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Abstract 

This thesis presents the development and application of a novel platform to train autonomous 

vehicles (AV) for urban roads. Interactive and immersive virtual reality (VR) environments are 

developed for the collection of mobility preference, behaviour, movement, and orientation data. 

The resulting naturalistic data can be used directly to train AV control systems. This platform is 

exemplified in an end-to-end case study resulting in a multi-objective braking system which 

maximizes both pedestrian safety and passenger comfort. It begins with the development of an 

immersive VR pedestrian road-crossing environment and compilation of a unique, naturalistic 

dataset. A vehicle agent is then successfully trained against the dataset, learning a multi-objective 

brake control policy using deep reinforcement learning methods and reducing the negative 

influence on passenger comfort by half while maintaining safe braking operation. This platform 

offers the opportunity to simulate complex, human-in-the-loop scenarios AVs will inevitably face 

and train them for these scenarios. 
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I. Overview 

1 Introduction 

1.1 Motivation 

Autonomous vehicles (AVs) and its technology has the potential to revolutionize or have a strong 

impact on many aspects of our civil society such as mobility, land use, individual behaviour and 

culture. Along with the continual advancement of the reinforcement learning paradigm for robotic 

systems and complex control tasks, the need for large and realistic training datasets is increasing. 

The quality of these datasets is central to the development of AVs, algorithms and tools need to be 

trained and evaluated before vehicles are deployed to physical environments. Most of these 

datasets are image-based and the annotated objects featured in them vary depending on the 

component of the AV system being developed and the learning approach used [1]. 

AV simulation platforms provide high-fidelity environments for data generation and to support the 

development, training, and validation of autonomous driving systems at a low cost. However, the 

traffic participants (pedestrians, cyclists, drivers) simulated in these platforms are confined to the 

underlying models used to describe them [2]. For example, some platforms include pedestrians in 

order to train vehicle agents to react to life-endangering situations that could occur in reality. 

However, pedestrian road-crossing behaviour is complex and can vary highly in aspects such as 

waiting time, pose, and path. These intricate behaviours can be difficult to simulate yet are crucial 

when considering pedestrian safety and the inevitable dangerous situations that AVs find 

themselves in. 
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The use of virtual reality (VR) as a data collection tool includes the capability to capture human 

movement, action and orientation data within highly customizable and well-controlled 

environments. Whether driving on or walking across a virtual road network, by providing 

respondents with a realistic and interactive experience, they can experience a sensation of 

immersion in the activities and their behaviour imitates that of the physical world [3], [4]. 

1.2 Thesis Scope 

Consider a common pedestrian road-crossing situation with an approaching vehicle. Both road 

users must be able to anticipate what the other intends to do.  Typically, the pedestrian will want 

to confirm that the driver is aware of them through eye contact, gestures, or by perceiving that the 

vehicle is slowing down. The driver should practice caution, confirming that the pedestrian is 

aware of their vehicle and, depending on who has the right-of-way, either prepare to react in the 

case that the pedestrian wrongly decides to cross or decelerate to let them cross safely.  

 

Figure 1: The Road-Crossing Scenario 
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The scope of this thesis is the road-crossing scenario in the absence of a human driver and the 

consideration of several environmental factors that affect a pedestrian’s road-crossing behaviour.  

1.3 Thesis Objective 

The first objective of this thesis is the development of a novel platform to collect and use 

naturalistic data towards the training of AVs for urban roads in simulation. The second objective 

is to illustrate the platform with an end-to-end case study in which pedestrian motion data is 

collected using VR and simulated directly in an AV training environment. The AV is trained 

against the collected data to learn a multi-objective policy for safe and comfortable brake control.  

In conjunction, these objectives contribute to the body of research methods and provides examples 

for the creation of complex, human-in-the-loop mobility scenarios for naturalistic data collection 

along with the ability to prepare AVs. 

1.4 Thesis Outline 

Chapter 2 provides an examination of popular AV-related datasets (2.1), prevalent AV simulation 

platforms (2.2), and state-of-the-art AV training techniques (2.3).  

Chapter 3 introduces VR as a data collection tool (3.1) and the novel Virtual Immersive Reality 

Environment platform (3.2). 

Chapter 4 outlines the deep reinforcement learning methods (4.1, 4.2) and reward function (4.3) 

used in the case study. 

Chapter 5 describes the data used in the case study (5.1), the training scenario, setup and 

parameters (5.2 – 5.4), and shows experimental results (5.5). 
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Chapter 6 provides final remarks along with a discussion of limitations and future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

 

2 Literature Review 

The platform presented considers two important elements for AV development: data and 

simulation. As such, the following review explores the current state of AV-related datasets as well 

as the simulation platforms used for training and testing. Additionally, recent techniques used to 

develop AV systems are reported and contrasted with the method presented in this thesis. 

2.1 Datasets 

As seen below, most datasets used for the purpose of training AV systems are comprised of image 

and video data. Algorithms with different objectives are typically trained and validated separately. 

As such, datasets tend to be captured and annotated for the purpose of training with a specific 

objective in mind (e.g. object detection and tracking) and there is a need for diversity among 

datasets in order to cover different scenarios and types of data to reduce the possibility of 

overfitting. For end-to-end systems, datasets must include sensory data such as vehicle control 

information. Lastly, some datasets are naturalistic which is to say they focus on human behaviour 

as opposed to hardware or the surrounding environment. In the context of driving, naturalistic data 

would include an individual’s features while driving such as the drivers’ gaze and attention [1]. 

Table 1 includes an overview of the features of the datasets reported in this section. 

2.1.1 Non-Naturalistic 

The PASCAL VOC dataset [5] was intended solely for object detection and classification and is 

comprised of images which include motorbikes, bicycles, cars and people. Although this was one 

of the first datasets relevant for AV systems, images tend to depict scenes that are not typically 

experienced in driving scenarios. Similarly, the KITTI Vision Benchmark [6] is an image database  
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Table 1: Comparison of Datasets 

Dataset Images LIDAR Naturalistic Weather Time 

PASCAL VOC ✓     

KITTI Vision Benchmark ✓ ✓    

BDD100K ✓ ✓  ✓ ✓ 

Oxford RobotCar ✓ ✓  ✓ ✓ 

Comma.ai ✓   ✓ ✓ 

LiVi-Set ✓ ✓    

SHRP2 ✓  ✓  ✓ 

Shanghai NDS ✓  ✓ ✓ ✓ 

Changchun NDS ✓  ✓ ✓  

 

containing labeled driving scenes and is one of the most widely used datasets for automated driving 

[1]. It was compiled by equipping a vehicle with color and grayscale video cameras, a laser scanner 

and a GPS localization system and driving around a mid-size city in rural areas and on highways.  

BDD100K [7] was collected by crowd-sourcing videos from tens of thousands of riders. The 

dataset includes driving videos from four separate regions in the United States, and scenes vary in 

street types, weather conditions, and time of day, but did not include information about the drivers’ 

themselves. The Oxford RobotCar Dataset [8] was collected by manually driving more than 

1000km over a 16-month time period. The same route was traversed over 100 times during the 

period using 6 cameras, lidar, GPS and INS, capturing various environmental conditions, types of 

road users, and light settings. While conditions are labelled (e.g. sun, overcast, night, detour, poor 
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GPS) for simple collection of a particular condition, videos are not annotated and driving 

measurements are not included. 

