
SAFE DRIVING OF

AUTONOMOUS VEHICLES

THROUGH IMPROVED DEEP

REINFORCEMENT LEARNING

by

Abhishek Gupta

MSc, Intelligent Systems, De Montfort University, Leicester, United Kingdom, 2013

BE, Electronics and Telecommunication Engineering, University of Pune, India, 2011

A Thesis

presented to Ryerson University

in partial fulfilment of the

requirements for the degree of

Master of Applied Science

in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2020

c©Abhishek Gupta, 2020

Author’s Declaration

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the the-

sis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Safe Driving of Autonomous Vehicles Through Improved Deep Reinforcement

Learning

Master of Applied Science, 2020

Abhishek Gupta

Electrical and Computer Engineering

Ryerson University

In this thesis, we propose an environment perception framework for autonomous driving

using deep reinforcement learning (DRL) that exhibits learning in autonomous vehicles un-

der complex interactions with the environment, without being explicitly trained on driving

datasets. Unlike existing techniques, our proposed technique takes the learning loss into

account under deterministic as well as stochastic policy gradient. We apply DRL to object

detection and safe navigation while enhancing a self-driving vehicle’s ability to discern mean-

ingful information from surrounding data. For efficient environmental perception and object

detection, various Q-learning based methods have been proposed in the literature. Unlike

other works, this thesis proposes a collaborative deterministic as well as stochastic policy

gradient based on DRL. Our technique is a combination of variational autoencoder (VAE),

deep deterministic policy gradient (DDPG), and soft actor-critic (SAC) that adequately

trains a self-driving vehicle. In this work, we focus on uninterrupted and reasonably safe

autonomous driving without colliding with an obstacle or steering off the track. We propose

a collaborative framework that utilizes best features of VAE, DDPG, and SAC and models

autonomous driving as partly stochastic and partly deterministic policy gradient problem in

continuous action space, and continuous state space. To ensure that the vehicle traverses the

road over a considerable period of time, we employ a reward-penalty based system where a

higher negative penalty is associated with an unfavourable action and a comparatively lower

positive reward is awarded for favourable actions. We also examine the variations in policy

loss, value loss, reward function, and cumulative reward for ‘VAE+DDPG’ and ‘VAE+SAC’

over the learning process.

iii

Acknowledgement

I would like to express my heartfelt gratitude to my supervisor, Prof. Alagan Anpalagan

for giving me the opportunity to pursue my research. I am forever indebted to Prof. Alagan

for his tireless enthusiasm, constant support, and critical insights throughout my MASc,

which made this thesis possible. I must also thank him for his style of supervising that offers

continued support, guidance, and constructive feedback.

I am grateful to Prof. Ling Guan for being my thesis co-supervisor and for the valuable

guidance at various stages of my studies. I thank all the other members of my defense

committee for giving me constructive advice to endeavor toward a more solid thesis.

I sincerely thank Dr. Ahmed Shaharyar Khwajah for extending his stimulating discus-

sions, feedback, and thought provoking research topics. The endless conversations we have

had throughout were enjoyable as well as memorable.

I must acknowledge Dr. Kandasamy Illanko for introducing me to the topic of convolu-

tional neural networks, recurrent neural networks, and the vast scope of applications of deep

learning. It would not be an exaggeration to say Prof. Aditya Abhyankar, Dean, Savitribai

Phule Pune University (Faculty of Technology), India, shaped me as a researcher and kindled

my interest in the ever evolving field of signal processing and communication.

It was my pleasure to be a member of WINCORE Lab and to be part of the research

group. It was an honour to spend time with all the colleagues and research fellows, and

I thank them for their willingness to help and the cordial environment. I would also like

to extend my special thanks to the department of Electrical, Computer, and Biomedical

Engineering (ECBE), Faculty of Engineering and Architectural Sciences (FEAS), and the

School of Graduate Studies (SGS) at Ryerson University to provide me a chance to pursue

my master’s degree and all kinds of support for my studies.

In addition, I would like to thank to my family for their trust and dedication during my

master’s studies, and my friends from all communities for their encouragement.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgement iv

List of Tables viii

List of Figures ix

Notations and Symbols xi

List of Abbreviations xiv

List of Appendices xv

1 Introduction 1

1.1 Background . 2

1.2 Motivation and Objective . 4

1.3 Contributions and Organization . 5

2 Literature Review of Deep Reinforcement Learning for Autonomous Ve-

hicles 7

2.1 Introduction . 7

2.2 Recent Advances and Bottlenecks in Realizing Self-Driving Vehicles 8

2.2.1 Advantages of self-driving cars . 9

2.2.2 Probable disadvantages and drawbacks of self-driving cars 10

2.2.3 Data-driven autonomous driving models 11

2.2.4 Empirical decision-making system for autonomous vehicles 12

2.3 Deep Reinforcement Learning . 14

2.3.1 Deep deterministic policy gradient (DDPG) 18

v

2.3.2 Variational auto encoder (VAE) . 18

2.3.3 Soft actor-critic (SAC) . 19

2.3.4 Integration of DDPG, SAC, and VAE 21

2.3.5 Kullback-Liebler divergence between the vehicle states at different

timestamps . 22

2.4 Problem of Scene Perception and Decision Making in Autonomous Driving . 23

2.5 Proposed Solutions . 24

3 System Model 25

3.1 Driving Environment and Scenarios . 25

3.1.1 Mathematical definition of the driving environment 26

3.1.2 Autonomous driving scenarios . 29

3.2 Problem Formulation . 33

3.3 Solution Approaches: Preliminaries . 34

3.3.1 Reward shaping . 35

3.3.2 Termination condition . 37

3.3.3 Markov decision process . 38

3.3.4 Planning by dynamic programming 40

3.4 Solution Approach . 40

3.4.1 Optimal policies and values . 44

3.4.2 Solving MDPs using Bellman expectation equations 45

4 Simulation Results and Analysis 48

4.1 Experimental Setup . 48

4.1.1 Scenario setup in DonKey simulator 49

4.2 Simulation Parameters . 52

4.3 Performance Analysis . 53

4.3.1 Driving environment . 53

4.3.2 Learning losses . 58

4.3.3 Optimal driving policy . 60

4.3.4 Performance comparison for VAE+DDPG vs VAE+SAC 63

4.3.5 Steering smoothness based on loss function 66

4.3.6 Summary and findings . 67

5 Conclusion and Future Work 69

5.1 Conclusions . 69

5.2 Future Work . 71

vi

Appendices 73

Appendix A Parameter updates while learning state-action transition policy 74

Appendix B Images during driving 75

Bibliography 82

vii

List of Tables

2.1 Brief overview of SAE levels of automation in vehicles [5]. 8

2.2 Requirements of autonomous vehicles and the scope of DDPG, VAE, SAC:

Connection of theory to application. 20

3.1 The initial values for states and the transition probabilities. 43

4.1 Features considered in the simulation . 51

4.2 Steering smoothness based on loss function 67

viii

List of Figures

2.1 A comparison of data-driven and deep reinforcement learning based approaches

to autonomous driving [1], [2]. 12

2.2 DRL for self-driving cars. 15

2.3 Block diagrams representing VAE + DDPG and VAE + SAC approaches. . . 22

2.4 Comparison of VAE in conjunction with DDPG and SAC algorithms. 23

3.1 System model. 27

3.2 Representation of safe navigation scenario around a turn or obstacle [3], [4]. . 28

3.3 Representation of the combined scenario of vehicle and obstacle at a slant to

the road [3], [4]. 30

3.4 High level representation of the system architecture. 31

3.5 Proposed research questions and applicable solution strategies. 33

3.6 Proposed solution approach. 36

3.7 Flowchart representing the proposed scheme. 41

4.1 Driving manoeuvres in generated road driving environment in Donkey simu-

lator at a given timeframe. 54

4.2 Driving manoeuvres in generated road driving environment in Donkey simu-

lator at a subsequent timeframe. 55

4.3 Cumulative reward vs no. of timeframes. 56

4.4 Episode length vs no. of timeframes. 57

4.5 Value loss vs no. of timeframes. 58

4.6 Policy loss vs cumulative reward. 59

4.7 Value loss vs cumulative reward . 60

4.8 Policy loss vs entropy. 61

4.9 Policy vs learning rate. 62

4.10 Value loss vs Total timesteps. 64

ix

4.11 Comparison of mean cumulative reward vs number of training steps for VAE+DDPG

and VAE+SAC. 65

4.12 Comparison of rewards vs number of training steps for VAE+DDPG and

VAE+SAC. 65

x

Notations and Symbols

xc(t), yc(t) The vehicle is represented as a circle with centre xc(t), yc(t) at time t

xc(ti) X-coordinate of centre of vehicle position at ith instance of time, ti

yc(ti) Y-coordinate of centre of vehicle position at ith instance of time, ti

xo, yo An obstacle is represented as a square with centre xo(t), yo(t) at time t

x1, y1 An arbitrary point on the road

x2, y2 An arbitrary position of vehicle on the road

x3, y3 An arbitrary position of obstacle on the road

∆t Difference between two subsequent timeframes when vehicle navigates

cR Y-intercept of equation defining vehicle position on the road

α Set of points defining the road (driving environment), constrained

between two straight lines

βveh Initial set of points of the vehicle when placed on the road

m Slope of the striaght line path

cveh Y-intercept made by the vehicle while travelling in a straight line path

vehroad Indicates vehicle remains on the road and does not drift off-track

βobs Other vehicles (obstacles) on the road

αtic Indicates a vehicle of radius c is present on the road α at time ti

w Width of the obstacle

min<Vr,S> || Vr || The Bellman value function to be minimized at a given state

v Velocity

vx Velocity component in x-direction

vy Velocity component in y-direction

r Reward

d Distance from the middle of the road

p Penalty

Ψ Additional penalty

| <,> | Inner product

St State at time t

At Action at time t

Rt Reward at time t

xi

γ Discount rate (where 0 ≤ γ ≤ 1)

Gt Discounted return at time

R Set of all rewards

S+ Set of all states (including terminal states)

P State transition probability matrix

S finite set of states

A finite set of actions

A(s) Set of all actions available in state s

P Probability distribution of the variable under consideration

E Expectation

ac1 Indicates a vehicle is set to take accelerating action

ac2 Indicates a vehicle is set to avoid accelerating action

sd1 Indicates that a set of actions leads to safe driving

sd2 Indicates that a set of actions leads to unsafe driving

P (sd1|ac1) Probability that an action is unsafe if vehicle takes accelerating action

P (sd2|ac1) Probability that an action is safe if vehicle takes accelerating action

P (sd1|ac2) Probability that an action is unsafe if vehicle avoids accelerating action

P (sd2|ac2) Probability that an action is safe if vehicle avoids accelerating action

st The state of the driving environment and the vehicular agent at time t

at Action taken by vehicular agent at time t

rt Reward (or penalty) for a specific action at taken by vehicular agent at time t

Pss′ Probability of transtion from one state to next state

D Observed data

B Prior background knowledge

P (s|D,B) Belief about the environment

π The learning policy of the DRL algorithm

π(a|s) Policy for a given state-action pair (a|s)
a∗ Optimal action under a given state

P (s′, r|s, a) Probability of next state s′ and reward r, given current state s and

current action a (P(St+1 = s′, Rt+1 = r|St = s, At = a))

vπ State-value function for policy π (vπ(s)
.
= E[Gt|St = s] for all s ∈ S)

qπ Action-value function for policy π (qπ(s, a)
.
= E[Gt|St = s, At = a] for

all s ∈ S and a ∈ A(s))

xii

v∗ Optimal state-value function (v∗(s)
.
= maxπ vπ(s) for all s ∈ S)

q∗ Optimal action-value function (q∗(s, a)
.
= maxπ qπ(s, a) for

all s ∈ S and a ∈ A(s))

V ∗ Optimal value function

Q∗(s, a) Optimal state-action (s|a) value function

Qπ(s, a) State-action (s|a) value function for policy π

Gt Return, signifies the aptness of reward at a given state

xt Denotes the t-th frame of the image dataset

St Set of states at previous times st−n+1, st−n+2, ..., st

At Set of actions at previous times at−n+1, at−n+2, ..., at

F (Xt, St, At) Function representing state-action tuple for a specific environment

z Gaussian space

ρ Pixel space defined as a hypersphere of radius ρ

L Error in policy learning

Lprior Prior error due to random motion in environment

LDDPG Error in DDPG network

LSAC Error in SAC network

DKL(q(z|σ̂0,t)||p(z)) Kullback-Liebler divergence between the states at different timestamps

σ Output of the VAE-SAC network after regularization

p(z) Prior distribution of DDPG training data

q(z|σ̂0,t) Probability distribution of the output states to calculate Kullback-Leibler

divergence

σ̂0,t VAE-SAC reward at tth timeframe

µ Output of the VAE-SAC network after training

ε Gaussian random vector of same dimensions as µ and σ

xiii

List of Abbreviations

A3C Asynchronous Advance-Actor Critic

AI Artificial Intelligence

BDT Bayesian Decision Theory

CAV Connected and Autonomous Vehicles

CNN Convolutional Neural Networks

DDPG Deep Deterministic Policy Gradient

DL Deep Learning

DQN Deep Q-Networks

DRL Deep Reinforcement Learning

GPS Global Positioning System

ICT Information and Communication Technology

IoV Internet of Vehicles

ITS Intelligent Transportation Systems

LQG Linear-Quadratic-Gaussian

MDP Markov Decision Process

ML Machine Learning

NN Neural Networks

POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning

RNN Recurrent Neural Networks

SAC Soft Actor Critic

SAE Society of Automotive Engineers

SRL State Representation Learning

SSD Single Shot Multibox Detector

SVM Support Vector Machines

TORCS The Open Racing Car Simulator

VAE Variational Auto Encoder

xiv

List of Appendices

Parameter updates while learning state-action transition policy 74

Images during driving 75

xv

Chapter 1

Introduction

Recently, autonomous driving (AD) has received significant attention from the research

community as well as the industry, and it forms a critical component of the connected and

autonomous vehicles (CAV) and internet of vehicles (IoV) framework [1], [2]. A long-standing

goal of artificial intelligence (AI) has been to drive a vehicle in a safe manner [5]. With AI

theoretically anticipated to provide sustained attention and focus than humans, yet fully

autonomous driving requires a level of intelligence that surpasses the ones achieved so far by

AI agents [6], [7]. The intelligent transportation systems (ITS) combined with deep learning

(DL) is set to usher in an era of following technology disruptions:

• Autonomous vehicles are set to boost shared economy through car pooling and ride-

sharing [8].

