
 
 

PRACTICAL AND ROBUST APPROACH FOR A 

NEURAL NETWORKS BASED INDOOR POSITIONING 

SYSTEM USING ULTRAWIDE BAND 

 

By 

Ryan Murari 

Bachelor of Computer Engineering, Ryerson University, Ontario, Canada, June 2017 

 

 

 

 

A thesis submitted to Ryerson University 

In partial fulfillment of the requirements for the degree of 

 

 

Master of Applied Science  

in the program of  

Electrical and Computer Engineering 

 

 

 

 

 

 

 

 

Toronto, Ontario, Canada 2020 

© Ryan Murari, 2020 

 



ii 
 

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the 

thesis, including any required final revisions, as accepted by my examiners. 

I authorize Ryerson University to lend this thesis to other institutions or individuals 

for the purpose of scholarly research. 

I further authorize Ryerson University to reproduce this thesis by photocopying or by 

other means, in total or in part, at the request of other institutions or individuals for the 

purpose of scholarly research. 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

 

Ryan Murari 

Master of Applied Science 

Electrical and Computer Engineering 

Ryerson University, Toronto, Canada, 2020 

 

With the increasing widespread of sensor technology, new solutions for indoor positioning 

systems are continuously being developed and with them, new services requiring accurate 

positioning data have seen a great rise in popularity. In this thesis, a new design technique and 

deployment methodology for an indoor positioning system using neural networks is proposed to 

offer more flexibility and simplicity in the development of such a system which is currently very 

context-bound. The usage of battery-powered tags implies also that systems should not require 

excessive power consumption and the large number of targets to position requires a method that is 

not only accurate but also scalable. The proposed positioning system utilizes a small “swarm” of 

neural networks tasked to position targets based on distance measurements from Ultrawide Band 

sensors and requires shorter fingerprint collection campaigns and enables more flexibility in 

system deployment and alterations. Instead of relying solely on real data collected on the field for 

the training of neural networks, synthetic data is used for an initial training phase. Together, these 

propositions allow flexibility in terms of adding, removing or altering positions of reference nodes 

and simplifies offline deployment operations of an indoor positioning system. This thesis presents 

a system operating in a laboratory-workshop environment capable of good positioning accuracies 

and maintains robust performances in poor signal propagation. 
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Chapter 1: Introduction 

Localization systems, for positioning or tracking purposes, do not lack research upon, but 

are still in dire need for more practical and adaptable solutions. Current popular options for Indoor 

Positioning Systems (IPS) [1,2], tend to have either low accuracy [7], require extensive pre-

deployment preparations such as long fingerprint collection campaigns [1], or simply rely on 

expensive hardware installations by adding as many nodes as needed to meet the requirements. As 

new wireless technologies continue to be introduced or made more accessible, different solutions 

are continuously developed to match the requirements of the given installation which are often 

only applicable to specific contexts. The research in this thesis aims at exploring IPS solutions 

exploiting Neural Networks (NNs) to develop a practical and accurate method, as well as scalable 

and robust against environmental interferences and sensor imprecisions; all while remaining 

relatively simple to deploy and cost-effective. It is also important to note that the mobile devices 

to localize are often limited in processing power as well as battery capacity which is also an 

important factor to address when developing an IPS. 

1.1 Overview and Motivations 

Indoor positioning technologies provide desirable benefits to consumers, whether for 

entertainment, convenience or utility. Some common examples of applications include object 

tracking, inventory management and augmented reality. While technologies such as GPS can 

reliably meet most positioning demands outdoor [8,9,10], and are now extremely widespread, they 

are incapable to do so in indoor environments. 

In the past, and still today, the prime choices for most indoor positioning systems include, 

but are not limited to, Wi-Fi, ZigBee and Bluetooth Low Energy (BLE) due to their simplicity and 

availability. However, none of these technologies is made to provide precise ranging 

measurements and force the IPSs based on it to rely on creating large fingerprint database to match 

incoming positioning requests, or received signal strength (RSS) to distance conversions in order 

to locate a target. On the other hand, the most accurate beacon based IPS solutions are the ones 

using ultrasounds [11,12,13] or UWB radio signals [14,15,16]. However, ultrasounds have the 

significant drawback of very limited maximum range and may not penetrate obstacles and have 
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rather high-power consumption. UWB based positioning systems have potentially higher 

maximum accuracy than Wi-Fi or BLE (~20 cm in LOS [14]) and displays significantly larger 

coverage area per beacon installed (theoretically over 100 m in LOS). It also has the ability to 

penetrate obstacles and avoid most multipath interferences thanks to its larger bandwidth spectrum, 

qualities that justify its rise in popularity for positioning systems. However, as explained in [15], 

it remains a challenging task to develop a cheap and accurate IPS with UWB. Its qualities are 

significantly degraded in indoor environments, where LOS measurements cannot be guaranteed 

and are difficult to identify. Additionally, the costly hardware makes it difficult to justify the 

addition of too many nodes. For example, [18] shows that the maximum coverage area of a beacon 

is reduced to less than 15 meters in apartment type environments. 

UWB distinguishes itself from other technologies thanks to its ability to measure “time of 

flight” (TOF or alternatively time of arrival, TOA) of transmissions and allows distance 

measurements to be made with far greater resolution and accuracy than signal strength-based 

ranging systems (20 cm as opposed to about 2 meters in the best cases for RSS based IPS). UWB 

research remains scarce partly as communications standards for this technology have only recently 

started to be established. More and more IPS delivering companies are emerging and making use 

of UWB and its low power, high accuracy capabilities; but their positioning algorithms mostly 

remain patented. Additionally, these systems require extensive preparation before deployment and 

may sometimes lack consistency over time due to changes in the environment.  

There are now several UWB development kits available on the market for IPS solutions 

developers. Among them, the most common and pioneer of the field is Ubisense; but this thesis 

will center its focus around a newer alternative in the Decawave dwm-1001 development boards. 

Mainly, this thesis studies the development and use of a precise UWB based IPS using a 

Deep Neural Network (DNN) based approach. Readings and experimental observations show that 

one weakness of UWB based IPS positioning process appears to be the rigidity of the trilateration 

(or other geometry-based solutions), leading to wide error margins even in mild measurement 

conditions such as partial alignment of the readers, signal reflections or large metal obstacles. Thus, 

the use of machine learning paradigm appears desirable. More specifically, using a NN to 

approximate the geometrical functions could result in a more robust positioning process while 

leaving the door open to the same enhancement methods typically applied to the geometrical 
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formulations such as KNN or Kalman Filters. The NN may find and take into consideration 

additional relationships between the readings on top of simply imitating the original formula. For 

example, automatically discarding results outside of the map boundaries. 

 

Figure 1. 1: Decawave dwm-1001 development board 

The research in both UWB positioning systems and NN based industrial positioning 

systems seems to be somewhat limited but advancements in such research could lead to a boom in 

indoor location-aware software and systems that could rely on a robust and accurate indoor 

positioning system.  

Furthermore, it is hypothesized that the method described in this thesis could be 

generalized to be applicable in IPS using a different type and set of sensor data (RSS, Geomagnetic 

readings, etc.) but this option will not be covered in this document. 

1.2 Contributions 

Typically, an IPS cannot solely rely on the basic mathematical formulas to produce high 

quality positioning. Various optimization algorithms must be developed, usually to either process 

the input data before usage or to refine the output, enhancing it with averages, prediction algorithm 

or error mitigation schemes. It has been shown that the use of DNNs have consequential benefits 

for complex function approximations, resulting in more accurate output for far less complexity [6]. 

