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ABSTRACT 

  

Design of reverse logistics networks under uncertainty:  

Multi-objective approach 

  

Babak Mohamadpour Tosarkani 

Doctor of Philosophy                                                                                                   

Mechanical and Industrial Engineering, 2020 

Ryerson University 

 

A reverse logistics network (RLN) is defined as the backward flow of products, specifically the 

products that are returned for recycling. Several entities are involved in a recycling process such 

as regional collection depots, recovery centers, remanufacturing plants, and disposal centers. The 

main objective of RLN design is to facilitate the reclamation of used products for the purpose of 

saving cost, energy, resources, and diverting waste from landfills and waterways. On this matter, 

decision-makers should consider different types of parameters (i.e., fixed and variable costs, the 

quantity of demand and return, and the quality of returned products) affecting the configuration of 

facility location models.  

In real life, there are a variety of ambiguities associated with mentioned parameters that stem 

from either internal or external factors (e.g., volatility in market demand, rate of the returned 

products, unit transportation cost). The main objective of this dissertation is to develop multi-

objective optimization models under uncertainty. In this regard, some integrated solution 

methodologies are introduced to address different types of uncertainty in five stewardship 

programs (i.e., electronic recycling association (ERA), Canadian battery association (CBA), 

beverage container stewardship program regulation (BCSPR), Ontario electronic stewardship 

(OES), wastewater management in hydraulic fracturing) in Canada. 

To consider the environmental impact of such stewardship programs, the proposed 

mathematical models are extended to the multi-objective optimization models. In this regard, the 

proposed solution methodologies make decision-makers capable of optimizing the environmental 

aspects (e.g., green practices of third parties, carbon emissions) associated with RLNs. 
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Chapter 1 

1.1. Introduction     

A reverse logistics network (RLN) includes some activities such as remanufacturing and 

refurbishing for the purpose of either creating value, or proper disposal over the entire life cycle 

of products (Carter and Ellram, 1998; Srivastava, 2008; Dekker et al., 2013; Govindan and 

Soleimani, 2017). The recovery of used products and materials is essential to support the 

population growth with regard to finite resources. In this regard, RLNs usually have a positive 

impact on saving natural resources and reducing environmental issues. Furthermore, companies 

are motivated to be involved in environmental stewardship due to social and environmental 

responsibilities (Ramos et al., 2014; Adenso-Díaz et al., 2016).  

As illustrated in Fig. 1.1, a reverse stream includes several entities such as regional collection 

depots, recovery centers (i.e., all the required activities to recover the components of used products, 

such as inspection, disassembly, refurbishing), remanufacturing plants, and disposal centers. 

Recovery choices such as recycling are applied for the returned products. The recycling of returned 

products increases the total profit of the network, and it reduces environmental issues such as 

carbon emissions, and hazardous waste. The configuration of RLNs is a strategic decision (e.g., 

opening or closing the recovery center) which is impossible to be changed in the short-term 

(Kumar et al., 2017; Van Engeland et al., 2020).  

Designing RLNs has received great attention recently. Customers return products to the regional 

collection depots because of different reasons. Such returns may include commercial returns, end-

of-use returns, end-of-life returns, repair, and warranty returns over the product life cycle. After 

sorting, the returned products are transported to the recovery centers. Prior to the recovery process, 

inspection is conducted on every product since the quality of returned products is different. In this 

regard, some parts of the returned products can be used again after the recovery process, while the 

other components are unrecoverable and must be sent to the disposal center. The recovered 

components are shipped to the remanufacturing plants. Then, suppliers provide complementary 

parts which are required for production, to the remanufacturing plants. Therefore, RLNs should 

consist of all activities related to product recovery consisting of the returned product acquisition, 

product disassembly, inspection, refurbishing, and remanufacturing.  
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Fig. 1.1. An RL network. 

 

1.1.1. Components of RLNs 

There are two types of components (i.e., strategic and operational) that must be considered in 

designing of RLNs (Pokharel and Mutha, 2009). The strategic components include fixed costs (i.e., 

costs of required facilities and equipment), environmental impact, quality, and customer service. 

To optimize the RLNs, managers should ensure the full utilization of resources (e.g., equipment, 

labour). In addition, remanufactured products should have the same quality as virgin products, 

since the customers expect consistent quality from producers. Identifying and fulfilling customer 

expectations are the other essential parts of strategic factors in RLNs. Public awareness has led 

producers to integrate environmental solutions into their supply chain management practices (El 

Saadany et al., 2011). Once companies address such important strategic factors, they can focus on 

a tactical level (i.e., operational factors) of RLNs. This level of RLNs consists of the collection, 

transportation, sorting, inspection, warehousing, remanufacturing, and packaging. Such 

operational factors are different in importance based on customer expectations, resources, and 

capabilities of entities involved in RLNs. Accordingly, the characteristics of parameters associated 

with either strategic or operational components of RL systems are uncertain in the real world 

(Salema et al., 2007; Lee and Dong, 2009; Cardoso et al., 2013; Trochu et al., 2018).  

 

1.1.2. Beneficial aspects of RLNs 

The main objective of RLN design is to facilitate the reclamation of products at the end of their 

lifecycle. There is a variety of benefits associated with reclamation, refurbishing, and recycling 

the returned products, such as saving cost, energy, resources, and diverting waste from landfills 

and waterways (Sarkis et al., 2010; Grabara et al., 2014). 

The presence of hazardous waste and toxic substances in some returned products may cause a 

serious environmental impact. RLNs lead to reduce the amount of waste discarded improperly into 
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the air and water. Moreover, saving energy and natural resources is another ecological benefit of 

designing RLNs. 

 

1.1.3. RLNs and sustainable environmental strategies  

Nowadays, companies are expected to run their operations based on sustainable manners. 

Sustainability refers to the usage of resources in a way that future generations can benefit from 

them as well (Bonney and Jaber, 2011; Ahi et al., 2016).   

Environmental practices are prominent parts of sustainability. On this subject, sustainable 

environmental strategies (SES) have been considered to design RLNs recently. SES are those 

applied to reduce companies’ environmental impact while still leading to cost-saving. In this 

regard, SES are led to optimize the companies’ utilization rate of resources which give rise to 

advance their economic performance (Marsillac, 2008).  

The main factors that can promote SES are as follow:  

▪ To prevent pollution and evaluate operation: waste and cost of operations should be 

measured while implementing SES. In the next step, it is required to prepare strategic plans 

to facilitate business environmental objectives in the long-term. 

▪ To implement environmental management systems (EMS): it refers to the management of 

companies’ environmental plans in a systematic manner. EMS consist of organizational 

structure, plans, and resources. It supports the continuous improvement of organizations 

by monitoring their performances. 

 

1.1.4. Competitive advantages 

Nowadays, customers are considering the environmental attributes of the products (e.g., 

recyclable) along with the environmental practices of companies (e.g., involving a recycling plan). 