• Autonomous vehicles are viewed as an ultimate disruption machine, which could con-

siderably reduce the usage of gasoline cars reducing wastage of time, space, lives,

money, and energy [8].

• Increasing number of technology industries are collaborating with the transportation

and automobile sector to advance the field of self-driving vehicles [6].

• Autonomous vehicles can evolve cloud based models such as car-as-a-service (CaaS),

1

vehicles-as-a-service (VaaS), and rides-as-a-service (RaaS) [6].

It is anticipated that urban transportation would comprise a mix of manual, semi-automatic,

and fully autonomous vehicles by 2025 [1]. Current autonomous vehicles have reached SAE

level-3 autonomy in simulated and restrained driving environments. However, in order to

deal with the real-life driving scenarios, to safely navigate the traffic, to reduce travel de-

lay, and to avoid congestion, novel object detection and scene perception techniques are

required [2]. Environment perception and cognition to gain a comprehensive understand-

ing of the driving scenarios are considered critical enablers for connected and autonomous

vehicles. Among many applications, object detection and safe navigation around obstacles

rely heavily on a vehicle’s ability to discern meaningful information from the surrounding

data [5]. One technique to enhance perception in autonomous vehicles is reinforcement learn-

ing that teaches machines through constant interaction with the environment, learning from

past experiences, and subsequently improving upon them [6]. In the last decade, reinforce-

ment learning combined with deep learning, known as deep reinforcement learning (DRL)

has emerged as a strong artificial intelligence paradigm that has been successfully tested on

various gaming applications [7].

1.1 Background

Recent advances in DL have intensified research to develop autonomous agents with human-

level capabilities [9]. A prevalent data-driven machine learning (ML) technique known as

supervised learning allows these agents to learn from a pre-existing collection of data. How-

ever, dealing with massive amount of labelled data in real-world scenario is no longer an

optimal or feasible solution [10]. The deep reinforcement learning (DRL) methodology, a

combination of the existing deep learning (DL) and reinforcement learning (RL) scheme, is

currently being studied as a baseline format for the self-driving vehicles [11]. Self-driving

cars, also known as autonomous vehicles (AV), driverless cars, smart transportation robots

2

(STR) or robocars are one of the most speculated scientific inventions with a potential to

change the way we commute [12]. The recent and broader implications of self-driving cars in-

corporate integration with novel infrastructure, smart cities, urban planning with provisions

for advanced cyber-security, privacy, and insurance [13]. It is worth mentioning that while

the self-driving cars have gained intense attention in the last decade, driverless transporta-

tion has been in existence for over a decade in form of driverless shuttles, driverless trains,

and autonomous transportation pods [12]. Trains are a prominent example of widespread

use of self-driving technology [14]. Some of such train examples include the:

• SkyTrain in Vancouver, Canada [15]

• Docklands Light Railway (DLR) in London, United Kingdom [16]

• Yurikamome in Tokyo, Japan [14]

• London Heathrow airport’s ultra-pods [16]

These autonomous rail systems transport thousands of passengers on a daily basis. Authors

in [16] note that the majority of passengers commuting through self-driving trains were not

worried about using those trains. However, the aforementioned trains and autonomous pods

operate on enclosed tracks, isolated from the public roads, and bypass the need to interact

with other vehicles or pedestrians [15]. In contrast, self-driving cars are set to encounter

various users, thereby resulting in complex interactions and the possibility of collision [17].

Whether people will be as accepting of self-driving cars as they appear to be of existing

autonomous transport is an active area of research [15]. The current trends in DL and AI

applied to ITS pave the way for fully autonomous vehicles. Traditional DL techniques such

as convolutional neural networks (CNN) and recurrent neural networks (RNN), along with

ML techniques such as clustering, fuzzy logic, and support vector machines (SVM) have

demonstrated success to address challenges pertaining to autonomous driving [11].

3

1.2 Motivation and Objective

One of the earliest four-layer neural networks (NN) applied to autonomous vehicles consists of

one input layer, two hidden layers, and one output layer. The NN takes relative speed, desired

speed, follower speed and gap distance as inputs to predict follower acceleration [18]. A

modified version of NN with one hidden layer can predict vehicle acceleration by considering

instantaneous reaction-time (RT) delay [19]. Until recently, the creation of NNs was often

a time-consuming task. However, with the ubiquitous availability of cloud based processors

such as Google Cloud Platform (GCP) and Amazon Web Services’ (AWS) Elastic Compute-

2 (EC2), the complex process of fine-tuning and optimizing NN architectures have been

extensively simplified [20]. This has led to a surge in research activities to achieve the

quality and the speed needed to simulate, test, and run autonomus vehicles using various

DL paradigms. The conventional NN-based models have undergone significant improvements

with the advent of recurrent neural networks (RNN), convolutional neural networks (CNN)

and deep neural networks (DNN) [11].

Recently, DRL has been widely applied to various problems, predominantly in game play-

ing [21], [22]. The DRL paradigm has been extended to other domains such as autonomous

vehicles and has opened new research avenues [23]. A model-free DRL technique known

as Q-learning offers a compelling technique to further explore the problem of autonomous

driving without explicitly modelling the driving environment [24]. The current study is a

step forward to use a deep reinforcement learning (DRL) to model safe autonomous driving

behavior. Our results have been compared to other data-driven models based on the accu-

racy, maximum error-free drive-time before following too closely, and maximum error-free

drive-time while overtaking [25]. These state-of-the-art developments in deep learning and

reinforcement learning were the principal motivation behind this work.

4

1.3 Contributions and Organization

The main contribution of this thesis is the application of deep reinforcement learning (DRL)

to train an autonomous vehicle and to evaluate the smoothness and effectiveness of drive

mechanism and control. The method uses three DRL techniques namely the variational

auto encoder (VAE), deep deterministic policy gradient (DDPG), soft actor-critic (SAC) to

achieve safe autonomous driving. The simulations and experimental results provide useful

insights when extending the design to real world scenarios. The thesis further contributes

towards understanding the advantages, shortcomings, and pitfalls of modeling autonomous

driving problem as a Markov decision process (MDP) problem and a partially observable

MDP (POMDP) problem. The thesis explores the role of DRL to complement the au-

tonomous driving problem modeled using an MDP/POMDP. The results provide a significant

groundwork for considering solutions to some autonomous driving problems using standalone

DRL frameworks.

The main contributions of this thesis can be summarized as follows:

• Proposing a DRL based solution using VAE, SAC, and DDPG to solve the autonomous

driving problem formulated as a MDP. We propose a DRL algorithm that combines

the feature extraction capabilities of unsupervised CNNs with the fast and powerful

batch RL approach of DDPG, VAE, and SAC.

• Analysis of the autonomous driving behavior, verification of the proposed DRL scheme,

and performance comparison of VAE+DDPG and VAE+SAC approaches. This is done

by the implementation of VAE, DDPG, and SAC based autonomous driving in DonKey

simulator, that closely approximates real-world driving conditions.

The remainder of the thesis is organized as follows: Chapter 2 summarizes the existing

developments in self-driving vehicles from perception and object detection point of view,

and the role of DRL in achieving improvements over existing methodologies. We compare

some applicable solution strategies and discuss the application of deep deterministic policy

5

gradient (DDPG), soft actor-critic (SAC), and variational autoencoder (VAE) to achieve

safe autonomous driving.

In Chapter 3, the problem of safe autonomous driving using DRL is presented and for-

mulated for a specific scenario. The problem formulation is followed by the discussion of

solution strategy. This chapter also defines the loss function, proposed penalty, and value

entropy. The experimental setup with DonKey simulator is discussed in Chapter 4, outlin-

ing the design requirements, available resources, and constraints. This chapter shows the

detailed results with a focus on the main contribution of this thesis, the improved learning

with the use of VAE, DDPG, and SAC algoritims. The simulation results and performance

comparison of all the proposed methodologies are presented in this chapter. In Chapter 5,

we conclude the contributions of this thesis and discuss the future research topics.

6

Chapter 2

Literature Review of Deep

Reinforcement Learning for

Autonomous Vehicles

2.1 Introduction

Engineers, computer scientists, and applied mathematicians all agree that if the last two

decades belonged to the internet and communication revolution, the current decade and the

coming decade would belong to the artificial intelligence (AI) revolution [26]. A sub-set of

AI, known as machine learning (ML), and a further sub-set of ML known as deep learning

(DL) have opened vast avenues of unprecedented research. Supervised learning does not scale

computationally well when applied to autonomous driving [27], [28]. Reinforcement learning

(RL) is unsupervised, and following the selection of the relevant features, the appropriate

sequence of actions is based on a relevant reward function [23]. Incorporating recurrent

neural networks (RNN) for information integration enables autonomous vehicles to handle

partially observable scenarios; however, it adds to computational overhead on the embedded

hardware to focus on relevant information [29]. Table 2.1 outlines key features of partially-

7

automated and fully autonomous vehicles as defined by the society of automotive engineers

(SAE) [5].

Table 2.1: Brief overview of SAE levels of automation in vehicles [5].

SAE
level

Name Human-
centered/ Au-
tonomous

Monitoring
of driving
environment

Fallback Per-
formance
of dynamic
driving tasks

Example fea-
tures

0 No automa-
tion

Human driver
is completely
in-charge of all
aspects of driving

Human driver Human Driver No system-
driven capability

1 Driver Assis-
tance

Human driver
in-charge of all
aspects of driving
with

Human driver Human Driver Some minor driv-
ing modes are
system capable

2 Partial Au-
tomation

Human driver in-
charge of all as-
pects of driving

Human driver Human Driver System driven
steering and
acceleration/
deceleration

3 Conditional
Automation

Vehicle assists hu-
man driver in some
non-critical aspects
of driving

System Human Driver Huamn driver
expected to re-
spond when need
arises

4 High Au-
tomation

Human driver in-
charge of very few
aspects of driving

System System + Hu-
man Driver

Human driver
only need to
intervene if
unavoidable

5 Full Automa-
tion

System in-charge of
all aspects of driv-
ing

System System Human can to-
tally disengage
from driving
tasks

2.2 Recent Advances and Bottlenecks in Realizing Self-

Driving Vehicles

Analysis of the behavior and strategies frequently employed by safe human drivers is essential

in the development of autonomous vehicles (AV) [30]. Considerable research has gone into

8

extracting the driving strategies adopted by drivers and to model their behavior without

human intervention in varying situations [30]. In the last decade, ML algorithms such as

fuzzy logic control, predictive and adaptive control, hybrid dynamical models and Markov

chain models have been used to model the driving behavior. The predictive control based

theories successfully predicted and reproduced human driving behavior under constrained

environments [31]. However, the method relied heavily on data collection and representation

as prior knowledge about the rule base was essential. The accuracy of Markov chain models

depends on the prior knowledge about the state transition probability between each state

pairs [32]. In realistic scenarios, the diverse driving conditions to be encountered are unlikely

to be entirely known in advance. With the emergence of and rapid breakthroughs in deep

learning (DL), attempts to learn driving behavior directly from the driving data without

prior knowledge of the driving conditions have gained prominence in recent years [33], [14].

2.2.1 Advantages of self-driving cars

Information and communication technology (ICT) continues to find applications in trans-

portation to reduce collisions, reduce pollution, ameliorate mobility issues, modernize public

transportation, and share resources, materials and space [12]. According to a study, there

are 1.3 million deaths globally every year due to drunk, drugged, distracted, or drowsy driv-

ing [34]. Autonomous AI systems that can save lives by eliminating these human follies offer

the following advantages that motivate research in self-driving cars:

• For users, the advantages are reduced stress, faster commutes, reduced travel times,

enhanced user productivity, optimum fuel consumption, reduced carbon emissions.

These cars can be programmed to drive defensively, stay clear of blind spots, and

follow speed limits [12].

• Self-driving cars would lead to enhanced roadway capacity, reduced road casualties

and number of on-road driving related accidents [12].

9

• Reduced accidents are expected to be beneficial for children and the elderly, encour-

aging people to feel comfortable and amiable towards self-driving cars [34].

• Self-driving electric cars would introduce a greener mode of transport, leading to less

greenhouse and noise pollution, along with increased mobility for the elderly and dis-

abled people [34].

• In the current driving landscape, cars are parked for a long time. With self-driving

cars, parking lots can be converted to parks [8].

• Self-driving cars would be equipped to improve scheduling and routing, and provide

best routes to improve travel times, while also lowering the cost of moving from one

point to another [6].

• Self-driving cars are envisioned to eliminate drunk driving issues, eliminate issues re-

lated to distracted driving, texting and other cell phone use, less braking and acceler-

ating, and less gridlock on highways [13].

• Although self-driving cars would reduce or even eliminate car ownership, they would

expand shared access, keep transportation personalized, efficient and reliable [20].

2.2.2 Probable disadvantages and drawbacks of self-driving cars

Cars are one of the most widespread and readily available modes of transportation. While

technology has developed safer cars, driving is still a dangerous undertaking [30]. Self-driving

cars formulate a scenario where a few lines of source codes, coupled with AI decide the life

of a human being [6]. Some disadvantages of self-driving cars are as follows:

• Considering the number of people employed in the transportation sector, the fore-

most catastrophic consequence of self-driving cars would be elimination of jobs in the

transportation industry [12].

10

• The acceptance of self-driving technology at philosophical, ethical and technological

levels is a fundamental research problem in psychology and cognitive science. It is

argued that in case autonomous vehicles and AI systems malfunction, a person would

not die or suffer injuries if they themselves were in control of the system [34].

• Although the role of AI in our society is consistently evolving, an AI system making

critical decisions needs to respect societal values and conform to social norms to gain

accpetance [8].

• Driving at intersections without traffic lights, malfunctioning traffic lights, uncontrolled

intersections, busy intersections, regions with humans in close proximity are a challenge

for self-driving cars [6].

• As self-driving cars use global positioning system (GPS) for localization, they are

deemed unsuitable to drive in non-mapped areas [13].

• The scope of car’s connectivity, the car being online at all times, makes it susceptible

to hacking. The safety and convenience offered by self-driving cars might compromise

privacy of passengers as their moves will be tracked and logged unawares [20].

2.2.3 Data-driven autonomous driving models

The availability of high-fidelity traffic data and consequential data-driven approaches model

an autonomous vehicles’ car-following behavior directly from human-behavior data [1]. The

autonomous driving tasks can be broadly classified into following two steps [35]:

(a) Environment Perception and

(b) Cognition

The cognition stage can be subdivided into following two categories [36], [37], [35]:

(i) Prediction and

11

(ii) Planning

Autonomous vehicles interpret the sensor data, identify objects, and monitor the sur-

roundings over a period of time for effective path prediction and planning [38].