The neural network-based system developed and described in this thesis performs better 

than using the trilateration formulations in busy office/workshop conditions. To be precise, in 

interference prone conditions the system achieves an accuracy of 50 cm in poor propagation 
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conditions without requiring extensive training. Using UWB’s capacity to provide good ranging 

measurements, the NNs can easily be trained with synthetic data for a specific map resolution, area 

and reader configuration. The number of inputs to the network models to generate can be increased 

if the data is expected to be available in real-time. Additionally, another contribution of this work 

resides in the fact that the system does not need multiple readings to find satisfying results, leading 

to potentially longer mobile device battery life. 

Finally, the hardware requirements to run the networks are relatively low as all the 

experiments and simulations presented in this thesis where done using an Intel® Core™ i7-8550U 

Processor, a mobile CPU priced at about $400 running in a VM environment. The training 

methodology of the NN could be compared to “fingerprinting” as the error-causing static 

interference, usually multipath, on the ranging measurements of the UWB readers tends to be 

similar for a given area. The NN also benefits from the same advantages of standard fingerprinting 

based IPS of providing accurate location estimation in the challenging multipath environments and 

thus can outperforms some common localization techniques based on trilateration and 

Figure 1. 2: Positioning System Workflow 
Diagram 
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triangulation. Furthermore, it distinguishes itself from standard fingerprinting methods by the fact 

that it does not require constant access to a database (the DNN weights can be thought of as the 

memory of the network’s past training on the fingerprint database) and thus, can run locally. The 

positioning solution only requires the determination of the readers positions and, if existing, mobile 

devices of known location, the map dimensions and the grid resolution (20cm – 100cm is advised). 

1.3 Objectives 

In this thesis the focus lies on the development of an improved method of UWB-based 

indoor positioning system. To achieve this goal, it is necessary to accomplish the following 

individual objectives: 

1. Show that emulated UWB readings can be used to train NNs to position targets in an 

area. 

2. Obtain satisfying positioning accuracy without the aid of additional pre/post processing 

methods. 

3. Present a calibration training algorithm using a low amount of fingerprint data to enhance 

the positioning accuracy of the system. 

4. Create deployment methodology that is simple to reproduce and not overwhelmingly 

specific to each deployment locations. 

5. Test the performances of the system in both optimal and interference prone environments 

to ensure robustness of the method. 
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Chapter 2: Indoor Positioning 

Technologies 

The most fundamental and consequential aspect of an IPS is definitely the RF technology 

used and the algorithms employed alongside. In this part we explore the advantages and limitations 

of choices in technologies and algorithms for IPS. 

2.1 Wireless Technologies 

Most commonly used wireless communication technologies, such as Wi-Fi, Bluetooth and 

UWB, are primarily designed to communicate and provide data access. However, it is possible to 

translate some of the transmission signal’s characteristics into distance measurements for the 

purposes of localization systems.  

This section provides information regarding the various wireless technologies available 

and the ways they can be applied in indoor positioning systems. The technologies that will be 

discussed are Wi-Fi, Bluetooth and UWB which are not the only but certainly the most relevant in 

this study on indoor positioning systems. 

2.1.1 Wi-Fi 

Also known as the IEEE 802.11 standard is set to operate on the ISM band (Industrial, 

Scientific and Medical). Most of current mobile devices such as phones, laptops and various IoT 

devices are already Wi-Fi enabled. Its widespread makes documentation and cost of 

implementation very easy challenges to solve [20].  However, it is important to realize that the 

average Wi-Fi network is configured for maximized throughput to serve as a main data exchange 

mean in an area. Therefore, novel algorithms and protocols must be developed for the specific 

purpose of indoor localization. Additionally, it’s large widespread makes its common frequency 

bands very busy and shown to create disturbances in the localization accuracy for some systems. 

Accurate Wi-Fi based IPSs will usually rely on RSS readings usually in fingerprint matching 

techniques as ToF measurements of Wi-Fi have errors in the order of 2 meters. IEEE 802.11 

operates under different protocols with various frequencies: 2.4GHz, 3.6GHz, 5GHz and 60GHz; 
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all providing different range and speed of communication. Wi-Fi 2.4GHz has also the advantage 

of suffering less from NLOS conditions than typical higher band technologies [20]. However, the 

accuracy of Wi-Fi RSS-based positing systems can be seriously affected by attenuation of Wi-Fi 

signals by human bodies, dynamic obstacles and orientation of the mobile device. The 

effectiveness of Wi-Fi based fingerprinting system deployment is depends mainly from the time 

and efforts of site survey and maintenance of fingerprint database to keep it updated [21] which 

may not always be possible or worthwhile. Typical RSS based systems such as Horus [21] can 

only achieve about 2 meters accuracy and while more accurate systems have been developed [20, 

23] and may achieve centimeter level accuracy. Often, accurate Wi-Fi based IPSs focus on the 

localization of smartphones and rely on their inherent high computational performances and 

quality which is not applicable for large scale inventory tracking for example. They remain 

impractical for industrial environment where the density of mobile devices to position may be very 

high and, amplifying battery life and delays concerns as Wi-Fi is not as energy efficient as 

Bluetooth or as fast as UWB. 

2.1.2 Bluetooth 

Also known as the IEEE 802.15.1 standard, Bluetooth is specifically defined by its 

particular MAC and PHY layers and their respective connectivity protocols. Bluetooth protocols 

have seen a significant increase in performances, energy efficiency and range in its latest upgrades; 

currently version 5.0 range is 40 up to 400 meters (LOS) as opposed to its previous versions 

ranging from 10 to 100 meters. The technology is primarily designed for communication over 

short distances and its original application was to act as a cable replacement protocol in wireless 

keyboards, wireless headsets etc. Its short distance low power characteristics makes Bluetooth very 

suitable in communication between small wireless devices. Bluetooth operates in the 2.4 GHz 

frequency band, part of the ISM. Interferences are minimized using a technique called Normal 

Frequency Hopping. This allows communications to change carrier among the several channels at 

high speed and in random sequence [27]. Bluetooth Low Energy (BLE) is the common power 

saving scheme adopted by indoor localization systems. BLE is capable of a throughput of 24Mbps. 

Bluetooth 5 provides, for BLE, options that can double the speed (2 Mbit/s burst) at the expense 

of range, or up to fourfold the range at the expense of data rate, and eightfold the data broadcasting 

capacity of transmissions, by increasing the packet lengths. In theory, localization techniques such 
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as RSSI, AoA, and ToF are applicable to BLE based systems, however, in practice, the typical 

BLE system relies mainly on RSSI based inputs to keep complexity of the system low [2, 5]; 

limiting the overall accuracy of the system. Two examples of commercial systems providing 

reasonable performances are Apple’s iBeacons and Google Inc.’s Eddystone. However, these 

devices aim for are very particular goal and focus on proximity detection for specific applications 

[24]. Due to the short-range nature of Bluetooth, the amount of iBeacons units that need to be 

deployed for effective indoor use is significant. Its typical use involves predefined actions to take 

based on the relative proximity of the user to the beacons around him by consulting cloud-based 

servers. 