Therefore, companies have been motivated to be a part of RLNs to benefit from either tangible or 

intangible competitive advantages of such a strategic decision (Jayaraman and Luo, 2007). For 

example, the recovery of used products creates values as the return on investments for returned 

products. In addition, companies can deliver an environmentally friendly image to the community 

by adopting an RLN (e.g., offering return options).  

 

 



4 
 

1.1.5. Developing efficient and effective RLNs 

RLNs consist of planning, managing, executing, and analyzing all activities (i.e., collecting, 

shipping, refurbishing, and remanufacturing) associated with used products from the points of 

markets to the points of origin. In the current dynamic market, the efficiency and effectiveness of 

all entities involved in RLNs are required to be established in the long-term. The efficiency of an 

entity refers to the fulfillment of market demands on-time, while the effectiveness represents how 

well the entity is able to operate with minimum costs and environmental impact. These features 

are mainly associated with the network configuration that is impossible to change in the short-term 

(Babbar and Amin, 2018). 

 

1.2. Considering real RLNs in Canada 

The application of RLNs is expanded prominently for the purpose of optimizing environmental 

practices, and the costs of stewardship plans. However, the design of real RLNs is a strategic 

decision which can be affected by several dynamic factors. Those unpredictable factors result in 

some risks and complexities for the businesses in the long-term. In this dissertation, it is tried to 

address such uncertainties for the purpose of configuring five real RLNs in Canada as follow: 

I. Electronic recycling association (ERA); Canada-Wide. 

II. Canadian battery association (CBA); Manitoba, British Columbia, New Brunswick.  

III. Beverage container stewardship program regulation (BCSPR); British Columbia.  

IV. Ontario electronic stewardship (OES); Ontario. 

V. Wastewater management in hydraulic fracturing; Alberta, British Columbia, New Brunswick, 

Northwest Territories.  

Therefore, this proposed research has many positive economic and environmental impact on 

the Canadian stewardship programs.  

 

1.3. Literature overview 

The dark-blue bars in Figure 1.2 represent the number of studies that examined different aspects 

of RLNs, such as decision-making, environmental concerns, inventory policy, recycling, 

remanufacturing, sustainable development, and transportation. The green-dashed bars, on the other 

hand, shows the number of studies that have considered uncertainty in RLNs, which represent a 

very small percentage of the RLNs literature. Therefore, there is ample room to research along this 
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line. There are some external and internal factors (e.g., supply, demand, return, transportation cost, 

and recycling process) that are uncertain in the real world and have a significant impact on RLN 

design (Salema et al., 2007; Cardoso et al., 2013). 

 

 
Fig. 1.2. The number of studies identified by a search of “reverse logistics” versus “reverse logistics” and 

“uncertainty” from 2011 to 2019 by SCOPUS on 6 December 2019. 

 

Fig. 1.3. shows the volatility in the fuel price between January 2019 and October 2019 in 

Canada. Such fluctuations have a direct impact on the profitability of RLNs. The type of 

parameters (e.g., fuzzy or random) dictates the solution approach; however, the literature shows 

that most studies have considered either stochastic programming or possibilistic programming to 

address uncertainty in the configuration of facility location models. Therefore, we aim to develop 

integrated methods being capable to withstand all possible imprecise parameters. 

 

 
Fig. 1.3. The volatility in Canadian fuel price (The Historical Trend in Canadian Fuel Pricing, 2019) 
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1.4. Solution methodologies 

As noted above, the type of parameter uncertainty dictates the required optimization methods 

(e.g., robust optimization, possibilistic, and stochastic programming). Kim et al. (2018) classified 

the environment of decision-making to certain, risky, and uncertain situations. Deterministic 

mathematical programming models (MPMs) are applicable to solve problems whose parameters 

are known with certainty. Stochastic MPMs are applicable when, some or all, those parameters are 

random with known probability distributions. Possibilistic MPMs are suitable when the system 

parameters are uncertain. Such models are riskier than stochastic ones, where robust optimization 

is attractive when the range of uncertainty is definable (i.e., ellipsoidal, polyhedral, and box 

uncertainty sets) (Ben-Tal et al., 2005; Bohle et al., 2010). 

 

1.4.1. A scenario-based possibilistic model (SPM) 

SPM is introduced to handle imprecise parameters for different scenarios. This hybrid solution 

approach is developed based on the methods proposed by Cadenas and Verdegay (1997), Parra et 

al. (2005), Snyder (2006), Jiménez et al. (2007), Peidro et al. (2009), Amin and Zhang (2013a). 

The new method includes different scenarios, fuzzy coefficients, and fuzzy right-hand sides. 

Model (1.1) represents the general form of the proposed model. 

 

 

 

 

 
 

 

 

ω is the number of different possible scenarios, each occurring with probability  . 

Furthermore, x , y, c  and d are non-negative variables, binary variables, variable, and fixed 

costs, respectively. It is also assumed that a , b , e , f , g , h are matrices in the constraints.  
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1.4.2. A scenario-based robust possibilistic model (SRPM) 

SPM is enhanced to an SRPM to handle uncertainty associated with flexible constraints and 

capacity of resources based on the methods applied by Cadenas and Verdegay (1997), Peidro et 

al. (2009), Pishvaee and Khalaf (2016).  

 

 

 

 

 

 

  

Where p  is the selling price and the other parameters have the same definitions as described 

in Subsection 1.4.1. The symbol   is the fuzzy version of   that denotes the left-hand side of the 

soft constraint is required to be less than or similar to the right-hand side value (Peidro et al., 2009). 

 

1.4.3. A fully fuzzy scenario-based programming (FFSP) 

FFSP can be applied where the parameters and decision variables are assumed to be imprecise 

in different scenarios. This solution approach is developed and integrated based on the methods 

introduced by Snyder (2006) and Ezzati et al. (2015). The general form of the FFSP problem is 

defined by Model (1.3). 
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1.4.4. A robust flexible chance-constrained model (RFCCM) 

A novel RFCCM is developed to deal with different sources of uncertainty. To describe the 

solution approach, Model (1.4) is considered (Ben-Tal and Nemirovski, 2000; Ben-Tal et al., 2005; 

Pishvaee and Khalaf, 2016). 

 

( )
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1 4

0 1
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box
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

 

 

 

In Model (1.4), vector p shows variable costs, q is related to the fixed costs of opening or 

holding a facility. A, B, F, d are defined as the matrices used in the constraints. Besides, all binary 

and non-negative decision variables are defined by y and x, respectively. In this approach, all 

parameters of variable costs are assumed to be varied in a specified bounded box, while d complies 

with the normal distribution. 

 

1.5. Organization of the dissertation 

Chapter 1 included the introduction and overview of RLNs, Canadian stewardship programs, 

and methodologies. Table 1.1 illustrates the titles and publication status of Chapter 2 to Chapter 6. 

