp, Yy, Z), are the body frame origin time dependant 3D coordinates in the local level
frame

Ry, is the time dependant rotation matrix from the body frame to the local level frame
around the z axis with a yaw angle 6,

Ry, is the time dependant rotation matrix from the body frame to the local level frame
around the y axis with a pitch angle 6,

Ry, s the time dependant rotation matrix from the body frame to the local level frame
around the x axis with a roll angle 6,

R;  is the rotation matrix from the sensor to the body frame around the z axis with a
boresight angle 7,

R, is the rotation matrix from the sensor to the body frame around the y axis with a
boresight angle 7,

R; s the rotation matrix from the sensor to the body frame around the x axis with a
boresight angle 7,

w is the laser beam vertical angle
p is the range to the target

a is the laser horizontal angle

lxls’, lyls’, lzé7 are lever arm components between the sensor and the body frame origin
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The rotation sequence applied is a rotation around z-axis, followed by a rotation around the once-
rotated y-axis, and lastly a rotation around the twice-rotated x-axis. The rotation matrices
Ry, ng, Rg;R:, RTy, R;_can be more explicitly expressed as follows

Rgz

z

sinf, «cosf, O

[COSHZ —sin@, 0]
0 0 1

coS Hy 0 sinHy
Ry = 0 1 0

—sinHy 0 cos Hy

1 0 0
Ry = |0 cosf, —sinf,
[0 sinf, cos6,

R, = |sint, cost, O
0 0 1

[COST, —sSinT, 0]

COST, 0 sin Ty
RTy = 0 1 0
| —sinT, 0 cos 7y ]
1 0 0
R, = [0 cost, —sinty
0 sint, coST, |

Thus
1 0 0 cos, 0 sinby]rcosd, —sinh, 0
Rél = RexReyRez = |0 cosf, —sinb, 0 1 0 [sin 6, cosH, 0]
0 sin6, cos@, [|—sinf, 0 cosb, 0 0 1
cost,cosb, —cosf,sing, sind,,

Rf,l = |c0s0,sinb, + sinb,sinb,cosl, cosb cosb, — sind,sinb,sinb, —sinbcosb,
sinf,sinf, — cos,sind,cosd, sinb,cosl, + cosb,sinb,sinf, cosb,coso,
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And likewise Ré’ can be defined as follows:

, 1 0 0 cost, 0 sinty]rcost, —sint, 0
Rs = R Ry R, = 0 COSTy —SinTy 0 1 0 sint, cost, O
0 sint, costy l[—sint, 0 cost, 0 0 1

COST,COST, —COST,SinT, sint,

R? = | COST,SINT, + SINT,SINT,COST, COSTLCOST, — SINT,SINT,SINT, —SINT,COST,,
SINT,SINT, — COST,SINT,COST, SINTLCOST, + COST,SINT,SINT, COST,COST,

Substituting Rﬁ,l and Ri’ in equation A.3 and denoting cosas c and sinas s yields

Xy X, co,co, —cl,s0, s6, ]
Yol =|Yp| +|cOxs0, +50,50,c0, cO,c0,—s0,50,s0, —sb,c0,|x
Zp),  1Zb]y  156:58, — cOx50,c0, $6:cO, + cO,50,50, OO, |
CTyCT, —CTyST, ST, pc(w) s(a) lx?
CTyST, + STySTCT, CTxCT, — ST,STyST, —srxcry‘ * lpc(w) c(a)|+ lyf
STyST, — CTxSTyCT, STyCT, + CTxST,ST,  CTCT,, ps(w) 17"
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Calculating R2. P (t) + I© yields

CTyCT, pc(w) s(@) — ctysT, pc(w) c(@) + styps(w) + le

CTyST, PC(w) S(Q) + ST,ST,CT, pc(W) (@) + €T, T, pc(w) (@) — STSTYST, pc(w) c(@) + —sTcTyps(w) + lyisj

[ STST, pe(w) $(@) — CTxSTy,CT, Pe(w) S(@) + STRCT, pc(w) (@) + CT,ST), ST, pe(w) c(@) + cTxcTyps(w) + lzé7 J

And multiplying by R!

c6,co, —clys0, s6,
€0ys0, + 50,50,c0, cO,cl, —s0,50,s0, —s0,c0,|x*
560,50, — cO,50,c0, s0,c0,+ cO,50,s0, cO,cO,

