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Abstract 

Information Extraction (IE) is one of the challenging tasks in natural language 

processing. The goal of relation extraction is to discover the relevant segments of 

information in large numbers of textual documents such that they can be used for 

structuring data. IE aims at discovering various semantic relations in natural language 

text and has a wide range of applications such as question answering, information 

retrieval, knowledge presentation, among others. This thesis proposes approaches for 

relation extraction with clause-based Open Information Extraction that use linguistic 

knowledge to capture a variety of information including semantic concepts, words, POS 

tags, shallow and full syntax, dependency parsing in rich syntactic and semantic 

structures. 

Within the plethora of Open Information Extraction that focus on the use of 

syntactic and dependency parsing for the purposes of detecting relations, incoherent 

and uninformative relation extractions can still be found. The extracted relations can be 

erroneous at times and fail to have a meaningful interpretation. As such, we first 

propose refinements to the grammatical structure of syntactic and dependency parsing 

with clause structures and clause types in an effort to generate propositions that can be 

deemed as meaningful extractable relations. Second, considering that choosing the most 

efficient seeds are pivotal to the success of the bootstrapping process when extracting 

relations, we propose an extended clause-based pattern extraction method with self-

training for unsupervised relation extraction. The proposed self-training algorithm 

relies on the clause-based approach to extract a small set of seed instances in order to 

identify and derive new patterns. Third, we employ matrix factorization and 

collaborative filtering for relation extraction. To avoid the need for manually pre-

defined schemas, we employ the notion of universal schemas that is formed as a 
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collection of patterns derived from Open Information Extraction tools as well as from 

relation schemas of pre-existing datasets. While previous systems have trained relations 

only for entities, we exploit advanced features from relation characteristics such as 

clause types and semantic topics for predicting new relation instances. Finally, we 

present an event network representation for temporal and causal event relation 

extraction that benefits from existing Open IE systems to generate a set of triple 

relations that are then used to build an event network. The event network is 

bootstrapped by labeling the temporal and causal disposition of events that are directly 

linked to each other. The event network can be systematically traversed to identify 

temporal and causal relations between indirectly connected events. 
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Chapter 1 

Introduction 

 

1.1. Overview 

Information Extraction (IE) is an important task in natural language processing for 

extracting structured information from unstructured textual information. IE is growing 

as one of the active research areas in artificial intelligence for enabling computers to 

read and comprehend unstructured textual content (Etzioni et al., 2012). IE systems aim 

to distill semantic relations which present relevant segments of information on entities 

and relationships between them from large numbers of textual documents. The goal of 

IE is to extract and represent information in a tuple of two entities and a relationship 

between them automatically. For instance, given the sentence “Donald Trump is the 

President of the United States”, they venture to extract the relation tuple 

PresidentOf(Donald Trump, the United States). The identified relations can be used for 

enhancing machine reading by building knowledge bases in Resource Description 

Framework (RDF) or ontology forms. Most IE systems (Bunescu et al., 2005; Zhou et 

al., 2007; Zhou et al., 2010) focus on extracting tuples from domain-specific corpora 

and rely on some form of pattern-matching technique. Therefore, the performance of 

these systems is heavily dependent on considerable domain specific knowledge. 

Several methods employ advanced pattern matching techniques in order to extract 

relation tuples by learning patterns based on labeled training examples that serve as 

initial seeds. 
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Banko and Etzioni (2007) have introduced one of the pioneering Open Information 

Extraction (Open IE) systems called TextRunner (Banko et al., 2007) which is a tool 

for the extraction of relations and their arguments and is agnostic to the target domain. 

More recently, there has been a move towards next generation IE systems that can be 

highly scalable on large Web corpora. Such systems need to tackle an unbounded 

number of relations, and scale linearly. Open IE is currently being developed in its 

second generation in systems such as ReVerb (Fader et al., 2011), OLLIE (Mausam et 

al., 2012), and ClausIE (Corro et al., 2013), which extend from previous Open IE 

systems such as TextRunner (Banko and Etzioni, 2007), StatSnowBall (Zhu et al., 

2009), and WOE (Wu et al., 2010). 

The ultimate objective of both IE and Open IE systems is to enable the extraction 

of knowledge that can be represented in structured form and in human readable format. 

The extracted knowledge can be then used to answer questions (Reddy et al., 2014; Yao 

et al., 2014; Ryu et al., 2015;). For instance, TextRunner can support user input queries 

such as “(?, kill, bacteria)” or “(Barrack Obama, ?, U.S)” similar to Question Answering 

systems. By replacing the question mark in the triple, questions such as “what kills 

bacteria” and “what was the relationship types between Barack Obama and U.S” will 

be developed and can be answered. Furthermore, IE systems can be integrated and 

applied in many higher levels of NLP tasks such as text similarity or text summarization 

(Christensen et al., 2013; Christensen et al., 2014; Levy et al., 2014). Relation tuples 

from IE systems can be used to infer or measure the redundancy between sentences 

based on the facts extracted from the input corpora. Finally, IE systems can enable the 

automated learning and population of an upper level ontology due to their ability in the 

scalable extraction of information across domains (Soderland et al., 2013). For instance, 

Open IE systems can enable the learning of a new biomedical ontology for gene-disease 

relationships by automatically reading and processing published papers in the literature 

on this topic. 

However, most IE systems suffer from problems such as extracting incoherent and 

uninformative relations. For example, TextRunner and WOE would extract a triple 

such as (Peter, thought, his career as a scientist) from the sentence “Peter thought that 

John began his career as a scientist”, which is clearly incoherent because “Peter” could 

not be taken as the first argument for relation “began” with the second argument “his 

career as a scientist”. The second problem, uninformative extractions, occurs when 

Open IE systems miss critical information of a relation. Uninformative extraction is a 
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type of error relating to light verb construction (Allerton et al., 2002; Stevenson et al., 

2004, Fader et al., 2011; Mausam et al., 2012) due to multi-word predicates being 

composed of a verb and an additional noun. For example, given the sentence “Al-Qaeda 

claimed responsibility for the 9/11 attacks”, Open IE systems such as TextRunner return 

the uninformative relation (Al-Qaeda, claimed, responsibility) instead of (Al-Qaeda, 

claimed responsibility for, the 9/11 attack). 

In this thesis, we will explore approaches for relation extraction by taking advantage 

of clause-based patterns from open information extraction. Our work will provide a 

grammatically refined structure when using English grammar clauses for open 

information extraction. This is aimed at making the patterns increasingly more effective 

for the purpose of deriving a set of coherent constituents directed toward generating 

relation clauses to serve for bootstrapping, matrix factorization and event networks for 

relation extraction. 

 

 

Figure. 1.1. Four research directions. 

1.2. Motivation 

Open information extraction extracts relations and their arguments automatically 

from textual documents that require no supervision for performing highly scalable 

extractions and are often portable across domains. Taking advantage of clause-based 

patterns from Open IE systems for information extraction, we follow four research 

directions shown in Figure 1.1. 
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1.2.1. Grammatical Structure Reformation for Open Information Extraction 

As mentioned earlier, many state-of-the-art Open IE systems are faced with the 

problem of extracting incoherent relations in circumstances when the system extracts 

relation phrases that present a meaningless interpretation of the content that are 

mediated by verbs or verbal phrases based on dependency parsing (Fader et al., 2011; 

Mausam et al., 2012; Corro et al., 2013). Despite key advantages to dependency 

parsing-based approaches, their failure to extract all potential relations beyond a pre-

defined set of relation including syntactic entities such as nouns and adjectives along 

with a whole range of verbal structures can be problematic. Given segmentation "...in 

the southeast Sumatra area of Indonesia... ", the relation between “southeast Sumatra 

area” and “Indonesia” cannot be determined by any type of verbs or verbal phrases 

through either syntactic or dependency parsing. Our work will offer a unique advantage 

in that it is designed to address some of the more pressing limitations inherent in 

previous OIE systems through the reformation of the grammatical structure obtained 

from SP and DP. 

1.2.2. Self-training for Information Extraction 

Semi-supervised learning (Xu et al., 2007; Xu et al., 2010) is often employed with 

predefined rules to train relations based on a dependency tree. However, such an 

approach results in low performance when used on unobserved new domains due to the 

high likelihood of extracting incorrect rules from the dependency tree during the 

bootstrapping process. Researchers use dependency trees as the input for pattern 

extraction and work with trees or sub-trees that contain seed arguments. Despite, their 

eagerness to maintain high accuracy, it is difficult to claim with certainty that the 

identified patterns are indeed accurate. In lieu of this, there is a probability that faulty 

seeds could potentially be injected into the bootstrapping process. To address such 

limitations, we propose a new bootstrapping approach for relation extraction that 

automatically learns the required initial seed set without the need for manual input.  

1.2.3. Matrix Factorization for Information Extraction 

Distant supervision (Angeli et al., 2014; Mintz et al., 2009; Riedel et al., 2013; Min 

et al., 2013) aims to exploit information from knowledge bases such as Freebase in 

order to learn large-scale relations from text. Heuristic methods (Mintz et al., 2009; 

Surdeanu et al., 2012) have been employed to generate training relations by mapping 
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phrases to their corresponding entities in KBs. Dependence on pre-existing datasets in 

distant supervision approaches can be avoided by using language itself as the source 

for the universal schema. To this end, Riedel et al. (2013) and Yao (2015) have already 

presented a model based on matrix factorization with universal schemas for predicting 

relations. These authors presented a series of models that learn lower dimensional 

manifolds for tuple of entities and relations with a set of weights in order to capture 

direct correlations between relations. While these approaches have shown reasonable 

performance, their limitation is in that they train cells only for tuple of entities, and 

therefore, are limited when an insufficient number of evidences are present for the 

entities present in the relations. In this thesis, we exploit advanced features from relation 

characteristics, namely clause types and semantic topics to enrich the cells in the matrix 

of a matrix factorization model for predicting new relation instances. Particularly, we 

exploit clause types and topic models to predict relations regardless of whether they 

were seen at training time with direct or indirect access. 

1.2.4. Event Network for Information Extraction 

Temporal and causal event relations specify how different events expressed within 

the context of a textual passage relate to each other in terms of time sequence. They are 

a natural way of identifying the relationship between major events such as news stories. 

There have already been impactful work (Laokulrat et al., 2013; Mirza et al., 2014b; 

Laokulrat et al., 2015; Mirza et al., 2016a) in the area of temporal event relation 

extraction; however, they are mostly supervised methods that rely on sentence-level 

textual, syntactic and grammatical structure patterns to identify temporal relations. In 

this thesis, we propose an unsupervised method that operates at the document level. 

More specifically, we benefit from existing Open IE systems to generate a set of triple 

relations that are then used to build an event network. The event network is 

bootstrapped by labeling the temporal and causal disposition of events that are directly 

linked to each other. We then systematically traverse the event network to identify the 

temporal and causal relations between indirectly connected events. 

1.3. Contributions 

The contributions of this thesis research are listed as follows: 

 We have demonstrated that a clause-based approach with grammatical structure 

reformation can be a suitable method for open information extraction to address 
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the following limitations: (1) Identifying relations that previous OIE systems 

have been oblivious to or overlooked altogether and (2) Reducing the number 

of erroneous relation extractions. 

 We have presented an unsupervised method for relation extraction by 

combining clause based pattern extraction and bootstrapping. Particularly, we 

will present a self-training algorithm for the purpose of labeling relations during 

the bootstrapping process. 

 We have proposed numerous matrix models with fully enriched features such 

as word context, selectional preference, clause types and statistical topic models 

and employ matrix factorization with direct/indirect references for predicting 

specific relations between entities. 

 We have proposed an event network representation for extracting causal and 

temporal relations. The event network is bootstrapped by labeling the temporal 

disposition of events that are directly linked to each other. We then 

systematically traverse the event network to identify the temporal and causal 

relations between indirectly connected events. 

 We have evaluated and compared our work against the state-of-the-art systems 

both on Open IE and IE tasks. 

1.4. Structure of Thesis 

The thesis is composed of seven chapters. This first chapter covers the research 

motivation and contributions of the work. The rest of the proposal is structured as 

follows: 

Chapter 2 presents the background on information extraction. The core steps of 

approaches classified as supervised learning, semi-supervised learning, distant 

supervision, matrix factorization, among others, will be described.  

Chapter 3 presents our approach on grammatical structure reformation for open 

information extraction. It includes the depiction of the general clause-based framework, 

discussion about syntactic and dependency parsing, and the presentation on the new 

methods for grammatical structure reformation. 

In Chapter 4, we present a clause-based pattern extraction approach with self-

training for unsupervised relation extraction. Initially, we propose an approach for 

extracting patterns from Open IE that might contain relations. Then we propose a self-
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training algorithm that extracts more relations based on the initial seed set based on 

coherence scores from the extracted clause-based patterns. 

Chapter 5 presents a framework for predicting potential relation instances based on 

feature enrichments applied to matrix models that are used in a matrix completion 

process. We exploit universal schemas that are formed as a collection of patterns from 

Open IE systems and relation schemas from pre-existing datasets to build a matrix 

model in order to use matrix factorization and collaborative filtering to predict relations.  

Chapter 6 presents an event network representation for temporal and causal relation 

extraction that operates at the document level. More specifically, we benefit from 

existing Open IE systems to generate a set of triple relations that are then used to build 

an event network. The event network is bootstrapped by labeling the temporal 

disposition of events that are directly linked to each other. We then systematically 

traverse the event network to identify the temporal and causal relations between 

indirectly connected events. 

In Chapter 7, concluding remarks and possible fruitful directions for future research 

are presented. 
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Chapter 2 

Literature review 

 

Information extraction (IE) in general has become an active research topic in 

Natural Language Processing during the past decade. This chapter gives an overview 

of IE including IE history, Open IE, Relation Extraction and Event Extraction and 

covers some of the more important methods and techniques in each of these areas. 

2.1. Brief history of Information Extraction 

The idea to extract structured information from textual documents can be traced 

back to 1987 when Sager et al. (1987) proposed a system to extract information from 

medical documents. Information Extraction (IE) including Open IE aims at 

automatically identifying and classifying the instances of user-specified types of 

entities, relations and events in order to discovery various semantic relations in natural 

language text. IE outputs are presented in structured form, e.g., a database, ontology, 

which can be readily interpreted by other applications such as search engines, question 

answering systems or expert systems. Two common evaluation corpora have been an 

integral component of most areas of IE namely, (1) Message Understanding Conference 

(MUC) (Grishman & Sundheim 1996), which focuses on named entity recognition and 

relation extraction and; (2) Automatic Content Extraction (ACE) which offers 

annotated training data for entities, relations and events that fosters the development of 

supervised methods (Doddington et al. 2004). In the last two decades, IE has grown 

into a major subfield of natural language processing. In this section, we present a brief 
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history of three main tasks of IE including Named Entity Recognition, Relation 

Extraction, and Event Extraction based on a chronological order. 

2.1.1. Brief History of Named Entity Recognition 

The goal of NER is to identify entity names such as: person, organization, place 

names, temporal expressions, and certain types of numerical expressions. Most of the 

major works in NER have been presented in the last two decades shown in Figure 2.1. 

 

 

Figure. 2.1. Brief history of NER. 

Before 2005. Most of research before 2005 have employed supervised learning 

methods, e.g., Hidden Markov Models (HMM), Conditional Random Fields (CRF), and 

Support Vector Machines (SVM), to solve the sequence labeling problem for NER. 

Collins et al. (1999) used only labeled seeds, and entity features for classifying and 

extracting named entities. Malouf (2002) and Zhou et al. (2002) exploited the Hidden 

Markov Model approach to train a model to identify named entities. Carreras et al., 

2002) used binary AdaBoost classifiers in combination with decision trees for NER. 

Besides that, several approaches for NER initially employed grammatical features such 

as syntactic and dependency and then train them with SVM for entity recognition 

(Takeuchi and Collier, 2002; Li et al., 2005). 
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From 2005 to 2010. The problem with supervised learning approaches with NER 

happens on large text with a high number of categories. Unsupervised learning methods 

have been proposed to address the limitations of supervised learning, e.g., small hand-

labeled annotations and closed domain datasets. Etzioni et al. (2005) proposed an 

unsupervised learning method by applying eight generic pattern extractors from web 

text for NER. Nadeau et al. (2006) presented an unsupervised learning approach to 

identify and classify entities in a huge corpus based on a constructed gazetteer. In this 

period, the new BioMed NER was introduced. Uzuner et al. (2007) presented a method 

biomedical NER identification on clinical notes. Later, Uzuner et al. (2011) presented 

the 2010 I2B2 NER tasks which focused on clinical data such as test and treatment 

entity types. 

From 2011 to 2015. The first RNN deep learning model for NER was presented by 

Collobert et al. (2011). Following that, a myriad of deep learning techniques came to 

the fore. Huang et al. (2015) presented a long short-term memory model for NER. Yao 

et al. (2015) presented word representation based on deep neural networks to train a 

model for BioMed NER. Besides that, research on NER expanded to several new 

domain, e.g., chemical and biological NER. Eltyeb and Salim (2014) developed a 

dataset for chemical NER. Zhang and Elhadad (2013) exploited syntactic parsing and 

for an unsupervised NER system for the biology domain. In this period, a new trend on 

NER for social media content was also observed. Baldwin et al. (2015) introduced NER 

tasks on social media data (person, company, facility, band, sports team, movie, TV 

show, among others).  The authors leveraged sources of information such as POS tags, 

or token substitutions to address NER in Tweets. 

From 2016 to 2019. Deep learning techniques have been rapidly growing in NER. Yan 

et al. (2016) have presented word level feed forward NN, bi-directional LSTM (bi-

LSTM) and window bi-LSTM models for NER. Limsopatham and Collier (2016) 

presented a method based on convolutional neural networks for Twitter NER.  Habibi 

et al. (2017) presented a neural network system to pre-train word embeddings in order 

to improve biomedical named entity recognition. Moon et al. (2018) presented a deep 

learning model which considers short text snippets accompanying images in tweets or 

snapchats for NER. Moreover, A deep learning based NER toolkit, named NeuroNER 

(Dernoncourt et al., 2017), has been presented recently. Currently, the work by Akbik 

et al. (2019) show the best performance over NER by combining a dual token/character 

model with contextualized word embeddings. 
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2.1.2. Brief History of Relation Extraction 

The goal of Relation Extraction (RE) is to identify relationship that have been 

expressed between entities within a textual document. We present research on relation 

extraction based on four main time periods shown in Figure 2.2. 

 

Figure. 2.2. Brief history of Relation Extraction. 

Before 2005. DIPRE (Brin, 1998) and Snowball (Agichtein et al., 2020), two 

pioneering RE systems, require a small set of instances or a few hand-crafted patterns 

for relation extraction. Most of the early research (Blum et al., 1998; Lodhi et al., 2002; 

Zelenko et al., 2003; and Culotta et al., 2004) exploited grammatical features, e.g., 

syntactic and dependency features with supervised learning for relation extraction. 

GuoDong et al. (2002) used SVMs to train syntactic and dependency features for 

relation extraction. Lodhi et al., (2002), Zelenko et al., (2003), and Culotta et al. (2004) 

measured tree kernels based on shallow-parse trees for relation classification. 

From 2005 to 2010. More recent research (Zhao & Grishman, 2005; Bunescu et al., 

2005; Culotta et al., 2006) focus on training deeply grammatical features with machine 

learning for relation extraction. Zhao & Grishman, (2005) employ SVMs trained on 

such features using polynomial and linear kernels for classifying relation types. 

Bunescu et al. (2005) define tree sub-kernels in the form of before, middle and after 

portions of entities for relation extraction. Culotta et al. (2006) use Wikipedia as a rich 
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resource which contains hyperlinked entities in their pages for relation extraction. Zhou 

et al. (2007) employ lexical, syntactic and semantic knowledge in their feature-based 

relation extraction approach. Moreover, several research work (Zhou et al., 2007; Zhou 

et al, 2010) have employed external resources, e.g., WordNet and Wikipedia to perform 

relation classification. Semi-supervised learning based techniques (Xu et al., 2007), 

open information extraction systems (Banko et al., 2007), and distant supervision 

techniques (Mintz et al., 2009) started to appear in this period. 

From 2011 to 2015. Open information extraction systems were further developed into 

their so-called second generation (Feder et al., 2011, Mausam et al., 2012; Corro et al., 

2013). Fader et al. (2011) presented ReVerb, which effectively applies syntactic and 

lexical constraints in verbal relation sequences for Open IE. Corro et al. (2013) 

proposed the clause-based approach for Open IE. In this period, several researchers 

began employing deep learning models for relation extraction. Socher et al. (2012) 

presented the RNN model to learn compositional vector representations for phrases and 

sentences of arbitrary syntactic type and length in order to classify semantic relations 

between nouns using syntactic paths. Zeng et al. (2014) presented a CNN model for 

relation classification where sentence-level features are learned through a CNN. 

Nguyen et al. (2015) applied CNN models in ACE relations. Regarding distant 

supervision, external resources, e.g., Freebase, DBpedia, were employed with 

techniques of dimensionality reduction to classify large relation types. Takamatsu et al. 

(2011) used probabilistic matrix factorization with Singular Value Decomposition to 

reduce dimensions to discover relations. Surdeanu et al., (2012) used the Freebase 

knowledge graph by considering each pair of entities that are related to each other 

within the set of Freebase relations. Reidel et al. (2013) used matrix factorization by 

combining surface patterns extracted from Open IE and knowledge bases such as 

Freebase to train latent relations. 

From 2016 to 2019. Deep learning has been gaining even more momentum. Lin et al. 

(2017) employed deep learning techniques for RE in multiple languages. Feng et al. 

(2018) presented a model that fed ranked sentences to the relation classifier using 

reinforcement learning. Qin et al. (2018) combined deep learning models and distant 

supervision for RE. Cui et al. (2018) proposed a neural approach with an encoder-

decoder framework which is the first research employing deep learning techniques 

specifically in Open IE. Besides that, a deep learning BioMed system, Biomedical 
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relation extraction, has been presented by Nguyen et al. (2019) using different pooling 

mechanisms.  

2.1.3. Brief History of Event Extraction 

Event extraction aims at identifying knowledge about incidents of events found in 

text. We review a brief history of research related to event extraction shown in Figure 

2.3. 

 

Figure. 2.3. Brief history of Event Extraction. 

Before 2005. There was only a few work on event extraction prior to 2005. Grishman 

et al. (2002) presented a pattern-based method to extract and update an event database 

of infectious disease outbreaks. Pustejovsky et al. (2003) presented the TimeML corpus 

with temporal link annotations between events and temporal expressions. 

From 2005 to 2010. In this period, supervised learning techniques were the 

predominant approach for event relation extraction. Mani et al. (2006) used supervised 

leaning methods to classify temporal relations based on local information. Mani et al. 

(2007) focused on formulating temporal feature ordering around event pairs for 

classification. Tatu et al. (2008) exploited external temporal resources to improve 

supervised learning for event relation extraction. Moreover, some research (Yoshikawa 

et al., 2009; UzZaman et al., 2010) exploited external resources to enhance event 

features for classification. Yoshikawa et al. (2009) used global information to improve 

event relation classification. UzZaman et al. (2010) took advantage of external 
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information to enhance temporal logic transitivity constraints for pairwise event 

classification. 

From 2011 to 2015. The main focus of research work was on exploiting deep linguistic 

features, e.g., dependency paths, with supervised learning or handcrafted rules for event 

relation extraction. Ittoo at al. (2011) had proposed a rule-based method with 

handcrafted linguistic patterns consisting of syntactic and semantic analysis in order to 

identify event relations from textual documents based on pattern matching. Chambers 

et al. (2014) combined rule-based and a data-driven method for temporal ordering in 

order to identify event relation. Laokulrat et al. (2013) trained features based on 

syntactic parsing including phrase structures for relation classification. TRelPro (Mirza 

et al., 2014b) employed an SVM classifier based on event linguistic features. Amigo et 

al, (2011) and Denis and Muller, (2011) presented inference models for the 

identification of temporal relations. Laokulrat et al. (2015) used time graphs and 

stacked learning to perform event relation classification. 

From 2016 to 2019. Mirza et al. (2016a) extended TRelPro system for causal relation 

extraction. Han et al. (2019) proposed a deep structured learning framework to learn 

scoring functions for pair-wise relations and employed a structured support vector 

machine for temporal relation extraction. Moreover, problems of event relations in 

social media or medical domains have been introduced in this period. Hu et al. (2017) 

focused on causal relation extraction from blogs and films. Hoang et al. (2018) worked 

on tweets to predict location and time events on social data. Junuthula et al. (2019) end 

Zheng et al. (2019) analyzed temporal relations between events in on-line social 

networks using a block point process model (BPPM). Negi et al. (2019) employed 

syntactic and dependency features in order to classify causal relationships between 

drugs. 

2.2. Information Extraction 

2.2.1. Open Information Extraction 

Open Information Extraction systems aim to obtain relation tuples with highly 

scalable extraction by identifying a variety of relation phrases and their arguments in 

arbitrary sentences. The first generation of Open IE systems learn linear chain models 

based on unlexicalized features such as Part-of-Speech (POS) or shallow tags to label 

the intermediate words between pair of potential arguments for identifying extractable 
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relations. Open IE currently is developed in the second generation that is able to extract 

instances of the most frequently observed relation types such as Verb, Noun and Prep, 

Verb and Prep, and Infinitive with deep linguistic analysis. They expose simple yet 

principled ways in which verbs express relationships in linguistics such as verb phrase-

based extraction or clause-based extraction. They obtain a significantly higher 

performance over previous systems in the first generation. 

 
Part-of-Speech 
 
 
 
 
Named Entity Recognition 
 
 
 

 
Named Entity Recognition 

 

Figure. 2.4. POS, NER and DP analysis in the sentence “Albert Einstein was 
awarded the Nobel Prize for Physics in 1921”. 

2.2.1.1. The first generation 

In the first generation, Open IE systems aimed at constructing a general model that 

could express a relation based on unlexicalized features such as Part-of-Speech (POS) 

or shallow tags e.g., a description of a verb in its surrounding context or the presence 

of capitalization and punctuation. While traditional IE requires relations to be specified 

in their input, Open IE systems use their relation-independent model as self-training to 

learn relations and entities in the corpora. TextRunner is one of the first Open IE 

systems. It applied a Naive Bayes model with POS and Chunking features that trained 

tuples using examples heuristically generated from the Penn Treebank. Subsequent 

work showed that a linear-chain Conditional Random Field (CRF) (Banko et al., 2007; 

Etzioni et al., 2008) or Markov Logic Network (Zhu et al., 2009) can be used for 

identifying extractable relations. Several Open IE systems have been proposed in the 

first generation, including TextRunner (Banko et al., 2007), WOE (Xu et al., 2010), and 

StatSnowBall (Zhu et al., 2009) that typically consist of the following three stages: 1) 
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Intermediate levels of analysis and 2) Learning models and 3) Presentation, which we 

elaborate in the following: 

Intermediate levels of analysis: In this stage, NLP techniques such as Named Entity 

Recognition (NER), POS and Phrase-chunking are used. The input sequence of words 

is taken as input and each word in the sequence is labeled with its part of speech, e.g., 

noun, verb, adjective by a POS tagger. A set of non-overlapping phrases in the sentence 

is divided based on POS tags by a phrase chunked. Named entities in the sentence are 

located and categorized by NER. Some systems such as TextRunner and WOEpos 

defined a method to identify useful proposition components from parse trees as shown 

in Figure 2.4. The structure and annotations from a parse tree will be essential for 

determining the relationship between entities for learning models of the next stage. 

Learning models: An Open IE would learn a general model that depicts how a relation 

could be expressed in a particular language. A linear-chain model such as CRF can then 

be applied to a sequence which is labeled with POS tags, word segments, semantic 

roles, named entities, and traditional forms of relation extraction from the first stage. 

The system will train a learning model given a set of input observations to maximize 

the conditional probability of a finite set of labels. TextRunner and WOEpos use CRFs 

to learn whether sequences of tokens are part of a relation. When identifying entities, 

the system determines a maximum number of words and their surrounding pair of 

entities which could be considered as possible evidence of a relation. Figure 2.5 shows 

entity pairs “Albert Einstein” and “the Nobel Prize” with the relationship “was 

awarded” serving to anchor the entities.  

 

Figure. 2.5. A CRF is used to identify the relationship "was awarded" between 

"Albert Einstein" and "the Nobel Prize". 
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Presentation: In this stage, Open IE systems provide a presentation of the extracted 

relation triples. The sentences of the input will be presented in the form of instances of 

a set of relations after being labeled by the learning models. TextRunner and WOEpos 

take sentences in a corpus and quickly extract textual triples that are present in each 

sentence. The form of relation triples contains three textual components where the first 

and third denote pairs of entity arguments and the second denotes the relationship 

between them as (Arg1, Rel, Arg2). Figure 2.6 shows the differences of presentations 

between traditional IE and Open IE. Additionally, with large scale and heterogeneous 

corpora such as the Web, Open IE systems also need to address the disambiguation of 

entities e.g., the same entity may be referred to by a variety of names “Obama” or 

“Barack Obama” or “B. H. Obama” or the same string “Micheal” may refer to different 

entities. Open IE systems try to compute the probability that two strings denote 

synonymous pairs of entities based on scalable and unsupervised analysis of tuples. 

TextRunner applies the Resolver system (Yates et al., 2007) while WOEpos uses the 

infoboxes from Wikipedia for classifying entities in the relation triples. 

 
 
 

 

 
Figure. 2.6. Traditional IE and Open IE extractions. 

2.2.1.2. The second generation 

In the second generation, Open IE systems focus on addressing the problem of 

incoherent and uninformative relations. In some cases, TextRunner and WOEpos do not 

extract the full relation between two noun phrases, and only extract a portion of the 

relation which is ambiguous. For instance, where it should extract the relation “is author 

of”, it only extracts “is” as the relation in the sentence “William Shakespeare is author 

of Romeo and Juliet”. Similar to first generation systems, Open IE systems in the 

second generation have also apply NLP techniques in the intermediate level analysis of 

the input and the output is processed in a similar vein to the first generation. They take 

a sentence as input and perform POS tagging, syntactic chunking and dependency 

parsing and then return a set of relation triples. However, in the intermediate level 

analysis process, Open IE systems in the second generation focus deeply on a thorough 

linguistic analysis of sentences. They expose simple yet principled ways in which verbs 

Sentence: “Apple Inc. is headquartered in California” 
Traditional IE: Headquarters(Apple Inc., California) 
Open IE: (Apple Inc., is headquartered in, California) 
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express relationships in linguistics. Based on these linguistic relations, they obtain a 

significantly higher performance over previous systems in the first generation. Several 

Open IE systems have been proposed after TextRunner and WOEpos, including ReVerb, 

OLLIE, Christensen et al., (2011), ClausIE (Corro et al., 2013) with two extraction 

paradigms, namely verb-based relation extraction and clause-based relation extraction. 