2.2.4 Empirical decision-making system for autonomous vehicles

Cognition in autonomous vehicles is primarily a vision-based task that consists of environ-

ment recognition, entity identification such as pedestrian detection, traffic sign recognition,

and detection of static objects [19]. Image segmentation algorithms based on low-level feature

extraction appended with shallow trainable architectures such as support vector machines

(SVM) have been widely adopted in computer vision [39]. Figure 2.1 compares data-driven

autonomous driving approach with DRL based autonomous driving approach.

(a) Data-driven approach to autonomous driving (b) Deep reinforcement learning based approach to au-
tononomus driving

Figure 2.1: A comparison of data-driven and deep reinforcement learning based approaches
to autonomous driving [1], [2].

Information integration over continuous-time is a key feature offered by DRL where suc-

cessive optimum decisions for vehicle manouevres are derived from the present state of the

12

vehicle [11]. Localization and mapping, occlusion of objects, and dynamics of the envi-

ronment allow the autonomous vehicle to predict future states and actions that facilitate

tracking tasks based on features extracted and tracked over time [35]. Advanced neural net-

work (NN) based architectures such as convolutional neural networks (CNN) and deep neural

networks (DNN) have dominated computer-vision since the arrival of AlexNet [40]. Rather

than completely relying on manually defined features, these NNs also learn increasingly

complex features relevant to the task using function approximation [41]. These architectures

were enhanced through expressivity and robust training to generalize and learn informative

object representations in the autonomous driving domain. End-to-end learning for visual

odometry using CNNs has led to results comparable to the state-of-the-art methods used

for localization and mapping [28]. Deep learning has gained increased attention as their

design requires minimal prior knowledge and the models can be fine-tuned to scale to differ-

ent environments [10]. These models have been enhanced using recurrent neural networks

(RNN) that memorize long-term dependencies and tackle autonomous driving as partially

observable Markov decision processes (POMDP) [42]. This is a significant improvement over

traditional methods such as Bayesian decision process based on Markov assumption [43].

POMDPs formulate the autonomous vehicle control problem as an optimization task, and

rely on assumptions to optimize an objective [42]. The RL seems to be promising for planning

and control aspects and scales to very complex environments and unexpected scenarios [44].

Recently, researchers have tried to divide the autonomous vehicle problem into sub-

problems for categories such as object-detection, scene-segmentation, visual odometry and

combine the results together [45]. However, the sub-problems might be more complicated

than the autonomous driving task itself. For example, object detection using single shot

multibox detector (SSD) in driving environment is redundant, as human drivers do not de-

tect and classifiy all the objects; rather, they classify the most relevant objects [46], [35].

Moreover, the motion of the vehicle introduces a Doppler shift which causes dynamic con-

traction of the visual zone [47], [48]. Furthermore, the solutions to the isolated sub-problems

13

could be optimum, fine-tuned and well-solved, but might not integrate so as to result in a

cohrerent solution. DRL addresses these issues by introducing a reward signal that corre-

lates current driving and future planning to arrive at optimum driving [49]. The reward is

positive for a correct/favourable action, and negative for incorrect/unfavourable/disastrous

action [50]. In our driving scenario, a positive reward is associated with stable driving/not

crashing and the reward diminishes for an unsafe maneuver. As the reward involves driving

manouvres in a real-time driving environment, it is impractical to train a DRL system on

a real vehicle [49], [51]. This limitation has been countered by training DRL autonomous

vehicles using video games and other simulation engines [7]. Fig. 2.2 depicts the autonomous

driving problem under consideration, solved using DRL. Based on a regulalrly updated re-

ward function, the vehicuar agent learns to drive on a straight line path, without deviating

from the trajectory [52]. The environment specifies the relevant driving conditions, such as

the visible road, turns, and presence/absence of obstacles.

Considerable attempts have been made to solve autonomous-agent / multi-agent prob-

lem using value function approximation methods such as gradient descent, linear function

approximation, and incremental prediction algorithm [42], [53]. However, in batch rein-

forcement learning, gradient descent is not sample efficient [42]. In order to arrive at the

best-fitting value function, the least-squares algorithms calculate a parameter vector and

minimize the sum-squared error between the obtained and target values. Deep Q-networks

(DQN) use experience replay and fixed Q-targets and repeatedly re-evaluate experience re-

play with different target values [36].

2.3 Deep Reinforcement Learning

As a combination of DL and RL, deep reinforcement learning (DRL) does not require prior

training on labelled data as in supervised learning, and tries to learn an optimal strategy from

the environment through repeated corrective actions [11]. Based on deep Q-networks (DQN),

considerable advances and breakthroughs have been achieved in the domain of gaming [42].

14

Figure 2.2: DRL for self-driving cars.

15

Many gaming applications utilize discrete asynchronous advance-actor critic (A3C) to train

the agent [53]. However, it is impractical to switch steering, adjust speed, or take braking

actions in binary levels comprising of two discrete values [49]. Realistically, the outcomes

depending on continuous actions are more applicable to driving scenarios [12].

Reinforcement Learning (RL) is a type of ML algorithm in which agents take actions in

an environment to maximize the cumulative reward. RL is gaining increasing acceptance

in autonomous driving [23]. However, it generates unstable or divergent results, especially

during nonlinear function approximation on image recognition and video processing using

loss function, which is usually the Q-value [54]. The instability arises due to correlation in

the sequence of observations [12]. Furthermore, the Q-value instability leads to significant

variations in the policy for every small change in the Q-value [54]. The conventional schemes

exploit the experience replay for solving such instability issues in deep Q-learning (DQL)

[23]. Applying regularization and generalization between similar state inputs still leads to

inefficient results while solving the following issues:

• The randomness of the experience replay is likely to lead to high errors [54], and

• These systematic errors might cause instability and divergence of learning [54].

To address these issues, neural network based techniques have been implemented in lit-

erature, that tune the adaptive size of experience replay to construct target values based on

Q-learning algorithm [18], [19], [32], [33], and [36]. Although these techniques lead to explo-

ration with better performance, the trade-off between the Q-value instability and divergence

is not upper bounded and tends to vary asymmetrically [54].

DRL provides the ability to output continuous action using deep deterministic policy gra-

dients (DDPG) and soft actor-critic (SAC) for driving behavior [55]. Both DDPG and SAC

can be further enhanced when instead of being trained on raw input, they are trained on out-

puts obtained through variational autoencoders (VAE) with pre-defined loss functions [11].

For instance, the steering actions in a vehicle fluctuate a lot when the agent is trying to

16

maintain its position in a lane or while making a turn [49]. In this thesis, we investigate the

applicability of VAE, DDPG, and SAC for autonomous driving. Moreover, we show that our

approach using VAE, SAC, and DDPG reduces the learning time and leads to longer episodes

of uninterrupted driving. As the existing inference frameworks pose challenges for learning

optimal policies, the application of probabilistic models to RL leads to optimization through

variational inference [53]. In self-driving vehicles, the absence of mode capturing behavior

and approximation of pseudo-likelihood methods pose difficulties in learning deterministic

policies [42]. The maximum-entropy RL based approaches and Bayesian probabilistic in-

ference frameworks utilize a parameterized action-value function to estimate future states

of an underlying Markov decision process (MDP) [11]. The mode-seeking approcah suffers

from divergence, undermining the ability to learn deterministic optimal polices naturally.

Action-state based inference along with the ability to optimize value-functions and policies

in separate, iterative steps has led to variational expectation-maximization in actor-critic

algorithms [56]. Our experiments demonstrate that actor-critic algorithms in conjunction

with VAE outperform the state-of-the-art methods based solely on soft-actor critic or deter-

ministic value-functions in self-driving domain. Autonomous driving problems modelled as

MDPs introduce severe challenges due to critical scenarios arising from multiple objects in

the vicinity of the vehicle [28]. In the existing literature, the driving environment is usually

Rayleigh distributed [57]. Actor-critic methods have achieved incredible performance on RL

problems such as games, but they have been prone to instability due to frequent interaction

between the actor and critic during learning [21]. An inaccurate step taken at one stage

might adversely affect the subsequent steps destabilizing the learning. To avoid such is-

sues, rewards were introduced to regularize the learning objective of the actor by penalizing

the error of the critic [58]. This improves stability, as large steps in the actor update are

prevented when the critic is inaccurate [53].

17

2.3.1 Deep deterministic policy gradient (DDPG)

Fundamentally, deep deterministic policy gradient algorithm is an actor-critic based policy

gradient algorithm that estimates a deterministic target policy and continuously improves the

learning process [11]. It applies gradient descent to the policy with minibatch data sampled

from a pool of possible actions [54]. Furthermore, to improve the stability of the algorithm,

DDPG uses target networks for both the critic and the actor [11]. The current state acts as

an input to the actor network and the output is a real value representing an action selected

from a continuous action space. The critic network outputs the estimated Q-value of the

current state and the action selected by the actor [9], [59]. For autonomous driving, DDPG

was preferred in this thesis over DQN, as DQN is more suitable for applications with discrete

action spaces.

2.3.2 Variational auto encoder (VAE)

In machine learning and deep learning, the process of reducing the number of features that

describe the data is called dimensionality reduction [11]. This data reduction leads to low-

dimensional data consisting of relatively fewer features than in the original dataset [54].

Although there exist a number of methods for dimensionality reduction, a popular framework

consists of encoder-decoder, where an encoder produces a set of new features from the old

features and the decoder reverses the encoding process [9]. This framework for dimensionality

reduction makes use of data compression where the encoder compresses the data from the

original environment space to the encoded space, whereas the decoder decompresses it [60].

If the compression is lossy and a part of the information is lost during the encoding process,

it cannot be recovered during decoding [59].

In DRL, a novel technique for compression-decompresion is variational auto encoder

(VAE), which is a combination of two neural networks [11]. Its input is a set of data that

represent features, its output is a compressed representation, and it has weights and biases [9].

For example, let us consider an input image of a hand-written number having a size 28 ×

18

28 pixel. The encoder encodes the 784-dimensional data into a latent representation space

much less than 784 dimensions [11]. Using deep learning, the encoder is trained to learn

an efficient compression of the data into lower-dimensional space, without incurring loss of

information or suitable features. The VAE encoder outputs parameters to an output space

with Gaussian probability density and samples from this distribution to get noisy values

of the dimensionally reduced features [11], [54]. The decoder comprises of another neural

network that outputs the selected features mapped to the probability distribution of the

data [60]. For the handwritten digit example, if the image is gray scale with each pixel

represented as 0 or 1, then the probability distribution of a single pixel follows Bernoulli

distribution [11], [43]. The decoder input is then the latent representation of the digit and

it outputs 784 Bernoulli parameters, each corresponding to one of the 784 pixels in the

image [10]. To ensure minimum loss of information, usually a large number of imput images

are fed as input so the enconder selects the best possible features from each input image,

reducing the loss probability [45], [59].

Although VAE are computationally slower in comparison to traditional encoders, yet VAE

leads to more robust feature selection. These robust features may be critical deciding factors

as an autonomous vehicle tries to determine the best action for a specific state [43], [59].

Moreover, a traditional autoencoder is an unsupervised learning technique, primarily used

to compress and decompress an original input. This simplifies graphical representation or

visualization of the input data, and also removes noise in the data [11]. A VAE, rather

than compressing and decompressing an input dataset, explores the underlying probability

distribution in the dataset to model the distribution of latent variables, leading to enhanced

feature selection, in a manner akin to state representation learning (SRL) [59], [61].

2.3.3 Soft actor-critic (SAC)

The aim of DRL is to learn an environment in a short duration and then to generalize to

conditions. The conditions may be unseen during training in non-simulation environments

19

[54]. Some of the most successful RL algorithms in recent years such as trust region policy

optimization (TRPO), proximal policy optimization (PPO) and asynchronous actor-critic

agents (A3C) suffer from sample inefficiency [27], [28]. This is due to the fact that these

techniques enable learning in an on-policy manner and require new samples after each policy

update [54]. Q-learning based off-policy methods such as DDPG learn efficiently from past

samples using experience replay buffers [11]. However, such methods are sensitive to hyper-

parameters and require a lot of tuning to converge [11]. Soft actor-critic (SAC) provides an

alternative method to speed-up the convergence [9], [11], [59].

As SAC is defined for RL tasks involving continuous actions, it is applicable to au-

tonomous driving problem [11]. Along with maximizing the lifetime rewards, SAC also aims

to maximize the entropy of the policy. The term entropy is a measure of the unpredictability

of a random variable [11]. If a random variable always takes a single value then it has zero

entropy as it is not unpredictable at all. If a random variable can be any real number with

equal probability then it is highly unpredictable and has very high entropy [60]. A high en-

tropy in policy encourages exploration, and assigns equal probabilities to actions that have

same or nearly equal Q-values [56]. It ensures that exploration does not collapse into repeat-

edly selecting a particular action leading to inconsistency in the approximated Q-function

by assigning a high probability to any one action out of the possible set of actions [42].

Table 2.2 highlights some advantages offered by DDPG, VAE, and SAC to model au-

tonomous vehicles.

Table 2.2: Requirements of autonomous vehicles and the scope of DDPG, VAE, SAC: Con-
nection of theory to application.

Requirements of autonomous vehicles DDPG VAE SAC

Effective learning rate X X X
Extension to other driving environments X X X
Tolerance to abrupt variations in driving conditions X X X
Support benchmarking for effective comparison X X X
Provides parametric probability distribution of drive terrain × X X
Discrete action space × X ×
Continuous action space X X X

20

2.3.4 Integration of DDPG, SAC, and VAE

Combining the aforementioned approaches makes it possible to derive the benefits and

strengths of VAE, DDPG, and SAC. The objective function then becomes to minimize the

weighted sum of different loss functions [56]. This thesis implements a feature extractor

variational auto encoder (VAE), to compress the images captured during driving to a lower

dimensional space [62]. The weights that provide gradients with similar magnitudes indicate

that each feature has been kept relevant. The first step of extracting the relevant informa-

tion from raw data is done by VAE by compressing the search space. This also accelerates

the training in later stages by learning the control policy from the lower dimensional image

space [63], [61].

The second step after the features have been extracted is to use a DRL algorithm. This

thesis investigates DDPG and SAC algorithms. The DDPG policy gradient algorithm learns

a control policy using VAE features as input and the policy is updated after each episode [9].

A distinguishing feature offered by DDPG is the reply buffer, which is memory to store the

interactions with the environment. These interactions can be played when needed at a later

time, so that the self-driving car can update the policy without explicitly interacting with

the environment in real-time again [50].