CTyCT, pc(w) s(@) — ctysT, pc(w) c(a) + styps(w) + le

CTyST, PC(w) S(Q) + ST,ST,CT, pc(w) (@) + €T, T, pc(w) (@) — STSTYST, pc(w) c(@) + —sTcTyps(w) + lyisj

| ST,ST, pe(w) s(@) — €TySTy,CT, pe(w) S(@) + ST, CT, pe(w) (@) + €T,ST),ST, pe(w) c(@) + cTxcTyps(w) + lzé7 J

ajq
Yields M = |Q12| where
a3

ag =

cBy,c0,ctycT, pe(w) s(a) — cB,c8,ct, 57, pc(w) c(a) + cb,c0,5T,ps(w) + cby,ch,lx? —
c0y50,ct, 5T, pc(w) s(a) — c0,560,51,5T,,cT, pc(w) s(a) — cbys0,cT, T, pc(w) c(a) +
¢0y50,5T,5T,,sT, pc(w) c(@) + ¢8,50,5T,cT,ps(w) — O, s0,ly2+ 56, *
(stesT, pe(w) s(a) — CTxSTyCT, pc(w) s(a) + sT,cT, pc(w) c(@) + cT,5Ty 5T, pc(w) c(a) +

cTycTyps(w) + 1z2)
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a;; =

cO,s0, * (ctyct, pe(w) s(a) — 1,87, pc(w) c(a) + styps(w) + Ix2) + s6,560,c6, *
(ctyct, pe(w) s(a) — ctysT, pc(w) (@) + sty ps(w) + Ix?) + cB,ch, *

(ctysT, pc(w) s(@) + $T,5Ty,CT, pe(w) s(a) + cTycT, pe(w) c(a) — sT,ST, ST, pc(w) c(a) +
—5T,cTyps(w) + 1yl ) — $6,560,50, * (cT,sT, pc(w) s(a) + sT,5T,¢T, pc(w) s(a) +

CTxCT, pc(w) c(@) — 5T,8T,, 5T, pc(w) c(a) + —sT,cTyps(w) + ly?) + —56,c0,, *

(sTx5T, pc(w) s(@) — €Ty STy, CT, pe(w) s(@) + sT,CT, pe(w) c(a) + cTySTy ST, pc(w) c(a) +
cTcTyps(w) + 1z2)

a3 =

50,50, = ( ctyct, pc(w) s(a) — cty,s1, pc(w) c(@) + styps(w) + Ix?) — cO,s0,cO, *
(crycrz pc(w) s(a) — cty,s7, pc(w) c(a) + styps(w) + le) + s6,.c6, *

( CTxST, pc(w) s(@) + 51,57y, pc(w) s(a) + cTycT, pc(w) c(a) — sT,5Ty 5T, pc(w) c(a) +
—sT,CTyps(w) + y?) + 6,560,506, * (ctyst, pc(w) s(a) + ST, STy CT, pc(w) s(a) +

CTxCT, pc(w) c(@) — 5T,8T,, 5T, pc(w) c(a) + —sT,cTyps(w) + lysb) + cOyc, *

(sTx5T, pc(w) s(@) — €Ty STy, CT, pe(w) s(@) + sT,CT, pe(w) c(a) + cTySTy ST, pc(w) c(a) +
cTcTyps(w) + 1z2)

Thus, Equation A.3 can be rewritten in a simplified way as shown in Equation (A.4):

Xp Xp ap;
Yol =|Ys| + alzl
Zy I Zy I as
Rearranging
Xp Xp+ag
Vol =|Yptaz| (A4
Zp I Zb + a3
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Revisiting Equation A.2 to calculate the uncertainty attached with the developed mapping system.

