

A RSA-BIOMETRIC BASED USER AUTHENTICATION SCHEME FOR SMART-

HOMES USING SMARTPHONE

by

Amir Mohammadi Bagha

B.Sc. in Computer Science, Amirkabir University of Technology, Iran, 2017

A Thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Computer Networks

Toronto, Ontario, Canada, 2020

© Amir Mohammadi Bagha, 2020

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

AN RSA-BIOMETRIC BASED USER AUTHENTICATION SCHEME FOR

SMART-HOMES USING SMARTPHONES

© Amir Mohammadi Bagha, 2020

Master of Applied Science

in Computer Networks

Ryerson University

Abstract

Internet of Things (IoT) is considered as one of the emerging leading technologies that allow the

mainstreaming of smart homes and smart cities in the recent years, by creating a communication

system for physical objects over the Internet. In a smart home (also called push-button home

automation system), devices are not necessarily homogeneous in terms of topology, security

protocols, computational power and communication. This nature of the devices causes some

incompatibility with conventional authentication methods and the security requirements of IoT

standards. This thesis proposes an RSA-Biometric based three-factor User Authentication Scheme

for Smart-Homes using Smartphone (called RSA-B-ASH-S scheme). An informal security

analysis of the proposed RSA-B-ASH-S scheme is provided, along with its performance evaluation

in terms of computational time, storage requirements and communication overload. Furthermore,

a formal analysis of the proposed RSA-B-ASH-S scheme using the Burrows-Abadi-Needham

(BAN) Logic is described, showing that the proposed scheme achieves the forward secrecy

property by utilizing a fresh encryption key for each session and it also satisfies the anonymity of

the user by using a one-time token. A proof of concept of the proposed RSA-B-ASH-S scheme is

also provided.

iv

Acknowledgments

I would first like to thank my thesis advisor Dr. Isaac Woungang for his passionate guidance,

continuous support and input. The door to Prof. Woungang’s office was always open for guidance.

He provided me with enough room to explore while steering me back to the right direction

whenever I needed it. I am also thankful to the Department of Electrical and Computer Engineering

at Ryerson University for their continuous support toward the completion of my degree, special

thanks to Maninder Singh Raniyal, who helped me through the process of researching and writing

this thesis, and our program administrator, Ting Hong, for her instantaneous support throughout

my studies.

I must express my very profound gratitude to my parents, whose love and guidance are

with me in whatever I pursue. Most importantly, I wish to thank my loving and supportive wife

for her incomparable encouragement throughout my years of study and each and every challenge

along the way. I am also grateful to have friends that provided me with such encouragement that

allowed me to stay motivated throughout my studies.

v

Table of Contents

Author’s Declaration ... ii

Abstract .. iii

List of Figures ... vii

List of Tables ... viii

List of Abbreviations ... ix

CHAPTER 1 .. 1

1.1 Motivation and Research Problem .. 1

1.2 Solution Approach .. 3

1.3 Thesis Contributions ... 4

1.4 Thesis Outline ... 5

CHAPTER 2 .. 6

2.1 Background ... 6

2.1.1 Authentication Schemes ... 6

2.1.2 Authentication Schemes for Smart Home Environments ... 7

2.1.3 Considered Security Attacks and Requirements of the Proposed Authentication

Protocol... 9

2.2 Related Work .. 11

2.2.1 Authentication Schemes for Smart Home Environment ... 11

2.2.2 RSA Public Key Cryptosystem ... 17

2.2.3 RSA-ASH-SC User Authentication Scheme ... 18

vi

CHAPTER 3 .. 20

3.1 High-Level Workflow of the Proposed RSA-B-ASH-S Authentication Scheme 20

3.2 Description of the Proposed RSA-B-ASH-S Authentication Scheme 24

CHAPTER 4 .. 30

4.1 Proof of Concept of the RSA-B-ASH-S Scheme ... 30

4.2 Informal Security Analysis of the RSA-ASH-SC Scheme ... 34

4.3. Comparison of Authentication Schemes based on Security Attacks and Security Metrics37

4.4. Comparison of Computational Performance of Authentication Schemes 38

4.4.1 Computational Performance .. 38

4.4.2 Storage Requirements .. 44

4.4.3 Communication Overloads .. 45

4.5 Formal Analysis of the Proposed RSA-B-ASH-S Scheme Based on BAN Logic 46

4.5.1 BAN Logic Overview.. 46

4.5.2 Goals of the Analysis of Key Exchange Part of the Proposed RSA-B-ASH-S Scheme 49

4.5.3 Formal Analysis of the Proposed RSA-B-ASH-S Scheme .. 50

CHAPTER 5 .. 53

APPENDIX .. 55

Code for the Proposed RSA-B-ASH-S Implementation ... 55

Backend (PHP files) .. 55

Frontend (Swift files) .. 58

BIBLIOGRAPHY ... 61

vii

List of Figures

FIGURE 1.1: TYPICAL SMART HOME NETWORK ARCHITECTURE IN IOT. ... 2

FIGURE 2.1: EXAMPLE OF A SMART HOME. ... 8

FIGURE 3.1: HIGH-LEVEL WORKFLOW OF THE RSA-B-ASH-S AUTHENTICATION SCHEME. 22

FIGURE 3.2: EXAMPLE OF AUTHENTICATION DYNAMIC OF AN IOT STRUCTURE. 23

FIGURE 4.1: PROOF OF CONCEPT REGISTRATION PROCESS. ... 32

FIGURE 4.2: PROOF OF CONCEPT LOGIN AND AUTHENTICATION PROCESS. 33

FIGURE 4.3: PROOF OF CONCEPT HOME PAGE AND SETTINGS VIEWS. .. 34

FIGURE 4.4: COMPARISON OF THE PERFORMANCE OF THE AUTHENTICATION PHASE IN TERMS OF

COMPUTATIONAL TIME. .. 41

FIGURE 4.5: COMPARISON OF TOTAL COMPUTATIONAL PERFORMANCE. .. 42

FIGURE 4.6: THE SHARE OF EACH OPERATION IN PERCENTAGE. .. 43

viii

List of Tables

TABLE 2.1: NOTATIONS USED IN THE RELATED PAPERS. ... 11

TABLE 3.1: NOTATIONS USED IN THE PROPOSED SCHEME. .. 20

TABLE 4.1: COMPARISON OF SELECTED RSA VARIANTS IN TERMS OF SECURITY ATTACKS AND

METRICS. .. 37

TABLE 4.2: NOTATIONS USED FOR THE COMPUTATIONAL TIME OF OPERATIONS. 38

TABLE 4.3: TOTAL COMPUTATION TIME NEEDED FOR EACH STEP ... 39

TABLE 4.4: COMPARISON OF SELECTED RSA VARIANTS IN TERMS OF COMPUTATION PERFORMANCE.

... 39

TABLE 4.5: NOTATIONS USED TO REPRESENT EACH OPERATION. .. 40

TABLE 4.6: RESULT OF SIMULATIONS OF THE PROPOSED SCHEME OVER CLIENT-SIDE AND SERVER-

SIDE. .. 43

TABLE 4.7: STORAGE REQUIREMENTS OF THE USER DEVICE AND SERVER-SIDE IN THE PROPOSED

SCHEME. ... 44

TABLE 4.8: COMMUNICATION OVERLOADS BETWEEN USER AND SERVER APPLICATIONS. 45

ix

List of Abbreviations

IoT Internet of Things

OTP One Time Password

D2D Device to Device

DH Diffie-Hellman

RSA Rivest-Shamir-Adleman public-key cryptosystem

DoS Denial-of-Service

DDoS Distributed Denial of Service

MIMA Man-in-the-middle Attack

BAN Burrows-Abadi-Needham logic

RSA-ASH-SC RSA-Based Two-Factor Remoted User Authentication Scheme for Smart-

Home using Smart Card

iOS iPhone Operating System (Apple)

PHP PHP Hypertext Preprocessor

PFS Perfect Forward Secrecy

CPU Central Processing Unit

RAM Random-Access Memory

AES Advanced Encryption Standard

API Application Programming Interface

HS Home Serv

1

Chapter 1

Introduction

This Chapter presents the motivation and context of the research carried out in this thesis. It also

presents the research problem, solution approach and our contributions.

1.1 Motivation and Research Problem

Internet of Things (IoT) [1] is becoming a prominent technology which makes the communication

of physical objects possible over the internet. These devices (formally referred to as objects) have

communication systems in place that allow them to monitor, share and collect data about their

surrounding physical world. It is required that these devices initially authenticate themselves with

each other using IoT-based communication protocols and/or cloud platforms. Nonetheless, the

security protocols that these systems use are mostly deemed to be incompatible with IoT security

requirements, due to the fact that they rely on single-factor authentication schemes [2]. One of the

other authentication methods for IoT devices in the cloud is the one-time password (OTP). It has

been made reported that this scheme also fails to fulfill the requirements of IoT and smart homes,

due to the nature of its inflexible design.

2

Figure 0.1: Typical Smart Home Network Architecture in IoT.

With the growth of the IoT and smart home technologies and the inevitable attention of

cyber intruders and attackers to this sector, the security of the networks implemented in these

systems become increasingly crucial. As the same time, smartphones have been equipped with

various technologies that create new opportunities in terms of security and user authentication.

The RSA-ASH-SC [3] scheme is a two-factor authentication protocol concentrating on user

authentication for smart homes by utilizing smart cards (here denoted RSA-ASH-SC). This

scheme, which our proposed scheme is inspired from, takes advantage of RSA security protocols

and adds a second authentication layer using smart cards. One of the deficiencies of the RSA-

3

ASH-SC scheme is that it does not satisfy the perfect forward secrecy, which is becoming a

significant security feature considering the present standards. Perfect forward secrecy means that

even when long-term private key of the sender or receiver is leaked, the encrypted messages that

were previously transmitted will not be exposed [4]. The RSA-ASH-SC scheme is based on

asymmetric encryption for the most part, which is less viable compared to symmetric encryption,

in terms of computational time. Additionally, the use of smart card authentication methods is likely

to become less convenient considering the extensive adaptation of smartphones and their potential

in substituting the smart cards. Our proposed RSA-Biometric Based User Authentication Scheme

for Smart-Homes Using Smartphones (denoted RSA-B-ASH-S) is an enhancement to the RSA-

ASH-SC scheme in the sense that it is shown to satisfy the perfect forward secrecy. Our scheme

utilizes the same proposed asymmetric encryption of the RSA-ASH-SC scheme as its underlying

encryption method to achieve mutual authentication and to initiate authentication. The proposed

scheme not only intends to support all security features satisfied in the RSA-ASH-SC, but also

seeks to meet the requirements of perfect forward secrecy. By taking advantage of current

smartphone capabilities, this scheme also intends to add a third layer to the authentication process,

using a biometric factor such as fingerprint or face recognition verification. The proposed scheme

is to be compared to preceding related user authentication schemes against the conventional

security metrics and total computational time for both authentication and login phase, separately

and combined. It is also intended to assess the storage requirements and communication overloads

of the proposed scheme, and validate the scheme using BAN logic [5].

1.2 Solution Approach

In order to achieve the desired security enhancements over the RSA-ASH-SC scheme, our RSA-

B-ASH-S scheme is required to satisfy the perfect forward secrecy. The incorporation of both RSA

4

and symmetric encryption into the Diffie-Hellman (DH) key exchange protocol allows us to create

a fresh encryption key for each session, create mutual authentication, and as a result, satisfy perfect

forward secrecy. Another enhancement intended in our proposed scheme is the use of smartphones

in substitution of smart cards, which not only creates the opportunity to obtain more hardware

resources, but also enables us to add a third security layer to the scheme, using a biometric factor.

The biometric factor used in this scheme is face recognition, which has a broader compatibility

range compared to other factors such as fingerprint recognition. The verification of this layer is

also required to be independently implemented, since the access to face recognition raw data is not

yet granted in present operating system protocols. It should be noted that the intention of our

approach is not to reduce the total computational time and power, but to elevate the overall security

of the scheme.

1.3 Thesis Contributions

The contributions of this thesis are as follows:

• Design of an RSA-based three-factor user authentication scheme (called RSA-B-ASH-S)

for smart homes using smartphones (i.e. what you have factor), a biometric factor (i.e.

who you are factor) and a password (i.e. what you know factor).

• Informal security analysis of the proposed RSA-B-ASH-S scheme.

• Formal analysis of the proposed RSA-B-ASH-S scheme using the Burrows-Abadi-

Needham (BAN) Logic paradigm.

• Implementation of a proof-of-concept of the proposed RSA-B-ASH-S scheme in the form

of a hardware solution.

5

1.4 Thesis Outline

The thesis is organized as follows:

• Chapter 1 introduces the motivation and contributions of this thesis.

• Chapter 2 provides some background and related work to the subject topic of this thesis.

• Chapter 3 describes the design of the proposed RSA-B-ASH-S scheme.

• Chapter 4 presents the security analysis and performance evaluation of the proposed

RSA-B-ASH-S scheme.

• Chapter 5 concludes the thesis and highlights some future work that can be carried

further.

6

Chapter 2

Background and Related Work

2.1 Background

2.1.1 Authentication Schemes

Authentication can be defined as the process by which two communicating parties can be correctly

identified over an unsecured channel to prevent illegal access to system resources [2]. In terms of

user authentication, there are several ways of authenticating the identity of a user: (1) Something

the user knows (such as password, personal identification number), (2) Something the user

possesses (such as smart card, physical keys, tokens), (3) Something the user is (such as

recognition by fingerprint, face, retina, iris), and (4) Something the user does (such as recognition

by voice pattern, handwriting style, typing rhythm, and (5) A combination of the above.

Typically, there are two types of authentication schemes, namely: Single server-based and

multi-server-based. In Single server-based authentication schemes, only a single server is used,

which provides services to all users; and in case a user wishes to gain access to multiple network

services, he/she should register his/her identity and password in different servers and maintain

several user IDs and passwords, which is difficult to remember. On the other hand, in a multi-

server-based authentication scheme, the users can obtain the services from multiple servers without

the need of registering with each server. This solves the problem of multiple registrations

encountered in the single server scenario. In a nutshell, a multi-server-based authentication scheme

consists of several service servers, a Registration Centre, and multiple users in a multi-server

7

communication system. The Registration Centre is responsible for administering the service

servers along with the registered users, in such a way that upon registration, each user is able to

get the requested services from the different service servers.

The assessment of an authentication scheme can rely on several metrics, which include (1)

the security features that the scheme is intended to provide and the expected types of attacks it has

been designed to resist against, (2) its generated computation cost, i.e. the number of operations or

the estimated time (in seconds) needed by the entities involved in order to compute the

authentication messages during the execution of the scheme, and (3) its communication cost,

which represents the channel overhead (in terms of number of bits) due to the transmission, by the

entities involved, of the authentication messages in order to prove their identities. The main goals

of an authentication scheme are to resist to a maximum possible number of available attacks while

maintaining low computation and communication costs. In this thesis, our focus is on user

authentication for smart homes, aiming at achieving such goals.