2.1.3 Ultra-Wideband   

UWB schemes use series of very short pulses with periods bellow 1 nanosecond over a 

bandwidth of over 500MHz. UWB is defined by frequencies ranging from 3.1GHz to 10.6GHz 

with very low duty cycles resulting in high power efficiency. Originally used for data transfer in a 

broad range of short-range indoor applications, it has become today a primary candidate for indoor 

localization as it is unaffected by the populated channel interferences from other typical wireless 

devices. It is also capable to penetrate obstacles more effectively than wireless technologies using 

smaller frequency band. It is also well shielded, but not immune, against the effects of multipath 

propagation, providing accurate ToF measurements thanks to its very short pulse duration. Due to 

the high time resolution of UWB signals, ToF based location estimation schemes usually provide 

better accuracy than the others. Systems like Ubisense are capable of accuracies up to 15cm [9, 14, 

24]. This precise location estimation capability facilitates many applications such as medical 

monitoring, security, and asset tracking. Standardization efforts are underway in the IEEE 

802.15.4a PAN standard, which will make use of the unique features of the UWB technology for 

location-aware sensor networking [25]. Further details on hybrid UWB positioning systems can 

be found in [25]. 
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2.2 Positioning Tools and Techniques 

2.2.1 Tools used for Positioning 

A network consists of two types of nodes: anchors, or reference stations, are nodes with 

known positions, while agents or mobile devices (MDs) are nodes with unknown positions. This 

section presents various tools and techniques used along side wireless technologies to obtain 

positioning measurements. 

A. Received Signal Strength (RSS): 

The RSSI based approach for localization is known as the simplest and most widely used 

method for distance evaluation systems. It exploits the property of a signal power to fade over 

distance and thus, lower power at the received can be translated as indicator for longer distance 

from the transmitter. Typically, RSS is expressed in decibel-milliwatts (dBm). RSSI, on the other 

hand, is a relative measurement of the RSS and uses arbitrary unit scale predefined by the chipset 

vendor. For instance, Wi-Fi by Atheros generally uses an RSSI value between 0 and 60 and Cisco 

between 0 and 100.  

An estimate of the distance “d” between transmitter Tx and Receiver Rx can be found from 

equation (1), combining RSSI value and a simple path-loss propagation model: 

𝑅𝑆𝑆𝐼 =  −10𝑛𝑙𝑜𝑔(𝑑) + 𝐴 (1) 

Figure 2. 1: Ideal Example of 
Trilateration with 3 reference points 
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Where “n” is the path loss exponent and A the RSSI value at a reference distance from the 

receiver.  

This technique has the advantage of behind simple and very efficient in cost, however, it 

lacks overall accuracy. Signal attenuation sources such as walls or other obstacles or general RSS 

fluctuations caused by multipath fading phenomenon can, and will, lead to high inaccuracies in 

the distance measurements. While various methods can help reduce the error margin, such as using 

additional readings, only more complex algorithm (that may be combined with RSS based 

approach) can be expected to yield high precision positioning. 

 

B. Channel State Information (CSI): 

While the RSS remains more popular for its simplicity and low hardware requirements, 

Channel Impulse Response (or Channel Frequency Response), is similar in principles to the RSS 

approach but deliver a higher level of granularity and precision to the measurements. CSI 

information captures both amplitude (like RSS) and frequency response to evaluate distance from 

the transmitter. In most cases, the CSI is expressed as a complex value: 

𝐻(𝑓) = |𝐻(𝑓)|𝑒𝑗𝜃(𝐻(𝑓)) (2) 

where, |𝐻(𝑓)|  is the received amplitude and 𝜃(𝐻(𝑓))  the phase of the channel frequency. 

However, even with its better accuracy, this method is worth using if a network interface controller 

was already built to transmit such data and may result in a more costly solution than simply using 

RSS. 

 

C. Fingerprinting:  

This method requires a prior contextual analysis or environment survey, in which the 

various measurable relevant features such as RSS and/or CSI typically (but other relevant features 

can sometimes used) readings are initially collected in the area to monitor. Upon deployment of 

the localization system, those measurements are compared with the measurements received from 

the target device to determine an estimate of the location (usually within a grid or known set of 

points). 
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Ultimately, fingerprinting combines all the available positioning tools to provide the best 

guess. When comparing the offline measurements with the current online ones, various algorithms 

can be used and combined to achieve higher accuracy: 

i- Probabilistic approach: a machine learning matching model is built to determine the 

likelihood of the current data to match the data of all positions and the most likely match is selected 

as the location. There are various ways to process the data in order to obtain more accurate results. 

Furthermore, advanced probabilistic systems may also be able to determine the position beyond 

the predefined points (for example by averaging the position of all nodes times their likelihood). 

In theory, the potential precision of such system can be improved simply by increasing the number 

of measurements done offline prior to deployment. However, this method is weak against drastic 

changes in the environment if the offline measurements aren’t updated. This approach is weak to 

time variant contexts.  

ii- Artificial Neural Networks (ANN): this approach is comparable to the probabilistic 

method in implementation and behavior. Initial measurements of one or a set of features is done 

over the monitored zone. The data set is then used to train the ANN which can then be used to 

determine the location based on the online measurements of the selected features (and the other 

features if possible). [31, 32, 33] 

iii- k-Nearest Neighbor (kNN): The k-nearest neighbor algorithm relies upon other 

principles to determine a set of likely positions of the target and, by selectively discarding the 

outlying results, selects k-nearest positioning matches which are then averaged to obtain the 

location. The challenge becomes the determination of the nearest matches, one way relies on 

offline measurements to guess which readings are the most reliable [28]. 

iv- Support Vector Machine (SVM): SVM are typically the method of choice for 

classification (or even regression) when it comes to machine learning for localization systems [28]. 

This scheme is comparable to the probabilistic approach and may also be used to implement any 

system using prior survey of the environment. The challenge in this case is the careful selection of 

the training parameters and coefficients. Typically, SVM are much less computationally 

demanding, which makes it an attractive solution for portable devices, with low energetic resources 

[29, 30]. 
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D. Angle of Arrival (AoA):  

AoA based approaches require an array of receiving antennas to determine which direction 

the received signal came from. The advantage of this method is that as low as two receivers can 

be used to find the position of a target on a plane. The biggest drawback of this scheme is that the 

high accuracy is very rapidly lost as distance increases where small angle errors translate in larger 

distance errors; and the hardware required is much more complex and expensive. Additionally, the 

AoA approach is very susceptible to multipath effects, making it a poor candidate for efficient 

indoor localization systems.  

 

E. Time of Flight (ToF): 

ToF exploits the physical property that is the speed an electromagnetic signal, the speed of 

light: 𝑐 ≈ 3 ∗ 108 𝑚/𝑠𝑒𝑐. The distance between reader and receiver is computed by multiplying 

c with the signal propagation time from the transmitter. Ultimately, the computed distances can be 

used to triangulate the position information. 

This technique requires rigorous synchronization between transmitter and receivers, 

usually basic handshake protocols can take care of synchronization and timestamp exchanges such 

as in UWB sensors. Measurements are highly dependent on the type of signal technology used, 

higher sampling rate results in higher accuracy. Large bandwidth is generally preferred. 

 

F. Time Difference of Arrival (TDoA): 

TDoA relies on the time difference between the arrivals of the signal at various 

synchronized receivers. For each receiver i, of known coordinates (X, Y, Z), its distance to a 

transmitter j can be found with the following formula. To position an unknown target, a system of 

three equations (one per receiver) must be solved. 

𝐿𝐷(𝑖,𝑗) = √(𝑋𝑖 − 𝑥)2 + (𝑌𝑖 − 𝑦)2 + (𝑍𝑖 − 𝑧)2 − √(𝑋𝑗 − 𝑥)2 + (𝑌𝑗 − 𝑦)2 + (𝑍𝑗 − 𝑧)2 (3) 

Once again, once at least 3 different reference points have computed their distance from 

the device, triangulation can be used. Unlike ToF, this method benefits from only needing strict 
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synchronization between the fixed antennas and not the receiver. The accuracy is highly 

dependent on the bandwidth and the presence of line of sight [28]. 