Conclusions, research contributions, and future research recommendations of this dissertation are 

discussed in Chapter 7.         
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Chapter 2. A multi-objective model to configure an electronic reverse logistics 

network and third party selection 

 

2.1. Introduction 

Nowadays, reverse logistics (RL) is an essential part of green closed-loop supply chain 

management (GCLSC) due to environmental regulatory compliance (Noman and Amin, 2017). 

Prakash and Barua (2016) categorized RL into the main activities of waste logistics and recovery 

logistics. According to environmental regulation and agreement, policy-makers are stimulated to 

configure efficient RLs to utilize resources effectively. Furthermore, there is a significant profit 

associated with RL due to the recovery value of the returned products. In the forward supply chain, 

economic aspects are considered as a single objective, while in RL both economic and 

environmental aspects are emphasized. Customers may return products due to different reasons. 

Returns may include commercial return, end of use return, end of life return, repair, and warranty 

return over the product life cycle. Therefore, RL may include activities related to product recovery 

consisting of the returned product acquisition, product disassembly, remanufacturing, and 

remarketing. In this sense, green practices of entities involving in the RL can be the vital factors 

to reduce environmental issues.  

Electronic recycling association (ERA) is a non-profit organization in Canada committed to 

reducing electronic waste through the recycling and recovery of unwanted computers, laptops, and 

other electronic equipment. It aims to avoid unwanted computers and other electronic equipment 

of being destroyed. Hence, all Canadian users are offered to benefit from the ERA’s services 

including the recovery and reuse of electronics. However, used computers and electronic 

equipment may not be recoverable. In such cases, ERA cooperates with reliable partners to ensure 

all materials are recycled based on environmental compliance. 

 

2.1.1. Review of some studies related to the environmental multi-criteria decision making 

(MCDM) 

As public awareness increases with respect to environmental issues, companies are stimulated 

to enhance their green performance. This factor is very important in third party RL selection. Third 

parties’ selection is a strategic decision in which different criteria are taken into account. The 

criteria associated with potential third parties may have conflicts. To handle the conflicts, decision-
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makers utilize various MCDM techniques such as the analytic hierarchy process (AHP) and the 

analytic network process (ANP) (Govindan et al., 2015a).  

The roles of MCDM models are significant in industries and businesses. Some researchers have 

considered environmental factors in MCDM techniques (e.g., Bai and Sarkis, 2010). Büyüközkan 

and Çifçi (2012) examined green supply chain management (GSCM) to offer an environmental 

framework for supplier selection in the automotive industry. DEMATEL, ANP, and TOPSIS 

methods were integrated with fuzzy sets theory to assist in the decision-making process. 

Amindoust et al. (2013) applied data envelopment analysis (DEA) for supplier selection 

considering environmental competency in a pocket and box manufacturer. In their investigation, 

some criteria consisting of air pollution, environmental cost, and management system, green 

research and development were taken into account. Yazdani (2014) studied green supplier 

selection in the automotive industry. AHP was applied to determine the weights of criteria, then 

fuzzy TOPSIS was utilized to rank the suppliers. Hashemi et al. (2015) proposed an integrated 

framework consisting of economic and environmental criteria. They applied ANP to deal with 

interdependencies among criteria. In addition, grey relational analysis (GRA) was used to address 

the uncertainty in the problem. 

Some researchers have considered green practices in different echelons of supply chains. Uygun 

and Dede (2016) proposed a model to evaluate GSCM through the application of ANP and 

TOPSIS. The proposed model includes 5 criteria and 17 sub-criteria. They include regulations, 

environmental performance, and economic performance as the sub-criteria of green design; 

supplier-customer collaboration, enforcement of stakeholders and quality regulation as the sub-

criteria of green purchasing; green manufacturing, green packaging and green stock politics as the 

sub-criteria of green transformation; organization of the green logistics network, quality of service, 

and quality of technology as the sub-criteria of green logistic; reducing activities, recycling, 

remanufacturing, reusing, and disposal as the sub-criteria of reverse logistic. 

Kusi-Sarpong et al. (2016) introduced a framework to evaluate the impact of GSCM on 

organizational sustainable performance in the mining industry. The proposed GSCM factors 

include green information technology and system (GITS), strategic supplier’s partnership (SSP) 

operations and logistic integration (OLI), internal environmental management (IEM), eco-

innovation practice (EOL), and end-of-life practices (EOL). Miroshnychenko et al. (2017) 

investigated the impact of green practices comprised of ISO 14001, pollution prevention, and green 
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product development on financial performance. They determined nitrogen dioxide, emission 

reduction, waste reduction, water and energy efficiency, and toxic chemical reduction as the 

factors to measure pollution prevention index, while environmental products and eco-product 

design have been considered as the indicators of green product index. 

Sharma et al. (2017) utilized the AHP method to rank 13 green performance factors and 79 sub-

factors for GSCM in the agro-industry. According to their findings, environmental management 

and design, regulatory pressure, and green purchasing were determined as the most effective green 

performance indicators. Vanalle et al. (2017) indicated that environmental practice and economic 

performance have a positive relationship. They utilized partial least squares structural equation 

modeling (PLS-SEM). Internal environmental issues (IEM), eco-design, green purchasing, 

collaboration with customers regarding environmental issues, and investment recovery were 

determined as the indicators for GSCM practice in their study. 

Sari (2017) introduced a framework to evaluate GSCM by utilizing the Monte Carlo simulation 

and the AHP method. The green practices in inbound operation, production, outbound operation, 

and reverse logistics have been considered to assess the performance of GSCM. For such 

evaluation, designing recyclable products and utilization of cleaner technology have been assigned 

as the sub-factors for green production operation. Choosing suppliers based on environmental 

criteria, green purchasing, and cooperation with suppliers to develop environmental practices were 

determined as the indicators for green inbound operation. Carvalho et al. (2017) proposed a model 

to determine the best set of green performance and lean supply chain management practices with 

the aim of promoting eco-efficiency in the automotive industry. In their proposed framework, ISO 

14001 and environmentally friendly packaging have been considered as the indicators for green 

performance. Zhao et al. (2017) proposed a multi-objective model for the optimization of a GSCM 

network. They minimized the risk arising from hazardous materials, and carbon emission. 

Tramarico et al. (2017) utilized the AHP method to evaluate GSCM through four top-level criteria 

including plan, source, make, and deliver in the chemical industry. In their proposed framework, 

the sub-criterion of the plan has been considered as the planning for demand based on a long-term 

basis and planning for material with the best use of resources. Sub- criterion of the source has been 

identified as the usage of recycled raw material and merchandising based on renewable energy. 

