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Abstract: This work presents the bending–torsion coupled free vibration analysis of prestressed,
layered composite beams subjected to axial force and end moment using the traditional finite element
method (FEM) and dynamic finite element (DFE) techniques. Current trends in the literature, in terms
of different types of modeling techniques and constraints, were briefly examined. The Galerkin-type
weighted residual method was applied to convert the coupled differential equations of motion into
a discrete problem using a polynomial interpolation function in the finite element method. In the
dynamic finite element method, trigonometric shape functions were implemented to describe the
equations in terms of nodal displacements. The eigenvalue problem resulting from the discretization
along the length of the beam was solved in order to determine the system’s natural frequencies and
modes. The results, showing the effects of axial load, end moment, and combined loading on natural
frequencies, are discussed and are followed by some concluding remarks.

Keywords: coupled vibration; laminated composite; fiber-metal laminated (FML) beam; prestress;
dynamic finite element; FEM

1. Introduction

Many situations arise in various engineering applications, ranging from terrestrial
to aerospace structures, in which layered composite materials are used. The increasing
interest in such layered structural elements is mainly because of their attractive proper-
ties, such as high specific stiffness and strength, formability into complex shapes, longer
fatigue life, tailorable stiffness and strength, lower density, good buckling, and corrosion
resistance, to name a few (see, for example, Jones [1] and Berthelot [2]). However, it is
well known that composite structures can be placed under axial force and end moment
simultaneously when used in the above applications. Additionally, they are very sus-
ceptible to flexural–torsional/lateral buckling and display complex vibrational behavior.
Therefore, the accurate prediction of their stability limit states and dynamic characteristics
is of fundamental importance in the design of composite structures. Changing the ply
orientation and stacking sequence can lead to alterations of the composite material stiffness
characteristics. For ply angles other than 0◦ and 90◦, bending and torsion deformations
are coupled, and this material coupling predominantly influences the natural frequencies
and mode shapes of free vibration. Hashemi and Borneman [3] used a simplified beam
model and the dynamic (frequency-dependent) finite element method (FEM) to investigate
the coupling between bending and torsion in free vibration analysis of composite wings.
Abramovich and Livshits [4], Jaehong and Kim [5], Chen et al. [6], and Jung et al. [7]
used various numerical techniques, including Rayleigh–Ritz, Galerkin, and conventional
FEM based on fixed (polynomial) interpolation functions to evaluate the element matrices.
Among these methods, FEM is more commonly used, as it provides a general, systematic
approach to formulate a system’s stiffness and mass matrices. The natural frequencies
and modes of free vibration can then be found by solving the linear eigenvalue problem
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resulting from the assembly of element matrices and enforcing the system’s boundary
conditions [8].

Modeling a homogeneous metallic beam using the finite element method is relatively
straightforward; however, when using composite materials, their characteristics and be-
havior bring complexity to the system. This complexity, in addition to the time-consuming
nature of FEM models when meshing and solving equations, has led many researchers to
try analytical and semi-analytical approaches for early stages of design and optimization.
The dynamic stiffness matrix (DSM) method was developed and employed to determine
the free vibration response of various beam structures. The DSM was first proposed by
Kolousek in the 1970s [9] for homogeneous Euler–Bernoulli beams and has since been
continuously refined. In the 1990s, neglecting the shear and rotary inertia effects, Banerjee
and his coworkers developed the DSM method for the vibration analysis of different ho-
mogeneous and composite beam models. The DSM model for a uniform Euler–Bernoulli
composite beam, originally developed by Banerjee and Williams [10], and exploiting a gen-
eral algorithm for computing the natural frequencies of elastic structures presented earlier
by Wittrick and Williams [11], was then extended to the Timoshenko beam theory [12].
Later, Banerjee [13] further extended the DSM model to include axial force for different
composite beam configurations. In all these works, the DSM models for composite beams
were based on the exact member theory [11–13] and limited to simple geometries and
special cases. Exploiting the conventional FEM formulation and the frequency-dependent
approximation space from the DSM method, Hashemi and his coworkers developed the
dynamic finite element (DFE) formulation to investigate the vibrations of various homoge-
neous and laminated composite beam configurations (see, e.g., [3,4,14,15]). However, to
the best of the authors’ knowledge, a dynamic analysis of flexible prestressed composite
beams subjected to combined axial load and end moment has not been reported in the
available literature.