 

G. Phase of Arrival (PoA): 

This method uses the phase or phase difference between two reference stations of the 

carrier signal to measure distance from transmitter. The method assumes signals emitted are of 

pure sinusoidal. A first approach assumes the existence of a transit delay Di during flight and can 

be expressed as the quotient of the signal wavelength. The estimation in range is given by: 

𝑅𝑖 = 𝑐𝐷𝑖/(2𝜋𝑓) (4) 

When PoA is applicable, TDoA will generally be a possibility as well. It is usually 

recommended to use in conjunction of ToF, RSS or TDoF to improve performances as it is much 

more susceptible to NLOS scenarios. 

Metric 

used 

Overall 

Hardware 

Cost 

Synch. required 
Min. # of 

measurements 
Accuracy 

RSS low No 
3 

(triangulation) 
low  

CSI 
Medium 

(pre-built) 
No 

3 

(triangulation) 
medium 

AoA high No 
2 (line 

intersection) 

High (lowers fast 

as distance increase) 

ToF low 
Yes (Reference 

Station to Device) 

3 

(triangulation) 

Depends on the 

signal frequency 

TDoA 
Medium 

- High 

Yes (Among 

Reference Stations) 
2 High in LOS 

PoA Medium 
Yes (Among 

Reference Stations) 
2 High in LOS 

Table 2. 1: Overview of Strength and Weaknesses of Positioning Measurements 
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2.2.2 Core Positioning Principle 

Ultimately, the positioning processes used by an IPS can be divided into two main 

categories. The propagation approach, which uses the measured distance to multiple reference 

points, and the fingerprinting approach, which associates sets of measured feature characteristics 

with each location and tries to best match the incoming readings of the target. 

In this section, some popular estimation techniques will be presented. Estimation 

techniques use the tools and metrics provided by the system and convert them to one or more 

possible coordinates to position the target. 

A. Trilateration: 

Trilateration is the most common and understood position estimation method. It relies on 

the system determining the distance of the target to at least three known reference points. From 

there, the equations of three circles with each Aps as their center can be written as: 

(5) 

(6) 

(7) 

 

RSS 
Easy and effective for many usages but lacks precision and may be unreliable in difficult 

environment 

CSI More reliable but will need discrete fingerprinting of the area 

AoA 
High accuracy with no fingerprinting but relies on directional antennae, complex 

algorithm and expensive hardware. Performances also drop quickly with distance 

ToF 
High accuracy with no fingerprinting but relies on synchronization of Tx - Rx, multiple 

reference stations with LOS as well as timestamps packets 

TDoA 
Accuracy with no fingerprinting and no synch needed with mobile device but synch 

needed among reference stations. Larger bandwidth and stamps usually needed. 

PoA Used with RSS, ToF and TDoF to boost overall accuracy, requires LOS for reliability 

Table 2. 2: Summary of Positioning Metrics Implementation Effectiveness 
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Where di is the measured distance from the target of coordinates (x, y) to a reference point 

i of coordinates (xi, yi). The target’s x and y coordinates can be found by solving this system of 

three equations: 

 

(8) 

 

 

(9) 

 

The formulas above concern trilateration on a 2D plane, in order apply it to 3D spaces a 

fourth reference point measurement must be used and similarly, a system of four equations must 

be solved. 

 

B. Proximity: 

This method associates a target’s position with its closest reference point. It is typically 

used in situations where the accurate location is not needed, and the targets are expected to follow 

very specific paths on which they must be located. This method is relatively cheap and simple to 

deploy, it will often be combined with cheap and short-range wireless technologies such as Wi-Fi 

or Bluetooth. Some examples of applications include museum interactive guides detecting which 

piece of the museum the user is looking at, or in mines where payloads are moved an must be 

tracked through different distant sites. 

 

C. Fingerprint matching: 

The idea of this approach is to let certain signal properties or sensor measurements identify 

a certain location. Different signal properties and their corresponding locations are stored in a 
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database effectively creating a map of the radio properties at different locations. The location of a 

mobile device is determined by matching detected signal properties with the reference points 

stored in the database. Besides the accuracy this approach also has the advantage of not relying on 

the placement of APs. In fact, the location of APs can be unknown, and a fingerprinting approach 

would still work. 
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Chapter 3: Machine Learning Theory 

and Usage 

The work presented in this thesis relies mainly on neural network machine learning 

techniques. This part will present fundamentals of neural networks and learning algorithms.  

Machine learning algorithms are typically categorized between the following three classes: 

→ Supervised Learning: this is the most popular scheme. It attempts to teach a learning 

function to map an, or set of, input to an output based on examples of input-output pairs. The end 

goal is to realize a function that can predict the output of unseen examples through generalization. 

This training method typically requires large amount of sample data. 

→ Unsupervised Learning: in this case, the sample data output class is unknown, and the 

learning function is tasked to cluster data in different classes without prior knowledge of the output. 

→ Reinforcement Learning: this class aims at continuously training the learning function 

through trial and error. Given some learning rules it can take decisions based on the current input-

output pair. 

The system presented in this thesis essentially relies on supervised training and mild 

learning rules that are comparable to reinforcement learning paradigm.  

3.1 Loss Function and Training  

Supervised learning algorithms progress by attempting to minimize a predefined cost 

function, also known as loss function. This function measures the gap between the goal output and 

the current predicted output. In its general form it can be expressed as: 

𝐽 = 𝑦 − 𝑦̂ (10) 

Where 𝐽, is the loss function, 𝑦 the goal output and 𝑦̂ the predicted output value. It can be 

computed by running the given learning function, such as linear regression or a neural network 

with the related input vector. An optimization problem seeks to minimize the cost or loss associated 
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with sample input-output pairs. Details on the utilized loss function for this thesis’ work are given 

in later parts. 

 

3.2 Neural Network Basics 

The concept of Neural Networks (NNs) is rooted in the attempt by scientists and 

mathematicians to mimic the way biological neuron networks learn and evolve. While standard 

systems and algorithms are implemented with a clear design and logic in mind before hand, NNs 

can “learn” to identify relationships and logic when observing large amounts of sample data. 

Fundamentally, to train them, NNs only require sets of input and desired associated output 

(supervised learning) as training data to find logical relationships. Although the core concept is 

simple to understand as it is very relatable to the way humans learn, it remains extremely difficult 

to predict the performances and their evolution of neural network as even slight changes in its 

topology, training methodology and most learning parameters, can result in great differences in 

performances and/or training required. 

 

Figure 3. 1: Topology of a Neural Network with 2 input neurons 1 hidden layer of 4 neurons and 2 output 
neurons. All neurons from one layer are connected to all neurons in the next, making the network Fully 

Connected 

In short, an NN is formed by a collection of neuron units arranged and connected in 

particular ways (typically in layers). The task of a neuron is to take the inputs of all the connected 

neurons in lower layers of the network, process it based on a mathematical function called 
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“Activation Function”, and output its result to the next connected neurons for additional process 

or output. The process of feeding an input and computing the output of a neural network is called 

Feed Forward Propagation and the process of correcting the connections between the neurons by 

computing its error margin, to “teach” the NN, is called Backward Propagation. The most popular 

types of NNs used today include, but are not limited to, Deep Neural Networks (DNN), 

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), which are all 

derivative from the original Artificial Neural Network (ANN) composed of three layers of neurons, 

the input layer, one hidden layer and output layer, where each neuron in a layer is connected to all 

neurons in the next layer, it is said to be “fully connected”.  

The figure above illustrates the operations done by a single neuron. The input 

x1,x2,x3,…,xn are multiplied by the corresponding connection weights w1,w2,w3,…,wn then 

summed and fed into the activation function A of the neuron, which outputs its result, y. 