Besides, the sub-criterion of make has comprised of reducing the scrap rate, reducing the 

greenhouse gas emission, recycling and reusing water, and sub-criterion of delivery has been 



13 
 

chosen as the application of full truckload for distribution and reducing the environmental impact 

through the transportation management. Scur and Barbosa (2017) examined the application of 

green practices in the home appliance industry. Their proposed framework for green practices 

consists of internal environmental management, green purchasing and manufacturing, eco-design, 

and waste management. According to their findings, waste management was the most widely 

applied practice among research participants. 

 

2.1.2. Integration of MCDM with optimization models 

To balance economic, social and environmental performances, there have been some attempts 

to combine green criteria with network design. Fattahi and Fayyaz (2010) stated that many 

objectives including satisfaction of water consumers, national benefit, and social hazard should be 

involved in urban water management. They applied the compromise programming technique to 

optimize water distribution cost, leakage water, and social satisfaction level estimated by the AHP 

method. Haleh and Hamidi (2011) mentioned that the allocation of orders to suppliers have a 

significant impact on the efficiency of the supply chain. They applied a fuzzy MCDM to allocate 

orders to the suppliers. Then, fuzzy linear programming was utilized to optimize the multi-

objective model. He et al. (2012) proposed an optimization model consisting of qualitative and 

quantitative parameters to maximize the customer service level, and minimize the logistics cost. 

They used mixed-integer linear programming (MILP) integrated with fuzzy AHP to deal with 

MCDM. Amin and Zhang (2013a) applied MILP to minimize the total cost. Thereafter, the model 

was developed to consider the environmental factors measured by the AHP approach. Jadidi et al. 

(2014) developed an MCDM model that included compromise programming, goal programming, 

and TOPSIS to minimize price, rejects, and lead time. 

Boukherroub et al. (2015) proposed an integrated approach to optimize a multi-objective 

problem including economic and environmental performance in a lumber industry case. 

Shakourloo et al. (2016) examined a closed-loop supply chain (CLSC) network consisting of some 

elements such as producer and remanufacturer. They integrated fuzzy AHP with MILP to 

minimize the waste of processes, and maximize the total profit of the network. Entezaminia et al. 

(2016) investigated the relationship between green principals and economic performance in an RL 

network. In their proposed model, environmental criteria consisting of recyclability, 

biodegradability, energy consumption, and product risk have been ranked by AHP. Hamdan and 
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Cheaitou (2017) proposed a model to solve a supplier selection and order allocation problem. They 

applied fuzzy TOPSIS, AHP, and a bi-objective optimization model to select the best supplier. 

Tosarkani and Amin (2018a) utilized fully fuzzy MILP to configure a battery CLSC with regard 

to the environmental performance of battery producers and recovery centers. A review of some 

related papers has been provided in Table 2.1.   

According to the literature review, there are some research gaps that should be addressed. 

According to our knowledge, third party RL selection with RL network configuration (at the same 

time) has been ignored in academic papers. As a result, an integrated model should be developed. 

In addition, there is not a single scientific paper in the literature about fuzzy ANP for third part RL 

selection in Canada. Besides, there is not a single publication that has considered profit, 

environmental practice, defect rate, and on-time delivery as objectives in RL network optimization.  
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Table 2.1 

Review of some studies utilizing MCDM techniques and optimization model  

Authors Method(s) MOP* 
Type of 

industry 
Criteria** Approach***  

Haleh and Hamidi 

(2011) 

Fuzzy MCDM and 

linear programming 
√  EC SS 

Büyüközkan and 

Çifçi (2012) 

DEMATEL, ANP, 

and TOPSIS 
 

Automotive 

industry 
GC SS 

Amindoust et al. 

(2013) 
DEA  

Pocket and box 

manufacturer 
GC SS 

Yazdani (2014) 
AHP, Fuzzy 
TOPSIS 

 
Automotive 
industry 

GC SS 

Jadidi et al. (2014) 

Compromise and 

goal programming, 
TOPSIS 

√  EC SS 

Hashemi et al. 

(2015) 
ANP, GRA  

Automotive 

industry 
GC and EC SS 

Uygun and Dede 
(2016) 

Fuzzy DEMATEL 
ANP and TOPSIS 

  GC GPESC 

Kusi-Sarpong et al. 

(2016) 

Fuzzy DEMATEL 

and ANP 
 Mining industry GC GPESC 

Hamdan and 

Cheaitou (2017) 

Fuzzy TOPSIS, 

AHP, MOP 
√  GC and EC SS 

Miroshnychenko et 
al. (2017) 

Empirical 
examination 

 
Several 
industries 

GC and EC GPESC 

Sharma et al. 
(2017) 

 

AHP analysis 

 

 Agro industry GC GPESC 

Sari (2017) 

Monte Carlo 

simulation and AHP 

method 

  GC SS 

Scur and Barbosa 
(2017) 

Interview  

Home 

appliance 

industry 

GC GPESC 

Tramarico et al. 
(2017) 

AHP analysis  
Chemical 
industry 

GC GPESC 

Our paper 
Fuzzy ANP, MILP, 
MOP 

√ 
Electronic 
industry 

GC and EC 

Third parties 

selection and 
network 

configuration 

* multi-objective programming (MOP), ** Green criteria (GC), Economic criteria (EC),  

*** Supplier selection (SS), Green performance evaluation in supply chain (GPESC) 

 

2.1.3. Aims and contributions of this research 

In this research, a multi-objective programming model for an electronic RL network is 

proposed. Initially, a fuzzy ANP method is developed and applied to rank the electronic suppliers, 

recovery centers, and remanufacturing plants. Then, an optimization model is introduced for the 
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network to maximize the total profit, green practices, and on-time delivery along with the 

minimization of defect rate.  

Unlike the most of the papers that have focused on the reverse logistics partner selection, this 

paper provides an integrated model comprising the reverse logistics partner selection and network 

configuration, simultaneously. This point is one of the unique contributions of this study. The other 

main research contributions of this study are as follows: 

▪ Configuring and optimizing a multi-echelon, multi-component, multi-product 

electronic RL network in multiple periods. 

▪ Developing and utilizing a fuzzy ANP model to estimate the qualitative 

environmental factors in the model.  

▪ Developing a mathematical model to consider multiple objectives consisting of the 

total profit of RL, the environmental performance of third parties, on-time delivery, and 

defect rate.  

▪ Determining the trade-off surface for the proposed multi-objective model. 

Section 2.2 is allocated to the problem statement. The solution approach is discussed in Section 

2.3. It includes the definition and application of the fuzzy ANP, the proposed optimization model, 

the distance technique and ε-constraint method, the parameters’ values, and associated solutions. 

In Section 2.4, the value path analysis is provided. Finally, conclusions are discussed in Section 

2.5.  

 

2.2. Problem statement 

Nowadays, there is a growing concern related to discarded electronic appliances. Electronic 

recycling association (ERA) in Canada has attempted to decrease electronic waste since 2004. 