In this paper, a free vibration analysis of prestressed laminated composite and fiber-
metal laminated (FML) beams subjected to axial force and end moment is presented. In
addition to the material coupling between bending and torsion displacements caused by
the ply angle in a laminated composite beam, which has been treated and reported many
times in the literature, the system was also characterized by another geometric coupling
resulting from the end moment, bringing more complexity to the vibration analysis of such
prestressed structural elements. The equations of motion were introduced first, followed
by mathematical formulations leading to the FEM and DFE models. Considering the
illustrative examples, numerical tests were then performed to demonstrate the validity,
precision, and practical applicability of the presented methods.

The DFE formulation presented in this paper used the analytical solutions of a simpli-
fied version of the uncoupled equations of motion as the shape functions of approximation
space. As a result, the DFE model had a higher rate of convergence in comparison with
the conventional FEM model. This could save a large amount of computational time and
improve the accuracy of solutions in the design process, especially in large-scale designs.
The FEM method was developed for the sake of comparison in the cases studied, where
experimental or analytical results did not exist.

The structure of the paper is as follows: Section 2 presents the concept of coupled,
linear, undamped, free vibration of a prestressed laminated composite beam, followed by
the expressions for the Galerkin-type integral form of the governing differential equations.
Then, two composite beam conventional and dynamic frequency-dependent FEM formu-
lations are presented. In Section 3, the application of the presented formulations to the
free vibration analysis of a cantilevered, single-layer glass–epoxy composite beam (3.1)
and a three-layered fiber-metal laminated (FML) beam (3.2) is presented. In Section 4, a
discussion of the results obtained is provided, followed by final conclusions summarizing
the most important achievements of the presented work.
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2. Materials and Methods

Consider a slender laminated composite beam of length L and its solid rectangular
cross section, as shown in Figure 1. The material bending–torsion coupling behavior usually
present in composite materials is due to the unbalanced layup. The beam is characterized
by the effective (equivalent) bending rigidity, EI; the torsional rigidity, GJ; and the material
bending–torsion coupling rigidity, K (see [10] for more information on coupling rigidity).
A symmetric configuration consists of symmetry in the fiber orientations and thicknesses
with respect to the mid-plane of the laminate.
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Neglecting the shear, rotary inertia, and warping effects, the Euler–Bernoulli bending
and St. Venant torsion beam theories are used, where the flexural displacement is denoted
by w and θ is used to denote the twist angle. Differential equations of motion governing
the undamped, linear, coupled bending–torsion vibration of the system can be developed
by writing the equilibrium equations for an infinitesimal element of the system. The
development of the system’s governing differential equations is based on the assumptions
of linearly elastic material, small displacements, and rectangular cross-sectional area (i.e.,
two axes of symmetry), with the dimensions being small compared to the span, and the
transverse cross sections of the beam remaining plane and normal to the neutral axis during
bending (Euler–Bernoulli bending beam theory). Furthermore, the beam’s torsional rigidity
(GJ) is assumed to be very large compared with its warping rigidity (EΓ, and the ends are
free to warp, i.e., they are in a state of uniform torsion. The total potential energy (U) of the
beam is given by the following (the coupling rigidity terms are from the energy terms used
in [16], the term for the end moment is from [17], and the rest of the terms are from [13]):
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The total kinetic energy (T) is given by the following [18]:

T =
1
2

∫ L

0

[
m
(

∂w
∂t

)2
+ IP

(
∂θ

∂t

)2
]

dx. (3)

Based on Hamilton’s principle, for Lagrangian (L = T − U),
∫ t2

t1
L dt is stationary

between any arbitrary intervals of time (t1, t2), which means:

δ
∫ t2

t2

(T −U)dt = 0 (4)

where δ is the variational operator. By substituting 2 and 3 into 4, integrating each term
by parts, using the δ operator, knowing that δh and δθ are arbitrary, and finally collecting
all the terms, the differential equations of motion governing the free undamped vibration
of a prismatic, materially coupled, bending–torsion Euler–Bernoulli beam (EI = constant)
subjected to constant axial force (P) and end moment (Mzz) are written as:

EI
∂4w
∂x4 + P

∂2w
∂x2 + K

∂3θ

∂x3 + Mzz
∂2θ

∂x2 − (ρA)
∂2w
∂t2 = 0 (5)

GJ
∂2θ

∂x2 +
PIP
A

∂2θ

∂x2 + K
∂3w
∂x3 + Mzz

∂2w
∂x2 − ρIP

∂2θ

∂t2 = 0 (6)

where GJ stands for the torsional rigidity, EI is the flexural rigidity, K represents the material
bending–torsion coupling rigidity, ρ is the mass density, Ip represents the polar area moment
of inertial per unit length, A stands for the cross-sectional area, x represents the distance
spanning the beam, and t is time. The resultant internal bending moment, M(x), shear
force, S(x), and torsional torque, T(x), are given as:

M(x) = −EIw′′ − Kθ′ (7)

S(x) = EIw′′′ + Kθ′′ + MZZθ′ + Pw′ (8)

T(x) = GJθ′ +
PIP
A

θ′ + Kw′′ + MZZw′. (9)

Based on the simple harmonic motion assumptions, the displacements can be assumed
to have a sinusoidal variation (in time and frequency) as follows:

w(x, t) = Wsinωt (10)

θ(x, t) =θ sinωt. (11)

The sinusoidal variations from Equations (10) and (11) are then substituted into
Equations (5) and (6) (i.e., separation of variables), leading to the following governing
equations in the frequency domain written in terms of amplitudes of bending and torsional
displacements (W and θ):

EIW ′′′′ + PW ′′ + Kθ′′′ + MZZθ′′ − ρAω2W = 0 (12)

GJθ′′ +
PIP
A

θ′′ + KW ′′′ + MZZW ′′ − ρIPω2θ = 0. (13)
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2.1. Finite Element Formulation (FEM)

Based on the Galerkin-type weighted residual formulation, the weak integral forms
associated with the system’s governing Equations (12) and (13), obtained after integrations
by parts, are then written as:

W f =
∫ L

0

(
EIW ′′ δW ′′ − PW ′δW ′ + KδW ′′ θ′ + Mzzθ′δW ′ + ρAω2WδW

)
dx

+[(EIW ′′′ + Kθ′′ + MZZθ′ + PW ′)δW]L0 − [(EIW ′′ + Kθ′)δW ′]L0 = 0
(14)

Wt =
∫ L

0 (GJθ′δθ′ + PIP
A θ′δθ′ + KW ′′ δθ′ + MZZW ′δθ′ − ρIPω2θδθ)dx

−
[
(GJθ′ + PIP

A θ′ + KW ′′ + MZZW ′)δθ
]L

0
= 0.

(15)

Both the field variables (solution) and weighting functions are defined in the same
approximation space, and appropriate boundary conditions are imposed at the beam
extremities x = 0 and L (for example, the zero displacements, W = W′ = θ = 0) and the virtual
displacements, δW = δW′ = θ′ = 0, at the fixed end (x = 0) (i.e., where the displacements
are imposed), and the null resultant shear force, S(x), the bending moment, M(x), and the
twisting moment, T(x), at the free end (x = L), etc. Consequently, the bracketed boundary
terms in the above integral Equations (14) and (15) will disappear. It can also be verified
that the same is true regardless of the type of boundary conditions [8].

Equations (14) and (15) also satisfy the principle of virtual work (PVW):

W = WINT −WEXT = 0 (16)

WINT = Wf + Wt (17)

and WEXT = 0 for free vibrations. The beam is then discretized along its length (see Figure 2),
leading to the following non-dimensionalized element integral equations (ξ = x

l ):
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Wk
f (ξ) =

∫ 1

0

(
1
l3 EIW ′′ δW ′′ − 1

l
PW ′δW ′ +

1
l2 KδW ′′ θ′ +

1
l

Mzzθ′δW ′ + ρAω2WδW
)

dξ = 0, (18)

Wk
t (ξ) =

∫ 1

0

(
1
l

GJθ′δθ′ +
1
l

PIP
A

θ′δθ′ +
1
l2 KW ′′ δθ′ +

1
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MZZW ′δθ′ − ρIPω2θδθ

)
dξ = 0 (19)

such that:

W = WINT =
Number of Elements

∑
k=1

Wk =
Number of Elements

∑
k=1

(Wk
f (ξ) + Wk

t (ξ)). (20)

The field and virtual variables, W, θ, δW, and δθ, are then expressed in terms of nodal
variables using the polynomial interpolation functions of [3,8] (i.e., Hermite cubic and
linear polynomials for the flexural and torsional displacements, respectively). This process
leads to the prestressed composite beam finite element (PCBFE) mass matrix, [m]k, and
stiffness matrix, [k]k, written as:

[k]k = [k]k
Uncoupled + [k]k

P-Geometric + [k]k
M-Coupling + [k]k

G-Coupling + [k]k
M-Geometric (21)

where [k]k
Uncoupled is the conventional static flexural and torsional stiffness matrices, [k]k

P-Geometric

is the geometric stiffness matrix caused by the axial force, P, [k]k
M-Coupling is the (bending–

torsion and torsion–bending) material coupling stiffness matrix, and [k]k
G-Coupling is the
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(bending–torsion and torsion–bending) geometric coupling stiffness matrixcaused by the
end moment.