Csys = ]Cpar]T

The 15 random variables involved in Equation A.2 can be grouped as shown in table A.1

Table A. 1: The LiDAR DG Equation 15 random variables

Group Variables

POS position Xp, Yy, Zp
POS attitudes(roll, pitch, yaw) 6,0,,0,
LiDAR(range, vertical angle, horizontal scan p,w,a
angle)

Calibration-based parameters:
(Boresight angles) Ty Tys Ty

(lever arm sensor and body frame l?) I x? I yb lzb
) S} s

The Jacobian matrix J is computed through the partial derivatives of the DG Equation with respect
to the 15 random variables involved. The J matrix is a [3*15] matrix. The J matrix would be given
by Equation A.5.
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[2Xp 0%, 0Xp OXp OXp O0Xp ox, 0X, 09X, 0Xp O0Xp OXp 3Xp OXp OXp ]
|ox, ovy, o0z, 096x 06y 06; 9p dw da Oty Ity I, AL L Alyd alz? |

J= o, 9vp 9y OYp 0%y 0%y 0%, 0% 0% BV, 3V, I O O Y
ax, aY, 9z, 06, 096, 36, ap dw da dt, 9ty 0dt, dlxP Ayl ozl
9z, 0z, 0%y 0z, 0z, 0z, 0Zp 0%y 0Zp 0z, 0z, 0z, 0%, 3Z, 3%

ax, ovy, 0z, 06, a6, 096, Op 0w da dt, O1, dr, oL D Ayl o

(A.5)

i
[E—

Differentiating X,, Y, Z, w.r.t the 15 random values, and evaluating at the initial values for the
15 random variables as listed in Table A.2 allows the population of the Jacobian matrix.

Table A. 2: The 15 random variables used in the error propagation and their initial values

Group Variables Initial values
POS position X, Yy, 2y 0,0,0

POS attitudes(roll, pitch, yaw) 6,0,,0, 0°,0°,0°
LiDAR(range, vertical angle, horizontal p,w,a 100, 0°,0

scan angle)

Calibration-based parameters:
(Boresight angles) Ty Ty Ty 0°,0°,0°

(lever arm sensor and body frame 12) I, 1y, 1 7 0,0,0
) S' s

The variance-covariance matrix Cpq, can be populated with the 15 random variables variances
which are typically reported as (1o) and assuming that the variables are independent, the off
diagonal elements for the Cy4, matrix would be zero. Solving Equation A.2 yields the system
uncertainty values for the georeferenced 3D point cloud positions. It is worth noting that the
developed system uncertainty predictive model can be used to estimate the uncertainty of any DG
LiDAR-based mapping system.
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Differentiating the X,, Equation:

aXp . a(Xb + all) —1
0X, X,
6Xp _ O(Xb + a11) —0
ay, oY,
6Xp _ O(Xb + a11) —0
0z, 0z,

aXp _ a(Xb + all) _ aall _

20,

26, 20,
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6Xp _ a(Xb + a11) _ 6a11
39, a9, a0,
= —s0,

* ( cl, cty ct, p c(w) s(a) — b, ct), 5T, p c(w) c(a) + cb, sT) p s(w)

+co, lx? — 50, ¢ty 5T, p c(w) s(a) — 58, 5T, ST, T, p (W) s(@)
— 58, ¢ty cT, p c(w) c(@) + s, sT, 5T, 5T, pc (W) ¢ (@) + 58, 5T, €Ty, p S(W)
—s0, lyi’) + 0, * (sT,ST, pc(w) s(a) — cT,STyCT, pc(w) s(@)

+ 57T, pc(w) c(@) + €T,ST, ST, pc(w) c(a@) + cTcTyps(w) + lz?)

aXp _ G(Xb + a11) _ 6a11
30, 30, a0,
= —s6,

* (CHycrycrz pc(w) s(a) — cb,ct,, 57, pc(w) c(a) + ¢, 5T, ps(w) + cHyle)
+ c0, * (—cO,cT,sT, pc(w) s(a) — c0,5T,5T,,cT, pc(w) s(a)
— O, ctct, po(w) c(a) + ¢8,5T,5T,5T, pc(w) c(@) + ¢, 5T,cT)pS(W)

— COylyi’ )

aXp _ a(Xb + a11) _ 6a11
ap ap ~ dp
= cb0,c0,ctycT, c(w) s(a) — cB,c0,cT,5T, c(w) c(@) + cb,cH,5T,s(w)
— €0,50,c7,5T, c(w) s(@) — ¢0,50,5T,5T,,cT, c(w) s(@)
— ¢0,50,c1cT, (W) c(a) + ¢B0,50,5T,5T,5T, c(w) c(a) + ¢0,50,5T,cT,s(W)
+ 56,57,5T, c(w) s(@) — 58,7, ST, T, c(w) S(@) + 50,,5T,CT, c(w) c(@)
+ 56,,c7,5T, 5T, (W) c(a) + sO,cT,CT,5(W)

aXp _ G(Xb + a11) _ 6a11

Jw Jw Jw
= —sw

* ( c0,c0,ctyct,ps(a) — cb,cl,ct,sT,pc(@) — €0,50,cT,5T,ps(Q)
— 0,506,557, 5T, cT,p5() — 0,50, cT T, p0(@) + €0,50,5T, ST, ST, pc(a)
+ 560, 5T,ST,ps() — $0,,cT,ST CT,pS(@) + 50, 5T, CT,pC(Q)