Comma.ai released a dataset [9] of videos totalling 7.25 hours of driving data along with several 

sensor measurements such as car speed, steering angle, and gyroscope, but is mainly restricted to 

highway driving while the LiVI-Set [10] includes point clouds and drivers’ behaviours in various 

driving environments. 

2.1.2 Naturalistic 

Naturalistic datasets have a focus on the context in which a vehicle is being driven in, and the 

driver itself. The Strategic Highway Research Program (SHRP2) conducted a Naturalistic Driving 

Study (NDS) [11] collecting over 3000 volunteer participants’ driving data during a 3-year period. 

It collected vehicle and sensor data and relative distances and speeds to surrounding vehicles while 

cameras captured the driver’s face and hands to monitor facial expressions, hand maneuvers. 

The Shanghai NDS (SH-NDS) [12] used the same SHRP2 NextGen data acquisition systems [11] 

to collect real-world driving data over a three-year period. Sixty driving participants were 

randomly sampled with a distribution of gender, age, and driving experience that represents the 

general Chinese driving population. 

Zhu et al. collected real-world driving data of 84 drivers of diverse sociodemographic backgrounds 

and driving experiences in order to compare driving styles in an urban environment along a route 

in Changchun, China [13].  



8 

 

 

While most datasets for use in AV development are image and video based and include the 

vehicle’s surroundings and actions (e.g. throttle, steering), many fail to account for the social 

factors that influence driving behaviour such as age, gender, and experience. 

2.2 Simulation 

In both research and industry, simulation is used extensively for providing quick and efficient 

insight regarding concepts, strategies, and algorithms along with their shortcomings before real 

life testing. Both the safety concerns and the cost of training and testing AV technology are 

circumvented through the use of simulation. Typically, these platforms have the ability to 

realistically simulate vehicles’ instrumentation and are comprised of a software stack capable of 

translation to a physical AV system. Table 2 includes an overview of the features included in each 

of the platforms reported on in this section. 

Table 2: Comparison of Simulation Platforms 

Platform Sensors Pedestrians Weather Time Urban Highway 

CARLA [14] ✓ ✓ ✓ ✓ ✓  

AutonoVi-Sim [15] ✓ ✓ ✓ ✓ ✓ ✓ 

AirSim [16] ✓  ✓ ✓ ✓ ✓ 

TORCS [17] ✓  ✓ ✓  ✓ 

 

TORCS [17] is a popularly used racing car simulator intended for the development of artificial 

intelligence (AI) agents for trajectory planning, control, and vision problems. The simulator 

features a simple damage model, collisions, tire and wheel properties, and aerodynamics and has 

been used in over 300 research papers as a benchmark for AI algorithms, however, it is not suitable 
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to train AVs for urban environments or situations which involve vulnerable road users such as 

pedestrians. 

AirSim [16] is a high-fidelity physical simulation platform for data generation and training 

algorithms. It provides realistic environments, vehicle dynamics, multi-modal sensing and the 

capability to develop AV systems using deep learning, imitation learning, and reinforcement 

learning. While AirSim provides urban road environments, its focus is on realistic sensor 

simulation and does not include road users such as pedestrians or cyclists.  

AutonoVi-Sim [15] is a high-fidelity simulation platform suited for the construction of complex 

traffic scenarios and includes other road-users such as cyclists and pedestrians. This inclusion 

allows for the exploration of situations that involve vulnerable road-users. The researcher can pre-

program pedestrians’ destinations within the road network and they will follow safe traffic rules 

to navigate to their goal. In order to simulate a jay-walking scenario, pedestrians can be setup to 

walk into the street in front the agent vehicle. However, based on video provided by AutonoVi-

Sim, pedestrians walk across the road at a constant velocity and are unable to provide complex 

information regarding intention such as head pose (looking direction). 

CARLA [14] is an open simulator for urban driving and supports training, prototyping, and 

validation of autonomous driving models and provides flexible specifications of sensor suits and 

environmental conditions. Like AutonoVi-Sim, CARLA also provides an implementation of 

pedestrians. They navigate the streets using a navigation map that conveys a location-based cost. 

The cost encourages pedestrians to use sidewalks and road crossings but allows them to cross a 

road at any point. While this approach is stochastic, it emphasizes only the time and starting point 
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of a crossing occurrence and not equally important aspects of pedestrian behaviour such as their 

head pose or varying velocities during the cross. 

2.3 AV Training Techniques 

Reinforcement learning (RL) is widely used to train an agent to interact with its surrounding 

environment. The agent learns by discovering which state-actions yield the most reward through 

trial-and-error. Deep reinforcement learning (DRL) has recently found success in bigger problems 

with more state-action pairs by using deep neural networks to approximate the state-action values. 

In both of these methods, a reward function directly determines the characteristics of the policy 

that the agent will adopt. Alternatively, inverse reinforcement learning (IRL) can be used for tasks 

in which the reward function cannot be predetermined or is not known. The goal in this approach 

is to find the reward function from sample data or expert demonstrations which best explain the 

behaviour presented. 

Zhu et al. explored a reinforcement learning based throttle and brake control approach for a form 

of the autonomous vehicle following problem [18]. Using Neural Dynamic Programming as a 

model-free RL method, a control value corresponding to throttle or brake intensity is derived from 

a Markov Decision Process (MDP) framework. Using CarSim, a well-known vehicle dynamic 

simulator, it was found that while the agent vehicle could derive near optimal control commands 

for the autonomous following problem, slight vibrating exists in the control commands during the 

follow distance regulation process.  

Vehicle-following was further explored in [19], using deep reinforcement learning and the SH-

NDS data to present a framework for human-like autonomous car-following planning. The 

scenario the agent is learned in is described as a simple car-following environment, with a lead 
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vehicle controlled by external input while the following vehicle’s speed, spacing, and velocity 

differences were initialized using SH-NDS data. Results include a model that was able to 

reproduce human-like car-following behaviour with higher accuracy than recent data-driven car-

following models such as the Intelligent Driver Model, a variant of widely used car following 

models [20]. 

Gao et al. uses IRL to develop a car-following decision-making system for complex traffic 

conditions, trained by simulation in a highway environment [21]. The data used to find the reward 

function are obtained by recording the driving data of two experienced drivers in a driving 

simulator. The data pertaining to each driver are shown to have unique characteristics and the 

algorithm was verified to have captured these unique characters in a reward function for each 

driver.  

Chowdhuri et al. presented a multi-modal multi-task learning approach to deep neural networks 

[22]. Multi-model learning combines different types of inputs while multi-task learning 

emphasizes training on side tasks. They introduced three distinct behaviour modes based on their 

own dataset which are used as a second type of input to the network, allowing for separate driving 

behaviours to form within a single multi-modal network. These modes are: a) Direct Mode, in 

which the car drives with few obstructions b) Follow Mode, in which the car follows a lead car in 

front of it, and c) Furtive Mode, in which the car drives slowly due to perceived boundaries such 

as bushes alongside the path. This approach inserts behavioural information directory into the 

network’s process stream, allowing for parameter sharing between related modes. 

Chae et al. proposed an autonomous braking system using DRL [23]. In the study, the agent’s 

sensors receive information about the pedestrian’s position and adapts the brake control to the state 
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change in a way that minimizes the chance of a collision. The system is based on a Deep Q-network 

(DQN). DQN is adapted from the RL method Q-learning [24] which iteratively searches for an 

optimal policy by using a Q-value function to calculate the expected sum of rewards for a state-

action pair. Q-learning falls short in this case due to the continuous state space, which makes it 

impossible to find an optimal value of a state-action pair. Instead, DQN approximates the state-

action value function using the deep neural network (DNN). This paper formulates the braking 

scenario as a discrete MDP model and defines a discrete action space using a set of four brake 

control intensities α0, αhigh, αmid, and αlow. 