ERA considers all activities such as recovery, refurbishment, and reuse to reduce environmental 

issues. In this way, they have partnered with certified recovery organizations across Canada.  

There is a variety of questions regarding the configuration of green networks. In Fig. 2.1, a 

multi-echelon, multi-component, multi-product electronic RL network is shown. This electronic 

RL includes suppliers, remanufacturing plants, markets, regional collection centers, recovery 

centers, and disposal center.  

The regional collection center(s) collect unwanted computers, laptops, and printers from 

markets, and ship them to the recovery center(s). The returned electronic appliances are 
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disassembled to the main components in the recovery center(s). The recycled components are 

transferred to the remanufacturing plant(s), and unrecoverable components are sent to the disposal 

center. The remanufacturing plant(s) order for complimentary components to assemble with 

recycled material received from the recovery center(s). The remanufactured electronic appliances 

are shipped back to the markets. To address the environmental concerns, the green performance of 

third parties should be measured. In this research, it is intended to answer the following questions 

with regard to the optimization of total profit, the environmental performance of third parties, on-

time delivery, and defect rate. 

▪ Which supplier(s) must be selected?  

▪ Which place(s) must be selected for remanufacturing plant(s)?  

▪ Which regional collection center(s) must be chosen?  

▪ Which recovery center(s) are required to collect unwanted electronic appliances?  

▪ How many complementary components must be purchased from supplier(s)?  

▪ How many products and components are shipped in every echelon of the RL? 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. The proposed electronic RL.  

 

2.3. Solution approach 

The overall solution framework is provided in Fig. 2.2. In the 1st Step, it is aimed to rank the 

third parties based on green performance. Fuzzy ANP is applied in this step. In the 2nd Step, MILP 

  Regional 

collection center  

1 ... r ... Ṛ Remanufacturing plant 

1 ... l ... Ḷ 

Disposal    

center 
Supplier           

1 ... s ... Ṣ 

  Customer 

(market)  

1 ... k ... Ḳ 

Recovery 

center  

1 ... k ... Ḳ 

 

https://www.bing.com/images/search?view=detailV2&ccid=D1DLOdGg&id=B69DCFB575A9ACE404D5EF9C1203B0F4D7DD8E7C&thid=OIP.D1DLOdGgKTwC6X1RDo0zygEsEa&q=disposal+center+icon&simid=608048902856115493&selectedIndex=31
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is applied and is developed to formulate the mathematical model. In the 3rd Step, the non-

dominated solutions are computed. 

 

 

 

  1st Step 

 

 

  2nd Step 

 

 

  3rd Step 

 

     Fig. 2.2. The proposed framework to solve the multi-objective problem 

 

2.3.1. Fuzzy ANP 

Saaty (1996) proposed the analytic network process (ANP) to cope with a possible 

interdependency among criteria incorporating into MCDM problems. ANP has some advantages 

compared to other MCDM techniques including structuring problems as networks, considering the 

relationships among different elements, and using pairwise comparisons (Aragonés-Beltrán et al., 

2014; Sun et al., 2018). ANP is widely applied in decision-making, particularly in contradictory 

circumstances. Many researchers have utilized ANP in different fields, such as information system 

project selection (Lee and Kim, 2000), financial crisis prediction (Niemira and Saaty, 2004), textile 

industry (Yüksel and Dagdeviren, 2007), electronic industry (Gencer and Gürpinar, 2007; Vinodh 

et al., 2011), pharmaceutical industry (Kirytopoulos et al., 2008), transportation-mode selection 

(Tuzkaya and Önüt, 2008), purchasing decision (Demirtas and Ustun, 2009), municipal solid waste 

disposal selection (Khan and Faisal, 2008; Aragonés-Beltrán et al., 2010), personnel selection (Lin, 

2010), evaluation of power plants (Atmaca and Basar, 2012), selection of solar-thermal power 

plant investment projects (Aragonés-Beltrán et al., 2014), risk assessment for asset maintenance 

decision-making (Chemweno et al., 2015), selection of maintenance projects in railway 

infrastructure (Montesinos-Valera et al., 2017), and safety assessment in oil drilling projects (Sun 

To configure an electronic RL network, and solve the mathematical 

model. 

 

To compute the non-dominated solutions of the multi-objective 

optimization model.  

 

Goal: To configure an electronic RL network with regard to green 

performance of third parties, defect rate, and on-time delivery. 

 

To prioritize the third parties based on their green performance. 
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et al., 2018). Fuzzy sets theory can be utilized with ANP to deal with uncertainty in expert’s 

judgment. As illustrated in Fig. 2.3, a triangular fuzzy number (TFN) can be indicated by a 

membership function which is between 0 and 1. 

 
 

 

                                                                   l ̇               ṁ             u̇             X 

                                             Fig. 2.3. A triangular fuzzy number M̃. 
 

 

If M̃  is assumed as a TFN by three components such as M̃ = (l ̇,ṁ,u̇), the associated membership 

function is shown by Eq. (2.1). 

 
 

                      0, x < l ̇,                                                                                                               (2.1) 

                        

µM(x) =  

 

                    0, x >u̇, 

 

To apply the pairwise comparisons through the fuzzy ANP method, Chang’s extent examination 

is utilized (Chang, 1996). 

Step 1: Eq. (2.2) indicates the value of the fuzzy synthetic extent considering the ith object. In 

this way, the value of  
j

j

giM
~

 can be obtained from Eq. (2.3). 
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Where all          are assumed triangular fuzzy numbers. 

Step 2: To compare the fuzzy numbers, it is required to calculate the degree of possibility for 

M̃1 ≥ M̃2 , which can be defined by Eq. (2.4). 

 

V (M̃1≥ M̃2) = sup [min(µM̃1(x), µM̃2(y))]                                                                                  (2.4) 

                         x ≥ y 

According to assumptions, if there is a pair of (x, y) and x ≥ y, while µM̃1(x) = µM̃2(y) = 1, then V 

(M̃1≥ M̃2) = 1. It is assumed that M̃1 = (   ,     ,    ) and M̃2  = (   ,      ,    ) are convex fuzzy numbers. 

Therefore, Eq. (2.5) can be written as follows. 

V (M̃1≥ M̃2) =1              if m1̇  ≥ m2̇ , 

V (M̃2≥ M̃1) = hgt (M̃1∩M̃2) = µM̃1(d)                                                                                       (2.5) 

As illustrated by Fig. 2.4, ḋ is the ordinate of the highest intersection point D between µM̃1 and   

µM̃2, which can be obtained from Eq. (2.6). 

V (M̃2≥ M̃1) = hgt (M̃1∩M̃2) =                                                                                                    (2.6) 

 

 
Fig. 2.4. The intersection between M̃1 and M̃2. 