+ SGycrxSTySTch(a)) + cw * (c0,c0,51,p + c0,50,5T,cT,p + 50,,CT,CT,P)
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aXp _ a(Xb + a11) _ 6a11

oa da da
=ca
* ( c0,cl,ctyct, pc(w) — c6,50,c1,5T, pc(w) — ¢0,50,5T,5T,, T, pc(w)
+ 560,,5T,ST, pc(w) — s6,,cT,5T)CT, pc(w)) — sa * (—cByc,ct,5T, pc(w)
— 8,50, ct.cT, pc(w) + ¢0,50,5T,5T,,5T, pc(w) + 50,5T,T, pc(w)
+ 56,,c1,57,, 5T, pc(w))

aXp _ G(Xb + a11) _ 6a11

0T, dt, dt,
= —ST,
* (—CHySGZSTZ pc(w) s(a) — cb,50,c1, pc(w) c(@) — s0,5T,cT, pc(w) s(@)
+ s6,57,57, pc(w) c(a) + sHycryps(w)) + ¢ty * (¢0,50,57,cT, pc(w) s(@)
+ ¢0,50,57,57, pc(w) c(a) + cB,50,cT,ps(w) + 58,57, pc(w) s(a)
+ s6,ct, pc(w) c(@) )

X, _ d0(X, +aqq) _ daq
at, at, at,
= —sT,
* (CHyCHZCTZ pc(w) s(a) — cb,cl,s1, pc(w) c(a) + ¢b0,50,5T,ps(w)
+ sHycrxps(w)) + ¢ty * (¢8,c0,ps(w) — 0,508,577, pc(w) s(@)
+ ¢0,50,57,5T, pc(w) c(a) — 5O, ctcT, pc(w) s(a) + s6,cT,5T, pc(w) c(a) )

aXp _ G(Xb + a11) _ 6a11

or, ot, -~ 01,
= —S5T,
* ( c6,c,cty, pc(w) s(a) — cO,s0,5T,5T), pc(w) s(a) — ¢b,,s50,c1, pc(w) c(a)
— 50,,cT, 5T, pc(w) s(@) + 560,57, pc(w) c(a)) + ct, * (—cb,c0,c1y pc(w) c(a)
—¢0,50,c1, pc(w) s(@) + ¢6,50,5T,sT), pc(w) c(a) + s6,57, pc(w) s(a)
+ 56,,c7,5T, pc(w) c(@))

aXp G(Xb + a11) 6a11
= 5 = L= CHyCHZ
dlx; dlx; dlx;
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aXp 6(Xb + a11) aall
5 = 7 = > = —cBySHZ
aly, aly, aly,

aXp . a(Xb + a11) _ aall _

= = s
olz’ olz’ olz>

y

Differentiating the Y, Equation:

aYp _ O(Yb + alz) —0
X, X,

aYp _ O(Yb + a12) 1
av, oY,

aYp _ a(Yb + alz) _
97, 97,
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aYp _ O(Yb + a12) _ 6a12
20, 20, 20,

= —s6,50, * ( cTyCT, pc(w) s(a) — ¢1,,5T, pc(w) c(a) + sT,ps(w) + lx?)
—s6,co,

* ( CTxST, pC(W) (@) + ST,STyCT, pc(w) s(@) + cT,cT, pe(w) c(@)

— ST,STyST, pc(w) c(@) + —sT,cTyps(w) + lyi7 ) — 56,560,506,

* ( CTxST, pC(W) (@) + ST,STyCT, pc(w) s(@) + cT,cT, pe(w) c(@)

— STxSTyST, pc(w) c(@) + —sT,cTyps(w) + lyf) + ¢0,s0,c0,

* (CTyCTZ pc(w) s(a) — ¢ty 5T, pc(w) c(a) + sT,ps(w) + lx?) — B, 50,50,
* ( CTxST, pC(W) (@) + ST,STyCT, pc(w) s(@) + cT,cT, pe(w) c(@)