Finally, the assembly of the element matrices, [k]k and [m]k, and the application of the
system’s boundary conditions lead to the following linear eigenvalue problem:

〈δUn〉
(
[K]−ω2[M]

)
{Un} = 〈δUn〉[K(ω)]{Un} = 0 (22)

where [K] stands for the global stiffness matrix, [M] is global mass matrix, and <δUn>
represents the vector of arbitrary virtual displacements. The nontrivial solution to the linear
eigenvalue problem in (22) is then obtained by setting the determinant of the system’s
so-called dynamic stiffness matrix (DSM), [K(ω)] =

(
[K]−ω2[M]

)
, to zero.

The above FEM formulation and modeling, consisting of the assembly of element ma-
trices, the application of the system’s boundary conditions, and the solution of the resulting
eigenproblem, are carried out using a code developed in MATLAB. The code gives the
natural frequencies and generates the mode shapes for prestressed, doubly coupled (mate-
rially and geometrically) beams by extracting data from the corresponding eigenvectors.
The linear eigenproblem in (22) can also be solved using an inverse iteration procedure,
subspace, or the Lanczos method [8]. In this study, however, the “eig” function in MATLAB
was used to extract the natural frequencies and mode shapes of the example problems.

2.2. Dynamic Finite Element (DFE) Formulation

Alternatively, a dynamic (frequency-dependent) finite element (DFE) formulation can
be developed to analyze the free vibrations of the system at hand. In general, the DFE and
FEM methods follow the same formulation, which means the DFE approach starts with a
Galerkin-type weak integral form of equations, followed by the same integrations by parts
to satisfy the natural (force) boundary conditions, which results in Equations (14)–(16).
The major difference between the two methods starts at the element (discretized) integral
equations and is based on the basis functions from which the shape functions are calculated.
As mentioned earlier, in a classic FEM formulation, the cubic and linear polynomial shape
functions are used for flexural and torsional displacements, respectively, which are the
solutions of the static deformation of a linear elastic beam. In the DFE formulation, however,
the solutions of the differential equations governing the uncoupled bending and torsion
beam vibrations are chosen as the basis functions of the approximation space, <P(ξ)>f and
<P(ξ)>t, leading to frequency-dependent shape functions obtained with averaged value
parameters over each element, where applicable, i.e., when the system’s mechanical and/or
geometric and/or material parameters are not constant [3]. Therefore, the DFE can be
considered as an intermediate approach in which the FEM is combined to the exact DSM to
obtain a better numerical model.

In what follows, the DFE method is developed for the free vibration analysis of a
prestressed, materially and geometrically coupled, uniform composite beam element, where
the geometric and material parameters are all assumed to be constant per element. The
presented DFE can also be used to model the vibration behavior of piecewise, uniform,
stepped composite beams. In addition, the present theory can also be extended to include
variable material and/or geometric parameters.

To obtain the DFE formulation, the element virtual work Equations (18) and (19) are
written in the following equivalent form, obtained after another set of integration by parts:

Wk
f (ξ) =

∫ 1
0 W(

1
l3 EIδW ′′′′ − 1

l
PδW ′′ + ρAω2lδW︸ ︷︷ ︸
∗

)dξ +
∫ 1

0
1
l Mzzθ′δW ′dξ +

∫ 1
0

1
l2 Kθ′δW ′′ dξ

+
[

1
l3 (EIW ′δW ′′ − EIWδW ′′′ ) + 1

l (PWδW ′)
]1

0

(23)
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Wk
t (ξ) =

∫ 1
0 −θ(

1
l

GJδθ′′ +
1
l

PIP
A

δθ′′ + ρIPω2lδθ︸ ︷︷ ︸
∗∗

)dξ +
∫ 1

0
1
l MzzW ′δθ′dξ +

∫ 1
0

1
l2 KW ′′ δθ′dξ+

1
l

[
GJθδθ′ + PIP

A θδθ′
]1

0
.