 

In order to apply the comparisons between M̃1 and M̃2, it is required to have both values of V (M̃1≥ 

M̃2) and V (M̃2≥ M̃1). Generally, if there are k TFNs, the degree of possibility can be estimated as 

follows: 

V (M̃ ≥ M̃1, M̃2,…, M̃k) = V [(M̃ ≥ M̃1) and (M̃ ≥ M̃2) and… and, (M̃ ≥ M̃k)]                                     

 = min V (M̃ ≥ M̃i) , i = 1, 2, …, k                                                                                               (2.7)                    

dʹ (Ȧi) = min V (Ṡi ≥ Ṡk),                                                                                                             (2.8) 

The weight vector can be written by Eq. (2.9) for k = 1, 2, …, n and k ≠ i 

)lm()um(

ul

1122

21





−−−

−

l̇2 l̇1 ḋ 
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W ʹ = (dʹ (Ȧ1), dʹ (Ȧ2), …, dʹ (Ȧn))
T,                                                                                            (2.9) 

Where Ȧi (i = 1, 2, …, n) are n elements. Thereafter, Eq. (2.9) is replaced by Eq. (2.10) after 

normalization.  

W = (d (Ȧ1), d (Ȧ2), …, d (Ȧn))
T,                                                                                               (2.10) 

 

2.3.1.1. ANP framework for electronic suppliers, recovery centers, and remanufacturing 

centers based on green performance 

Based on Chang’s method (1996), we determine the relative importance of each criterion in the 

proposed MCDM structures. To apply the pairwise comparisons, the fuzzy linguistic scale 

indicated by Fig. 2.5, is utilized. As illustrated in Fig. 2.6, 2.7, and 2.8 some criteria have been 

identified based on related studies (Yücenur et al., 2011; Bhattacharya et al., 2014; Malviya and 

Kant, 2016; Sari, 2017; Sharma et al., 2017; Tosarkani and Amin, 2018a).  

 

 

Fig. 2.5. Linguistic scale for relative importance 

 

Step 1: At first, it is assumed that there are no relationships among the criteria. The pairwise 

comparisons are done in accordance with the defined instruction. The results are provided in 

Tables 2.A.1, 2.B.1, and 2.C.1in Appendices 2.A, 2.B, and 2.C. 

Step 2: It is probable that there is an inner dependency between criteria. To avoid this problem, 

pairwise comparisons among the criteria are required to be completed by considering the effect of 

each criterion on every other (see Tables 2.A.2 to 2.A.5, 2.B.2 to 2.B.5, and 2.C.2 to 2.C.5). 

Step 3: WCriteria is supposed to be determined based on the matrices W1 and W2 obtained in Steps 

1 and 2. The results are provided in Tables 2.A.6, 2.B.6, and 2.C.6. 

Step 4: The priority of each sub-criterion is required to be measured based on pairwise 

comparisons (see Tables 2.A.7 to 2.A.10, 2.B.7 to 2.B.10, and 2.C.7 to 2.C.10).  

      µRI 

RI 
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Step 5: As illustrated in Tables 2.A.11, 2.B.11, and 2.C.11, the overall priorities of sub-criteria 

can be calculated by multiplying WCriteria and WSub-criteria obtained in Steps 3 and 4, respectively.  

Step 6: The priorities of the electronic suppliers, recovery centers, and remanufacturing plants 

with regard to each sub-criterion are computed by pairwise comparisons (see Tables 2.A.12 to 

2.A.21, 2.B.12 to 2.B.21, and 2.C.12 to 2.C.21). The results are represented by W4 (see Tables 

2.A.22, 2.B.22, and 2.C.22). 

Step 7: As illustrated in Tables 2.2, 2.3, and 2.4, the overall ranking of the electronic suppliers, 

recovery centers, and remanufacturing plants based on green performance are calculated by 

multiplying WSub-criteria (overall) and W4 obtained in Steps 5, and 6.  
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Fig. 2.6. The ANP model for ranking suppliers   
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Fig. 2.7. The ANP model for ranking electronic recovery centers (ERC)  
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Fig. 2.8. The ANP model for ranking electronic remanufacturing plants (ERP) 
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2.3.1.2. Ranking the suppliers, recovery centers, and remanufacturing plants based on Fuzzy 

ANP approach 

It is assumed that there are 5 electronic suppliers, 6 recovery centers, and 5 remanufacturing 

centers in the proposed network. The overall environmental weights are provided in Tables 2.2, 

2.3, 2.4. The details of the calculations are provided in Appendices 2.A, 2.B, and 2.C. 

 

                                                  Table 2.2 

                                                   Results of the fuzzy ANP method for the suppliers 

Suppliers ANP ANP priority 

1 0.214 2 

2 0.251 1 

3 0.173 4 

4 0.199 3 

5 0.162 5 

 

                                               Table 2.3 
                                               Results of the fuzzy ANP method for the recovery centers 

Recovery centers ANP ANP priority 

1 0.193 2 

2 0.198 1 

3 0.156 4 

4 0.169 3 

5 0.155 5 

6 0.130 6 

 

                                              Table 2.4 

                                              Results of the fuzzy ANP method for the remanufacturing plants 

Remanufacturing 
centers 

ANP ANP priority 

1 0.257 1 

2 0.233 2 

3 0.192 3 

4 0.155 5 

5 0.162 4 

 

2.3.2. Optimization model 

A multi-objective mixed-integer linear programming model is employed to optimize the 

proposed network. The following sets, parameters, and decision variables are utilized:  
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Sets 

J = set related to products (j ∈ J) 

Ṇ = set related to components (n ∈ Ṇ) 

Ṣ = set related to suppliers (s ∈ Ṣ) 

Ṃ = set related to markets (m ∈ Ṃ)  

Ṛ = set related to regional collection centers (r ∈ Ṛ)  

Ḳ = set related to recovery centers (k ∈ Ḳ) 

Ḷ = set related to remanufacturing plants (l ∈ Ḷ)  

Ṭ = set related to periods (t ∈ Ṭ) 

 

Parameters 

As = fixed-cost associated with supplier s  

Br = fixed-cost associated with regional collection center r  

Ck = fixed-cost associated with recovery center k 

Dl = fixed-cost associated with remanufacturing plant l 

Rj = selling price of product j 

Esn = purchasing cost of component n from supplier s   

Fj = cost of disassembly related to product j 

Gj = cost of remanufacturing related to product j 

Ln = disposal cost related to component n 

On = unit cost of transportation related to component n from suppliers to remanufacturing plants 

Pj = unit cost of transportation related to product j from markets to regional collection centers 

Hj = unit cost of transportation related to product j from regional collection centers to recovery 

centers 

Mn = unit cost of transportation related to component n from recovery centers to remanufacturing 

plants 

Nj = unit cost of transportation related to product j from remanufacturing centers to markets 