— ST,STyST, pc(w) c(@) + —sTcTyps(w) + lyi’) — €0,c0,, * (51,57, pc(w) s(@)
— CTy ST, CT, pC(w) S(@) + ST,CT, pc(w) c(@) + €T,ST, ST, pc(w) c(a)
+ ¢t ps(w) + lzf)

aYp _ a(Yb + a12) _ aalz
a8, aa, a0,

= c0,, 50,0, * ( CTyCT, pc(w) s(@) — ¢ty ST, pc(w) c(@) + styps(w) + lx?)
— 0,560,560,

* ( CTyST, pc(w) S(@) + ST,5Ty T, pc(w) s(@) + cTycT, pc(w) c(a)

— ST,STyST, pc(w) c(@) + —sT,cTyps(w) + lyls’) + 50,50, * (57,57, pc(w) s(a)
— CT, ST, CT, pc(w) s(@) + sT,CT, pc(w) c(@) + ¢T,5TyST, pc(w) c(a)
+ ¢ty ps(w) + lz?)

Yy _ d(Yp+ayz) _ 0
a—e’z’ = gTan = %122 = ¢0,c0, *(ctyct, pc(w) s(a) — ctysT, pc(w) c(a) + sty ps(w) +

Ix2) — $6,50,s6,, * (crycrz pc(w) s(a) — ctyst, pc(w) c(a) + styps(w) + Ix2) — 56,c0,
(ctysTz pc(w) s(@) + ST,5TyCT, pe(w) s(@) + cTycT, pe(w) c(a) — 5T,5T, 5T, pc(w) c(a) +
—5T,cTyps(w) + 1yl ) — 0,560,560, * (cT,sT, pc(w) s(a) + sT,5T,¢7, pc(w) s(a) +
CTxCT, pc(w) c(@) — 57,87y, 5T, pc(w) c(a) + —sT,cTyps(w) + ly?)
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aYp _ G(Yb + alz)
ap ap
= c60,s0, * (crycrz c(w) s(a) — cty,s7, (W) c(@) + STyS(a))) + 56,560,060,

* (cTycT, c(w) s(@) — €Ty, ST, c(w) c(a) + 5TyS(W)) + cO,cO, * (CTyST, (W) s(a)
+ ST,STyCT, C(w) S(@) + cT,CT, ¢(w) c(@) — ST,ST,, ST, (W) c(@)

+ =57, S(W) ) — 0,560,508, * ( cT,ST, c(w) s(@) + 5T,ST,CT, (W) s(a)

+ cT,cT, (W) (@) — ST,ST,ST, (W) (@) + —ST,CTyS(w)) + —56,cO,

* (ST,ST, C(w) S(@) — €TxSTy,CT, (W) S(@) + ST,CT, (W) c(a)

+ €T,8T,ST, c(w) c(@) + cT cTys(w) + lz?)

y

v, _ d(Yy +ap)
ow dw
= —swch,s0, * (crycrzps(a) - crysrzpc(a)) — swsB,s6,co,

(
(

+ sws6,s6,s0,

*(cTycr ps(a) — crysrzpc(a)) —swch,co,

*( CTeST,pS(@) + ST,ST, CT,ps(a) + cTcT,pe(a) — srxsrysrzpc(a))
* ( CTyST,pS(@) + ST, STyCT,ps(@) + cTcT,pc(@) — srxsrysrzpc(oc))
+ sws6,.ch,,

* (srxsrzps(a) — CT, STy CT,ps(a) + sTecT,pc(@) + crxsrysrzpc(a))
+ cwch,50,5T,p + cwsb,s0,c0,5T,p — cwchd,cO,5T,CT,p

+ cws0,50,50,5T,cT,p — cwsO,cO,cT TP

v, _ a(Yy+ asz)

da oa
= caclys,ct,ct, pc(w) + sact,sb,ct,sT, pc(w) + cas,s6,cl,ct,ct, pc(w)

+ sas6,s6,,c0,ct,57, pc(w) + cach,cO, * (c1,ST, pc(w) + ST,ST,,CT, pc(w)