Chen et al. looked at pedestrian-rich environments, keeping in consideration the diverse human 

behaviours found in such environments [25]. Using DRL, a time-efficient navigation policy for 

multiagent collision avoidance is learned. In shaping the reward function, social norms were 

included in such a way that the agent would receive a negative reward for breaking a norm, what 

it should not do; rather than rewarded for successful navigation, or what it should do. This method 

allows the agent to learn a policy that respect social norms not explicitly found in the features of 

pedestrian movement. 

2.4 Key Remarks 

Most datasets used for the purpose of training AV systems have a focus on developing specific 

components of the system and are labelled for those tasks. However, the largest and most popular 

datasets are not naturalistic, they do not contain enough information to capture the social aspects 

of mobility scenarios. For an AV system to fully understand the intentions of other traffic 

participants, they must be able to consider social behaviour [26]. For example, there are numerous 

factors that affect pedestrian’s crossing behaviour, including the presence of a driver in the vehicle 
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approaching [27]. Apart from on-board vehicle mechanisms (e.g. horn, signals, lights), 

communication between road users is often non-verbal and include facial expressions, eye contact, 

and gestures. As the utility of these types of communication become limited with the absence of a 

driver, there must be an emphasis on the other types of communication that occur between road 

users. As stated by Farber, these include anticipatory behaviour; predicting intention and 

movement based on the direction of a user’s behaviour, as well as scheme formation; anticipating 

behaviour based on the users’ characteristics (e.g. a child with a ball versus an elderly person with 

a walker) [28].  

Similarly, most simulation platforms tend to focus on sensor suite customization and data 

generation, disregarding the intrinsic social and communicative dimensions of traffic situations. 

These platforms are only as good as the underlying models used to describe traffic participants [2] 

and this problem is highlighted with the absence of pedestrians in most platforms and unrealistic 

implementations where they are included.  

Lastly, the RL paradigm and its variations are commonly used methods for AV behaviour 

development. In these cases, the type of data trained against and the formulation of the scenario 

and tasks are imperative. Some literature discretizes the action space despite vehicle control being 

best described as continuous, while others pay no attention to the passenger’s experience [21]–

[23]. 

The novel platform developed in this thesis addresses these issues. By compiling naturalistic 

datasets using realistic and immersive VR, the data can be directly used in simulation of complex 

traffic scenarios. These data capture participants’ habits, instincts, and sociodemographic 

information and is used in conjunction with DRL to learn a policy for brake control expressed in 
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a continuous action space, avoiding discretization, and a multi-objective reward function 

formulated by considering two conflicting objectives: the pedestrian’s perspective of the vehicle 

and the passenger’s experience in the vehicle. 
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II. Methodology 

In this thesis, a platform for developing AV systems using naturalistic data and reinforcement 

learning is presented. The platform is comprised of two main modules. Figure 2a. portrays the 

components used for data collection and is described in more detail in Chapter 3, while Figure 2b. 

illustrates the AV training module (Chapter 4) which uses the naturalistic data directly in a RL-

based training environment. 

 

Figure 2: Data Collection and Training Platform 

 

The case study (Chapter 5) demonstrates this platform. Naturalistic data is collected and used 

directly toward the learning of a multi-objective autonomous braking system for urban roads. 

Pedestrian motion data is compiled with the Virtual Immersive Reality Environment [29] and is 
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used to simulate a pedestrian walking across a road in front of an approaching vehicle agent. The 

simulated pedestrian can cross at any given time depending on the trial data used. By placing the 

vehicle agent in this uncertain situation, it learns to smoothly control its velocity while reacting 

safely as necessary in circumstances where danger is imminent. With a concisely defined reward 

function, a policy that maximizes passenger comfort while minimizing the chance of an accident 

occurring is learned. This policy for brake control is learned using two reinforcement learning 

methods i.e. Proximal Policy Optimization and Deep Deterministic Policy Gradient which are 

defined in the following sections. 
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3 Virtual Reality System 

3.1 Virtual Reality as a Data Collection Tool 

In transportation, Stated Preference (SP) experiments are considered to be a valuable tool used to 

evaluate behavioural responses towards forthcoming services and technologies. They present the 

respondents with framed, hypothetical scenarios in order to accurately assess their choice 

preferences [30]. However, there are situations in which SP surveys fail to realistically represent 

the exact choice scenario [31]. This criticism is prevalent in forthcoming AV related scenarios 

where the respondent has never had the opportunity to experience or interact with an AV, and 

therefore must base their preference on their own perception of the technology. In SP experiments, 

the use of visualization and simulation has shown to improve realism [31], allowing an opportunity 

to utilize VR technology for experiments regarding emerging technologies such as AVs.  

Major benefits of using virtual environments include the abilities to curate detailed and complex 

situations and analyze relevant data. Respondents are able to act naturally as well as make 

irreversible decisions that are difficult or expensive to recreate in the real world. An Immersive 

Head Mounted VR environment (IHMVR) is a VR display device that uses an optical system to 

directly present virtual scenes received by the display and works with the human brain to produce 

a strong sense of immersion [32]. Virtual environments which allow for movement may preserve 

the perception-action coupling that is critical in examining many visual timing skills [33].  

In this context, VR has been used several times before. Sobhani et al. studied the effects of multi-

tasking (walking and using smartphone) on adults’ street crossing performance by using a 

simulated intersection crossing task programmed in an IHMVR with an integrated audio and 

sensors which allowed close emulation of real word behaviour of pedestrians [34]. Neider et al. 
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used a high-fidelity street crossing simulator and showed that naturalistic cell phone conversations 

impair crossing performance and increase crash rates [35]. Similarly, Stavrinos et al. demonstrated 

significant costs to simulated crossing performance while conversing on a cell phone [36], [37]. 

3.2 Virtual Immersive Reality Environment (VIRE) 

Coupling the technologically advanced Head Mounted Display (HMD) with VR, the Laboratory 

of Innovations in Transportation (LITrans) introduced the VIRE platform [29] for a range of 

transportation experiments that are highly realistic, immersive, interactive and have the capability 

to collect additional information about the motion, orientation, and actions of the respondents. 

VIRE not only addresses the realism issue in SP experiments, but also enables researchers to design 

complex experiments while collecting naturalistic data. Through the use of VIRE, respondents can 

experience transportation technologies and scenarios realistically. By projecting the traffic 

simulation directly to their eyes, participants are able to experience and interact with fixed 

simulation objects (e.g. AVs, cyclists, etc.) in real-time. VIRE is also capable of collecting data 

relevant to study such as the participant’s gaze, the position of the participant and other simulated 

objects within the virtual environment, the participant’s and simulated objects’ speeds to name a 

few. In this thesis, the following hardware was used to run VIRE: 

• Oculus Rift with motion and touch sensors 

• Intel Core i7 8th Generation Processor 

• NVIDIA GeForce 1080 Graphic Card 

Ultimately, VIRE is a mix of software and hardware systems working together. The data collection 

module outlined in Figure 1a. is comprised of four main components. 
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3.2.1 Scenario Development (SD) System  

The theoretical experiment design is translated and developed into a 3D scenario. VIRE based in 

Unity, an open-source physics and gaming engine [38]. The scenario is created using 3D models 

of the buildings, vehicles, persons, cyclists, trees, roads, and other components necessary. 