θƞ = unit cost of transportation related to component n from recovery centers to disposal center 

esl = the distance between locations s and l 

ek = the distance between recovery center k and disposal center 

dmjt = demand of customer (market) m for product j related to period t 
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εn = disposal fraction of the component n 

zmjt = returned product j related to customer (market) m related to period t 

hlƞ = number of capacity of remanufacturing center l for component n 

urj = number of capacity of regional collection center r for product j 

nkj = number of capacity of recovery center k for product j 

gsƞ = number of capacity of supplier s for component n 

Ijn = number of component n in product j                

αsn = green performance allocating to the supplier s via providing of component n 

βln = green performance allocating to the remanufacturing plant l via assembling of component n 

ςkn = green performance allocating to the recovery center k to recycle component n via 

disassembling the returned electronic appliances 

γsn = defect rate of component n providing by supplier s 

ηlj = defect rate of product j providing by remanufacturing plant l 

νkn = defect rate of component n recycled by recovery center k 

ωsn = on-time delivery of component n providing by supplier s 

δlj = on-time delivery of product j providing by remanufacturing plant l 

μkn = on-time delivery of component n recycled by recovery center k 

 

Decision Variables 

Vslnt = number of component n shipped to remanufacturing plant l by supplier s related to period t 

Wlmjt = number of product j remanufactured by remanufacturing plant l for customer (market) m 

related to period t 

Xmrjt = number of returned product j from customer m to regional collection center r related to 

period t 

Yrkjt = number of product j shipped by regional collection center r to recovery center k related to 

period t  

Zklnt = number of component n shipped to remanufacturing plant l from recovery center k related 

to period t 

λknt = number of component n shipped to disposal center from recovery center k related to period t 

Tl = 1, if the remanufacturing plant is selected at potential site l, 0, otherwise. 
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Qr = 1, if the regional collection center located in site r is utilized to collect the products, 0, 

otherwise. 

Sk = 1, if the recovery center located in site k is utilized to recycle the used products, 0, otherwise. 

Us = 1, if the supplier s is selected, 0, otherwise.  
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The first objective function is aimed to maximize the total profit of electronic RL. For such 

purpose, it is intended to maximize the subtraction of fixed and variable costs from the revenue of 

selling products. The second objective function is utilized to maximize the green performance 

associated with electronic suppliers, recovery centers, and remanufacturing plants. Three 

qualitative parameters of αsn, βln, and ςkn have been measured by the fuzzy ANP method in Section 

2.3. The third objective function is utilized to minimize the defect rate of components provided by 

supplier(s) and recovery center(s) along with electronic appliances remanufactured by plant(s). To 

this aim, the percentage of defect rate related to each entity is considered. The fourth objective 

function is used to maximize on-time delivery. Accordingly, the delivery performance report of 

each entity involving in the RL network can be applied.  

Constraint (2.11) implies that the number of components related to the remanufactured products 

(Wlmjt) must be equal to the summation of the components either purchasing from the suppliers 

(Vslnt) or coming from the electronic recovery centers (Zklnt). Constraints (2.12) and (2.13) are 

related to the market’s demand and collection rate of unwanted electronic appliances, respectively. 

Constraint (2.14) indicates that every product entering regional collection centers must be 

transferred to the recovery centers. The disposal fraction of the used products is represented by 

Constraint (2.15). As specified by Constraint (2.16), the number of components associated with 

the returned products entering the recovery center(s) must be equal to the summation of the 
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recycled components and unrecoverable materials sending to a disposal center. Constraints (2.17), 

(2.18), (2.19), and (2.20) are linked with the capacities of the remanufacturing plants, regional 

collection centers, recovery centers, and electronic suppliers, respectively. Finally, Constraints 

(2.21) and (2.22) show the binary and non-negative decision variables.  

 

2.3.3. Distance method  

To achieve non-dominated solutions neighboring to ideal values, the distance method can be 

applied for multi-objective problems (Branke and Miettinen, 2008). Suppose that the objective 

functions are minimization. As illustrated by Eq. (2.23), zi
*and wi are defined as the ideal values 

and distance metrics, respectively. To find zi
*, each objective function is required to be solved 

individually with respect to the defined constraints (Mirzapour Al-E-Hashem et al., 2011). In this 

research, there are four objective functions including the total profit of RL, green performance 

associated with electronic suppliers, recovery centers, and remanufacturing plants, defect rate, and 

on-time delivery. The objective function for the proposed multi-objective RL network can be 

written as Eq. (2.24). 

 

                                                                    i =1, 2…, ∞                                                  (2.23)  

 

                                                                                                                                             (2.24)                 

                                                                                                                               

s.t.       

Eqs. (2.11) – (2.22)   

 

2.3.4. ε-constraint method  

To reach the Pareto solutions through the ε-constraint method, the most important objective is 

assumed as the main objective and the other objectives are written as the constraints (Collette and 

Siarry, 2003). As indicated by Eq. (2.25), the total profit is considered as the principal objective, 
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and the other objectives consisting of the green performance, defect rate, and on-time delivery are 

written as the new constraints. 

 

Max z = z1                                                                                                                                 (2.25) 

s.t. 

z2 ≥ ε2 

z3 ≤ ε3 

z4 ≥ ε4 

Eqs. (2.11) – (2.22) 

 

2.3.5. Parameters’ value and solutions  

The optimization model is solved for the electronic RL network. In this study, it is assumed that 

there are 5 suppliers, 5 locations for the remanufacturing plant, 22 markets, 10 locations for 

regional collection centers, 6 locations for the recovery centers, and 1 location for the disposal 

center. The values of the other parameters applied in the optimization model are indicated in Table 

2.5. In the real-life, the demand associated with specific product varies in different months or 

seasons based on the type of the product. Therefore, configuring a multi-period model is necessary 

for the effective decision-making process in real life. In this application, two periods have been 

considered that represent two seasons.  

 

Table 2.5 

Parameters’ values applied to solve the proposed model            

J = 3 As = 1,000, Br = 1,500, Ck = 10,000, Dl = 400,000 γ1n=0.1, γ2n=0.1, γ3n=0.35, γ4n=0.1, γ5n=0.35 

Ṇ = 5 Rj = 100, Gj =35, Fj =15  η1j=0.1, η2j=0.1, η3j=0.1, η4j=0.35, η5j=0.35 

Ṣ = 5 Pj = Hj = Nj = 0.097 ν1n=0.1, ν2n=0.1, ν3n=0.1, ν4n=0.1, ν5n=0.35, ν6n=0.35 

Ṃ = 22 On = Mn = θƞ = 0.0194 ω1n=0.25, ω2n=0.25, ω3n=0.2, ω4n=0.2, ω5n=0.1 

Ṛ = 10 Esn = (5)5*5 δ1j=0.35, δ2j=0.35, δ3j=0.1, δ4j=0.1, δ5j=0.1 

Ḳ = 6 α1n =0.214, α2n =0.251, α3n =0.173, α4n =0.199, α5n =0.162 μ1n=0.30, μ2n=0.30, μ3n=0.1, μ4n=0.1, μ5n=0.1, μ6n=0.1 

