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ABSTRACT

Unsupervised Panoptic Segmentation
Sajeel Aziz
Master of Engineering
Electrical and Computer Engineering

Ryerson University, Toronto, Canada, 2020

The contributions of this paper are two-fold. We define unsupervised tech-
niques for the panoptic segmentation of an image. We also define clusters which
encapsulate the set of features that define objects of interest inside a scene. The
motivation is to provide an approach that mimics natural formation of ideas in-
side the brain. Fundamentally, the eyes and visual cortex constitute the visual
system, which is essential for humans to detect and recognize objects. This can
be done even without specific knowledge of the objects. We strongly believe that
a supervisory signal should not be required to identify objects in an image. We
present an algorithm that replaces the eye and visual cortex with deep learning
architectures and unsupervised clustering methods. The proposed methodology
may also be used as a one-click panoptic segmentation approach which promises
to significantly increase annotation efficiency. We have made the code available

privately for review!

'https://github.com/ShujaKhalid/project_cygnus
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INTRODUCTION

Scene understanding has generated significant interest in recent times and complete
scene understanding aims to not just learn about the presence of various entities
in a 2D or 3D scene, it aims to form relations between these un-defined entities.
Recent work has focused on techniques such as semantic [15], instance [12] and
panoptic segmentation [11] to detect and annotate the exact specifications of an
object in a scene. However, the task of relating these objects requires intuition that
existing models have yet to master. If we are able to identify all of the possible
“things” and “stuff” classes, we can then work towards creating informed relations
between them. This paper proposes an algorithm for the creation of unsupervised
domain representation of scenes. To achieve this, pre-trained models are used for
boundary detection (HED [24]) and feature extraction (ResNet [20]).

The features are mapped to closed contours within the original image and
subsequently clustered in feature space to identify variations based on texture,
colour, edge, shape or orientation. The feature space is modelled as a Gaussian
Mixture Model (GMM) [18] where each Gaussian represents a unique class. The
resulting class information is then mapped back to the original image to create a
two-channel map where each pixel in each contour is then assigned a tuple (stuff,
thing) as per the definition of panoptic segmentation.

Specifically, these methods are expected to work by using the properties of the
trained Convolutional Neural Networks(CNNs). The HED model uses a trained
CNN to output only the edges of an image by running the image through it’s



filters. Next, the ResNet model outputs a set of feature maps on the original image
resulting from many filtering operations. This finds the important spatial and
textural properties of an image. The output is stopped before the classification layer
so that the output of each filter is obtained in a stacked structure. Each output is
assumed to have different information about the image. Therefore, information-rich
pixels can be obtained by using the stacked outputs from the filters/feature maps.

Another important concept to mention for this approach is of manifold learning[8].
Manifold Learning is for situations where there are many connected data points and
each data point has a neighbourhood of points associated with it. The requirement
from Manifold Learning is to recognize the most important dimensions, or features,
to find a less complex representation of the same data. This is generally done by
finding the highest distances, or variances, between points in the original dimension
space and only preserving those points. This distinguishes the points more clearly,
helping subsequent models perform classification more efficiently.

We hypothesize that this algorithm will aid in the creation of a feature space
where objects of the same class, from different images, will be clustered similarly.
This mapping of similar objects in a similar manner has the added benefit of

creating explainable representations of visual objects.



RELATED WORK

2.1 Semantic/Instance Class Boundary Detection

A variety of works have focused on the task of boundary detection and classification,
where the goal is to not only detect boundaries of key objects but also to assign
classes to the identified boundaries.

The work in [1] uses weakly supervised learning to predict semantic segmen-
tation labels from image level class labels in an end-to-end manner. Similarly,
[2] also proposes an end-to-end trainable framework for assigning instance-level
labels using image level class labels. The training required for such a process is
significantly reduced as segmentation annotations are time-intensive to procure.
We aim to provide panoptic segmentation labels without the use of image level
class labels.

The study in [22] uses generative probabilistic modelling to model appearance
level cues, such as colour, edge, shape and pose of objects within an image.
This approach has motivated our work as we create probabilistic models for the
representation of different classes within an image. However, we do so implicitly by
using rich feature vectors extracted from a deep neural network. Our algorithm is
also more powerful as it generalizes to datasets such as COCO [14] and Pascal VOC
[21] which have challenging images consisting of multiple classes and segments.