(24)

Then, the following non-nodal approximations (displacement functions), written in
terms of the generalized parameters 〈a〉, 〈δa〉, 〈b〉, and 〈δb〉, are introduced, so that the
integral terms (*) and (**) in the above Equations (19) and (20) vanish, as follows:

δW = < P(ξ) > f {δa}; W = < P(ξ) > f {a};
δθ =< P(ξ) >t {δb}; θ =< P(ξ) >t {b}

(25)

where the flexural and torsional basis functions of approximation space are defined as:

〈P(ξ)〉 f =

〈
cos(αξ);

sin(αξ)

α
;

cosh(βξ)− cos(αξ)

α2 + β2 ;
sinh(βξ)− sin(αξ)

α3 + β3

〉
(26)

〈P(ξ)〉t = 〈cos(τξ); sin(τξ)/τ〉 (27)

with the roots, α, β, and τ, defined as:

α =
√
|X2 |, β =

√
|X1 |,

τ =

√
ρIP Aω2l2

AGJ + PIP
(28)

and

X1 =

{
−B +

√
B2 − 4AC

}
2A

, X2 =

{
−B−

√
B2 − 4AC

}
2A

, (29)

where:
A =

EI
l3 , B = −P

l
, C = −mlω2. (30)

The nodal approximations for the element variables W(ξ) and θ(ξ) can then be rewrit-
ten as:

W(ξ) =< P(ξ) f > [Pn]
−1
f {Wn} =< N(ξ) f > {W1 W ′1 W2 W ′2},

θ(ξ) =< P(ξ)t > [Pn]
−1
t {θn} =< N(ξ)t > {θ1 θ2}.

(31)

The matrices, [Pn] f and [Pn]t, are defined as:

[Pn] f =


1 0 0 0
0 1 0 (β−α)

(α3+β3)

cos(α) sin(α)
α

[cosh(β)−cos(α)]
(α2+β2)

[sinh(β)−sin(α)]
(α3+β3)

−αsin(α) cos(α) [βsinh(β)+αsin(α)]
(α2+β2)

[βcosh(β)−αcos(α)]
(α3+β3)

 (32)

[Pn]t =

[
1 0

cos(τ) sin(τ)
τ

]
. (33)

Similar expressions are also written for the test functions. Equation (29) can then be
rearranged as:

[W(ξ) θ(ξ)]T = [N]{un}, with {un} =< W1 W ′1 θ1W2 W ′2θ2 >T . (34)

The displacements (i.e., degrees of freedom) and [N] represent the dynamic shape
functions in matrix form as:
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[N] =

{
< N(ω) f >

< N(ω)t >

}[
N1(ω) f N2(ω) f 0 N3(ω) f N4(ω) f 0

0 0 N1(ω)t 0 0 N2(ω)t

]
. (35)

The four trigonometric shape functions, Ni(ω)f, pertaining to bending, and the two
trigonometric interpolation functions, Nj(ω)t, pertaining to torsion, presented in (35) are
then used to approximate the lateral and torsional displacements, respectively, introduced
to the element integral Equations (23) and (24) and leading to element DFE matrices, written
as:

Wk =
([

k]kUncoupled+[ k]kCoupled

)
{Un} = [k(ω)]k{Un} (36)

where
[k(ω)]k is the DFE matrix for a prestressed, laminated composite beam element,

[k]k
Uncoupled stands for the uncoupled portion of the element dynamic stiffness matrix,

including the axial load effect resulting from the boundary (bracketed) terms in (23) and
(24), and [k]k

Coupled represents the element’s coupling matrix, as shown below:

[k]kUncoupled =



EI
l3 {N1

′′′ }0
EI
l3 {−N1

′′ }0 0 EI
l3 {−N1

′′′ }1
EI
l3 {N1

′′ }1 0
EI
l3 {N2

′′′ }0
EI
l3 {−N2

′′ }0 0 EI
l3 {−N2

′′′ }1
EI
l3 {N1

′′ }1 0
0 0 GJ

l
{
−Nt1

′}
0 0 0 GJ

l
{

Nt1
′}

1
EI
l3 {N3

′′′ }0
EI
l3 {−N3

′′ }0 0 EI
l3 {−N3

′′′ }1
EI
l3 {N1

′′ }1 0
EI
l3 {N4

′′′ }0
EI
l3 {−N4

′′ }0 0 EI
l3 {−N4

′′′ }1
EI
l3 {N1

′′ }1 0
0 0 GJ

l
{
−Nt2

′}
0 0 0 GJ

l
{

Nt2
′}

1


(37)