— sach,cl, * (cTycT, pc(w) — ST,ST,ST, pc(w)) — casb,s6,s6,

% (cT,ST, pc(w) + 57,57y T, pc(w)) + sasf,s6,s6,

* (T, pe(w) — ST,ST, ST, pe(w)) — casB,cly, * (ST,sT, pc(w)
— CTy STy, CT, pe(w) + 5as0,cO,, * (ST,CT, pc(w) + €T, ST, ST, pc(w))
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aYp . a(Yb + alz)
ot, a7,
= —57,0,c0, * ( 5T, pc(w) s(a) + T, pc(w) c(@)) + cT,cH,c0,

* (srycrz pc(w) s(a) — stT,sT, pc(w) c(a) — cryps(a))) + 57,56,56,,50,

* (51T, pc(w) s(@) + c1, pc(w) c(@)) — cT,50,560,50,

* (srycrz pc(w) s(a) — st,sT, pc(w) c(@) — cryps(w)) — CT,S0,c0,

* (T, pc(w) s(@) + ¢, pc(w) c(a@)) + 50,0, (—cT,STyCT, pe(w) s(a)
+ 57,57, pc(w) c(@) + ¢ty ps(w))

Yy _ a(Yp + asr)
at, at,
= —sT,c0,50,(ct, pc(w) s(a) — sT, pc(w) c(@))
— 57,,50,50,,c0,(ct, pc(w) s() — sT, pc(w) c(@)) — sT,cO,c0,

* (crxsrz pc(w) s(a) + ctyct, pc(w) c(a) — srxcryps(a))) — 57,,56,50,s6,

* (—=sTeps(w)) + s7,50,0,,cT ps(w) + cTy,c,50,5T,ps(w)

+ ¢1,50,50,c0,57,ps(w) + cT,c0,cO,

* (STLCT, pe(w) S(@) — ST,ST, pc(w) c(@)) — 150,560,560,

* ( ST,CT, pc(w) s(a) — sT,5T, pc(w) c(oc)) — €Ty50,c0,, * (—cTcT, pc(w) s(@)
+ c1,57, pc(w) c(a))

aYp _ G(Yb + alz)
ot, ot,
= —s7,00,50,cT), pc(w) s(a) — s1,50,50,,c0,cT), pc(w) s(a) — sT,c0,cH,

* (srxsry pc(w) s(a) + cty pc(w) c(a)) + 57,50,50,50,

* (srxsry pc(w) s(a) + ct, pc(w) c(a))

+ s7,50,.0,, (—crxsry pc(w) s(a) + st, pc(w) c(a))

— €T,0,50,c1,,5T, pc(w) c(a) — ¢T,50,560,c0,cT, ST, pc(w) c(@) + ¢T,c0,c0,
* ( Ty pc(w) s(@) — ST,ST), pc(w) c(a)) — ¢1,50,50,s0,

* (crx pc(w) s(a) — sT,5Ty, pc(w) c(a)) — €1,50,¢0,, * (sT, pc(w) s(a)

+ 1,57y pe(w) c(@))

ay (Y, +
iz < ba12) = c0,s0, + s0,s6,c0,
dlx; dlx;
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aY a(Y,+
P = s + a15) = cO,c0, —s0,s6,s0,

oly” aly”
aY a(Y, +
b Yy ba12) —
dlzg dlzg
Differentiating the Z,, Equation:

aZp _ a(Zb + a13) ~0
Xy aXy
aZp . a(Zb + a13) ~0

ay, aY,

aZp _ O(Zb + a13) 1

d0Zy, d0Zy,
aZp . a(Zb + a13) _ aall
90, a0, ~ 90,
= c0,s0, * ( CTyCT, pc(w) s(@) — ¢ty ST, pc(w) c(@) + sTyps(w) + lx?)
+ cO,co,

* ( CTyST, pc(w) S(a) + ST,STyCT, pc(w) s(@) + cT,cT, pe(w) c(@)
— ST,STyST, pc(w) c(@) + —sT,cTyps(w) + lyls’) + 56,s6,0,
* (crycrz pc(w) s(a) — ¢ty sT, pc(w) c(a) + st,ps(w) + le) — s6s6,s6,
* ( CTyST, pc(w) S(@) + ST,5TyCT, pc(w) s(@) + cTycT, pe(w) c(@)
— ST,STyST, pc(w) c(@) + —sT,cTyps(w) + lyi’) — 58,0, * (51,57, pc(w) s(a)
— CT,STyCT, pC(w) S(Q) + ST,CT, pc(w) c(@) + ¢T,5TyST, pc(w) c(Q)
+ ¢ty ps(w) + lzf)
0Z, _ 0(Zy + a13) _ daqq
a0, a0, a0,
= —cB,c0,c0, * (CTyCTZ pc(w) s(@) — ctyst, pc(w) c(@) + styps(w) + lx?)
+ ¢, c6,s0,