 

(11) 

 

The neural networks used in this thesis’ work belong to the category of Deep Neural 

Networks (DNNs) as they have 2 hidden layers which gives them the ability to find solutions to 

more complex non-linear problems. They are said to be feedforward networks as their actual usage, 

beyond training, solely relies on feedforward propagation. Most DNNs fit in the Multilayer 

Figure 3. 2: Single Neuron 



20 
 

Perceptron category of NNs as they rely on backward propagation in supervised learning 

environments to be trained and use nonlinear activation functions. 

 

3.3 Dealing with Multiple answers: KNN Outlier 

Mitigation 

The K-Nearest Neighbour (KNN) algorithm is a method commonly used for classification 

and regression problems. The system presented in this thesis does not apply the KNN algorithm in 

a goal to sort between more than a single class (closest cluster to target). The algorithm is said to 

be a 1-nearest neighbour algorithm which is very intuitive and low in complexity. The quality of 

the results, given a mostly plausible set of answers, increases as the answer set size increases.  

As illustrated in the figure above, once a set of plausible positions is generated, the average 

position is calculated. Sequentially, the farthest point from that average is removed from the result 

set and the average recomputed. This step is repeated until the farthest point’s distance from the 

average is bellow a given threshold or that a minimum number of points is selected. An alternative 

option for the stopping policy may chose to stop the algorithm based on the average’s movement 

after each iteration. 

 

 

 

Figure 2. 2: Illustration of usage of KNN to identify outlier results 
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3.4 Neural Networks and UWB in IPS 

The use and implementation of neural networks for indoor positioning has been explored 

by other researchers in the field and often differ in their approach to training data collection and 

usage. That is, works such as the ones presented in [31] and [33] use a single NN at the core of 

their positioning systems but [31] varies the amount and type of inputs to be fed into the NN while 

[33] investigates the accuracy variations with different dataset sizes used for training. On the other 

hand, [32] does not explore different training methods but rather aims at improving the quality of 

the training database content and adds UWB signal propagation parameters to the inputs of the NN 

to lead it into correcting error in measurements. 

Positioning 

System 

Fingerprint Database size 

(Locations x Readings/Locations) 

Coverage Area 

(estimates) 

Best Mean Accuracy 

(estimates) 

[31] 302 x 4 20m x 4m 37cm 

[32] 36 x NA (not mentioned) + 1155 x 11 2m x 4m x 1.5m 50cm 

[33] ~ 108 x 10 (LOS) + 108 x 10 (NLOS) 70m x 4m <50cm 

This Thesis’s 40 x 50 + 24 x 100 + 15 x 30 13m x 9m 33cm 

 

However, each method often comes with its set of drawbacks such as in [33] in which 

slightly better performances are achieved but at the cost of an extensive fingerprint collection 

campaigns with measurements 1 meter apart from each other over a gallery about 36 by 4 meters. 

In [31] the inputs of the neural network are the TOA (ranging) measurements as inputs, similarly 

to this paper’s system, and decided to add the RSS readings of the measurements, which ultimately 

slightly increased the performances of their system. The work in [31] also requires extensive 

fingerprint collection campaigns but ultimately achieves similar results or worse than this 

document’s proposition in cases using 3 or less TOA measurements. The works of [31, 32, 33] all 

manage to achieve sub-meter accuracies using UWB.  

Despite its capacity to make measurements at a decimeter precision, working with UWB 

also means that the system intends on deploying fewer UWB base stations and may not be able to 

make additional measurements as they are energetically costly to a mobile device. These factors 

reduce the maximum accuracy achievable. Therefore, it is still common to see RSS based systems 

Table 3. 1: Comparison of this thesis and relevant literature’s works 
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using Wi-Fi or BLE performing better than some UWB systems in some contexts, especially in 

complex environment as those systems often deploy a much larger amount of base stations, usually 

hopping to rely on existing infrastructure such as common Wi-Fi routers. 

The works of in [31] and [33] chose to use data collected in the field for their training which 

provides high quality training data, if done properly. However, UWB technology can be exploited 

to achieve millimetre accuracies such as in the works of [34] but are then limited in coverage area 

and require more expensive setup as well as more power-hungry ranging protocols for the mobile 

device. One goal in mind when designing the proposed system was to lighten the data collection 

aspect of deployments and thus, elected to use synthetic data during training. Mainly, after their 

creation, the NNs are trained using generated data with some added noise until they can 

approximate trilateration (more on that in chapter 4 and 5). 

 

 

 

Figure 3. 4: Simplified model of the NNs used in this thesis' work 

Figure 3. 3: Simplified model used in [31] and [33] 
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The approach to implementing NNs for IPS purposes appears usually to have a single NN 

trained on fingerprint data collected on the field and have it output the numerical coordinates of 

the target. While this leads to a more straightforward implementation of the IPS, such approach 

forces the use of larger NNs that are very specialized for a given deployment setup. A single change 

in the position of one of the reader nodes can render the NN unusable and force a complete retrain 

and a new fingerprint collection campaign which is very time consuming.  

This thesis presents a method using a “swarm” of less complex NNs, assigned to 3 reader 

nodes each, allowing changes in the system without completely ruining the system’s performances. 

Additionally, the exclusion of less predictable fingerprint information such as RSS, allows the 

synthesis of “fake” training data which can be used to establish the first level of performance of 

the system. Furthermore, instead of directly outputting numerical coordinates, the NNs produce a 

probability matrix, allowing better visualization of the output and to introduce the concept of 

“closeness” to the training (more in chapter 5). Depending on the quality of the measurements, it 

is hypothesized that the matrix could be used to correlate outputs of the different NNs to provide 

better estimates; however, this approach will not be discussed in this document.  

The approach presented in this document achieves relatively good mean error and did so 

using mostly synthetic data for training. Furthermore, another key aspect of the system presented 

resides in its ability to mitigate error coming from mismeasurements of one or more sensors. That 

is, systems presented in [31, 32, 33] use a single NN to process all the data which can be risky if 

some sensor suffers from momentaneous interferences and provides inaccurate readings. Given 

the usage of a “swarm” of NNs in the presented system, KNN can efficiently mitigate outlier 

results and possibly, minimize the effects of a mismeasurement. This advantage also benefits the 

system in its ability to save the power required from the mobile device to perform another 

measurement.  
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Chapter 4: System Model and Algorithms 

The proposed solution utilizes Deep Neural Networks and KNN to aid trilateration in the 

positioning process. It results in more stable tracking of the target in poor signal propagation 

conditions and by extension, less measurements are needed to be taken which allows longer battery 

life on the mobile devices. 

 4.1 Fundamentals of IPS design    

The process of designing an IPS can be initiated with the completion of at least the 

following few steps and decisions: 

• Requirements analysis: Determine the required level of accuracy and feasibility. For 

example, in the case of tracking of payloads in a mine, the accuracy may be at the hundreds 

of meters level. Whereas, tracking various items in a supply chain could be satisfied with 

1-meter accuracy. 

• System structure and topology: Determine at which level is the computation done, what 

kind of network latency to expect and available processing power. Evaluate the possibility 

of introducing additional devices. 

• Positioning Principle: As described in the previous chapters, the designer must choose the 

appropriate technique for positioning according to the needs and technology used. 

• Localization Process and Final Decisions: Determine under what conditions must an input 

be discarded, and new measurements taken, and the kind of output that would be 

considered erroneous. 
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4.2 System Model    

It is common for an IPS model to be separated into the offline or calibration phase, in which 

the system is prepared for deployment, hardware is installed and sample data is collected, and 

online phase, when the system is operational and describes its periodic tasks and activity routines 

and policies.  

To clarify some terminology used in the rest of this document, some definitions are 

provided: 

- Reader: reference station of known location performing the ranging measurements 

with the mobile devices. The location of a mobile device can be determined using a 

minimum of 3 ranging measurements with 3 different non-aligned readers. 