2.1.2 Authentication Schemes for Smart Home Environments

An example illustrating a smart home environment is shown in Fig, 2.1, where smart objects such

as smart doors, smart fridges, smart TV, smart cameras, smartphones, and etc. are equipped with

sensors capable of monitoring and handling the data between them through a Home Gateway (HG),

known as an interface between the Internet and the home network. This HG is connected to the

user interface by means of a software or a well-mounted solution. It should be noted that in some

implementations, a home server (HS) is also utilized for the purpose of devices’ authentication. In

terms of communication technologies used in smart homes, common radio wave technologies

include Ethernet, X10, 6LoWPAN, RS-485, ZigBee, Bluetooth LE, Z-Wave and Li-Wi [6].

8

Figure 2.1: Example of a smart home.

Nowadays, with the rise of the Internet of Things (IoT) [1] as a new paradigm and driver for many

applications such as smart cities, smart homes, to name a few, most of the literature on

authentication schemes focuses on inter-device authentication and remote user authentication. The

later can be defined as a mechanism by which a remote user is authenticated when attempting to

log on a network.

As far as remote authentication in smart home environments is concerned, which is our

focus of this thesis, several techniques have been explored in the literature [2], which include:

password-based methods [7], digital memory-based methods [8], single-sign-on techniques based

on the Kerberos protocol [9], smart cards-based approaches [10], biometrics-based approaches

9

[11], techniques based on Near Field Communications (NFC) [12], RSA-based techniques [13], to

name a few. The RSA-B-ASH-S authentication scheme proposed in this thesis falls to this latter

category of protocols since it is an RSA-based three-factor remote user authentication scheme for

smart homes using smartphones (i.e. what you have), a biometric factor (i.e. who you are) and a

password (i.e. what you know), to process the user’s authentication. This RSA-B-ASH-S scheme

is designed as an enhancement to the RSA-ASH-SC scheme [13] in terms of security since it is

proved that it satisfies the Perfect Forward Secrecy (PFS) property, which the RSA-ASH-SC

scheme was unable to achieve.

2.1.3 Considered Security Attacks and Requirements of the Proposed

Authentication Protocol

Designing an authentication scheme for a smart home network such as the one depicted in Fig.

2.1, it is required that some minimal security requirements be met, which include: confidentiality,

integrity, availability, and mutual authentication.

• Confidentiality: in smart homes, the privacy of the data exchanged between the users must

be maintained in such a way that only authorized users to have access to sensitive data. In

this case, cryptography techniques are recommended as solutions to secure data

transactions.

• Availability: in smart homes, authorized users should have access to their services at all

times. Therefore, the authentication scheme must be designed to counter specified types of

attacks against availability such as Denial-of-Service (DoS) attacks.

• Integrity: in a smart home, a mechanism should be designed to ensure that the data

exchanged between entities are not manipulated by an adversary.

10

• Mutual authentication (also called two-way authentication): this is achieved when two

entities involved in the authentication process validates each other’s identity. When doing

so, an adversary may attempt to spoof the server by sending false information or initiating

an attack. Therefore, in a smart home, the authentication scheme must be designed in such

a way as to achieve a secure mutual authentication while protecting against the set of

predefined types of attacks based on its design features.

In this thesis, the security attacks that are considered are: masquerading attack, replay attack,

Denial of Service (DoS) & Distributed Denial of Service (DDoS) attacks, Man-in-the-middle

(MITM) attack, Password-guessing attack, forward secrecy attack, Device loss attack, and Forgery

attack. To evaluate the performance of the proposed RSA-B-ASH-S authentication scheme, the

following security metrics are considered: computational time (in seconds), storage requirements

(in bits) and communication overload (in bits). Furthermore, a proof of concept of the proposed

RSA-B-ASH-S scheme is provided, along with its formal analysis using the Burrows-Abadi-

Needham (BAN) Logic paradigm [5], showing that it satisfies the forward secrecy property by

utilizing a fresh encryption key for each session. A proof of concept of the proposed RSA-B-ASH-

S scheme is also given.

11

2.2 Related Work

2.2.1 Authentication Schemes for Smart Home Environment

In some of the papers described in this section, the following notations are used:

Table 2.1: Notations used in the related papers.

Notation Description

CS Control server

x Master secret key chosen by CS

|| Message concatenation operation

SIDi Identity of SID i

GW Home gateway node

RA Registration authority

SDj Smart device node

𝑂𝑇𝑇𝑖 𝑖𝑡ℎ user’s One-Time-Token (OTT if no ambiguity)

Pi Password of user i

⊕ Exclusive OR operation

𝑟𝑖 Random number generated by the smart card

𝑇 Current timestamp

𝑚𝑜𝑑() Modulus operation

𝑓 Collision free one-way hash function

𝑔 An integer and primitive element for prime factors of the private key of

RSA

12

𝑑 Private key components of RSA

(𝑒, 𝑛) Public key components of RSA

𝑆𝑖 User’s i secret information

ℎ𝑖
Secret information created by the smart card issuer at the registration

time

𝐶𝐼𝐷𝑖 Smart card identifier

RBF Radial Basis Function

𝐼𝐷𝑖 ith user ID

𝑃𝑊𝑖 ith user’s password (or PW if no ambiguity)

𝑈𝑖 ith user

CRT Chinese Remainder Theorem

In [14], Yang and Shieh proposed a timestamp based and a nonce-based password authentication

schemes which are based on smart cards. In each of these schemes, (1) it is not required that the

password and registration tables be kept at each host, (2) the (IDi, CIDi, hi, Si, e, g, n) information

is recorded in the smart card, and to login the system, a user has to calculate the entities Xi ≡

gri.pwi(mod n) and Yi ≡ Si. hi
 ri.f(CIDi.T)

(mod n), then send the vector (IDi, CIDi, Xi,Yi, e, g, n,

T) to the host. Upon receipt of this information, the host verifies that the equation Yi
e =

IDi.Xi
f(CIDi.T)

 holds after checking the received IDi, CIDi and timestamp T. If that equation is

satisfied, it is said that the user is authenticated; otherwise the authentication of the user has failed.

A cryptanalysis of this scheme by Chan and Cheng [15] has revealed that it is vulnerable to forgery

13

attacks. Another cryptanalysis of the same scheme by Fan et al. [16] demonstrated that it is also

vulnerable to impersonation attack. Based on these findings, an enhanced Yang and Shieh scheme

was proposed [16], in which forgery can only be performed with a valid 𝐶𝐼𝐷𝑖.

In [17], Liu et al. proposed a remote user authentication protocol for smart homes as a result of a

cryptanalysis of the scheme proposed by Shen et al. [18] Their proposed scheme relies on the

establishment of a relationship at the registration phase to check the legitimacy of the user at login

time. Essentially, upon receipt of a login request from a user at the registration phase, the server

checks the validity of IDi and calculates the aforementioned relationship CIDi = f(IDi ⊕ d) so that

when the server receives the login request, it checks the validity of IDi and uses it to calculate

CID’i =f(IDi ⊕ d) and if CID’i = CIDi, then, the user is said to be authenticated.

In [3], Raniyal proposed an RSA-based two-factor user authentication scheme using smart

card (called RSA-ASH-SC). In this scheme, the Rebalanced-Multi-Power RSA scheme [10] is

used as underlying RSA algorithm. It is proved that the RSA-ASH-SC scheme is 50% faster than

the Om and Kumari scheme [19]. In the RSA-ASH-SC scheme the user generates the following

values: 𝑥= (f((f(𝑃𝑊)⊕𝐼𝐷))𝑒 ⊕ f(𝑇))𝑚𝑜𝑑𝑁, 𝐻𝑋𝑂𝑇𝑇 = f(𝑥⊕𝑂𝑇𝑇) and 𝑦 = (𝑂𝑇𝑇 ∥𝑇∥ Si ∥ f(𝑂𝑇𝑇

∥ 𝑇 ∥ Si ∥ 𝐻𝑋𝑂𝑇𝑇) ∥ 𝐻𝑋𝑂𝑇𝑇), then it sends the (𝑂𝑇𝑇,𝐶) value to the server where 𝐶 = 𝑦𝑒𝑚𝑜𝑑(n).

Then the server validates 𝑂𝑇𝑇 and the timestamp and then computes 𝑥 = ((𝐻𝑃𝑊𝐼𝐷)𝑒 ⊕ f(𝑇))

𝑚𝑜𝑑𝑁 and 𝑍 = f(𝑥 ⊕ 𝑂𝑇𝑇). If 𝑍 and 𝐻𝑋𝑂𝑇𝑇𝑖, the extracted value from the decrypted message,

are equal, then the user is said to be authenticated successfully; otherwise the authentication has

failed.

14

In [19], Om and Kumara proposed a cryptanalysis of the remote user authentication scheme

introduced in [10] (so-called Om and Reddy scheme). Based on this analysis, an enhanced secure

version is designed as follows. The registration step involves the calculation of additional sensitive

information 𝑆𝑖 = 𝑓(𝑃𝑊𝑖||𝐼𝐷𝑖) that the user should store in the smart card before attempting the

login to the system. Afterwards, to login to the system, the user calculates the entities 𝑥 =

𝑓(𝑓(𝑃𝑊𝑖||𝐼𝐷𝑖⊕𝑇) 𝑚𝑜𝑑 𝑛, 𝑦 = 𝐼𝐷𝑥𝑖(𝑚𝑜𝑑 𝑛) and 𝐶 = 𝑦𝑒(𝑚𝑜𝑑 𝑛), then sends the vector

(𝐼𝐷𝑖, 𝐶, 𝑇) to the server. When the server receives this vector, it verifies 𝐼𝐷𝑖 and the timestamp T,

then it calculates 𝑥 = 𝑓(𝑆𝑖⊕𝑇) 𝑚𝑜𝑑 𝑛, 𝑦 = 𝐼𝐷𝑥𝑖 𝑚𝑜𝑑 𝑛 and 𝐾 = 𝐶𝑑𝑚𝑜𝑑 𝑛. If 𝐾 = 𝑦, the

server has successfully authenticated the user; otherwise the authentication has failed. It should be

emphasized that if a smart card loss attack is issued and is successful, the information 𝑆𝑖 can be

leaked, which may lead to compromised security.

In [20], Wazid et al. proposed a secure remote user authentication scheme for smart home

environments, which utilizes bitwise XOR operations, one-way hash functions and symmetric

encryptions and decryptions to achieve three types of mutual authentications: between the user and

the home gateway node, the home gateway node and the smart device and the user and the smart

device. In this scheme, each user is equipped with a smart phone capable of reading its credential

information (identity, password and biometric). The user’s request for authentication is handled

by the home gateway node, which forwards it to the smart card. The response of this request is

sent back to the home gateway node, which forwards it to the user. In this process, a registration

authority is available, which securely registers the home gateway node and each smart device

offline prior to activating the authentication system. Next, a user who wishes to access the smart

devices has to first register at the registration authority by providing its credential information.

After registration, the proposed scheme performs the following steps: user’s authentication and

15

agreement, user’s biometric and password update and verification using a fuzzy extractor, then

allowance of access to the resources of the system to the user if the authentication was successful.

In [21], Reyhani and Mahdavi proposed a two-steps user authentication scheme for smart home

network, which is based on the Radial Basis Function (RBF) neural network. In the registration

step, the user’s username and password information are hashed (using a one-way hash function)

and utilized as patterns to train the RBF neural network. The authentication step consists in getting

the system to perform the following tasks: (1) apply the same hash function on an entered username

and password, (2) extract an output of the trained RBF neural network, and (3) compare this output

against the hashed password. If there is a match, the user is said to be authenticated; otherwise, the

user is qualified as illegal.

In [22], Bae and Kwak proposed a user authentication protocol in IoT environment using smart

card, which is composed of three phases: (1) Registration phase – where the user and IoT server

both request for registration to a third trusted party (the authentication server), which in response

sends a smart card to the user as well as the secret information that it has stored and which will be

needed for the login and authentication steps (encrypted password (EncPassi), h(EncPassi). In the

Login and authentication phase, the server verifies the identity of the user upon request for login,

then issue a session key if the user and server are both confirmed as legitimate entities. Only

thereafter, the mutual authentication between the server and the user can be performed, which

involves the value generated by the user and the h(x) value contained in the smart card. It should

be noted that a password change phase is also implemented which accounts for the situation where

the user wishes to change his/her password to a new one.

16

In [23], Dammak et al. proposed a token-based lightweight user authentication for IoT devices

(called TBLUA), which is based on a token-based method to improve the robustness of the

authentication. Their scheme consists of offline smart device and home gateway registration, user

registration, and token distribution between the home gateway and smart devices. Upon

completion of these steps, the user can log in to the system, triggering the authentication phase,

with the goal that the user be authenticated as legitimate or illegal.

In [24], Amin et al. proposed a two-factor RSA-based user authentication protocol for multi-server

environments, which consists of the following steps: (1) initialization step (achieved by a trusted

RC) - meant for the registration of the user 𝑈𝑖 and the application server AS𝑗, (2) user login step

using the smart card in which its ID and password are stored, (3) verification step - in which a

session key agreement initiated by the RC is established between the 𝑈𝑖 and AS𝑗, and (4) password

change step – to accommodate possible changes in the registered user’s password.

In [25], Zhao and Jiang proposed a cryptanalysis of the Truong et al. [26] authentication protocol

based on which an enhanced scheme is derived, which can protect against server impersonation

and offline password guessing attacks in a multi-server environment. Their scheme is made of the

following steps: initialization and registration (which is the responsibility of the RC),

authentication (between the user and the service provider), and password update phase.

Furthermore, the Diffie-Hellman key exchange protocol [27] is used for key agreement and

forward secrecy purposes, and the timestamps and freshness of random numbers are used to

prevent against replay attacks.

In [28], Dhillon and Kalra proposed a three-factor user authentication scheme for IoT

environments based on password, biometrics and smart device. Their scheme is made of: (1)

17

registration step – where the user and home gateway must register, (2) login step – if successful,

this phase gives the user the to an IoT node and the desired resources, (2) mutual authentication –

where both the user and the IoT node generates an encrypted session key based on some necessary

parameters generated by the gateway node, which enables a secure communication between the

user and the IoT node; and (3) password change phase – which enable password updates when

needed by the user.

Unlike the aforementioned schemes, in the proposed RSA-B-ASH-S authentication scheme,

symmetric encryption is utilized, and the RSA method is only used in the initial authentication

phase for mutual authentication purposes and for preventing the Man-in-the-middle (MITM)

attack. To satisfy perfect forward secrecy, our proposed scheme uses a fresh shared key for each

session; therefore, even if the private key of the server is compromised, the attacker cannot access

to any of the previous sessions’ plaintext data.

2.2.2 RSA Public Key Cryptosystem

Our RSA-Biometric three-factor User Authentication scheme is an enhancement of the RSA-ASH-

SC scheme [3], in which RSA [29] was primarily used as underlying algorithm. This algorithm

contains three primary steps: key generation, encryption and decryption.