* ( CTyST, pc(w) S(a) + ST,STyCT, pc(w) s(@) + cT,cT, pc(w) c(@)

— ST,STyST, pc(w) c(@) + —sTcTyps(w) + lyls’) — 50,c0, * (57,57, pc(w) s(a)
— CTy ST, CT, pC(w) S(Q) + ST,CT, pc(w) c(@) + €T, STyST, pc(w) c(a)

+ ctectryps(w) + lzls’)
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6Zp _ O(Zb + a13) _ 6a11
a6, a6, a6,
= cO,s0, * ( CTyCT, pc(w) s(@) — ¢ty ST, pc(w) c(a) + st,ps(w) + lx?)

+ 56,c0,50,, * (crycrz pc(w) s(a) — ¢ty 5T, pc(w) c(a) + st ps(w) + lx?)
— 560,50,

* ( CTyST, pc(w) s(a) + ST,S5TyCT, pc(w) s(@) + cTycT, pe(w) c(@)

— ST,STyST, pc(w) c(@) + —sT,cTyps(w) + lyi’) + ¢0,c0,s6,

* ( CTyST, pc(w) S(@) + ST,5TyCT, pc(w) s(@) + cTycT, pe(w) c(@)

— ST,STyST, pc(w) c(@) + —sT,cTyps(w) + lyi’)

aZp . a(Zb + a13)
op ap
= 50,50, * ( €T, CT, c(w) s(a@) — ¢TysT, c(w) c(a) + srys(a))) —c0,s0,c0,

* (CTyCTZ c(w)s(a) — c1y,57, c(w) c(a) + srys(w)) + s6,c0,

* ( €T, ST, c(w) s(a) + sT,5T, T, c(w) s(a) + cT,cT, c(w) c(a)

y
— ST,STyST, ¢(w) c(a) + —ercrys(w)) + c6,s60,s0,

* ( €T, ST, c(w) s(a) + sT,5T,cT, c(w) s(a) + cT,cT, c(w) c(a)

y
— ST,ST),ST, ¢(w) c(a) + —ercrys(w)) + 0,8, * (57,57, c(w) s(a)

— CTySTyCT, C(w) S(@) + ST,CT, ¢(W) €(@) + CT,STyST, (W) c(@) + cT,cTyS(W))

Yy Yy

aZp _ a(Zb + a13)
dw dw
= 560,50, * (—swcrycrz pc(w) s(a) + swcty,st, pc(w) c(a) + srypc(w))

— cOys0,cO, * (—chrycrz pc(w) s(a) + swcty,st, pc(w) c(a) + srypc(w))
+ s6,c0,
* ( —SWCTST, pc(w) s(@) — SWST,ST, €T, pc(W) S(a) — SWCTLCT, pc(w) c(a)

+ SWST,ST,ST, pc(w) c(a) — srxcrypc(w)) + c0,s6,s0,
* ( —SWCTST, pc(w) S(@) — SWST,ST, €T, pc(W) S(a) — SWCTLCT, pc(w) c(a)

+ SWST,ST,ST, pc(w) c(a) — srxcrypc(w)) + ¢0,cl,, * (—swsT,sT, pc(w) s(a)
+ SWCT,ST,CT, pe(w) s(@) — SWST,CT, pc(w) ¢(@) — SWCT,ST, ST, pc(w) c(a)
+ ctictypc(w))
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aZp _ O(Zb + a13)
da da
= 50,50, * ( cTyCT, pc(w) c(@) + cTy,sT, pc(w) s(oc)) —clys6,c0,

* (crycrz pc(w) c(a) + ct,,57, pc(w) s(a)) + s60,c0,

* ( CTyST, pc(w) c(@) + ST,STy T, pc(w) c(@) — €T, T, pc(w) s(a)

+ ST,ST, ST, pc(w) s(a)) + c0,s0,s0,

* ( CTyST, pc(w) c(@) + ST,STy T, pc(w) c(@) — €Ty T, pc(w) s(a)