Verb phrase-based relation extraction 

ReVerb is one of the first systems that extracts verb phrase-based relations. This 

system builds a set of syntactic and lexical constraints to identify relations based on 

verb phrases then finds a pair of arguments for each identified relation phrase. ReVerb 

extracts relations by giving first priority to verbs. Then the system extracts all 

arguments around verb phrases that help the system to avoid common errors such as 

incoherent or uninformative extractions made by previous systems in the first 

generation. ReVerb considers three grammatical structures mediated by verbs for 

identifying extractable relations. In each sentence, if the phrase matches one of the three 

grammatical structures, it will be considered as a relation. Give a sentence “Albert 

Einstein was awarded the Nobel Prize.” for each verb V (awarded) in sentence S, it will 

find the longest sequence of words (V | VP | VW*P) such that (1) it starts with V, (2) it 

satisfies the syntactic constraint, and (3) it satisfies the lexical constraint. As a result, 

(V | VP | VW*P) identifies “was awarded” as a relation. For each identified relation 

phrase R, it will find the nearest noun phrase X to the left of R, which is “Albert 

Einstein” in this case. Then it will find the nearest noun phrase Y to the right of R, 

which is “the Nobel Prize” in S. 

1. “Microsoft co-founder Bill Gates spoke at ...” 
      OLLIE: (“Bill Gates",“be co-founder of”, “Microsoft”) 
2. “Early astronomers believed that the earth is the center of the universe.” 
      ReVerb: (“the earth”,“be the center of”, “the universe”) 
      OLLIE: (“the earth”,“be the center of”, “the universe”) 
      AttributeTo believe; Early astronomers 
3. “If he wins five key states, Romney will be elected President.” 
      ReVerb:( “Romney”, “will be elected”, “President”) 
      OLLIE: (“Romney”, “will be elected”, “President”) 
      ClausalModifier if; he wins five key states 

Figure 2.7. ReVerb extraction vs. OLLIE extraction (Mausam et al., 2012). 

 
OLLIE has addressed the problem in ReVerb by adding two new elements namely 

“AttributedTo" and “ClauseModifier” to relation tuples when extracting all relations 
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mediated by noun, adjective, and others. “AttributeTo” is used for determining 

additional information and “ClauseModifier” is used for adding conditional 

information as seen in sentences 2 and 3 in Figure 2.7. OLLIE produces high yield by 

extracting relations not only mediated by verbs but also mediated by nouns, and 

adjectives. OLLIE follows ReVerb to identify potential relations based on verb-

mediated relations. This system applies bootstrapping to learn other relation patterns 

using its similarity relations found by ReVerb. In each pattern, the system uses 

dependency paths to connect a relation and its corresponding arguments for extracting 

relations mediated by nouns, adjectives and others. After identifying the general 

patterns, the system applies them to the corpus to obtain new tuples. Therefore, OLLIE 

extracts a higher number of relations from the same sentence compared to ReVerb. 

Clause-based relation extraction 

A more recent Open IE system named ClausIE presented by Corro & Gemulla 

(2013) uses clause structures to extract relations and their arguments from natural 

language text. Different from verb-phrase based relation extraction, this work applies 

clause types in sentences to identify useful pieces of information. ClausIE uses 

dependency parsing and a set of rules for domain-independent lexica to detect clauses 

without any requirement for training data. ClausIE exploits grammar clause structure 

of the English language for detecting clauses and all of its constituents in a sentence. 

As a result, ClausIE obtains high-precision extraction of relations and also it can be 

flexibly customized to adapt to the underlying application domain. Particularly, in the 

ClausIE system, a clause can consist of different components such as subject (S), verb 

(V), indirect object (O), direct object (O), complement (C), and/or one or more 

adverbials (A). This system obtains and exploits clauses for relation extraction in the 

following three steps: 1) it seeks to identify the clauses in the input sentence by 

obtaining the head words of all the constituents of every clause based on dependency 

parsing; 2) When a clause is obtained, it needs to be associated with one of the main 

clause types; this step uses a decision tree to identify the different clause types. In this 

process, the system marks all optional adverbials after the clause types have been 

identified; 3) the system extracts relations from a clause based on the patterns of the 

clause type. Assuming that a pattern consists of a subject, a relation and one or more 

arguments, it is reasonable to presume that the most reasonable choice is to generate n-

ary propositions that consist of all the constituents of the clause along with some 
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arguments. The system identifies the subject of each clause and then uses it to construct 

the proposition. To accomplish this, they map the subject of the clause to the subject of 

a proposition relation. 

As previously indicated, the use of syntactic and dependency parsing has the 

potency to reduce precision at higher points due to incoherent information extractions 

after parsing. In our work, we address such limitations by refining the grammatical 

structure of SP and DP. To achieve this objective, we use English grammar clauses 

(Corro et al., 2013; Quirk et al., 1985) to identify the set of “clauses” as relations within 

each sentence, for each clause, we identify the corresponding clause type according to 

the grammatical function of its coherent constituent. By taking these factors into 

account and based on the obtained information, we succeeded in extracting relations 

with a higher precision than existing state-of-the-art approaches. 

2.2.2. Relation Extraction 

Relation extraction discoveries the relevant segment of information in relation 

triples that will be useful for structuring data. Relation extraction has been applied in 

many natural language processing task such as question answering, biography 

extraction, and textual entailment. Several learning approaches have mainly applied, 

named supervised methods (Zhou et al., 2010; Choi et al., 2013; Batista et al., 2015; 

Singhal et al., 2016), semi-supervised methods (Gupta et al., 2014; Xu et al., 2014, 

Zhang et al., 2015a) and unsupervised methods (Turney, 2008; Rosenfeld et al., 2007; 

Akbik et al., 2012), to determine semantic relations. Supervised methods exploit 

language analysis to generate features based on syntactic, dependency, or shallow 

semantic structures of the text. Based on these features, the models are then trained to 

identify pairs of entities that are related through relations and classify them based on 

pre-defined relation types. Semi-supervised methods perform the concept of 

information redundancy and hypothesize that similar relations tend to appear in similar 

contexts. Zhang et al.(2015a) and Batista et al. (2015) present a semi-supervised method 

for relation extraction using word embeddings to find similar relationships using NER 

on Freebase. Unsupervised methods (Turney, 2008; Akbik et al., 2012) are usually 

based on rules or some clustering techniques over a large unlabeled corpus for relation 

discovery and extractions. They use dependency trees as the input for pattern extraction 

and work with trees or sub-trees that contain seed arguments by clustering entity pairs. 



21 
 

2.2.3. Event Extraction 

Grishman et al. (2002), Tanev et al., (2008) and Fukui et al., (2019) present pattern-

based approaches for event extraction that identify events in free text such as news, 

emails and health reports and derive detailed information about who did what to whom, 

where and when. Grishman et al. (2002) also built a complete system that automatically 

extracts and updates an event database of infectious disease outbreaks. The system has 

an extraction engine that is based on text zones including headline, date, text body to 

extract events using predefined event patterns. Tanev et al. (2008) identified syntactic 

patterns to extract events on violent and natural disaster news. Their method used 

several components in a pipeline to learn patterns through a semi-automatic pattern 

acquisition technique consisting of a small corpus that was manually annotated with 

event information. Regarding supervised learning, several approaches (Hardy et al., 

2006; Ahn, 2006; Bethard and Martin, 2006; Ji and Grishman, 2008; Abebe et al., 2019; 

Fan et al., 2019; Zhao et al., 2018; Ye et al., 2019; Zhang et al., 2019a) train one or 

more classifiers that can extract events from textual documents. Ahn (2006) proposed 

a series of classification sub-tasks such as event anchor identifier, argument identifier, 

attribute assigner and event core reference module for event extraction. Bethard and 

Martin, (2006) designed an event extraction method using sequence tagging with the 

BIO (Begin-Inside-Outside) schema. The schema is used to trained features based on 

Support Vector Machines (SVM) over the TimeBank corpus (Pustejovsky et al., 2003). 

Furthermore, Ji et al. (2008) and Wang et al. (2017) train event relation classifiers based 

on the words and phrases of relation arguments that evoke events in the text. Li et al. 

(2011) used topic modeling to improve the process of event extraction. Their method 

operates by recognizing topic clusters for event extraction. Ye et al. (2019) proposed a 

general ranking based multi-label learning framework combined with convolutional 

neural networks to seek latent connection between relation types for event extraction. 

Zhang et al. (2019a) presented a hybrid approach by combining semantic role labelling 

frames and lexicon of event nouns and Levin’s verb classes for event extraction over 

20 event types related to socio-economic phenomena. 

2.2.4. Temporal Event Extraction 

Temporal event relations specify how different events expressed within the context 

of a textual passage relate to each other in terms of time sequence. Allen (1983) first 
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introduced a transitivity table of temporal intervals for reasoning about events, e.g., the 

table determines if event e1 happens before event e2 and e2 happens before e3 that e1 

happens before e3. Supervised methods (Chambers et al., 2008; Mani et al., 2007; 

Katsumasa et al., 2009) have focused on formulating temporal features ordering around 

event pairs to formulate a classification task.  Mani et al., (2007) as well as Tatu and 

Srikanth (2008) have curated training data by exploiting external temporal resources to 

improve supervised learning for temporal relation extraction. Chambers and Jurafsky 

(2008), UzZaman and Allen (2010) and Yoshikawa et al. (2009) take advantage of 

external information to enhance temporal logic transitivity constraints for pariwise 

classification. These methods face limitations related to the sparseness of event 

relations in a corpus (Chambers and Jurafsky, 2008). 

Furthermore, Amigo et al., (2011) and Denis and Muller, (2011) presented an 

inference method over time graph to address limitations of constraint space to improve 

the identification of temporal relations. The time graph is built for representing 

temporal entities with edges as relations to predict the relationship between entity 

nodes. Moreover, UTTime (Laokulrat et al., 2013) and NavyTime (Chambers, 2013) 

exploit data-driven analysis using syntactic information and lexical semantic 

information for classifying temporal relation types. These systems only exploited 

features at the sentence-level such as predicate-argument structure of relations in a 

sentence. Mirza et al. (2014b) and Mirza et al. (2016a) have proposed hybrid 

classification models (Chambers et al., 2014; D’Souza and Ng, 2013; Navarro-

Colorado et al., 2016; Ozdikis et al., 2016) for temporal event classification. They 

integrate rule-based and data-driven classifiers in a sieve-based architecture for 

temporal ordering. The classifiers are ordered by their individual precision. After each 

classifier proposes a label, the architecture infers transitive links from the new labels, 

adds them to the temporal label graph and informs the next classifier about this decision. 

Hoang et al. (2018) have presented a method to predict a location and time in a tweet 

by enhancing tweet representation with prepositions before a proper noun. Regarding 

deep learning methods, Han et al. (2019) have proposed a deep structured learning 

framework to learn scoring functions for pair-wise relations and employed a structured 

support vector machine for temporal relation extraction. 

A main challenge with earlier work is that temporal and causal relations might be 

present across sentences. In this thesis, we address such challenge by proposing an 

event network representation for temporal and causal relation extraction that operates 
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at the document level. More specifically, we construct event network based on triple 

relations generated from Open IE systems. The event network is made possible due to 

the linking of different events in the proposed event network whose linking transcends 

individual sentences and forms a representation of events in the document. 

2.2.5. Causal Event Extraction 

Recognizing causal relations between any two events is as challenging as detecting 

their temporal relation. In this context, Bethard et al. (2007) have collected conjoined 

event pairs from the Wall Street Journal corpus which described cause-effect relations 

for causal classification. Rink et al. (2010) improved Bethard et al.'s work by 

identifying relation types as a feature and proposed textual graph classification for 

causal event relation classification. Do et al. (2011) and Peng et al., (2016) have 

presented a method to measure causality on event triggers, e.g., relations on verb-verb, 

verb-noun and noun-noun between two events by using pointwise mutual information. 

They also used discourse information from trained corpus, e.g., connective types on 

Penn Discourse TreeBank (Do et al., 2011), as discourse connectives towards 

identifying causality between events. Ittoo and Bouma (2011) proposed causal patterns 

based on syntactic structure analysis in order to extract explicit and implicit causal 

relations. On other hand, Riaz et al. (2010) and Riaz et al. (2013) extracted causal 

relations based on analyzing verbs between events. Recently, Mirza et al. (2014b) and 

Mirza et al. (2016a) presented a data-driven approach with rules to extract (explicit) 

causal relations between events from a text. The rule-based system relies on an 

algorithm that, given a term w belonging to affect, link, causative verbs or causal 

signals, looks for specific dependency where term w is connected to the two observed 

events. If such dependencies are found, a causal link (CLINK) is automatically set 

between the two events. Negi et al. (2019) have trained syntactic and dependency 

features in order to classify the causal relationship between drugs and medical 

conditions such as suspect drug or non-suspect drug. Li et al. (2019) have used a 

Knowledge-oriented Convolutional Neural Network (K-CNN) model that incorporates 

human knowledge to capture the causal relationship, and a causal-oriented direction in 

order to learn cause-effect features for causal relation extraction. Fei et al. (2019) have 

proposed a method to use a recursive neural network that automatically learns syntactic 

features from dependency trees in order to represent global dependencies for 

biomedical event detection. 
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2.3. Machine learning based models 

The task of information extraction was first introduced in the Message 

Understanding Conference (MUC). Since then, a number of techniques have been 

proposed for this task such as supervised learning (Bunescu et al., 2005; Kambhatla et 

al., 2004; Ravichandran et al., 2002; Zhou et al., 2010; Abacha et al., 2016; Singhal et 

al., 2016), distant supervision (Angile et al., 2014; Mintz et al., 2009, Riedel et al., 

2013; Surdeanu et al., 2012), deep learning (Socher et al., 2012; Xu et al., 2015; Santos 

et al., 2015; Zeng et al., 2014; Zeng et al., 2015; Zheng et al., 2017), unsupervised 

learning (Etzioni et al., 2005; Turney, 2008; Rosenfeld et al., 2007; Akbik et al, 2012; 

Yao et al., 2012; Vlachidis et al., 2016; Oramasa et al., 2016), bootstrapping methods 

(Agichtein et al., 2000; Pantel et al., 2006; Xu et al., 2007; Batista et al., 2015) and 

matrix factorization (Kemp et al., 2006; Kolda et al., 2009; Kang et al., 2012; Bordes 

et al., 2013; Weston et al., 2013; Riedel et al., 2013;  Yao, 2015). In this section, we 

present several studies that are relevant to IE. 

2.3.1. Supervised learning 

In supervised learning approaches (Bunescu et al., 2005; Kambhatla et al., 2004; 

Ravichandran et al., 2002; Zhou et al., 2007; Zhou et al., 2010; Choi et al., 2013; Song 

et al., 2015; Hashimoto et al., 2015; Abacha et al., 2016; Singhal et al., 2016), there is 

a heavy reliance on hand-crafted datasets for training the extractor with manually pre-

labeled training data. The advantage of these approaches is the use of linguistic patterns 

for learning information from different surface expressions. These approaches rely on 

pre-specification of desired relations or patterns by performing hand coding. The 

common strategy of these approaches is to generate linguistic features based on the 

analysis of the syntactic features, dependency features, or shallow semantic structure 

of text. These systems are trained to identify pairs of entities, and to classify them based 

on the pre-defined relations. Kambhatla et al. (2004) used textual features such as POS, 

parsing, and NER to define features which include entities, types of entities (person, 

location), number of entities, number of words separating the two entities, and paths 

between the entities in a parse tree. Zhou et al. (2007) employed lexical, syntactic and 

semantic knowledge in feature-based relation extraction using support vector machines. 

The work by Zhou et al. (2010) illustrated how features can be constructed based on 

syntactic and semantic information from WordNet. Suchanek et al. (2007) built an 
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ontology by extracting relations from Wikipedia categories using WordNet and 

heuristic rules. Choi et al. (2013) proposed a dependency trigram kernel based on 

Support Vector Machines (SVM) to classify the relationship between two persons’ 

names in order to extract social relations. Reidel et al. (2013) used matrix factorization 

based on combining surface patterns extracted from OIE and knowledge bases such as 

Freebase to train latent relations. Abacha et al. (2016) trained an SVM classifier on the 

i2b2 2010 challenge’s corpus. They used a set of lexical, morpho-syntactic and 

semantic features for each pair of medical entities (E1, E2) in order to be able to classify 

relations. Singhal et al. (2016) used supervised classifiers such as C4.5, Multilayer 

Perceptron, and Bayesian logistic regression on various types of features to identify 

relations of disease-mutation in biomedical text. While such approaches offer high 

precision and recall, most of them are laborious and expensive in training and face 

problems when handling large-scale text documents. 

2.3.2. Unsupervised learning 

Unsupervised approaches are usually based on rules or some clustering techniques 

over a large unlabeled corpus for relations. Several approaches have been built based 

on latent relation hypothesis (Turney, 2008; Rosenfeld et al., 2007; Akbik et al., 2012), 

latent topic assumption (Yao et al., 2012; Yao et al., 2011), low rank assumption 

(Takamatsu et al., 2011; Kok et al., 2008) and rule-based methods (Ryu et al., 2014; 

Vlachidis et al., 2016; Oramasa et al., 2016). Turney (2008), Akbik et al. (2012) and 

Yao et al., (2012) exploit features from the dependency tree for discovering relations 

by clustering entity pairs. The cluster vector space model is often applied by using the 

k-mean algorithm and cosine similarity is used to measure distance. In rule-based 

approaches, Ryu et al. (2014) have defined a set of relationships on named entities such 

as Person, Location, and Data to support question answering in the Korean language. 

Similarly, Vlachidis et al. (2016) have defined a set of rules based on syntactic analysis 

for extracting relation patterns within the archaeology domain. Further, Oramasa et al. 

(2016) have defined rules based on syntactic and semantic information to extract 

potential relations between entities, which have been discovered by traversing the 

dependency tree in the music domain.  

2.3.3. Weakly supervised and bootstrapping-based learning 
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The minimally supervised learning systems (Brin et al., 1998; Greenwood et al., 

2006; Sudo et al., 2003; Yangarber et al., 2000) engender a context within which the 

concept of information redundancy is used in conjunction with bootstrapping. Through 

the adoption of different methods, minimally supervised learning systems attempt to 

estimate the confidence of the learned patterns for relation extraction. Yangarber 

(2000), Sudo et al. (2003) and Greenwood et al. (2006) are among a myriad of scholars 

who have opted to calculate domain relevance by relating the frequency of a term in 

domain relevant documents. Based on bootstrapping, the central goal of prevalent 

minimally supervised learning systems is to identify relation patterns that can lead to 

the identification of newer seeds and patterns. Here, the domain relevance of documents 

is used to discover patterns along with the distribution frequency of said patterns in 

relevant documents as an indicator of good patterns. Some other bootstrapping 

approaches (Agichtein et al., 2000; Gupta et al., 2014; Xu et al., 2014, Zhang et al., 

2015a; Zhang et al., 2015b) have proven to be effective methods to generate high-

precision relation patterns when the set of labeled instances are limited. These works 

aim to expand an initial “seed” set of instances with new relationship instances.  

Xu et al. (2007) presented Domain Adaptive Relation Extraction system (DARE), 

which is comprised of four major components including linguistic annotation, 

classifier, rule learning, and relation extraction. The second component, rule learning, 

is used to identify and extract relations of varying complexities through a seed-driven 

bottom-up process. Given the fact that DARE might include faulty seeds in the 

bootstrapping process, its performance demonstrates weaker results when used against 

unobserved new domains. This is due to the high probability that DARE extracts 

incorrect rules from the dependency tree during the bootstrapping process. Xu et al. 

(2010) extend DARE using supervised learning to build seeds by observing learning 

rules. Despite the immense advances brought on by such an approach for improving 

precision/recall, there is still need for manual semantic annotation in these approaches. 

In this thesis, we also present a bootstrapping approach, but in contrast, our work largely 

avoids such errors by exploiting an initial seed set without the need for manual input 

for bootstrapping. We automatically build an initial seed set for later iterations based 

on high confidence patterns from clause patterns extracted from Open IE. To ensure 

that a seed has high confidence, it is essential for it to be generated by multiple high-

confidence patterns. 
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2.3.4. Distant supervision 

The core idea of distant supervision is to learn a classifier based on a set of weakly 

labeled instances that are often annotated using some heuristics. In the area of relation 

extraction, the work by Mintz et al. (2009) is among the pioneering works that consider 

the application of distant supervision techniques. In their work as well as other closely 

related work such as Surdeanu et al., (2012) and in order to curate the weakly labeled 

corpus, they use the Freebase knowledge graph whereby for each pair of entities that 

are related to each other using some Freebase relation, they will identify sentences in 

their corpus where these entities have been seen together. This way they are able to 

extract features that can help them train a classifier for relation extraction. One of the 

challenges of distant supervision methods is the noisy labels, which are generated by 

the heuristics that will eventually lead to poor relation extraction performance. There 

have been works by Takamatsu et al. (2012) and Min et al. (2013) among others that 

propose methods to identify low confidence labels that can be removed or ignored. 

From a different perspective and in order to augment the work in distant supervision, 

Riedel et al. (2010) argue that many of the errors produced by relation extraction 

techniques are due to the generous interpretation of sentence relevance. In other words, 

if two entities were related to each other through a Freebase relation, any sentences 

containing these two entities would be considered related and labeled as such. The 

authors argue that this might not necessarily be the case, especially for cases when the 

knowledge base is not fully aligned with the corpus. For this reason, they propose the 

idea of expressed-at-least-once assumption and use constraint-driven semi-supervision 

without worrying about exactly which sentence expresses the relation. 

2.3.5. Matrix Factorization-based Methods 

The objective of matrix factorization and collaborative filtering methods in relation 

extraction is to predict hidden relations that might not have been explicitly observed. 

Kemp et al. (2006) used Infinite Relational Model (IRM) in order to build a framework 

to discover latent relations jointly from an n-dimensional matrix. In this matrix, each 

dimension has a latent structure through which relations can be found. Bollegala et al. 

(2010) try to explore clusters of entity pairs and patterns jointly as latent relations by 

employing co-clustering. Takamatsu et al. (2011) use probabilistic matrix factorization 

with Singular Value Decomposition to reduce dimensions to discover relations. Kolda 
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et al. (2009) and Kang et al. (2012) employ the tensor product of three vectors, i.e., the 

vectors for two entities and the vector for the relation for decomposing an entity-entity-

relation matrix. These authors employed vector of user-query-page for web 

recommendation and page-page-anchor for web links. Bordes et al. (2013) and Weston 

et al. (2013) propose a method to determine the first entity vector and its relation vector 

which leads to the creation of a link to the second entity vector. The goal is to optimize 

the distance between the second entity vector and the association of the first entity and 

relation vectors. Riedel et al. (2013) and Yao (2015) use matrix factorization and 

collaborative filtering by including surface patterns in a universal schema and a ranking 

objective function to learn latent vectors for tuples of entities and relations. These 

authors represent each relation as a vector instead of a matrix. Representing each entity 

as a vector breaks the interaction between two entities. In their work, the authors use 

surface patterns extracted from existing Open IE systems and predict the hidden 

relations through matrix completion. Similar to Riedel et al. (2013) and Yao (2015), in 

this thesis, we employ the notion of universal schemas that is in the form of a collection 

of patterns derived from OpenIE systems as well as from relation schemas of pre-

existing knowledge bases. While previous systems have trained relations only for 

entities, we exploit advanced features from relation characteristics such as clause types 

and topic models for predicting new relation instances. Our work can naturally predict 

any tuple of entities and relations regardless of whether they were explicitly observed 

at training time with direct or indirect access in their provenance. 

2.3.6. Deep learning 

In deep learning, several approaches address the task of extracting relations through the 

use of two major architectures of neural networks, namely Recursive Neural Network 

(RNN) (Socher et al., 2012; Xu et al., 2015; Yadav et al, 2018) and Convolutional 

Neural Networks (CNN) (Santos et al., 2015; Zeng et al., 2014; Zeng et al., 2015). 

These approaches learn the hidden and continuous structures of relations on both 

internal features such as POS, Chunking, and Syntactic and/or external features such as 

word embeddings. Socher et al. (2012) presented the RNN model to learn 

compositional vector representations for phrases and sentences of arbitrary syntactic 

type and length in order to classify semantic relations between nouns using syntactic 

paths. Xu et al., (2015) proposed an RNN model by exploiting long short-term memory 

units (LSTM) and shortest dependency path (SDP) to classify the relation between two 
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entities in a sentence. In their architecture, SDPs are used to retain most relevant 

information of the sentence while LSTMs are used as multichannel networks that can 

effectively integrate information from heterogeneous sources over the dependency 

paths. Zeng et al. (2014) presented a CNN model for relation classification where 

sentence-level features are learned through a CNN. In their CNN architecture, they 

extract lexical and sentence level features without complicated NLP preprocessing and 

assign pairs of words to targeted relations by encode the distances of the features 

relative to the position of the target noun pairs. Santos et al. (2015) proposed a Ranking 

CNN model that learns a distributed vector representation for relation classification. 

The network generates a distributed vector representation for the relations by using a 

ranking function in order to produce a score for each relation type. Habibi et al. (2017) 

presented a deep learning NER system to pre-train word embeddings in order to 

improve biomedical named entity recognition. In this study, the authors used long short-

term memory network-conditional random field (LSTM-CRF) based on neural network 

and word embeddings on 33 datasets with five different entity classes for classification. 

Moon et al. (2018) presented a deep learning model which works with short text with 

accompanying images in tweets or snapchat for NER. They constructed NER models 

based on Bi-LSTM word/character consisting of a deep image network corresponding 

with visual context information and attention module with adaptive of samples and 

tokens. Qin et al. (2018) combined deep learning models and distant supervision for 

RE. The authors exploited reinforcement learning to indicate false-positive instances 

when inferring distant supervision for each relation type to improve performance on 

RE. Cui et al. (2018) proposed a neural approach with an encoder-decoder framework 

to learn highly coherent arguments and relation tuples bootstrapped from Open IE 

system which is the first research employing deep learning technique to Open IE. 

Nguyen et al. (2016) proposed neural networks to capture memory matrices for the 

network training and then used for event trigger and argument prediction. Han et al. 

(2019) have proposed a deep structured learning framework to learn scoring functions 

for pair-wise relations based on RNN model and employ a structured support vector 

machine for temporal relation extraction. The RNN model learns representation of pair-

wise relation based on long-term contexts while a structured support vector machine 

uses domain knowledge to proceed transitive closure of temporal relations. Zhang et al. 

(2019b) have introduced a method to incorporate word and character level information 

by using features extracted from a deep neural model for event relation extraction. 
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Chapter 3 

Clause-based OIE with grammatical structure 

reformation 

 

Within the context of Open Information Extraction (OIE), relation extraction is 

oriented toward identifying a variety of relation phrases and their arguments in arbitrary 

sentences. In the plethora of research that focus on the use of syntactic and dependency 

parsing for the purposes of detecting relations, there has been increasing evidence of 

incoherent and uninformative extractions. The extracted relations have even been 

erroneous at times and failed to provide a meaningful interpretation. In this chapter, we 

propose refinements to the grammatical structure of syntactic and dependency parsing. 

In lieu of this, we use the English clause structure and clause types in an effort to 

generate propositions that can be deemed as extractable relations.  

3.1. Introduction 

Relation extraction (RE) is one of the challenging tasks of natural language 

processing. Accordingly, relation extraction engines set out to obtain structured 

relations from unstructured text. In this milieu, the presence of Open Information 

Extraction (OIE) (Banko et al., 2007; Etzioni et al., 2012; Fader et al., 2011; Nebot et 

al., 2014; Yahya et al., 2014) offers a more nuanced approach that relies minimally on 

background knowledge and manually labeled training data. In this respect, various 

types of relations are taken into consideration without the need to restrict the search to 

pre-specified semantic relations. 
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Figure. 3.1. (a) Syntactic and (b) dependency parsing. 

 

In the effort to exploit corpus level statistics, different OIE approaches have 

incorporated advanced techniques and opted to use handcrafted extraction heuristics or 

automatically constructed training data. This is aimed at effectively addressing the need 

to create robust and accurate natural language processing system through learning 

extractors or estimating the confidence of propositions from a text corpus. Banko et al. 

(2007), Wu et al. (2010), and Fader et al. (2011) propose a shallow syntactic 

representation of natural language text in the form of verbs or verbal phrases and their 

arguments. There has also been a more intense interest in approaches (Corro et al., 

2013; Mausam et al., 2012; Garcia et al., 2011; Gamallo et al., 2011) that employ robust 

and efficient dependency parsing for relation extraction. Various heuristics is utilized 

to determine relevant segments of information based on dependency parsing analysis 

by identifying factors that draw attention to whether two chunks of the original sentence 

exhibit connection, disconnection, or dependence on one another. While shallow 

semantic representation of natural language text is attained in the form of verbs or 

verbal phrases and their arguments, there is a generation of research extraction that uses 

dependency parsing to achieve the same goal. Nonetheless, one of the serious 

drawbacks of techniques that are restricted to shallow syntactic and dependency 
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analysis is detecting relations that display no connection between the verb or verbal 

phrases in the sentence. 

For instance, consider the following sentence such as “Maxus Energy Corp. 

discovered a new oil field in the southeast Sumatra area of Indonesia.”, the syntactic 

parsing (SP) and dependency parsing (DP) of the sentence displaced in Figure 3.1. 

Existing state-of-the-art OIE systems the like of OLLIE (Mausam et al., 2012) and 

ClausIE (Corro et al., 2013) extract relations that are mediated by verbs or verbal 

phrases based on dependency parsing. Despite key advantages to this approach, the 

failure to extract all potential relations beyond a pre-defined set of relation including 

syntactic entities such as nouns and adjectives along with a whole range of verbal 

structures can be problematic. In the example provide here, the relation between 

“southeast Sumatra area” and “Indonesia” cannot be determined by any type of verbs 

or verbal phrases through either syntactic or dependency parsing. Our work offers a 

unique advantage in that it is designed to address some of the more pressing limitations 

inherent in previous OIE systems through the reformation of the grammatical structure 

obtained from SP and DP. The anticipated outcome of the proposed reformulation of 

the syntactic and dependency parsing trees is as follows: 

 

 Identifying relations that previous OIE systems have been oblivious to or 

overlooked altogether, e.g., the relation between “southeast Sumatra area” and 

“Indonesia”. 

 Reducing the number of erroneous relation extractions, e.g., ClausIE erroneously 

identifies ‘there’ as a subject of a relation in the following sentence: “In today’s 

meeting, there were four CEOs”. This is while, the paradigm proposed in our work 

allows for the extraction of more precise assertions that allows it to perform 

complex tasks, which inevitably prevent it from producing such incorrect relations. 