In our experiments, the vehicle is trained to maximize the distance travelled before it

steers off the track. The episode ends as soon as the vehicle steers off the road. The episode

termination also prevents the vehicular agent from exploring regions that do not contribute

at all to effectively learn the driving task [64]. If a VAE feature extractor is trained after

each episode, the distribution of features is not stationary. As the features change over

time, this introduces instabilities in the learning policy [65]. Moreover, on low power CPU

machines, traning a VAE after each episode is time consuming and a slow process. To

address these issues, in this work, a VAE is pre-trained and a fixed set of features are

collected beforehand [62]. Next, these features are provided as input to DDPG to learn

and update the policy. Also, to speed up the process, we trained feature extractors using

21

Google Colab notebook. Lastly, the DDPG algorithm is known to be inherently unstable in

cases where its performance degrades during training and fails to tune if there are multiple

factors that affect the learning outcome [11], [63]. The soft actor critic (SAC) algorithm

that provides much stable performances and is easier to tune in case of multiple parameters

is applied and its performance comparison with DDPG is analyzed. Fig. 2.4 represents the

steps executed in ‘VAE+DDPG’ approach and ‘VAE+SAC’ approach. Fig. 2.3 highlights

key differences the features offered by aforementioned methods [59], [61].

(a) VAE + DDPG approach

(b) VAE + SAC approach

Figure 2.3: Block diagrams representing VAE + DDPG and VAE + SAC approaches.

2.3.5 Kullback-Liebler divergence between the vehicle states at

different timestamps

The total policy loss is calculated as per equation 2.1.

L = Lprior + LDDPG + LSAC . (2.1)

The term Lprior = DKL(q(z|σ̂0,t)||p(z)) is the Kullback-Liebler divergence between the states

at different timestamps. The SAC and VAE follow the q(z|σ̂0,t) distribution of output states.

The prior distribution for DDPG is p(z), which is Gaussian in the range N (0, 1) and is used

to optimize the VAE regularizer. During the training, we have z = µ + εσ and at test time

22

(a) VAE + DDPG approach key features (b) VAE + SAC approach key features

Figure 2.4: Comparison of VAE in conjunction with DDPG and SAC algorithms.

z = µ, where µ and σ are outputs of the VAE-SAC network and ε is a Gaussian random

vector with the same dimension as µ and σ. LDDPG is an error calculated using the hidden

activations of the l-th layer of the DDPG network [7], [42], [53].

2.4 Problem of Scene Perception and Decision Making

in Autonomous Driving

The following questions pertaining to scene perception, environment cognition, and decision

making are investigated in this thesis:

1. To generate realistic and safe autonomous driving using DRL and related techniques

[11].

2. To improve the autonomous driving policies based on continuous state space, contin-

uous action space, and pixel space [57].

3. To learn the driving behavior and environmental conditions without manual input,

23

using DRL [11].

4. To solve the inaccuracies, improving loss function, entropy, policy, loss, and learning

rate using improved VAE, DDPG, and SAE [53].

5. To maintain the trade-off between policy loss and learning rate [43].

2.5 Proposed Solutions

Autonomous driving is traditionally modelled as a multi-objective control problem with high-

dimensional feature space, agent (vehicle) states, and a mono-dimensional discrete action

space. We use a VAE to map the vehicle state at a given time and the dynamics of the

environment not directly influenced by the agent. We repeat this procedure iteratively in a

semi-batch approach to bootstrap the algorithm, starting from a fully random exploration

of the environment.

24

Chapter 3

System Model

This chapter gives a formal description of the method and its core components, and then

discusses the technical details of implementation. This chapter also discusses the system

model used in this work as well as the rationale behind some of the assumptions made in

the analysis.

3.1 Driving Environment and Scenarios

In order to minimize the driving imperfections and degree of randomness of self-driving cars,

a simulated driving environment should closely resemble a realistic driving environment [36].

The environment should comprise scenarios that encompass the steadily growing number of

functions autonomous driving requires to execute. To achieve this with utmost efficiency, a

scenario-based evaluation of driving environment is necessary [37]. The scenarios comprise

different traffic scenarios on a wide range of road networks and different driving conditions. A

large number of scenario variations and randomized simulation of millions of test kilometers,

test parameters and result analysis have led to significant development phases [46]. The

automated driving toolbox available in Matlab opens up powerful and efficient possibilities

for realistic simulations of autonomous driving including graphical definition of road networks

and traffic scenarios comprising a multitude of road users [23]. Some of the features critical

25

to autonomous driving are:

• Automated driving systems perceive the environment to detect objects surrounding

the vehicle

• Visualize vehicle sensor data

• Detect and verify objects in images

• Fuse and track multiple object detections

This chapter presents a mathematical description of a basic driving environment compris-

ing of a road, a vehicle and an obstacle. The mathematical model also outlines the conditions

for no collision between the autonomous vehicle and the obstalce, and for safe navigation.

The chapter also presents a few driving scenarios based on the driving environment, and

delves on one particular scenario that is studied in this thesis later.

3.1.1 Mathematical definition of the driving environment

The environment under consideration consists of a road which describes a driving path or

trajectory, a navigating vehicle, and an obstacle (optional).

1. The road is defined as follows [66]:

α = {(x1, y1∈ R × R) | y1 - mx1 - cR ≥ 0} (3.1)

2. In Fig. 3.1, the vehicle is represented as a circle and the obstacle is represented as a

square [66], [67].

βveh = {(x2, y2∈ R × R) | y2 - mx2 - cveh≥ 0}, (3.2)

where βveh is the initial set of points of the vehicle when placed on the road and cveh

is the y-intercept made by the vehicle while travelling in a straight line path.

26

(a) The vehicle is represented by a circle
with centre at xc(t), yc(t), and radius c.

(b) Obstacle represented by a square with cen-
tre at (x0, y0), width w and length w.

Figure 3.1: System model.

3. Equation (3.3) indicates that the vehicle remains on the road at all times [67], where

vehroad indicates vehicle remains on the road and does not drift off-track.

vehroad =α ∩ βveh (3.3)

4. The following equation approximates no collision condition. If there are k number

of vehicles on the road defined by α, the radius of each vehicle being ci and ci+1

respectively, then [68], [69]

αtic ∩ vehroad =αtic = k−1∑k−2
i=0 (|ci+1−ci|)

(3.4)

Here, αtic indicates that a vehicle of radius c is present on the road α at time ti. In

the scenario investigated in this thesis, there is only one vehicle on the road, i.e. k =

1, implying that there is no probability of a collision with another vehicle. Eqn. (3.4)

also implies that the car remains on the road, the continuous action-space [68], [69].

5. The obstacle is defined as [66]

βobs = {(x3, y3∈ R × R) | x3cos θ0 − y3sin θ0} (3.5)

and

27

−w/2≤ x3 − xo ≤ w/2

−w/2≤ y3 − yo ≤ w/2

where θ0 denotes rotation by a specific angle, and xo, yo are the set of points repre-

senting the centre of the obstacle at time t [66].

Figure 3.2: Representation of safe navigation scenario around a turn or obstacle [3], [4].

6. The objective of the experiment is to maintain the lane position at all times, and not

to drift off the track while taking a turn [29]. This is represented as

min
<Vr,S>

|| Vr ||, (3.6)

where Vr represents the parameter values, i.e. the set of velocities in a given timestep,

at present time and past instances for a given state S.

Vr = {Vr(t0), Vr(t1), ...Vr(tN−1)} (3.7)

whereN indicates theNth time frame. All past and present states are in the continuous

state space [70].

7. The trajectory followed by the car is described by [64], [66]:

28

xc(ti) = xc(ti−1) + vx(ti−1)∆t + 1
2
vx(ti−1)− vx(ti)∆t,∀i (3.8)

yc(ti) = yc(ti−1) + vy(ti−1)∆t + 1
2
vy(ti−1)− vy(ti)∆t, ∀i, i = 0, 1, 2.....N − 1, ti = i∆t

(3.9)

where ∆t is the difference between two subsequent timeframes while the vehicle nav-

igates the trajectory. These parameters are later used to calculate the optimal value

function v∗π(s) and optimal Q-value Q∗(s, a).

8. The vehicle is said to successfully navigate without hitting the obstacle if:

αtic ∩ βobs = φ, (3.10)

where βobs indicates the presence of other vehicles (obstacles) on the road. In our

scenario, βobs is set to zero to simplify the environment and to reduce the number of

factors contributing towards problem complexity [67], [71].

Eqn (3.10) is defined over the continuous state-space and action-space. This implies

no collision with the obstacle. The car is required to be parallel to the slope of the

road and the road is deviod of any sharp turns, implying that the car remains within

the road. The above architecture is depicted in Fig. 3.3 [3].

3.1.2 Autonomous driving scenarios

This section introduces the autonomous vehicle landscape. The scenarios highlight

multiple issues that require resolution. The scenarios are depicted in an evolutionary

hierarchy, with incremental additions to complexities and capabilities in each scenario.

The scenarios outline the driving dynamics for safe operations on the road and assist

with formulation of a clear solution strategy and co-operation between autonomous

vehicles. The scenarios help to analyze the incoming data on the driving environment

29

Figure 3.3: Representation of the combined scenario of vehicle and obstacle at a slant to the
road [3], [4].

and use deep learning to recognize possible action space and learn to react accordingly

in the chaotic environment through extensive testing and simulation [5].

(a) Scenario 1: Autonomous driving on an empty road:- This approach has been

studied by [36] and the problem is modelled using proportional controller. For

driving in known environment, a conventional path planning algorithm is proposed

in [46]. The environemnt information is obtained in real-time with maps, and the

driving problem is formulated as LQG (linear–quadratic–Gaussian) and solved

using linear–quadratic regulator (LQR), a feedback controller [46].

(b) Scenario 2: Environment with dynamic obstacles:- In a dynamic environment,

each vehicle is assumed to be moving without any knowledge of its next move-

ment, hence it cannot be modeled, rather, optimal control is applied [33]. In

this scenario, LQR is applicable as long as the cost function is in the optimum

range [33].

(c) Scenario 3: The human-driving data is recorded and the autonomous vehicle

is trained to imitate the same:- This resembles supervised learning and has been

crtiqued by [30] where the authors have reasoned the unethical human-driving

instances and the implications of such behaviour being learnt/imitated by the

30

(a) Gathering state and environment informa-
tion.

(b) DRL for autonomous driving manouevres
(actions).

(c) Adjusting actions based on reward func-
tion.

Figure 3.4: High level representation of the system architecture.

31

autonomous vehicles.

(d) Scenario 4: The system is allowed to learn by itself how to take the decision,

which is known as RL:- Beginning randomly, the model is trained to learn how to

take better decisions over repeated attempts, reducing errors based on a reward

function [72]. After every action, the vehicular agent transitions from one state

to another. The execution of a set of actions in a specific state evaluates the

suitability of the action in terms of reward [29]. The Q-learning technique aims at

learning a policy, which guides an agent to take an action with highest reward [33].

Among various driving scenarios encountered, this work focuses on maintaining

the vehicle’s position in a specific lane. The experiments are conducted on the

lane-keeping scenario, without deviating off the track.

Out of the four scenarios described above, the work in this thesis considers the descrip-

tion given by scenario 4. This is due to the following reasons:

• This scenario with one vehicle trying to maintain its position on a driving trajec-

tory (road/lane) is a sufficiently complex problem to be solved using DRL [73].

• The problem in the scenario can be modelled using MDP/POMDP and can be

solved using DRL [22].

• The scenario is neither too simple to ignore underlying complexities and challenges

in scene perception and vision, nor is too complex to include a large number of

factors that affect the vehicle’s state-action-reward cycle.

• Significant work has been done on the preceding scenarios 1, 2, and 3 [30], [33],

[46]. However, more challenging scenarios are being incresingly adopted with

advanced solution mechanisms finding favourable application to solve autonomous

driving problems, as outlined in section 1.2.

32

3.2 Problem Formulation

The vehicle needs to be trained to do the following tasks:

Figure 3.5: Proposed research questions and applicable solution strategies.

• Recognize its environment (lane detection, traffic sign recognition etc.).

• Keep track of the vehicle’s state with respect to the environment over a given

time-frame.

• Maintain self-localization.

• Plan its actions based on observations.

In the existing literature, simulation based experiments have considered the reward

function based on how much time it takes before the user intervenes to take control

of the vehicle. The deviation from a trajectory is detected either using data from

other sensors, especially in case of other vehicles present on the road, or using Global

Positioning System (GPS). The GPS data may also be used to detect when the car

needs to decelerate, for instance, if there is an approaching roundabout, a sharp turn,

multiple roads converging, a traffic signal, or a stop sign. In our work, the reward

33

function is based on how and when the autonomous vehicle terminates the driving

action and returns to the beginning.

A deep Q-learning network trained on one type of environment can theoretically be

extended to another type of environment by training the parameters in the last layer

of the network [23]. The CNN in deep Q-learning network facilitates this transfer

learning instead of re-training the whole network each time the environment changes.

In this thesis, the parameters used in the simulations train the DRL network from the

beginning, and then generate image logs in a given time-frame to subsequently train

the network based on the safe/unsafe driving actions [49].

As DRL networks automatically adjust and improve their structure in accordance with

the reward function and policy loss collected intermittently, a little prior knowledge

is sufficient to learn the driving behavior. Based on the driving behavior learned by

DRL, an additional algorithm needs to be developed to optimize the reward function

and policy loss according to the most recently correlated historical data [12]. Figure

3.4 represents a high-level system architecture where the autonomus vehicle is required

to perform the following tasks:

(a) The vehicle tries to navigate in a straight-line driving environment.

(b) In second case, the vehicle learns to safely maneuver a turn.

(c) To visually detect the environment infront.

3.3 Solution Approaches: Preliminaries

Figure 3.6 highlights the problem formulation and the proposed solution approach.

We believe this is the first work to show that DRL is a viable approach to implement

VAE, DDPG, and SAC to model an autonomous driving maneuver that also integrates

Markov decision processes (MDP), planning by dynamic processes, model-free predic-

34

tions, and policy gradient methods. Fig. 3.6 describes the preiliminary groundwork

that facilitates application of reinforcement learning (RL) to model an autonomous

vehicle. The initial state of an autonomous vehicle needs to be updated to best adapt

to the current state of the driving environment. This involves constant adjustment of

speed, acceleration, and steering angle so that the vehicle trajectory is aligned with the

road/lane trajectory. The alignment of trajectories for extended time frames of vehicle

navigation can be a significant indicator that the vehicle is able to follow a lane and

does not deviate off the track. To simplify the problem, we assume that the vehicle

has an unobstructed and unoccluded visual access to the driving environment, so that

any curves, turns, and obstacles in the vicinity are clearly visible to the vehicle. Once

the vehcile is past the initial states, the subsequent iterations take actions to arrive

at next states. The suitability of next states is governed by a reward function, that

prompts the vehicle to either reinforce the action mechanism, or to avoid an action

pattern for that environment. This thesis proposes the formulation of autonomus vehi-

cle navigation problem as an MDP and is solved using DRL to evaluate optimal policy

and reward function. The specific DRL approaches used are:

• VAE for effcient driving environment analysis,

• DDPG for optimal policy calculation and,

• SAC for faster arrival at optimal policy, without having to repeatedly train the

DRL network for all the timeframes.