[k]kCoupled =
∫ 1

0

K
l2



0 0 {N1
′′Nt1} 0 0 {N1

′′Nt2}
0 0 {N2

′′Nt1} 0 0 {N2
′′Nt2}

{N1
′′Nt1} {N2

′′Nt1} 0 {N3
′′Nt1} {N4

′′Nt1} 0
0 0 {N3

′′Nt1} 0 0 {N3
′′Nt2}

0 0 {N4
′′Nt1} 0 0 {N4

′′Nt2}
{N1

′′Nt2} {N2
′′Nt2} 0 {N3

′′Nt2} {N4
′′Nt2} 0

dξ. (38)

The element matrices are then assembled to form the system’s global dynamic stiffness
matrix, [k(ω)], obtained using a code developed in MATLAB. Based on the principle of
virtual work, for arbitrary virtual displacement 〈δUn〉, the resulting nonlinear eigenvalue
problem is written as:

[K (ω)]{Un} = 0. (39)

Applying the applicable boundary conditions, the system’s natural frequencies, ω, are
then evaluated by setting the determinant of the global dynamic stiffness matrix (DSM)
equal to zero, i.e., |K(ω)| = 0, and sweeping the frequency domain to find values of ω that
produce a zero determinant. The system’s mode shapes are then found by extracting data
from corresponding eigenvectors {Un}. Alternatively, the natural frequency can be found
using any standard determinant search method.

3. Results and Discussion

Numerical checks are performed to confirm the predictability and accuracy of the
theory. The doubly (materially and geometrically) coupled natural frequencies for a variety
of prestressed composite beam configurations were studied, and excellent agreement was
found between the DFE, FEM, and published results. In what follows, the application
of the presented formulations to the free vibration analysis of cantilevered, single-layer
glass–epoxy composite and three-layered fiber-metal laminated (FML) beams is presented.

3.1. Single-Layer Glass/Epoxy Composite Beam

Let us first consider a uniform, cantilevered beam composed of glass–epoxy composite
material, made up of unidirectional plies with 0.1 mm thickness, with fiber angles in each
ply set to +15◦, subjected to end moment and axial force. The beam is assumed to be
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0.1905 m long and 12.7 mm wide. Based on Banerjee and Williams [10], the beam can be
considered equivalent to a single thick ply, with a thickness of 3.18 mm, and the following
material and geometric properties derived/considered: bending rigidity, EI = 0.2865 N.m2;
torsion rigidity, GJ = 0.1891 N.m2; bending–torsion coupling rigidity, K = 0.1143 N.m2;
mass per unit length, m = 0.0544 kg/m; and mass polar moment of inertia per unit length,
Iα = 7.77 × 10−7 kg.m.

A free vibration analysis of the system was performed using the FEM and DFE codes
developed in MATLAB, carrying out the assembly of the static (FEM) mass and stiffness
and dynamic (DFE) matrices with the application of the system’s boundary conditions and
solving the resulting eigenvalue problems. There are no frequency data available in the open
literature for such a prestressed composite beam subjected to axial load and end moment.
Therefore, both the FEM and DFE codes were first validated for an unstressed composite
beam (i.e., Mzz and P were set to zero) as reported by Banerjee and Williams [12], for which
exact DSM reference values were available. In the DSM theory, the element frequency-
dependent stiffness matrix was developed from the closed form solution to the governing
coupled differential equations, and therefore are exact within the limits of the theory. The
conventional FEM theory and the corresponding element mass and stiffness matrices,
as mentioned in previous sections, were developed based on cubic Hermite and linear
interpolation functions for flexural and torsional displacements, respectively. In contrast,
the DFE matrices were evaluated using frequency-dependent trigonometric interpolation
functions derived using the basis functions presented in Equations (26) and (27).

The unstressed system’s first five natural frequencies evaluated from a five-element
mesh modeled using the presented FEM and DFE formulations are presented in Table 1,
along with those obtained using a single-element DFE model and the (exact) DSM data
from [12]. As can be seen from Table 1, the FEM frequencies are in very good agreement with
the DSM values [12], with a maximum error of less than 0.4% for the fifth frequency, and an
average error of less than 0.14%. As expected, the five-element FEM model predicted higher
natural frequencies than the DSM values, and the estimated error was found to increase
with the mode number, except for the fourth natural frequency. This can be associated with
the fact that, in this case, the first, second, third, and fifth modes exhibited bending–torsion
material coupling predominated by flexural displacement, whereas the fourth mode was
predominantly torsional, i.e., exhibiting the first torsional mode’s behavior. It is worth
noting that all the DFE frequencies obtained using both one- and five-element models, in
this case, were found to be in perfect agreement with the DSM data, i.e., 0% error. The FEM
convergence test results for the unstressed (i.e., Mzz and P were set to zero) beam’s first
five natural frequencies are shown in Figure 3.