 

In this study, we build on the work presented in Corro et al. (2013) once generating 

relations based on English grammar clauses (Corro et al., 2013; Quirk, 1985; 

Thenmozhi, et al., 2015). Essentially, our approach focuses on identifying the set of 

“clauses” in each sentence. For each clause, the corresponding clause type is 

determined in accordance to the grammatical function of its coherent constituent. The 

novel grammatical structure reformation proposed in the current study uses patterns for 

the determined clause type to generate high-precision relations. Our experiments reveal 
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that the approach utilized in this study essentially improves upon the performance of 

leading OIE systems such as ClausIE, OLLIE and ReVerb. 

3.2. Proposed approach 

An OIE system extracts triples in the form of (arg1, rel, arg2), representing basic 

propositions or assertions from text. In this context, propositions are defined as coherent 

and non-over-specified pieces of basic information. In our work and inspired by Corro 

et al. (2013), we focus on the English grammar clause structure in the effort to extract 

every relation of interest in text. The Oxford dictionary defines clause as “A unit of 

grammatical organization next below the sentence in rank and in traditional grammar 

said to consist of a subject and predicate”. While the literature (Corro et al., 2013; 

Quirk, 1985; Thenmozhi, et al., 2015) is replete with definitions of clause as a part of a 

sentence that expresses some coherent piece of information, our proposed approach 

moves beyond this and refines the tree structure produced from syntactic and 

dependency parsing. We embark on this process by adding necessary relation nodes 

and removing noise nodes in order to derive a set of coherent constituents for generating 

propositions that can produce correct extractable relations. An overview of the 

proposed approach is illustrated in Figure 3.2. 

 
 
 
 

 

Figure 3.2. The proposed approach. 

3.2.1. Grammatical structure reformation 

Considering the fact that a relation candidate is surrounded by words before, 

between, or after the relation pair, as well as or the combination of two consecutive 

positions, the clause structure can be posed as a suitable grammatical structure for 

identifying relations in a sentence (Corro et al., 2013; Quirk, 1985). It should be noted 

that a clause can consist of different components including subject (S), verb (V), 

indirect object (O), direct object (O), complement (C), and/or one or more adverbials 

(A). In our effort to refine the grammatical structure to improve clauses-based relation 

extraction techniques, the following section offers the details of our proposed approach. 

The central issues addressed here are related to how the parsing structure should be 
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refined in general and how extra components are added, or the manner in which noise 

components are removed from the parsing structure. 

 

 
 

Figure 3.3. (a) Shortest path between “the southeast Sumatra” and “Indonesia”; (b) 
the refined tree in sentence “Maxus Energy Corp. discovered a new oil field in the 

southeast Sumatra area of Indonesia.” 

 

 

Figure 3.4. (a) Shortest path tree between “In today's meeting” and “four CEOs” and 
(b) refined tree in sentence “In today's meeting, there were four CEOs.” 

Normally relying merely on syntactic or dependency parsing based on verb or verbal 

phrases to determine relations have a tendency to engender certain problems. This is 

particularly true in dealing with sentences that do not exhibit sufficient information in 

order to create a connection between the subject, verb, and object of a relation. For 
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instance, the relation between “southeast Sumatra area” and “Indonesia” in Figure 1 

cannot be determined in the absence of a verb or verbal phrase that is required to 

describe the relation. Hence, the grammatical tree structure of “southeast Sumatra 

area” and “Indonesia” essentially needs to be refined by adding new relation nodes 

(e.g. a dummy R relation) with associated links between “southeast Sumatra area” and 

“Indonesia”. This is of significance due to the fact the relation between these structures 

can come to be explicitly observed and subsequently extracted. 

 

 

Figure 3.5. Shortest path between “Maxus Energy Corp.” and “a new oil field” the 
verb “discovered” in “Maxus Energy Corp. discovered a new old field in the southeast 

Sumatra area of Indonesia.” 

To this end, we extract the shortest path (Bunescu et al., 2005; Croce et al., 2011) 

between two potential entity heads detected with SP and DP and use them for 

grammatical structure reformation. Potential entities are determined by analyzing noun 

phrases and verb phrases in SP or nsubj or dobj components in DP. The tree structure 

was refined in the following manner: 

 

 For cases where the shortest path does not consist of either the “Subject-Verb-

Object” or “Subject-Verb-Complement” structures as shown in Figure 3.3(a), an R 

(relation) node will be added as a central relation in the tree and R will be associated 

with the other phrases. We also order the nodes of the dependency tree in a way to 

place the dominant nodes on top and the dependent nodes at the bottom. Figure 

3.3(b) depicts the new R node that has been added in the tree structure between the 

NP and PP phrases, hence creating a relation between “the southeast Sumatra area” 

and “Indonesia”. 
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 The next case is when the shortest path NP1-VP-NP2 does not have a structure in 

the form of “Subject-Verb-Object” or “Subject-Verb-Complement”. This is while 

the structure “Subject-Verb” is observed. For instance, in Figure 3.4(a) the two 

phrases “four CEOs” and “were”, are indicative of the relationship “Subject-Verb” 

in DP. In these instances, we propose refining the structure by reversing NP2 to NP1. 

We then add the remaining NP2 to the structure by identifying the PP that has the 

closest connection with the VP. The refined structure of “four CEOs”, “were” and 

“in today's meeting” is demonstrated in Figure 3.4(b). In this context, the intended 

extraction of the wrong main subject, which in this case is “There” is replaced by 

“four CEOs”. 

 In situations where the shortest path consists of either a “Subject-Verb-Object” or 

“Subject-Verb-Complement” structure, any change to the structure of the tree is not 

required. Our proposition is that the nodes of the dependency tree be ordered in a 

way so as to place the dominant node at the top and the dependent at the bottom. 

We recommend keeping the main phrases containing the associated links around 

the verbal phrase. For example, Figure 3.5 displays a structure where the VP phrase 

that contains the verb “discovered”, has associated links with the NPs containing 

“Maxus Energy Corp.” and “a new oil field”. 

On account of these three refinements on the trees, new forms of logical relationships 

become visible that in turn expedite the extraction of increasingly more accurate 

relations. 

3.2.2. Clause-based relation extraction 

As previously pointed out, a clause can consist of different components such as subject 

(S), verb (V), indirect object (O), direct object (O), complement (C), and/or one or more 

adverbials (A). As illustrated in Table 3.1, a clause can be categorized into different 

types base on its constituent components. For instance, the clause type for “Albert 

Einstein remained in Princeton” is SVA with Subject: “Albert Einstein”, Verb: 

“remained in” and Adverbial: “in Princeton”. For each clause, we determine the set of 

coherent derived-clauses based on the syntactic and dependency tree after refining the 

tree structure. Following Corro et al. (2013), we obtain and exploit clauses for the 

purpose of relation extraction in the following manner: 

Step 1. Determining the set of clauses.  According to Corro et al. (2013), we exploit 

an algorithm for generating clause types shown in Algorithm 3.1. The algorithm will 
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start when finding the subjects (S) and the governor of the verb (V) from DP. This step 

seeks to identify the clauses in the input sentence by obtaining the head words of all the 

constituents of every clause. The mapping of syntactic and dependency parsing are 

utilized to identify various clause constituents. Subsequently, a clause is constructed 

for every subject dependency, dependent constitutes of the subject, and the governor of 

the verb. An example of this is the construction of clause relation (subject: “Maxus 

Energy Corp.”, verb: “discovered”, object:  “a new oil field”) in Figure 5 via nsubj, 

compound for the subject, nsubj and dojb for the verb, and dojb, dt, amod, compound 

for the object. Moreover, subjects like relative pronouns that have been obtained 

through the rcmod dependency (e.g., which or who) and reference a word in the DP or 

correspond to an artificially created verb are replaced by their antecedent. For instance, 

in the sentence “Obama, who is the president of the U.S, came to Canada.” ‘who’ is 

replaced by ‘Obama’ in the extracted patterns. 

Table 3.1. Sample clause types (Corro et al., 2013; Quirk et al., 1985); S: Subject, 
V: Verb, A: Adverbial, C: Complement, O: Object. 

Clause 
types 

Sentences Patterns Derived clauses 

SV Albert Einstein died in 
Princeton in 1955. 

SV 
SVA 
SVA 
SVAA 

(Albert Einstein, died) 
(Albert Einstein, died in, Princeton) 
(Albert Einstein, died in, 1955) 
(Albert Einstein, died in, 1955, [in] 
Princeton) 

SVA Albert Einstein remained in 
Princeton until his death. 

SVA 
SVAA 

(Albert Einstein, remained in, Princeton) 
(Albert Einstein, remained in, Princeton, 
until his death) 

SVC Albert Einstein is a scientist 
in the 20th century. 

SVC 
SVCA 

(Albert Einstein, is, a scientist) 
(Albert Einstein, is, a scientist, in the 20 
the century) 

SVO Albert Einstein has won the 
Nobel Prize in 1921. 

SVO 
SVOA 

(Albert Einstein, has won, the Nobel 
Prize) 
(Albert Einstein, has won, the Nobel 
Prize, in 1921) 

SVOO RSAS gave Albert Einstein 
the Nobel Prize. 

SVOO (RSAS, gave, Albert Einstein, the Nobel 
Prize) 

SVOA The doorman showed 
Albert Einstein to his 
office. 

SVOA (The doorman, showed, Albert Einstein, 
to his office) 

SVOC Albert Einstein declared the 
meeting open. 

SVOC (Albert Einstein, declared, the meeting, 
open) 
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Step 2. Identifying clause types. When a clause is obtained, it needs to be associated 

with one of the main clause types as shown in Table 3.1. In lieu of the previous 

assertions, we use a decision tree from the ClausIE system to identify the different 

clause types. In this process, the system marks all optional adverbials after the clause 

types have been identified. For example, the derived clauses in Table 1 include: (S: 

“Albert Einstein”, V: “has won”, O: “the Nobel Prize”), (S: “Albert Einstein”, V: 

“remained in”, A!: “Princeton”), and (S: “Albert Einstein”, V: “is”, A!: “smart”). 

Optional adverbials “A!” and “A?” indicate essential adverbials and optional 

adverbials, respectively. Clause types SVC, SVOO, and SVOC are identified solely 

based on the structure of the clause; all adverbials are optional for these types. 

 

Input:     DP analysis 
Output:  list of clause patterns 
 
1:   if found(S,V) do 
2:           if seek(O) 
3:                   if seek(direct O) and seek(indirect O) do 
4:                           generate SVOO 
5:                   else if seek(C) do 
6:                                   generate SVOC 
7:                          else if seek(A) and seek(direct O) do 
8:                                         generate SVOA 
9:                                 else generate SVO 
10:         else if seek(C) do 
11:                         generate SVC 
12:                else if seek(A) do 
13:                               generate SVA 
14:                       else generate SV                
15: end if 

Algorithm 3.1. Clause pattern generation. 

Step 3. Extracting relations. We extract relations from a clause based on the 

patterns of the clause type as illustrated in Table 1. Assuming that a pattern consists of 

a subject, a relation and one or more arguments, it is reasonable to presume that the 

most reasonable choice is to generate n-ary propositions that consist of all the 

constituents of the clause along with some arguments. To generate a proposition as a 

triple relation (arg1, rel, arg2), it is essential to determine which part of each constituent 

would be considered as the subject, the relation and the remaining arguments. We 

initially identify the subject of each clause and then use it to construct the proposition. 

To accomplish this, we map the subject of the clause to the subject of a proposition 
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relation. This is followed by applying the patterns of the clause types in an effort to 

generate propositions on this basis. For instance, for the clause type SV in Table 1, the 

subject presentation “Albert Einstein” of the clause is used to construct the proposition 

with the following potential patterns: SV, SVA, and SVAA. We then recommend using 

DP to forge a connection between the different parts of the pattern. As a final step, n-

ary facts are extracted by placing the subject first followed by the verb or the verb with 

its constituents. This is followed by the extraction of all the constituents following the 

verb in the order in which they appear. As a result, we link all arguments in the 

propositions in order to extract triple relations. For example, for the sentence “Albert 

Einstein died in Princeton in 1955”, we obtain four coherent relation propositions as 

follows: 

 (S: “Albert Einstein”, V: “died”) 

 (S: “Albert Einstein”, V: “died in”, A: “Princeton”) 

 (S: “Albert Einstein”, V: “died in”, A: “1955”) 

 (S: “Albert Einstein”, V: “died in”, A: “Princeton, A: [in] 1955”) 

3.3. Experimentation 

3.3.1. Experimental setup 

In this study, we adopt the evaluation strategy proposed in Corro et al. (2013) and 

use three different benchmark datasets, namely ReVerb, Wikipedia, and the New York 

Times datasets. In our experiments, we used the Stanford parser to perform SP and DP 

on the sentences derived from the three standard benchmark datasets. In the first dataset, 

the ReVerb dataset consisting of 500 sentences have been extracted using Yahoo’s 

random link service with manually labeled extractions from the Web. The sentences 

may have irrelevant phrases due to noise in the Web texts. The second dataset is 

comprised of 200 random sentences extracted from Wikipedia. These sentences have a 

tendency to be shorter and simpler than the ones extracted from the ReVerb dataset. 

Bearing in mind that a considerable majority of information in Wikipedia is generally 

edited by non-native speakers, at times the sentences display incorrect grammatical 

structures, but they are less noisy than the information from the first dataset. The third 

dataset is comprised of 200 random sentences extracted from the New York Times 

collections (NYT). While these sentences are generally very clean, they have a 

propensity to be long and complex. Our experiments were carried out on these 
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benchmark datasets in an effort to analyze the reliability and reproducibility of our 

work. Additionally, we compared our proposed approach with other OIE systems 

including ClausIE, OLLIE, ReVerb, WOE and TextRunner. It should be noted that 

TextRunner and WOE have not publicly disclosed their code base confining us to use 

the results they reported in their publication for the ReVerb dataset and not for 

Wikipedia and the NYT datasets, marked as n/a in Table 3.2. 

We manually label and verify all of the extraction by ReVerb, OLLIE and ClausIE 

systems from three datasets. To guarantee consistency among the labels, the ReVerb 

dataset is relabeled following the original labels from TextRunner, ReVerb, and 

ClausIE because it covers the entire set of these systems. As for the Wikipedia and the 

NYT datasets, each extraction is relabeled in accordance to the same output result from 

ClausIE. Each extraction was labeled by two independent experts, which came to be 

considered as the gold standard.  The experts were instructed to treat an extraction as 

correct if it was both informative and devoid of extraneous information. The correct 

extract had to be approved and labeled as correct by both experts. In contrast, the 

extractions that lacked meaning were labeled as incorrect. The experts' ruling was 

measured using Cohen's Kappawith 0.57 on the ReVerb dataset, 0.68 on the Wikipedia 

dataset, and 0.63 on the NYT dataset. Regardless, some incorrect extractions were 

labeled as correct in ClausIE, e.g., (“his”, “has”, “a car”), (“John”, “works”, “at IBM”), 

(“John”, “works”, “for IBM”). These relations were subsequently labeled to be incorrect 

relations in our work. 

 

Table 3.2. Overview of the precision of the six systems. 

 ReVerb Wikipedia NYT 

TextRunner 35.84% (286/798) n/a n/a 

WOE 43.48% (447/1028) n/a n/a 

ReVerb 53.37% (388/727) 66.26% (165/249) 54.98% (149/271) 

OLLIE 44.04% (547/1242) 41.41% (234/565) 42.46% (211/497) 

ClausIE 50.37% (1182/2348) 49.56% (397/797) 52.67% (493/936) 

LS3RyIE 67.77% (1642/2425) 68% (614/903) 70.19% (690/983) 
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Figure 3.6. Comparative results on (a) ReVerb; (b) Wikipedia; and(c) NYT datasets. 
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3.3.2. Experimental results 

The results of our proposed approach and the comparison to the other state-of-the-

art OIE systems are presented in Table 3.2 and Figure 3.6 on the three standard 

benchmark datasets. Figure 6 plots the precision of each OIE system ordering them in 

decreasing confidence as a function of the number of extractions. It can be observed 

the performance of our proposed approach has raised some interesting points as it 

outperforms ClausIE, OLLIE, and ReVerb. The relative quality differences between 

our proposed approach and the state-of-the-art OIE systems employed in this study 

were essentially improved in all three datasets. The results reveal that we obtained 

67.77% precision on the ReVerb dataset, 68% precision on the Wikipedia dataset, and 

70.19% precision on the NYT dataset. The increase in precision is obtained through the 

discovery of hidden relations in addition to the removal of unrecognized relations are 

removed within our proposed grammatical structure. Our system identified 2,425 

extractions in the ReVerb dataset, 903 extractions in Wikipedia and 983 extractions in 

the NYT dataset. These extractions were higher in number compared to the other OIE 

systems. The precision of TextRunner was significantly lower than the other systems 

on the ReVerb dataset. The other systems obtain high precision on high-confidence 

extractions; the precision drops based on low confidence values in each extraction 

except for the ClausIE system on the NYT dataset (Figure 3.6.c). ClausIE identifies 

numerous incorrect extractions in possessive clauses, e.g., (“his”, “has”, “a computer”), 

with high confidence values, something that is prevented in our work due to the 

grammatical structure refinements. 

3.3.3. Extraction samples and discussion 

Several sample relations extracted from a similar sentence using each of the OIE 

system are demonstrated in Table 3.3. In light of the fact that our proposed approach 

and ClausIE explore the clause structure of the sentence, the two systems have 

demonstrated an ability to extract the highest number of relations, which are 12 and 10, 

respectively. In the process of exploring the clause structure of a sentence, the 

adverbials in a clause are considered in addition to the verb or verbal phrases adverbials. 

However, the refinement of the tree structure in our proposed approach has led to 

improved performance. This helps us discover hidden relations and reduce noise in the 

identified relations. As seen in the table, relations r8, r9, r10, r11, and r12 are correct 
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relations based on the results obtained from our system. These relations, which would 

have otherwise not been identified, have specifically been detected because of the 

structure refinements proposed in our approach. While ClausIE is capable of obtaining 

those relations, they have mostly been with other form types. The limitations imposed 

by DP also leads to extractions by ClausIE that are not correct. As a consequence, 

ClausIE extracts incorrect relations in r13, r21, and r22. The relations r9 and r10 have only 

been identified and extracted using our approach due to the fact that the other systems 

rely on DP to identity the subject in the sentence. Consequently, the afore mentioned 

systems were unable to recognize “bombing” as a subject. As illustrated in Table 3.3, 

together with ClausIE, our proposed approach was able to correctly identify the subject 

and henceforth extract a number of correct relations such as r2, r3, r4, r15, r16, and r17. 

ReVerb obtained r25 and r26 which are both incorrect; these relations have been 

obtained because ReVerb restricts subjects to noun phrases without prepositions and a 

result incorrectly omits “...the stabbing was unrelated to the escape plan and stemmed 

instead from...” for r25 and “with his lawyers” for r26. OLLIE makes use of DP and 

obtains r23 and r24, but r24 is incorrect because OLLIE fails to correctly identify the 

subject and object in the structure. WOE, meanwhile, fails to identify verbal phrases 

because in using DP, a non-informative connection is made between “said” and 

“stemmed”. Hence, WOE obtains the incorrect r28 and r29 relations. TextRunner obtains 

incorrect relations r32, r33, r34, and r35, because it uses POS tagging and chunking for 

data training. Problems arise for TextRunner when faced with identifying connection 

words for a relation in a long sentence. 

The utilization of three different datasets in our experiments is indicative of the fact 

that our proposed approach is not overfitted for a specific dataset. The presence of some 

incorrect extractions in our proposed approach may be due to the incorrect tree obtained 

from SP and DP. There have been instances where the incorrect DP resulted from noise 

in the input sentences, including incorrect grammatical structures or the presence of 

spurious words. For instance, for the incorrect relation r1, DP incorrectly determines 

“Continuing” to be an adverbial, which in turn leads to a connection being made with 

the subject “Salim”. As future work, we will focus on identifying specific cases that can 

be problematic in DP and SP and further refine the grammatical structure to address 

these shortcomings. 
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Table 3.3. Extraction samples with Correct: 1 and Incorrect: 0. 

OIE Triple Label 

Sentence: “Continuing to maintain his innocence of terrorism charges about a bombing in Iraq, Salim said the 
stabbing was unrelated to the escape plan and stemmed instead from his dissatisfaction with his lawyers.” 

LS3RyIE r1: (“Salim”, “be continuing to maintain”, “his innocence of terrorism charges”) 
r2: (“Salim”, “said”, “the stabbing was unrelated to the escape plan and stemmed instead 
from his dissatisfaction with his lawyers Continuing to maintain his innocence of 
terrorism charges”) 
r3: (“Salim”, “said”, “the stabbing was unrelated to the escape plan and stemmed instead 
from his dissatisfaction with his lawyers”) 
r4: (“the stabbing”, “was unrelated to”, “the escape plan”) 
r5: (“the stabbing”, “was”, “unrelated”) 
r6: (“the stabbing”, “stemmed”, “instead”) 
r7: (“the stabbing”, “stemmed instead from”, “his dissatisfaction with his lawyers”) 
r8: (“he”, “has”, “a innocence of terrorism charges”) 
r9: (“a bombing”, “was in”, “Iraq”) 
r10: (“his dissatisfaction”, “is with”, “his lawyers”) 
r11: (“he”, “has”, “a dissatisfaction”) 
r12: (“he”, “has”, “lawyers”)                    

0 
1 
 
 

1 
 

1 
0 
0 
1 
1 
1 
1 
1 
1 

ClausIE r13: (“his”, “has”, “innocence of terrorism charges”) 
r14: (“Salim”, “be Continuing”, “to maintain his innocence of terrorism charges”) 
r15: (“Salim”, “said”, “the stabbing was unrelated to the escape plan and stemmed  
instead from his dissatisfaction with his lawyers Continuing to maintain his  
innocence of terrorism charges”) 
r16: (“Salim”, “said”, “the stabbing was unrelated to the escape plan and stemmed  
instead from his dissatisfaction with his lawyers”) 
r17: (“the stabbing”, “was”, “unrelated to the escape plan”) 
r18: (“the stabbing”, “was”, “unrelated”) 
r19: (“the stabbing”, “stemmed”, “instead from his dissatisfaction with his lawyers”) 
r20: (“the stabbing”, “stemmed”, “instead”) 
r21: (“his”, “has”, “dissatisfaction with his lawyers”) 
r22: (“his”, “has”, “lawyers”) 

0 
0 
1 
 
 

1 
 

1 
0 
1 
0 
0 
0 

OLLIE r23: (“the stabbing”, “was unrelated to”, “the escape plan”) 
r24: (“the stabbing”, “was”, “unrelated”) 

1 
0 

ReVerb r25: (“Salim”, “said”, “the stabbing”) 
r26: (“the stabbing”, “stemmed instead from”, “his dissatisfaction”) 
r27: (“the stabbing”, “was unrelated to”, “the escape plan”) 

0 
0 
1 

WOE r28: (“Salim”, “said stemmed from”, “his dissatisfaction”) 
r29: (“Salim”, “said unrelated to”, “the escape plan”) 
r30: (“the stabbing”, “stemmed from”, “his dissatisfaction”) 
r31: (“the stabbing”, “was unrelated to”, “the escape plan”) 

0 
0 
1 
1 

TextRunner r32: (“Continuing”, “to maintain”, “Salim”) 
r33: (“Continuing”, “to maintain”, “his innocence of terrorism charges”) 
r34: (“his innocence of terrorism charges”, “said”, “the stabbing”) 
r35: (“the stabbing”, “was to stemmed from”, “his dissatisfaction”) 

0 
0 
0 
0 
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3.3.4. System scalability 

We have measured several factors in our system that can impact execution time such 

as the parsing process, clause generation and grammatical structure reformation when 

the system deals with a large number of sentences. Given the fact that the execution 

time of the system can depend on sentence type, we have performed our experiments 

on 3 different sentence types based on their structure, namely short sentences (simple), 

medium sentence (borderline complex) and long sentence (complex). In short 

sentences, the numbers of extracted patterns are in the range of 1 to 2 patterns. Medium 

sentences can produce 3 to 5 patterns while more than 5 patterns are extracted from 

long sentence. We ran our system on a desktop computer with Intel Core i5 3.1 ghz, 

8GB RAM and 1TB hard disk. For time complexity, the parsing process has O(n) to 

proceed left-to-right over n transition words in the sentence. The process of clause 

generation can generate i clauses after parsing. This process takes O(n+i). LS3RyIE 

also performs search for k potential patterns. The system will take O(i+k) for clause 

generation with i denoting the original clauses and k denoting the new clauses.  Thus, 

the time complexity for LS3RyIE is O(n+i+2k) as shown in Table 3.4. In case when the 

number of original generated clauses and new generated clauses are equal with the 

number of transition words, the system has a linear time complexity of O(n). 

Table 3.4. Time complexity of LS3RyIE. 

Time complexity Cost 
Parsing process O(n) 
Generating clauses O(n + i) 
Generating clauses with structure reformation O(n+i+2k) ~ O(n) 

 

Table 3.5 shows the detailed execution time of our system. It takes on average 0.447s 

for the system to process sentences when clause generation is only used, while it takes 

0.745s on average when the system includes clause generation as well as grammatical 

structure reformation. This could indicate that LS3RyIE has no limitation to deal with 

large numbers of sentences. However, it should be noted that in our work, the results 

of the extracted patterns are considered at the sentence-level and are therefore 

independent from the results of the other sentences. Therefore, LS3RyIE can run in 

parallel on different segments of an input dataset. Hence, if our work is executed on a 

powerful server, which supports for many more cores than the desktop that we had 

access to, the execution time will be significantly reduced in LS3RyIE. For instance, 
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execution time of LS3RyIE can be reduced by 10 folds when the system is run in 

parallel by ten concurrent threads shown in Figure 3.7. On the same note and for the 

same reason, due to the fact that our approach performs at a sentence level, it will have 

limitations in performing co-reference resolution on sentence elements such as 

pronouns. 

Table 3.5. The execution time breakdown for LS3RyIE. 

 Parsing  
time (s) 

Generating 
clause time (s) 

Generating clause with 
structure reformation time (s) 

Short sentence 0.016 0.018 0.060 
Medium sentence 0.216 0.271 0.319 
Long sentence 1.003 1.054 1.857 
Mean 0.411 0.447 0.745 

 

 

Figure 3.7. Estimated execution time in one million sentences. 

3.4. Concluding remarks 

In this chapter, we presented a method to address some limitations faced by previous 

OIE systems through the reformation of the grammatical structure obtained from SP 

and DP.  We used English grammar clauses to identify the set of clauses in each 

sentence from the refined grammatical structure. In each clause, the corresponding 
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clause type was determined as an extractable relation according to the grammatical 

function of its coherent constituent. In our extensive experiments, we compared our 

method with other OIE systems using three standard benchmark datasets. The results 

reveal that our method obtained not only higher precision extractions but also had more 

flexible generation of relations over other state-of-the-art OIE systems. 
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Chapter 4 

Self-training on refined clause patterns for 

relation extraction 

 

Bootstrapping techniques utilized for relation extraction have shown to be effective 

in terms of interactively expanding a set of initial relations. Such tasks are primarily 

carried out through semi-supervised classification approaches. Considering that 

choosing the most efficient seeds are pivotal to the success of the bootstrapping process, 

these methods depend on a reliable set of seeds or rules that incorporate domain 

knowledge. In this study, we propose clause-based pattern extraction with self-training 

for unsupervised relation extraction. Accordingly, we extract patterns based on a 

clause-based approach that strives to consider all possible clause types that may contain 

a relation. The proposed self-training algorithm relies on the clause-based approach to 

extract a small set of seed instances in order to identify and derive new patterns. 

4.1. Introduction 

Essentially, relation extraction seeks to effectively organize and identify the 

relevant segments of unstructured text in relation triples. As part of an effort to infer 

more complex relational structures, relation extraction techniques aim to steer the 

extraction process away from the ambiguous extractions of semantic relations. This is 

aimed at representing a particular set of relationships between two or more entities in 

text that can be used for querying and automated reasoning. To infer more complex 

relations, several approaches have been proposed, involving supervised, semi-
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supervised, and unsupervised methods. Among the supervised methods Bunescu et al. 

(2005), Kambhatla et al. (2004), Ravichandran et al. (2002), and Zhou et al. (2010) 

have focused on performing language analysis for semantic relation extraction. A 

running theme among these techniques is the capacity to generate linguistic features 

based on syntactic, dependency, or shallow semantic structures of the text. Espousing 

these features, the models are subsequently trained to identify instances of entities that 

are related through relations. Once the identification process is underway, the 

extractions are classified based on pre-defined relation types. This is a laborious and 

time-consuming undertaking on the part of these approaches, involving the analysis of 

vast quantities of sample data. In contrast, a bootstrapping technique displays a clear 

advantage by working with unannotated documents and a small initial seed set. 

Choosing the most efficient seeds is imperative to the success of the bootstrapping 

process as it is these very seeds that are utilized by the afore mentioned techniques to 

extract patterns that can represent extractable relations. The “best” learned relations are 

selected and identified as new instances, which are in turn used to update the seed set. 

This process is repeated until an explicit and adaptive stopping criterion has been 

reached. 

Bootstrapping based pattern matching approaches have been employed by various 

researchers (Agichtein et al., 2000; Greenwood et al., 2006; Pantel et al., 2006; Brin, 

1998) to extract patterns from seed relations. These approaches exploit the concept of 

information redundancy and hypothesize that similar relations tend to appear in uniform 

contexts. A study conducted by Batista et al. (2015) established that semi-supervised 

bootstrapping techniques used to extract semantic relations from text iteratively expand 

a set of initial seed relationships. In an effort to find similar relationships, the 

researchers investigated the effectiveness of bootstrapping for relationship extraction 

using word embedding. Their evaluation model involved the Named Entity Recognition 

(NER) module along with weak entity linking by matching entity names with Freebase 

concepts. In Xu et al. (2007) and Xu et al. (2010), the authors’ goal of extracting 

relations of various complexities and optimizing the learned rules through a seed-driven 

process is accomplished through bootstrapping with the ability to automatically learn 

pattern rules from parsed data. The researchers use dependency trees as the input for 

pattern extraction and work with trees or sub-trees that contain seed arguments. Despite, 

their eagerness to maintain high accuracy, it is difficult to claim with certainty that the 
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identified patterns are indeed accurate. In lieu of this, there is a probability that faulty 

seeds could potentially be injected into the bootstrapping process.  