3.3.1 Reward shaping

Reward function refers to the feedback obtained from the environment to evaluate

the viability of the actions taken. In DRL, a reward function directly influences the

behavior adopted by an an agent. An unreasonable reward function may result in

unexcepted action, or cause divergence during training. In autonomous driving, a

35

Figure 3.6: Proposed solution approach.

reward function is usually formulated as a linear model that impacts the velovity of

the car v, the angle between the road and car’s heading θ, and the distance from

the middle of the road d. To improve the vehicular agent’s actions, the penalty p

prevents the agent from deviating off the track, and the self-driving agent gradually

aims at achieving human-level driving. Reasonably-safe human drivers tend to keep a

relatively fast speed on the straight and slow down at the turning, and try to maintain

a smooth steering control at all times. The reward for an action that allows the vehicle

to maintain its position on the road is given by [74], [75] (3.11), where the symbols

have their usual meaning defined at the beginning of the thesis.

r = v(cos θ − d) (3.11)

This thesis uses an extra penalty as Ψ∗|st+1 − st|, where st means the steering action

at time step t and Ψ presents the corresponding constant empirical coefficient. The

experimental results show better smoothness with the new penalty and the whole

36

reward function is given as [74], [75]:

r = v(cos θ − d−Ψ ∗ |st+1 − st|) (3.12)

In this thesis, we set Ψ to 2 and 3 as driving smoothness tends to reduce with increase

in throttle value. This fact conforms to human driving behavior where the faster the

car runs, the harder it is to control it, indicated by failure to recognize turn/curve

at high speeds. Equation 3.12 is selected over Eq. 3.11 as the application of DRL

to autonomous driving intends to solve a set of sequential decision problems. Based

on the action selection, the driving environment presents a sequences of states, and

the vehicular agent receives rewards at each time step as immediate feedbacks. The

eventual goal of the vehicle is to solve the sequential decision problem to derive a

policy that maps vehicle’s states to actions such as to maximize the sum of the received

rewards. Equation 3.12 introduces reward shaping that receives gradual feedback and

lets the vehicle know if it is getting closer to the goal at a slightly faster convergence

rate [74].

3.3.2 Termination condition

References discuss the influence of different termination criteria in autonomous vehicles.

This thesis terminates an episode when the vehicle seems to deviate off the track and

the environment is reset if any of the following termination conditions is met:

• If the vehicle deviates off the track, i.e. moves on to the other lane, or throws

itself off the edge.

• If the vehicle trudges in wrong direction, i.e. running in a direction other than

the specified straight line motion.

37

3.3.3 Markov decision process

The vehicle is represented as an agent which receives sensory inputs and consequently

performs driving actions (manoeuvres) in an environment. The vehicular agent acts on

rewards, penalties, and policy losses from the environment with the goal to maximise

the rewards it receives, and to minimise the losses [73]. A commonly used machine

learning (ML) technique for choosing actions that minimize losses and trains agents to

behave optimally is the Bayesian decision theory (BDT). BDT deals with the problem

of making optimal decisions or actions that minimize an expected loss. In DRL, the

agent learns an action based on the policy function, loss function and state-model. A

state St is Markov if and only if [76], [77]

P[St+1|St] = P[St+1|S1, ..., St], (3.13)

where P defines the probability distribution of the variable under consideration. A

future action is independent of the past actions and depends on the present state and

actions. The state transition matrix P defines transition probabilities from all states

s to all successor states s′

Pss′ = P[St+1 = s′|St = s] (3.14)

A Markov reward process is defined as a tuple < S,A, P,R, γ > [76], [77] where

• S is a finite set of states

• A is a finite set of actions

• P is a state transition probability matrix,

P a
ss′ = P[St+1 = s′|St = s, At = a]

38

• R is a reward function,

Ra
s = E[Rt+1|St = s, At = a]

• γ is a discount factor, γ ∈ [0, 1]

The return Gt is given as [76], [77]

Gt =
∞∑
k=0

γkRt+k+1

The state value function vπ(s) is given as [76], [77]

vπ(s) = Eπ[Gt|St = s]

The action value function qπ(s, a) is given as

qπ(s, a) = Eπ[Gt|St = s, At = a]

The policy π is given as [76], [77]

π(a|s) = P[At = a|St = s]

The partially observable Markov decision process (POMDP) is an MDP with hidden

states based on optimal function, Bellman expectation equation and Bellman optimal

equation. In this thesis, the autonomous driving problem is formulated as a MDP,

on the lines of the work of [73]. The MDP is then solved using policy based DRL

mechanisms of DDPG and SAC, accompanied by VAE at appropriate solution stages

[76], [77].

39

3.3.4 Planning by dynamic programming

The dynamic programming (DP) approach modifies the policy evaluation into iterative

policy evaluation and improvement. Value evaluation is achieved from a policy π(a|s)

that leads to an optimal value from state s, vπ(s) = v∗(s) (the principle of optimality),

if and only if for any state s′ reachable from s, π achieves the optimal value from state

s′, vπ(s′) = v∗(s
′) [76], [77].

The DP algorithms may be asynchronous or synchronous with extensions to approxi-

mate the value function. Figure 3.7 depicts the solution approach used in this thesis

in form of flowchart.

3.4 Solution Approach

The proposed solution using VAE, DDPG, and SAC aims to use reward-function based

DRL to learn policies for multiple state-action-reward tuples. The solution enables the

optimal policy to generalize, and can be used with continuous actions for states that

are yet to be traversed by the vehicular agent. The solution approach is described as

follows:

• Let’s say the vehicular agent has a choice of taking one of k possible actions

a1 . . . ak.

• Assume that the environment can be in one of m different states s1, . . . , sm.

• Upon taking an action ai in the environment in state sj the vehicle incurs a loss

`ij.

• Given the observed data D and prior background knowledge B, the vehicu-

lar agent’s beliefs about the state of the driving environment are denoted by

p(s|D,B).

40

Figure 3.7: Flowchart representing the proposed scheme.

41

• The optimal action is the one which is expected to minimize loss and maximize

utility.

a∗ =
m∑
j=1

`ij p(s
d
j |,) (3.15)

The vehicular agent at a given time in a given state has two possible actions to choose

from:

(a) ac1 : accelerate, and

(b) ac2 : don’t accelerate.

In an ideal scenario, if acceleration would lead to an unsafe action such as drifting off

the track, or deviating on to the other lane intended for oncoming vehicles, there are

two probable outcomes:

(a) sd1 : safe driving, and

(b) sd2 : unsafe driving.

Optimal action: The vehicular agent needs to arrive at an optimal action for this

decision problem. Based on MDP, the following variables are defined for the vehicular

agent:

• States: st

• Actions: at

• Rewards: rt

The variable st defines the state of the driving environment and the vehicular agent

at time t. The vehicular agent takes action at and receives reward or penalty rt . The

42

reward is assumed to depend on the state and the action. The optimal policy is defined

by the eq. (3.16).

π∗ = arg min
π

E[Rt|π] (3.16)

The initial states are depicted in Table 3.1. Under safe driving condition, if the proba-

bility of acceleration is very high, then the loss is set to a high negative value, indicating

a positive reward for that action. Under unsafe driving condition, if the vehicle decides

to accelerate, the associated loss is a positive value, indicating negative reward, thus

prompting the vehicle to refrain from taking the accelerating action. Similarly, if the

vehicle is driving in a safe state and decides not to accelerate, the reward remains neu-

tral, indicated by zero loss. Vice versa, if the vehicle is in an unsafe state and decides

not to accelerate, although the action will not deteriorate the vehicle’s state further, it

will not guarantee a return to safe driving either. This is also implied through a zero

reward.

Table 3.1: The initial values for states and the transition probabilities.

P (sd1|ac1) = 0.99995 `11 = −10000

P (sd2|ac1) = 0.00005 `12 = +0.9

P (sd1|ac2) = 0 `21 = 0

P (sd2|ac2) = 1 `22 = 0

As per the Markov property in MDP, the driving environment is characterized by the

following transition probabilities [76], [77]:

P (st+1, rt|st, at, st−1, at−1, rt−1, . . .) = P (st+1, rt|st, at) (3.17)

43

The expected rewards are [76], [77]:

Ra
ss′ = [rt+1|st = s, at = a, st+1 = s′] (3.18)

The vehicular agent is characterized by the policy [76], [77]:

π(s, a) = P (at = a|st = s) (3.19)

An important assumption in this work is that the action at time t is only dependent

on the state at time t and not on the previous states [76], [77]. This is an underlying

principle of MDPs, that enables vehicular agents to choose actions at so as to maximize

the sum of discounted future rewards Rt [76], [77]. As per the Markov property of

conditional independence, future rewards and states are independent of past rewards,

actions, and states given st and at [76], [77]:

P(st+1, rt+1, st+2, . . . |st, at, st−1, at−1, . . .) = P (st+1, rt+1, st+2, . . . |st, at) (3.20)

If st is known, the expected value of the return Rt depends only on at, so previous states

and actions become irrelevant. This approach is similar to nonparametric regression,

ANN, and k-nearest neighbor, which provide the average of the recent outputs as the

most likely driving behavior under the current scenario [76], [77]. State-action value

function defines that under a given state, how favourable it is to take a given action

based on a policy π [76], [77].

3.4.1 Optimal policies and values

Optimal policy is defined as π∗ such that:

Vπ∗(s) ≥ V π(s) ,∀s. (3.21)

44

Although there may be more than one optimal policy, in autonomous driving situations,

it is imperative to determine if there exists at least one optimal policy for a specific

driving environment. The optimal state value function is given as [76], [77]:

V∗(s) = maxπ V
π(s) ,∀s. (3.22)

The optimal state-action value function is given as:

Q∗(s, a) = maxπQ
π(s, a) ,∀s. (3.23)

3.4.2 Solving MDPs using Bellman expectation equations

The policy gradient DRL methods and the actor-critic methods can be solved using

Bellman equations mentioned below. The parameterized policy defines how the au-

tonomous vehicle selects its actions and the critic appraises each action taken by the

vehicular agent in the driving environment [73]. The appraisal is associated with a

positive or negative reward function according to which the parameters of the actor

are updated. Similarly, the actor’s parameters can be updated with a policy gradient

that does not necessarily have a critic component. The policy gradient methods such

as DDPG adjust the policy parameters based on a sampled reward measured against

a baseline value [76], [77]. In DDPG, this baseline is a stationary value that does not

update with experience. In SAC, a baseline is estimated from experience, making the

method an actor-critic method where the vehicle updates its parameters after each step

taken in the driving environment [76], [77]. The Bellman equations allow comparing

the results of taking a different action in each state and assist in negating the wrong

step, causing the agent to strengthen how it selects the apparent best action. In SAC,

the critic components make the gradient point in the apparent best direction without

sampling other actions [23], [54].

45

vπ(s) =
∑
a∈A(s)

π(a|s)
∑

s′∈S,r∈R

p(s′, r|s, a)(r + γvπ(s′)) (3.24)

qπ(s, a) =
∑

s′∈S,r∈R

p(s′, r|s, a)(r + γ
∑

a′∈A(s′)

π(a′|s′)qπ(s′, a′)) (3.25)

Bellman optimality equation is given as [76], [77]:

v∗(s) = max
a∈A(s)

∑
s′∈S,r∈R

p(s′, r|s, a)(r + γv∗(s
′)) (3.26)

q∗(s, a) =
∑

s′∈S,r∈R

p(s′, r|s, a)(r + γ max
a′∈A(s′)

q∗(s
′, a′)) (3.27)

Given the optimal value function, V ∗, a popular technique to get optimal policy π∗ is

the greedy algorithm, V ∗. This algorithm specifies that if a vehicular agent has V ∗, the

actions that appear best after a one-step search will be optimal. V ∗ turns a long-term

reward into a measurable quantity which is locally and immediately available. Q∗ is

used to get the optimal policy [76], [77].

π∗(s, a) = 0 ∀a s.t. Q∗(s, a) 6= max
a′

Q∗(s, a′) (3.28)

Lastly, the policy improvement theorem justifies an optimal action in a given state

46

[76], [77].

Qπ(s, π′(s)) ≥ V π(s) ∀s =⇒ V π′(s) ≥ V π(s)‘ (3.29)

47

Chapter 4

Simulation Results and Analysis

This chapter presents the experimental setup and simulations results. There are certain

assumptions regarding the drive-terrain and the length for which a self-driving vehicle

drives before restarting the driving cycle. These assumptions apply both to the existing

models as well the algorithms proposed in this thesis. The next section presents the

experimental setup using DonKey simulator. Then, the simulation parameters are

defined. The following section presents the performance analysis for VAE+DDPG and

VAE+SAC schemes followed by summary of the findings.

4.1 Experimental Setup

In this thesis, the experiments are carried out on the Ubuntu operating system, DonKey

simulator, OpenAIgym, and Google Collaboratory. The implementation addresses the

need for improvements to the solutions already available, and investigates the effect of

deep reinforcement learning (DRL) on the performance of self-driving cars and proposes

a scheme for its enhancement. Due to the property of learning by trial and error in

DRL, simulator plays an important role. Among various car simulators, the open racing

car simulator (TORCS) is widely used in DRL research, providing both front view

48

images and extracted features. TORCS requires less hardware performance whereas

DonKey provides flexibility and realism, hence we replcaed TORCS by DonKey.

In this work, we first define the drive terrain in continuous control domain and propose

a penalty in reward shaping. Then, we test the proposed penalty with DDPG, VAE,

and SAC, the state-of-the-art algorithms in continuous control domain to present a

novel training strategy. The built-in specifications of the DonKey simulator allow the

driving data to be captured at a rate of 20 Hz. In the simulation time over 7 hours

of driving, the data was divided over three specific categories of driving terrains. The

captured frames are 160× 320 pixels in the region depicting the vicinity of the middle

of the road. Example data captured by the simulator’s built-in virtual sensors are the

car speed, steering angle, total timesteps, and value-loss. We primarily focus on the

camera frames, steering angle, speed, policy entropy, policy loss, and total timesteps.