The research in [17] proposes an end-to-end supervised learning architecture

that utilizes semantically meaningful boundaries for the task of semantic segmen-



tation. This is similar to other supervised techniques that yield state-of-the-art
results in semantic/instance segmentation such as Mask-RCNN [10], U-Net [19],
probabilistic U-Net [23], amongst others. Each of these techniques make use of
expensive annotations for their training process and fail to generalize to cases
where an image contains a class that that the model has not been trained on.

The work of [4] uses boundary neural fields in conjuction with FPNs [13] as
a global energy model that incorporates boundary cues for the enhancement of
semantic segmentation predictions. The use of boundary cues for the purpose of
semantic and instance segmentation has thus been explored. We attempt to improve
on this by utilizing boundary cues and by designing an algorithm that does so in an
unsupervised manner.

There have thus been a number of attempts to improve the performance of
models for the tasks of semantic, instance, and panoptic segmentation, using
supervised and semi-supervised techniques. We attempt to improve on the state-of-
the art by using pre-trained models for boundary detection and feature extraction.
The proposed approach is thus unsupervised and does not require pixel or image

level annotations for the purpose of panoptic segmentation.



2.2 Knowledge Representation/Feature representa-
tion

From [26] we can see the demonstration of a method to perform feature selection
and extraction simultaneously. The technique in the work uses manifold learning
on spectral and spatial features from remote-sensing image data for classification,
where spectral and spatial features are concatenated and manipulated in a way to
preserve only important individual features while also utilizing complimentary
attributes of the spectral and spatial information.

The experiments in [25] show a similar concept to [26] where the spectral and
spatial features are picked by using successive dimensionality reduction techniques
which help preserve the relevant information required for classification of image
data.

We can also see the work in [7] which uses a similar technique as [26] and [25]
called SC-MK, where a superpixel is obtained from the image data via running
through multiple kernels. These pixels are then used as input to a classifier to
perform the final classification.

The study in [3] uses CNN kernels for feature extraction at different levels,
then performs SVM or Random Forest classification directly on the feature maps
obtained. Using this method, the authors got a competitive result to regular CNN

learning techniques even if the CNN is only partially trained.



METHOD

3.1 Datasets

We use the MS COCO dataset' to perform the evaluation as this dataset is very
frequently used to further state-of-the-art techniques in panoptic segmentation.
This dataset consists of 80 "thing" categories, 32 "stuff" categories, and 17 "stuff"
categories which were merged or ignored. To assign the thing/stuff classes to each
image, the image has to be transformed by setting the first channel to instance id,

second channel to category id, and the third to zero.

ICOCO, http://cocodataset .org/



3.2 Metrics

The metrics used to evaluate the method proposed in this paper is based the Panoptic
Quality (PQ) metric. The PQ metric is accompanied by 2 other metrics called
Segmentation Quality (SQ) and Recognition Quality (RQ). These 3 metrics are
divided into 3 more categories, namely, "All", "stuff", and "thing".

The calculation of the PQ metric involves first segment matching. The loU
threshold for a predicted segment instance matching the ground-truth instance is
50 percent. Next, the predicted categories are compared to the ground truth to get
the True Positives and False Positives. Overall, the formula for the measure for the

PQ metric is below:

Z(p,g)ETP IOU(p’ g)

PO —
@ [TP|+ L|FPT+ 1EN

(3.1)

The decomposition of the PQ metric can also be done in terms of the product
of SQ and RQ as follows:

PO — 2pgereoU@.9) TP o)
TP |TP|+ L|FP|+ 1|FN] :
segmentation quality (SQ) recognition quality (RQ)

Where parameters p and g denote the predicted, and ground truth label respec-

tively.



3.3 Architecture

This architecture combines feature extraction techniques, dimensionality reduction,
and probabilistic clustering techniques to create pixel-level labels of input images

based on texture/shape information. This method is illustrated in Figure 3.1.
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Figure 3.1: Illustration of the main architecture



3.4 Implementation

The algorithm defined in this paper doesn’t explicitly optimize a cost function using
traditional supervised learning approaches. We use a pre-trained model to define
an image in terms of its edges and we complete a set of pixel level assignments as
per the requirements of Panoptic Segmentation. The algorithm is defined in 1.

First, the image is passed through a pretrained HED model, which identifies
all of the contours in the image. Next, each contour is assigned a label. This is
achieved by processing the image to set every non-edge area to a zero-value, and is
followed by strengthening the edges to make sure there are no empty spaces inside
the contours. A generic flood-fill algorithm is then applied, which assigns a unique
value to each closed contour.

A pre-trained Resnet model is then used to output a set of feature maps for
the image. These feature maps are stored for each segment by only selecting the
areas where the segment is equal to the unique value that was previously set by the
flood-fill algorithm. Therefore, the feature maps stored in total will be Nx256 for
Resnet152, where N refers to the no of segments stored and 256 refers to the no.
of channels per segment.