Programmatically, roads are coded as a collection of links and nodes and vehicles, persons, cyclists 

are mapped to travel among these. This system is capable of importing already available 3D 

resources and incorporating them into the virtual environment.  

3.2.2 Multi-Modal Traffic Micro-Simulation (MMTM) System 

VIRE currently supports the large-scale simulation of vehicles, person, and cyclists. Vehicular 

movement is simulated using the Intelligent Driver Model [20]. This model realistically simulates 

typical behaviour of AVs, avoiding collisions and maintaining a safe gap and stopping distance 

from other road users. For simulated pedestrians within an experiment, VIRE adapts the social 

force model [39] to incorporate the multi-modal nature of the simulation. Implemented models 

and their parameters within VIRE are easy to change to specific requirements of the experiments.  

Objects are programmed to move within Unity’s provided waypoint system. By defining starting, 

in-between, and destination coordinates (e.g. the coordinates of two different road nodes as well 

as the links in between), the object will smoothly move toward each point in the manner that the 

underlying implemented model describes. Implemented models and their parameters are easy to 

change to specific requirements of the experiments via user interface. 

3.2.3 Virtual Environment Projection (VEP) System 

Unity supports VR and animation along with commercially available HMDs. Currently, the Oculus 

Rift is used for projection but can support other HMDs such as the HTC Vive and Microsoft 
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HoloLens. The projection system takes the environment developed by the SD and incorporates 

dynamically moving objects, whose positions are provided by the MMTM system. VIRE is also 

capable of generating and associating audios to 3D objects, for example a car passing by can make 

the appropriate noise for the respondent to hear through the HMD.  

3.2.4 Driving in VIRE 

VIRE has been used in several contexts [29], [40]–[43] thus far. Recently, driving hardware such 

as a steering wheel, acceleration and braking pedals, and a motion simulator rig was incorporated 

for vehicle-based experiments and generalizability. With the inclusion of this hardware, 

participants can realistically drive in virtual environments under various environment and traffic 

conditions. Alternatively, respondents can experience riding in an AV as a passenger, with the 

option of multi-tasking. The controllers included in the Oculus system can be mapped to any virtual 

object of choice and used to make the respondent interact with the item. Examples include allowing 

the rider to read a virtual newspaper or play a game on a virtual smartphone. Past experiments 

have included the collection of physical data such as participants’ gaze and driving behaviours as 

well as virtual data such as the participants’ coordinates, collisions and near-collisions, routes 

taken, and total trip times. Figure 3 depicts both a respondent sitting in the motion simulator rig 

and the virtual environment the respondent is experiencing via the HMD. The case study contained 

in this thesis does not make use of VIRE’s driving capabilities or driving data. The hardware 

coupled with VIRE for driving includes the following: 

• DOF Reality H3 Consumer Motion Simulator Platform 

• Thrustmaster T150 Force Feedback Racing Wheel 
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Figure 3: Driving in VIRE 
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4 Deep Reinforcement Learning System 

The training module of the platform (Figure 1b.) is formalized as a basic RL problem. RL is a 

process where a learning agent interacts with its environment to achieve a goal. It does so 

continually and receives a reward for the actions it takes, which the agent tries to maximize over 

time [44]. More specifically, at each time step 𝑡, the learning agent observes the environment state 

𝑠𝑡 (𝑠𝑡 ∈ 𝑆), where 𝑆 is the set of all possible environment states. An action 𝑎𝑡 is selected from the 

set of available actions the agent can take. The environment then moves to state 𝑠𝑡+1 resulting 

from the implemented action and a reward 𝑟𝑡+1 ∈ 𝑅 associated with the transition (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) is 

communicated to the learning agent. Upon receiving the immediate reward at each state transition, 

the agent forms a policy that maps the current state to an optimal action for future use. The agent 

attempts to maximize the expected discounted return defined as 𝑅𝑡 =  ∑ 𝛾𝑡−1 ∗ 𝑟𝑡
∞
𝑡=1  where 𝛾 is a 

discount factor in (0, 1) to determine the importance of future rewards. Deep RL (DRL) has found 

success in bigger problems with more state-action pairs by using deep neural networks to 

approximate the state-action values.  

In the case study’s multi-objective autonomous braking system (Chapter 5), the vehicle drives 

along a straight road using the learned policy towards the pedestrian. At the beginning of each 

training episode, the vehicle is driving at an initial velocity 𝑣𝑣𝑒ℎ  from an initial position 

(𝑣𝑒ℎ𝑝𝑜𝑠𝑥, 𝑣𝑒ℎ𝑝𝑜𝑠𝑦) and the pedestrian is located at an initial position (𝑝𝑒𝑑𝑝𝑜𝑠𝑥, 𝑝𝑒𝑑𝑝𝑜𝑠𝑦). A 

“safe box” surrounds the pedestrian’s crossing location. If the vehicle is within this boundary while 

the pedestrian is crossing, it is considered an accident. There are four events that can end an 

episode:  
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o Accident: the vehicle is within the safe box at the time of pedestrian crossing the road  

o Pass: the vehicle passes the pedestrian before the pedestrian has begun to cross  

o Cross: the pedestrian finishes crossing the road  

o Stop: the vehicle comes to a complete stop 

4.1 Policy Proximal Optimization (PPO) 

PPO [45] is an on-policy algorithm used for environments with either discrete or continuous action 

spaces. It is a simplification of Trust Region Policy Optimization (TRPO), proposing to use a 

clipped surrogate loss function to limit the likelihood ratio of old and updated policies  

𝑟𝑡(𝜃)  =  𝜋𝜃(𝑎𝑡|𝑠𝑡)𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡) where 𝜋𝜃 is a stochastic policy. In TRPO, the surrogate function 

is maximized subject to a constraint on the size of the policy update. To avoid excessively large 

policy updates, PPO introduces a penalty to changes to the policy that move the probability ratio 

away from 1. To include this penalty, the following objective was developed: 

𝐿𝐶𝐿𝐼𝑃(𝜃) =  𝔼̂𝑡 [min
 

(𝑟𝑡(𝜃)𝐴ˆ 𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 +  𝜖) Â𝑡)]  

where epsilon is a small hyperparameter. The second term 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) modifies the 

surrogate objective in order to remove the incentive for moving 𝑟𝑡  outside of the interval  

[1 − 𝜖, 1 + 𝜖]. Then, taking the minimum of the clipped and unclipped objective so that the final 

objective is a lower bound n the unclipped objective. This results in the inclusion of changes in 

probability ratios only when it makes the objective worse: 

max
𝜃

𝔼̂𝑡 [
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

 Â𝑡] 
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4.2 Deep Deterministic Policy Gradient (DDPG) 

DDPG was developed by combining the actor-critic approach found in DPG and insights learned 

from DQN’s recent success [46]. It is a model-free, off-policy actor-critic algorithm that was 

proven to learn competitive policies for tasks using low-dimension observations such as cartesian 

coordinates. It follows a standard reinforcement learning setup as previously described. Unlike 

PPO, DDPG is inspired by Q-learning, using the greedy policy µ(𝑠) = arg max
𝑎

𝑄(𝑠, 𝑎) to find the 

optimal action a for a given state 𝑠. Instead of directly implementing Q learning, a modified target 

network which creates a copy of the actor and critic networks 𝑄′(𝑠, 𝑎|𝜃𝑄′
)  and µ(𝑠|𝜃µ′

)for 

calculating the target values. The weights of these target networks are then updated, slowly 

tracking the learned networks which constrains them to change slowly and improves the stability 

of learning: 𝜃′ ← 𝜏𝜃 + (1 − 𝜏 )𝜃′ with 𝜏 ≪ 1. It also implements a finite sized replay buffer ℛ 

which stores transitions sampled from the environment according to the exploration policy in a 

tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). This buffer allows the algorithm to benefit from learning across a set of 

uncorrelated transitions by sampling a minibatch uniformly at each timestep to update the actor 

and critic. 