We also record the timestamps at which these parameters were measured and the

timestamps the camera frames were captured. The raw sensor-data and the camera

frames files are easy to use in DonKey simulator with the help of Docker, a container

management software. We pre-processed the camera frames by downsampling them to

40× 120 and normalizing the pixel values between -1 and 1.

4.1.1 Scenario setup in DonKey simulator

Let xt denote the t-th frame of the image dataset. Xt = {xt−n+1, xt−n+2, ..., xt} denotes

n frames associated with states of the vehicle at a given time, St = {st−n+1, st−n+2, ..., st},

and the actions taken At = {at−n+1, at−n+2, ..., at} based on the features learnt by the

VAE feature extractor. Learning to maintain a straight line path on the road can be

defined as estimating the function F : R40×120×3×n×Rn×Rn → R40×120×3 that predicts

xt+1 = F (Xt, St, At).

In high dimensional dense spaces, the problem of action conditioned transitions and

intermediate representations are important, because convergence probabilities and con-

49

sequent control actions tend to become unstable at higher dimensions [58], [42]. As

these dimensions are correlated, and the straight line trajectory observance problem

converges slowly or otherwise results in underfitting [27]. When a regularization fac-

tor is applied, the DL model learns a transformation while still adjusting the reward

function and policy loss due to correlations in time [58]. Previous approaches avail-

able in literature have learned the function F directly, in case of processing artificial

videos [44]. The function F is learned in a piecewise manner so that the efficiency and

performance can be improved separately [78]. The agent then learns an autoencoder

to embed the frames captured by the VAE into a Gaussian space z ∈ R2048, where

the dimensionality 2048 was chosen experimentally and the Gaussian assumption was

enforced in accordance with Bayes variational autoencoding [43].

The autonomous driving problem is partly restricted to a learning problem constrained

in the pixel space defined as a hypersphere of radius ρ [44], [54], [79]. To ameliorate

the problem complexity, we decided to learn action prediction with a policy gradient

architecture (DDPG) and an actor-critic architecture (SAC), both preceded by an

autoencoder:

• a variational auto encoder (VAE) for dimensionality reduction

• a deep deterministic policy gradient (DDPG) to determine actions based on max-

imized reward

• an action conditioned soft-actor critic (SAC) for learning the transitions

This work learns autonomous driving using VAE, DDPG, and SAC to emulate real

world driving. The self-driving vehicle needs to learn the road images, and a VAE

encodes the road images into probabilistic Guassian space as well as decodes them to

3D space. We combine VAE and SAC with a learned cost function taken from distances

between lane deviations of previous states. Finally, we train a VAE alongside a SAC,

where the SAC optimizes both the pixel space and the similarity between features

50

extracted by the CNN. The DDPG receives random pixel samples as input from the

Gaussian distributed latent space and output of the VAE network. We trained the

VAE for 200 epochs. Each epoch consisted of 10, 000 gradient updates with a batch

size of 64. Batches were sampled randomly from driving data as described in the

previous section. The VAE architecture followed the DDPG made of 4 convolutional

layers each one followed by batch normalization and leaky-ReLU activations. The VAE

consists of convolutional layers where each layer except the first layer follows batch

normalization and the ReLu activation function. The output of the VAE decoder

network is normalized with a binary cross-entropy cost function. The output size of

the encoder network is 2048. This leads to a compact representation, approximately

32 times smaller than the original data dimensionality. After training the VAE, we fix

all its weights and proceed to the preprocessing step for training the DDPG model.

The simulation results are presented to show the performance of the proposed im-

proved DRL scheme, comprising VAE+DDPG and VAE+SAC. First, the simulation

parameters are introduced followed by the simulation results. Next, the policy losses

are compared for driving environments and the entropy. Then, the performance of the

proposed appraoch is studied in terms of learning rate and acquiring stable driving

state. Table 4.1 highlights the features and parameters considered in the simulation.

Table 4.1: Features considered in the simulation

Feature Name Description
policy entropy An initial measure of randomness of vehicular agent’s decisions

policy loss Mean magnitude of policy loss function
serial timesteps Total timesteps for which image frames are sampled

time elapsed Time taken for vehicular agent to achieve stability and stay on the intended path
value loss The total loss function
n updates The number of iterations of VAE+DDPG and VAE+SAC algorithm

51

4.2 Simulation Parameters

The parameters under consideration in this thesis are described briefly as follows:

• Cumulative Reward: It describes the mean cumulative episode reward over

all the states of the agent over a specific timestamp. The value usually increases

during a successful training session. The general trend in reward is to consistently

increase over time with some small ups and downs depending on the complexity

of the task. However, a significant increase in reward may not be apparent until

the training process has undergone multiple iterations [80], [81].

• Entropy: It is a measure of how random the decisions of the autonomous agent

are. It should gradually decrease during a successful training process. In case the

entropy decreases too quickly or does not decrease at all, the DRL architecture’s

hyper-parameters are reset to a different initial value both in continuous as well

as discrete action space [80], [81].

• Episode Length: The mean length of each episode in the driving environment

for the autonomous vehicular agent [80], [81].

• Learning Rate: It signifies the step size taken at a time by the training algorithm

to search for the optimal policy [80], [81].

• Policy Loss: The policy is defined as the process for deciding actions that lead to

optimal driving in the given scenario. Policy loss describes the mean magnitude

of policy loss function. This loss correlates to how much the policy changes during

an episode in a given timeframe [80], [81].

• Value Estimate: It is the mean value estimate for all states visited by the

autonomous agent. It corresponds to how much future reward the agent expects

to receive at any given state [80], [81].

• Value Loss: It defines the mean loss of the value function update. It correlates to

52

how well the model is able to predict the value of each state. This should increase

while the agent is learning, and then decrease once the reward stabilizes. These

values also increase as the reward increases, and then decrease as the reward

tends to becomes stable [80], [81]. The parameter updates while learning the

state-action transition policy of DRL process for a given timeframe are tabulated

in Appendix A.

4.3 Performance Analysis

This section provides a comparison of vehcile control algorithms using DRL based on

policy gradients (VAE+DDPG) and actor-critic (VAE+SAC). The section discusses

the results highlighting the probability of the autonomous vehicle transitioning into

a new state, based on the cumulative reward achieved at each timeframe and the ex-

ecution of an action. The results build on the mathematical framework defined in

the previous chapter. Since the autonomous driving problem is defined as first-order

Markov decision problem, the state of the vehicle at next timeframe is dependent

only on the present state and not the past states. This section compares the viability

of VAE+DDPG and VAE+SAC approaches in ensuring that the autonomous vehicle

arrives at the current state. Another important contribution of this section is the cu-

mulative reward garnered by VAE+DDPG and VAE+SAC approaches. The variations

in cumulative reward accumulated over each timeframe in presence of the ergodic dis-

tribution of possible states in the VAE encoded driving environment is also discussed

in this section.

4.3.1 Driving environment

In the DonKey simulator, driving environment consists of a road with two lanes, dif-

ferentiated with a lane marker. Although the road curvature needs the vehicle to make

53

a slight change in steering angle to stay on the road, the road is devoid of any sharp

turns and the major part of the trajectory is linear. To stay on the road, the rewards

for action at a specific state are supposed to be high for preferable actions. However,

once the vehicle is close to achieving good position in the lane, the reward for next

action is considerably lower than in the beginning. A section of the driving scene with

the road and vehicle is represented in Fig. 4.1 and Fig.4.2. The simulated driving

environment is further depicted in Appendix B.

Figure 4.1: Driving manoeuvres in generated road driving environment in Donkey simulator
at a given timeframe.

54

Figure 4.2: Driving manoeuvres in generated road driving environment in Donkey simulator
at a subsequent timeframe.

Figure 4.3 represents the variation in cumulative reward with number of timesteps

covererd by the vehicle in the simulated driving environment. For the first 20,000

timeframes, the cumulative reward gradually increases. This gradual increase indicates

that the vehicle begins with a randomly defined initial state S, and selects a random

action A with an aim to maintain its position on the lane. After initial haphazard

movements, from 20,000-40,000 timeframes, the cumulative reward increases at the

similar rate for VAE+SAC approach, whereas the increase is steeper for VAE+DDPG

approach. Furthermore, the VAE+DDPG approach shows minor fluctuations in a

specific range, from 10,000-25,000 timeframes. This indicates that once the vehicle

learns an optimum action, the deviation from those set of actions attracts a higher

penalty as compared to that in the beginning. Consequently, the reward for successive

good set of actions is lesser and indicates that the vehicle has to process a smaller set

of data to arrive at that action, resulting in nearly smooth cumulative reward.

55

Figure 4.3: Cumulative reward vs no. of timeframes.

Figure 4.4 represents the variations in episode length with the number of timeframes

in the driving environment. The episode length defines how long the autonomous

vehicle occupies the road before returning to the original position. For the first 10,000

timesteps, the episode length traversed by the vehicle is approximately 900cm for

VAE+SAC algorithm and 700cm for VAE+DDPG algorithm. This period indicates

the random initial learning by the vehicle that results in a haphazard motion. By

the first 10,000 timesteps, the DRL algorithm undergoes sufficient iterations and the

episode length traversed by the vehicle begins to constantly increase. After 40,000

timesteps, the episode length does not show a large increase for both VAE+DDPG

and VAE+SAC algorithms. The return to original position implies a terminating

action, mainly due to the vehicle drifting off the track or merging onto the wrong

lane. With increasing number of timesteps, the episode length gradually increases and

then converges to an upper maximum value. This is congruous to the pattern followed

by cumulative reward, indicating that once the vehicle identifies a set of favourable

56

actions, the vehicle is able to remain on the road for longer episode lengths, before

resorting to terminating action.

Figure 4.4: Episode length vs no. of timeframes.

Figure 4.5 depicts the value loss vs. the distance traversed by the vehicle before ter-

minating an episode. For the first 10,000 timeframes, the value loss for each successive

timestamp indicates that even when the reward function stabilizes, the value loss con-

tinues to increase in accordance with the time spent by the vehicle in the driving

environment. This implies that at every new timeframe, the vehicle calculates a set of

state-action-reward tuple to seek an optimum action. In addition, the value loss tends

to exhibit lesser variations based on the multiple state-action-reward cycles that allow

the vehicle to arrive at an optimal policy and learn future actions.

57

Figure 4.5: Value loss vs no. of timeframes.

4.3.2 Learning losses

The losses describe the delay at arriving at optimal policy in VAE+DDPG and VAE+SAC.

The policy losses indicate how much the policy is changing at each timestep and with

subsequent actions. During a successful learning phase, the vehicle after starting with

random decisions must arrive at more coherent pattern of state, action, and reward.

58

Figure 4.6: Policy loss vs cumulative reward.

The fig. 4.6 and fig. 4.7 highlight the fact that at the time of prediction of next state

and to choose an appropriate action, the vehicle uses the cumulative reward in variation

with policy loss to predict the next best action to take in the driving environment.

The input state is the Q values for all actions and the maximum cumulative reward

for taking an action impacts the next reward predicted.

59

Figure 4.7: Value loss vs cumulative reward

4.3.3 Optimal driving policy

The optimal driving policy indicates that the optimal action is taken at a given state.

At a given state whether the action is optimal or not is plotted in policy vs entropy

as shown in Fig. 4.8. As the vehicle approaches optimal decision, the randomness in

decisions tends to decrease. During a successful scene understanding of the driving

environment, decreasing randomness indicates that the vehicle has learnt optimally.

60

Figure 4.8: Policy loss vs entropy.

In the beginning, as the vehicle moves in a haphazard direction, the algorithm takes

larger number of timeframes to adjust vehicle behavior. However, as the vehicle ap-

proaches closeness to the driving environment, the haphazard motion is replaced by

a more stable trajectory with lesser random movements. This is plotted in Fig. 4.8.

With the policy, the randomness of the actions taken by vehicle are quantified by the

entropy of that probability distribution. A greater entropy indicates that the actions

taken by the agent are more random.

The policy loss is an additional cost-function that the vehicular agent can predict and

observe from the driving environment. In DRL apploaches such as DDPG and SAC,

these losses are defined and synthesized from unlabeled inputs (processed through

VAE), and the variations in losses defined by the reward function. The policy losses

lead to elimination of environmental factors and quantities that are irrelevant to solving

the autonomous driving problem. For example, the vehicle might estimate the sand

regions (Fig. B.5) or the presence of warehouse objects (Fig. B.9) during a driving

61

task. Or, in other cases,the vehicle might try to predict how close it is to a terminal

state. Accordingly, it may deviate from maximizing the DR learning objectives and get

involved in local self-imposed rewards. Here, the advantage of policy-based solution

approaches over model-based approaches is that a model of the driving environment

transitions between the states and actions is used to take subsequent actions and

ultimately to directly improve the policy function and value function. In contrast,

the model based approaches do not directly improve the main DRL objective, but

facilitate the representation of learning process while continuously improving learning

stability. Policy and value function based learning bypass the need for explicitly defined

relationship between the original input-output being learned.

Figure 4.9: Policy vs learning rate.

The policy loss vs. learning is depicted in Fig. 4.9. It provides the autonomous

vehicle with updated reward functions based on VAE feature-set by summation across

multiple time-steps. In SAC algorithm, the loss function consists of the policy loss

(actor), and the value loss (critic), where an entropy loss for the policy is also added.

This discourages the agent from converging early to sub-optimal deterministic policies.

62

For driving task, the loss computation is as follows: suppose the vehiclular agent is

awarded a reward +1 for staying on the lane and -1 for drifting off track. Moreover,

it is worth investigating how many more state-action pairs can be generated before

the termination action is taken. When posed as a general value function problem,

the standard DRL problem learns to first maximize the rewards by staying on the

track for given timestamps, and also predict how many successful moves remain before

termination. The vehicular agent predicts closeness to a terminal state while learning

the standard policy. The vehicle tries to maximize the expected reward while also

maximizing entropy by acting as less randomly as possible.

4.3.4 Performance comparison for VAE+DDPG vs VAE+SAC

This subsection compares the performance characteristics of VAE+DDPG approach vs

VAE+SAC approach for the autonomous vehicle to learn driving behavior by arriving

at an optimal state-value function v∗ after a specific timestep encompassing differ-

ent iterations of function F (Xt, St, At) representing state-action tuple for a specific

environment.

63

Figure 4.10: Value loss vs Total timesteps.