Key Generation Step: First, n the input to this algorithm, which is a security parameter

also known as the length of the RSA, is given. Then, two prime numbers represented by p and q

are chosen, each with half of n’s length long in bits. After that, 𝑁 = 𝑝. 𝑞 is computed and the

Euler’s totient function 𝜑(𝑁) = (𝑝 − 1). (𝑞 − 1) is calculated. Then, e the encryption

component is chosen such that 𝑔𝑐𝑑(𝑒, 𝜑(𝑁)) = 1 < 𝑎𝑛𝑑 < 1 < 𝑒 < 𝜑(𝑁). Lastly, a private key

𝑑 = 𝑒 − 1 𝑚𝑜𝑑(𝜑(𝑁)) is generated such that the public key is (𝑒, 𝑁) and private key is (𝑑, 𝑁).

18

Encryption: Either of the private or public keys can be used to encrypt the message.

However, for decryption, a second key is required. The message M should be an integer between

1 to N – 1, otherwise, it is supposed to be formatted in a way to satisfy this condition. Therefore,

the Public Key Cryptography Standards, Number 1, known as PKCS#1 standard [30] is commonly

used in this step, and M is encrypted as 𝐶 = 𝑀𝑒𝑚𝑜𝑑(𝑁), where C is the ciphertext.

Decryption: The private components d and N are used for the decryption of C. To retrieve

the original message, 𝐶𝑑𝑚𝑜𝑑(𝑁) is calculated. This calculation can be computationally

exhaustive since both d and N are sizable numbers. The Chinese Remainder Theorem has been

used as a solution to increase the speed of the decipher algorithm, which can increase the speed of

the process up to four times [30].

2.2.3 RSA-ASH-SC User Authentication Scheme

Our proposed RSA-B-ASH-S protocol is inspired from the design of the RSA-ASH-SC scheme

introduced in [3]. The latter is a two-factor authentication protocol for user authentication in smart

homes using smart cards, which utilizes the Rebalanced-Multi-Power RSA [10] algorithm for

asymmetric encryption. It should be noticed that although such choice of RSA-based encryption

provides a public and a private key, it is much more costly than using a symmetric encryption such

as AES [31] from a computational performance perspective. In the RSA-ASH-SC scheme, after

the initialization and registration phases are completed, the login and authentication phases are

carried out as follows.

Login phase: The smart card which functions as one of the two security factors generates 𝑥 =

 (𝑓((𝑓(𝑃𝑊𝑖) ⊕ 𝐼𝐷𝑖))
𝑒⊕𝑓(𝑇)) 𝑚𝑜𝑑 𝑁, and 𝑦 = (𝑂𝑇𝑇𝑖 ∥ 𝑇 ∥ 𝑆𝑖 ∥ 𝑓(𝑂𝑇𝑇𝑖 ∥ 𝑇 ∥ 𝑆𝑖 ∥ 𝑓(𝑥 ⊕

𝑂𝑇𝑇𝑖)) ∥ 𝑓(𝑥 ⊕ 𝑂𝑇𝑇𝑖)). Then, encrypts 𝑦 as 𝐶 = 𝑦𝑒𝑚𝑜𝑑 (𝑁) and sends (𝑂𝑇𝑇𝑖, 𝐶) to the server.

19

Authentication phase: First, the server validates the received 𝑂𝑇𝑇𝑖, then decrypts C and extracts

y using Chinese Remainder Theorem (CRT). Afterwards, it checks for the freshness and integrity

of the message. Then, it computes 𝑥 𝑎𝑠 ((𝑓(𝑓(𝑃𝑊𝑖) ⊕ 𝐼𝐷𝑖))
𝑒⊕𝑓(𝑇)) 𝑚𝑜𝑑 𝑁 and 𝑍 𝑎𝑠 𝑓(𝑥 ⊕

𝑂𝑇𝑇𝑖) and compares the Z value with the received 𝑓(𝑥 ⊕ 𝑂𝑇𝑇𝑖) to authenticate the request. Next,

the server generates a new random token 𝑂𝑇𝑇𝑛𝑒𝑤 for future authentication purposes and updates

the corresponding database entry. It also creates the current timestamp 𝑇𝑛𝑒𝑤, and sends

(𝑇𝑛𝑒𝑤,{𝑓(𝑇𝑛𝑒𝑤 ∥ 𝑂𝑇𝑇𝑛𝑒𝑤), 𝑂𝑇𝑇𝑛𝑒𝑤}𝑆𝑖) to the user as the response where, {}𝑆𝑖 is the symmetric

encryption/decryption function with 𝑆𝑖 as the key. The user then decrypts the received message

with 𝑆𝑖 and checks whether the message is new or not. Finally, the user replaces the existing one-

time token with 𝑂𝑇𝑇𝑛𝑒𝑤 in the card, and uses 𝑆𝑖 for future communications.

Our primary motivation in developing the proposed scheme is to achieve the Perfect Forward

Secrecy. To do so, we aim to make use of the DH algorithm [27] which creates the possibility of

having a new key for each session. The underlying RSA algorithm in our proposed scheme is

identical to that used in the RSA-ASH-SC scheme, however, we tried to shift the weight of the

cryptography process from RSA to symmetric encryption. The proposed scheme also uses a

smartphone as an alternative to the smart card since it is not only deemed to be more practical, but

also it provides the possibility of adding a third layer to the authentication process using a biometric

factor such as, such as fingerprint or face recognition verification. The detailed methodology of

our proposed scheme is discussed thoroughly in Chapter 3.

20

Chapter 3

Proposed Three-Factor User Authentication

Protocol for Smart Homes

3.1 High-Level Workflow of the Proposed RSA-B-ASH-S

Authentication Scheme

To demonstrate the data exchange in the proposed scheme we have considered the notations given

in Table 3.1.

Table 3.1: Notations used in the proposed scheme.

Notation Description

𝜙(𝑁) Euler’s totient

𝑛 Input security parameter for key generation algorithm

𝑘 Distinct prime numbers in RSA key generation

𝑠 Size of prime numbers in RSA key generation (Rebalanced)

𝑝, 𝑞 Prime numbers used in RSA key generation

𝑒 Encryption exponent

𝑑 Decryption exponent

𝑚𝑜𝑑() Modulus operation

gcd() Greatest common divisor

21

⊕ XOR operation

ℎ(), 𝑓() One-way Hash function

𝛥𝑇 Threshold time used to prevent replay attack

{ }𝑥 Symmetric key encryption/decryption. Here 𝑥 is symmetric key

𝑈𝑖 𝑖𝑡ℎ user

𝐼𝐷𝑖 𝑖𝑡ℎ user’s ID

𝑃𝑊𝑖 𝑖𝑡ℎ user’s password

𝐵𝑖 𝑖𝑡ℎ User’s biometric impression

𝑂𝑇𝑇𝑖 𝑖𝑡ℎ user’s One-Time-Token

Θ A predetermined threshold for biometric verification

𝜎() A symmetric parametric function for biometric factor comparison

𝑝𝑑ℎ
Large prime (usually larger than 1024 bits) for Diffie Hellman key

exchange algorithm

𝑛𝑑ℎ Size of 𝑝𝑑ℎ in bits

𝑎𝑖 Session independent random exponent chosen by 𝑖𝑡ℎ user

𝑏𝑖
Session independent random exponent chosen by the server to

communicate with 𝑖𝑡ℎ user

𝑔 Generator of 𝑍𝑝𝑑ℎ

𝑠𝑘𝑖 Session key for communication of 𝑖𝑡ℎ user and the server

𝑡𝑠𝑘𝑖
Session independent temporary key chosen randomly by the 𝑖𝑡ℎ user to

encrypt the communication with the server

22

Figure 3.1: High-level workflow of the RSA-B-ASH-S authentication scheme.

The proposed RSA-B-ASH-S scheme is a three-factor remote authentication protocol, the first of

which is the password (i.e. what you know factor), the second is smartphone (i.e. what you have

factor) and the third is user’s biometric impression (i.e. who you are factor). The user is required

to register (one-time process) beforehand with the system. Each user 𝑈𝑖 needs to choose his/her

password and imprints his/her biometric impression at the sensor. The user then interactively

submits the Hash of his/her password and the biometric impression to the server. The server then

generates a unique 𝐼𝐷𝑖 and other information, which are saved in the smartphone, to be used for

remote user authentication purpose. The high-level working of the proposed RSA-B-ASH-S

23

scheme is illustrated in Fig. 3.1. The authentication process in this scheme is initiated by the user,

and ended by the server. The user-side operations are highlighted in blue and the server-side

operations are highlighted in red. Each conditional operation could terminate the authentication

process if given an invalid input, regardless that it is executed in the user or server-side. This

process is thoroughly explained Subsection 3.2.

Figure 3.2: Example of authentication dynamic of an IoT structure.

As illustrated in Figure 3.2, based on the nature of the IoT structures [1], mutual authentication is

required to be in place for the IoT device, the user and the server. In the system model used in our

work, it is assumed that the user is equipped with an IoT device such as a smartphone, thereby the

focus is on achieving a mutual authentication between the user and the server.

24

3.2 Description of the Proposed RSA-B-ASH-S Authentication

Scheme

The proposed RSA-B-ASH-S scheme consists of four steps: Initialization phase, Registration

phase, Login and Authentication phase.

Initialization phase: The RSA keys are generated as per the method described in RSA-

ASH-SC [3]. The key generation algorithm takes two security parameters as inputs: 𝑛 and 𝑘. First,

it generates
𝑛

𝑘
 bits long two prime numbers 𝑝 and 𝑞, such that gcd((𝑝 − 1), (𝑞 − 1)) = 2. Then,

it calculates 𝑁 = 𝑝(𝑘−1). 𝑞. Next, it generates two random numbers 𝑟1 and 𝑟2 such that

gcd(𝑟1, (𝑝 − 1)) = 1, gcd(𝑟2, (𝑞 − 1)) = 1 and 𝑟1 = 𝑟2 𝑚𝑜𝑑(2). Then, it finds the integer 𝑑

such that 𝑑 = 𝑟1 𝑚𝑜𝑑(𝑝 − 1) and 𝑑 = 𝑟2 𝑚𝑜𝑑(𝑞 − 1). Finally, it calculates 𝑒 such that

𝑒 = 𝑑−1𝑚𝑜𝑑(𝜙(𝑁)). Here, the public key is (𝑒, 𝑁) and the private key is (𝑝, 𝑞, 𝑟1, 𝑟2), which is

kept secret with the server.

The server also generates 𝑛𝑑ℎbits long prime 𝑝𝑑ℎ such that
𝑝𝑑ℎ−1

2
 is also a prime. This feature

makes 𝑝𝑑ℎ a so-called "safe prime". A safe prime is called as such because it does not suffer from

some attacks which may make the discrete logarithm easier. Also, it has the advantage of allowing

𝑔 = 2 as the generator, which promotes the computational efficiency. The server additionally

creates another prime number 𝑔 such that 𝑔 is a primitive root of 𝑝𝑑ℎ.

Registration Phase: The user (𝑈𝑖) submits a request in a secure manner to the server by

sharing his/her biometric impression 𝐵𝑖 and the hash of his/her password (ℎ(𝑃𝑊𝑖), 𝐵𝑖) where 𝑃𝑊𝑖

is the chosen password. Upon receiving this request, the server creates a random and unique 𝐼𝐷𝑖

for 𝑈𝑖. The server also creates a random one-time-token 𝑂𝑇𝑇𝑖 to keep for the future authentication

requests. Next, the server calculates 𝐶𝑅𝑖 = ℎ(ℎ(𝑃𝑊𝑖), 𝐼𝐷𝑖) then stores this value and 𝑂𝑇𝑇𝑖 in the

25

database along with the 𝐵𝑖 and 𝐼𝐷𝑖, which is protected by the server’s private key. Next, the server

submits the following information (𝐼𝐷𝑖 , 𝑂𝑇𝑇𝑖, 𝑝𝑑ℎ, 𝑔, 𝑒, 𝑁, ℎ(), 𝛥𝑇) to the smartphone over a

secure channel. The stepwise demonstration of the registration phase in the proposed scheme is as

follows:

Registration Step 1:

𝑢𝑠𝑒𝑟:

 𝑼𝒊 → 𝒔𝒆𝒓𝒗𝒆𝒓: 〈𝒉(𝑷𝑾𝒊), 𝑩𝒊〉

Registration Step 2:

𝑠𝑒𝑟𝑣𝑒𝑟:

𝐼𝐷𝑖 = 𝑐𝑟𝑒𝑎𝑡𝑒 → 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑛𝑑 𝑢𝑛𝑖𝑞𝑢𝑒

𝑂𝑇𝑇𝑖 = 𝑐𝑟𝑒𝑎𝑡𝑒 → 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑛𝑑 𝑢𝑛𝑖𝑞𝑢𝑒

𝐶𝑅𝑖 = ℎ(ℎ(𝑃𝑊𝑖), 𝐼𝐷𝑖)

𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 → 𝑖𝑛𝑠𝑒𝑟𝑡 〈𝑂𝑇𝑇𝑖, 𝐼𝐷𝑖, 𝐵𝑖, 𝐶𝑅𝑖〉

𝒔𝒆𝒓𝒗𝒆𝒓 → 𝑼𝒊: 〈𝑰𝑫𝒊, 𝑶𝑻𝑻𝒊, 𝒑𝒅𝒉, 𝒈, 𝒆, 𝑵, 𝒉, 𝜟𝑻〉

Login and Authentication Phase: First, 𝑈𝑖 opens the authenticator software which makes

use of the proposed authentication. 𝑈𝑖 imprints his/her biometric 𝐵𝑖
∗ at the sensor, then inputs

his/her password. The software performs the following steps. First, it generates a random number

𝑎𝑖 and keeps it secure, then computes the Diffie-Hellman public key 𝑃𝐾𝑢𝑠𝑒𝑟
𝑑ℎ = 𝑔𝑎𝑖𝑚𝑜𝑑 (𝑝𝑑ℎ).