To address such limitations, we initially extract patterns organized with a triple 

structure (Arg1, Relation, Arg2) based on a clause-based Open IE. We automatically 

build an initial seed set for later iterations based on high confidence patterns. We 

present a self-training algorithm for relation extraction that automatically learns the 

required initial seed set without the need for manual input. To ensure that a seed has 

high confidence, it is essential for it to be generated by multiple high-confidence 

patterns. Through the iterative expansion of the original seed set, bootstrapping allows 

for an increasing number of seeds to be identified that can ultimately lead to higher 

confidence relation extraction patterns. In the section below, we have identified the 

most significant contributions of our work: 

 

 We present an unsupervised method for relation extraction by combining clause-

based pattern extraction and bootstrapping. 

 We present a self-training algorithm for the purpose of labeling relations during the 

bootstrapping process. 

 Following in the footsteps of a number of research (Stevenson et al., 2007; 

Swampillai et al., 2010; Xu et al., 2007; Xu et al., 2010), we apply our proposed 

method on the standard and widely used Nobel and MUC-6 corpora.  

 

In the sections that follow, we begin by a detailed description of our proposed 

method in Section 4.2 where we put forth methods used for RE with self-training. 

Section 4.3 offers an in-depth analysis of our experimental results as compared to the 

DARE system. In the last section, we draw conclusions about the merits of our work 

and offer ways to advance the literature. 

4.2. Proposed approach 

As illustrated in Figure 4.1, our approach consists of two primary tasks constituting 

pattern identification and self-training through unsupervised bootstrapping. As a first 

step, we use English grammar clauses to identify the set of “clauses” in each sentence 

for the purpose of pattern extraction. With respect to each clause, the corresponding 

clause type will be determined pursuant to the grammatical function of its coherent 

constituent. The emergent patterns for the determined clause type will be used to extract 



51 
 

relations. Subsequently, we propose a new self-training method based on bootstrapping 

that uses the patterns identified in the first step to automatically derive the required 

seeds. We learn context clues from the learned seeds and use the clues to identify the 

category of a particular relation. The approach proposed here eliminates the need for a 

manually prepared seed set at the onset and instead opts to automatically extract the 

required seeds from high confidence patterns extracted in the first step. 

 

Figure 4.1. The proposed approach. 

4.2.1. Clause-based pattern extraction 

Considering that a relation candidate is surrounded by words before, between, or 

after the relation pair, or the combination of two consecutive positions, the clause 

structure can be deemed as a suitable grammatical form used to identify relations in a 

sentence (Corro et al., 2013; Thenmozhi et al., 2015; Xu et al., 2013). A clause is part 

and parcel of a sentence as it embodies pieces of information that are coherent. While 

not all combinations of a clause’s different constituents materialize in the English 

language, a clause is comprised of a subject (S), verb (V), and optionally a direct object 

or an indirect object (O), complement (C), and one or more adverbials (A). The 

extracted patterns will be refined within a new structure through the addition of 

necessary relation nodes and the removal of noise nodes. This is aimed at making the 

patterns increasingly more effective for the purpose of deriving a set of coherent 

constituents directed toward generating relation clauses to serve for bootstrapping. The 
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detail of the processes how to refine grammatical structure and extract clause-based 

patterns has been described in Chapter 3, Section 3.2. 

 
Input: Set of Pattern P = p1, p1, ...pn with p{Arg1, Rel, Arg2} 
            Seed{Arg, Rel} with Arg{arg1, arg1,... argn} and Rel{rel1, rel2,... relm} 
Output: selected patterns P' 
 
1: P'  null 
2: loop N iterations || P != null do 
3:       for all p ∈ P do 
4:             Score(p, Seed{Arg,Rel}) 
5:       end for 
6:       pattern-pool     top k patterns p 
7:       for all p{Arg1, Rel, Arg2} ∈pattern-pool do 
8:             Score(arg∈ {Arg1, Arg2)}, Seed{Arg, Rel}, P) 
9:             Score(rel∈ {Rel}, Seed{Arg, Rel}, P) 
10:     end for 
11:     Seed{Arg, Rel}    top m argument arg 
12:     Seed{Arg, Rel}    top m relation rel 
13:     P'   top k patterns p 
14:     Update (P) 
15: end loop 

Algorithm 4.1. Self-training algorithm. 

4.2.2. Self-training algorithm 

Broadly speaking, bootstrapping methods begin with an un-annotated corpus and a 

small set of hand-tagged seed words. In contrast to bootstrapping approaches that 

require an input seed set, we propose a new self-training method based on bootstrapping 

that benefits from the patterns extracted from the previous step (Section 5) to identify 

and extract relations from the corpus. The emergent patterns for the determined clause 

types will be used to extract specified relations. The method proposed here eliminates 

the need for a manually prepared seed set at the onset and instead opts to automatically 

extract the required seeds from high confidence extracted patterns.  We learn context 

clues from the learned seeds and use the clues to identify the category of a particular 

relation. The words in these relations are assigned to a seed set in order to incrementally 

complete a lexicon that can be used for further bootstrapping. Our method retrains using 

the new updated seeds and the process is repeated iteratively. In light of the fact that 

the extracted patterns are organized with the (a1, r, a2) structure, we organize the seeds 

in the form of S(E, R) where E = {a1, a2, …,an} and R = {r1, r2, …,rm}. 
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Our self-training algorithm for bootstrapping is demonstrated in Algorithm 4.1. The 

basic idea behind our self-training algorithm is that the system takes a few initial 

selected seeds and a set of patterns T from Open IE as input and learns further patterns 

based on the initial selected seeds. The algorithm begins by scoring each pattern t of set 

of patterns T and selecting the top-k scored patterns, which will then be inserted into a 

pattern-pool. In order to score the patterns, we utilize the scoring function introduced 

in (Thelen et al., 2002; Patwardhan et al., 2007), known as the RlogF metric, which has 

already been used for learning lexicons in previous studies. The RlogF metric scores 

each extracted pattern by calculating the occurrences of the arguments and the relation 

of a given pattern within the seed set. Equation 4.1 showcases the approach proposed 

in our work regarding the implementation of the RlogF metric. 

 

�����(��) =
���

� ×�������
�������

� × �������
���

��
                           (4.1) 

 

Where ��
� is the number of argument seeds extracted by pattern tk, ��

� represents the 

number of relation seeds extracted by pattern tk, and Nk stands for the total number of 

words extracted by pattern tk. Immediately after all the extracted patterns are ranked 

using the RlogF metric, the top-k patterns with the highest score are selected and added 

to the pattern-pool. The ensuing step involves scoring the candidate seeds in the top-k 

selected patterns within the pattern-pool. Candidate seeds comprise of nouns, 

compound nouns, and verbs observed in the arguments and relations of the extracted 

patterns. For each candidate seed, the algorithm collects all the patterns used to produce 

the candidate seed in question. Our algorithm scores the candidate seed by computing 

the average number of patterns that are extracted by that seed. Equations (4.2) and (4.3) 

detail the scoring method: 
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                                  (4.2)        
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                                   (4.3)       

where �� is the number of patterns that extract ei/ri. Also, ��
� and ��

�denote the number 

of entity seeds and relation seeds extracted by pattern j, respectively. Candidate ai and 

r with the high score in the pattern-pool will be added to S. In each iteration, top-k 
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patterns from the pattern-pool are selected and removed until the pattern-pool is 

depleted of any patterns. It is through this process that we obtain a list of updated 

patterns allowing us to categorize other patterns as they are extracted. The algorithm is 

repeated until no more patterns emerge. 

4.3. Experimentation 

4.3.1. Experimental setup 

For benchmarking our approach in this task, we conducted experiments on two 

widely used datasets, namely the Nobel Prize and MUC-6 corpora shown in Table 4.1. 

The content of the Nobel Prize corpus is comprised of reports from the New York 

Times, BBC Online, and CNN News. The data, proposed by Xu et al. (2007), is 

available1 for evaluation purposes which were extracted from the Nobel Prize website2. 

The corpus comes in two parts consisting of NobelPrize A (1999-2005) and NobelPrize 

B (1981-1998), based on the timestamp of the content as proposed by Xu et al. (2007). 

Nobel Prize A are records of newspapers extracted from 1981 to 1998 and Noble Prize 

B are records of online news extracted from 1999 to 2005. The targeted relations for 

the experiments are binary to quaternary relation such as <Recipient, Prize, Area, 

Year>, e.g., (“Albert Einstein”, “was awarded”, “Nobel Prize for Physics”, “1921”). 

The MUC-6 corpus is smaller than the Nobel Prize corpus and describes events 

related to ‘the person who obtained a position’ and ‘the person who left a position’. 

The targeted relations are defined with several factors such as: (1) PersonIn: The person 

who is currently in a position or the person who obtains a new position; (2) PersonOut: 

The person who left a position; (3) Position: The position which a person has worked 

or the position which a person has left; (4) Organization: the company where the person 

has worked or has left. The gold standard of the relations in MUC-6 is available for 

evaluation purposes. The gold standard contains 200 documents separated into test and 

training sets. The training dataset (MUC-6a) consists of 256 events in an additional 100 

documents; the test dataset (MUC-6b), meanwhile, presents 227 events in 100 

documents. We adopt the evaluation strategy proposed in Xu et al. (2007) and use the 

abovementioned datasets for evaluation. It should be noted that when using the MUC-

 
1http://dare.dfki.de 
2http://nobelprize.org 
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6 corpus, Xu et al. only evaluated their work based on the training dataset, which 

consisted of 256 events. 

We separately extract patterns in two datasets with all OIE systems such as ReVerb, 

OLLIE, ClausIE and LS3RyIE. The output of these systems will be used for the 

bootstrapping process (BT) for identifying relations. Given the fact the approach is a 

self-training-based bootstrapping model, which does not require the manual 

specification of the initial seed set, it is worth mentioning what initial seed sets were 

determined in the first step of our approach for each of the two corpora. For setting 

seeds of the bootstrapping process, we automatically extract the patterns with the 

highest confidence value in each OIE systems to build the seed set and use the pronouns 

and compound nouns observed in these patterns for the argument seed set, together with 

the verbs in the patterns for the relation seed set. As a result, we obtained the following 

argument seed set for the Nobel Prize corpus: {Peace, Nobel, Medicine, Literature, 

Laureate} as well as the relation seed set: {won, awarded}, and the argument seed set 

of {President, Chief, Officer} along with the relation seed set of {appointed, named, 

succeeded, retired} for MUC-6. 

Table 4.1. The employed corpora. 

Corpus Number of Documents References 

Nobel Prize: 
  Nobel Prize A (1999-2005) 
  Nobel Prize B (1981-1998) 

 
2,296 
1,032 

 
Xu et al. (2007) 
Xu et al. (2010) 

MUC-6: 
  MUC-6a (training) 
  MUC-6b (testing) 

 
256 
227 

Xu et al. (2007) 
Stevenson (2007) 
Swampillai et al. (2010) 

 
In the bootstrapping process, the outcome of each iteration is updated and used in 

the training for subsequent iterations. The number of candidate relations and seeds 

should be determined for selecting in each iteration. Normally, the candidate relations 

will not be selected if they have a low score. A higher score for a candidate relation will 

show that the candidate has a higher significance. To proceed between iterations, the 

algorithm needs to define how many suitable candidate relations need to be added in 

each iteration.  If the number of selections is not enough, the algorithm will stop when 

no more candidate relations are found. To this end, we have selected two different 

values for each of the two configurable parameters, namely the number of extracted 



56 
 

patterns (#p) and the number of added seeds (#s) in our experiments as shown later in 

this section. 

4.3.2. Experimental results 

We first extract patterns from Nobel Prize and MUC corpuses with all OIE systems 

such as ReVerb, OLLIE, ClausIE and LS3RyIE. Table 4.2 summarizes the output of 

these systems. In the bootstrapping process, the number of iterations is set based on the 

number of relevant output patterns. We ran the algorithm with a number of iterations 

according to the number of relevant relations in each OIE systems. For instance, in case 

of (#p=10, #s=5) for Nobel Prize A, the algorithm has been ran with 130 iterations in 

the ReVerb+BT, 300 iterations in OLLIE+BT, 300 iterations in ClausIE+BT, and 420 

iterations in LS3RyIE+BT. Experiments are applied in two cases with (#p=5, #s=3) and 

(#p=10, #s=5). 

Table 4.2. Extractions by OIE systems. 

Corpus # Relevant _relations # patterns 
Nobel Prize A   
    ReVerb 1052 3925 
    OLLIE 2832 8179 
    ClausIE 2924 12309 
    LS3RyIE 4238 14606 

Nobel Prize B   
   ReVerb 478 1718 
   OLLIE 1365 3749 
   ClausIE 1345 5665 
   LS3RyIE 1857 6545 

MUC-a   
   ReVerb 103 252 
   OLLIE 327 511 
   ClausIE 402 781 
   LS3RyIE 438 863 

MUC-b   
   ReVerb 131 269 
   OLLIE 294 497 
   ClausIE 364 700 
   LS3RyIE 384 788 

 

Tables 4.3-4.6 show the bootstrapping results on each OIE extractor on the Nobel 

Prize and MUC corpuses. In every case, recall increased and precision decreased until 

the F-measures produced significant results in a reasonable number of iterations. 

Regarding Nobel Prize corpus, OLLIE+BT and ClausIE+BT produced lower scores 
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than ReVerb+BT while the best results were obtained by LS3RyIE+BT with F-measure 

of 67.01% (#p=5, #s=3) for Noble Prize A, and F-measure of 73.19% (#p=5, #s=3) for 

Noble Prize B. In terms of MUC corpus, Tables 4.5-4.6 indicate that LS3RyIE+BT and 

OLLIE+BT perform better than ReVerb+BT and ClausIE+BT. More specifically, 

OLLIE+BT obtained its best value with the F-measure of 67.4.3% (#p=5, #s=3) for 

MUC-6a, and its best value with the F-measure of 68.94% (#p=5, #s=3) for MUC-6b 

while LS3RyIE+BT obtained the best results with 68.23% of F-measure (#p=5, #s=3) 

for MUC-6a, and 70.38 % of F-measure (#p=5, #s=3) for MUC-6b. 

Table 4.3. Performance on Nobel Prize A. 

 p=10 and s=5  p=5 and s=3 
 #Iteration Precision(%) Recall(%) F-measure(%)  #Iteration Precision(%) Recall(%) F-measure(%) 

ReVerb 110 
120 
130 

61.81 
60.00 
58.00 

64.67 
68.44 
71.67 

63.19 
63.94 
64.11 

 180 
200 
220 

66.33 
65.60 
64.09 

56.74 
62.35 
67.01 

61.16 
63.93 
65.52 

OLLIE 260 
280 
300 

66.65 
65.14 
63.13 

61.19 
64.41 
66.87 

63.80 
64.72 
64.98 

 520 
560 
600 

64.46 
62.85 
61.00 

59.18 
62.15 
64.61 

61.71 
62.50 
62.76 

ClausIE 240 
260 
280 

70.00 
68.61 
66.85 

57.45 
61.01 
64.01 

63.11 
64.59 
65.40 

 520 
560 
590 

65.57 
64.53 
63.59 

58.31 
61.79 
64.16 

61.73 
63.13 
63.87 

LS3RyIE 340 
360 
380 

74.99 
73.11 
71.68 

60.09 
62.10 
64.28 

66.69 
67.19 
67.78 

 720 
800 
880 

69.91 
67.00 
64.59 

59.39 
63.23 
67.06 

64.23 
65.06 
65.80 

Table 4.4. Performance on Nobel Prize B. 

 p=10 and s=5  p=5 and s=3 
 #Iteration Precision(%) Recall(%) F-measure(%)  #Iteration Precision(%) Recall(%) F-measure(%) 

ReVerb 40 
45 
50 

74.75 
70.00 
66.20 

60.77 
64.02 
67.27 

67.04 
66.87 
66.73 

 80 
90 
100 

75.00 
73.55 
70.80 

60.97 
67.27 
71.95 

67.26 
70.27 
71.37 

OLLIE 120 
130 
140 

71.33 
69.76 
67.07 

62.71 
66.45 
68.79 

66.74 
68.06 
67.92 

 240 
260 
270 

68.25 
66.54 
66.07 

60.00 
63.37 
65.34 

63.86 
64.91 
65.71 

ClausIE 100 
110 
120 

72.5 
70.09 
67.58 

53.90 
57.32 
60.29 

61.83 
63.06 
63.73 

 220 
240 
260 

70.18 
67.58 
65.69 

57.39 
60.29 
63.49 

63.15 
63.73 
64.57 

LS3RyIE 120 
140 
190 

83.00 
80.85 
72.37 

53.63 
60.69 
74.04 

65.16 
69.51 
73.19 

 340 
360 
380 

74.64 
73.39 
72.26 

68.36 
71.13 
73.93 

71.35 
72.24 
73.09 

4.3.3. Comparison 

We compared the performance of all OIE systems with bootstrapping (best cases) 

with DARE (Xu et al., 2007) as a baseline on both Nobel Prize and MUC-6 corpora. 

Note that we did not compare our method with (Xu et al., 2010) because the authors 

used a supervised learning method to build their seeds. Results on ReVerb+BT are only 

used to compare its bootstrapping performance with other OIE systems due to its 

limitation on extracting patterns. Table 4.7 demonstrates the performance of the best 
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cases from our proposed method and the best results reported in Xu et al. (2007). The 

DARE system obtained 59.36% and 46.31% of F-measure in Nobel Prize A and Nobel 

Prize B and 54.1% of F-measure in MUC-6a. The authors used two different sets of 

seeds for the two corpora of Nobel Prize. The results from bootstrapping with OIE 

systems confirm that we succeeded in improving upon Xu et al.’s work. In Nobel Prize, 

OLLIE+BT, ClausIE+BT and LS3RyIE+BT obtain 64.95 %, 65.41% and 67.78% in F-

measures for Nobel Prize A, and 67.92%, 64.58%, 73.19% in F-measures for Nobel 

Prize B, respectively. LS3RyIE+BT obtained better results compared with other 

baselines where the system improved 8.42% and 26.88%, respectively, over the Nobel 

Prize A and Nobel Prize B corpora in F-measures compared to the baseline. 

Table 4.5. Performance on MUC-6a. 

 p=10 and s=5  p=5 and s=3 
 #Iteration Precision(%) Recall(%) F-measure(%)  #Iteration Precision(%) Recall(%) F-measure(%) 

ReVerb 9 
12 
15 

59.34 
53.71 
52.08 

52.42 
63.10 
72.81 

55.67 
58.04 
60.72 

 20 
25 
30 

56.00 
49.60 
49.32 

54.36 
60.19 
69.90 

55.17 
54.39 
57.83 

OLLIE 25 
30 
35 

69.20 
66.67 
64.29 

52.91 
61.16 
68.81 

59.97 
63.79 
66.49 

 60 
70 
80 

60.00 
61.43 
61.25 

55.05 
65.74 
74.92 

57.41 
63.51 
67.40 

ClausIE 35 
40 
45 

66.57 
64.00 
62.00 

57.96 
63.68 
69.40 

61.96 
63.84 
65.49 

 70 
80 
90 

66.57 
65.75 
63.11 

57.96 
65.42 
70.64 

61.96 
65.58 
66.67 

LS3RyIE 40 
45 
50 

68.50 
65.77 
63.60 

62.55 
67.57 
72.06 

65.39 
66.67 
67.80 

 80 
90 
100 

69.25 
66.00 
64.00 

63.24 
67.80 
73.05 

66.10 
66.89 
68.23 

Table 4.6. Performance on MUC-6b. 

 p=10 and s=5  p=5 and s=3 
 #Iteration Precision(%) Recall(%) F-measure(%)  #Iteration Precision(%) Recall(%) F-measure(%) 

ReVerb 9 
12 
15 

65.68 
56.25 
58.59 

51.14 
48.09 
57.25 

57.51 
51.85 
57.91 

 20 
25 
30 

58.00 
59.20 
58.67 

44.27 
56.49 
67.17 

50.21 
57.81 
62.63 

OLLIE 25 
30 
35 

64.4 
61.67 
62.29 

54.76 
62.92 
74.15 

59.19 
62.28 
67.70 

 50 
60 
70 

66.00 
64.67 
63.43 

56.12 
65.98 
75.51 

60.66 
65.31 
68.94 

ClausIE 35 
40 
45 

50.85 
53.75 
56.00 

48.90 
59.06 
62.23 

49.86 
56.28 
61.92 

 70 
80 
90 

49.71 
52.00 
53.11 

47.80 
57.14 
65.66 

48.74 
54.45 
58.72 

LS3RyIE 40 
45 
50 

65.5 
62.22 
60.60 

68.23 
72.92 
78.90 

66.83 
67.15 
68.52 

 80 
85 
88 

70.4 
68.82 
65.91 

68.75 
73.95 
75.52 

69.56 
70.21 
70.38 

 As for the MUC-6 corpus shown in Table 4.8, the baseline (DARE system) 

succeeded in producing 54.1% of F-measure in MUC-6a. OLLIE+BT, ClausIE+BT and 

LS3RyIE+BT obtain 67.4%, 66.66%, 68.23% in F-measure for MUC-6a, and 68.94%, 

61.92%, 70.38% in F-measure for MUC-6b, respectively. Performance wise, 

LS3RyIE+BT has also established its superiority to DARE with a margin of 14.13% in 
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F-measure on the MUC-6a corpus. It should be pointed out that Xu et al. only conducted 

experiments on the MUC-6a with 256 events with a large number of seeds (55 seeds) 

and did not perform experiments or report results on MUC-6b. It is also worth noting 

that in DARE high precision is obtained at the cost of recall. Our system has succeeded 

in addressing such limitation and overcoming it. 

Table 4.7. Overall comparison on Noble Prize domain. 

Methods Precision (%) Recall (%) F-measure (% ) 
Nobel A    
    DARE (baseline) 71.60 50.70 59.36 
    ReVerb+BT (#p=5, #s=3) 64.09 67.02 65.52 
    OLLIE+BT (#p=10, #s=5) 63.13 66.87 64.95 
    ClausIE+BT (#p=10, #s=5) 66.85 64.02 65.41 
    LS3RyIE+BT (#p=10, #s=5) 71.68 64.28 67.78 

Nobel B    
    DARE (baseline) 83.80 32.00 46.31 
    ReVerb+BT (#p=5, #s=3) 70.80 71.95 71.37 
    OLLIE+BT (#p=10, #s=5) 67.07 68.79 67.92 
    ClausIE+BT (#p=5, #s=3) 65.69 63.49 64.58 
    LS3RyIE+BT (#p=10, #s=5) 72.36 74.04 73.19 

Table 4.8. Overall comparison on MUC-6 domain 

Methods Precision (%) Recall (%) F-measure (%) 

MUC-6a    
   DARE (baseline) 62.00 48.00 54.10 
   ReVerb+BT (#p=10, #s=5) 52.08 72.81 60.73 
   OLLIE+BT (#p=5, #s=3) 61.25 74.92 67.40 
   ClausIE+BT (#p=5, #s=3) 63.11 70.65 66.66 
   LS3RyIE+BT (#p=5, #s=3) 64.00 73.06 68.23 
MUC-6b    
   DARE (baseline) n/a n/a n/a 
   ReVerb+BT (#p=5, #s=3) 58.67 67.18 62.63 
   OLLIE+BT (#p=5, #s=3) 63.43 75.51 68.94 
   ClausIE+BT (#p=10, #s=5) 56.00 69.23 61.92 
   LS3RyIE+BT (#p=5, #s=3) 65.91 75.52 70.38 

4.3.4. Errors analysis and discussion 

One of the important considerations that demand an in-depth analysis is the required 

number of iterations for extracting patterns. As discussed in the literature (Thelen et al., 

2002; Patwardhan et al., 2007; Xu et al., 2010), there are no standard techniques for 

determining the right or exact number of iterations; therefore, in our work, we terminate 

the process after so many iterations until the best F-measure is obtained. Given the fact 
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that LS3RyIE extracts a higher number of patterns compared to the other systems, on 

average, it requires a higher number of iterations to reach its best F-measure. Therefore, 

our observation is that the higher the number of extracted patterns is, the more iterations 

it would take on average to reach the best F-measure. We ran our system on a desktop 

computer with Intel Core i5 3.1 ghz, 8GB RAM and 1TB hard disk. For time 

complexity, in Self-training algorithm the system scores all m patterns in P with k 

iterations (1<k<m) (Algorithm 4.1), which will take O(mk). In each iteration, the system 

will collect i seeds of arguments and j seeds of predicates that will cost O(ik + jk). For 

updating the set of patterns P and P’ (Lines 13-14 in Algorithm 4.1), the process takes 

O(2k). Thus, the time complexity of the system would be O(mk+ ik + jk +2k) ~ O(k(m+ 

i + j)) shown in Table 4.9. In case when seeds of arguments and relations are equal (i, j 

= m/k), the self-training process has a time complexity of O(m(k+1/k)) ~ O(mk). 

Table 4.9. Time complexity of LS3RyIE+BT. 

Time complexity Cost 
Open IE  O(n) 
Self-training O(m(k+1/k)) ~ O(km) 

 

Now from a performance perspective, despite the better performance of our method 

compared to DARE, we are aware of potential drawbacks that our work suffers from. 

While we explored the results produced by our method on a case-by-case basis, we have 

become aware of errors in the pattern extraction step. Specifically, some errors 

stemmed from incorrect parsing of the input sentences in the clause-based pattern 

extraction method. In certain cases, the incorrect parsing resulted from the noise in the 

input sentences, including erroneous grammatical forms or spurious words. Table 4.10 

shows the total output errors (t_errors) encountered including the grammatical errors 

(g_errors). We report both the number of errors and the percentage of errors in the table. 

These errors include patterns that contain incoherent information or have wrong 

grammatical structure.  Most of the g_errors occur when the parser fails to correctly 

disambiguate a noun, verb or adjective in a sentence. For example, the verb "award" is 

often detected to be a noun.  Errors in ClausIE and LS3RyIE are higher than OLLIE 

due to a higher number of extracted patterns. As discussed in Chapter 3 Section 3.3.3, 

the number of errors in LS3RyIE is less than the errors in ClausIE primarily because of 

the structure reformation process. Even though the number of errors in our proposed 

method is not significant, we are aware of these deficiencies and their impact on the F-
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measure. We anticipate that the use of increasingly more robust SP and DP methods in 

the future will translate into improved performance for pattern extraction. 

4.4. Concluding remarks 

In this chapter, we presented a clause-based pattern extraction approach with self-

training for unsupervised relation extraction. Initially, we proposed an approach for 

extracting patterns that might contain relations. We used English grammar clauses to 

identify a set of clauses in each sentence from a refined grammatical structure. In each 

clause, the corresponding clause type was determined as an extractable relation in 

accordance to the grammatical function of its coherent constituent. The identified 

relations were then used to construct a seed set. Based on the identified seeds, we 

proposed a self-training algorithm that extracts more relations based on the initial seed 

set. We conclude that our proposed method has produced competitive results on both 

Nobel Prize and MUC-6 corpora, which is indicative of its efficiency. 

Table 4.10. Errors analysis. 

Cases 

ReVerb+BT OLLIE+BT ClausIE+BT LS3RyIE+BT 

#g_errors 

/#t_errors 

g_rate 

/t_rate(%) 

#g_errors 

/#t_errors 

g_rate 

/t_rate (%) 

#g_errors 

/#t_errors 

g_rate 

/t_rate (%) 

#g_errors 

/#t_errors 

g_rate 

/t_rate(%) 

Nobel Prize A 

     (#p=10,#s=5) 

     (#p=5,#s=3) 

Nobel Prize B 

     (#p=10,#s=5) 

     (#p=5,#s=3) 

 

24/48 

27/46 

 

15/28 

13/23 

 

1.85/3.70 

1.64/2.80 

 

3.00/5.60 

2.47/4.38 

 

56/103 

50/101 

 

33/61 

27/55 

 

1.86/3.43 

1.65/3.35 

 

2.35/4.35 

1.99/4.07 

 

115/259 

124/273 

 

53/105 

61/110 

 

4.11/9.25 

4.18/9.22 

 

4.41/8.75 

4.69/8.46 

 

95/202 

102/225 

 

61/150 

58/135 

 

2.50/5.32 

2.32/5.11 

 

3.21/7.89 

3.05/7.11 

MUC-6a 

     (#p=10,#s=5) 

     (#p=5,#s=3) 

MUC-6b 

     (#p=10,#s=5) 

     (#p=5,#s=3) 

 

14/24 

16/25 

 

23/27 

29/35 

 

9.68/16.60 

10.94/17.10 

 

14.56/21.09 

19.30/23.30 

 

19/46 

31/63 

 

22/38 

26/39 

 

5.44/13.16 

7.75/15.75 

 

6.28/10.85 

7.22/10.83 

 

26/52 

19/49 

 

39/52 

38/51 

 

5.77/11.55 

4.29/10.88 

 

8.66/11.55 

8.44/11.33 

 

26/46 

22/47 

 

13/19 

10/12 

 

5.2/9.20 

4.4/9.40 

 

2.60/3.80 

2.67/2.72 

 

  



62 
 

 

 

 

Chapter 5 

Feature-based matrix factorization for relation 

extraction 

 

Relation extraction aims at finding meaningful relationships between two named 

entities from within unstructured textual content. In this chapter, we define the problem 

of information extraction as a matrix completion problem where we employ the notion 

of universal schemas formed as a collection of patterns derived from open information 

extraction systems as well as additional features derived from grammatical clause 

patterns and statistical topic models.  

5.1. Introduction 

In relation extraction, most supervised (Kambhatla et al., 2004; Zhou et al., 2007; 

Zhou et al., 2010; Won et al., 2015; Barrio et al., 2017) and semi-supervised (Xu et al., 

2007; Xu et al., 2010; Zhang et al., 2015a) extraction methods use a predefined, finite 

and fixed schema of relation types (such as located-in or founded-by). A running theme 

among these techniques is the capacity to generate linguistic features based on 

syntactic, dependency, or shallow semantic structures of the text. The main strategy 

used in supervised methods is to generate linguistic features based on syntactic, 

dependency, or shallow semantic structures of text. Based on these features, the models 

are then trained to identify pairs of entities that might be related through some relation, 

and then to classify them based on a predefined set of relation types. In contrast, semi-



63 
 

supervised techniques employ an initial seed set of, often manually labeled, relations, 

which are used to extract patterns that can extract additional relations from text. The 

newly extracted relations based on the learnt patterns are then iteratively used to update 

the initial seed set and the process is repeated until certain stopping criterion is met. 

These approaches require corpora that include sufficient example relation instances that 

might be time consuming to prepare. 

Unsupervised techniques, often referred to as Open Information Extraction (Open 

IE), (Etzioni et al., 2008; Banko et al., 2007; Wu et al., 2010, Mausam et al., 2012; 

Corro et al., 2013) focus on extracting relations with minimal domain-dependent 

background knowledge and the least amount of annotated training data. In this context, 

distant supervision (Angeli et al., 2014; Riedel et al., 2013; Surdeanu et al., 2012) 

techniques exploit information from external knowledge bases, such as Freebase, in 

order to perform large-scale relation extraction from text. Distant supervision 

approaches often avoid dependence on training samples by using natural language 

grammatical structures or semantic word senses to define and model universal schemas. 