- Tag: Mobile device of unknown location which initiates ranging measurements when 

set in motion. Tags have low computational capability and are battery powered, 

because it is expected to have a lot of them in circulation, low power consumption is 

critical to avoid extensive battery change operations. 

 

4.2.1 Initialization and Offline Training Algorithm   

Logically, the first step is to define the map of the area that will be monitored by the 

positioning system. The readers are installed on top of 2 meters tall pedestals and powered by the 

closest wall outlet. Additionally, a set of 40 tags is deployed at known locations and will be used 

as reference points (RPs) to collect fingerprint readings that will be used to further train the neural 

networks. The map is then represented as a grid of 50x50 cm cells* which will represent the output 

layer of the neural networks. As this project does not have a front end yet, the map dimensions and 

cell size must be written directly into the server. 

*Cell size may be altered. However, it was observed that 50x50 cm cells were enough for 

our experiments and lower sizes would have led to NN dimensions too heavy to run on a 

personal computer. 
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In the first phase, the system determines each possible combination of three and four 

readers to assign a neural network to, and proceeds to the initial training phase on synthetic data 

until convergence is achieved. Meanwhile, readings from the RPs are formatted for neural network 

training and saved. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑁𝑠 =  (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑒𝑟𝑠

3
) + (

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑒𝑟𝑠

4
) 

Given our test setup using 4 readers, we can train 4 NNs taking 3 inputs and 1 taking 4 

inputs.  

 

In an actual deployment scenario, it is beneficial to be able to parallelize the fingerprint 

collection and initial training of the NNs to speed up the operations. Additionally, in a less complex 

environment and depending on the requirements, the NNs may provide acceptable accuracy even 

without the fingerprint training. Furthermore, assuming an already deployed system, adding a new 

Figure 4. 1: Deployment Process Summary 



27 
 

reader will not require retraining of all the NNs already in place and similarly, removing a reader 

will only result in the disabling of the NNs associated with it. 

4.2.2 Online Operation Phase 

Upon receiving a positioning request, the system runs the input through all valid NNs and 

computes all the possible trilateration’s answers. Then, using the KNN algorithms, finds the final 

answer and uploads it to the cloud service. 

The server running the system may also train the NNs periodically based on additional 

fingerprint data collected by fixed tags of known location. A performance comparison between the 

newly trained NNs and the current versions are performed using the offline fingerprint data and 

the real time data collected over time. If performance improvement is noticed, the new networks 

are individually selected to replace their current counterpart. 

 

4.2.3 System Design   

Based on the technology used, an IPS developer must determine the optimal positioning 

process available, or more often, combination of them. Improvements in performance are often 

found in enhancements of the input or output of the system. For example, better RSS to distance 

conversions can be achieved by combining Wasserstein distance interpolation with the sequential 

Monte Carlo method for tracking in [1]. Refining of the output can be done using Kalman filters 

for such as in [2] where the position of the tag device is estimated by adding the previous position 

and displacement from sensor-based positioning.  

There are ultimately two main basic techniques used to position a target: trilateration and 

fingerprinting; from which other methods can also derivate. In trilateration, estimated distances 

are used to calculate the most probable coordinates using the geometry of triangles [3]. On the 

other hand, fingerprinting methods rely on corelating or matching the measurements with 

previously collected and mapped data, this can be done with machine learning algorithms or other 

general data correlation calculations. In this paper, we label the positioning technique of the IPS 

as the Main Positioning Process (MPP).  
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Figure 4. 2: Typical Workflow of an IPS 

The proposition at hand targets UWB’s most common MPP, trilateration. This process 

requires a minimum of three ranging measurements from three different non-aligned reference 

points. Therefore, given more than three such measurements, the process can be run as many times 

as unique groups of three readings can be made. Finally, the multiple possible answers are 

translated into a final set of coordinates, through weighted average or KNN algorithm. 

This thesis’ work introduces neural networks accomplishing the same task as trilateration, 

thus, providing a larger set of possible answers, increasing the likelihood that an algorithm such 

as KNN results in a more accurate answer. The structure of the proposed model is described in 

Figure 4.3. The number of different combinations of three inputs given “n” readings can be 

computed with the following formula: 

(
𝑛

3
) =

𝑛!

3! (𝑛 − 3)!
 

As previously explained, the 1-nearest neighbor algorithm benefits greatly from a surplus 

of answers. The proposed method using NNs to generate additional answers then guaranties at 

least 2 answers in the worst case of only 3 readings and, given 4 readings, immediately raises the 

result set size to 9 (4 from trilateration, 4 from 3-Inputs NNs and 1 from 4-Inputs NN). 

Furthermore, to maintain consistency in the movement tracking of a target, the previous 

position of the target is added to the original result set on which the 1-Nearest Neighbor (1NN) is 

applied. This scheme leads the algorithm to favor results closer to the previous target position and 

reduces the risk that a wrong answer clusters be selected. 
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Figure 4. 3: Positioning Process Structure 
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4.3 Early Results    

Figures 4.4 and 4.5 show results of performance comparisons between trilateration and 

equivalent NNs. The results clearly indicate higher accuracy given low quality measurements 

where the NNs achieve errors bellow 1.5m 90% of the time as opposed to 70% for trilateration. 

Additionally, further test experiments were run to determine an appropriate depth and size 

for the NNs. It can be observed that DNNs with at least 200 neurons per layers and a depth of 2 or 

4 perform noticeably better. The rest of the experiments in this document utilize NNs with 2 hidden 

layers and 200 neurons per layer in order to fit the available material specifications. 
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Figure 4. 4a: Cumulative Probability of error of NN vs 
trilateration in good condition. 

Figure 4. 4b: Cumulative Probability of error of NN vs 
trilateration in poor condition. 
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Experiment 1, 2, 3, 4, 5 use respectively 1, 

2, 3, 4, 5 hidden layers DNNs 

DNN 0, 1, 2, 3 have respectively 100, 200, 

300, 400 neurons in each hidden layer 

 

 

Figure 4. 5: Set of early experimental results showing promising results for positioning with NNs 
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Chapter 5: System Experiments and 

Results 

5.1: System Architecture 

The positioning system’s base is composed of tags, readers and a main server. Readers 

report to the server the ranging measurements they perform with each tag and the server oversees 

the running of the appropriate DNNs for a given set of data as well as the additional training 

sessions that may need to be performed.  

The UWB modules used are the Decawave DWM1001 Development Boards with a 

specified 10 cm accuracy on ranging measurements. However, it is important to note that this 

metric highly fluctuates based on the actual distances and levels of interferences present during 

the measurement. The server role was taken by a personal laptop (Lenovo C930) equipped with 

an Intel CoreTM i7-8550U CPU (1.8 GHz) and 16 Gb of RAM. Codes for the experiments were 

developed in a Linux Virtual Machine in python3 using Keras, an open source neural network 

library running on top of TensorFlow. 

 

     Figure 5. 1: High level view of positioning system structure 
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5.2: Neural Networks Creation and Calibration 

Neural networks used in this thesis’s work are initially trained using only synthetic data 

and then calibrated using fingerprint data collected prior to the experiments. Calibration was 

performed using alternating samples of synthetic data and fingerprints the database using large 

batch training. The synthetic data allowed the NNs to not be affected to significantly by very 

incoherent readings and not shift from its objective too significantly. Additionally, the large batch 

used for calibration training yielded slightly more stable learning and focus on overall performance 

improvements. 