Next, 𝑡𝑠𝑘𝑖, a session independent temporary key is created randomly by the user application. For

the server-side application to be able to encrypt the response of the initial request asymmetrically,

the 𝑡𝑠𝑘𝑖 variable is needed. It should be pointed out that this value does not function as the session

key, but is merely used to prevent the communication of the server’s Diffie-Hellman public

parameter without encryption. Finally, it generates 𝑃1 = (𝑃𝐾𝑢𝑠𝑒𝑟
𝑑ℎ , 𝑇, 𝑡𝑠𝑘𝑖), where T is the current

26

timestamp. Afterward, the software encrypts 𝑃1 with the server’s RSA public key

𝐶1 = (𝑃1)
𝑒 𝑚𝑜𝑑(𝑁), then sends the following message (𝑂𝑇𝑇𝑖, 𝐶1) to the server. Upon receipt,

the server compares 𝑂𝑇𝑇𝑖 against the entries in the database. If there is a match, the server extracts

(𝐼𝐷𝑖, 𝐵𝑖, 𝐶𝑅𝑖) from the database corresponding to the 𝑂𝑇𝑇𝑖, decrypts 𝐶1 and retrieves 𝑃1. To

decrypt 𝐶1, it computes 𝑀1 = 𝐶1
𝑟1𝑚𝑜𝑑(𝑝) and 𝑀2 = 𝐶1

𝑟2𝑚𝑜𝑑(𝑞). Using CRT, it calculates 𝑃1 ∈

𝑍𝑁 such that 𝑃1 = 𝑀1𝑚𝑜𝑑 (𝑝) and 𝑃1 = 𝑀2𝑚𝑜𝑑 (𝑞). Then, it checks whether the timestamp is

recent or not, i.e. (𝑇𝑠 – 𝑇) < 𝛥𝑇, where 𝑇𝑠 is the current timestamp of the server and 𝛥𝑇 is the

acceptable difference. Then the server obtains 𝑈𝑖’s DH public key 𝑔𝑎𝑚𝑜𝑑 (𝑝𝑑ℎ) along with

𝑡𝑠𝑘𝑖. After that, it creates a random number 𝑏𝑖 and keeps it secure, then computes the server’s DH

public key 𝑃𝐾𝑠𝑒𝑟𝑣𝑒𝑟
𝑑ℎ = 𝑔𝑏𝑖𝑚𝑜𝑑 (𝑝𝑑ℎ) and the session key 𝑠𝑘𝑖 = (𝑃𝐾𝑢𝑠𝑒𝑟

𝑑ℎ)𝑏𝑖𝑚𝑜𝑑(𝑝𝑑ℎ). Then,

the server creates a new random token 𝑂𝑇𝑇𝑖
𝑛𝑒𝑤 but it does not update 𝑈𝑖’s token before

authentication. Finally, the server computes 𝑃2 = ℎ(𝐼𝐷𝑖 , 𝑠𝑘𝑖 , 𝑃1,) and

𝐶2 = {𝑂𝑇𝑇𝑖
𝑛𝑒𝑤, 𝑇, 𝑃𝐾𝑠𝑒𝑟𝑣𝑒𝑟

𝑑ℎ , 𝑃2}𝑡𝑠𝑘𝑖 where T is the current timestamp, then sends 𝐶2 back to 𝑈𝑖.

Hence, only the server can decrypt 𝐶1, thus 𝑃2 is used as a challenge and the user can authenticate

the integrity of the message and its sender. Upon receipt of 𝐶2, the client-side application decrypts

it using 𝑡𝑠𝑘𝑖, therefore gains access to 𝑂𝑇𝑇𝑖
𝑛𝑒𝑤, 𝑇, 𝑃2 and the server’s DH public key 𝑃𝐾𝑠𝑒𝑟𝑣𝑒𝑟

𝑑ℎ ,

and finally obtains the 𝑠𝑘𝑖 value by computing 𝑠𝑘𝑖 = (𝑃𝐾𝑠𝑒𝑟𝑣𝑒𝑟
𝑑ℎ)𝑎𝑖𝑚𝑜𝑑(𝑝𝑑ℎ). The client-side

application verifies the freshness of the received message by comparing the current and received

timestamps. Next, 𝑈𝑖 confirms the integrity of the message by calculating 𝑃2
∗ = ℎ(𝐼𝐷𝑖, 𝑠𝑘𝑖 , 𝑃1)

and checking 𝑃2
∗ = 𝑃2. If message was genuine, 𝑈𝑖 creates

𝑃3 = ℎ(𝑂𝑇𝑇𝑖
𝑛𝑒𝑤, 𝑂𝑇𝑇𝑖, ℎ(ℎ(𝑃𝑊𝑖), 𝐼𝐷𝑖)), encrypts it along with 𝐵𝑖

∗ and the current timestamp T,

producing 𝐶3 = {𝑃3, 𝐵𝑖
∗, 𝑇}𝑠𝑘𝑖. Eventually, 𝑈𝑖 sends 𝐶3 back to the server as the last step of

authentication. The server then decrypts 𝐶3 with 𝑠𝑘𝑖, confirms if the message is fresh, i.e.

27

(𝑇𝑠 – 𝑇) < 𝛥𝑇 and computes 𝑃3
∗ = ℎ(𝑂𝑇𝑇𝑖

𝑛𝑒𝑤, 𝑂𝑇𝑇𝑖, ℎ(ℎ(𝑃𝑊𝑖), 𝐼𝐷𝑖)) from the database entries

then checks if it is identical to 𝑃3. If this is valid, a biometric verification phase is trigger, which

compares the imprinted biometric impression 𝐵𝑖
∗ with the stored 𝐵𝑖 value. If 𝐵𝑖

∗ is validated

(𝜎(𝐵𝑖
∗, 𝐵𝑖) ≤ Θ), then the two values are matched successfully and the authentication phase

successfully finishes, otherwise the software generates the decline message and terminates the

process. Then the server authenticates the user and updates his/her 𝑂𝑇𝑇𝑖
𝑛𝑒𝑤 in the database. Then

the user replaces his/her one-time token with 𝑂𝑇𝑇𝑖
𝑛𝑒𝑤. In a nutshell, the steps of the Login and

Authentication phase can be summarized as follows:

Login and Authentication Step 1:

𝑢𝑠𝑒𝑟:

𝐵𝑖
∗ = 𝑟𝑒𝑎𝑑 → 𝑈𝑖 𝑖𝑚𝑝𝑟𝑖𝑛𝑡𝑒𝑑 𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐

𝑃𝑊𝑖 = 𝑟𝑒𝑎𝑑 → 𝑈𝑖 𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑

𝑇 = 𝑟𝑒𝑎𝑑 → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

𝑎𝑖 = 𝑐𝑟𝑒𝑎𝑡𝑒 → 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟

𝑡𝑠𝑘𝑖 = 𝑐𝑟𝑒𝑎𝑡𝑒 → 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟

𝑃𝐾𝑢𝑠𝑒𝑟
𝑑ℎ = 𝑔𝑎𝑖 𝑚𝑜𝑑(𝑝𝑑ℎ)

𝑃1 = (𝑃𝐾𝑢𝑠𝑒𝑟
𝑑ℎ , 𝑇, 𝑡𝑠𝑘𝑖)

𝐶1 = (𝑃1)
𝑒 𝑚𝑜𝑑(𝑁)

𝑼𝒊 → 𝒔𝒆𝒓𝒗𝒆𝒓: 〈𝑶𝑻𝑻𝒊, 𝑪𝟏〉

Login and Authentication Step 2:

𝑠𝑒𝑟𝑣𝑒𝑟:

𝑖𝑓(𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 → 𝑞𝑢𝑒𝑟𝑦(𝑂𝑇𝑇𝑖) == ∅)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒

𝑀1 = 𝐶1
𝑟1 𝑚𝑜𝑑(𝑝)

𝑀2 = 𝐶1
𝑟2 𝑚𝑜𝑑(𝑞)

𝐶𝑅𝑇 → 𝑃1 ∈ 𝑍𝑛

𝑇𝑠 = 𝑟𝑒𝑎𝑑 → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

𝑖𝑓(𝑇𝑠 − 𝑇 > ∆𝑇)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒

𝑏𝑖 = 𝑐𝑟𝑒𝑎𝑡𝑒 → 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟

𝑃𝐾𝑠𝑒𝑟𝑣𝑒𝑟
𝑑ℎ = 𝑔𝑏𝑖𝑚𝑜𝑑 (𝑝𝑑ℎ)

28

𝑠𝑘𝑖 = (𝑃𝐾𝑢𝑠𝑒𝑟
𝑑ℎ)𝑏𝑖𝑚𝑜𝑑(𝑝𝑑ℎ)

𝑂𝑇𝑇𝑖
𝑛𝑒𝑤 = 𝑐𝑟𝑒𝑎𝑡𝑒 → 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑛𝑑 𝑢𝑛𝑖𝑞𝑢𝑒

𝑃2 = ℎ(𝐼𝐷𝑖, 𝑠𝑘𝑖 , 𝑃1)

𝐶2 = {𝑂𝑇𝑇𝑖
𝑛𝑒𝑤 , 𝑇, 𝑃𝐾𝑠𝑒𝑟𝑣𝑒𝑟

𝑑ℎ , 𝑃2}𝑡𝑠𝑘𝑖

𝒔𝒆𝒓𝒗𝒆𝒓 → 𝑼𝒊: 〈𝑪𝟐〉

Login and Authentication Step 3:

𝑢𝑠𝑒𝑟:

𝐷2 = {𝐶2}𝑡𝑠𝑘𝑖
−1

𝑠𝑘𝑖 = (𝑃𝐾𝑠𝑒𝑟𝑣𝑒𝑟
𝑑ℎ)𝑎𝑖𝑚𝑜𝑑(𝑝𝑑ℎ)

𝑇 = 𝑟𝑒𝑎𝑑 → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

𝑖𝑓(𝑇 − 𝑇𝑠 > ∆𝑇)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒

𝑃2
∗ = ℎ(𝐼𝐷𝑖, 𝑠𝑘𝑖, 𝑃1)

𝑖𝑓(𝑃2
∗ ! = 𝑃2)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒

𝑃3 = ℎ(𝑂𝑇𝑇𝑖
𝑛𝑒𝑤, 𝑂𝑇𝑇𝑖, ℎ(ℎ(𝑃𝑊𝑖), 𝐼𝐷𝑖))

𝐶3 = {𝑃3, 𝐵𝑖
∗, 𝑇}𝑠𝑘𝑖

𝑼𝒊 → 𝒔𝒆𝒓𝒗𝒆𝒓: 〈𝑪𝟑〉

Login and Authentication Step 4:

𝑠𝑒𝑟𝑣𝑒𝑟:

𝐷3 = {𝐶3}𝑠𝑘𝑖
−1

𝑇𝑠 = 𝑟𝑒𝑎𝑑 → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

𝑖𝑓(𝑇𝑠 − 𝑇 > ∆𝑇)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒

𝑃3
∗ = ℎ(𝑂𝑇𝑇𝑖

𝑛𝑒𝑤, 𝑂𝑇𝑇𝑖, ℎ(ℎ(𝑃𝑊𝑖), 𝐼𝐷𝑖))

𝑖𝑓(𝑃3
∗ ! = 𝑃3)

𝑒𝑥𝑖𝑡

𝑖𝑓(𝜎(𝐵𝑖
∗, 𝐵𝑖) > Θ)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒

 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 → 𝑢𝑝𝑑𝑎𝑡𝑒(𝑂𝑇𝑇𝑖
𝑛𝑒𝑤)

 𝐶4 = {𝐴𝑈𝑇𝐻𝐸𝑁𝑇𝐼𝐶𝐴𝑇𝐸𝐷}𝑠𝑘𝑖

𝒔𝒆𝒓𝒗𝒆𝒓 → 𝑼𝒊: 〈𝑪𝟒〉; 𝑼𝒊 → 𝒖𝒑𝒅𝒂𝒕𝒆(𝑶𝑻𝑻𝒊
𝒏𝒆𝒘)

Password/Biometric Change Phase: To update the password or the biometric impression,

the user needs to be authenticated in advance. The user enters the new password and imprints

29

his/her biometric impression at the sensor 𝐵𝑖
𝑛𝑒𝑤 and calculates 𝑦 = ℎ(𝑃𝑊𝑖

𝑛𝑒𝑤) then sends a

password/biometric update command to the server as 𝐶𝑀𝐷 = (𝑝𝑎𝑠𝑠𝑢𝑝𝑑𝑎𝑡𝑒 , {𝑇, 𝑦, 𝐵𝑖
𝑛𝑒𝑤}𝑠𝑘𝑖)

where 𝑝𝑎𝑠𝑠𝑢𝑝𝑑𝑎𝑡𝑒 is a known command to the server, and 𝑇 is the current timestamp. After

receiving the command, the server decrypts the message using 𝑠𝑘𝑖 and validates the timestamp T.

If validated, the server computes 𝐶𝑅𝑖
𝑛𝑒𝑤 = ℎ(𝑦, 𝐼𝐷𝑖), then updates the database corresponding to

the user 𝐼𝐷𝑖. The stepwise demonstration of password/biometric change phase in the proposed

scheme is as follows:

Password/Biometric Change Step 1:

𝑢𝑠𝑒𝑟:

𝐵𝑖
𝑛𝑒𝑤 = 𝑟𝑒𝑎𝑑 → 𝑈𝑖 𝑖𝑚𝑝𝑟𝑖𝑛𝑡𝑒𝑑 𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐

𝑃𝑊𝑖
𝑛𝑒𝑤 = 𝑟𝑒𝑎𝑑 → 𝑈𝑖 𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑

𝑇 = 𝑟𝑒𝑎𝑑 → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

𝑦 = ℎ(𝑃𝑊𝑖
𝑛𝑒𝑤)

𝐶𝑀𝐷 = (𝑝𝑎𝑠𝑠𝑢𝑝𝑑𝑎𝑡𝑒 , {𝑇, 𝑦, 𝐵𝑖
𝑛𝑒𝑤}𝑠𝑘𝑖)

𝑼𝒊 → 𝒔𝒆𝒓𝒗𝒆𝒓: 〈𝑪𝑴𝑫〉

Password/Biometric Change Step 2:

𝑠𝑒𝑟𝑣𝑒𝑟:

𝐷 = {𝐶𝑀𝐷}𝑠𝑘𝑖
−1

𝑇𝑠 = 𝑟𝑒𝑎𝑑 → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

𝑖𝑓(𝑇𝑠 − 𝑇 > ∆𝑇)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒

𝐶𝑅𝑖
𝑛𝑒𝑤 = ℎ(𝑦, 𝐼𝐷𝑖)

 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 → 𝑢𝑝𝑑𝑎𝑡𝑒(𝐶𝑅𝑖
𝑛𝑒𝑤, 𝐵𝑖

𝑛𝑒𝑤)

𝒔𝒆𝒓𝒗𝒆𝒓 → 𝑼𝒊: 〈𝑺𝑼𝑪𝑪𝑬𝑺𝑺〉

30

Chapter 4

Performance Evaluation of the Proposed

RSA-B-ASH-S Scheme

4.1 Proof of Concept of the RSA-B-ASH-S Scheme

To implement the proof of concept of the proposed scheme we have used Apple iPhone 7 Plus

smartphone on the client-side with iOS 12.4, running as operating system which has Quad-core

(2× Hurricane + 2× Zephyr) CPU with 1.64 GHz frequency. The smartphone is equipped with a

front-facing camera which enabled us to implement face recognition as the biometric

authentication factor of our proposed scheme. The user-side application has been implemented by

Swift 4 [32], a native language for iOS application development. On the server-side we have used

a shared host with CloudLinux 6.x [33] as running operating system, which has Dual Intel(R)

Xeon(R) CPU E5-2660 v4 with 2.00 GHz frequency. Considering that the server is running over

a shared host, all the resources such as CPU and RAM are not completely available. The server-

side implementation is over PHP [34] version 7.2, MySQL 10.1.41-MariaDB-cll-lve [35] and for

the face recognition part, we have used FaceX API [36].