4.3 Reward Function 

As the most important component of our system, the reward function determines the behaviour of 

the brake control. We must formulate it such that it accurately describes the characteristics the 

system’s behaviour should ultimately exhibit. Given the multi-objective nature of our system, our 

task in defining the reward function becomes more difficult; we are attempting to optimize two 

possibly conflicting factors, avoiding dangerous situations with pedestrians and providing the 
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passenger with a comfortable experience. To this end, we propose a reward function which 

captures both safe and comfortable braking behaviour:  

𝑟𝑡  =  −(𝜂𝑣𝑣𝑒ℎ𝑡
)𝟏(𝑆𝑡 = 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡)  

−(𝛽𝑣𝑣𝑒ℎ𝑡
) 

−(µ𝑎𝑡) |
𝑑2𝑣𝑣𝑒ℎ

𝑑𝑡2
| 

𝜂, 𝛽, µ >  0  

where at time step 𝑡, 𝑣𝑣𝑒ℎ𝑡
 is the velocity of the vehicle and 𝑎𝑡 is the value of the brake action 

chosen and 𝟏(𝑥 =  𝑦) has a value of 1 if the statement inside is true and 0 otherwise. The first 

term is included from the reward function proposed by Chae et al., describing the penalty given to 

the agent should in the case of an accident [25]. The penalty is proportional to the velocity of the 

vehicle, reflecting the severity of the accident and therefore encouraging the vehicle to slow down 

in the case that an accident is unavoidable. The second and third terms are our own contributions. 

The second encourages the vehicle to use caution and prevents the agent from abusing the 

stochastic nature of our dataset and unintentionally learning to take the risk of driving passed the 

pedestrian before they begin to cross the road. The final term is a function of the jerk of the vehicle 

at time step 𝑡. Mathematically, jerk is the second derivative of velocity with respect to time. 

Physically, it is felt as the increasing or decreasing force on the body [47]. The absence of jerk has 

been found to be an important characteristic of comfortable driving [48], [49] and thus, our reward 

function aims to minimize this force, penalizing the vehicle as a function of the jerk and the 
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intensity of the brake action. The constants 𝜂, 𝛽, and µ are weight parameters to control the trade-

off between each objective. 
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III.  Experiment and Results 

5 Case Study 

As shown previously, one of the focuses of some AV simulation platforms is the inclusion of 

pedestrians in order to train agents to react to life-endangering situations that could occur in reality. 

However, pedestrian road-crossing behaviour is complex and can vary highly in aspects such as 

waiting time, pose, and path. These intricate behaviours can be difficult to simulate yet carries 

with it one of the highest priorities when considering pedestrian safety and the inevitable 

dangerous situations that AVs find themselves in.  

Another important aspect of transferable autonomous braking systems is having a realistic 

formulation of the problem during training. This includes accurately representing both the 

objectives and the mechanism used to reach those objectives. Intuitively, the braking control 

mechanism of a vehicle resides within a continuous (real-valued) action space. By avoiding the 

discretization of the action space similar to the method found in [25], we can consider more 

complex driving behaviours which capture reality more accurately, such as the consideration of 

passenger comfort.  

While pedestrian safety is a top priority, passenger comfort is an important and often overlooked 

factor in the acceptance and successful implementation of AVs [50]. Naturalness and perceived 

safety of the AV’s driving manoeuvres are two major influences on a rider’s comfort. Thus, 

designing an objective function which accounts for this is crucial for training an acceptable AV 

braking system.  
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In this case study, naturalistic pedestrian road-crossing data collected by the VIRE platform is used 

to train a multi-objective continuous autonomous braking system in simulation. 

5.1 Naturalistic Data Collection 

VIRE was recently used to capture pedestrians’ movements in a dense urban environment under 

varying traffic conditions as well as their general interaction and behaviour towards AVs [41]. A 

road-crossing environment was developed in which a respondent can stand at the side of a two-

lane road with vehicles driving by from one or both directions and cross the virtual street when 

there is an opportune moment without interrupting traffic flow. In the environment, simulated 

vehicles are implemented using the Intelligent Driver Model [20] while simulated pedestrians use 

the social force model [39]. Various conditions in the environment could be changed easily by the 

researcher carrying out the experiment, choosing from various levels of parameters described in 

Table 3. 

Table 3: Levels of Adjustable Parameters 

Variable Levels 

Speed Limit (km/h) 30 40 50 

Lane width (m) 2.5 2.75 3 

No. of braking levels 1 2 3 

Minimum Gap (s) 1 1.5 2 

Flow rate (veh/hr) 530 750 1100 

Road type 1-way 2-way 
2-way with 

median 

Traffic Automation Status Human Driven Mixed Traffic Fully Automated 

Time of day Day Night 

Weather Clear Snowy 



29 

 

 

Running was prohibited because the respondent may hit some physical obstacle in the laboratory 

or trip themselves with the wires. Figure 4 shows a respondent participating in the experiment, 

while Figure 5 shows the virtual environment the participant is seeing and interacting with through 

the HMD and sensors.  

 

Figure 4: VIRE Pedestrian Physical Environment 

From a total of 160 respondents participated in the experiment with a varied demographic which 

included young teenagers, university students and professionals. The data collected by VIRE for 

each trial during these experiments include coordinates corresponding to both the position of the 

respondent and the direction in which they were facing recorded at a time interval of approximately 

0.1 seconds. With a total of 2463 individual road-crossing trials, the dataset was found to vary in 
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waiting times, velocities, and completion times. Figure 6 presents the frequency distribution of 

waiting times in the dataset. Since each respondent was asked to complete multiple trials, their 

habits and instincts are captured in the data, giving more naturalism and value to the dataset. We 

are able to use the coordinate data to reproduce the movement and pose of the respondent in each 

trial in simulation directly using Unity. 