In the Linux distro, the following command can be used to install Keras and its 

requirements for python3: 

>> sudo pip3 install Keras 

 

Furthermore, the neural networks can be initialized with the following code where 

“numCell” is the total number of cells on the map: 

 
in_sz = 3 

out_sz = numCell 

act = 'tanh' 

out_act = 'sigmoid' 

lossF = 'mse' 

optim = 'rmsprop' 

layers = [in_sz,500,500] 

model = Sequential() 

for i in range(1,len(layers)): 

   model.add(Dense(layers[i],input_dim=layers[i-1], 

activation=act,init='uniform')) 

model.add(Dropout(0.3)) 

model.add(Dense(out_sz, input_dim=in_sz, activation= out_act)) 

model.compile(optimizer=optim, loss=lossF) 

 

Because the output of our network is a classification probability matrix, the sigmoid 

function was used for the output layer and tanh for the hidden layers, as recommended for complex 

function approximation in [6]. The choice was also supported by some trial and error tests, showing 

faster convergence and better output with these hyperparameters. Finally, while standard mean 
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squared error was chosen as the backend training loss function, the system evaluates loss every 

minute based on the average positioning accuracy of 200 fingerprint samples in which 100 are 

extracted from Dataset 1 and 100 are synthetically generated. Convergence was determined when 

no significant improvements in accuracy could be observed. 

Once all the desired NNs are generated, they are saved in a directory to be used by the 

calibration algorithm and the positioning system: 

- The calibration algorithm uses the datasets to further train the NNs and improve 

performances. 

- The positioning system is tasked to use the saved NNs and possibly collect further 

training data with some fixed reference tags deployed on the field. 

 

Figure 5. 2: Neural Networks creation and initial training logic 
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Figure 5. 3: Calibration Training Process 
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5.2 Experiment and Results 

5.2.1 Experimental Procedure 

The experiments were performed in the Ryerson Communication Lab (RCL – ENG401). 

This location may not be considered representative of an industrial environment, but it is 

nonetheless relevant as a test location for an IPS. The lab consists in 2 rows of wooden desks with 

metal legs and a total of 16 computers on top and 2 large metal desks holding various large 

electrical tools (oscilloscopes, printers, generators, 45” TV…). Bellow the desks is mostly filled 

with boxes of books, hardware and other. The side of the lab are ornated with 8 metal shelfs and a 

fridge as well as a few other pieces of metal/wooden furniture. 

 

 

 

 

 

Figure 5. 4: Ryerson Communication Lab 
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A. Fingerprint Database Creation 

Three main fingerprint collection campaigns were performed in the lab in various 

conditions. Dataset 1’s readings were taken in controlled conditions, with few to no people 

around and maintaining a constant height of 1 meter above the ground for the test tag placed on a 

stand; this dataset represents the scenario with better conditions (not ideal) relative to the other 

two. Dataset 2’s measurements conditions were not as controlled as for Dataset 1: more people 

were in the office and little to no care for the height of the test tag, not placed on stand, typically 

between 50 and 150 cm above the ground. It was also noticed later that Reader 4 was misplaced 

by about 10 cm during that specific measurement campaign. This Dataset represents the scenario 

with typical conditions. During both previous procedures the readers were position on top of a 

stand 2 meters above the ground. Finally, Dataset 3 was built after having positioned the readers 

50cm above the ground in order to provide more disturbance in the measurements and as there 

are various material boxes, metal bars and other tools filling the space under the desks. 

 

Number of Test Points: 40 

Readings per point: 50 

 

  

 

Number of Test Points: 24 

Readings per point: 30 

 

Figure 5. 5: Dataset 1 

Figure 5. 6: Dataset 2 
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Number of Test Points: 15 

Readings per point: 30 

  

 

 

 

 

 

 

 

 

 

 

B. Neural Networks Creation: 

For the experiments, the map dimensions used were 1300cm x 900cm with a cell size of 

50cm. The NNs were all trained for about 15 minutes each with synthetic data only using batches 

of 256 samples. 

In the earlier stages of development of this project, it would have taken around 50 minutes 

per neural networks to train them with synthetic data; today, it takes about 5 minutes. This 

improvement was observed when weights were initialized as uniform rather than random and that 

tanh was used on the hidden layers rather than sigmoid. 

Figure 5. 7: Dataset 3 

Figure 5. 8: Reader 1 at coordinates 
(100cm,200cm) 

Figure 5. 9: Stand holding 2 tags 1 meter 
above the ground 
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The neural networks trained with batch method have their weights updated based on the 

cumulative backpropagation results of the batch rather than after each individual example. The 

training algorithm can be summarized in 3 steps: 

1- Generate Batch of synthetic data with added random error of up to ±25cm to each 

distance. 

2- Train neural network (update weights) 

3- Measure cost/performances on a validation set = average error over a large example set 

The desired output is a probability matrix spiking at 1 in the matrix cell corresponding to 

the most likely location the target is in. This is best represented using a heat map, figure 5.9 and 

5.10 represent the output matrix of a training sample where the target is located at (5m, 5m), in 

this case, using 25cm cells to provide better illustration. 

 

 

 

 

 

 

 

To synthetize this output, a zero 2D matrix of dimensions 26x18 = (1300/50) x (900/50) is 

first created and the target cell value set to 1. Then, a gaussian filter is applied to create the spread 

around the target. The filter can be configured with different values of standard deviation that 

affects the amount of spread the final matrix will have around the target cell: higher deviation 

results in larger spread and vice-versa. 

Originally, the synthetic data true output “target spread” used a static standard deviation of 

1.25 (chosen semi-arbitrarily through trial and error). However, in later developments, that value 

was made to dynamically change during training with respect to the neural network’s performances: 

Figure 5. 10: Ideal target output matrix with 
standard deviation of spread = 1.5 

Figure 5. 11: Ideal target output matrix with 
standard deviation of spread = 0.5 
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the better the performances, the lower the allowed deviation would become. It was found that this 

change greatly speeds up the time it took for the synthetic training to yield acceptable performances. 

The standard deviation for the target spread is now calculated such that: 

𝜎 = max (
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑐𝑚)

400
;   0.75)  

 

Figure 5. 12: Convergence of cost in during the initial training (NN-1 here) 

 

 

Figure 5. 13: Example of True Output (left) vs NN Output (right) 
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C. Performance Evaluation: 

In the first set of tests, the average error of the uncalibrated NNs is computed on each 

Datasets. 

 
Mean Error (cm) 

NN Group Dataset 1 Dataset 2 Dataset 3 

R1-R2-R3 66 43 68 

R1-R2-R4 66 62 92 

R1-R3-R4 86 59 77 

R2-R3-R4 54 70 88 

R1-R2-R3-R4 57 44 72 

Table 5. 1: Average error of uncalibrated NNs on entire Database 

From Table 5.1, it can be said that the performance of uncalibrated NNs is not satisfying 

for system requiring high degrees of accuracy. However, the NNs results can be said to be at least 

promising when put against their respective trilateration results (see Figure 5.14, 5.15). The larger 

than normal error of trilateration for readers 2, 3 and 4 can also be explained by the fact that it was 

the “most aligned” set of reader. 

 

Figure 5. 14: Dataset 1 average error of uncalibrated NNs vs Trilateration 
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Figure 5. 15: Dataset 2 and 3 average error of uncalibrated NNs vs Trilateration 

Figure 5.15 can clearly demonstrate the lower quality of Dataset 2 and 3 with respect to 

the first. However, rather than simply looking at mean error, when analyzing an IPS’ 

performances the rate of distance error is a metric that is as important as the mean error (can 

relate to deviation).  