As seen from Fig. 4.10, for same number of timesteps, after the driving scenario images

are processed through VAE, both DDPG and SAC converge after approximately the

same number of timesteps. However, the initial randomness in vehicle motion is less in

SAC based approach as compared to DDPG based approach. For upto 5,000 timesteps

during training phase, the vehicle depicts more haphazard movement to arrive at an

optimum action for VAE+DDPG and settles comparatively quicker with VAE+SAC

approach. As seen in Fig. 4.11, the mean cumulative reward becomes constant after

approximately 50,000 timesteps, indicating that optimal value function V ∗ and optimal

state-action value function Q∗(s, a) has been approximated by the vehicular agent.

64

Figure 4.11: Comparison of mean cumulative reward vs number of training steps for
VAE+DDPG and VAE+SAC.

Figure 4.12: Comparison of rewards vs number of training steps for VAE+DDPG and
VAE+SAC.

The episode length was used as the actual current episode length to compute the

targets. However, when applied as it is, this delays access to the environment until the

episode is over and does not provide significant benefit. Alternatively, VAE + SAC

65

approximates the current episode length by the running average of episode lengths

computed from the most recent 5,000 episodes. This improves learning performance,

and is memory efficient for distributed on-policy DRL. In addition, it eliminates the

need to retain the state-action information until episode termination to compute value

loss. Furthermore, they are independent of cumulative rewards and other domain

dynamics that might render driving environment representation challenging. These

factors are very important in driving environment domain visuals applicable to episodic

environments.

The fig. 4.12 presents a plot of rewards vs. the number of steps in the driving environ-

ment. The rewards represent the entropy of the learned policy giving an insight into

how the vehicular agent learned to navigate the driving environment as well as man-

aged to keep the episode length high (upto 900cm). In the driving environment, the

autonomous vehicle agent has to choose from a set of possible actions, i.e. move North,

South, West, East, or stay at the current location, all while accelerating, decelerating,

or maintaining the same velocity. The reward for the first 1,000 timesteps indicates

that the vehicle proceeds with psuedo direction, so it has learned a policy with 0-80 %

probability of going haphazardly. From 1,000-3,000 timesteps, the rewards reorganize,

indicating reset of state-action-reward pair. After 3,000 timesteps to 5,000 timesteps,

the rewards are almost stationary for both VAE+DDPG and VAE+SAC approaches.

This indicates that the autonomus vehicle has learned the driving environment and

has decided on the optimal action. Also, the reward is slightly higher for VAE+DDPG

as compared to VAE+SAC.

4.3.5 Steering smoothness based on loss function

In the previous two subsections, we considered driving tasks that are related to the

structure of the learning in VAE+DDPG and VAE+SAC. When the cumulative reward

ceases to vary considerably, we consider predicting the reward received at the next

66

time-step. Given the state sequence, the vehicle aims to predict the reward. That

is similar to value learning where the agent only cares about the immediate reward

which may be a positive reward, a negative reward, or zero. Due to images collected

in driving environment, a data imbalance problem might arise. To mitigate data

imbalance problems, class-balancing would require many episodes of samples with zero

and non-zero rewards to be provided during training. The variation in haphazard

movement initially depicted by the vehicle while trying to learn an optimal driving

policy is shown in Table 4.2.

Table 4.2: Steering smoothness based on loss function

Loss function fps value loss total timesteps

0.2 9.131 44.682 10,569

0.4 7.714 36.580 22,883

0.6 5.593 38.651 29,315

0.8 4.700 25.739 26,296

4.3.6 Summary and findings

This section discusses the research findings and experimental verification of the VAE+DDPG

and VAE+SAC schemes to facilitate learning and navigation in autonomous vehicles.

The findings reveal that:

• DRL is applicable in situations where the agent needs to make a decision based

on more than one contributing factor. In autonomous driving, the vehicular

agent needs to make a sequence of decisions in order to achieve its objective and

accumulate rewards.

• DRL does not rely on the assumption that the vehicular agent calculates the losses

for each action-state pair. The losses are gradually and cumulatively learnt from

the driving experience, supported by the constantly-varying reward function.

67

• DRL bypasses the need for a pre-defined model that describes how the observed

data relates to the states of the environment.

• In autonomous driving scenarios, it may be infeasible to enumerate all possible

actions and states, especially when the environment consists of continuous state

and action spaces. DRL shows considerably safe driving behavior while the vehicle

learns from a limited set of environmental features.

68

Chapter 5

Conclusion and Future Work

5.1 Conclusions

The proposed DRL technique uses VAE, DDPG, and SAC to implement and analyze

a combination of policy function, reward, and penalty to ensure that the autonomous

vehicle stays on the track for maximum time in a given timeframe. The DRL strategy,

a combination of DDPG, VAE, and SAC algorithms, teaches an autonomous vehicle

to drive in a continuous state-space. In a particular driving state, based on the past

instances of off-track deviations, terminations, or collisions with obstacles over several

frames of previous iterations, the vehicle reinforces its behavior to maximize the reward

function. The frames captured at a specific rate also allow simulating possible actions

taken by the vehicle using several instances of driving. This thesis presented research

on learning driving in incremental stages instead of learning end-to-end. We first

trained the DRL model with DDPG based on cost functions to generate realistic looking

images of the road. The proposed work emphasizes a step forward toward reducing

the uncertainties pertaining to vision and interaction involved in autonomous driving.

The work provides a perspective on using policy functions to ensure optimal and fast

learning in autonomous vehicles.

69

The maximum likelihood principle that underlies deep learning applications and prob-

abilistic DL models can indicate the distribution of possible outcomes. Bayesian deep

learning models make it possible to capture the uncertainty occurring in real-world

applications. Capturing and interpreting the driving environment and possible set of

actions a vehicle can take is effectively done using MDP for modeling the environment

and generating complex distributions using VAE. The interpretation of the gathered

data to execute meaningful action is done using policy gradient or actor critic based

DRL methods.

Recent advances in statistical inference have significantly expanded the toolbox of

probabilistic modeling of autonomous agents, specifically in robotics and games. Value

function approximation leads to optimal policy over a broad class of probabilistic mod-

els containing a large number of driving parameters, and scalable methods based on

stochastic gradient descent and distributed computation engines. DRL bypasses the

need to apply probabilistic modeling over massive data sets. One important applica-

tion of DRL has been to include deep neural networks within a probabilistic/Markov

model to capture complex non-linear stochastic relationships between random vari-

ables. These advances in conjunction with the release of novel DRL algorithms such as

SAC, VAE, and DDPG have greatly expanded the scope of application of DRL to solve

MDP based on probabilistic models. In this thesis, we elaborated on and apply the

main concepts, methods and tools of deep neural networks within a MDP framework

to estimate the probability of an autonomous vehicle staying on the track.

Performing basic driving maneuvres such as staying on track, detect lane markings, and

accelerate/decelerate, such tasks when solved using non-DRL methods require direct

access to state variables as well as well-designed hand-engineered features extracted

from sensory inputs. Deep reinforcement learning (DRL) can learn complex policies

with high-dimensional observations as inputs. The driving environment images offer

a suitable mechanism to apply them for autonomous driving to learn to drive on a

70

road in a manner similar to human driving. However, applying DRL to autonomous

driving still remains very challenging as conventional DRL algorithms require a large

number of training samples for learning, which is infeasible and time-consuming in real-

world driving scenarios. The contribution of this thesis is twofold. We proposed two

DRL algorithms, VAE+DDPG and VAE+SAC. The combination of these techniques

leads to smooth policy update in value function based DRL with enhanced capability of

automatic feature extraction. Using VAE pre-processing enhances the sample efficiency

and facilitates the learning process with fewer but robust samples.

5.2 Future Work

We aim to include deep reinforcement learning (DRL) and machine learning (ML) at

various aspects of autonomous driving to extend the work into foreseeable connected

and autonomous vehicle (CAV) infrastructure. Some future research directions are

proposed below:

• It is investigative if videos consisting of complex textures could be processed in

real-time with DRL. As human beings excel in processing complex, unforeseen,

and unexpected circumstances, a similar level of trust in self-driving technology

is undermined until these vehicles can match human intelligence for sustained

time-periods.

• We aim to extend the VAE to learn the pixel space defined by Gaussian framework

to generate realistic looking frames, images and videos predicting the autonomous

vehicle behaviour. This would be a step forward towards receiving feedback-based

corrective action ahead of the next timeframe.

• In order to tune the hyperparameters and weights involved in the training, the

DRL model used in the thesis can be appended with probabilistic DL models.

71

Bayesian deep learning models make it possible to capture the uncertainties oc-

curring in real-world applications to model the distribution of possible outcomes.

• DRL is prone to perturbation attacks, where a small modification in input may

lead to drastic changes in learning policy functions, optimal decisions, and result-

ing actions. Hence, incorporating cybersecurity measures in the learning aspect

of autonomus vehicles is crucial to broader societal impacts of such vehicles.

• In order for autonomous vehicles to increase the uninterrupted drive-time, DRL

techniques can be used in conjunction with structured probabilistic models. Prob-

abilistic DRL would provide computationally efficient tools to learn features from

latent variables.

72

Appendices

73

Appendix A

Parameter updates while learning

state-action transition policy

(a) Parameter-update 1 (b) Parameter-update 2 (c) Parameter-update 3

(d) Parameter-update 4 (e) Parameter-update 5 (f) Parameter-update 6

Figure A.1: Parameter values at different stages of learning.

74

Appendix B

Images during driving

Figure B.1: Driving scenarios and environments in DonKey simulator.

75

Figure B.2: Warehouse driving environment in Donkey simulator.

Figure B.3: Sparkfun AVC driving environment in Donkey simulator with ability to capture
driving images for analysis.

76

Figure B.4: Driving environment in Donkey simulator at a given timeframe.

Figure B.5: Driving environment in Donkey simulator at a given timeframe.

77

Figure B.6: Generated road driving environment in Donkey simulator at a given timeframe.

Figure B.7: Generated road driving environment in Donkey simulator at a given timeframe
with captured images.

78

Figure B.8: Donkey simulator driving state 1.

Figure B.9: Donkey simulator driving state 2.

79

Figure B.10: Donkey simulator driving state 3.

Figure B.11: Donkey simulator driving state 4.

80

Figure B.12: Driving environment road trajectory 1 for autonomous vehicle navigation in
Donkey simulator.

Figure B.13: Driving environment road trajectory 2 for autonomous vehicle navigation in
Donkey simulator.

81

Bibliography

[1] V. Papathanasopoulou and C. Antoniou, “Towards data-driven car-following mod-

els,” Transportation Research Part C, vol. 55, pp. 496–509, 2019.

[2] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Choi, “Action-Driven Visual Object Track-

ing With Deep Reinforcement Learning,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 29, no. 6, pp. 2239–2252, 2018.

[3] M. B́ıl, R. Andrasik, J. Sedońık, and V. Ćıcha, “ROCA: An ArcGIS toolbox for

road alignment identification and horizontal curve radii computation,” PloS one,

vol. 13, no. 12, p. 0208407, 2018.

[4] F. Gross and P. Jovanis, “Estimation of the Safety Effectiveness of Lane and

Shoulder Width Case-Control Approach,” Journal of Transportation Engineering,

vol. 133, no. 6, pp. 362–369, 2007.

[5] T. Inagaki and T. Sheridan, “A critique of the SAE conditional driving automation

definition, and analyses of options for improvement,” Cognition, Technology and

Work, vol. 21, no. 4, pp. 569–578, 2019.

[6] J. Barkenbus, “Self-driving Cars: How Soon Is Soon Enough?,” Issues in Science

and Technology, vol. 34, no. 4, pp. 23–26, 2018.

[7] A. Lieto, M. Bhatt, A. Oltramari, and D. Vernon, “The role of cognitive archi-

tectures in general artificial intelligence,” Cognitive Systems Research, vol. 48,

pp. 1–3, 2018.

82

[8] T. Miki, T. Ohya, H. Yoshino, and N. Umeda, “The Overview of the 4th Gener-

ation Mobile Communication System,” in The Fifth International Conference on

Information, Communications and Signal Processing, pp. 1551–1555, December

2005.

[9] A. Miglani and N. Kumar, “Deep learning models for traffic flow prediction in

autonomous vehicles: A review, solutions, and challenges,” Vehicular Communi-

cations, vol. 20, p. 100184, 2019.

[10] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep Learn-

ing for Computer Vision: A Brief Review,” Computational intelligence and neu-

roscience, vol. 2018, pp. 7068349–13, 2018.

[11] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning

techniques for autonomous driving,” Journal of Field Robotics, vol. ISSN:1556-

4967, 2019.

[12] D. Yang, K. Jiang, D. Zhao, C. Yu, Z. Cao, S. Xie, Z. Xiao, X. Jiao, S. Wang,

and K. Zhang, “Intelligent and connected vehicles: Current status and future

perspectives,” Science China Technological Sciences, vol. 61, no. 10, pp. 1446–

1471, 2018.

[13] G. Nardini, A. Virdis, C. Campolo, A. Molinaro, and G. Stea, “Cellular-V2X Com-

munications for Platooning: Design and Evaluation,” Sensors (Basel, Switzer-

land), vol. 18, no. 5, p. 1527, 2018.

[14] S. Deb, L. Strawderman, D. Carruth, J. DuBien, B. Smith, and T. Garrison, “De-

velopment and validation of a questionnaire to assess pedestrian receptivity toward

fully autonomous vehicles,” Transportation Research Part C, vol. 84, pp. 178–195,

2017.

[15] R. Robertson, S. Meister, W. Vanlaar, and M. Mainegra Hing, “Automated ve-

hicles and behavioural adaptation in Canada,” Transportation Research Part A,

83

vol. 104, pp. 50–57, 2017.

[16] M. Kyriakidis, R. Happee, and J. de Winter, “Public opinion on automated driv-

ing: Results of an international questionnaire among 5000 respondents,” Trans-

portation Research Part F: Psychology and Behaviour, vol. 32, pp. 127–140, 2015.

[17] N. Merat, A. Jamson, F. Lai, M. Daly, and O. Carsten, “Transition to man-

ual: Driver behaviour when resuming control from a highly automated vehicle,”

Transportation Research Part F: Psychology and Behaviour, vol. 27, pp. 274–282,

2014.

[18] X. Ji, X. He, C. Lv, Y. Liu, and J. Wu, “Adaptive-neural-network-based robust

lateral motion control for autonomous vehicle at driving limits,” Control Engi-

neering Practice, vol. 76, pp. 41–53, 2018.

[19] C. Zhang and J. Kim, “Multi-scale pedestrian detection using skip pooling and re-

current convolution,” Multimedia Tools and Applications, vol. 78, no. 2, pp. 1719–

1736, 2019.

[20] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning

techniques for autonomous driving,” Journal of Field Robotics, vol. ISSN:1556-

4959, 2019.