 

 

Figure 5: VIRE Pedestrian-AV Virtual Environment 
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Figure 6:  Waiting Time Frequency Distribution  

 

5.2 Training Scenario 

One of the biggest challenges for autonomous vehicles is safely handling the risks involved with 

pedestrians who are considering crossing the road. Acting too cautiously with abrupt and jerky 

decelerating results in discomfort for the passenger and disruption of traffic flow. Acting 

aggressively and not decelerating quickly enough can result in an accident. The optimal behaviour 

results from the ability to recognize the intention of the pedestrian while maintaining safe and 

comfortable control of the vehicle’s speed. By detecting a pedestrian’s initial movements (e.g. 

edging towards the sidewalk curb, looking left and right) and considering their relative position, 

the vehicle should be able to decelerate safely and smoothly. In our autonomous braking system, 

we assume perfect sensor measurements and pedestrian detection. However, stochasticity in the 
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measurements can be included in the future improvements of this work. The vehicle moves at 

speed 𝑣𝑣𝑒ℎ  from a position (𝑣𝑒ℎ𝑝𝑜𝑠𝑥, 𝑣𝑒ℎ𝑝𝑜𝑠𝑦)  and is provided the relative position to the 

pedestrian (𝑝𝑒𝑑𝑝𝑜𝑠𝑥 − 𝑣𝑒ℎ𝑝𝑜𝑠𝑥, 𝑝𝑒𝑑𝑝𝑜𝑠𝑦 − 𝑣𝑒ℎ𝑝𝑜𝑠𝑦), the looking direction of the pedestrian 

(ℎ𝑒𝑎𝑑𝑥, ℎ𝑒𝑎𝑑𝑦, ℎ𝑒𝑎𝑑𝑧), and the velocity of the pedestrian 𝑣𝑝𝑒𝑑, at each time step. Using these 

observations along with its own velocity, the vehicle decides whether to apply brake, a continuous 

value between [0, 1]. Figure 7 

 provides a depiction of the proposed autonomous braking system and scenario. 

 

Figure 7: Training Scenario 

5.3 Training Simulation Setup 

For training, we used the game engine platform Unity along with its open-source plugin ML-

Agents Toolkit [38] to train the PPO agent. We designed an environment in which our pedestrian 

dataset that was also collected using Unity, is easily transferable. As described in Section 3.2.2, 

the coordinates for each crossing trial in the dataset can be used to move a simulated pedestrian 
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within a virtual environment. In this case, a simulated pedestrian is programmed to move across a 

virtual road according to the coordinates fed to the MMTM from the dataset at each timestep. 

Simultaneously, those coordinates are also passed as environmental observations to the learning 

agent as per the ML-Agents plugin. In each episode, the simulated pedestrian is situated at the 

same initial position, but the pedestrian crossing trial used is chosen at random from a subset of 

the dataset each episode. The rest of the dataset is used to evaluate the model. Trials vary in waiting 

times, crossing velocities and head movements, helping to train our system for generality. The 

vehicle is initially located 160 meters away from the pedestrian and has an initial velocity of 𝑣𝑖𝑛𝑖𝑡 

= 11.11m/s (40 km/h). The pedestrian’s safe box size is 3 meters wide, covering any situation in 

which the vehicle is within 3 meters of the virtual pedestrian. 

5.4 Training Parameters 

The neural network implementation for PPO consists of a fully-connected feed-forward network 

with three hidden layers and the hyperparameter configuration shown in Table 4. 

Our implementation of DDPG includes two hidden, fully connected layers with 256 and 128 nodes 

for the actor and critic networks respectively. Its configuration is shown in Table 5.  

A total of three models were trained: two of the models include the passenger comfort objective, 

one trained using PPO and the other with DDPG to compare the efficiency of their learning. A 

third model was trained with PPO but did not include the passenger comfort objective in the reward 

function in order to contrast their action trajectories. These models are outlined in the Table 6. 
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Table 4: PPO Configuration 

Batch size 64 

Buffer size 10240 

Hidden Units 256 

Time Horizon 1024 

Learning Rate 10−3 

Gamma 0.99 

η 0.1 

ß 0.01 

µ 0.01 

 

Table 5: DDPG Configuration 

Replay Buffer Size 10240 

Minibatch Size 128 

Gamma 0.99 

Tau 10−3 

Actor Learning Rate 10−4 

Critic Learning Rate 10−4 

η 0.1 

ß 0.01 

µ 0.01 
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Table 6: Reward Function Configurations 

Algorithm Passenger Comfort 

PPO1 ✓ 

PPO2  

DDPG ✓ 

5.5 Results 

Figure 8 shows a plot of the total accumulated rewards spanning every episode during training 

using PPO1 and DDPG. It can be observed that DDPG not only converges much earlier than PPO1, 

but also consistently attains high total reward thereafter. 

 

Figure 8: Cumulative Environment Reward 

 

With regards to braking behaviour, each model produced reported an absence of any accidents 

with the pedestrian. This was to be expected as the vehicle was given ample time to come to a 
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complete stop in all cases. However, it is more important to note the braking profiles produced by 

the agents trained with PPO1 and PPO2. Figure 9 shows a detailed trajectory of brake actions for 

each agent for one example case in which the pedestrian completes a crossing after approximately 

12 seconds. Figure 6 (a) shows the velocity of the vehicle over time, as it approaches the pedestrian. 

The jerks produced by both vehicles is presented in (b) while (c) shows the brake action values 

applied. Both agents begin their deceleration at the same time but execute actuation differently.  

It is clear that the agent trained using PPO2 decelerated steeply, using higher brake action values 

to do so and in doing so, produced relatively severe jerk. Alternatively, the agent trained using 

PPO1 has a curved decent in velocity as a result of its use of weaker brake action values applied at 

the beginning part of its deceleration and strengthening as the vehicle nears the pedestrian. Most 

importantly, the mean jerk force produced is halved, implying a much more comfortable 

experience for those in the vehicle.  

This example shows that while both agents exhibit safe braking operation by avoiding a collision, 

it is clear which one provides a better travelling experience. The inclusion of vehicle jerk in the 

reward function results in more comfortable ride for passengers while maintaining reasonable safe 

braking operation. 
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Figure 9: Profile of velocity, jerk, and actions in an example episode against the same road-

crossing trial 
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6 Conclusion, Limitations and Future Work 

6.1 Conclusion 

The largest and most popular datasets are not naturalistic and do not contain enough information 

to capture the social aspects of mobility scenarios while AV simulation platforms disregard the 

intrinsic social and communicative dimensions of traffic situations. For an AV system to fully 

understand the intentions of other traffic participants, they must be able to consider social 

behaviour [26]. Addressing these issues, this thesis has focused on presenting a novel method for 

training AVs in simulation using naturalistic data. This work presents the components of a novel 

VR platform for the development and simulation of traffic scenarios with the capability of 

collecting naturalistic data and use that data directly in an RL-based training environment to train 

AVs. This platform was demonstrated in an end-to-end case study in which pedestrian crossing 

data is collected and used to train a multi-objective autonomous braking system while establishing 

the significance of an objective which maximizes vehicle passenger comfort. It was shown that 

after training, the system was able to reduce the negative influence on passenger comfort (i.e. jerk 

force) by half while maintaining a safe braking policy.  

6.2 Limitations  

In this study, the Oculus Rift is used. It was determined the Oculus Rift S’ tracking system have a 

translational accuracy of 1.66 ± 0.74 mm for the HMD and 4.36 ± 2.91 mm for the controllers, 

while the rotational accuracy of the system was 0.34 ± 0.38° for the HMD and 1.13 ± 1.23° for the 

controller. While there is minimal error in tracking a respondent’s movement in a virtual 

environment, this should be accounted for when training AV systems using the presented method 

[51]. 
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6.3 Future Work 

There are several directions that can be taken with this work. Firstly, the presented case study can 

be built upon to configure more complex pedestrian situations such as incorporating multiple 

pedestrians along the road. Coupled with the introduction of a throttle action for the vehicle, 

passenger comfort and pedestrian safety can be further evaluated. The physics-based Unity 

environment also allows for the introduction of different weather conditions and their adverse 

effects on the vehicle such as loss of traction. Additionally, data collected with VIRE can be used 

to train specific mechanisms found in AVs. For example, the pedestrian-crossing data presented 

in the case study can be used toward modeling pedestrian path and pose as well as developing and 

evaluating pedestrian intention and trajectory prediction techniques. Regarding driving-centered 

studies, VIRE can be employed to collect information about driving styles, route choices, reaction 

times, and the effects of distractions on drivers. The road-crossing environment used in this study 

can also be modified to include more variation and realism, thus inducing more naturalism in the 

respondent’s behaviour. The inclusion of more vehicle-types, varying curb heights and bicycle 

lanes are just a few more features that can affect the way a pedestrian crosses the road in an urban 

environment. 