Table 1. Comparison of the first five FEM and DFE natural frequency (Hz) results for Mzz = 0 and
P = 0 with the analytical DSM values [12].

Natural
Frequency

Exact DSM
[12]

5 FEM
Elements

5 FEM
|Error|%

5 DFE
Elements

5 DFE
|Error|%

1 DFE
Element

DFE
|Error|%

1st 30.82 30.82 0.00% 30.82 0.00% 30.82 0.00%
2nd 192.72 192.87 0.08% 192.72 0.00% 192.72 0.00%
3rd 537.38 538.47 0.19% 537.38 0.00% 537.38 0.00%
4th 648.73 648.87 0.02% 648.73 0.00% 648.73 0.00%
5th 1049.73 1053.87 0.39% 1049.73 0.00% 1049.73 0.00%

The bending–torsion coupling behavior in this model is partly caused by the fiber angle
and partly by the applied end moment. Depending on the end moment and fiber angle
directions, these two coupling sources either intensify or diminish one another’s effects.
It is worth noting that in most composite material applications, the resulting couplings
between different displacements are undesired. Therefore, knowing the magnitude of the
working end moment, the direction of fiber angle and stacking sequence can be tailored in
such a way that resulting torsional displacement caused by the material coupling (K) is in
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the opposite direction of that resulting from the end moment (Mzz), minimizing or, ideally,
cancelling the coupling effects.

Once the validity of the FEM and DFE formulations for the unstressed composite beam
was established, the vibrations of the prestressed configurations subjected to combined
axial load and end moment were investigated. The variation of the uniform, cantilevered
composite beam’s fundamental natural frequency versus axial compressive force (obtained
from the five-element FEM and DFE models) for Mzz = 20 N.m is shown in Figure 4.
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Figure 4. Variation of the fundamental natural frequency vs. axial compressive force for Mzz = 20 N.m,
obtained from the five-element FEM and DFE models.

The effect of fiber angle on the vibrational behavior of the composite glass–epoxy beam
was also investigated using a five-element DFE model, and the results are represented in
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Figure 5. As can be seen from Figure 5, at 45◦, the fiber angle system exhibited the highest
natural frequency, associated with the highest material bending–torsion coupling factor
(Kmax) at this fiber angle.
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Figure 5. Variation of the first three natural frequencies for a composite beam with glass–epoxy
composite ply angle using a five-element DFE model with Mzz = 20 N.m and P = 10 N.

A buckling analysis for a single-layer glass–epoxy beam was also carried out using
a five-element DFE model, where for each axial force the end moment was varied to find
the critical value, MzzCr, leading to a zero natural frequency (the results are presented in
Figure 6). As can be observed from Figure 6, at zero axial force (P = 0), the critical (buckling)
end moment was found to be MzzCr = 48.3 N.m. An increase in the tensile (i.e., positive) axial
force increased the critical (buckling) end moment. In contrast, increasing the compressive
(i.e., negative) axial forces led to a decrease in critical (buckling) end moment.
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Figure 6. Buckling analysis for a single-layer, glass–epoxy composite, cantilevered beam with a
fiber angle of +15◦ using a five-element DFE model (negative axial force means compression, while
positive means tension).

Considering the above prestressed, cantilevered composite beam subjected to an end
moment of Mzz = 20 N.m and an axial tensile force of P = 10 N, the DFE model was used to
extract the system’s first five natural mode shapes (Figures 7 and 8). The natural modes’
flexural and torsional components are separately illustrated in Figures 7 and 8, respectively,
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showing that the bending was predominant in the first, second, third, and fifth modes of
free vibrations, while the fourth was predominantly a torsional mode.
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3.2. Three-Layer Fiber-Metal Laminated (FML) Beam

To further investigate the applicability of the presented formulation, the FEM and
DFE approaches, together with a simple layer-wise formulation, were used to investigate
the free vibrations of an illustrative example of a cantilevered, prestressed, three-layer
fiber-metal laminated (FML) beam subjected to axial force and end moment. The FML
construction at hand, also known as GLARE (glass-reinforced aluminum laminate), was
assumed to consist of two composite face layers, each made of glass–epoxy with +15◦ fiber
angle (as in the previous example), and an aluminum core, as shown in Figure 9.
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As with the composite beam in the previous example, this beam had an overall length
of L = 0.1905 m, a rectangular cross-sectional area of thickness t = 3.18 mm, and width of
w = 12.7 mm. The aluminum core had a mass density of ρ = 2700 kg/m3, shear modulus
of G = 26 GPa, and Young’s modulus of E = 70 GPa, and the thickness of all the three
layers was considered equal (one-third of the total thickness; t/3). The prestressed FML
beam exhibited coupled bending–torsion behavior, partly caused by the fiber angle in the
face-layers (leading to the material bending–torsion coupling stiffness, K), and in part by
the applied end moment, i.e., geometric coupling. These two couplings, depending on their
directions, either alleviate or intensify each other’s effects.