To this end, Riedel et al. (2013) have presented a matrix factorization model based on 

universal schemas for predicting relations. These authors presented a set of models that 

learn lower dimensional manifolds for tuples of entities and relations with a set of 

weights in order to capture and model relationships between relation types. In this 

context, the output of the first generation of Open IE systems, such as TextRunner 

(Banko et al., 2007) and WOE (Wu et al., 2010), are used for building the universal 

schemas.  

While approaches based on universal schemas have shown reasonable performance, 

their limitation is in that they are trained for relationships between specific entity tuples 

and relation types, and therefore, are limited when an insufficient number of explicit 

evidences is present for each relation type for specific entity tuples. For instance, the 

relation (“Hawking”, “professor-of”, “Cambridge Univ.”) could not help us infer a 

similar yet unobserved relation (“Wiles”, “professor-of”, “Oxford Univ.”) due to the 

differences of the entity tuples, i.e., (“Hawking”, “Cambridge Univ.”) and (“Wiles”, 

“Oxford Univ.”). Furthermore, such systems also fall short in predicting other relation 

types between the same entity tuples, e.g., (“Obama”, “is-president-of”, “U.S.”) and 

(“Obama”, “has-returned-to”, “U.S.”), which are between the same entity tuples but 

with different relation types. In addition, these approaches learn linear chain models 

based on unlexicalized features such as part of speech or shallow tags to label the 
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intermediate words between pairs of potential arguments for identifying extractable 

relations. However, they do not employ deeper linguistic analysis on the grammatical 

structure of a sentence such as clause level analysis and therefore, they might suffer 

from problems such as extracting incoherent and uninformative relations. Therefore, it 

is possible to summarize the limitations of the current work on universal schemas as 

follows: 

 

 The matrix models built based on the universal schemas are trained to predict 

relation types between specifically observed entity tuples; hence, same relation 

types cannot be predicted for other different yet semantically related entity tuples; 

 Similarly, the relation type between entity tuples is predicted based on a matrix 

factorization model where the participation of entities in other already observed 

relations determines an unobserved relation and as such other semantically relevant 

yet unobserved relations cannot be determined; 

 Universal schemas are primarily built based on part of speech tags and shallow 

analysis of the textual content; however, deeper linguistic analysis such as 

considering entity and relation context within the sentence structure, e.g., sentence 

clause structure, is not yet considered. 

5.2. Research Objectives and Contributions 

In light of the above limitations, while existing work based on universal schemas 

and matrix models have a reasonable precision in retrieving correct relations, they do 

not perform as well on the recall measure. In other words, given matrix models, such 

as matrix factorization, require substantial amount of evidence to draw conclusions, and 

also the fact that there are often very limited set of explicit evidence supporting relation 

instances, these models fall short in showing good recall performance. In order to 

address this challenge and improve the recall of existing work, we propose that 

additional features that can serve as implicit indicators of relation instances need to be 

introduced. To this end, we introduce and exploit new features based on grammatical 

clause types and statistical topic models to enrich universal schemas used in the matrix 

factorization model for predicting new relation instances. Particularly, we exploit 

clause types and topic models to predict relations regardless of whether they were 

explicitly observed at training time with direct or indirect access. This allows us to 
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make predictions on relation types that have not been explicitly observed in the training 

corpus that can hence lead to improved recall performance.  

Our work uses the concept of universal schemas from (Riedel et al., 2013) in order 

to convert the knowledge base information combined with Open IE patterns into a 

binary matrix representation where entity tuples form its rows and relations are 

represented as columns. More concretely, the contributions of our work can be 

enumerated as follows: 

 

 We propose numerous matrix models with fully enriched features such as word 

context, selectional preference, clause types and statistical topic models and employ 

matrix factorization with direct/indirect references for predicting specific relations 

between entities. We show that the consideration of sentence clause types as well 

as information from statistical topic models enables us to identify and determine 

semantically relevant yet explicitly unobserved relations between entity tuples, as 

mentioned above; 

 We employ and evaluate the impact of four state-of-the-art Open IE systems used 

for constructing and populating the initial matrix models that represent the relations 

between entity tuples and relation types and show how the characteristics and 

performance of these systems impact the outcome of our proposed approach. 

 We systematically evaluate our proposed features in isolation and in tandem within 

the matrix factorization model and study their impact for identifying relations 

between entity tuples. We compare our work with the state of the art based on the 

widely used gold standard by Angeli et al. (2014), which consists of 40 different 

relation types and over 22,000 relation instances. We also use two silver standard 

corpora collected from Wikipedia and New York Times to perform additional 

experiments.  

 

The rest of this chapter is organized as follows. An overview of the proposed 

approach is presented in Section 5.3 where the description of the features employed for 

relation extraction is shown. Section 5.4 presents the formal description for computing 

and incorporating these features into a matrix-based model. This is followed by an in-

depth discussion of experimental results in Section 5.5 where the results are compared 

to the state-of-the-art and the impacts of different Open IE systems on performance are 

studied. Section 5.6 finalizes the chapter with conclusions and future work. 
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Figure 5.1. Overview of the Proposed Approach. 

5.3. Overview of our Proposed Approach 

The main premise of the work in this chapter is that existing Open IE systems are 

able to automatically extract a set of relatively stable relations from a textual corpus 

based on some heuristic patterns such as analysis of grammatical structure of the 

sentence in the form of dependency or syntactic parsing or part of speech tagging. While 

Open IE systems have shown acceptable performance, they may not be able to extract 

all possible relations from the text especially in cases when the arguments of the relation 

have not been explicitly observed within the contexts or forms expected by the Open 

IE system. However, it could be possible to capitalize on the relations that have been 

extracted by Open IE systems with specific relation types to explore the possibility of 

inferring other unobserved relations between entities. One of the systematic ways of 

achieving this objective would be to view this task as a matrix completion process 

whereby the rows of the matrix are entity pairs and the columns are relation types. Such 

a matrix could be partially filled based on the relations derived by Open IE systems and 

other potential relations between other entity pairs and relation types could be identified 

by the matrix completion process. Figure 5.1 shows an overview of this process where 

a collection of documents are fed into Open IE systems whose output relations are then 

used to build the matrix representation in which the explicit relations extracted by the 

Open IE system would be denoted by cells consisting of 1 between pairs of entities and 

relation types. 
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In our work and inspired by Riedel et al. (2013), we find unobserved yet valid 

relations by using probabilistic matrix factorization to efficiently estimate vector 

embeddings for both entities and relation types through stochastic gradient descent 

optimization. The probability of assigning a relation type to an entity pair is determined 

by the dot-product of the corresponding embeddings, mapped through a logistic 

function. While matrix factorization will project the relation matrix into two matrices 

that exhibit some latent structure in the identified relations, which we refer to as the 

latent feature, we additionally define four other types of features to further enhance the 

performance of the matrix factorization method, namely word context feature, 

selectional preference feature, statistical topic model-based feature and clause-type 

feature. It is possible to perform the matrix completion task based on each individual 

feature as well as the integration (interpolation) of these features. The overview of each 

of the features is provided in the following. 

 

Figure 5.2. The four feature types employed in our work. 

Word Context Feature: The first type of feature that we consider is the context in 

which a pair of entities or the relation type of that relation happen. We define context 
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to be the set of words observed before or after an item of interest such as the entities in 

a relation instance or the relation type. The reason it is important to consider word 

context as a feature in our work is because the objective of our work is to identify 

unobserved relations and hence if an entity pair is frequently observed within the same 

context as another entity pair for which we already explicitly observed some relation 

type, then it would be possible to deduce that such relation might also exist between the 

entities of the first pair. Poon & Domingos (2009) and Koren (2009) have argued that 

those words, which occur in similar contexts tend to have similar meanings, which 

allows us to argue that it would be possible to assume that the entities of two similar 

entity pairs would be related to each other with similar relation types. For instance, 

“Professor” and “Principal Investigator” are often seen in similar relation instances 

shown in Figure 5.2. Therefore, it would be possible to probabilistically infer that two 

entities that are related to each other through the “Professor” relation could also be 

related to each other through the “Principal Investigator” relationship as well. In the 

matrix model, the word context feature could be used to define a neighborhood 

relationship between relations based on the similarity of their contexts. 

Selectional Preference Feature: The motivation behind this feature rests on the 

understanding that only specific types of entities can be used to fill in the relation 

argument roles for any given relation type. In the context of relations, selectional 

preference can refer to the constraints that relation types impose on their arguments. 

The application of selectional preference allows one to not only refine incorrectly 

identified relation instances, but also identify entity pairs that satisfy the constraints of 

a relation type and hence can act as a candidate for serving as a relation instance. As an 

example, consider the relation type “Professor” in Figure 5.2 that requires its arguments 

to be entities of type scholar and academic institution. Therefore, any pair of entities of 

type scholar and academic institution would be intuitively a candidate for a relation 

instance of type “Professor”. It is clear that this feature will result in the extraction of 

many false positive relations; however, it can be envisioned that when used in 

conjunction with other features such as the word context feature, many irrelevant 

relation candidates will be ruled out. Therefore, the selectional preference feature can 

be seen as an effective tool for increasing the recall of the relation extraction model. 

Statistical Topic Model-based Feature: The third type of feature that we consider is 

in essence a semantic extension of the word context feature. While neighborhood is 

defined based on the similarity of entity pair and relation type contexts in the word 
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context feature, in the statistical topic model-based feature, neighborhood is defined 

based on the membership of entity pairs and relation types to the same topics derived 

by a topic model. In other words, two entities can be considered to be semantically 

related to each other if they belong to the same topics. As such, it is possible to 

probabilistically assume that entities within the same topic as the entities participating 

in a relation instance could participate in a similar relation type. The underlying reason 

for this is that topic modeling methods provide a probabilistic framework based on term 

co-occurrences within the documents of a given corpus. Topic models produce 

probability distributions over words in topics and documents in topics, which can assist 

in identifying highly similar terms based on their co-occurrence in similar topics. In 

other words, topics derived by topic models could be seen as the semantic clustering of 

terms based on which a neighborhood model could be defined. For instance, as shown 

in Figure 5.2, the neighborhood model would deduce that (“Isaac Newton”, “teaches”, 

“Physics”) given an explicitly observed relation in the corpus (“Stephen Hawking”, 

“teaches”, “Physics”) and the fact that “Isaac Newton” and “Stephen Hawking” were 

observed in the same topic derived by the statistical topic model on the document 

collection. In the matrix model, the topic model-based information is used to define a 

neighborhood model. 

Clause-Type Feature: The previous three features are primarily included to benefit 

from some form of context similarity to infer a neighborhood model for determining 

unobserved yet reasonable new relations. This feature, however, defines context based 

on the grammatical role that entity pairs or relation types play within a given sentence. 

Considering the fact that sentence clause structure has already been shown to be a 

suitable grammatical structure for identifying relations within a sentence (Corro & 

Gemulla, 2013; Quirk et al, 1985), we employ clause types and clause components in 

this feature. Technically speaking, a clause can consist of different components 

including subject (S), verb (V), indirect object (O), direct object (O), complement (C), 

and/or one or more adverbials (A). As demonstrated in Corro & Gemulla, (2013) and 

Quirk et al. (1985), a clause can be categorized into different types based on its 

constituent components. Given a clause in a relation, it is possible to determine its type 

of relation via relation presentation of S, V, O and C such as SVO, SVC, SVOO 

depicted in Table 3.1 Section 3. Given the clause type of the relation instance, one 

possibility for generating new relation instances is to use entity pairs that have appeared 

in similar clause patterns within the corpus to form a new relation instance of that 
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relation type. Similar to the selectional preference feature, the clause-type feature can 

also lead to increased recall at the expense of a higher false positive rate, which can be 

mitigated when integrated with the other features.  

5.4. Formalization of the Proposed Approach 

The objective of our work is to predict the hidden relations by completing the 

schema in the matrix built from surface patterns and fixed relations. Using the same 

notation as (Riedel et al., 2013; Yao, 2015), we use T and R to correspond to entity 

tuples and relations. Given a relation �� ∈ � and a tuple �� ∈ �, the objective of our 

work is to derive a fact about a relation ��and a tuple of two entities ��. A matrix is 

constructed with size |T| × |R| for relation instances. Each matrix cell presents a fact as 

��,� and is a binary variable. The variable in each cell of the matrix is 1 when relation 

�� is true for the tuple ��, and 0 when relation �� is false for ��. We aim at predicting 

new relations that could potentially hold for tuple of entities, which are missing in the 

matrix. We present several models based on the features introduced in the previous 

section to address the task as follows. 

5.4.1. Model-based on the Latent Feature (F model) 

The model based on the latent feature derives the latent relations based on the matrix 

factorization approach, hence we refer to it as the F model, where we denote each 

relation by �� and each tuple of entities as ��. We measure compatibility between 

relation �� and tuple �� as the dot product of two latent feature representations of size 

k. Thus, we have: 

��,�
� =  � ��,���,�                                                       (5.1)

�

 

The formula is factorizing a matrix into a multiplication of two matrices Θ = AE, A 

denoting the lower dimension matrix of ��, and E representing the lower dimension 

matrix of �� based on PCA (Collins et al., 2001). Thus, a model with the matrix Θ = 

(��,�
� ) of natural parameters is defined as the low rank factorization AE. To estimate the 

values in PCA, we have: 

����,�
� � = � �� ��,���,�

�

�                                              (5.2) 
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Here, we are applying a logistic function σ(��,�
� ) = 1/(1 + exp(−��,�

� )) (Collins et al., 

2001; Koren et al., 2009; Riedel et al., 2013) to model a binary cell in the matrix. Each 

cell is drawn from a Bernoulli distribution with natural parameter ��,�
� . Following Yao 

et al. (2015), adding a prior for the parameters, the gradient with respect to ��,�
�  is as 

follows: 

�1 − (��,�
� )�

�

���,�
�

��,�
� − ���,�

� ��,�
�                                          (5.3) 

Applying gradients of ��,�
�  with regards to the parameters ar,k and et,k, we have: 

�

���,�

��,�
� = ��,�                                                      (5.4) 

�

���,�

��,�
� = ��,�                                                      (5.5) 

We maximize the log-likelihood of the observed cells under a probabilistic model 

to learn low dimensional representations as: 

max � � log

¬��

��(��,�
� − �¬�,�

� )�                                            (5.6) 

The representations �� and �� can be found by maximizing the log-likelihood using 

stochastic gradient descent. In this model, the existence of a certain relation type 

between an entity pair is estimated based on the value determined for the corresponding 

matrix cell through the optimization problem. As explained later in our experiments, 

cells with scores above a predefined threshold are considered as true. 

5.4.2. Model-based on the Word Context Feature (N model) 

Based on the word context feature and within our matrix formalization, a relation 

in a column could be neighbor to some other co-occurring relation (Koren, 2009) (hence 

called the N model). For example, the relations “Professor-of” and “Principal-

Investigator-of” are often seen in similar contexts. Therefore, the word context feature 

is essential to capture the localized correlation of the cells in the matrix to incorporate 

this information. We implement a neighborhood model N via a set of weights w of 

features based on co-occurrence of information around tuples of entities, e.g., headword 

“Professor” often appears in tuples of entities in relations such as “Dr.” and “Principal 
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Investigator”. In this model, each cell is scored based on the set of weights between this 

cell and its associated neighbors. This leads to the following formulation: 

��,�
� =  � ����

�

(���, ��)                                                 (5.7) 

where �� is the weight of association between ���and ��; ��(���, ��) defines a 

conjunctive feature between relation �� and neighbor relation ��� and k is the number 

of relations ��� that have the exact same tuples as ���. 

In this model, we additionally employ clause-based feature and integrate it with the 

word context feature. For instance, a relation (“Hawking”, “professor-of”, 

“Cambridge”) or (“Hawking”, “theoretical-physicist-at”, “Cambridge”) could be 

presented by a clause type “Subject-Verb-Complement”, while another relation 

(“Hawking”, “born-in”, “Cambridge”) is in the form of a “Subject-Verb-Adverb” 

clause. Therefore, considering only entities will fail to predict relations for the tuple 

(“Hawking”, “Cambridge”). We have used clause types in Open IE (Corro et al., 2013; 

Vo & Bagheri, 2018) when extracting surface patterns for the matrix. We can 

interpolate the confidence for a given tuple and a specific relation based on the trueness 

of other similar relations for the same tuple. Measuring compatibility of an entity tuple 

and relation amounts to summing up the compatibilities between each argument slot 

representation and the corresponding entity representation. We extend the 

neighborhood model to incorporate clause types, which is presented as follows: 

��,�
�� =  ������ (���, ��) + ��,���,� (���, ��)�

�

                          (5.8) 

where ��,�(���, ��) defines a conjunctive clause � between relation �� and neighbor 

relation ��� and ��,� is  the weight of association between ���and ��. 

5.4.3. Model-based on Selectional Preference (E model) 

Earlier, Riedel et al. (2013) introduced the use of entities in collaborative filtering 

based on a similar idea to the word context feature but geared specifically for entities. 

In their method, they employed entities to predict latent relations, hence we refer to it 

as the E Model. The model embeds each entity and relation type into a low dimensional 

space of size k. For binary relations such as �� between a pair of entities �� = (��
�, ��

�), 

the relation �� and the arguments ��
� and ��

�, are modeled in a low dimensional space 

of size k. The equation below leads to the calculation of the compatibility of tuple of 
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entities and their relations by summing up the presentation of each argument slot. Thus, 

this leads to: 

��,�
� =  � ��,�

�

��,�
� +  � ��,�

�

��,�
�                                    (5.9) 

Analogous to the Neighbor model, we augment the entity model with clause-based 

features, which enhances the entity model as follows: 

��,�
�� =  � ��,�

�

��,�
� ���,� +   � ��,�

�

��,�
� ���,�                           (5.10) 

where ���,� is clause type for argument e1, and ���,� is clause type for argument e2. 

5.4.4. Model-based on the Statistical Topic Models (T model) 

In the Entity model, selectional preferences are employed based on each argument’s 

slot representation and the corresponding entity representation in order to learn from 

other relations. However, in addition to this, many relations can be considered to be 

related to other relations based on the probability of being observed within the same 

topic. For instance, the relation tuple (“Hollande”, “France”) could be learned from the 

observed relation (“Obama”, “U.S.”), if and when “Obama”-“Hollande” and “US”-

“France” are observed in the same topics, respectively. Therefore, relations can further 

be learned by their observations within topics. This helps to determine more relations 

that are missing when learning from directly observed relations. We use Latent 

Dirichlet Allocation (Blei et al., 2003, Phan et al., 2011) to generate topics, and then 

embed this information in the matrix. Let h = {t1, t2, t3, ..., tm} and ti = {e1, e2, e3, ..., en} 

be the vector of the set of topic models and each topic model generated from LDA. The 

entities in the same topic model could be used to refer to others.  E.g., the entity 

“Obama” presented in topic t1 and t3 and “Hollande” presented in topic t1 and t5 could 

be referenced due to existing in the same topic t1. We embed each entity into a low 

dimensional space if they are mapped together within similar topics. We measure each 

cell based on the compatibility of the argument representation and their corresponding 

topic with other cells. This can be more formally represented as: 

 

��,�
� =  � ��,�

�

��,�
� ℎ��

+   � ��,�

�

��,�
� ℎ��

                             (5.11) 
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where ℎ��
 denotes the vector of topics where argument e1 belonged to, and ℎ��

 denotes 

vector of topics where argument e2 belonged to. 

Given the fact that using only topics could be noisy for training purposes, we also 

further augment the topic model with clause-based features. For instance, (“Hollande”, 

“France”) can be learned from (“Obama”, “U.S.”) if they are present in similar clause 

types. This could be formulated as: 

��,�
�� =  � ��,�

�

��,�
� ℎ��

����
+   � ��,�

�

��,�
� ℎ��

����
                    (5.12) 

where ����
 is the vector of clause type for topic argument e1, and ����

 is the vector of 

clause type for topic argument e2. 

It is important to mention that while models F, N and E have been proposed earlier in 

(Riedel et al., 2013), our work is focused on proposing and investigating the role of T 

and C in this process and systematically proposing how these two types of features can 

be interpolated with other feature types. The objective is to explore whether T and C 

features are able to address the recall limitation of the state of the art features. 

5.4.5. Model Interpolation and Parameter Estimation 

Each of the above models represents a unique and important aspect of the data that 

needs to be combined with other models to predict potential relations in the matrix. In 

practice, combining the introduced models can capture different necessary aspects of 

the data. For instance, the combined model of Entity and Neighbor can take advantage 

of selectional preference on argument slot presentation from the Entity model and the 

weight of the related neighbors from the Neighbor model. We linearly interpolate the 

models, e.g., the combination of F, N, E and T models can be shown as follows: 

��,� = ��,�
� + ��,�

� + ��,�
� + ��,�

�                                            (5.13) 

Similar to the F model, relation cells in the matrix model are parameterized through 

weights and/or latent component vectors. In each model, we predict a relation with a 

number between 0 and 1. However, the models require negative training data for the 

learning process. We train the models by ranking the positive cells (observed true facts) 

with higher scores than the negative cells (false facts). The log-likelihood setting could 

be contrasted with this constraint that primarily requires negative facts to be scored 

below a defined threshold. Thus, it is possible to calculate the gradient for the weights 

of cells. We also use log-likelihood as the objective function and employ stochastic 
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gradient descent with a logistic function σ(��,�) = 1/(1 + exp(−��,�)) to learn the 

parameters ��,� = �(��,�). 

5.5. Experiments and Evaluation 

In order to benchmark our proposed approach, we perform two sets of extensive 

experiments. In the first experiment, we use the dataset provided by Angeli et al. (2014). 

The advantage of this dataset is that it already consists of a gold standard of relations 

that can be used for evaluation purposes. In the second experiment, we use two corpora 

from Wikipedia and NYTimes. Unlike the dataset from Angeli et al., these two corpora 

do not have gold standard relation instances. For this reason, we extract silver standard 

relation instances from these two corpora based on the relation patterns provided by the 

PATTY project3. Furthermore, given our work requires grammatical clause 

information, we used the work in (Corro et al., 2013) to extract the clause patterns and 

then check them with entity tuples annotated in each sentence in order to embed them 

into the matrix. For embedding clause types into the matrix, we use three fundamental 

clause types, namely SVO, SVC and SVA. The details of these clauses are presented in 

Corro et al. (2013). Given we only focus on three clause types, if a tuple of entities was 

extracted with a different clause type, e.g., “Bill has worked for IBM since 2010” that 

corresponds to the SVOA clause pattern, we check the main entities of the relation’s 

corresponding elements and convert its clause type into one of the three main types of 

clauses. In this case, SVOA will be converted into SVO because “Bill” represents S and 

“has worked” denotes V, and “IBM” represents O. 

Table 5.1. Details of the gold standard corpus. 

Corpus Relation 
types 

#relations 

Angeli et al.'s dataset 40 22,765 
 

Additionally, for extracting topics, we generate and estimate topic models based on 

LDA through Gibbs Sampling using GibbsLDA++4. We optimize three important 

parameters a, b and number of topics T in the LDA. It is based on the number of topics 

and the size of the vocabulary in the document collection, which are a = 50/T and b = 

 
3 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-
naga/patty/ 

4 http://gibbslda.sourceforge.net 
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0.01, respectively (Phan et al., 2011). Then we vary topic sizes between 100, 150, and 

200. We evaluate each group of topics and select topic size 150, which shows the best 

performance for our experiments. 

5.5.1. Relation Extraction based on Gold Standard Dataset 

In order to benchmark our approach in the first experiment, we employed the 

dataset5 proposed in Angeli et al. (2014) described in Table 5.1. The content of this 

dataset is comprised of articles from New York Times where each sentence has been 

annotated with entity tuples and relation types, which are linked to entities from 

Freebase. This dataset also consists of gold standard relation instances. Note that, we 

do not use the dataset from (Riedel et al., 2013) given the fact that it does not include 

the original sentences, which prevents us from being able to identify grammatical 

clauses or learn the topic models as required in our approach. 

5.5.1.1. Evaluation results 

In our work, we conducted experiments on both individual models and interpolated 

models for predicting relations as listed in Tables 5.2 and 5.3. We randomly split the 

dataset for training and testing and applied 10-fold cross validation for all models. We 

have applied the threshold 0.5 as suggested in (Yao, 2015) for all models that indicate 

the confidence value to predict a relation. Table 5.2 shows the detailed performance of 

each model as well as the combined models in Table 5.3. As observed in Table 5.2, 

using clause features shows improved performance compared to when models are built 

without clause information. Using the clause information, we can see the EC model 

with F-measure of 41.81% is better than the E model with F-measure of 38.77%; N 

model obtained only 36% in F-measure while NC obtained 39.5% in F-measure. 

Regarding T model where their argument slots are presented in high dimensions, this 

could take benefits of selectional preference in the training process due to their co-

occurrence direct/indirect with other relations. As a result when applying T recall and 

F-measure have greatly improved, e.g., the E+T model with F-measure of 45.65% is 

better than the E model with F-measure of 38.77%; or F model obtained 46.83% in F-

measure while F+T obtained 47.82% in F-measure. We observe that, N models are 

lower than the other models due to weak co-occurrence with other relations. The 

 
5 http://nlp.stanford.edu/software/mimlre-2014-07-17-data.tar.gz 
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interpolation of N, F, E and T models outperforms the non-interpolated models, 

indicating the synergistic contribution of each of these, e.g., F+E+N (being the baseline 

presented by Riedel et al. (2013) and F+E+N+T models have an F-measure of 51.9% 

and 52.23%, respectively. 

Table 5.2. Effectiveness of T and C on individual models; EC, NC, TC are 
individual models with clauses; N+T, E+T, F+T are models with T. 

Models Precision (%) Recall (%) F-measure 
(%) 

E 48.23 32.41 38.77 
EC 51.97 37.02 41.81 
E+T 52.20 40.56 45.65 
N 44.61 30.18 36.00 
NC 48.94 33.11 39.50 
N+T 52.47 38.45 44.37 
T  46.79 41.70 44.10 
TC 54.71 37.02 44.16 
F 58.02 39.26 46.83 
F+T 47.25 48.45 47.82 

Table 5.3. Experimental results for interpolated models. 

Models Precision 
(%) 

Recall (%) F-measure 
(%) 

Baseline (F+E+N) 79.58 38.51 51.90 
F+E+N+T 51.16 53.30 52.21 
EC+NC 72.29 32.51 43.88 
TC+NC 64.12 34.98 47.82 
EC+ TC 59.58 39.67 47.62 
F+EC 54.65 42.36 47.69 
F+NC 56.24 40.14 46.85 
F+TC 53.02 46.87 49.75 
NC+EC+TC 57.24 42.36 48.69 
F+EC+NC 57.31 49.24 52.96 
F+NC+TC 55.01 54.80 54.90 
F+EC+NC+TC 60.23 60.00 60.11 

 
The results of interpolated models EC+NC, EC+TC, and EC+TC+NC show that 

each of the models provide advantage in a non-overlapping aspect of the data and hence 

their interpolation leads to improved performance. EC+NC achieves an F-measure of 

43.88%, EC+TC has an F-measure of 47.62% and EC+TC+NC produces an F-measure 

of 48.69%. Therefore, the interpolated models obtain better results compared to the 

individual EC, NC, or TC models. We note that TC employs features based on the 
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presentation of argument slots from entities; and the presentation of argument slots in 

the TC model results in a much higher number of co-occurrences compared to the EC 

model. Therefore, the interpolated models with TC achieve better results compared to 

the interpolated models with EC, e.g., TC+NC yielded 47.82% while EC+NC yielded 

43.88%. 

It is important to point out why the interpolation of F and C has not been built and 

included in Table 5.2. The main reason for this is that the F model is a matrix 

factorization model where clause information cannot be directly incorporated into it. 

On the other hand, C is a feature that is not developed in isolation and is only 

meaningful when used in tandem with other features. Therefore, once a model based 

on feature F has been developed, it is not possible to interpolate it with C because C 

does not have a separate standalone model on its own. 

The interpolated models with F such as F+TC, F+NC+TC and F+EC+NC+TC have 

features, which are derived based on PCA components (F model). Therefore, F+TC, 

F+NC+TC and F+EC+NC+TC achieve better results compared to the interpolated 

models without F such as TC, NC+TC, and EC+NC+TC. For instance, NC+TC obtains 

an F-measure of 47.82% while F+NC+TC obtains 54.90%. Finally, the best interpolated 

model is F+EC+NC+TC which produces the highest result with 60.11% in F-measure 

when compared to the other models. Our interpolated models, namely F+NC+TC, 

F+E+N+T and F+EC+NC+TC outperform the baseline (F+E+N) proposed by Riedel et 

al. (2013). 

Finally, we would like to summarize the impact of our proposed work on 

performance. As seen in Table 5.3, when employing clause types on the baseline 

(F+E+N vs. F+EC+NC), we see that recall increases and overall the incorporation of 

clause type improves F-measure. Also when adding topics to the baseline (F+E+N vs. 

F+E+N+T), we see a similar trend. The important observation is that once clause types 

and topic models are added simultaneously (F+EC+NC+TC) that we achieve a 

significant improvement on recall and a reasonable precision performance, leading to 

much higher F-measure. This shows that clause types and semantic topics can help 

identify a higher number of relevant relations and hence increase retrieval rates and also 

maintain acceptable precision. 
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Table 5.4. Top and additional relation samples. Bold values indicate best performing model. 