+ ST,ST, ST, pc(w) s(a)) + 0,0, * (sT,ST, pc(w) c(a@) — cT,ST,CT, pc(w) c(a)
— ST,CT, pc(w) s(@) — €T,ST, ST, pc(w) s(a))

GZp _ G(Zb + a13)
ot, 0T,
= s6,co,

* (—STXSTZ pc(w) s(@) + ct,sT,,cT, pc(w) s(a) — ST, pc(w) c(a)

— CT, ST, ST, pc(w) c(a) + —crxcryps(a))) + c0,s0,s0,
* (—srxsrz pc(w) s(a) + ct,sTyCT, pc(w) s(@) — sTCT, pe(w) c(@)

— CT,STyST, pc(w) c(a) + —crxcryps(w)) + cO,ch,, * (ctysT,pc(W) s(a)
+ 57,57, CT, pc(w) s(@) + cT,CT, pc(w) (@) — ST,STyST, pc(w) c(a)
— ST,CT,ps(w))

GZp _ G(Zb + a13)
ot, ot

y y

= 560,50, * (—sr ct, pc(w) s(a) + st,sT, pc(w) c(a) + ct ps(a))) — c0,s0,c0,
* | —ctyct, po(w) s(@) + ¢ty sT, pe(w) c(a) — sryps(w)) + s6,c0,
* (€T, STCT, pc(w) s(@) — €T, ST,ST, pc(w) c(a) + srysrxps(a))) + c0,s0,s0,

ES

/\/’\/\

CTySTLCT, pc(w) s(a@) — €T),ST, ST, pc(w) c(@) + srysrxps(w)) + ¢6,cO,
* (—CTyCTRCT, pc(w) S(a) + €T, €T, ST, pc(w) c(@) — ST, T pS(w))
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aZp _ O(Zb + a13)
ort, ot,
= 56,50, * (—STZCTy pc(w) s(a) — ctyct, pe(w) c(a)) — c0,s6,c0,

* (—srzcry pc(w) s(a) — ct,cty, pe(w) c(a)) + 56,0,

* ( CT,CTy pC(W) S(@) — ST,ST,STy, pc(w) s(@) — ST,T, pc(w) (@)
— CT,ST, STy pc(w) c(a)) + c0,s0,s0,

* ( CT,CTy pC(W) (@) — ST,ST,STy, pc(w) s(@) — sT,T, pc(w) (@)

+ €T,57,5T, pc(w) c(a)) + cO,c0,, * (c1,5T, pc(w) s(@) + ST,CT,ST,, pc(w) s(@)
— ST,ST, pc(w) c(@) + €T,cT,ST), pc(w) c(a))

6Zp _ O(Zb + a13) _ 6a13

= 50,50, — c0,s0,c0,

ot ond i
0z, oz ?

p o 9t as) 003 _ oy g 4 0h,56,s6,
oly. aly, aly;

aZp O(Zb + a13) 6a13
b~ b = oy = C0xcly
dlzg dlzg dlzg
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Thus, the Jacobian matrix elements evaluated at the initial values yields:

For Xp :

Xy
3%, oo =

X,
a7, oo =°

0X

94 _ _
3. lo., = ~100

X,
% Po
oxX
p —

T lwo =0
0Xp, 100
Oa '@
0X,
a_‘[x Txo
aXP —
6_‘[3, Tyo -

0X
dt,

2|, =-100

Tz0
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For Yp :

X

=2, =
alz> o

aY B
X, Koo
aY
op,
aYb |Yb0 1
aY
W,
6Zb IZbo 0
aY
_r -
20, |9x0 0
aY B
20, 1oy, =
aY B
20, |‘920 B
aYp —
% Po
ay

p —
B loo =0
aY B
Oa '@
aYp —
a_‘[x T
av, B
a_'l.'y TYU -

Wy _ 100
6_‘[2720_

p
bl =
dlx,; 50

p
bl =
dlzg 50
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For Zp :
0z —0
a_Xb Xbo
YA _
a_Yb Yho —
YA
a_Zplzb =1
b 0
azp
30, 10x

0Z,
ﬁeyo_

=100

0z,
38, lo,, =

% Po -
dw l“’O
o '@

at, o

0z,
Fe. o, =0
Ty Yo

02y, _ 100
3z, e =

—— b —_—
Al so

— b —_—
alzl %o
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