The variation of fundamental natural frequency versus axial compressive force for
FEM and DFE, both using five elements with Mzz = 20 N.m, for the FML beam is shown in
in Figure 10, and the buckling analysis results are presented in Figure 11. The conventional
FEM’s overestimation of the results is once again observed in Figure 10. This is mainly due
to the constraints imposed by the polynomial basis/shape functions of the approximation
space on the system [3,8,14,15].
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Figure 10. Variation of the fundamental natural frequency vs. axial compressive force for the
cantilevered, three-layer glass–epoxy and aluminum sandwich beam (GLARE), obtained using the
five-element DFE and FEM models, with Mzz = 20 N.m.
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Figure 11. Buckling analysis for the cantilevered, three-layer glass–epoxy and aluminum sandwich
beam (GLARE), using five-element DFE (negative axial force means compression, while positive
means tension).

4. Discussion

The free, undamped, doubly coupled vibration of a prestressed composite beam
subjected to axial force and end moment was modeled using both the FEM and DFE
methods, and the results were validated with analytical DSM results. In this modeling, the
composite nature of the beam material introduced one (material) coupling term between
the bending and torsion displacements in the bending differential equation of motion and
introduced one term in the torsion differential equation of motion, while the applied end
moment created another (geometric) coupling term in each equation, leading to a total of
four coupling terms in the system of differential equations. Because of these coupling terms
between the two differential equations, the system had no analytical solution, which led us
to use numerical methods for modeling purposes.

The modeling results for the two numerical methods showed that when using same
number of elements, the DFE had a higher rate of convergence compared to the FEM
method (Table 1). The results also showed that, as expected, for a constant end moment,
increasing the compressive axial force decreased the stiffness of the system which, in turn,
led to lower natural frequencies (Figure 4). In contrast, increasing the tensile axial force
increased the beam’s stiffness and the critical (buckling) end moment (Figure 6). All the
vibration modes were coupled and included both torsion and bending components. In the
first three modes, bending was dominant, while in the fourth, torsional bending became
predominant (Figures 7 and 8). From Table 1, it is inferred that in the absence of an end
moment (Mzz = 0) and material coupling (K = 0), a single-element DFE model yields the
same results as the DSM method. This can be explained by the fact that in the absence of
these coupling terms, the frequency-dependent stiffness matrix in the DFE method (without
discretization) results in the same formulation as the DSM analytical solution, as reported
in [12].

The effect of ply angle on the vibrational behavior of the composite glass–epoxy
beam was also investigated using a five-element DFE model. All of the first three natural
frequencies were found to increase from the fiber angles of 0◦ to +45◦ and to decrease from
+45◦ to +90◦ (Figure 5).

Further investigation into the applicability of the presented FEM and DFE formulations
to the free vibration analysis of a prestressed, three-layer composite–aluminum sandwich
(GLARE) beam showed that this beam had almost the same stiffness and buckling resistance
as the laminated composite beam (Figures 4 and 10). Moreover, overprediction of the
natural frequencies by the FEM method was once again observed (Figure 10), and it
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can be justified by constraints on displacements introduced by the polynomial basis and
interpolation functions of approximation space in the formulation.

In summary, in both cases studied and presented in this paper, the convergence rates
obtained from a frequency-dependent dynamic finite element (DFE) formulation were
found to surpass those obtained from the conventional FEM. The DFE’s higher convergence
rate is mainly attributed to the usage of the solutions to the uncoupled part of equations as
the basis functions of approximation space. In comparison with conventional FEM, which
uses simple polynomial shape functions, the interpolation functions derived from these
solutions provide much better approximations for element displacements expressed in
terms of nodal displacements. This higher convergence rate means that to reach a specific
accuracy, DFE requires a much smaller number of elements than FEM. This may not seem
like a large advantage in the analysis of simple structures such as the ones studied here, but
when it comes to large-scale designs of complex systems, using DFE would lead to much
less computation and analysis time.
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