Top relation 
samples 

Org 
/country_of_headquarter 

person/founded 
org 
/city_of_headquarters 

Person 
/country_of_birth 

org/member_of 

P R F1 P R F1 P R F1 P R F1 P R F1 
F+E+N (Baseline) 79.87 63.08 70.49 76.24 30.61 43.68 76.78 54.76 63.93 77.42 81.96 79.63 80.19 77.26 78.70 
F+EC+NC 75.58 67.75 71.45 75.31 55.01 63.57 77.24 56.36 65.17 70.14 82.12 75.65 81.55 77.83 79.64 
F+TC+NC 62.06 78.10 69.16 69.96 76.30 72.99 72.03 78.23 75.00 68.56 78.63 72.25 66.00 78.22 71.59 
F+EC+TC+NC 75.55 79.34 77.39 75.74 75.84 75.84 74.98 78.13 76.52 74.00 80.02 76.88 63.07 79.20 70.22 

Additional relation 
samples 

person/parents org/shareholders 
org_political 
/religious_affiliation 

Person 
/spouse 

person 
/school_attended 

P R F1 P R F1 P R F1 P R F1 P R F1 
F+E+N (Baseline) 50.25 41.75 45.56 69.61 30.35 48.46 64.87 42.27 55.47 63.70 49.22 55.53 60.50 25.75 36.13 
F+EC+NC 56.54 54.89 55.70 67.76 35.19 46.32 56.94 57.42 57.18 61.19 55.20 58.04 69.40 31.46 43.29 
F+TC+NC 44.67 75.78 56.20 62.72 38.79 47.93 44.46 77.11 56.40 53.83 76.78 63.28 52.08 42.33 46.70 
F+EC+TC+NC 53.12 62.88 57.58 55.38 48.41 51.66 51.16 69.09 56.73 62.63 76.62 68.92 53.77 38.14 44.62 
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Table 5.4 shows several sample relation types, which are broken down into top and 

sample relation types. The top relations are based on pooled results in the matrix models 

which provide the basis for meta-analysis (Bravata et al., 2001). We present three 

models where T and C show strong influence compared to the baseline model (F+E+N), 

namely F+EC+NC, F+TC+NC and F+EC+TC+NC. In most of the models, recalls and 

F-measures have greatly improved. While models with E and N have used references 

for predicting relations on entities, their limitations is in that they are trained for 

relationships between specific entity tuples and relation types, and therefore, are limited 

when an insufficient number of explicit evidence is present for each relation type for 

specific entity tuples. Regarding models with T and C, the relations take advantage of 

selectional preference in the training process due to their co-occurrence and/or clause 

type similarity with other relations. These models exploit advanced features from 

relation characteristics such as clause types and semantic topics for predicting new 

relation instances. They help in predicting any tuple of entities and relations regardless 

of whether they were seen at training time with direct or indirect access in their 

provenance. These results show that the employment of T and C lead to improved recall 

and hence better performance over F-measure, which has been the objective of our 

work. 

5.5.1.2. Discussion 

Now, in terms of the performance of the individual models, we observe that the E 

and T models outperform the N model. The E and T models employ the presentation of 

argument slots while N employs co-occurrence with neighbors. The N model might face 

situations where only a few co-occurrences with other neighbor relations are observed 

that can cause weak evidence in the training process for learning hidden relations. 

However, in the T and E models where their argument slots are presented in high 

dimensions, this could increase the number of desirable co-occurrences. Most of the 

models have increased performance when applying clause type features because the 

clause type information can reduce noise in the training process. 

Interpolated models benefit from the advantages of each individual model. Thus, 

most of the interpolated models achieve better results compared to their constituting 

separate models. Comparing our best models (F+NC+TC) and (F+EC+NC+TC) with 

Riedel et al.'s model (F+E+N) as a baseline, the results reveal that we obtained 55.01% 

of precision and 54.80% of recall in F+NC+TC, and 60.23% of precision and 60% of 



81 
 

recall in F+EC+NC+TC while Riedel et al. achieved 79.58% of precision and 38.51% 

of recall. Applying topic models to the models could reduce precision but increase 

recall significantly when compared to the baseline. Baseline+Topic model (F+E+N+T) 

achieves 51.16% of precision and 53.30% of recall. Our model obtained an 

improvement in recall when compared to the baseline. However, our models also show 

lower precision because applying topic-based features in our models will lead to an 

increasingly higher number of hidden relations for prediction compared to the baseline. 

This can cause a lower precision in our model even when our model predicts more 

hidden relations compared to Riedel et al.’s model. 

5.5.2. Relation Extraction based on Silver Standard Datasets 

The second set of experiments is focused on two unlabeled datasets from New York 

Times and Wikipedia. In order to be able to use these two datasets, we used the relation 

patterns provided by the PATTY dataset6 to automatically extract relation instances 

from these two datasets, which we refer to as the silver standard. As described in Table 

5.5, the two datasets consist of 5,827 sentences of 300 relation types from Wikipedia 

and 7,388 sentences of 300 relation types from NYTimes. Note that, the NYTimes 

dataset used here is different from the dataset used in the previous experiment. Now, 

unlike the first experiment where the gold standard was randomly split into test and 

train sets, we do not use the silver standard relations extracted using the PATTY 

patterns in the training process. Instead, we use several Open IE systems to extract 

relation instances from the two datasets that would then form the training set and will 

be used for initializing the matrix model. More specifically, we employ four Open IE 

systems to extract relation instances for building universal schemas for the matrix 

model: 

 ReVerb (Fader et al., 2011). The system extracts verb phrase-based relations based 

on a set of syntactic and lexical constraints to identify relations based on verb 

phrases and then finds a pair of arguments for each identified relation phrase.  

 OLLIE (Masam et al., 2012). The system, an extension of the ReVerb system, 

uses various heuristics to obtain propositions from dependency parsers. OLLIE 

performs deep analysis on the identified verb-phrase relations and then extracts all 

relations mediated by verbs, nouns, and adjectives, among others.  

 
6 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-

naga/patty/ 
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 ClausIE (Corro et al., 2013). This system exploits linguistic knowledge about the 

grammar of the English language to first detect clauses in an input sentence and to 

subsequently identify each clause type based on the grammatical function of its 

constituents. 

 LS3RyIE (Vo & Bagheri, 2018). The system extends the work by ClausIE with 

grammatical structure reformulations that help identify discrete relations that are 

not found in ClausIE and reduce the number of erroneous relation extractions. 

LS3RyIE has been presented in Chapter 3. 

Table 5.5. Wikipedia and NYTimes datasets7. 

 Relation types Extracted sentences Raw documents 
Wikipedia 300 5,827 55,000 
NYTimes 300 7,388 58,860 

Table 5.6 presents the characteristics of four Open IE systems. These systems use 

different forms of linguistic analysis such as syntactic analysis, dependency analysis 

and grammatical clause analysis. Please note that ClausIE and LS3RyIE systems are 

evaluated with both when they considered grammatical clause structures as well as 

when they did not. 

Table 5.6. Characteristics of OpenIE systems. 

OpenIEs Syntactic 
analysis 

Dependency 
analysis 

Clause 
analysis 

ReVerb + - - 
OLLIE + + - 
ClausIE - + + 
LS3RyIE + + + 

Table 5.7. Accuracy of four OpenIE systems tested against PATTY relation patterns. 

 Citation Wikipedia NYTimes 

ReVerb (Fader et al., 2011) 19.12 % 18.34 % 
OLLIE (Masam et al., 2012) 29.34 % 27.76 % 
ClausIE (Corro et al., 2013) 41.67 % 43.01 % 
LS3RyIE (Vo & Bagheri, 2017) 44.46 % 46.44 % 

5.5.2.1. Results 

Table 5.7 depicts the performance of four Open IE systems on the two datasets 

when compared to the relation instances that are included in the silver standard 

 
7 https://bitbucket.org/thuanvd/matrixfac-data/downloads 
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produced by the PATTY relation patterns. As expected, the results reveal that clause-

based Open IE systems such as LS3RyIE and ClausIE have a better performance 

compared to ReVerb and OLLIE. Regarding Wikipedia and NYTimes, LS3RyIE 

produced 44.46% and 46.66%; ClausIE 41.67% and 43.01%; OLLIE 29.34% and 

27.76% and ReVerb 19.12% and 18.34% in term of accuracy, respectively. Once the 

relation instances were derived from the raw sentences from the two datasets by the 

Open IE systems, we employed the relation instances to initialize the matrix model and 

perform our proposed matrix completion task, the results of which would then be 

compared with the relations in the silver standard dataset. 

Table 5.8. F+E+N vs. F+E+N+T on the Wikipedia dataset. 

OpenIEs 
F+E+N (Baseline) F+E+N+T  

P R F1 P R F1 
ReVerb 13.47 8.79 10.62 12.16 10.74 11.46 
OLLIE 19.49 15.71 17.40 19.52 18.65 19.01 
ClausIE 21.43 20.34 20.87 20.24 25.86 22.71 
ClausIE(clauses) 22.04 21.79 21.91 21.81 29.08 24.03 
LS3RyIE 21.77 25.07 23.31 20.73 30.22 24.59 
LS3RyIE(clauses) 21.95 27.25 24.32 21.00 33.23 25.47 

Table 5.9. F+E+N vs. F+E+N+T on the NYTimes dataset. 

OpenIEs 
F+E+N (Baseline) F+E+N+T 

P  R F1 P R F1 
ReVerb 11.87 8.17 9.71 11.30 10.73 11.02 
OLLIE 17.12 13.66 15.20 15.49 16.98 16.21 
ClausIE 23.72 20.23 21.84 25.12 24.85 24.98 
ClausIE (clauses) 21.89 23.69 22.75 23.08 29.51 25.90 
LS3RyIE 23.59 23.98 23.78 24.39 29.36 26.65 
LS3RyIE (clauses) 22.83 27.32 24.88 24.08 33.54 28.64 

 

Similar to the first set of experiments, we conducted the evaluations on both 

individual and interpolated models for predicting relations with surface schemas 

extracted from the four Open IE systems. Figures 5.3.a and 5.3.b show the performance 

of each model using the four Open IE systems for Wikipedia and NYTimes datasets. 

Similar to the discussion in Section 5.5.1, most of the interpolated models yield better 

results compared to the individual models. Models E+N, E+T, and E+T+N benefit from 

additional aspects of the data compared to individual models E, N and T and take 

advantage of presentation from entities, topic models and related neighbors when 

referencing the argument slot presentation of the matrix. For the Wikipedia dataset, the 
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best performance was observed using the F+EC+TC+NC model especially for the 

LS3RyIE system, which incorporates the use of grammatical clauses. 

(a) 
 

(b) 

Figure 5.3. The performance of different features based on various Open IE systems. 

Wikipedia (a) and NYTimes (b). 

It is easy to see that the models using clause-based Open IE systems such as 

LS3RyIE and ClausIE yielded the best performance compared to syntactic-based or 

dependency-based OpenIE systems (ReVerb or OLLIE). Particularly, the system model 

F+E+T+N obtained 26.03% and 24.56% of F-measure on LS3RyIE when clause 
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information were considered, denoted as LS3RyIE (clauses)8, and ClausIE  (clauses), 

referring to ClausIE when clause information were taken into account. However, when 

clause information was not considered, LS3RyIE obtained 24.59% and ClausIE 

obtained 22.71% in terms of F-measure. Regarding ReVerb and OLLIE, a performance 

of 19.01% and 11.49% on F-measure was observed, respectively. In the F model and 

based on LS3RyIE and ClausIE without the consideration of clause information, a 

performance of 22.84% and 19.46% on F-measure was observed, respectively while 

using OLLIE and ReVerb, we only obtained 12.60% and 8.79% on F-measure. With 

regards to the NYTimes dataset, similar to Wikipedia, performance of the 

F+EC+TC+NC model obtained the highest results compared to other models. 

Particularly, using LS3RyIE (clauses) and ClausIE (clauses), we obtained the highest 

results with 28.05% and26.11% while we only obtained a performance of 26.65% and 

24.98% with LS3RyIE and ClausIE, respectively, when clause information was not 

considered.  

In comparison, we discuss the performance of the model where T and C showed 

strong effectiveness compared with the baseline model (F+E+N) proposed by Riedel et 

al. (2013). Table 5.8 presents the performance of the three models including F+E+N 

and F+E+T+N using four Open IE systems on the Wikipedia dataset. The performance 

of the F+E+N+T model is better than the other models across all Open IE systems. We 

obtained 11.16%, 19.01%, 22.71%, 24.03%, 24.59%, 25.47% on F-measures in the 

F+E+N+T model using ReVerb, OLLIE, ClausIE, ClausIE (clauses), LS3RyIE and 

LS3RyIE (clauses), respectively. In contrast, the baseline achieved 10.62%, 17.40%, 

20.87%, 23.31% on F-measures using ReVerb, OLLIE, ClausIE and LS3RyIE, 

respectively. The topic model-based feature presented in the T model leads to better 

results than the baseline when interpolated with other features. Regarding the 

performance over the NYTimes dataset, shown in Table 5.9, the baseline succeeded in 

producing 9.71%, 15.20%, 21.84% and 23.78% on F-measure by using ReVerb, 

OLLIE, ClausIE, and LS3RyIE, respectively. However, the F+E+N+T model proposed 

in this chapter produced more accurate results with an improved F-measure of 11.02%, 

16.21%, 24.98%, 25.90%, 26.65%, and 28.64% using ReVerb, OLLIE, ClausIE, 

 
8 It should be noted that in Figure 3 as well as Tables 9-12, E, N and T are in fact EC, NC and TC when 
corresponding to the ClausIE (clauses) and LS3RYIE (clauses) rows, because these variations consider 
clause information. ClausIE and LS3RYIE when mentioned without ‘(clauses)’ do not consider clause 
information and hence represent all models without interpolation with the C features. 
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ClausIE (clauses), LS3RyIE and LS3RyIE (clauses), respectively. Thus, it is showing 

that the proposed model based on the features introduced in this chapter provide 

meaningful improvements over the baseline especially on recall, which translates to an 

improved overall F-measure. The improvement in recall is one of the main objectives 

of our work. 

5.5.2.2. Discussion 

Similar to the gold standard dataset, in order to perform more in-depth analysis of 

our work, Tables 5.10-5.11 shows several specific relation types in three models based 

on pooled results where T and C show strong influence on the various models including 

the baseline model in all four OpenIE systems. We report top and random relation types 

in both Wikipedia and NYTimes corpora where top relations are based on pooled 

results. These models take advantage of the E, T and N features in the training process 

due to co-occurrence information with other relations. Note that, E, T, and N models 

are considered as EC, TC and NC in ClausIE (clauses) and LS3RyIE (clauses) systems. 

Now, in terms of the performance of those relation types, in most of the cases, 

F+E+T+N outperform the F+E+N and F+T+N models as it takes advantage of the 

presentation of argument slots based on E and T and co-occurrence with neighbors 

based on N. The combination of F, E, T and N outperforms all other models showing 

the synergistic contribution of each of these features. Relations can benefit from rich 

co-occurrences with other neighboring relations that can provide strong evidence in the 

training process for learning hidden relations. Moreover, given their argument slots are 

presented in a higher dimensional space, this could increase the number of desirable 

co-occurrences for referencing other related relations, e.g., F+E+N vs. F+T+N vs. 

F+E+T+N in ClausIE and LS3RyIE in most of the cases of the relation samples. As 

such, incorporating more data based on topics within F+E+T+N improves the 

performance compared to F+E+N on both Wikipedia and NYTimes as it allows 

semantic topic information to determine relation type similarity. Finally, it should be 

noted that models that use clause information such as ClausIE (clauses) and LS3RyIE 

(clauses) show improved performance compared to their counterparts that do not use 

clause information; hence, pointing to the effectiveness of grammatical clause 

information for improving recall while maintaining precision. 
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Table 5.10. Top and additional relation samples on the Wikipedia. Bold values indicate best performing model. 

Top relation samples 
organization/employer person/country government/location educational_institution/location person/organization_member 

P R F1 P R F1 P R F1 P R F1 P R F1 
ReVerb F+E+N 50.70 39.00 44.08 53.58 33.78 41.43 51.57 30.07 37.98 45.92 32.29 37.91 54.35 31.75 40.08 

F+T+N 60.02 44.73 51.89 61.34 44.73 51.73 35.81 48.76 41.00 49.83 24.03 32.42 35.81 48.76 41.29 
F+E+T+N 45.03 61.96 52.15 36.29 48.66 41.57 29.41 48.67 36.66 27.23 54.86 36.39 32.45 45.45 37.86 

OLLIE F+E+N 56.16 50.25 53.04 60.40 35.83 44.97 42.02 46.62 44.42 50.73 37.54 43.14 54.28 38.03 44.72 
F+T+N 53.21 54.28 53.73 48.64 58.47 53.10 46.99 47.46 47.22 59.28 37.56 45.98 45.70 57.37 50.87 
F+E+T+N 49.24 73.03 58.82 45.12 74.90 56.31 42.07 54.90 47.63 41.68 52.82 46.59 46.21 67.53 54.87 

ClausIE F+E+N 61.12 63.02 62.05 64.13 60.61 62.32 50.06 57.45 53.50 54.36 45.27 49.40 63.32 57.28 60.14 
 F+T+N 62.78 58.23 60.41 60.82 65.96 63.28 48.63 59.40 53.47 43.09 58.48 49.61 60.40 60.78 60.58 

F+E+T+N 60.14 65.13 62.53 64.8 70.00 67.29 50.30 64.24 56.42 54.29 57.38 55.69 60.14 65.13 62.53 
ClausIE 
(clauses) 

F+E+N 55.96 58.93 57.41 55.78 64.46 59.81 70.57 41.09 51.96 61.11 43.47 50.59 64.46 55.78 59.80 
F+T+N 47.43 71.91 57.16 51.93 74.71 62.76 51.88 66.11 58.12 47.18 57.62 51.55 66.79 67.36 67.16 
F+E+T+N 57.35 68.86 62.24 67.55 71.24 69.35 55.03 64.14 59.23 51.07 68.49 58.99 56.35 69.53 62.25 

LS3RyIE F+E+N 75.04 54.05 62.83 64.96 54.68 59.37 60.97 57.59 59.23 68.45 55.61 61.36 68.71 51.69 58.90 
F+T+N 66.06 82.71 73.43 61.37 71.69 66.12 54.81 78.59 64.59 65.44 80.00 71.99 56.92 65.08 60.72 
F+E+T+N 65.20 80.90 72.20 59.24 70.03 64.18 60.14 61.15 60.64 63.05 79.26 70.22 60.00 60.60 60.02 

LS3RyIE 
(clauses) 

F+E+N 77.53 61.32 68.48 87.03 51.99 65.09 55.57 73.89 63.43 70.34 61.69 65.73 70.06 57.62 63.23 
F+T+N 76.21 76.93 76.60 63.40 76.08 69.16 55.98 81.67 66.43 68.26 78.60 73.06 64.38 67.47 64.42 
F+E+T+N 76.78 77.78 77.25 66.79 67.35 67.06 56.75 80.00 66.39 66.06 84.00 73.95 55.67 83.80 66.20 

Additional relation 
samples 

tv_actor/program project/location employer/location govermental_jurisdiction/country business_operation/citytown 
P R F1 P R F1 P R F1 P R F1 P R F1 

ReVerb F+E+N 35.32 23.96 28.55 30.54 12.73 17.97 29.49 24.84 26.96 29.35 15.99 20.70 39.37 19.65 26.22 
 F+T+N 22.26 47.49 30.37 11.66 38.33 17.88 23.18 28.23 25.46 13.50 45.87 20.86 26.49 21.17 23.53 

F+E+T+N 36.30 28.31 31.8 17.77 27.66 21.63 24.33 40.13 30.29 24.76 25.10 24.92 35.15 22.88 27.71 
OLLIE F+E+N 35.79 38.55 37.11 30.56 13.72 18.93 40.12 29.27 33.84 32.98 16.07 21.61 40.95 26.97 32.52 

F+T+N 44.22 36.97 40.27 13.48 36.50 19.68 35.58 42.71 38.82 18.85 29.69 23.06 32.06 38.74 35.09 
F+E+T+N 41.19 36.70 38.81 19.70 26.63 22.64 29.01 45.62 35.47 27.14 27.07 27.10 38.47 29.25 33.23 

ClausIE F+E+N 59.49 30.32 40.16 19.70 31.90 24.35 49.14 25.41 33.50 37.80 19.46 25.69 32.32 41.34 36.28 
F+T+N 43.68 42.20 42.92 16.82 46.70 24.73 46.14 32.04 37.81 18.88 43.95 26.41 31.78 47.10 37.95 
F+E+T+N 50.90 42.07 46.07 18.51 52.89 27.42 47.29 31.96 38.14 19.63 49.24 28.07 31.89 51.08 39.26 

ClausIE 
(clauses) 

F+E+N 61.11 43.57 50.87 17.76 38.11 24.22 50.57 29.97 37.64 41.66 19.40 26.47 45.66 31.36 37.18 
F+T+N 38.00 52.32 44.02 17.64 46.72 25.61 29.05 62.70 39.70 28.64 24.21 26.24 30.34 54.38 38.95 
F+E+T+N 46.61 49.19 47.62 19.90 38.43 26.22 36.19 50.62 42.20 36.24 30.21 32.95 34.87 52.64 41.95 

LS3RyIE F+E+N 63.82 38.18 47.77 28.99 21.49 24.68 53.03 26.93 35.72 37.38 21.53 27.32 54.00 24.98 34.15 
F+T+N 54.32 51.43 52.84 26.35 28.81 27.15 31.01 50.00 40.41 27.83 44.56 34.26 36.88 53.28 43.58 
F+E+T+N 41.34 59.38 48.74 25.09 28.16 26.53 32.45 52.65 40.15 25.20 44.41 32.15 33.04 59.61 42.51 

LS3RyIE 
(clauses) 

F+E+N 44.20 50.08 46.95 28.46 25.10 26.74 42.33 38.88 40.53 36.07 23.90 28.75 60.57 29.19 39.40 
F+T+N 47.60 70.91 56.96 25.19 32.58 28.41 33.60 58.88 42.78 33.75 25.75 29.21 53.55 34.17 41.71 
F+E+T+N 52.61 62.42 57.10 20.10 38.72 26.46 37.23 54.58 44.26 28.48 34.24 31.10 52.61 37.90 44.06 
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Table 5.11. Top and additional relation samples on the NYTimes. Bold values indicate best performing model. 

Top relation samples 
country/sport_team_location actor/film location/employer country/organization_member organization/location 

P R F1 P R F1 P R F1 P R F1 P R F1 
ReVerb F+E+N 53.30 59.67 56.30 53.16 32.48 40.32 61.40 31.22 41.39 61.63 29.03 39.46 41.27 41.42 41.34 

F+T+N 45.81 75.78 57.10 27.30 74.56 39.96 35.04 50.00 41.20 30.67 76.07 43.71 29.11 62.54 39.72 
F+E+T+N 47.42 76.92 58.67 30.38 76.10 43.42 27.95 75.40 40.78 34.02 62.38 44.02 40.07 43.84 41.87 

OLLIE F+E+N 50.70 40.39 44.08 53.58 33.78 41.43 54.35 31.75 40.08 51.57 30.07 37.98 45.92 32.29 37.91 
F+T+N 60.02 45.70 51.89 61.34 44.73 51.73 35.81 48.76 41.29 39.63 42.48 41.00 24.03 49.83 32.42 
F+E+T+N 45.03 61.96 52.15 36.29 48.66 41.57 37.64 38.10 37.86 29.41 48.67 36.66 27.23 54.83 36.39 

ClausIE F+E+N 73.76 68.10 70.81 68.60 61.67 64.95 65.61 62.84 64.19 76.33 48.05 58.97 53.13 61.30 56.92 
 F+T+N 63.00 77.73 69.59 61.71 69.08 65.18 54.08 74.23 62.57 56.19 75.11 64.28 53.39 68.57 60.03 

F+E+T+N 70.25 83.56 76.34 71.21 73.47 72.32 64.11 74.04 69.28 54.33 82.67 65.56 57.87 72.63 64.41 
ClausIE 
(clauses) 

F+E+N 75.93 72.09 73.96 76.87 68.98 72.71 75.02 66.79 70.66 79.80 60.22 68.66 69.13 56.96 62.45 
F+T+N 74.04 74.04 74.57 61.15 74.84 67.30 61.20 69.73 65.18 53.78 82.25 65.02 52.83 84.11 64.89 
F+E+T+N 81.24 81.31 81.12 72.37 73.96 73.15 65.03 81.21 72.22 61.94 82.45 70.66 60.36 65.56 62.85 

LS3RyIE F+E+N 67.61 75.21 71.20 72.27 62.65 67.11 69.95 64.91 67.33 75.19 52.88 62.09 61.81 60.12 60.95 
F+T+N 69.94 69.96 69.95 72.75 62.61 67.30 65.08 69.87 67.39 56.70 75.38 64.71 53.85 69.33 60.61 
F+E+T+N 77.03 80.19 78.56 69.17 72.65 70.86 69.96 75.50 72.62 64.08 76.25 69.63 64.00 67.87 65.87 

LS3RyIE 
(clauses) 

F+E+N 72.33 71.61 71.96 74.96 59.96 66.62 82.71 59.44 69.17 74.08 57.44 64.70 75.38 53.62 62.66 
F+T+N 67.75 76.01 71.64 61.59 79.34 69.34 63.08 80.33 70.66 61.37 76.52 68.11 67.10 68.03 67.56 
F+E+T+N 83.57 83.40 83.48 66.59 77.17 71.49 72.77 78.77 75.65 68.49 71.24 69.83 61.17 79.26 69.05 

Additional relation 
samples 

award_winner/employer kingdom/country person/alternate_name olympic_participating_country/location country/statistical_region 
P R F1 P R F1 P R F1 P R F1 P R F1 

ReVerb F+E+N 18.43 18.83 18.37 12.98 33.18 18.66 45.92 32.29 37.92 32.42 25.23 28.37 12.73 30.54 17.96 
F+T+N 14.64 24.95 18.45 11.68 46.27 18.65 24.03 49.83 32.42 25.49 37.82 30.45 11.66 38.33 17.88 
F+E+T+N 17.77 27.66 21.64 14.05 51.65 22.09 27.23 54.86 36.40 31.27 38.67 34.57 13.36 48.38 20.94 

OLLIE F+E+N 22.63 23.96 23.27 24.17 29.00 26.36 54.63 42.62 47.88 51.67 50.23 50.93 26.39 28.60 27.45 
F+T+N 16.10 32.42 21.51 17.77 39.83 24.57 41.19 54.98 47.09 51.60 53.74 52.65 20.38 36.23 26.08 
F+E+T+N 22.49 29.83 25.64 27.68 31.18 29.33 46.06 48.52 47.26 48.61 57.46 52.67 30.86 36.08 33.27 

ClausIE F+E+N 16.01 42.92 23.32 28.48 19.35 23.04 38.13 49.26 42.98 67.85 42.51 52.27 46.94 19.33 27.38 
F+T+N 15.73 53.08 24.26 21.83 27.01 24.15 37.06 56.86 44.87 54.58 56.90 55.71 34.02 25.74 29.31 
F+E+T+N 25.01 37.27 29.93 22.62 39.89 28.86 50.61 52.82 51.69 50.90 70.05 58.96 36.51 28.52 32.02 

ClausIE 
(clauses) 

F+E+N 19.83 38.01 26.06 26.51 25.06 25.76 41.37 47.87 44.38 53.30 59.67 56.30 34.95 26.01 29.82 
F+T+N 23.08 41.72 29.71 23.05 38.59 28.86 44.47 54.13 48.82 51.41 60.78 55.70 25.28 58.33 35.27 
F+E+T+N 29.75 37.45 33.15 26.39 39.47 31.63 42.32 69.03 52.47 48.72 71.21 57.85 35.90 38.78 37.28 

LS3RyIE F+E+N 21.48 50.00 30.05 42.22 20.97 28.02 34.02 62.38  44.03 52.16 50.00 51.05 50.00 35.04 41.20 
F+T+N 21.60 51.01 30.34 35.51 27.26 30.84 34.90 65.96 45.65 50.00 62.76 55.65 28.07 61.50 38.54 
F+E+T+N 29.48 44.04 35.31 32.25 30.00 31.08 35.58 79.05 48.97 63.06 64.48 63.76 30.30 69.67 41.94 

LS3RyIE 
(clauses) 

F+E+N 27.03 22.12 24.33 44.52 19.36 26.98 44.52 53.62 48.65 49.61 57.80 53.40 51.84 36.71 43.00 
F+T+N 21.29 50.71 29.98 32.70 25.54 28.68 42.28 61.31 50.47 47.41 70.37 56.65 42.23 52.08 46.70 
F+E+T+N 29.20 38.55 33.60 39.55 29.20 33.60 51.88 63.59 57.14 54.63 73.89 62.81 47.06 41.57 44.14 



89 
 

Table 5.12. Time complexity. 

Time complexity Cost 
Stochastic Gradient Descent O(mnk) 
F Model O(nm2+n3) 

N Model O(mni); O(mn); O(mn2) 
E Model O(mnj); O(mn); O(m2n) 
T Model O(mnh); O(mn); O(m2n) 

Table 5.13. The execution time breakdown (in minutes) for the matrix models. 

Models 
ReVerb OLLIE ClausIE (clauses) LS3RyIE (clause) 

Wiki NYTimes Wiki NYTimes Wiki NYTimes Wiki NYTimes 
E 39.4 44.5 41.4 46.8 44.5(47.8) 52.8(59.3) 48.4(53.1) 53.7(62.4) 
N 37.2 40.5 35.8 42.4 38.0(41.3) 45.2(49.1) 41.3(45.9) 46.0(51.7) 
T 42.5 48.7 43.1 47.7 46.7(49.7) 54.4(60.4) 51.9(55.2) 56.6(63.6) 
F 49.1 58.7 55.7 60.3 64.2 69.7 65.6 71.2 
Mean 42.1 48.1 44.0 49.3 48.3(50.8) 55.5(59.6) 51.8(55.0) 56.9(62.2) 
E+N 85.2 94.7 97.6 113.3 98.6(104.9) 117.2(131.2) 107.2(116.5) 128.6(139.5) 
T+N 92.3 105.5 92.0 124.4 100.8(106.1) 132.2(145.3) 112.0(117.9) 135.3(154.2) 
E+T 89.5 107.6 90.2 122.2 95.7(104.0) 135.7(142.5) 104.6(115.6) 140.7(151.3) 
F+E 95.4 119.2 113.2 131.6 103.7(112.7) 149.8(154.3) 113.9(125.2) 155.3(163.8) 
F+N 94.6 116.4 102.5 127.8 110.0(118.2) 146.9(149.6) 124.8(131.4) 145.0(158.8) 
F+T 97.5 122.3 105.7 131.9 128.6(135.4) 145.4(156.5) 130.1(135.5) 156.2(164.2) 
Mean 92.4 111.0 100.2 125.2 106.2(113.6) 137.8(146.6) 115.4(123.7) 145.0(155.3) 
E+T+N 102.4 126.5 103.2 116.9 114.3(119.1) 137.0(145.5) 123.0(127.3) 146.5(150.8) 
F+E+N 108.4 128.6 114.5 125.6 128.2(132.1) 141.6(157.8) 133.6(141.8) 154.1(162.5) 
F+N+T 113.9 128.9 120.4 148.9 134.2(141.3) 149.8(162.4) 136.7(150.2) 159.3(165.9) 
Mean 108.2 128.0 112.7 130.4 125.6(130.8) 135.5(155.2) 131.5(139.8) 153.3(159.7) 
F+E+T+N 115.7 131.5 122.1 132.3 129.9(137.2) 153.7(161.8) 136.5(143.7) 162.8(166.4) 

5.5.3. Execution Time 

We have measured the execution time of the different models when we use them to 

build universal schemas for the matrix model. It should be noted that our work in this 

chapter works with patterns that are extracted by OpenIE systems at the sentence level 

where the result of each sentence is independent from other sentences. Therefore, it is 

possible to easily distribute the processing of the system and immensely scale it as 

required. Regarding the execution time performance of the matrix models, our work 

requires time for executing the matrix factorization process. We ran our system on a 

server computer with 24 cores, 62GB RAM and 10TB hard disk. For the time 

complexity in the models with m rows and n columns, PCA has O(nm2+n3) with 

covariance matrix computation of O(nm2) and eigen-value decomposition computation 

of O(n3) (Johnstone et al., 2009). The N, E, T models perform a process to calculate 

cells in the matrix with their references. N model takes O(mni) with i references (0 ≤ i≤ 

n) while E and T models take O(mnj) and O(mnh) with j, h references (0≤ j≤m; j≤h≤m), 
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respectively. Moreover, the process of Stochastic Gradient Descent takes O(mnk) with 

k iterations (Zhang, 2004). The details of time complexity are as shown in Table 5.12. 