Lastly, introducing methods for interpretable RL such as [52], [53] can generate human-readable 

and verifiable policies as well as discover multiple ways to perform the same task in complex 

environments. This could help to understand the correlation between inputs in socially-driven 

traffic situations such as pedestrian crossing, as well as ensure that policies learned for these safety-

critical scenarios are consistent with desired properties.  
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Appendices 

One of the major components of the novel platform presented in this thesis is VIRE, the system 

used for data collection. This system was built in such a way that it could be used as a generic tool 

for curating environments and scenarios in which a participant can immerse themselves and 

interact with naturally. While the case study presented above emphasizes the collection and use of 

motion and orientation data captured using an original VIRE environment, the additional 

subsequent publications showcase the collection and use of preference and behaviour data in 

choice preference and behaviour analysis studies. 
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A. Should I give or should I take? Choice issues in automated vehicle control 

Shadi Djavadian 

Rafael Vasquez 

Bilal Farooq 

Introduction  

The advent of vehicle automation has provided new opportunities to mitigate traffic, increase 

productivity, and reduce emission. Despite these advantages, automated vehicle (AV) face some 

deployment and adoption challenges. An important factor that has major effect on the effectiveness 

of AVs is driver’s willingness to give control to the system or take it back when required. Another 

associated challenge is driver’s mental workload and situational awareness in the operational 

safety of automated driving. In the case of automation, drivers become passive observers as 

opposed to information processors resulting in decrease in situational awareness of drivers and 

increase in accident rate (Hirose et al, 2015). To gain further insights into behavioral responses of 

drivers to automation, in this study a stated preference laboratory experiment is designed 

employing Virtual Reality Immersive Environment (VIRE) driving simulator (Farooq et al., 2018). 

The aim is to answer following research questions:  

• Under what conditions drivers are more willing to give partial or full control to the 

automated vehicle?  

• Under what conditions drivers have higher situational awareness and ability to safely take 

back control from automated vehicles?  

Background  

Online stated preference surveys (SP) have been widely used in the recent years to explore the 

factors influencing travelers’ acceptance of automated vehicles (Becker & Axhausen, 2017). 



42 

 

 

However, online based SP surveys lack realism especially when it comes to new and upcoming 

technologies. Driving simulators and field experiments have also been used to investigate 

situational awareness and mental workload of drivers when it comes to safely operating automated 

vehicles (Stapel et al., 2017). However, they also have their own limitations e.g. lack of interaction 

with environment, controlled environment. As a result, virtual reality based stated preference 

surveys have been gaining interest among researchers to study behavioural responses to AVs, since 

it allows users to form a visual image of the innovative alternative as opposed just purely mental 

image (Djavadian et al., 2019).  

Methodology  

To answer the earlier posed research questions, we design and conduct laboratory experiments 

using our in-house VIRE driving simulator (Farooq et al., 2018). Fig. 1 presents examples of the 

VIRE setup. To increase users comfort level and bring additional realism to the experiments, a 

driving rig is used. The laboratory experiment is divided into three sections: a) pre-experiment 

questionnaire, b) actual experiment, b) post-experiment questionnaire. The pre-experiment 

questionnaire collects socio-demographic information of users, their prior driving experience and 

habits, and participants’ prior knowledge and experience with regards to AV. During the actual 

experiment, drivers are asked to drive from their assigned origins to their assigned destinations 

under different conditions (e.g. congestion level, network familiarity, multi-tasking, incidents, 

etc.). This provides us the opportunity to investigate users’ behavioral response, situational 

awareness and willingness to take/give control to AV under different conditions. The post-

experiment questionnaire collects data on participants’ experience during the experiment (mental 

work load, reason for selecting one option over another, motion sickness, etc.).  
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In this study, the VIRE is set up in such a way that it provides participants the option of 

fully giving control to AV en-route to their destination, allowing us to explore under what 

conditions users are more willing to give up control to AV. Similarly, while being driven to their 

destinations by AV users may be asked to take over control from AV in order to investigate their 

situational awareness. Different multi-tasking options are implemented in the simulation and are 

presented to the users (e.g. reading, playing games). This allows us to examine responses of users 

to each option and investigate the effect on their willingness to take/give control of AV along with 

their level of situational awareness. Galvanic skin response sensors are used to measure emotional 

arousal of the users. Virtual pedestrians are also introduced in the simulation to measure situational 

awareness of users and their mental workload.  

Based on the data gathered from the experiments we conduct qualitative and quantitative 

analysis (e.g. logit choice model) of the results. It is expected that the results from this study will 

provide us with insights related to what extend and under what circumstance drivers are willing to 

give full control to the automated vehicles. In addition, project results will allow us to draw 

conclusions as to what group of population (age, gender, driving experience, income, etc.) will be 

more adaptable to automation. Furthermore, the results will provide us with understanding of 

drivers’ mental workload and situational awareness when it comes to safely operation AVs.  
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                      (a) Take over control                                      (b) Multitasking while driven by AV 

Fig. 1 Participants in VIRE driving simulator 
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B. Virtual Immersive Reality based Analysis of Behaviour Responses in 

Connected and Autonomous Vehicle Environment 

Shadi Djavadian 

Bilal Farooq 

Rafael Vasquez  

Grace Yip 

Motivation  

The advent of connected autonomous vehicles (CAVs) at high penetration rate of 70% (Calvert et 

al, 2017) offers a vast range of new options to manage traffic flows, reduce congestion, increase 

road safety and benefit the environment without a need for centralized traffic control center or 

adding new infrastructures. There are many safety and sustainability benefits to this technology, 

such as having the ability to avoid collisions without requiring human reaction time or to smooth 

traffic flow patterns (dubbed “green driving”) to reduce excess energy consumption or emissions. 

While the emphasis has been on immediate benefits like collision avoidance or adaptive cruise 

control, there is an opportunity to consider more advanced decentralized traffic control designs to 

fully leverage the technology.  