In both client and server-sides, the RSA encryption has been done using a key length of

2048 bits with the help of OpenSSL Lib v.1.1.1 [37] and to implement the symmetric encryption

part, AES-256-GCM [31] is used. For security purposes, each session independently relies on

security of AES-256-GCM. It should be emphasized that even with Frontier [38], the most

31

powerful and fastest supercomputer in the world, which is going to be operational in 2021, it will

take millions of years to crack the 256-bit AES encryption. Also, for the Diffie Hellman key

exchange algorithm, 2048 bits long prime number 𝑝𝑑ℎ has been considered such that
𝑝𝑑ℎ−1

2
 is a

prime number, which makes 𝑝𝑑ℎ a safe prime. Hence 𝑝𝑑ℎ is a safe prime, the generator 𝑔 is

presumed to be 2, which will improve the computational efficiency.

The proof of concept implementation consists of two phases: Registration phase and Login and

authentication phase as described in the sequel.

Registration Phase: The proof of concept is implemented on Apple iOS platform. The

biometric factor in the implemented proof of concept is face recognition using a two-dimensional

picture due to the fact that the current smartphone operating systems do not provide raw access to

the device biometric authentication technologies such as fingerprints or depth-powered face

capturing. The iOS supported devices have high-resolution front cameras which result in higher

face recognition accuracy. The face recognition process is used both in registration and

authentication phases. The user captures a picture using the front camera of his/her devices, the

client-side application then detects and crops the face in the picture using the iOS Core APIs [32],

for efficiency purposes. The user then chooses a secure password as the “what you know” factor.

The cropped picture is then encoded into a Base64 format [39], for simplicity, and then sent and

saved to the server along with the SHA3-512 [40] hash of the chosen password. Upon receipt, the

server generates two 512-bits long unique random values, one of which is 𝐼𝐷𝑖, and the other one

is 𝑂𝑇𝑇𝑖. The server then generates the SHA3-512 hash of 𝐼𝐷𝑖 combined with the received hashed-

value of the user password. The generated value, 𝑂𝑇𝑇𝑖 and the Base64 formatted user face image

are then stored into the server’s database. The server returns the user 𝐼𝐷𝑖, as well as the one-time

32

token to the client application. All the incoming and outgoing data in the registration process is

assumed to be sent over a secure channel. It should be noted that the raw value of the password is

never saved in the client nor the server side. The user 𝐼𝐷𝑖, i.e. “what you have” factor is also only

stored in the device’s operating system secure storage unit. The steps of this phase are shown as

below in Figure 4.1.

Figure 4.1: Proof of concept registration process.

Login and Authentication Phase: If the user has registered and the 𝐼𝐷𝑖 is stored on the

device, the user must be authenticated using his/her biometric impression as well as the selected

password. The steps are as illustrated in Fig. 4.2.

33

Figure 4.2: Proof of concept login and authentication process.

After the key exchange is completed, the client side and server-side have both agree on the

same fresh session key, the authentication can proceed. The user application takes the face image,

the inputted password and 𝐼𝐷𝑖 to create an encrypted authentication request using the session key

and then sends the resulting request to the side. If either the biometric impression or the password

does not match with the stored record from the server’s database, the server declines the

authentication request and the client-side application will transfer the user to the previous screen.

If Authentication Fails

34

Figure 4.3: Proof of concept home page and settings views.

As shown in Fig. 4.3., once the user authenticates him/her identity using the authentication

process, himself/herself can have access to the Home page and the Settings page in which he/she

is able to change his/her password and/or biometric impression. The user also able to destroy the

current session, turn the debug mode on or off. It should be noted that the debug mode enables the

user to view all the outgoing and incoming packages, the agreed session key, and the secret random

parameters, for demonstration purpose.

4.2 Informal Security Analysis of the RSA-ASH-SC Scheme

Confidentiality: In the proposed RSA-B-ASH-S scheme, all the messages are encrypted

either by RSA or a symmetric key except for OTTi, which is a one-time token updated upon each

authentication completion. This value is only used for initiating the user-server communication so

that the server could identify the user. Sending OTTi without encryption enables the server to

distinguish DOS vs. DDOS attacks before decrypting any messages, which make the procedure

faster and ensures the availability of the server. Even if the attacker somehow gains access to tski

35

which is not stored in the database in anyway, it is not possible to extract the session key from

gbimod (pdh), since in order to access the session key, either ai or bi is needed. Hence pdh is a

prime number and g is its generator, and based on the Discrete Logarithm Problem [41], retrieving

bi from gbimod (pdh) is a NP-hard (non-deterministic polynomial-time) problem.

Masquerade attack: In the proposed RSA-B-ASH-S scheme, the user is safe from any

attempts of a masquerade attack since there are no parameters sent in a plaintext format other than

the OTTi, which gets regenerated with each session. Even when the attacker gains access to the

token, there is no way for he/she to masquerade the user’s biometric impression and the password.

Hence, in order for the attacker to gain access to the session key with which the user-server

communication is encrypted with, he/she requires access to the server’s private key as well as one

of the session independent random exponents chosen by the server or the user.

Replay attack: In the proposed RSA-B-ASH-S scheme, not only each session has a new

key, but also all the messages include a timestamp T which are valid for a short amount of time

and are never sent in a plaintext format.

Denial of Service (DoS) & Distributed Denial of Service (DDoS) attacks: Upon receipt

of an authentication request, the server only needs to validate OTTi to distinguish a valid request

from an attack. Even if the attacker has access to a valid OTTi, the server can easily identify the

particular user, then set short-term firewall rules to ignore the requests from that user and

temporarily ban the user’s access.

Perfect forward secrecy: As described earlier, the proposed RSA-B-ASH-S scheme uses

a fresh key for each session. (𝑏𝑖, 𝑎𝑖) which are the secret parameters of the key exchange algorithm,

will never be saved, therefore even if the private key of the server is compromised, the session

36

keys will not be exposed since the attacker cannot obtain a session key unless he/she has access to

either 𝑏𝑖 or 𝑎𝑖 of that session.

Man-in-the-middle (MITM) attack: In the proposed RSA-B-ASH-S scheme, the initial

authentication message contains a challenge that would be validated by the user-side application

to authenticate the server. This initial message is encrypted with the server’s RSA public key, it

can only be decrypted by the server. This feature of the scheme makes impossible the access to the

challenge unless the attacker has access to the server’s RSA private key.

Password guessing attack: In the proposed RSA-B-ASH-S scheme, to perform password

guessing attack, the attacker needs to decrypt the last authentication message, which is infeasible

considering the encryption of the message. Even if the attacker gets access to the private key as

well as the database and successfully decrypts it, because of the fact that h(h(PWi), IDi) was saved

in the database, he/she cannot get access to the h(PWi) in a reasonable amount of time. Indeed,

using IDi as a Salt in password hashing enables us to prevent the rainbow attack. Even if the

attacker in some way gets access to the password, he/she requires the user’s biometric impression

and his/her smartphone to get authenticated from the server.

Device loss attack: In case of user’s device loss, the attacker must break through the

smartphone’s operating system to get the user’s IDi but by knowing only IDi, he/she is not able to

get authenticated, because the authentication procedure requires the user’s password along with

his/her biometric impression , which are never saved on the device.

37

4.3. Comparison of Authentication Schemes based on Security

Attacks and Security Metrics

The proposed RSA-B-ASH-S scheme is compared against selected RSA-based variants in terms

of security attacks (as per Table 4.1).

Table 4.1: Comparison of selected RSA variants in terms of security attacks and metrics.

Yang

et al.

[14]

Fan

et al.

[16]

Yang

et al.

[42]

Om

et

al.

[10]

Om

et

al.

[19]

Shen

et al.

[18]

Liu et

al.

[17]

Chien

et al.

[43]

Raniyal

et al.

[3]

Proposed

RSA-

based

scheme

Confidentiality ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Availability ✓ ✓
✓ ✓ ✓

Integrity
✓

✓ ✓ ✓

Mutual

authentication

✓ ✓ ✓ ✓ ✓

MITM
✓ ✓ ✓ ✓

✓ ✓

Device loss

attack
✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

Password-

guessing

attack

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Replay attack ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓ ✓

Forgery or

Impersonation

✓ ✓ ✓
✓

✓ ✓

DoS attack ✓ ✓
✓ ✓ ✓

Forward

Secrecy
✓ ✓

✓ ✓
✓

38

4.4. Comparison of Computational Performance of Authentication

Schemes

The proposed RSA-B-ASH-S scheme takes advantage of an RSA-based and Diffie Hellman

protocols. Considering that the computational performance and the speed of this scheme strongly

rely on the proposed algorithm as well as the client-side device and the server computational

power, the total authentication time is subject to the mentioned variables and scenarios. Our

proposed scheme is an improvement over the RSA-ASH-SC scheme [3], which in terms of

convergence speed, has considered the Rebalanced-Multi-Power RSA scheme [10] as underlying

RSA algorithm, using a key length of 2048 bits.

4.4.1 Computational Performance

In terms of computational performance, we have considered the notations given in Table 4.2

sorted by complexity from high to low.

Table 4.2: Notations used for the computational time of operations.

Notation Description

𝑇𝑒𝑥𝑝 The time taken by modular exponent operation

𝑇𝑑 The time taken by the modular decryption exponent (d) operation

𝑇𝑒 The time taken by the modular encryption exponent (e) operation

𝑇𝑠 The time taken to encrypt/decrypt using the symmetric key

𝑇ℎ The time taken by hash function operation

𝑇𝑏𝑖𝑜 The time taken by the biometric comparison 𝜎() function

𝑇𝑚𝑢𝑙 The time taken by the modular multiplication operation

𝑇𝑥𝑜𝑟 The time taken by the XOR operation

39

In the authentication phase, the steps 1 and 3 are completed over the client-side and steps 2 and 4

are handled over to the server-side. The time taken by each step, based on the proposed scheme is

listed in Table 4.3 as shown below.

Table 4.3: Total computation time needed for each step

Step Server-side Client-side Total

1 - 𝑇𝑒𝑥𝑝 + 𝑇𝑒 𝑇𝑒𝑥𝑝 + 𝑇𝑒

2 2𝑇𝑒𝑥𝑝 + 𝑇𝑑 + 𝑇ℎ + 𝑇𝑠 - 2𝑇𝑒𝑥𝑝 + 𝑇𝑑 + 𝑇ℎ + 𝑇𝑠

3 - 𝑇𝑒𝑥𝑝 + 4𝑇ℎ + 2𝑇𝑠 𝑇𝑒𝑥𝑝 + 4𝑇ℎ + 2𝑇𝑠

4 𝑇𝑏𝑖𝑜 + 3𝑇ℎ + 2𝑇𝑠 - 𝑇𝑏𝑖𝑜 + 3𝑇ℎ + 𝑇𝑠

Total
2𝑇𝑒𝑥𝑝 + 𝑇𝑑

+𝑇𝑏𝑖𝑜 + 4𝑇ℎ + 3𝑇𝑠
2𝑇𝑒𝑥𝑝 + 4𝑇ℎ + 2𝑇𝑠 + 𝑇𝑒

4𝑇𝑒𝑥𝑝 + 𝑇𝑑 + 8𝑇ℎ

+𝑇𝑒 + 𝑇𝑏𝑖𝑜 + 5𝑇𝑠

Based on the above Table 4.3, the proposed scheme is compared against the selected RSA variants

in terms of computation performance. The results given in Table 4.4

Table 4.4: Comparison of selected RSA variants in terms of computation performance.

 Login Phase
Authentication

Phase
Total

Yang et al.

[14]

2𝑇𝑒𝑥𝑝 + 3𝑇𝑚𝑢𝑙

+𝑇ℎ

𝑇𝑒 + 𝑇𝑒𝑥𝑝 +

𝑇𝑚𝑢𝑙 + 𝑇ℎ

4𝑇𝑚𝑢𝑙 + 3𝑇𝑒𝑥𝑝

+𝑇𝑒 + 2𝑇ℎ

Fan et al.

[16]

2𝑇𝑒𝑥𝑝 + 3𝑇𝑚𝑢𝑙

+𝑇ℎ

𝑇𝑒 + 𝑇𝑒𝑥𝑝 +

𝑇𝑚𝑢𝑙 + 𝑇ℎ

4𝑇𝑚𝑢𝑙 + 3𝑇𝑒𝑥𝑝

+𝑇𝑒 + 2𝑇ℎ

40

Yang et al.

[42]
2𝑇𝑒𝑥𝑝 + 3𝑇𝑚𝑢𝑙

𝑇𝑒 + 2𝑇𝑒𝑥𝑝 +

𝑇𝑚𝑢𝑙

4𝑇𝑚𝑢𝑙 + 4𝑇𝑒𝑥𝑝

+𝑇𝑒

Om et al.

[10]

𝑇𝑒 + 𝑇𝑒𝑥𝑝 +

𝑇ℎ + 𝑇𝑥𝑜𝑟
𝑇𝑑

𝑇𝑥𝑜𝑟 + 𝑇𝑒𝑥𝑝 +

𝑇𝑑 + 𝑇ℎ + 𝑇𝑒

Om et al.

[19]

𝑇𝑒 + 𝑇𝑒𝑥𝑝 +

2𝑇ℎ + 𝑇𝑥𝑜𝑟

𝑇𝑑 + 𝑇𝑒𝑥𝑝 +

𝑇ℎ + 𝑇𝑥𝑜𝑟

2𝑇𝑥𝑜𝑟 + 2𝑇𝑒𝑥𝑝 +

𝑇𝑑 + 3𝑇ℎ + 𝑇𝑒

Shen et al.

[18]

𝑇𝑒 + 2𝑇𝑒𝑥𝑝 +

3𝑇𝑚𝑢𝑙 + 2𝑇ℎ
𝑇𝑑 + 2𝑇ℎ + 𝑇𝑥𝑜𝑟 𝑇𝑥𝑜𝑟 + 2𝑇𝑒𝑥𝑝 + 𝑇𝑑 + 4𝑇ℎ + 𝑇𝑒 + 3𝑇𝑚𝑢𝑙

Liu et al.