The best time complexity of N, E, T models are O(mn) when their references are only 

one. When the references of N, E, T Models are equal with m or n as well, the worst 

time complexity of N, E, T models are O(mn2), O(m2n) and O(m2n), respectively. 

Table 5.13 shows the details of the execution time performance of our work for 

individual models and interpolated models on both Wikipedia and NYTimes corpora. 

In most of the cases, the execution time performance of each model is based on how 

many dimensions the matrix model has. Matrices with higher dimensions require more 

time than lower dimensional matrices. In individual models, the execution time of the 

N model is the fastest while the F model takes the most amount of time, e.g., the 

execution of the N model takes 37.2m while the execution of the F model takes 49.1m 

when performed using ReVerb. For the interpolated models, there is less difference in 

terms of execution time between different interpolated models as each individual model 

can be executed in parallel and only interpolated when the results of all individual 

models are available, e.g., the mean execution time of the interpolated F+E+T+N model 

takes 153.7m (161.8m) and 162.8m (166.4m) based on ClausIE (clauses)  and LS3RyIE 

(clauses) while the interpolated model F+E requires around 137m (146.6m) and 145m 

(155.3m) on the same NYTimes corpus. Based on our experiments, we conclude that it 

is possible to easily distribute the different models required by our work and hence scale 

it to large-scale relation extraction scenarios. 

5.5.4. Summary of Findings 

The objective of our work in this chapter has been to explore how relation extraction 

based on a matrix completion approach can be performed in such a way that high 

precision relations can be extracted while many relations are retrieved, i.e., a high recall 

rate is maintained. We introduced features such as those based on statistical topic 

models as well as grammatical clause structure, which, theoretically-speaking, had the 

potential to improve recall. Through our extensive experiments, we have made the 

following observations: 

1. The interpolation of grammatical clause structure information with other 

features improves both recall and precision as shown in Table 5.2. 
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2. The interpolation of statistical topic models with other features significantly 

improves recall rates at the cost of precision as shown in Table 5.3. However, it 

should be noted that the overall F-measure metric is improved noticeably. 

3. The interpolation of any of the base models with either clause structure and/or 

statistical topic models consistently improves recall and hence leads to 

improved F-measure. 

As such, we find that the work proposed in this chapter is able to address its 

objective, which was to improve the overall performance of the relation extraction 

process as well as address the limitation of the earlier work that was related to a low 

recall. We have shown that our proposed approach improves recall and f-measure while 

maintaining a reasonable precision. 

5.6. Concluding Remarks  

In this chapter, we have presented a framework for predicting potential relation 

instances based on feature enrichments applied to matrix models that are used in a 

matrix completion process. We have exploited universal schemas that are formed as a 

collection of patterns from Open IE systems and relation schemas from pre-existing 

datasets to build a matrix model in order to use matrix factorization and collaborative 

filtering to predict relations. While previous systems have trained relations only for 

entities, we further exploited advanced features such as clause types and statistical topic 

models for predicting implicit relation instances. Particularly, we exploited clause-

based features extracted from Open IE systems combined with topic models for 

predicting potentially relevant relation instances. We have carried out extensive 

experiments on both gold and silver standard datasets. The results of these experiments 

show that features based on grammatical clause patterns and statistical topic models are 

able to increase the recall of the relation extraction task while maintaining a reasonable 

precision, hence leading to an improved overall performance over F-measure when 

compared to the baseline. 
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Chapter 6 

Extracting temporal and causal event relation 

based on event network 

 

Event relations specify how different event flows expressed within the context of a 

textual passage relate to each other in terms of temporal and causal sequences. In this 

chapter, we present event network method to temporal and causal relation extraction 

that operates at the document level. More specifically, we benefit from existing Open 

IE systems to generate a set of triple relations that are then used to build an event 

network. The event network is bootstrapped by labeling the temporal disposition of 

events that are directly linked to each other. We then systematically traverse the event 

network to identify the temporal and causal relations between indirectly connected 

events. 

6.1. Introduction 

Learning temporal and causal relationships between events that have been 

mentioned in a textual passage is an important task in information extraction towards 

deeper language understanding (Qian et al., 2019; Zhang et al, 2018; Navarro-Colorado 

et al., 2016, Ye et al., 2019, Fan et al., 2019). Temporal and causal relations can happen 

both between events within the same sentence and between events across sentences in 

a document. Understanding relations between events in a document is beneficial to 

various Natural Language Processing applications such as question answering (Abacha 
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et al., 2016; Ji et al., 2013; Qian et al., 2019), document summarization (Ji et al., 2013; 

Verhagen et al., 2010, Kim at al., 2018) and textual entailment (UzZaman et al., 2013; 

Verhagen et al., 2010). Moreover, identifying the causal and temporal relation between 

events is an important step in predicting occurrence of future events, and can be 

beneficial in risk analysis as well as proactive decision making (Hogenboom et al., 

2016). 

 

 

Figure 6.1. Samples of direct relation events and indirect event relations in textual 
document. 

An increasing amount of recent work has focused on recognizing temporal and 

causal event relations within a document, but mostly limited to identifying intra 

sentences causal relations with explicit causal indicators. Mirza & Tonelli (2014a) and 

Laokulrat et al. (2015) have reported that incorporating temporal information can 

improve the performance of a causal relation classifier. These authors have developed 

and annotated a causal corpus (Causal-TempBank) based on the TempEval-3 corpus 

(Mirza and Tonelli, 2014a) for the task of causal event relation. Mirza and Tonelli 

(2016a) built both a rule-based multi-sieve approach and a feature-based classifier to 

recognize causal relations in Causal-TimeBank. These approaches to temporal and 

causal relation classification use machine-learning-based classifiers (Laokulrat et al., 

2013; Laokulrat et al., 2015; Mirza et al., 2014; Miraza et al., 2016a) that are trained 

based on a predefined, finite and fixed schema of relation types. The common strategy 

of these techniques is to generate linguistic features based on syntactic, dependency, or 

shallow semantic structures of the text. Based on these features, supervised learning 

methods are used to identify pairs of events that are related to each other and can be 
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classified into pre-defined relation types. However, the state-of-the-art approaches 

(Laokulrat et al., 2015; Mirza et al., 2016a) suffer from two key drawbacks. First, they 

are focused on a limited subset of features, which might not, in many cases, be present 

in every sentence or be sparsely available. Second, training on linguistic structures such 

as the output of syntactic and dependency parsers does not necessarily identify all 

possible types of event relations when they are presented in different sentences or 

different documents. 

One of the main challenges for achieving comprehensive temporal and causal 

relations is that such event relations are sparse among all the event pairs in a document 

and few causal event relations are explicitly stated. The challenge is especially true for 

identifying cross-sentence causal event relations and most of them have no clear causal 

indicators. For instance, considering the three sentences shown Figure 6.1, the events 

in both <e2-e3>, <e5-e8> are related to each other by the “BEFORE” temporal relation 

type. Here, while e2 and e3 are present in the same sentence, events e5 and e8 are in 

different sentences. As such, sentences that rely on features based on grammatical 

parsers can fail to identify correct relation types. We observe that events occur in action 

flows that happen throughout the documents. Therefore, for improving event relation 

identification, we consider an event network representation that involves the 

connections between event flows of a document and can capture cross-sentence event 

relations in a document. Our event network captures structural distributions of events 

within a document, for performing comprehensive event identification for event 

relation extraction. In addition to the global event structures related to the structure of 

events in a document, we model event networks of fine-grained event structures in order 

to accurately identify each individual relation.  

In this chapter, our objective is to address these challenges by adopting an Open 

Information Extraction (Open IE) approach (Corro et al., 2013; Vo & Bagheri, 2018), 

which is able to extract relations and their arguments without the need to restrict the 

search to predefined relation types, in order to build the event network for event relation 

extraction. Particularly, we consider and incorporate all identified Open IE patterns that 

consist of at least one event instance in the event network, which is then systematically 

traversed for identifying temporal relations. As an example in Figure 1, both <e2-e3> 

and <e5-e3> relations can be extracted from two Open IE patterns, namely (“President 

Bush”, “has approved”, “duty-free treatment for imports”) and (“Timex”, “had 

requested”, “duty-free treatment”), respectively. The event network is built based on 
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such patterns identified and extracted by Open IE where each triple will be represented 

as two vertices connected by an edge. The traversal of this event network allows us to 

identify indirect relations through event coreference relations in the network. 

Furthermore, we employ a shortest path strategy to determine the event flow between 

two events based on the constructed event network.  

Our most significant contributions are as follows: 

● We propose an event network structure primarily based on information from Open 

IE systems for extracting temporal and causal relations between events. The event 

network is the basis for systematically exploring the event flow between events by 

considering how events can be reached from one another. 

● We present a method to measure the weight of event flows to detect shortest paths 

between events. Through the weight, shortest paths are identified that can 

ultimately lead to higher confidence event relation extractions. 

● We present algorithms for temporal and causal relation extraction that make it 

possible to reason over the set of relations observed in the event flow to make a 

determination about the relation between two events. Indirect relations are inferred 

through transitive inferences over direct relations. 

● Our approach works at the document level and hence can identify event relations 

between events that have been expressed across different sentences. This is made 

possible due to the linking of different events in the proposed event network whose 

linking transcends individual sentences and forms a representation of events in the 

document. 

 

The rest of this chapter is organized as follows: section 6.2 offers detailed 

description of our proposed approach to construct event network for event extraction.  

Following that, we present the methods used for causal and temporal relation extraction 

with regards to rule-based sieve and transitivity process in the network in Section 6.4 

and 6.5. Section 6.6 offers an in-depth analysis of our experiments for temporal and 

causal event extraction where the results obtained from our proposed approach are 

compared to the state-of-the-art systems. In the last section, we draw conclusions about 

the merits of our work and offer ways to advance the literature in the future. 
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Figure 6.2. An overview of the proposed approach with (a) Open IE extraction, (b) 
event network construction, and (c) event flow extraction. 

6.2. Overview of our Proposed Approach 

Traditional methods for event relation extraction are primarily developed at the 

sentence level (Zhou et al., 2010; Mirza et al., 2016a) and hence do capture longer event 

relations that span over multiple sentences or across a document. In order to address 

this issue, we build our work on Open IE systems that are able to automatically extract 

triples in the form of (arg1, rel, arg2) representing basic propositions or assertions from 

text. The main benefit of using Open IE systems is that they are not limited to a sentence 

level restriction and can operate over a document. As such, we intend to address the 

limitation of earlier work by exploiting the characteristics of Open IE systems for 

identifying event relationships. To this end, we benefit from Open IE to build an event 

network that can capture temporal and causal event relations across different sentences 

at the document level. The proposed event network aims at identifying the temporal 

and causal event relations in a document, both within a sentence with direct links and 

across sentences with indirect links. Our method captures event relations from event 
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flows by detecting paths in the event network. We present algorithms to analyze event 

flows in the proposed event network that will be used to identify temporal and causal 

event relations. An overview of our proposed approach is illustrated in Figure 6.2. As 

shown in the figure, we first exploit an Open IE system to extract relation triples in a 

document in order to build an event network (Figure 6.2a). For each triple extracted by 

the Open IE system, each of the two entities will form a node in the event network and 

an edge will be connecting the two nodes to each other (Figure 6.2b). Once the network 

is fully built, we identify potential temporal or causal relations between two nodes of 

the event network by performing specific forms of traversal on the event network 

(Figure 6.2c). 

 

 

Figure 6.3. Building a sample event network with events e2, e3, e11, e12 and e10. (a) 
Open IE relation triples; (b) constructing the event network with matching arguments; 

(c) finalizing the construction of the event network after matching. 

6.3. Graph-based event network 

Our proposed graph-based event network is built directly from triples generated by 

Open IE systems. Two events that are present in the same extracted pattern are 

considered as two event nodes in the event network that are directly connected to each 

other with an edge. The collections of all the extracted Open IE triple patterns are used 

to complete the event network. Let us denote an event network as a graph G(V, E) where 

each vertex denotes an event and each edge denotes a relation. Based on the event 

network, the objective is to determine the existence and type of relation between two 
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event nodes such as (X, Y) expressed as R(X, Y). In the event network, identifying 

temporal and causal event relations will involve the consideration of event flows in the 

form of network paths. For example, given a network with set of relation nodes (e2, e3), 

(e3, e11), (e11, e12), (e2, t1) shown in Figure 6.2b, in order to determine the relation (e2, 

e12), we need to identify the network path (e2 → e3 → e11 →e12) between e2 and e12. It 

can be observed that the relations between (e2, e3), (e3, e11) and (e11, e12) are informative 

indicators for predicting the relation (e2, e12). Based on such a network path and if we 

know that event e2 began concurrently with event e3, and e12 started before the 

occurrence of event e11 and e3, then we can determine that event e2 happened after e12. 

Let us first cover the process through which we build the event network. The basic 

idea behind building the event network is that it operates based on a set of Open IE 

triples and a set of events representing the arguments of these triples. Summarily, we 

process each triple produced by the Open IE system by creating a matching vertex for 

each of the triple’s arguments in the event network. The two vertices corresponding to 

the triple arguments would then be linked together through an edge in the event 

network. It should be noted that a matching method is used in order to ensure that events 

already identified in previous triples do not represent new vertices and are matched to 

existing vertices in the event network, e.g.  events e3 and e11 shown in Figures 3a and 

3b are matched with each other as they both reference “duty-free treatment”. After 

processing each individual triple and creating corresponding vertices and edges, as well 

as ensuring that similar vertices are folded into one to avoid duplicates, the resulting 

graph forms our intended event network.  

Now given this event network and by considering the shortest path between each 

pair of nodes in the network (Olya et al., 2014), it is possible to infer the type of the 

event relation between source and target nodes based on the set of event relations 

observed on the shortest path. Indirect event relations can be inferred through 

transitivity of relations (Allen, 1984; Laokulrat et al., 2015) on direct relations as shown 

in Figure 6.4. For instance, consider events e1 and e4 in Figure 6.4a. Given the fact that 

the shortest path between events e1 and e4 passes through e2, it is possible to infer that 

because event e1 happened before e2 and e2 occurred prior to event e4 that e1 also 

happened before e4. 
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Figure 6.4. Inferred relations; a) Inferred sample relations in three nodes path (e1-
e4, e2-e3, e1-e5, e4-e5) with b: before; i: includes; a: after; b) Recursively inferred 

relations. 

 

Input:     Graph G = (V, E) 
               Pair of events  {X, Y} 
Output:  Type of relation R(X, Y) 
 
  1:   if Direct(X, Y) ∈ G then 
  2:          R(X, Y)  Rules(E{X, Y}, G) 
  3:          Update(G) 
  4:   else if Indirect(X, Y) ∈ G then 
  5:                 R(X, Y)  Time{X,Y}⊕Tense{X,Y} 
  6:                 Update(G)  
  7:          if  R(X, Y)=NULL then 
  8:                         Event-flow{X,Y}  Shortest-path({X, Y}, G)) 
  9:                         Rules(Event-flow{X,Y}, G)  
10:                         R(X, Y) Infer(Event-flow{X,Y}) 
11:                         Update(G) 
12:          end if 
13:  return R(X, Y) 

Algorithm 6.1. The outline of the process for identifying temporal relations. 

6.4. Temporal Event Relation Extraction 

According to the TempEval-3 task description (Mirza et al., 2016a and Laokulrat et 

al., 2015), two pairs of temporal events can be related to each other through one of four 

groups, namely Timex-Timex, Event-DCT, Event-Timex and Event-Event where DCT 

denotes Document Creation Time and Timex denotes Temporal Expressions. A pair of 

temporal entities, including events and temporal expressions, annotated as a temporal 

relation, is called a TLINK. Temporal relation recognition is the task of classifying 
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TLINKs into temporal relation types. It uses a complete set of TLINK relations, which 

consists of 13 types of temporal relations shown in Table 6.1.  

In this chapter, we present a method to extract both direct and indirect temporal event 

relations in the event network. The objective is to determine the existence and type of 

temporal relation between two event nodes such as (X, Y) expressed as R(X, Y) in the 

event network. Algorithm 6.1 presents the pseudo-code for our proposed algorithm for 

identifying temporal relations. The basic idea behind our algorithm is that it takes a 

Graph G(V, E) and a pair of events (X, Y) and subsequently determines relation R(X, 

Y). Our algorithm distinguishes between relations whose nodes are directly connected 

to each other in the network, denoted by Direct(X, Y), and those events whose nodes 

are not directly connected, shown as Indirect(X, Y). If the relation is concerned with 

two directly connected events, we employ a rule-based model to determine the type of 

the relationship. 

Table 6.1. Temporal relation types9. 

Relation Description 
BEFORE One before the other 
AFTER One after the other 
BEGINS One being the beginning of the other 
BEGUN_BY One being begun by the other 
DURING One holding during the duration of the other 
END_BY One being ended by the other 
ENDS One being the ending of the other 
IBEFORE One immediately before the other 
IAFTER One immediately after the other 
IDENTITY Referring to the same event 
INCLUDES One including the other 
IS_INCLUDES One being included in the other 
SIMULTANEOUS One is simultaneous with the other 

Determining temporal relation types for direct relations 

Inspired by the work in Chambers et al. (2014) and Mirza et al. (2016a), the temporal 

rule-based model relies on hand-crafted rules. In the rule-based model, we separate 

temporal constructs containing temporal features of event relations. Some of the 

relations between the events are captured based on morpho-syntactic information from 

their textual expression. Several relations are based on semantic information such as 

typical event duration while other relations are computed independently based on 

 
9 http://www.timeml.org 
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dependency paths. We also include rules for predicting relations between reported 

events (Timex and DCT events) and other events based on their time characteristics and 

syntactically captured tense. We introduce four categories of rules as follows: 

Timex-Timex (T-T).  For Timex-Timex  relations, we take temporal expressions such 

as DATE, TIME and DURATION into consideration and then identify the relation 

types based on their normalized values. For example, the day after last Monday will be 

normalized into 15-Jan-2019 if last Monday was 16-Jan-2019. 

Event-DCT (E-DCT). To predict relation types of E-D event pairs the rules are based 

on tense and aspect of entity events. For instance, the event entity “will attackE”, which 

is in the future tense, its relation between E-DCT will be recognized as “AFTER”. 

Hence, we have separate rules as follows: 

   if E ∈ Tense(PAST) then label(BEFORE) 

   if E ∈ Tense(PRESENT) and PROGRESSIVE(E, D) then label(INCLUDES) 

   if E ∈ Tense(FUTURE) then label(AFTER) 

 

Event-Timex (E-T). The rules built for Event-Time exploit the senses of prepositions 

(Litkowski and Hargraves, 2006; Litkowski, 2014). We consider extracting the 

dependency path between an event e and a timex t via modifiers. Six types of time 

prepositions are defined for constructing the rules such as STARTTIME (e.g., from, 

since), ENDTIME (e.g., until), DURATION (e.g., during), FOLLOWTIME (e.g., 

after), PRECEDINGTIME (e.g., before), and POINTTIME (e.g., in, on, at). For 

instance, when t is presented in the POINTTIME form and its dependency modifier is 

compound, the event relation will be recognized as ‘IS INCLUDED’. These rules 

are defined as follows: 

   if DP NMOD(E, T) ∈ STARTTIME then label(BEGUN_BY) 

   if DP NMOD(E, T) ∈ ENDTIME then label(END_BY) 

   if DP NMOD(E, T) ∈ DURATIONTIME then label(DURING) 

   if DP NMOD(E, T) ∈ FOLLOWTIME then label(AFTER)             

   if DP NMOD(E, T) ∈ PRECEDINGTIME then label(BEFORE) 

   if DP NMOD(E, T) ∈ POINTTIME then label(IS_INCLUDED) 
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Event-Event (E-E).  The rules for event pairs (e1, e2) are constructed in two sets based 

on dependency paths and the verbs surrounding the events. We extract the dependency 

path between event e1 and event e2 to build the first set of rules. For the second set, the 

rules are built based on the tense aspects of events e1 and e2. For instance, if event e2 is 

the logical subject of e1 as in “...the chain reaction touchede1 off by the collapsee2 of 

Soviet Union”, events e1 and e2 are connected by an AFTER relation. The following 

rules are based on the tense aspect of each event as follows: 

        if DP LGS-PMOD(E1, E2) and VERB-AUXPASS(E1) then label(AFTER) 

   if DP LOC-PMOD(E1, E2) and AVERB-LOC(E1) then label(IS_INCLUDED) 

   if DP XCOMP(E1, E2) and PROGRESSIVE(E1) then label(SIMULTANEOUS) 

   if DP XCOMP(E1, E2) and VERB-TERMINATION(E1) then label(ENDS) 

   if DP XCOMP(E1, E2) and VERB-INITIATION (E1) then label(BEGIN) 

        if DP XCOMP(E1, E2) and VERB-CONT(E1) then label(INCLUDES) 

   if DP XCOMP(E1, E2) then label(BEFORE) 

Determining temporal relation types for indirect relations 

Once the type of relations for the events that are directly connected to each other in the 

event network are determined based on the introduced rule sets, we determine the 

relation types for indirect relations based on their event flow. Algorithm 1 proceeds to 

detect types of each event relations primarily based on transitivity between direct 

relations in the shortest path between any given two events as shown in Figure 4a. It is 

possible to reason over the set of temporal relations observed on the shortest path to 

make a determination about the type of temporal relation between the two source and 

target events. In our work, indirect relations are inferred through transitivity of temporal 

relations (Allen, 1983; Laokulrat et al., 2015). The possible transitive inferences for 

temporal relations are shown in Table 6.2. The table shows how a transitive inference 

will be made given the temporal relations shown on the columns and rows of the table. 

For instance, if event X occurs BEFORE event E and event E happens immediately 

BEFORE event Y, we can infer a new temporal relation “X happens BEFORE Y” based 

on transitive inference in Table 6.2 (the cell at the intersection of the BEFORE column 

with the BEFORE row). 
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Table 6.2. Transitive table of temporal relation types; and UNDEF is tagged as undefined relation. 

 BEFORE AFTER IBEFORE IAFTER IDENTIFY INCLUDES IS_INCLUDED DURING SIMULTANEOUS BEGINS BEGUN_BY END END_BY 
BEFORE BEFORE UNDEF BEFORE UNDEF BEFORE BEFORE UNDEF BEFORE BEFORE BEFOR BEFORE UNDEF BEFORE 
AFTER UNDEF AFTER UNDEF AFTER AFTER AFTER UNDEF UNDEF AFTER UNDEF AFTER AFTER AFTER 
IBEFORE BEFORE UNDEF BEFORE UNDEF IBEFORE BEFORE UNDEF UNDEF BEFORE BEGIN BEGIN UNDEF BEFORE 
IAFTER UNDEF AFTER UNDEF AFTER IAFTER AFTER UNDEF UNDEF AFTER UNDEF AFTER IAFTER IAFTER 
IDENTIFY BEFORE AFTER IBEFORE IAFTER INDENTIFY INCLUDES IS_INCLUDED DURING SIMULTANEOUS BEGIN BEGUN_BY END END_BY 
INCLUDES UNDEF UNDEF UNDEF UNDEF INCLUDES UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF 
IS_INCLUDED BEFORE AFTER BEFORE AFTER IS_INCLUDED UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF 
DURING BEFORE AFTER BEFORE AFTER DURING UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF 
SIMULTANEOUS UNDEF UNDEF UNDEF UNDEF SIMULTANEOUS UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF 
BEGINS BEFORE AFTER BEFORE IAFTER BEGINS UNDEF UNDEF UNDEF UNDEF BEGINS UNDEF UNDEF UNDEF 
BEGUN_BY UNDEF AFTER UNDEF END_BY BEGUN_BY UNDEF UNDEF UNDEF UNDEF UNDEF BEGUN_BY UNDEF UNDEF 
END BEFORE AFTER IBEFORE AFTER END UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF END UNDEF 
END_BY BEFORE UNDEF IBEFORE UNDEF END_BY UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF END_BY 
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Table 6.3. Dependency path between two events with causal verbs. 

Types Dependency path 
Subject(e1) → Verb  
     + e1 is subject of v SBJ 
     + v is predicative complement of e1 PRD-IM 
     + v is modifier of e1 (nominal) NMOD 
     + v is apposition of e1 APPO 
     + v is general adverbial of e1 ADV 
     + v is adverbial of purpose/reason of e1 PRP-IM 

Verb → Object(e2)  
     + e2 is object of v OBJ 
     + e2 is logical subject of v (passive verb) LGS-PMOD 
     + e2 is predicative complement of v (raising/control 
verb) 

OPRD, OPRD-IM 

     + e2 is general adverbial of v ADV-PMOD 
     + e2 is adverbial of direction of v DIR-PMOD 
     + e2 is modifier of v (adjective or adverbial) AMOD-PMOD 

Verb(e1) → Verb(e2)  
     + v2 is predicate of v1  XCOMP 

 

6.5. Causal Event Relation Extraction 

Similar to temporal relations, we propose an algorithm for identifying causal 

relations (CLINK/CLINK-R) based on the proposed event network shown in Algorithm 

6.2. The process for identifying causal relations follows the same flow as that of 

determining temporal relations. We distinguish between direct and indirect relations.  

Determining causal relation types for direct relations 

In the case of direct relations, we identify terms that belong to affect, link or causative 

verbs and find specific dependent structures in which such terms are associated with 

two directly related events. For instance, one could determine a causal relation between 

a pair of events (e1, e2) when there exists a causal verb v, for which e1 is the subject of 

verb v, and e2 is either object of v or complement of v. Such relations between events 

and causal verbs are usually expressed syntactically; therefore, we define rules for 

identifying pairs of events being related to a causal verb in a causal construct by looking 

at their dependency paths. If such dependencies are found, a CLINK/CLINK-R is 

automatically set between the two events. Table 6.3 shows the details of dependency 

paths for this purpose. We consider three types of interactive causal verbs between 

events as Subject → Verb, Verb → Object and Verb → Verb in order to define the 
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rules. For example, in the case of Subject → Verb and Verb → Object, an event e1 is 

predicate complement of cause verb v whose object is event e2 showing dependencies 

PRD-IM and OBJ, respectively. For instance, in the sentence “The assessmente1 was 

to stopv their investmente2 ...”, ‘e1 causes e2’ because PRD-IM(assessment, stop) and 

OBJ(stop, investment). 

 

Input:    Graph G = (V, E) 
              Pair of events  {X, Y} 
              List of CA Verbs K 
Output:  Type of relation R(X, Y) 
   
  1:   if Direct(X, Y) ∈ G then 
  2:          R(X, Y)  Causal-Rules(E{X, Y}, G) 
  3:          Update(G) 
  4:   else if Indirect(X, Y) ∈ G then 
  5:             Event-flow{X,Y}  Shortest-path({X, Y}, G)) 
  6:             Causal-Rules(K, Event-flow{X,Y}, G)  
  7:             R(X, Y) Infer(Event-flow{X,Y}) 
  8:             Update(G) 
  9:         end if 
10:  return R(X, Y) 

 

Algorithm 6.2. The process for identifying causal event relations. 

Our work differentiates itself from Mirza et al. (2016a), which uses a predefined set 

of causal verbs that could face limitations when used in an open domain. In our work, 

we define the causal verbs for the rules presented in Table 6.3 by measuring the 

causality association (cause-effect) between a pair of events e1 and e2 (Do et al., 2012). 

In order to calculate cause-affect association, we measure pointwise mutual information 

(PMI) using two separate components between events with verbs, where we denote Ppp 

by measuring the association between event predicates, and Ppa by measuring the 

association between the predicate of an event and the arguments of the other event. 

Specifically, we measure cause-affect association (CA) as follows:  

��(��, ��) = ���(��, ��) + ���(��, ��)                                            (6.1) 

where ���(��, ��) is defined as: 

���(��, ��) = �������
, ���

� × �������
, ���

�                                   (6.2) 
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which takes into account the PMI between verbs ���
 and ���

of event e1 and e2, 

respectively. In Suppes’ Probabilistic theory of Causality (Suppes, 1970; Do et al., 

2011), the author showed that the first event e1 is a possible cause of the second event 

e2, if e1 happens more frequently with e2 than by itself, i.e. P(e1) > P(e2). This can be 

easily rewritten as P(e1, e2)/P(e1)P(e2) > 1, similar to the definition of PMI: 

�������
, ���

� = log
�����

, ���
�

�����
��� ���

�
                                          (6.3) 

and,  

�������
, ���

� = log
�

1 + �
                                                     (6.4) 

where T is the total triple tuples and N is the number of triple tuples that contains 

���
, ���

. 

We further define ��,�(��, ��) as follows: 

���(��, ��) =
1

����
�

� �������
, �� +

�∈���

1

����
�

� �������
, ��

�∈���

            (6.5) 

where ���
 and ���

 are the list of arguments from T that contain e1 and e2, respectively. 

 

 

Figure 6.5. Transitivity process of causal relation. a) Causal relation (CLINK) → 
causal relation (CLINK); b) Causal relation (CLINK) → temporal reverse dependent 

relation (TLINK); c) Causal relation (CLINK) →temporal dependent relation 
(TLINK’). 
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Table 6.4. Transitive inference of causal relation types. UNDEF specifies undefined 

relation. 

 CLINK  CLINK-R 
Causal link   
  CLINK CLINK UNDEF 
  CLINK-R UNDEF CLINK-R 
Reverse temporal dependent link   
  IDENTITY CLINK CLINK-R 
  DURING CLINK CLINK-R 
  INCLUDES CLINK CLINK-R 
  BEGINS CLINK CLINK-R 
  ENDS CLINK CLINK-R 
  SIMULTANEOUS CLINK CLINK-R 
Temporal dependent link   
  IAFTER UNDEF UNDEF 
  IBEFORE UNDEF UNDEF 
  IS_INCLUDED UNDEF UNDEF 
  BEGUN_BY UNDEF UNDEF 
  ENDED_BY UNDEF UNDEF 

 

Determining causal relation types for indirect relations 

Now for indirect causal relations, on the basis of the transitivity process proposed by 

Allen (1983), we construct a set of inference relations in order to determine the 

transitivity of causal relations on both causal relation → causal relation 

(CLINK→CLINK) and causal relation → temporal relation (CLINK→TLINK) as 

shown in Figure 6.5. Regarding the transitive process for CLINK→CLINK (Figure 5a), 

we base it on the characteristics of causal relations such that if event e1 causes event e2 

and event e2 causes event e3, then e3 will be considered to depend on e1. Therefore, a 

transitive relation will be made between e1 and e3 as e1 causes e3. Regarding 

CLINK→TLINK relations, the first part of the relation represents a causal dependency 

between two events while the second part of the relation expresses a temporal relation. 