Each identified segment is looped over and an average-pooling operation is
performed to reduce the computational burden on the tSNE[16] module. 256
element vectors are stored for each pixel in these average pooled feature maps.
Next, we incorporate spatial/shape information, by affixing a binary map of spatial
features to each 256 element vector. The resulting N outputs are flattened, looped
over for each segment, and the flattened output, consisting of a combination of
spatial and textural features is assigned to all pixels. The final dimension input to
tSNE will consist of MxN pixels with (256+MxN) features, where M is number of
average-pooled pixels chosen per segment and N is the number of segments. Note,
that the number of feature maps taken can be decreased in case of computational
constraints.

The resulting set of pixel level features is passed to the tSNE algorithm which

10



is used to decrease the number of per-pixel features from 256+(MxN) to a more
manageable value. This allows for a lower dimension visualization of the high-
dimensional clusters. The resulting clusters are visualized in 3.3. We input the
pixel-level coordinates into a Gaussian Mixture Model(GMM) which calculates
the log-likelihood of the points belonging to a cluster, while we set the component
parameter simply to the number of segments found previously and multiply by 20
for a more compact cluster representation. The density of these clustered regions
is then increased, by adding points on every cluster the where the log-likelihood is
non-zero. Even if the amount of components is more than the classes, the closer
points tend to be in a similar area of higher log-likelihood, and tend to cluster
together in the GMM distribution. Next, the DBSCAN [5] algorithm is used to
obtain the final labels for the clusters. Finally, using the indices of the points input
to the DBSCAN algorithm, we can assign the classes to each segment and by
extension, each pixel in the image.

Table 3.1: Comparison of Panoptic Quality (PQ) metric across existing state-of-
the-art techniques.

PQ PQ (thing) PQ (stuff)

Baseline 0.372 0.454 0.249
AUNet  0.465 0.559 0.325
UPSNet 0.466 0.532 0.367
JSISNet  0.272 0.296 0.234
Ours 0.022 0.013 0.036
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Algorithm 1 CEReBRO algorithm

1:
2:

Inputs: [,.;5, N
Outputs: [,,,sk

[edge - HED([orig)
Ipn = ResNet(1orig)
[CC = FF<[om'g)

K < regions in /..

3: for region = 0 to K do

{(z1,y1)...(xNn,yn)} < (z,y) ~ region; Sampling N points from each
region
{Fi..Fn} < Ippm({(21,91)...(xn, yn) }) ; Extracting feature vectors from
the sampled points
end for
(U, V) < tSNE({Fi...Fy}); Represent the feature vectors as a set of 2D
coordinates
Xsegs < GMM ({Fy...Fy}); Use Gaussian mixture models to represent the
clusters in space
Xelass, Xsegs ¢ DBSCAN(X;e4s); Determine the no. of unique classes in
an image
Innask <Xsegs; Assign per-pixel (stuff, thing) tuples to the original image

12



b e

(a) Sample 1 - Origi-
nal

(¢) Naive pixel-based ) 0 4 Truth
clustering

(g) Naive pixel-based
clustering

(b) HED + processing

(e) Sample 2 - Origi-
nal

(f) HED + processing

(h) Ground Truth

(i) Sample 3 - Origi-
nal

(k) Naive pixel-based
clustering

(j) HED + processing (1) Ground Truth

Figure 3.2: (a),(e),(1) show original input images, (b),(f),(j) show the output of the
HED model which provides closed contours within the image for segment initial
guess (c),(g),(k) After inputting each closed contour to tSNE,GMM, and DBSCAN,
the segments are classified by clustering similar superpixel/spatial information ,
(d),(h),(i) are the corresponding ground truth panoptic segments
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axes correspond to tSNE and GMM component coordinates
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Table 3.2: Comparison of Segmentation Quality (SQ) metric across existing state-
of-the-art techniques.

SQ  SQ(thing) SQ (stuff)

Baseline 0.771 0.815 0.706
AUNet  0.810 0.837 0.770
UPSNet 0.805 0.815 0.789
JSISNet 0.719 0.716 0.723
Ours 0.459 0.426 0.508

Table 3.3: Comparison of Recognition Quality (RQ) metric across existing state-
of-the-art techniques.