[17]

𝑇𝑑 + 𝑇𝑒 + 𝑇𝑒𝑥𝑝 +

𝑇𝑚𝑢𝑙 + 2𝑇ℎ
+ 2𝑇𝑥𝑜𝑟

𝑇𝑒 + 2𝑇ℎ + 𝑇𝑥𝑜𝑟
+3𝑇𝑚𝑢𝑙 + 2𝑇𝑒𝑥𝑝

3𝑇𝑥𝑜𝑟 + 3𝑇𝑒𝑥𝑝 + 𝑇𝑑 + 4𝑇ℎ + 2𝑇𝑒
+ 4𝑇𝑚𝑢𝑙

Chien et

al. [43]
2𝑇ℎ + 2𝑇𝑥𝑜𝑟 3𝑇ℎ + 3𝑇𝑥𝑜𝑟 5𝑇𝑥𝑜𝑟 + 5𝑇ℎ

Raniyal et

al. [3]

2𝑇𝑒 + 𝑇𝑠 +

6𝑇ℎ + 2𝑇𝑥𝑜𝑟
𝑇𝑑 + 𝑇𝑒 + 2𝑇ℎ

+2𝑇𝑥𝑜𝑟 + 𝑇𝑠
4𝑇𝑥𝑜𝑟 + 𝑇𝑑

+8𝑇ℎ + 3𝑇𝑒 + 2𝑇𝑠

Proposed

RSA-B-

ASH-S

Scheme

2𝑇𝑒𝑥𝑝 + 4𝑇ℎ

+2𝑇𝑠 + 𝑇𝑒

2𝑇𝑒𝑥𝑝 + 𝑇𝑑

+𝑇𝑏𝑖𝑜 + 4𝑇ℎ
+ 3𝑇𝑠

4𝑇𝑒𝑥𝑝 + 𝑇𝑑

+8𝑇ℎ + 𝑇𝑒 + 𝑇𝑏𝑖𝑜

+5𝑇𝑠

Table 4.5: Notations used to represent each operation.

Notation Description

𝐸𝑋𝑃 The total number of modular exponent operations

𝐷 The total number of the modular decryption exponent (d) operations

𝐸 The total number of the modular encryption exponent (e) operations

𝑆 The total number of encrypt/decrypt operations using the symmetric key

𝐻 The total number of hash function operations

𝐵𝐼𝑂 The total number of the biometric comparison 𝜎() functions

𝑀𝑈𝐿 The total number of the modular multiplication operations

𝑋𝑂𝑅 The total number of the XOR operations

41

Figure 4.4: Comparison of the performance of the authentication phase in terms of computational

time.

As shown in Fig. 4.5 and Table 4.3 and Table 4.4, the overall computational time of the

authentication phase in the proposed scheme is increased compared to the previous schemes. This

increment in time is due to the fact that our proposed scheme is satisfies the Perfect Forward

Secrecy, which uses the Diffie–Hellman key exchange as underlying protocol, resulting in

additional steps required to complete the authentication. The scheme also takes advantage of a

biometric factor in the authentication process, which results in a 3-factor authentication method,

unlike other studied schemes.

0

1

2

3

4

5

Proposed Scheme Raniyal et al Chien et al Liu et al

To
ta

l N
u

m
b

er
 o

f
O

p
er

at
io

n
 U

sa
ge

XOR E D EXP H S MUL BIO

42

Figure 4.5: Comparison of total computational performance.

As demonstrated in Fig. 4.5, the total computational time of the proposed scheme is incremented

compared to to that of all other studied schemes. To prevent Rainbow attacks, our proposed scheme

uses nested hash functions to protect the data in case of any database exposure and makes the

extraction of the raw data very difficult. It should be noted that the total computational time of the

proposed scheme is high because use of the DH key exchange algorithm.

After performing numerous simulations of the proposed scheme over both client and server-sides,

in terms of computational performance, we have captured the results in Table 4.6.

0

1

2

3

4

5

6

7

8

9

Proposed Scheme Raniyal et al Chien et al Liu et al

To
ta

l N
u

m
b

er
 o

f
O

p
er

at
io

n
 U

sa
ge

XOR E D EXP H S MUL BIO

43

Table 4.6: Result of Simulations of the Proposed Scheme over Client-side and Server-side.

 Data length (bits) Client-side Server-side

𝑇𝑑 2048 - 8 milliseconds

𝑇𝑒 2048 0.6 milliseconds -

𝑇𝑒𝑥𝑝 512 8 milliseconds 5 milliseconds

𝑇𝑠 512 4 milliseconds 10 microseconds

𝑇ℎ 512 0.4 milliseconds 0.05 milliseconds

𝑇𝑥𝑜𝑟 - - -

𝑇𝑚𝑢𝑙 - - -

Figure 4.6: The share of each operation in percentage.

2%

22%

71%

5%

E D EXP H

44

As shown in Fig. 4.6, the majority of the computational time of the login and authentication

processes combined is dedicated to the modular exponential operation based on the results given

in Table 4.6. The RSA decryption function has been used only once in the proposed scheme, but

as demonstrated above, it takes up 22% of the whole computation in terms of time.

4.4.2 Storage Requirements

In our proposed scheme, each user node is required to store (𝐼𝐷𝑖 , 𝑂𝑇𝑇𝑖, 𝑝𝑑ℎ, 𝑔, 𝑒, 𝑁, ℎ, 𝛥𝑇). We

used SHA3-512 as example of hash function, and the output of SHA3-512 is 512 bits. By applying

these settings, we obtain |𝐼𝐷𝑖| = |𝑂𝑇𝑇𝑖| 512 bits, while |𝑝𝑑ℎ| was assumed to be 2048 bits for

security concerns. 𝑔 value is 2 so we can use short integer variable (8 bits) for storing it. 𝛥𝑇 can

be saved into 32 bits of integer value. On the other hand, we need to store (𝑝, 𝑞, 𝑟1, 𝑟2) as server

RSA private key along with (𝐼𝐷𝑖 , 𝑂𝑇𝑇𝑖 , 𝐵𝑖) for each user. The size of 𝐵𝑖 is completely dependent

on the type of biometric factor impression which in our implementation was assumed a compressed

image of user’s face for face recognition. Assuming our biometric factor is an image of user’s face,

𝐵𝑖 can be stored in |𝐵𝑖| bits. Hence, the total storage required by each user node 𝑈𝑖 is

(3112 + |𝑒| + |𝑁|) bits, and the total storage required by the server is (𝑛 × (1024 + |𝐵𝑖|)) +

|(𝑝, 𝑞, 𝑟1, 𝑟2)|, where n is the number of registered users. The storage requirements are

summarized in Table 4.7.

Table 4.7: Storage requirements of the user device and server-side in the proposed scheme.

 Data length (bits)

User device (3112 + |𝑒| + |𝑁|)

Server (𝑛 × (1024 + |𝐵𝑖|)) + |(𝑝, 𝑞, 𝑟1, 𝑟2)|

45

4.4.3 Communication Overloads

In the authentication transmissions, the user sends 𝑈𝑖 → 𝑠𝑒𝑟𝑣𝑒𝑟: 〈𝑂𝑇𝑇𝑖, 𝐶1〉 in the first step where

𝑂𝑇𝑇𝑖 is 512 bits and 𝐶1 includes the Diffie-Hellman public parameter of the user, the timestamp T

and 𝑡𝑠𝑘𝑖, so 𝐶1 is 2048 + 32 + 256 bits length. The user also sends 𝑈𝑖 → 𝑠𝑒𝑟𝑣𝑒𝑟: 〈𝐶3〉 in the third

step where 𝐶3 includes {𝑃3, 𝐵𝑖
∗, 𝑇} . 𝑃3 is the output of the hash function (SHA3-512) so it is 512

bits long and 𝐵𝑖
∗ is the biometric impression of the attempting user. On the other hand, the server

needs to send 𝑠𝑒𝑟𝑣𝑒𝑟 → 𝑈𝑖: 〈𝐶2〉 where 𝐶2 is the symmetrically encrypted message containing the

512-bit new one-time token, the 32-bit timestamp, the 2048-bit Diffie-Hellman public parameter

of the server, and 𝑃2 which is output of the hash function (SHA3-512) which is 512 bits long. The

overall server to user communication overload is (2048 + 512 + 512 + 32). The breakdown of the

communication overloads is summarized in Table 4.8.

Table 4.8: Communication overloads between user and server applications.

 Data length (bits)

User to server 3392 + |𝐵𝑖|

Server to user 3104

46

4.5 Formal Analysis of the Proposed RSA-B-ASH-S Scheme Based

on BAN Logic

4.5.1 BAN Logic Overview

The Burrows–Abadi–Needham logic, known as BAN Logic [5], was introduced in 1989 as a model

to define authentication protocols and evaluate their validity. Since then, this model has been

adopted and accepted by many researchers to prove that an authentication scheme can be between

a user and server, in this case, user smartphone 𝑈 and the server 𝑆.

The Following is a list of BAN logic notions used in this thesis to validate the Proposed

RSA-Based Scheme:

𝑈 | ≡ 𝑋: 𝑈 believes the statement 𝑋.

#(𝑋): 𝑋 is fresh.

𝑈 ⇒ 𝑋: 𝑈 has jurisdiction over the statement 𝑋.

𝑈 ⊲ 𝑋: 𝑈 sees the statement 𝑋.

𝑈 |~ 𝑋: 𝑈 once said the statement 𝑋.

(𝑋, 𝑌): 𝑋 or 𝑌 is one part of the expression (𝑋, 𝑌).

{𝑋}𝑌: 𝑋 encrypted with 𝑌.

𝑈
𝑠𝑘
↔ 𝑆: 𝑠𝑘 is a secret parameter shared (or to be shared) between 𝑈 and 𝑆.

𝑋
→ 𝑆: 𝑋 is public key of 𝑆. The private key associated with 𝑋 is denoted with 𝑋−1.

The following BAN logic rules are used to prove that the proposed authentication scheme key

agreement is fulfilled successfully.

47

R1: Random Number Freshness

When an entity creates a random value, it believes the value is fresh.

𝑈 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑋

𝑈 | ≡ #(𝑋)

R2: The Rule For
𝒌
↔-Introduction

With 𝑋 indicating the essential elements for a key. Formally, it is required that 𝑈 believes that 𝑆

also participates in the protocol. Informally, the rule means that to believe a new session key, 𝑈

must believe that the key is fresh, and 𝑈 must also believe that 𝑆 believes in 𝑋, so 𝑆 can generate

the key as well.

𝑈 | ≡ #(𝐾), 𝑈 | ≡ 𝑆 | ≡ 𝑋

𝑈 | ≡ 𝑈
𝐾
↔ 𝑆

R3: Message Meaning

I. If 𝑈 perceives 𝑋 as an encrypted value with 𝐾, and believes 𝐾 is a shared secret key

with 𝑆, then 𝑈 believes 𝑆 once said 𝑋:

𝑈 | ≡ 𝑈
𝐾
↔ 𝑆, 𝑈 ⊲ {𝑋}𝐾

𝑈 | ≡ 𝑆 |~ 𝑋

II. If 𝑈 perceives 𝑋 as an encrypted value with 𝐾−1 and believes 𝐾 is 𝑆 public key, then

𝑈 believes 𝑆 once said 𝑋:

𝑈 | ≡
𝐾
→ 𝑆, 𝑈 ⊲ {𝑋}𝐾−1

𝑈 | ≡ 𝑆 |~ 𝑋

48

R4: Message Freshness

If 𝑈 believes 𝑋 is fresh and 𝑈 believes 𝑆 once said 𝑋, then 𝑈 believes 𝑆 believes 𝑋:

𝑈 | ≡ #(𝑋), 𝑈 | ≡ 𝑆 |~ 𝑋

𝑈 | ≡ 𝑆 | ≡ 𝑋

R5: Hash Function

If 𝑈 believes 𝑆 once said 𝐻(𝑋) and 𝑈 sees 𝑋, then 𝑈 believes 𝑆 once said 𝑋:

𝑈 |≡ 𝑆 |~ 𝐻(𝑋), 𝑈 ⊲ 𝑋

𝑈 | ≡ 𝑆 |~ 𝑋

R6: Jurisdiction

If 𝑈 believes 𝑆 has full control over 𝑋 and 𝑈 believes 𝑆 believes 𝑋, then 𝑈 believes 𝑋:

𝑈 | ≡ 𝑆 ⟹ 𝑋, 𝑈 | ≡ 𝑆 | ≡ 𝑋

𝑈 | ≡ 𝑋

R7: Freshness Propagation

If one parameter of an expression is fresh, then the entire expression is fresh:

𝑈 | ≡ #(𝑋)

𝑈 | ≡ #(𝑋, 𝑌)

R8: Belief

If 𝑈 believes 𝑋 and 𝑌, then 𝑈 believes 𝑋:

𝑈 | ≡ (𝑋, 𝑌)

𝑈 | ≡ 𝑋

R9: Observation

If 𝑈 perceives 𝑋 and 𝑌, then 𝑈 perceives 𝑋:

𝑈 ⊲ (𝑋, 𝑌)

𝑈 ⊲ 𝑋

49

4.5.2 Goals of the Analysis of Key Exchange Part of the Proposed RSA-B-

ASH-S Scheme

The core objectives of our authentication scheme analysis are listed as follows:

• G1: 𝑈 believes 𝑆 believes 𝑠𝑘 is a secure shared parameter between 𝑈 and 𝑆:

𝑈 | ≡ 𝑆 | ≡ 𝑈
𝑠𝑘
↔ 𝑆

• G2: 𝑈 believes 𝑠𝑘 is a secure shared parameter between 𝑈 and 𝑆.

𝑈 | ≡ 𝑈
𝑠𝑘
↔ 𝑆

• G3: 𝑆 believes 𝑈 believes 𝑠𝑘 is a secure shared parameter between 𝑈 and 𝑆.

𝑆 | ≡ 𝑈 | ≡ 𝑈
𝑠𝑘
↔ 𝑆

• G4: 𝑆 believes 𝑠𝑘 is a secure shared parameter between 𝑈 and 𝑆.

𝑆 | ≡ 𝑈
𝑠𝑘
↔ 𝑆

The following are the assumptions made about the initial state of the proposed scheme to

analyze:

• A1: 𝑆 | ≡
𝐾𝑆
→ S: The server believes 𝐾𝑆 as its public key.

• A2: 𝑈 | ≡
𝐾𝑆
→ S: The user believes 𝐾𝑆 as the server’s public key.

• A3: 𝑆 | ≡ 𝑈
𝐼𝐷
↔ 𝑆: The server believes 𝐼𝐷 is a secret parameter between the server and user.

• A4: 𝑈 | ≡ 𝑈
𝐼𝐷
↔ 𝑆: The user believes 𝐼𝐷 is a secret parameter between the server and user.

• A5: 𝑈 | ≡ 𝑈
ℎ(𝑃𝑊)
↔ 𝑆: The user believes ℎ(𝑃𝑊) is a secret parameter between the server and

user.

50

• A6: 𝑆 | ≡ 𝑈
ℎ(𝑃𝑊)
↔ 𝑆: The server believes ℎ(𝑃𝑊) is a secret parameter between the server and

user.

• A7: 𝑆 | ≡ 𝑈 ⟹ 𝐵: The server believes that only user has jurisdiction over his/her biometric.

• A8: 𝑆 | ≡ 𝑈 ⟹ 𝑃𝑊: The server believes that only user has jurisdiction over his/her password.

4.5.3 Formal Analysis of the Proposed RSA-B-ASH-S Scheme

The analysis of our authentication scheme is shown below. 𝐷𝑖 represents the 𝑖𝑡ℎ deduction, and

𝑀𝑖 represents the 𝑖𝑡ℎ message in the following step-wise analysis of the proposed scheme.