[21] D. Zhao, D. Liu, F. Lewis, J. Principe, and S. Squartini, “Special Issue on Deep

Reinforcement Learning and Adaptive Dynamic Programming,” IEEE Transac-

tions on Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2038–2041,

2018.

[22] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, L. Sifre, G. van den Driess-

che, T. Graepel, and D. Hassabis, “Mastering the game of Go without human

knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

84

[23] K. Arulkumaran, M. Deisenroth, M. Brundage, and A. Bharath, “Deep Reinforce-

ment Learning: A Brief Survey,” IEEE Signal Processing Magazine, vol. 34, no. 6,

pp. 26–38, 2017.

[24] V. Banks and N. Stanton, “Driver-centred vehicle automation: using network

analysis for agent-based modelling of the driver in highly automated driving sys-

tems,” Ergonomics, vol. 59, no. 11, pp. 1442–1452, 2016.

[25] C. Wang, J. Delport, and Y. Wang, “Lateral Motion Prediction of On-Road Pre-

ceding Vehicles: A Data-Driven Approach,” Sensors (Basel, Switzerland), vol. 19,

no. 9, p. 2111, 2019.

[26] W. Yang, X. Zhang, Y. Tian, W. Wang, J. Xue, and Q. Liao, “ Deep Learn-

ing for Single Image Super-Resolution: A Brief Review,” IEEE Transactions on

Multimedia, vol. 21, no. 12, pp. 3106–3121, 2019.

[27] M. Buda, A. Maki, and M. Mazurowski, “A systematic study of the class imbalance

problem in convolutional neural networks,” Neural Networks, vol. 106, pp. 249–

259, 2018.

[28] A. Dairi, F. Harrou, M. Senouci, and Y. Sun, “Unsupervised obstacle detection in

driving environments using deep-learning-based stereovision,” Robotics and Au-

tonomous Systems, vol. 100, pp. 287–301, 2018.

[29] C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced planning for autonomous

vehicles using reinforcement learning and deep inverse reinforcement learning,”

Robotics and Autonomous Systems, vol. 114, pp. 1–18, 2019.

[30] D. Birnbacher and W. Birnbacher, “Fully Autonomous Driving: Where Technol-

ogy and Ethics Meet,” IEEE Intelligent Systems, vol. 32, no. 5, pp. 3–4, 2017.

[31] M. Marcano, J. Matute, R. Lattarulo, E. Mart́ı, and J. Pérez, “Low Speed Longi-

tudinal Control Algorithms for Automated Vehicles in Simulation and Real Plat-

forms,” Complexity, vol. 2018, pp. 1–12, 2018.

85

[32] E. Debada and D. Gillet, “Virtual Vehicle-Based Cooperative Maneuver Planning

for Connected Automated Vehicles at Single-Lane Roundabouts,” IEEE Intelli-

gent Transportation Systems Magazine, vol. 10, no. 4, pp. 35–46, 2018.

[33] M. Zhu, X. Wang, and Y. Wang, “Human-like autonomous car-following model

with deep reinforcement learning,” Transportation Research Part C, vol. 97,

pp. 348–368, 2018.

[34] O. Garcia, G. Vitor, J. Ferreira, P. Meirelles, and A. de Miranda Neto, “The

VILMA intelligent vehicle: an architectural design for cooperative control between

driver and automated system,” Journal of Modern Transportation, vol. 26, no. 3,

pp. 220–229, 2018.

[35] D. Shin, K. Park, and M. Park, “Effects of Vehicular Communication on Risk

Assessment in Automated Driving Vehicles,” Applied Sciences, vol. 8, no. 12,

p. 2632, 2018.

[36] S. Lefevre, A. Carvalho, and F. Borrelli, “A Learning-Based Framework for Veloc-

ity Control in Autonomous Driving,” IEEE Transactions on Automation Science

and Engineering, vol. 13, no. 1, pp. 32–42, 2016.

[37] W. Wang, J. Xi, and D. Zhao, “Learning and Inferring a Driver’s Braking Action

in Car-Following Scenarios,” IEEE Transactions on Vehicular Technology, vol. 67,

no. 5, pp. 3887–3899, 2018.

[38] C. Guindel, D. Mart́ın, and J. Armingol, “Traffic scene awareness for intelligent

vehicles using ConvNets and stereo vision,” Robotics and Autonomous Systems,

vol. 112, pp. 109–122, 2019.

[39] D. Xie, L. Zhang, and L. Bai, “Deep Learning in Visual Computing and Signal

Processing,” Applied Computational Intelligence and Soft Computing, pp. 1–13,

2017.

86

[40] C. Webster, “Alan Turing’s unorganized machines and artificial neural networks:

his remarkable early work and future possibilities,” Evolutionary Intelligence,

vol. 5, no. 1, p. 35, 2012.

[41] M. Alom, T. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. Nasrin,

A. Van Esesn, B.C. Awwal, and V. Asari, “ The History Began from

AlexNet: A Comprehensive Survey on Deep Learning Approaches,” arXiv.org,

https://arxiv.org/ftp/arxiv/papers/1803/1803.01164.pdf, 2018.

[42] M. Biehl, C. Guckelsberger, C. Salge, S. Smith, and D. Polani, “Expanding the

Active Inference Landscape: More Intrinsic Motivations in the Perception-Action

Loop,” Frontiers in neurorobotics, vol. 12, p. 45, 2018.

[43] S. Nie, M. Zheng, and Q. Ji, “The Deep Regression Bayesian Network and Its

Applications: Probabilistic Deep Learning for Computer Vision,” IEEE Signal

Processing Magazine, vol. 35, no. 1, pp. 101–111, 2018.

[44] H. Haddad, Z. Bouyahia, and N. Jabeur, “Transportation Service Redundancy

From a Spatio-Temporal Perspective,” IEEE Intelligent Transportation Systems

Magazine, vol. 11, no. 4, pp. 157–166, 2019.

[45] A. Brunetti, D. Buongiorno, G. Trotta, and V. Bevilacqua, “Computer vision

and deep learning techniques for pedestrian detection and tracking: A survey,”

Neurocomputing, vol. 300, pp. 17–33, 2018.

[46] X. Geng, H. Liang, B. Yu, P. Zhao, L. He, and R. Huang, “A Scenario-Adaptive

Driving Behavior Prediction Approach to Urban Autonomous Driving,” Applied

Sciences, vol. 7, no. 4, p. 426, 2018.

[47] C. Guindel, D. Martin, and J. Armingol, “Fast Joint Object Detection and View-

point Estimation for Traffic Scene Understanding,” IEEE Intelligent Transporta-

tion Systems Magazine, vol. 10, no. 4, pp. 74–86, 2018.

87

[48] P. Pahlavani, M. Poor Arab Moghadam, and B. Bigdeli, “Car Following Predic-

tion Based on Support Vector Regression and Multi-adaptive Regression Spline

by Considering Instantaneous Reaction Time,” Iranian Journal of Science and

Technology, Transactions of Civil Engineering, vol. 43, no. S1, pp. 67–79, 2019.

[49] N. Wuong, D. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang, and D. Kim, “Ap-

plications of Deep Reinforcement Learning in Communications and Networking:

A Survey,” IEEE Communications Surveys and Tutorials, vol. 21, no. 4, pp. 3133–

3174, 2019.

[50] H. Ye, G. Li, and B. Juang, “Deep Reinforcement Learning Based Resource Allo-

cation for V2V Communications,” IEEE Transactions on Vehicular Technology,

vol. 68, no. 4, pp. 3163–3173, 2019.

[51] Y. He, N. Zhao, and H. Yin, “Integrated Networking, Caching, and Comput-

ing for Connected Vehicles: A Deep Reinforcement Learning Approach,” IEEE

Transactions on Vehicular Technology, vol. 67, no. 1, pp. 44–55, 2018.

[52] J. Bischoff, M. Maciejewski, T. Schlenther, and K. Nagel, “Autonomous Vehicles

and their Impact on Parking Search,” Multimedia Tools and Applications, vol. 11,

no. 4, pp. 19–27, 2019.

[53] D. Blei, A. Kucukelbir, and J. McAuliffe, “Variational Inference: A Review for

Statisticians,” Journal of the American Statistical Association, vol. 112, no. 518,

pp. 859–877, 2017.

[54] O. Sigaud and F. Stulp, “Policy search in continuous action domains: An

overview,” IEEE Signal Processing Magazine, vol. 113, pp. 28–40, 2019.

[55] D. Zhao, D. Liu, F. Lewis, J. Principe, and S. Squartini, “Special Issue on Deep

Reinforcement Learning and Adaptive Dynamic Programming,” IEEE Transac-

tions on Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2038–2041,

2018.

88

[56] S. Parisi, V. Tangkaratt, J. Peters, and M. Khan, “TD-regularized actor-critic

methods,” Machine Learning, vol. 108, no. 8, pp. 1467–1501, 2019.

[57] W. Lim, S. Lee, M. Sunwoo, and K. Jo, “Hybrid Trajectory Planning for Au-

tonomous Driving in On-Road Dynamic Scenarios,” IEEE Transactions on Intel-

ligent Transportation Systems, vol. ISSN:1524-9050, pp. 1–15, 2019.

[58] J. Chen, “The Evolution of Computing: AlphaGo,” Computing in Science and

Engineering, vol. 18, no. 4, pp. 4–7, 2016.

[59] A. Raffin, “Learning to Drive Smoothly in Minutes: Reinforcement Learning on

a Small Racing Car,” Web resource https://towardsdatascience.com/learning-to-

drive-smoothly-in-minutes-450a7cdb35f4, 2019.

[60] K. Divakarla, A. Emadi, S. Razavi, S. Habibi, and F. Yan, “A review of au-

tonomous vehicle technology landscape,” International Journal of Electric and

Hybrid Vehicles, vol. 11, no. 4, pp. 320–345, 2019.

[61] A. Raffin, A. Hill, R. Traoré, T. Lesort, N. Dı́az-Rodŕıguez, and D. Filliat, “De-

coupling feature extraction from policy learning: assessing benefits of state rep-

resentation learning in goal based robotics,” In: Proceedings of the Workshop

on Structure and Priors in Reinforcement Learning at International conference

on learning representation, no. http://arxiv.org/licenses/nonexclusive-distrib/1.0,

pp. 1–17, 2019.

[62] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang, “Traffic Flow Prediction With

Big Data: A Deep Learning Approach,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 6, no. 2, pp. 865–873, 2015.

[63] L. Liang, H. Ye, and G. Li, “Toward Intelligent Vehicular Networks: A Machine

Learning Framework,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 124–135,

2019.

89

[64] S. Bernardini, M. Fox, and D. Long, “Combining temporal planning with prob-

abilistic reasoning for autonomous surveillance missions,” Autonomous Robots,

vol. 41, no. 1, pp. 181–203, 2017.

[65] C. Wen, S. Jin, K. Wong, J. Chen, and P. Ting, “Channel Estimation for Mas-

sive MIMO Using Gaussian-Mixture Bayesian Learning,” IEEE Transactions on

Wireless Communications, vol. 14, no. 3, pp. 1356–1368, 2015.

[66] L. Tran, J. Kossaifi, Y. Panagakis, and M. Pantic, “Disentangling Geometry

and Appearance with Regularised Geometry-Aware Generative Adversarial Net-

works,” International Journal of Computer Vision, vol. 127, no. 6, pp. 824–844,

2019.

[67] R. Andrášik and M. B., “Efficient Road Geometry Identification from Digital

Vector Data,” Journal of Geographical Systems, vol. 18, pp. 249–269, 2016.

[68] F. Rosey and J. Auberlet, “Trajectory variability: Road geometry difficulty indi-

cator,” Safety Science, vol. 50, no. 9, pp. 1818–1828, 2012.

[69] O. Karaduman, H. Eren, H. Kurum, and M. Celenk, “Road-Geometry-Based

Risk Estimation Model for Horizontal Curves,” IEEE Transactions on Intelligent

Transportation Systems, vol. 17, no. 6, pp. 1617–1627, 2016.

[70] L. Hammarstrand, M. Fatemi, A. Garcia-Fernandez, and L. Svensson, “Long-

Range Road Geometry Estimation Using Moving Vehicles and Roadside Observa-

tions,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 8,

pp. 2144–2158, 2016.

[71] S. Hamdar, L. Qin, and A. Talebpour, “Weather and road geometry impact on

longitudinal driving behavior Exploratory analysis using an empirically supported

acceleration modeling framework,” Transportation Research Part C, vol. 67, no. 2,

pp. 193–213, 2016.

90

[72] A. Rasouli and J. Tsotsos, “Autonomous Vehicles That Interact With Pedestrians:

A Survey of Theory and Practice,” IEEE Transactions on Intelligent Transporta-

tion Systems, pp. 1–19, 2019.

[73] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J. Allen, V. Lam, A. Bewley,

and A. Shah, “Learning to Drive in a Day,” https://arxiv.org/pdf/1807.00412.pdf,

2018.

[74] L. He, Y. Chu, and C. Shen, “ A Design of Reward Function in Multi-

Target Trajectory Recovery with Deep Reinforcement Learning,” IEEE 8th

Joint International Information Technology and Artificial Intelligence Conference,

vol. 10.1109/ITAIC.2019.8785878, pp. 286–293, 2019.

[75] L. Matignon, G. Laurent, and N. Le Fort Piat, “ Reward function and initial val-

ues: Better choices for accelerated Goal-directed reinforcement learning,” Lecture

Notes in Computer Science, vol. 1, no. 4131, pp. 840–849, 2006.

[76] Mausam and A. Kolobov, Planning with Markov Decision Processes: An AI Per-

spective. Morgan and Claypool, 2012.

[77] X. Guo and Hernández-Lerma, Continuous-time markov decision processes: theory

and applications. Springer-Verlag, 2009.

[78] J. Guo, X. Gong, W. Wang, X. Que, and J. Liu, “SASRT: Semantic-Aware Super-

Resolution Transmission for Adaptive Video Streaming over Wireless Multimedia

Sensor Networks,” Sensors (Basel, Switzerland), vol. 19, no. 14, p. 3121, 2019.

[79] E. Arnold, O. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and A. Mouzakitis,

“A Survey on 3D Object Detection Methods for Autonomous Driving Applica-

tions,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10,

pp. 3782–3795, 2019.

[80] U. Technologies, “Using TensorBoard to Observe Training,” Web resource

https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Using-

91

Tensorboard.md, 2019.

[81] Aureliantactics, “Understanding PPO Plots in TensorBoard,” Web resource

https://medium.com/aureliantactics/understanding-ppo-plots-in-tensorboard-

cbc3199b9ba2, 2018.

92