RQ RQ (thing) RQ (stuff)

Baseline 0.457 0.544 0.325
AUNet  0.561 0.663 0.407
UPSNet 0.569 0.646 0.453
JSISNet 0.359 0.396 0.306
Ours 0.030 0.019 0.047

15



RESULTS AND DISCUSSION

As this method is unsupervised, the presented results are inferior to that of su-
pervised state-of-the-art techniques. The quantitative results presented in tables
3.1, 3.2, an 3.3. During our pixel designation process, we assign pixels with low
confidence, the "N/A" class. This approach has certainly contributed to the low PQ
scores in the paper. Since we envision this approach being used as a first-pass to
aid annotators with the panoptic annotation task, we believe that there is significant
utility in the approach even with low quantitative statistics.

The PQ score consists of two sub-scores, the Segmentation Quality SQ and
the Recognition Quality RQ, eq. (2). The results for SQ, in table 3.2, indicate that
the quality of segmentation for the unsupervised approach is not quite as good as
that of the supervised techniques. However, the removal of artifacts in the image,
and thinning of the contour lines might yield improved results in future works. In
contrast the RQ metric is extremely low and requires significant improvement. This
indicates that the algorithm is not able to correctly differentiate between objects of
the same class. Future work will focus on improving the clustering of the model
such that items of the same class are clustered sufficiently far from each other in
feature space.

Further improvements may be made by strategically choosing hyperparameters
for each module in Figure 3.1. Sensitive hyperparameters such as perplexity for
tSNE, number of components for GMMs, and cluster size for DBSCAN are crucial

for effective segmentation. More research will have to be done to find optimal

16



values for these hyperparameters. Another factor which needs to be investigated is
an optimal method to incorporate both texture and spatial/shape information. In
the current setup, the spatial/shape information is appended to the feature maps, so,
the input dimensions being reduced from the tSNE module is dominated by the
spatial/shape information as the feature maps are only 256 dimensions deep while

the spatial/shape information is the flattened feature map itself.

17



4.0.1 Evaluation

We encoded our pixel-specific results in a format that allowed us to run the eval-
uation scripts provided by COCO. This was done to ensure consistency in the
reported metrics. All images were processed sequentially and thus did not require
a GPU. Our architecture is thus highly adaptable and does not require the use of a
GPU as is the case for collaborative assistant tools that might utilize deep neural

nets.

18



4.1 Limitations

This approach suffers from an number of limitations the most important one of

which is its ability to generalize to more complex datasets.
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4.1.1 Application to larger datasets/videos

We have attempted to use this algorithm on complex panoptic segmentation datasets,
specifically Cityscapes [6]. The results are not promising as the noise in the data
results in very tight clusters during the dimensionality reduction step of the pro-
posed algorithm. The following GMM and DBSCAN steps are highly susceptible
to creating erroneous clusters which in-turn results in incorrect classifications of
the pixels. It is our intention to introduce a hyper-parameter for controlling the
sensitivity of these clusters. This will allow us to experiment with larger and more

complex datasets.

20



4.1.2 Processing time

Since our algorithm uses computational approaches such as tSNE, GMM and
DBSCAN for each image, it is time-intensive. We would like to improve the
operation times of the algorithm by streamling and parallelizing it as much as
possible so that it may be used for its intended purpose, a collaborative panoptic

segmentation assistant.
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4.2 Extension to model explainability

The presented algorithm is inspired by the learning methodologies of infants.
Infants do not understand the names of classes but are able to make out the shapes
of individuals and items that are presented to them. By being able to differentiate
objects, they can then attempt to classify them without even knowing the name of
the object, using simple visual and textural cues. They are subsequently taught the
names of the objects and through trial and error, and a timely signal from a teacher,
their learning is complete. Through the repeated application of this structured
approach to learning they are able to use visual sensory information and couple
that with their visual cortex [9], which processes this information for a particular
purpose. We replicate this physiological process by replacing the visual sensors
with HED and a ResNet model (pre-trained on COCO), and the visual cortex with
clustering of pixel spectra in a low-dimensional pixel space. This model is thus
intuitive as it contains parallels from physiology, it is also more explainability than
deep learning models which consists of a finite but large number of layers that

learn complex representations internally and are essentially black-boxes.
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CONCLUSION

We propose a panoptic segmentation approach in this paper that is completely
unsupervised. The proposed architecture is significantly more interpretable than
existing deep learning approaches as it derives inspiration from physiology, specifi-
cally the visual cortex system. The results presented in the paper indicate that this
method has the potential to serve as a first pass for decreasing the workload for
image annotators by making pixel-based predictions about segments of interest,
within images, that it is confident about. However, more research is required to im-
prove the algorithm to make it competitive with current state of the art, supervised

panoptic segmentation techniques.
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