D1:
𝑈 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎

𝑈 |≡#(𝑎)
: Based on R1

D2:
𝑈 𝑟𝑒𝑎𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑇1

𝑈 |≡#(𝑇1)

D3:
𝑈 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑡𝑠𝑘

𝑈 |≡#(𝑡𝑠𝑘)
: Based on R1

M1: 𝑈 ⟶ 𝑆: 〈𝑂𝑇𝑇, {𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ), 𝑇1, 𝑡𝑠𝑘 }𝐾𝑠〉: The user initiates the authentication procedure

by sending this message to the server.

D4: 𝑈 | ≡ 𝑈
𝑡𝑠𝑘
↔ 𝑆: Based on M1 is encrypted with public key of the server, and based on A1

and A2, the user believes tsk is a secret parameter between U and S.

D5: 𝑆 ⊲ (𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ), 𝑇1, 𝑡𝑠𝑘): Based on M1 is encrypted with the public key of the server,

and based on R3.II, A1 and A2 the server decrypts and sees (𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ), 𝑇1, 𝑡𝑠𝑘).

D6: 𝑆|≡ 𝑈 |~ (𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ), 𝑇1, 𝑡𝑠𝑘): Based on D4, D5, A1 and A2.

D7:
𝑆 |≡#(𝑇1)

𝑆 |≡#(𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)
: Based on R7.

D8:
𝑆 |≡#(𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘),𝑆 |≡𝑈 |~ (𝑔

𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)

𝑆 |≡𝑈 |≡(𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)
: Based on R4, D6 and D7.

D9:
𝑆 |≡𝑈 |≡(𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)

𝑆 |≡𝑈 |≡(𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ))
: Based on R8 and D8.

51

D10:
𝑆 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑏

𝑆 |≡#(𝑏)
: Based on R1.

D11:
𝑆 |≡#(𝑏)

𝑆 |≡#(𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ))
: Based on R7.

D12: 𝑠𝑘 ∶= (𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ))
𝑏
𝑚𝑜𝑑(𝑝𝑑ℎ): The server generates the session key.

D13:
𝑆 |≡#(𝑏)

𝑆 |≡#((𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ))
𝑏
𝑚𝑜𝑑(𝑝𝑑ℎ))

: Based on R7 and D10.

D14:
𝑆 𝑟𝑒𝑎𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑇2

𝑆 |≡#(𝑇2)

D15:
𝑆|≡#(𝑠𝑘), 𝑆 |≡𝑈 |≡(𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ))

𝑆 |≡𝑈
𝑠𝑘
↔ 𝑆

: Based on D9, R2 and D13, (G4) is met here.

D16:
𝑆 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑁𝑂𝑇𝑇

𝑆 |≡#(𝑁𝑂𝑇𝑇)
: Based on R1.

M2: 𝑆 ⟶ 𝑈: 〈 {𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ), ℎ(𝐼𝐷, 𝑠𝑘, (𝑔
𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ), 𝑇1, 𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇, 𝑇2}𝑡𝑠𝑘

〉: Server sends

the respons of the initial request encrypted with 𝑡𝑠𝑘 to the server.

D17: 𝑈 ⊲ (𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ), ℎ(𝐼𝐷, 𝑠𝑘, (𝑔
𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ), 𝑇1, 𝑡𝑠𝑘)), 𝑁𝑂𝑇𝑇, 𝑇2): Based on M2 is

encrypted with 𝑡𝑠𝑘, and based on R3.II, A1 and A2 the user decrypts and sees

(𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ), ℎ(𝐼𝐷, 𝑠𝑘, (𝑔
𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ), 𝑇1, 𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇, 𝑇2).

D18:
𝑈 |≡𝑈

𝑡𝑠𝑘
↔ 𝑆,𝑈⊲{𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ),ℎ(𝐼𝐷,𝑠𝑘,(𝑔

𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇,𝑇2}𝑡𝑠𝑘

𝑈 |≡𝑆 |~(𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ),ℎ(𝐼𝐷,𝑠𝑘,(𝑔
𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇,𝑇2)

: Based on R3.I.

D19:
𝑈 |≡𝑆 |~(𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ),ℎ(𝐼𝐷,𝑠𝑘,(𝑔

𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇,𝑇2)

 𝑈 |≡𝑆 |~(𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ))
: Based on R8.

D20: 𝑈 ⊲ 𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ): Based on D17 and R8.

D21: 𝑠𝑘 ∶= (𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ))
𝑎

𝑚𝑜𝑑(𝑝𝑑ℎ): The user generates the session key.

D22:
𝑈 |≡#(𝑇2)

𝑈 |≡#(𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ),ℎ(𝐼𝐷,𝑠𝑘,(𝑔
𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇,𝑇2)

: Based on R7.

52

D23:

𝑈|≡#(𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ),ℎ(𝐼𝐷,𝑠𝑘,(𝑔
𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇,𝑇2),𝑈 |≡ 𝑆 |~ (𝑔

𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ),ℎ(𝐼𝐷,𝑠𝑘,(𝑔
𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇,𝑇2)

𝑈 |≡𝑆|≡(𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ),ℎ(𝐼𝐷,𝑠𝑘,(𝑔
𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇,𝑇2)

: Based on R4, D22 and D18.

D24:
 𝑈 |≡ 𝑆 |≡(𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ),ℎ(𝐼𝐷,𝑠𝑘,(𝑔

𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇,𝑇2)

𝑈 |≡𝑆|≡ℎ(𝐼𝐷,𝑠𝑘,(𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘))
: Based on R8 and D23.

D25:
𝑈 |≡𝑆|≡ℎ(𝐼𝐷,𝑠𝑘,(𝑔𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘))

𝑈 |≡𝑆|≡𝑈
𝑠𝑘
↔ 𝑆

: Based on D24 and R8, (G1) is met here.

D26:
𝑆 |≡#(𝑎)

𝑆 |≡#((𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ))
𝑎
𝑚𝑜𝑑(𝑝𝑑ℎ))

: Based on R7 and D1.

D27:
 𝑈 |≡ 𝑆 |≡(𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ),ℎ(𝐼𝐷,𝑠𝑘,(𝑔

𝑎 𝑚𝑜𝑑(𝑝𝑑ℎ),𝑇1,𝑡𝑠𝑘)),𝑁𝑂𝑇𝑇,𝑇2)

𝑈 |≡𝑆|≡ 𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ)
: Based on R8 and D23.

D28:
𝑈 |≡#(𝑠𝑘), 𝑈|≡𝑆 |≡𝑔𝑏 𝑚𝑜𝑑(𝑝𝑑ℎ)

𝑈 |≡𝑈
𝑠𝑘
↔ 𝑆

: Based on R2, D27 and D26, (G2) is met here.

D29:
𝑆 𝑟𝑒𝑎𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑇3

𝑆 |≡#(𝑇3)

M3: 𝑈 ⟶ 𝑆: {𝐵, 𝑇3, ℎ (𝑁𝑂𝑇𝑇, 𝑂𝑇𝑇, ℎ(𝐼𝐷, ℎ(𝑃𝑊)))}
𝑠𝑘

D30:
𝑆 |≡𝑈

𝑠𝑘
↔ 𝑆,𝑆⊲{𝑀3}𝑠𝑘

𝑆 |≡𝑈 |~ 𝑀3
: Based on R3.I and D15.

D31:
𝑆 |≡#(𝑇3)

𝑆 |≡#(𝐵,𝑇3,ℎ(𝑁𝑂𝑇𝑇,𝑂𝑇𝑇,ℎ(𝐼𝐷,ℎ(𝑃𝑊))))
: Based on R7.

D32:
𝑆 |≡#(𝑀3),𝑆 |≡𝑈 |~ 𝑀3

𝑆 |≡𝑈 |≡ 𝑈
𝑠𝑘
↔ 𝑆

: Based on R4, D31 and D30 (G3) is met here.

53

Chapter 5

Conclusion

In this thesis, after a brief overview of the related works in the area of user authentication

schemes for IoT, assessing their advantages and drawbacks, we have proposed a new RSA-

biometric based authentication protocol for smart-homes using smartphone (called RSA-B-ASH-

S scheme). This scheme, in addition to satisfying all the security features of the authentication

scheme introduced in [3], is also shown to satisfy the perfect forward secrecy, considered as a great

enhancement to the RSA-ASH-SC scheme [3] when considering the increased significance of

privacy and security in IoT [1].

An informal security analysis of the proposed RSA-B-ASH-S scheme is provided, along

with its performance evaluation in terms of computational time, storage requirements and

communication overload. Furthermore, a formal analysis of the proposed RSA-B-ASH-S scheme

using the Burrows-Abadi-Needham (BAN) Logic is provided, showing that the proposed scheme

achieves the forward secrecy property by utilizing a fresh encryption key for each session and it

also satisfies the anonymity of the user by using a one-time token. A proof of concept of the

proposed RSA-B-ASH-S scheme is also provided.

 As future work, one can redesign the authentication step of the proposed RSA-B-ASH-S

in such a way as to strengthen the computational efficiency. Due to the nature of IoT devices which

are incorporated into the users’ everyday lives, another interesting opportunity ahead for this

54

scheme is to take advantage of the behavioural patterns of the users as a new authentication layer

meant to detect anomalies. Considering the direction of the technologies in this sector and the

progress in machine learning areas, the future of behavioural pattern recognition is promising,

especially in the IoT world.

55

Appendix

Code for the Proposed RSA-B-ASH-S Implementation

Backend (PHP files)

auth.php
<?php
 require_once "connection.php";
 $step = intval($_GET['step']);
 session_start();
 if ($step<1 || $step>2)
 $step = 1;
 switch ($step) {
 case 2:
 $params = getParameters(RequestTypes::POST, ["m"]);
 $params["m"] = base64_decode($params["m"]);
 $aes = new AES($_SESSION['key']);
 $message = json_decode(base64_decode($aes->decrypt($params["m"])));
 if(!checkTimestamp($message->t))
 throw new Exception("Message is expired, time: " . time() . " -- your
time: " . $message->t, ErrorCode::EXPIRED);
 $user = User::fromDB($_SESSION['token']);
 $biometricChecker = new Biometric();
 if(!$biometricChecker->compare($user->biometric, $message->b))
 throw new Exception("Biometric impression does not match",
ErrorCode::ACCESS_DENIED);
 $hashOfData = hash(hashMethod,$user->password.$user-
>token.$_SESSION['next_token'],false);
 if($hashOfData != $message->hash)
 throw new Exception("Data does not match", ErrorCode::ACCESS_DENIED);
 $user->token = $_SESSION['next_token'];
 $user->update();
 unset($_SESSION['next_token']);
 $_SESSION['token'] = $user->token;
 $_SESSION['authenticated'] = true;
 response(true,"Successfully authenticated");
 break;
 default:
 case 1:
 $params = getParameters(RequestTypes::POST, ["c1","token"]);
 $user = User::fromDB($params["token"]);
 $rsa = new RSA();
 $decryptedMessage = json_decode($rsa->decrypt($params["c1"]));
 if(!checkTimestamp($decryptedMessage->t))
 throw new Exception("Message is expired, time: " . time(),
ErrorCode::EXPIRED);

56

 $userDHPublicKey = $user->getDHPublicKey(base64_decode($decryptedMessage-
>y));
 $dh = new DH();
 $_SESSION["server_public_dh"] = $dh->generatePublicKey();
 $_SESSION['key'] = substr($dh->getSharedKey($userDHPublicKey), 0,
64);
 $_SESSION['token'] = $user->token;
 $_SESSION['next_token'] = $user->generateToken();
 $response["c2"] = base64_encode(stringXOR($_SESSION['server_public_dh'],
$user->id));
 $response["c3"] = hash("sha3-512",$user-
>id.$_SESSION['key'].$params['c1'],false);
 $plain["token"] = $_SESSION["next_token"];
 $plain["time"] = time();
 $aes = new AES($_SESSION['key']);
 $response["cipher"] = base64_encode($aes-
>encrypt(base64_encode(json_encode($plain))));
 response(true,null, $response);
 break;
 }
 Database::close();

change.php
<?php
 require_once "connection.php";
 session_start();
 if (!isset($_SESSION["authenticated"]) || !$_SESSION['authenticated'])
 throw new Exception("You need to be authenticated in advance",
ErrorCode::ACCESS_DENIED);
 $params = getParameters(RequestTypes::POST, ["m"]);
 $params["m"] = base64_decode($params["m"]);
 $aes = new AES($_SESSION['key']);
 $message = json_decode(base64_decode($aes->decrypt($params["m"])));
 if(!checkTimestamp($message->t))
 throw new Exception("Message is expired", ErrorCode::EXPIRED);
 $user = User::fromDB($_SESSION['token']);
 $user->password = hash(hashMethod, $message->y . $user->id, false);
 $user->biometric = $message->b;
 $user->update();
 response(true,"Successfully updated");
 Database::close();

register.php
<?php
 require_once "connection.php";
 $params = getParameters(RequestTypes::POST,["password","biometric"]);
 $user = User::create($params["password"],$params["biometric"]);
 $user->insert();
 $data["user"] = $user;
 $data["key"] = (new RSA())->publicKey;
 $data["DH_prime"] = DH::PRIME;
 $data["DH_g"] = DH::GENERATOR;

57

 $data["hash_function"] = hashMethod;
 $data["symmetric_encryption"] = AES::METHOD;
 response(true,null, $data);
 Database::close();

user.php

<?php
class User implements JsonSerializable {
 public $id, $biometric, $password, $token;
 function __construct($json) {
 $jsonOBJ = json_decode($json, false);
 $this->id = $jsonOBJ->id;
 $this->biometric = $jsonOBJ->biometric;
 $this->password = $jsonOBJ->password;
 $this->token = $jsonOBJ->token ?? null;
 }
 function insert() {
 $con = Database::connect();
 $stmt = $con->prepare("INSERT INTO `users` (`id`, `password`, `token`,
`biometric`) VALUES (?,?,?,?);");
 $stmt->bind_param("ssss", $this->id, $this->password, $this->token, $this-
>biometric);
 $stmt->execute();
 $stmt->close();
 }
 function update() {
 $con = Database::connect();
 $con->query("UPDATE `users` SET `biometric` = '$this->biometric',
 `token` = '$this->token',
 `password` = '$this->password'
 WHERE `id` = '$this->id';");
 }
 public function jsonSerialize() {
 $vars["id"] = $this->id;
 $vars["token"] = $this->token;
 return $vars;
 }
 public function generateToken() {
 return hash(hashMethod,generateRandomString().$this->id,false);
 }
 public function getDHPublicKey($encrypted) {
 return stringXOR($encrypted, $this->id);
 }
 public static function fromDB($token) {
 $con = Database::connect();
 $stmt = $con->prepare("SELECT * FROM `users` WHERE `token` = ?;");
 $stmt->bind_param("s", $token);
 $stmt->execute();
 $row = $stmt->get_result()->fetch_assoc();
 $stmt->close();
 if (!$row) throw new Exception("User not found", ErrorCode::ACCESS_DENIED);
 return new self(json_encode($row));
 }