In the following pages, the rates of distance error of the NNs is analyzed in order to 

identify the specific strengths that can be extracted from the proposed method.  
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When the rate of error distance of the NNs was compared to trilateration (Figures 5.17, 

5.18), a conclusion was made: the NNs appear to be more robust to measurement errors but 

provided limited maximum accuracy as opposed to trilateration, which was capable of far more 

accurate positioning when the readings were of higher quality. In Figure 5.17, it can be observed 

that the NNs limited the error to a smaller minimum than trilateration for each positioning groups, 

but the best answers were provided by trilateration. Further analysis at the performances on Dataset 

1 reveals that in cases where the error distance is lower than ~40cm, trilateration tends to provide 

better results more often. However, the neural networks errors are all bellow 140cm while 

trilateration’s error can go as high as 200cm. 

 

Figure 5. 16: Cumulative Probability of Error Distance on Dataset 1 

 

Figure 5. 17: Cumulative Probability of Error Distance on Dataset 4 
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In order to combine the benefits of trilateration’s low error when the quality of readings is 

high but maintain the robustness of the neural networks with less optimal measurements, KNN 

outlier mitigation algorithm was used to sort through all the results of both neural networks and 

trilateration. The performance of the new system using KNN to sort through all the answers was 

compared to KNN using only the trilateration results and only the neural networks results 

respectively. 

 

Figure 5. 18: Cumulative Probabilities of Error Distances on all datasets combined of KNN only applied to 
all NNs’ answers (Blue), only to all Trilateration’s answers (Red), and all answers combined (Green) 

As it was expected, using Dataset 1, the results in terms of cumulative probability of 

distance error show that, by using KNN outlier mitigation method, the lack of low distance error 

rate of the neural networks is compensated while maintaining the robustness on the higher end of 

distance errors. 

Using all the Datasets combined, the results yielded may not be directly on par with the 

more sophisticated systems existing but maintains satisfying performances in most conditions. 

With NNs yielding average errors between 45 and 60 cm in its uncalibrated form, the proposed 

solution has much potential to improve when combined with further input refining algorithms and 

output enhancement methods such as a Kalman Filter. 



45 
 

Finally, once calibration was applied to the NNs, a significant boost in performances was 

observed in the system while applying KNN to sort through all the answers. 

 

Figure 5. 19: Cumulative Probability of Error distance on 70% of all the datasets using KNN after 
calibration of the NNs using Fingerprint and Synthetic Data 

 
Mean Error (cm) 

NN Group Dataset 1 Dataset 2+3 

R1-R2-R3 40 51 

R1-R2-R4 37 50 

R1-R3-R4 41 48 

R2-R3-R4 35 55 

R1-R2-R3-R4 34 50 

KNN 33 56 

Table 5. 2: Average error of calibrated NNs 

Figure 5.20 shows that calibration was successful, yielding noticeably better results with 

80% of answers bellow 50 cm of error as opposed to 50% previously. The calibrated NNs were 

attained within 22 iterations of the calibration algorithm described in section 5.2, using batches of 

1000 samples. The lower error of the NN using measurements from all 4 reference stations 

suggests that in cases with more reference stations available, the larger number of 4-Input NNs 

could provide a boost in performances. 
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5.2 Evaluation and Analysis 

In the previous section it was shown that neural networks provide more consistent and 

accurate positioning than trilateration in poor measurement conditions even when trained only 

using synthetic data. The performances of the system were further improved after calibration, using 

only a set of 24 test points across the 13m x 9m lab in which the experiments were performed. 

They provided a better maximum error rate but were limited in terms of maximum accuracy. It 

remains however, that trilateration should be used if the presence of LOS and good measurement 

quality can be confirmed, but this remains a difficult/costly task as explained by the researchers at 

MIT from [15]. 

Additionally, KNN was introduced to sort through all the answers. This algorithm allows 

then to select only the best available cluster of answers to work with. In more sub-optimal signal 

conditions, it is expected that the neural networks answers will be more coherent and closer 

together than trilateration which will bias KNN’s cluster selection. In the rarer cases of optimal 

conditions, trilateration answers can provide significantly more accurate results and will tend to 

form a better cluster even closer to the ground truth. 

 

Figure 5. 20: KNN’s cluster bias in Difficult vs Good measurement conditions (exaggerated example) 
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5.3 Discussion 

Recent works such as in [35] can achieve accuracies of 10cm but require a minimum of 4 

reference station’s measurements and do not seem to use real data taken from a difficult 

environment; on the other hand, UWB-based IPS products on the market such as what Infsoft 

GmbH or Ubisense’s Dimension4, claim to offer accuracies within 30cm on their website. 

The system presented here demonstrated to be capable of accuracies of 35 cm in a simple 

environment conditions and 50 cm in a complex environment. While not on par with popular 

market solutions, the proposed solution did not cover the entirety of a IPS’s process and was 

limited with rudimentary input correction where only absurd readings were discarded and the 

output was not enhanced, for example by using historical data such as the previous position, 

prediction algorithms or a Kalman filter. These weaknesses reveal the potential left unexplored of 

this thesis’ work. Furthermore, it is important to realize that NNs require more powerful hardware 

to be run, this may limit the maximum number of tags that can be positioned within a given time 

frame. However, the cost of hardware accelerators for NNs such as GPUs has been significantly 

reduced in later years and APIs such as Keras already offer support functions to enable hardware 

acceleration. Additionally, in a larger coverage area, not all NNs would necessarily be run for 

every positioning request (not all readers may be able to make a measurement). 

In conclusion, it can be said that KNN’s effectiveness for indoor positioning was largely 

improved by using multiple NNs to support trilateration. This method achieved comparable 

performance to various works found in the IPS literature [31,32,33,36] but with overall less 

complexity for deployment and flexibility against system changes.  
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Chapter 6: Conclusion and Future Works 
This thesis presented an indoor positioning system capable of accuracies around 35 cm and 

bellow 50 cm even in poor signal propagation conditions. It was shown that deep neural networks 

should be considered to replace or support to the strict mathematical formulations in positioning 

systems and that a swarm of less complex neural networks can rival more complex and data hungry 

ones. While trilateration allows for greater precision in optimal conditions, the distance error tends 

to spike rapidly as readings quality decreases. Neural networks offer greater flexibility when faced 

with incoherent data. The capability of making ranging measurements of UWB sensors allowed 

the use of synthetic data for training and stabilization of performance. The work in this thesis lead 

to an IPS capable of good accuracy when possible and robust positioning in less favorable 

conditions. Ultimately, the system is capable of accuracies rivaling systems found in the literature 

[31,32,33,36] while introducing more flexibility in deployment steps and operations. Unlike 

systems using a single neural network, adding a node does not require a full system retraining and 

the new network(s), depending on the environment, might begin useful operation based only on 

their synthetic data training as the results shown in the previous section show reliable results for 

uncalibrated NNs when using data collected in a good environment. In an actual integration, an 

important aspect to consider will be the selection algorithm that will manage which NN groups 

should be run based on the set of sensor data received. That is, NN groups should be run only if 

their inputs are valid and if only a subset of groups must be selected then an appropriate decision 

policy must be implemented. Validity of inputs can be determined by basic rules (zero, negatives 

and too large measurements can easily be discarded) and/or custom error mitigation algorithms 

that may weight quality of the measurements to select the best NN groups to run. A basic approach 

may involve prioritizing shorter measurements as they are less likely to have suffered from 

multipath and other interference sources. 

Future works should aim at combining this positioning process with other existing 

techniques of input/output enhancement for localization systems such as Kalman filters and WCS. 

Also, more rigorous calibration of the hardware itself could have resulted in a boost in performance. 

The next phase of research should aim at exploring a similar concept using smaller cell sizes and 

a larger number of reference stations as well as using reference tags to collect real-time training 

data, rendering the system more adaptable to large changes in the environment. Additionally, a 
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hardware accelerated version of this project should also be developed to minimize training and 

execution times. 
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