Literature Overview  

One major application of the early generation of Connected Vehicle (CV) has been the dynamic 

traffic navigation, which provides real time travel time information and status to the driver. Studies 

have shown that route guidance based on CV can reduce travel time (Yang & Recker, 2006; Park 

& Lee, 2008; Katan et al, 2012). However, in the case of high congestion levels and adverse 

conditions the above-mentioned studies showed that using route guidance based on CV and 

without any coordination actually results in the increase in travel time and congestion. The 

coordination can be done by information sharing through a vehicular ad hoc network (VANET) 
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among vehicles (V2V) (Du et al, 2014); through a centralized route information server (V2C) 

(Yamashita et al, 2005); or via a road side infrastructures (V2I) (Claes e al, 2011). Under 

coordinated route guidance, vehicles share their route information with each other, this way they 

are aware of each other’s actions. Thus, they can anticipate congestion on a particular route before 

choosing that route. It is possible for them to choose an alternative route and thus reducing 

congestion. The results from Claes et al. (2011), Du et al. (2014), and Yamashita et al. (2005) have 

all showed that the proposed distributed coordinated outperforms traditional independent selfish-

routing mechanism (everyone choosing their fastest route without coordination)—reducing the 

expected travel time for both overall system and individual vehicles. An important factor that has 

major influence on the effectiveness of coordinated route guidance is drivers’ willingness to share 

information and cooperate with each other. However, as shown in previous research an important 

factor that has major influence on the effectiveness of coordinated route guidance is drivers’ 

willingness to share information and cooperate with each other. However, as also shown in 

previous research (Djavadian et al., 2014; Knoop et al., 2011, Netten et al, 2006), drivers are not 

always willing to consider and comply with information they receive or share information. Knoop 

et al. (2011) observed that drivers are much more receptive to mandatory systems as oppose to 

voluntary systems. Djavadian et al. (2014) observed that drivers are more willing to comply when 

they are well informed and well rewarded. Mandatory (prescriptive) information high compliance 

rate whereas voluntarily (descriptive) information low compliance rate unless rewarded. Netten et 

al., (2006) showed that drivers are more willing to comply when they can acknowledge the gain, 

for instance, they are more willing to comply with an advice that instructs them to accelerate rather 

than to an advice that instructs them to slow down.  
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Proposed Connected and Automated System  

To increase the efficiency of route guidance system using CAVs and address the non-compliance 

nature of the drivers, we proposed a dynamic route guidance based on a network of intelligent 

intersections using level 5 (Gasser & Westhoff, 2012) connected “autonomous” vehicles (CAV), 

where full cooperation and coordination can be expected (Rahnamaei et al., 2017). Under the 

proposed framework, drivers are no longer decision makers within certain designated urban area 

that recurrently suffers from congestion. Automated vehicles are guided through the network from 

origin to destination in such a way that the proposed system optimizes network throughput. We 

adapted the dynamic end-to-end routing principle, Intermediate System to Intermediate System 

(IS-IS) dynamic link state routing, from computer networking (Tanenbaum & Wetherall, 2010) 

where packets (in our case CAVs) need to be routed from source (origin) to host (destination) 

without having a full centralized view of the network, and with unreliable intermediate nodes 

(intersections, link capacity, etc.). Similar to Internet protocol that routing is done by routers, in 

this study routing is done by intersections using dynamically updated routing table, where use of 

traffic light signal is replaced by vehicle to infrastructure communication. The proposed 

framework for end-to-end dynamic routing (E2EDR) in CAVs environment is presented in Figure 

1. As can be seen from Figure 1 each link periodically collects vehicles’ states using V2I and 

communicates them to downstream Intelligent Intersections (I2). The intelligent intersections have 

the capability of sensing, communicating, estimating and actuating. They estimate link travel times 

using information collected from links and then communicate them to their neighbouring upstream 

intersections. Each intersection using information received from its neighbour is able to create full 

dynamic impedance matrix of the network. Using the impedance matrix, the intelligent intersection 

creates a dynamic routing table.  



49 

 

 

Once a CAV arrives at an intersection it communicates its destination to the intersection, and the 

intelligent intersection using the routing table guides the CAVs to the next intersection that 

minimizes travel time to the CAV’s destination.  

We used a queue-based traffic simulation to test the efficiency of the proposed route guidance on 

Queen’s Quay network in downtown Toronto. Figure 2 presents Downtown Toronto core, with 

Queen’s Quay network being highlighted in red. The reason for selecting Toronto Downton core 

is to test the proposed algorithm on a maximum to high demand network. For this study, it was 

assumed that the vehicles operate manually before entering the downtown core, and once they are 

in the downtown core they are required to switch to auto-pilot.  

Similar to compliance of the drivers, an important factor that has a major effect on the effectiveness 

of the dynamic CAV routing is drivers’ acceptance of giving out control fully or partially to the 

system (Hoogendoorn et al, 2014; Kulmala, 2010; De Vos and Hoekstra, 1997). Therefore, there 

is a strong need to investigate the behavioral response of drivers in CAVs environment and to the 

best of our knowledge as also stated by Calvert et al, (2017), no empirical studies have been done 

in an experimental setting to understand this problem. The focus of our work here is to address 

this key gap.  

Behavioural Analysis  

We systematically investigate the travellers’ reactions and possible adaption to E2EDR system? 

To answer the research questions, we use a Bayesian D-efficient Stated Preference (SP) 

experiment design (Yang et al, 2014). We design and conduct multiuser laboratory pilot 

experiment to evaluate behavioural responses of drivers in autonomous connected vehicle 

environment using our in-house Virtual Immersive Reality Environment (VIRE) simulator 

(Farooq & Cherchi, 2016, 2017). For this study, the current VR simulator is being modified to 
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allow experiments where users can drive in the VR simulator using steering wheel, thus using it 

as a base case. Figure 3 presents the VR simulator that will be used for this study.  

 

 

Figure 1: End-to-End dynamic route guidance in CAV Environment 

To find the prior estimates of the model parameters a pilot study with 10 participants will be 

conducted. Once the parameters are estimated the full experiment will be conducted with group of 

100 participants. Two distinct scenarios will be considered for the laboratory experiment. Under 

the scenario A, users will be asked to driver from point X to point Z, choosing their preferred route 

and have the full control of the vehicle. Under the scenario B, users will be asked to go from point 

X to Z, but this time, the vehicle will be automatically guided through the road network. We will 

repeat the scenario B three times with the variable values dictated by the initial D-efficient design. 

The example of some of the variables that will be investigated are: comfort level and multi-tasking 
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while driving, difference between CAVs chosen path and manually chosen path, ease of driving 

under different traffic congestions. The laboratory experiments will allow us to evaluate the 

responses of the users and their reaction to driving in connected autonomous vehicle environment. 

For the case of CAVs experiments, the VR will simulate use of smartphone, reading a book for 

users, this will further allow them to compare their experience of driving CAV to manual car. In 

combination with SP, we will collect socio-economic characteristic of each user and will provide 

them attitude based questionnaire. Often diffusion process is used to predict market for a new 

product or innovation, however, the problem with diffusion models is that they do not take into 

account the socio-economic characteristics of users and their discrete choice sets. As such in recent 

years hybrid models that combine diffuse models with advance choice models have been gaining 

interest among researchers. For example, Jensen et al. (2017) used joint discrete choice model and 

diffuse model to predict the potential for electric vehicles. In our study, similar to Jensen et al. 

(2017) we will be using joint discrete choice model and diffuse model.  

The project results will provide us with insights on to what extend and under what circumstance 

drivers are willing to give full or partial control to the automated vehicles. In addition, project 

results will allow us to draw conclusion as to what group of population (age, gender, driving 

experience, income, etc.) will be more accepting of the automated routing system. The project 

results will be of interest to car manufacturers, since it will allow them to target right group of 

population thus designing the connected autonomous vehicle environment in such a way that will 

have maximum driver acceptance increasing market share. Also, the results will be of benefit to 

traffic information providers, traffic management centers, city planners and municipalities 

allowing them to target right audience, apply CAVs routing in situations that will results in more 

acceptance and efficient use of transportation system. 
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Figure 2: Queen’s Quay area located in downtown Toronto (Google maps, 2017) 

 

 

 

Figure 3: Virtual Immersive Reality Environment (VIRE) simulator 
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