58

 public static function create($pass, $biometric) {
 do {
 $user["id"] = generateRandomString(); // create long unique random id
 } while(Database::getField("users", ["id" => $user["id"]], "id") != null);
 $user["password"] = hash(hashMethod,$pass . $user["id"],false);
 $user["biometric"] = $biometric;
 $object = new self(json_encode($user));
 $object->token = $object->generateToken();
 return $object;
 }
}

Frontend (Swift files)

import UIKit
import KeychainSwift
import SVProgressHUD
var sharedKey = String()
class PasswordVC: UIViewController {
 var checkPassword = Array(repeating: false, count: 4)
 var base64Image = String()
 var isRegistered = Bool()
 var isChangePassword = Bool()
 let keychain = KeychainSwift()
 var nextBarBtn = UIBarButtonItem()
 var step1Completed = false
 override func viewDidLoad() {
 super.viewDidLoad()
 nextBtn.alpha = 0.4
 nextBtn.isUserInteractionEnabled = false
 fileprivate func register() {
 guard let password = passwordTextField.text else { return }
 let hash = password.sha3(.sha512)
 let parameters = ["biometric": base64Image, "password": hash]
 SVProgressHUD.show()
 postHTTPS(url: "http://ma.reev.ca/register.php?id=4123ji12", callBackFunc: {
(isDone, dict, errorCode) in
 SVProgressHUD.dismiss()
 self.console.addLog(text: dict.description)
 if isDone {
 guard let data = dict["data"] as? NSDictionary else { return }
 guard let user = data["user"] as? NSDictionary else { return }
 guard let id = user["id"] as? String else { return }
 guard let token = user["token"] as? String else { return }
 guard let publicKey = data["key"] as? String else { return }
 guard let prime = data["DH_prime"] as? String else { return }
 guard let generator = data["DH_g"] as? Int else { return }
 guard let symmetric = data["symmetric_encryption"] as? String else {
return }
 self.keychain.set(id, forKey: "ID")
 self.keychain.set(token, forKey: "$TOKEN$")
 self.keychain.set(publicKey, forKey: "$PUBLICKEY$")
 self.keychain.set(prime, forKey: "$PRIME$")

59

 self.keychain.set(String(generator), forKey: "$GENERATOR$")
 self.keychain.set(symmetric, forKey: "$SYMMETRIC$")
 self.keychain.set(true, forKey: "USERREGISTERED")
 let alert = ReevAlert(title: nil, hasImage: false, subtitle:
ReevLabelAttributes(title: "Successfully Registered"), message: nil)
 let okBtn = ReevAlertAction(title: "Ok", handler: {
 alert.dismiss(animated: true, completion: nil)
 NotificationCenter.default.post(name:
NSNotification.Name("Registered"), object: nil)
 self.navigationController?.popViewController(animated: true)
 })
 alert.addAction(action: okBtn)
 self.present(alert, animated: true, completion: nil)
 }
 }, parameter: parameters)
 }
 fileprivate func authenticationStep1() {
 guard let id = keychain.get("ID") else { return }
 guard let publicKey = keychain.get("$PUBLICKEY$") else { return }
 guard let token = keychain.get("$TOKEN$") else { return }
 let dh = DH()
 let y = dh.getPublicKey().xor(key: id)
 let time = Int(Date().timeIntervalSince1970)
 var c1Plain = """
{"t": "\(time)", "y": "\(Data(y.utf8).base64EncodedString())"}"""
 guard let c1Encrypted = RSA.encrypt(string:
Data(c1Plain.utf8).base64EncodedString(), publicKey: publicKey) else {return}
 print("enc: \(c1Encrypted)")
 let parameter = ["c1": c1Encrypted, "token": token]
 SVProgressHUD.show()
 postHTTPS(url: "http://ma.reev.ca/auth.php?step=1", callBackFunc: { (isDone,
dict, errorCode) in
 SVProgressHUD.dismiss()
 self.console.addLog(text: dict.description)
 if isDone {
 guard let data = dict["data"] as? NSDictionary else { return }
 guard var c2 = data["c2"] as? String else { return }
 guard let c3 = data["c3"] as? String else { return }
 guard let cipher = data["cipher"] as? String else { return }
 c2 = String(data: Data(base64Encoded: c2)!, encoding: .utf8)!
 let serverDHPublicKey = c2.xor(key: id)
 sharedKey = dh.getSharedKey(key: serverDHPublicKey)
 let verification = (id + sharedKey + c1Encrypted).sha3(.sha512)
 if verification != c3 {
 return
 }
 print(verification)
 let aes = AESStruct(key: sharedKey)
 let plainText = aes.decrypt(message: cipher)
 var json = NSDictionary()
 do {
 json = try JSONSerialization.jsonObject(with: plainText.data(using:
.utf8)!, options: .allowFragments) as! NSDictionary
 } catch {
 self.authenticationStep1()

60

 }
 guard let newToken = json["token"] as? String else { return }
 guard let newTime = json["time"] as? Int else { return }
 self.keychain.set(newToken, forKey: "$NEWTOKEN$")
 if !timestamp(int: newTime) {
 return
 }
 self.step1Completed = true
 if debugMode {
 self.navigationItem.rightBarButtonItems?.append(self.nextBarBtn)
 self.nextBtn.setTitle("Step 2", for: .normal)
 } else {
 self.authenticationStep2()
 }
 }
 }, parameter: parameter)
 }
 fileprivate func authenticationStep2() {
 let newToken = keychain.get("$NEWTOKEN$")!
 let token = keychain.get("$TOKEN$")!
 let id = keychain.get("ID")!
 let aes = AESStruct(key: sharedKey)
 guard let password = passwordTextField.text else { return }
 let passwordSha = password.sha3(.sha512)
 let hash = ((passwordSha + id).sha3(.sha512) + token +
newToken).sha3(.sha512)
 let mParam = """
 {"t": "\(Int(Date().timeIntervalSince1970))", "b": "\(base64Image)", "hash":
"\(hash)"}
 """
 let mParamEncrypted = aes.encrypt(message: mParam.data(using:
.utf8)!.base64EncodedString())
 SVProgressHUD.show()
 postHTTPS(url: "http://ma.reev.ca/auth.php?step=2", callBackFunc: { (isDone,
dict, errorDict) in
 SVProgressHUD.dismiss()
 self.console.addLog(text: dict.description)
 if isDone {
 self.keychain.set(newToken, forKey: "$TOKEN$")
 self.keychain.set("", forKey: "$NEWTOKEN$")
 let alert = ReevAlert(title: nil, hasImage: false, subtitle:
ReevLabelAttributes(title: "Successfully Authenticated"), message: nil)
 let okBtn = ReevAlertAction(title: "Ok", handler: {
 self.goToHome()
 })
 alert.addAction(action: okBtn)
 self.present(alert, animated: true, completion: nil)
 } else {
 }
 }, parameter: ["m": mParamEncrypted])
 }
}

61

Bibliography

[1] M. H. Miraz, M. Ali, P. S. Excell and R. Picking, "A review on Internet of Things (IoT),

Internet of Everything (IoE) and Internet of Nano Things (IoNT), Proc. of IEEE Inter- net

Technologies and Applications (ITA)," Glyndwr University, Wrexham, North East Wales,

UK, 2015.

[2] E. Stobert and R. Biddle, "Workshop on Home Usable Privacy and Security (HUPS),"

Workshop on Home Usable Privacy and Security (HUPS), 24 July 2013. [Online].

Available: http://cups.cs.cmu.edu/soups/2013/HUPS/HUPS13-ElizabethStobert.pdf.

[Accessed 8 2019].

[3] M. S. Raniyal, I. Woungang and . K. Dhurandher, "An RSA-Based User Authentication

Scheme for Smart-Homes Using Smart Card.," Ryerson University, Toronto, Ontario,

2018.

[4] A. Menezes, P. v. Oorschot and S. Vanstone, "Handbook of Applied Cryptography," CRC

Press: Boca Raton, 1996.

[5] M. Burrows, M. Abadi and R. Needham, A logic of authentication, ACM Trans. on

Computer Systems, vol. 8, 1990, pp. 18-36.

[6] Z. Tian, K. Wright and X. Zhou, "The DarkLight Rises: Visible Light Communication in

the Dark," [Online]. Available: http://www.cs.dartmouth.edu/ xia/papers/mobicom16-

darklight.pdf. [Accessed September 2019].

[7] T. Borgohain, A. Borgohain, U. Kumar and S. Sanyal, "Authentication Systems in Internet

of Things," [Online]. Available: https://arxiv.org/abs/1502.00870. [Accessed September

2019].

[8] N. Shone, C. Dobbins, W. Hurst and Q. Shi, "Digital Memories Based Mobile User

Authentication for IoT," Liverpool, Oct. 26-28, 2015.

[9] P. P. Gaikwad, J. P. Gabhane and S. S. Golait, "3-Level Secure Kerberos Authentication

for Smart Home Systems Using IoT," IEEE Intl. Conference on Next Generation

Computing Technologies (NGCT), Dehradun, India, Sept. 4-5, 2015.

[10] H. Om and M. Reddy, "RSA based remote password authentication using smart card,"

Journal of Discrete Mathematical Science & Cryptography, 2012.

[11] X. Wang and W. Zhang, "An efficient and secure biometric remote user authentication

scheme using smart cards," Wuhan, China, Dec 19-20, 2008.

[12] "Remote user authentication using NFC," [Online]. Available:

https://www.google.ch/patents/US20110212707. [Accessed September 2019].

[13] M. S. Raniyal, I. Woungang and S. K. Dhurandher, "An Inter-Device Authentication

Scheme for Smart Homes using One-Time-Password over Infrared Channel".

[14] W. H. Yang and S. P. Shieh, Password authentication schemes with smart cards,

Computers and Security, vol. 18, 1999, pp. 727- 733.

[15] C. K. Chan and L. M. Cheng, Cryptanalysis of a timestamp-based password authentication

scheme, Computers and Security, 2002, pp. 74-76.

62

[16] L. Fan, J. H. Li and H. W. Zhu, "An enhancement of timestamp based password

authentication scheme," Computers & Security, vol. 21, pp. 665-667, 2002.

[17] Y. Liu, A. M. Zhou and M. X. Gao, "A new mutual authentication scheme based on nonce

and smart cards," Computer Communications, pp. 2205-2209, 2008.

[18] J. J. Shen, C. W. Lin and M. S. Hwang, "Security enhancement for the timestamp-based

password authentication scheme using smart cards," Computers and Security, vol. 7, no.

22, pp. 591-595, 2003.

[19] H. Om and S. Kumari, "omment and modification of RSA based remote password

authentication using smart card," Journal of Discrete Mathematical Science and

Cryptography, pp. 625-635, 2017.

[20] M. Wazid, A. K. Das, V. Odelu, N. Kumar and W. Susilo, "Secure Remote User

Authenticated Key Establishment Protocol for Smart Home Environment," Transactions on

Dependable and Secure Computing, Oct. 2017.

[21] S. Z. Reyhani and M. Mahdavi, "User Authentication Using Neural Network in Smart

Home Networks," International Journal of Smart Home, vol. 1, no. 2, July, 2007.

[22] W. Bae and J. Kwak, "Smart Card-Based Secure Authentication Protocol in Multi-Server

IoT Environment," Multimed Tools Appl., 2017.

[23] M. Dammak, O. R. M. Boudia, M. A. Messous, S. M. Senouci and C. Gransart, "Token-

Based Lightweight Authentication to Secure IoT Networks," Proc. of the 16th IEEE

Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV,

USA, Jan. 11-14, 2019.

[24] R. Amin, S. K. H. Islam, M. K. Khan, A. Karati, D. Giri and S. Kumari, "A two-factor

RSA-based robust authentication system for multiserver environments," Security and

Communication Networks, p. 15, 2017.

[25] Y. Zhao, S. Li and L. Jiang, "Secure and Efficient User Authentication Scheme Based on

Password and Smart Card for Multiserver Environment," Security and Communication

Networks, vol. 2018, p. 13.

[26] T.-T. Truong, M.-T. Tran, A.-D. Duong and I. Echizen, "Provable Identity Based User

Authentication Scheme on ECC in Multi-server Environment," Wireless Personal

Communications, vol. 95, no. 3, p. 2785–2801, 2017.

[27] D. Whitfield and M. E. Hellman, "New Directions in Cryptography," Transactions on

Information Theory, Vols. IT-22, no. 6, 1976.

[28] P. K. Dhillon and S. Kalra, "Secure multi‐factor remote user authentication scheme for

Internet of Things environments," in Intl. Journal of Communication Systems, 26 Apr.

2017.

[29] R. L. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems," Communications of the ACM, 1978.

[30] RSA Labs, "Public Key Cryptography Standards (PKCS), Number 1," RSA Labs, 9 2019.

[Online]. Available: https://tools.ietf.org/html/rfc3447.

[31] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham, E. Roback and J. F.

D. Jr., "Advanced Encryption Standard (AES)," Federal Information Processing Standards

Publication, November 26, 2001.

[32] "Swift," Apple Inc., [Online]. Available: https://swift.org. [Accessed September 2019].

63

[33] CloudLinux, Inc., "CloudLinux OS," CloudLinux, Inc., 2010. [Online]. Available:

https://www.cloudlinux.com. [Accessed 8 2019].

[34] The PHP Group, "PHP," The PHP Group, [Online]. Available: https://www.php.net.

[35] MariaDB Foundation, MariaDB Foundation, [Online]. Available: https://mariadb.org.

[Accessed September 2019].

[36] FaceX, "Face Recognition APIs," FaceX, 2018. [Online]. Available: https://facex.io.

[Accessed 8 2019].

[37] OpenSSL Software Foundation, OpenSSL Software Foundation, [Online]. Available:

https://www.openssl.org. [Accessed 8 2019].

[38] Oak Ridge National Laboratory, 13 2 2018. [Online]. Available:

https://www.olcf.ornl.gov/2018/02/13/frontier-olcfs-exascale-future/. [Accessed September

2019].

[39] W. Muła and D. Lemire, "Faster Base64 Encoding and Decoding Using AVX2

Instructions," ACM Transactions on the Web (TWEB), vol. 12, no. 3, July 2018.

[40] Dworkin and M. J., "SHA-3 Standard: Permutation-Based Hash and Extendable-Output

Functions," Federal Information Processing Standards Publication 202, August 2015.

[41] G. H. Gadiyar and V. Ramanathan Padma, "The Discrete Logarithm Problem over Prime

Fields: The Safe Prime Case. The Smart Attack, Non-Canonical Lifts and Logarithmic

Derivatives," Czechoslovak Mathematical Journal, Received March 20, 2017. Published

online February 2, 2018..

[42] C. C. Yang, R. C. Wang and T. Y. Chang, "An improvement of the Yang-Shieh password

authentication schemes," Applied Mathematics and Computation, vol. 162, pp. 1391-1396,

2005.

[43] H. Y. Chien, J. K. Jan and Y. M. Tseng, "An efficient and practical solution to remote

authentication: smart card," Computers & Security, vol. 21, no. 4, p. 372–375, 2002.