In such cases (Figure 6.5b), similar to CLINK→CLINK, a new transitive causal relation 

can be generated between events in causal and temporal relations. For instance, when 

event e1 causes event e2 and event e3 has a temporal relation with event e2, this could, 

in the case of reverse temporal dependent relations, mean that event e3 is dependent on 

event e1. Consequently, event e1 will cause event e3. Similar to Mirza et al., (2016b), 

we classify these reverse temporal dependent relations where e3 is dependent on e2 as 

IDENTITY, DURING, INCLUDES, BEGINS, ENDS and SIMULTANEOUS. For the 
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case of temporal dependent relation in CLINK→TLINK’ (Figure 6.5c), although e2 is 

dependent on e1 but e3 is not dependent on e2. Therefore, a relation, expressed as 

“UNDEF”, is defined between e1 and e3. The list of temporal dependent relation where 

a clear causal relation cannot be inferred from them include IAFTER, IBEFORE, 

IS_INCLUDED, BEGUN_BY and ENDED_BY. In summary, the details of the 

transitive inference process is presented in Table 4. We exploit our proposed event 

network to detect CLINK between e1 and e2 and TLINK between e2 and e3 for 

predicting a causal relation between e1 and e3 by following the set of transitive inference 

rules that are listed in Table 6.4, e.g., if e1 CLINK e2 and e2 IDENTITY e3, then we 

infer a new causal relation ‘e1 CLINK e3’. 

6.6. Performance evaluation 

We have proposed methods to extract event relations based on the proposed event 

network aiming at two tasks: 1) Temporal event extraction and 2) Causal event 

extraction. In this section, to carry out evaluations for these tasks, we conduct 

experiments on several benchmark datasets and compare the performance of our 

proposed work with strong baseline methods. Particularly, in the first task, we use 

TempEval-3 corpora. Furthermore, Causal-TimeBank corpora, developed by Mirza et 

al. (2014a), will be used for the second task. We employ the LS3RyIE system (Vo & 

Bagheri, 2018), which is an Open IE system, to extract relation instances for 

constructing the event network. We only consider triples which contain event entities 

for building the network. Note that, reference mapping was also applied to enhance 

node matching in the event network. We calculated the context from the Open IE 

patterns using cosine similarity then merged those nodes with a score ≥ 0.5. We will 

show how our proposed work can identify temporal and causal relations and reduces 

the number of erroneous relation types compared to previous baseline approaches. 

6.6.1. Temporal event relation extraction 

6.6.1.1. Experimental dataset 

For benchmarking our approach in this task, we have conducted experiments on the 

Tempeval-3 corpora task C. TempEval-3 (Pustejovsky et al., 2006) consists of an 

annotated corpus of temporal relations that was created following the TimeML 

specification (Sauri et al., 2006). It contains news articles with 183 training documents 
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and 20 testing documents, with just over 61,000 non-punctuation tokens, coming from 

a variety of news reports, specifically from outlets such as ABC, CNN, PRI, VOA, Wall 

Street Journal and newswire from AP and NYT. The task of TempEval-3 corpus has 

been designed by UzZaman et al. (2013) at SemEval-2013, with a complete set of 13 

TLINK types. We use the same training and test data released in the context of 

Tempeval-3 for evaluation. The distribution of the relation types in training and test 

datasets is shown in Table 6.5. 

Table 6.5. Details of the TempEval-3 corpus. 

Corpus Documents  Open IE triples #relations 
Training dataset 183 2,537 2,191 
Testing 20 968 1,173 

 

6.6.1.2. Evaluation results 

We evaluate our algorithm on both training and testing datasets for predicting event 

relations because our approach is unsupervised in nature. We first extracted triple 

patterns from Open IE to construct the proposed event network in each document. We 

built the event network based on the generated Open IE triples extracted by the 

LS3RyIE system. As a result of this process, 968 and 2,537 triples were generated by 

the Open IE system that were then used to build the event network for the testing and 

training sets, respectively. It should be noted that unlike the baselines that are 

supervised temporal relation extraction methods, our work is completely unsupervised 

and as such we do not require separate training and testing datasets. For this reason, we 

report the performance of our work on the data available in both sets. 

Table 6.6 shows the detailed performance of our proposed approach over 13 relation 

types. Among the relation types, our approach obtains high performance in BEFORE, 

AFTER, BEGUN_BY, and IS_INCLUDES temporal relation types. The BEFORE 

relation type yielded 68.65% and 67.76% of F-measures on the two parts of the dataset 

and the AFTER relation type obtained 67.15% and 65.71% of F-measures in training 

and testing datasets, respectively. Our method is successful in recognizing event 

relation types due to the use of transitivity between direct and indirect links in the event 

network. We observed that several relations are affected or dependent on other relations 

in the event flow, e.g., it is possible to predict  BEFORE(e1→e4) in the path 

e1→e2→e3→e4 when it is presented as BEORE(e1→e2), BEGUN_BY(e2→e3) and 
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IS_INCLUDED(e4→e3). This explains also the large number of positively predicted 

temporal relation types in our work. 

Table 6.6. Experimental results on four relation types in TempEval-3 corpus. 

Categories 
Testing set Training set 

Precision Recall F-measure Precision Recall F-measure 
BEFORE 75.74 62.77 68.65 77.54 60.17 67.76 
AFTER 76.56 59.80 67.15 74.03 59.07 65.71 
BEGINS 62.50 52.63 57.14 50.00 50.00 50.00 
BEGUN_BY 75.00 50.00 60.00 80.00 75.50 77.68 
DURING 75.00 64.29 69.23 66.66 25.00 36.36 
END_BY 36.36 36.36 36.36 50.00 33.33 40.00 
ENDS 50.00 45.45 47.62 100.00 66.66 80.00 
IBEFORE 83.33 50.00 62.50 66.66 66.66 66.66 
IAFTER 85.00 70.00 76.77 70.33 43.25 53.56 
IDENTITY 66.67 50.54 57.50 33.33 40.66 36.63 
INCLUDES 57.89 49.25 53.22 64.52 53.34 58.40 
IS_INCLUDES 72.65 59.44 65.38 83.01 69.39 75.59 
SIMULTANEOUS 57.35 48.75 52.70 40.81 38.57 39.66 

 
However, our method obtained lower results in a few relations such as DURING, 

END_BY, and SIMULTANEOUS. Upon further exploration of these relations, we 

found that the Open IE system used in our experiments struggles to identify the required 

triples for these relation types primarily due to the sparseness of the DP link in these 

events. For instance, when predicting the SIMULTANEOUS relation between e1 and 

e2 in the following sentence “… refere1 to U.N. resolution 425 in a speech …that would 

not be attacked, Yitzhak Mordechai saide2 at that time.”, the Open IE system could not 

extract the direct triple (e1, e2), (“a speech”, “said”) or (“a speech”, “time”) because 

there were no DP links between them. As such, these events were not directly connected 

to each other in the event network and therefore the relation type was not subsequently 

identified. 

We have also performed a more detailed evaluation by dividing temporal relations 

into four categories of temporal event types as shown in Table 6. In the testing set, our 

approach achieved F-measures of 49.49%, 78.58%, 87.86%, and 62.50% for Event-

Event (E-E), Event-Time (E-T), Event-DCT (E-DCT), and Time-Time (T-T), 

respectively. On the training set, our work obtained F-measures of 53.04%, 69.47%, 

69.68% and 72.91% for Time-Time, Event-DCT, Event-Time and Event-Event, 

respectively. Particularity, E-T yielded the highest results while E-E obtained the 

weakest results compared to the others. This confirms that the structure of the E-E 
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relation is more complex than other categories because events in such relations can be 

expressed in several different relation types when they are in similar grammatical 

forms. For example, e1-e2 is presented in the form of ‘IS_INCLUDED’ in the sentence 

“John usede1 the phone when drivinge2 a car.” while e3-e4 is presented as 

‘SIMULTANEOUS’ in the sentence “John diede3 when bombinge4 the hotel.”. In 

contrast, other event types such as Time can be expressed with fewer language forms 

such as a limited number of prepositions or time nouns, e.g., time with preposition ‘in, 

at, and on’ or time of day in the week or year. Hence, they are easier to be detected. 

Table 6.7. Experimental results on four types of temporal event relations. 

Categories 
Testing set Training set 

Precision Recall F-measure Precision Recall F-measure 
E-E 60.63 41.81 49.49 60.51 47.21 53.04 
E-T 84.82 73.21 78.58 82.37 60.06 69.47 
E-D 88.24 87.50 87.86 70.63 68.75 69.68 
T-T 62.50 62.50 62.50 77.77 68.62 72.91 
Overall 72.92 57.54 64.32 69.58 57.18 62.77 

 
In Table 6.8, we compare our method with several strong baseline approaches 

designed for Task C of TempEval-3. UTTime (Mirza et al., 2014b) employs features 

based on syntactic parsing including phrase structures while Laokulrat et al. (2013) 

extracts event relations using time graphs and stacked learning. TRelPro (Laokulrat et 

al., 2015) and CATENA (Mirza et al., 2016a) employ an SVM classifier based on event 

linguistic features such as POS tags, chunking, and dependency paths. The numbers 

reported in Table 6.8 are the results of 5-fold cross-validation evaluation strategy for 

the baselines because the baselines are supervised. The evaluation shows that our 

proposed method, which is completely unsupervised, shows a competitive performance 

to the supervised baselines, i.e., better performance on precision and f-measure and 

competitive on recall. We note that the proposed event network structure is dependent 

on the performance of the underlying Open IE system and hence in cases when the 

Open IE system cannot extract event mentions, the corresponding event nodes will not 

be created in the event network and hence event relations will be missed. The lower 

recall of our method, noted in Table 6.8, can be explained on this basis. For example, 

in our experiments, the Open IE system extracted triples in which only one event is 

present as shown in Figure 6.6. In such cases, it would not be possible to add any edges 
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to the event network given the lack of extracted events. Consequently, our approach 

will not be able to recognize any additional relations based on such event instances. 

S10:  He's not tellingee14 the truth. 
       OIE triples: (“He”, “is not telling”, “the truth”) 
S12: She was shote20 with a rifle. 
       OIE triples: (“She”, “was shot with”, “a rifle”) 

Figure 6.6. Sample triples obtained through Open IE. 

Table 6.8. Performance comparison. 

 Precision Recall F-measure 
UTTime (2013)  55.60 57.40 56.50 
TRelPro (2014)  58.48 58.80 58.17 
Laokulrat et al. (2015)  57.60 57.90 57.80 
CATENA (2016)  62.60 61.30 61.90 
Proposed method 70.82 57.31 63.35 

 

Our approach benefits from the relation patterns extracted by Open IE to build the 

initial event network and bootstraps the temporal event extraction process by 

determining the type of temporal relation between two directly linked events. The 

advantage of our proposed work is two folds: 1) it is completely unsupervised and hence 

does not require any hand-annotated samples and infers indirect temporal relation types 

between events by systematically traversing the event network, and 2) it works at the 

document level and not sentence level and hence can identify temporal relations 

between events that have not been expressed in the same sentence. This is made 

possible due to the linking of different events in the network whose linking transcends 

individual sentences and forms a representation of events in the document.  

6.6.2. Causal event relation extraction 

6.6.2.1. Experimental dataset 

For benchmarking our approach in the second task, we use the Causal-TimeBank 

and its extended version described in Table 6.9. Causal-TimeBank has been developed 

by Mirza et al. (2014a), whose annotations for causality are taken from TempEval-3 

corpus, containing 183 documents with 6,811 golden events in total. In the Causal-

TimeBank dataset, according to Mirza et al. (2014a), a total number of 332 event pairs 

for CLINK/CLINK-R can be identified from 2,519 events available in the original 
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TimeBank corpus. Besides, not all documents contain causality relations between 

events; from the total number of documents in TimeBank, only 110 (around 60%) of 

them contain explicit causal links. In Table 6.9, we report the statistics of causal 

relations found in the Causal-TimeBank dataset, along with the corresponding numbers 

of CLINKs associated with them. Regarding its extension (Causal-TimeBank Ext), 

different from Mirza et al. (2016a) that only uses cause-effect verbs around temporal 

events, we expand the dataset with new CLINKs based on combining CLINKs and 

TLINKs in the event network. We note that all expanded causal relations are based on 

original CLINKs and TLINKs in Causal-TimeBank, which were annotated using the 

CAT tool (Lenzi et al., 2012) by two annotators with Dice’s coefficient of 0.73. As a 

result, based on the event network, we annotated an additional 170 causal relation 

events, which we refer to as Causal-TimeBank Ext. This increased the number of 

annotated CLINKs by 51.2%. The mean number of CLINKs are 3.02 and 4 in Causal-

TimeBank and Causal-TimeBank Ext, respectively. The extended version of Causal-

TimeBank has been made publicly available10. 

Table 6.9. Causal-TimeBank and Causal-TimeBank extension corpora. 

Corpus # docs 
Causal-TimeBank Causal-TimeBank Ext 
#CLINKs Mean CLINKs #CLINKs Mean CLINKs 

ABC 3 9 3 16 (77%) 5.33 
AP 2 20 10 48 (140%) 24 
APW 11 25 2.27 39 (56%) 3.54 
CNN 3 3 1 5 (40%) 1.66 
EA 2 4 4 5 (25%) 5 
NYT 6 22 3.66 30 (36%) 5 
PRI 2 3 1.5 4 (33%) 2 
SJMN 1 2 2 2 (0%) 2 
VOA 2 6 3 6 (0%) 3 
WSJ 78 236 3 347 (47%) 4.45 
Total 110 332 3.02 502 (51.2%) 4.5 

 

6.6.2.2. Evaluation results 

We first extract patterns from Causal-TimeBank and its extension based on the 

LS3RyIE Open IE system to build the event network. Note that, we consider both causal 

links (CLINKs) and temporal links (TLINKs) on related causal events. As a result of 

 
10 https://bitbucket.org/thuanvd/EventEx-data/downloads/  
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this process, 638 and 930 triples were generated by the Open IE system that were then 

used to build the event network for both Causal-TimeBank and Causal-TimeBank Ext 

datasets, respectively. Table 6.10 shows the detailed performance of our proposed 

method on both datasets. In Causal-TimeBank, the system obtained 76.45% and 

73.91% on F-measures for WSJ and AP compared to 73.91% on APW. Regarding WSJ, 

APW and AP in Causal-TimeBank Ext, our approach yielded 71.76%, 70.77% and 

56.67% for F-measure, respectively. In both datasets, it should be noted that WSJ and 

APW account for a high proportion of the total documents while AP has a more 

complex event network with a higher number of CLINKs. In Causal-TimeBank, WSJ 

corpus contains 78 documents with mean CLINKs of 3 and APW has 11 documents 

with mean CLINKs of 2.27. While AP only has 2 documents with mean CLINKs of 25. 

Regarding Causal-TimeBank Ext, the mean CLINKs of WSJ is 4.45 and APW has a 

mean CLINKs of 3.5 while AP has a mean CLINKs of 24. In order to show how the 

performance of our proposed approach compares to the baseline system, known as 

CATENA (Mirza et al., 2016a), Table 6.11 presents a comparison on both Causal-

TimeBank and Causal-TimeBank Ext corpora. CATENA exploits event linguistic 

features such as POS tags, chunking, and dependency paths to train a causal event 

relation classifier using SVM. Our method outperforms the baseline in both datasets. 

Our method yields 76.10% and 71.58% on F-measure while CATENA obtained 

62.20% and 58.47% for F-measures in Causal-TimeBank and Causal-TimeBank Ext, 

repetitively. Different with CATENA, our method is unsupervised and operates at the 

document level that traverse the event network to identify the causal relations between 

indirectly connected events while CATENA is a supervised method that relies on 

sentence-level textual features to identify causal relations.  

S7:  The U.S. maintains that under the U.N. charter, the Kuwaiti request 
triggers stepse54 for the collective enforcement of international 
sanctione55. 
… 
S9: In a statement, the White House said it would do “Whatever is 
necessary” to ensure compliancee66 with the sanctionse67. 
Output: 
e55 → e67 IDENTITY 
e54 → e55 CLINK 
e67 → e66 CLINK 
e54 → e66 CLINK 
e54 → e67 CLINK 

Figure 6.7. Identified samples based on transitive inference across multiple sentences. 
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Table 6.10. Experimental result in Causal-TimeBank and Causal-TimeBank Ext in 
specified corpuses. 

Corpus 
Causal-TimeBank Causal-TimeBank Ext 

Precision Recall F-measure Precision Recall F-measure 
ABC 77.78 77.78 77.78 84.61 68.75 75.86 
AP 71.43 62.50 66.67 73.91 45.95 56.67 
APW 77.27 70.83 73.91 76.67 65.71 70.77 
CNN 66.67 66.67 66.67 80.00 80.00 80.00 
EA 100 100 100 100 100 100 
NYT 63.63 63.63 63.63 66.67 63.16 64.87 
PRI 66.67 66.67 66.67 75.00 75.00 75.00 
SJMN 100 50.00 66.67 100 50.00 66.67 
VOA 83.33 83.33 83.33 83.33 83.33 83.33 
WSJ 83.88 70.23 76.45 79.71 65.26 71.76 

 

Figure 6.7 shows several extracted relations from a sample document (document 

wsj900813-0157 from the WSJ corpus). In sentences S7 and S9 in this figure, a few 

temporal and causal event relations can be extracted by using rules based on syntactic 

and dependency features used in CATENA (Mirza et al., 2016a) such as “e55-

IDENTIFY-e67” and “e54-CAUSE-e55”, and “e67-CAUSE-e66”. However, CATENA 

fails to correctly determine event relations such as e54-e66 and e54-e67. This is primarily 

due to the fact that events in such relations have no DP connections with each other as 

they are not present in the same sentence. As such, CATENA cannot extract features 

pertinent to relations such as (e54, e66) and (e54, e67) and hence fails to identify such 

relations. In contrast, these relations have been detected in our approach because of the 

application of transitive inference on the event network, e.g., e54-CAUSE-e66 and e54-

CAUSE-e67 could be determined via e54-CAUSE-e55-IDENTIFY-e67 and e54-CAUSE-

e67-CAUSE-e66, respectively. As a result, our approach shows up to 13% improvement 

on F-measure over the baseline. 

Table 6.11. Performance comparison in Causal-TimeBank and Causal-TimeBank 
Ext. 

 Precision Recall F-measure 
Causal-TimeBank    
     CATENA 73.70 53.80 62.20 
     Proposed method 82.47 70.64 76.10 

Causal-TimeBank Ext    
     CATENA 71.56 48.43 57.76 
     Proposed method 78.93 65.49 71.58 
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6.7. Discussions 

In our work, we proposed to build an event network based on triples from Open IE 

systems. We have used LS3RyIE because this system is able to generate high-precision 

extractions and can be flexibly customized to the underlying application domain 

compared to other Open IE systems (Vo & Bagheri, 2018). LS3RyIE exploits linguistic 

knowledge about the grammar of the English language to first detect clauses in an input 

sentence and to subsequently identify the type of each clause according to the 

grammatical function of its constituents to extract relations with minimal domain-

dependent background knowledge and the least amount of annotated training data. 

Regarding the overall performance, our system outperforms supervised methods such 

as CATENA (Mirza et al., 2016a), Laokulrat et al., (2015), TRelPro (Mirza et al., 

2014b), and UTime (Laokulrat et al., 2013). These supervised methods exploit 

grammatical features such as syntactic and dependency features, but are limited to 

identifying intra sentence relations with explicit temporal and causal indicators. Our 

approach does not require any hand-annotated samples for inferring indirect temporal 

and causal relation types between events by systematically traversing the proposed 

event network. The network is built based on directly observable temporal and causal 

relations at the document level. It is possible to predict direct and indirect relations by 

linking different events in the event network whose linking transcends individual 

sentences and forms a representation of events across sentences. Hence our method can 

determine event relations both within the same sentence and across sentences in the 

whole document. We ran our system on a desktop computer with Intel Core i5 3.1 ghz, 

16GB RAM and 1TB hard disk. Regarding the process of identifying m target relations 

in a document, the process of temporal and causal relation identification first finds the 

shortest path and then determines direct relations k in the path (1≤k≤m). This process 

in both temporal and causal relation identification takes O(2×m×k). Moreover, the 

process of temporal relation identification takes O(5m) for processing direct relation 

rules, time and tense rules and graph update (Lines 2-3, 5-6, 11 in Algorithm 6.1) while 

the process of causal relation identification takes O(3m) for processing direct relation 

rules and graph update (Lines 2-3, 8 in Algorithm 6.2). The details of the time 

complexity are shown in Table 6.12. In case when each path has only one relation, the 

best time complexity is O(m). In case when the paths have m relations, the worst time 

complexity is O(m2). 
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Table 6.12. Time complexity. 

Time complexity Cost 
Open IE O(n) 
Temporal relation identification O(6m+2mk); O(m); O(m2) 
Causal relation identification O(3m+2mk); O(m); O(m2) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               (a)                                                                                  (b) 

 

Figure 6.8. Examples of event networks: a) A sparse network; b) A complex 
network. 

 

Now from a performance perspective, we note that the results produced by the event 

network can depend on the structure of the network including the number of event 

nodes, the number of relation edges and their connections in the network. Figure 6.8 

shows two sample event networks extracted from documents APW19980227.0487 and 

APW19980227.0487 in the APW corpus used in our experiments. As seen in the figure, 

one event network is quite sparse (Figure 6.8a) while the other event network is quite 

dense (Figure 8b). We find that when the event network is sparse, our approach is not 

effective in that it would not have sufficient number of edges in the network to perform 

inference. As result, our approach cannot identify a sufficient number of relations in 

such a case, e.g., relations R(e1, e35) and R(e1, e27), which should have been extracted, 

were not identified in Figure 6.8a due to missing edges in the event network. On the 
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other hand, the dense event network consists of a higher number of edges connecting 

the event nodes to each other and hence provides the opportunity for a higher number 

of inferred causal and temporal relations. For instance, the relation R(e33, e41), which is 

difficult to extract, was identified by traversing a long path consisting of e33→e38→e41, 

e33→e43→e41, e33→e34→e41, e33→e38→e13→e41. Based on this observation, we believe 

that our approach faces some limitations: 1) in light of the sparse event networks, our 

proposed approach is dependent on the performance of the underlying Open IE system 

and hence in cases when the Open IE system cannot extract event mentions, the 

corresponding event nodes will not be created in the event network and hence relations 

will be missed. 2) our method relies on reference mapping to identify similar event 

nodes in the event graph, which is currently performed through cosine similarity 

between the textual description of the events. However, more complex text matching 

methods for event types can be used in the future to improve the reference mapping 

process that can lead to better overall performance. 

6.8. Concluding remarks 

In this chapter, we have presented an unsupervised method for extracting temporal 

and causal relations between events by building an event network structure primarily 

based on information from Open IE systems. The event network is the basis for 

systematically exploring the possible temporal relations between events by considering 

how events can be reached from one another. We performed comparative 

benchmarking of our proposed method using the TempEval-3, Causal-TimeBank, 

Causal-TimeBank datasets and compared our work against several strong baselines. 

The results reveal that our method outperforms not only in temporal event extractions 

but also causal event extraction over other state-of-the-art IE systems. Our future work 

will consist of addressing the two limitations of our work, namely quantifying the 

impact of the performance of the Open IE systems on our work and also exploring more 

systematic ways for performing reference mapping.  
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Chapter 7 

Conclusions and Future Work 

 

7.1. Concluding Remarks 

The purpose of this thesis was to take and explore advantage of clause-based patterns 

for information extraction tasks. The research directions of the thesis focus on four 

important challenges in information extraction: 1) Clause-based Open Information 

Extraction and (OIE), 2) Self-training in Relation Extraction (RE), 3) Matrix models 

for Relation Extraction, and 4) Event Networks for Event Relation Extraction.  

 

Clause-based Open Information Extraction.  We have proposed refinements to the 

grammatical structure of syntactic and dependency parsing and have used clause-based 

relations in order to determine clause types based on their grammatical constituents for 

open information extraction presented in Chapter 3. Regarding the context of open 

information extraction, relation extraction is concerned with identifying a variety of 

relations with their arguments in arbitrary sentences. Some of the existing work that 

focus on the use of syntactic and dependency parsing for detecting relations sometimes 

result in incoherent and uninformative extractions such that the extracted relation has 

no meaningful interpretation. In this study, we use the English clause structure and 

clause types in an effort to generate propositions that can be deemed as extractable 

relations. Moreover, we propose refinements to the grammatical structure of syntactic 

and dependency parsing that help reduce the number of incoherent and uninformative 

extractions from clauses. In our extensive experiments, we compared our method with 
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other OIE systems using three standard benchmark datasets. The results reveal that our 

method obtained not only higher precision extractions but also had more flexible 

generation of relations over other state-of-the-art IE systems. 

 

Self-training on Relation Extraction. We have proposed clauses-pattern extraction 

with a self-training approach for unsupervised relation extraction presented in Chapter 

4. Bootstrapping techniques utilized for relation extraction have shown to be effective 

in terms of interactively expanding a set of initial relations. Such tasks are primarily 

carried out through semi-supervised classification approaches. Considering that 

choosing the most efficient seeds are pivotal to the success of the bootstrapping process, 

these methods depend on a reliable set of seeds or rules that incorporate domain 

knowledge. In this thesis, we have proposed clause-pattern extraction with self-training 

for unsupervised relation extraction. We extract patterns based on a clause-based 

approach that strives to consider several clause types that may contain a relation. The 

proposed self-training algorithm relies on the clause-based approach to extract a small 

set of seed instances in order to identify and derive new patterns. A fundamental 

distinction between our proposed method and other prominent approaches is that we 

automatically and iteratively extract seeds based on high confidence patterns that are 

identified through the clause-based approach. In our experiments, we show that our 

approach improves upon the performance of the current state-of-the-art systems such 

as DARE up to 26.88% and 14.13% on F-measure over the Nobel and MUC-6 datasets, 

respectively. 

 

Matrix Models for Relation Extraction. In Chapter 5, we focus on the problem of 

information extraction as a matrix completion problem where we employ the notion of 

universal schemas formed as a collection of patterns derived from clause-based open 

information extraction systems as well as additional features derived from grammatical 

clause patterns and statistical topic models. One of the challenges with earlier work that 

employ matrix completion methods is that such approaches require a sufficient number 

of observed relation instances to be able to make predictions. However, in practice there 

is often insufficient number of explicit evidences supporting each relation type that 

could be used within the matrix model. Hence, existing work suffer from a low recall. 

In our work, we extend the work in the state of the art by proposing novel ways of 

integrating two sets of features, i.e., topic models and grammatical clause structures, 
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for alleviating the low recall problem. More specifically, we propose that it is possible 

to (1) employ grammatical clause information from textual sentences to serve as an 

implicit indication of relation type and argument similarity. The basis for this is that it 

is likely that similar relation types and arguments are observed within similar 

grammatical structures, and (2) benefit from statistical topic models to determine 

similarity between relation types and arguments. We employ statistical topic models to 

determine relation type and argument similarity based on their co-occurrence within the 

same topics. We have performed extensive experiments based on both gold standard 

and silver standard datasets. The experiments show that our approach has been able to 

address the low recall problem in existing methods, which lead to improved overall F-

measures up to 8% over the state of the art. 

 

Event Networks for event relation extraction. We present an event network 

representation for temporal and causal relation extraction that operates at the document 

level presented in Chapter 6. Event relations specify how different event flows 

expressed within the context of a textual passage relate to each other in terms of 

temporal and causal sequences. There have already been impactful work in the area of 

temporal and causal event relation extraction; however, they are mostly supervised 

methods that rely on syntactic and grammatical structure patterns at the sentence-level. 

In this thesis, we benefit from existing Open IE systems to generate a set of triple 

relations that are then used to build an event network. The event network is 

bootstrapped by labeling the temporal disposition of events that are directly linked to 

each other. We then systematically traverse the event network to identify the temporal 

and causal relations between indirectly connected events. We have performed 

experiments based on the widely adopted TempEval-3 and Causal-TimeBank corpora 

and compared our work with several strong baselines. We have shown that our 

unsupervised method is able to show better performance over its supervised 

counterparts. 

7.2. Future work 

There is increasing interest in interpreting natural languages and machine learning 

techniques that focus on the tasks of information extraction explored in this dissertation. 

Here, we briefly list two promising future directions. 
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The first direction considers deep learning for clause-based Open Information 

Extraction. Currently, more recent deep learning methods focus on tasks such as 

multitask learning as they allow the learning of shared representations among different 

tasks (Nguyen et al., 2017, Nguyen et al., 2018). This encourages the building of IE 

methods that can support multiple tasks. Clause-based OIE are usually built on hand-

crafted patterns from other NLP tools such as syntactic and dependency parsers; hence 

clause patterns could face problems with proactive identification and correction of 

repetitive errors (Corro et al., 2013; Vo & Bagheri 2018). Our main idea for future work 

is to explore deep learning based multi-task learning models that can solve several 

information extraction tasks by learning highly confident arguments and relation tuples 

bootstrapped for Open IE. Once the Open IE improves its performance in extracting 

relation triples, it will benefit the reliability of other models that use it for bootstrapping, 

matrix models and event networks.  

The second direction concerns the consideration of neural embeddings (Bagheri et 

al., 2018; Ensan et al., 2017) within the context of the proposed models for information 

extraction. We would like to explore how neural embedding-based features could be 

developed that measure relation type and relation argument relevance and similarity for 

predicting potentially relevant yet unobserved relation instances in matrix model and 

event networks. For example, one might be able to learn neural embedding models that 

determine that a relation type such as “CEO-of” would be more similar to the “Director-

of” relation type compared to the “President-of” relation type. Neural embedding 

models have already shown improved performance on several IR tasks (Ensan et al., 

2017; Jansen et al., 2010) and hence could be helpful in improving the performance of 

the relation extraction task as well. We are also interested in defining features based on 

graph distance and traversal methods for event networks such as random walks to 

establish a measure of relevance between relation types and arguments. In order to 

achieve this, we will explore how graphs can be formed based on the unification of 

relation types and/or relation argument entity matching. We also consider temporal 

features in order to recognize out of date information that help avoid extracting 

incorrect relations. 
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