Ḷ = 5 β1n=0.257, β2n=0.233, β3n=0.192, β4n=0.155, β5n=0.162 Ln =5, εn=0.2 

Ṭ = 2 ς1n=0.193, ς2n=0.198, ς3n=0.156, ς4n=0.169, ς5n=0.155, ς6n=0.130 

 

To solve the proposed model, IBM ILOG CPLEX 12.7.1.0 is applied. In the distance technique, 

each objective was solved separately with respect to the defined constraints (2.11-2.22) to 

determine zi
* (where i = 1, 2, 3, 4). Then, different pairs of wi are applied on account of achieving 
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the non-dominated solutions between the four defined objectives. The final optimization problem 

(including 550 constraints, 2,954 decision variables, 26 binary variables, and 21,092 non-zero 

coefficients) was solved in 0.37 seconds. As illustrated by Tables 2.6 and 2.8, by altering the wi 

associated with each objective, the non-dominated solutions and the binary variables were 

changed. Subsequently, such entities (U2, S1, T1) were selected when the second objective function 

had a higher distance metric.  

In the ε-constraint method, the higher priority function was assumed as the main objective (total 

profit), and other objective functions were treated as the constraints. The mathematical model 

(including 750 constraints, 2,954 decision variables, 26 binary variables, and 25,092 non-zero 

coefficients) was solved in 0.53 seconds. It was intended to reach Pareto solutions by trying 

different parameters (εi, where i = 2, 3, 4). As indicated in Table 2.7, some trade-off solutions have 

been obtained. Furthermore, Tables 2.6 and 2.7 illustrate that a solution related to one objective 

cannot be improved, unless the values of other objectives become deteriorated. 

 

  Table 2.6 

  Non-dominated solutions obtained by the distance technique 

 Assigned weights Objective values 

Row W1 W2 W3 W4 Z1 Z2 Z3 Z4 

1 0.85 0.05 0.05 0.05 4,751,300 463,640 79,200 213,840 

2 0.10 0.70 0.05 0.15 3,714,300 530,380 79,200 211,200 

3 0.15 0.15 0.50 0.20 4,522,500 494,660 79,200 213,840 

4 0.10 0.15 0.10 0.65 4,283,800 517,780 79,200 213,840 
 

 

 Table 2.7 

  Non-dominated solutions obtained by the ε-constraint method 

 Epsilon values Objective values 

Row ε2 ε3 ε4 Z1 Z2 Z3 Z4 

1 420,000 165,000 110,000 4,761,613 440,250 165,000 151,800 

2 435,000 80,000 115,000 4,761,415 458,090 79,200 203,280 

3 530,000 80,000 120,000 3,776,820 530,000 79,200 211,410 

4 520,000 79,200 150,000 4,191,800 520,000 79,200 213,840 
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  Table 2.8 

  Priority of third party in accordance with different objectives 

Non-dominated solution Supplier (Us) Recovery center (Sk) Remanufacturing plant (Tl) 

Distance method # 1 U1 S2 T2 

Distance method # 2 U2 S1 T1 

Distance method # 3 U1 S1 T1 

Distance method # 4 U2 S2 T1 

ε-constraint # 1 U1 S3 T2 

ε-constraint # 2 U1 S3 T2 

ε-constraint # 3, 4 U2 S2 T1 

 

 

2.4. The value path analysis  

To illustrate the balance among different objectives in MOP models, value path analysis (VPA) 

can be applied (Schilling et al., 1983, Wadhwa and Ravinsdran, 2007; Amin and Zhang, 2014). As 

indicated in Table 2.9, the value of each non-dominated solution is defined as the objective’s value 

related to the certain alternative divided by its minimum value among all alternatives. Such ratios 

are utilized as the normalized scales to indicate the advantages of the associated alternative 

compared with other alternatives. Fig. 2.9 shows the results. To interpret Fig. 2.9, it is inclined to 

have a greater normalized value in the case of maximization. On the contrary, the objective’s value 

is more desirable if its normalized value becomes close or equal to 1 in the case of minimization. 

According to the properties of VPA, if two value paths intersect, then neither of them is dominated. 

Otherwise, one path (alternative) must lie below the other one that is called an inferior solution. 

As depicted in Fig. 2.9, all value paths are intersected and are therefore non-dominated.  
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Table 2.9 

The results based on different objectives 

Alternatives Total profit 
Environmental 

performance 
Defect rate On-time delivery 

Distance method # 1 1.279191 1.053129 1 1.408696 

Distance method # 2 1 1.204725 1 1.391304 

Distance method # 3 1.217591 1.123589 1 1.408696 

Distance method # 4 1.153326 1.176104 1 1.408696 

ε-constraint # 1 1.281968 1 2.083333 1 

ε-constraint # 2 1.281914 1.040522 1 1.33913 

ε-constraint # 3 1.016832 1.203861 1 1.392688 

ε-constraint # 4 1.128557 1.181147 1 1.408696 

 

 

 

Fig. 2.9. The value path analysis 
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2.5. Conclusions 

In this research, a multi-objective model has been proposed for the selection of third parties in 

an electronic RL network in addition to network configuration. The selection of third party RL 

provider and optimizing related RL network at the same time is one of the important contributions 

of this research. The proposed multi-component, multi-product, multi-period model includes 

multiple echelons including electronic suppliers, remanufacturing plants, markets, regional 

collection centers, and recovery centers. The main objective has been defined as the maximization 

of total profit for the RL. In this sense, revenue due to the selling price of products along with 

variable costs (including costs of transportation, remanufacturing, disassembly, disposal, and 

purchasing raw material), and fixed costs play prominent roles.  

To reduce environmental issues, the green performance of electronic suppliers, remanufacturing 

plants, and recovery centers have been taken into account. Three different frameworks including 

four criteria and ten sub-criteria have been proposed to rank 5 suppliers, 6 recovery centers, and 5 

remanufacturing plants. There are a variety of qualitative determinants representing the green 

performance of each party. Hence, the ANP method has been applied to change the qualitative 

factors to the measurable parameters. To avoid ambiguity in the expert’s judgments, the fuzzy sets 

theory has been combined with the ANP method. 2nd supplier, 1st and 2nd recovery centers, and 1st 

remanufacturing plant were among the best parties based on green performance. The obtained 

results have been utilized to represent the green performance of the third parties in the second 

objective function.  

There is a great deal of concern associated with resource shortage and economic volatility. 

Hence, reducing the defect rate can be a crucial objective to eliminate the impact of such 

fluctuations on the network. To identify the optimal network, the defect rate of components has 

been considered. Furthermore, on-time delivery is one of the major challenges among the parties 

in RL networks. According to the capacity constraints and uncertain material supplies, each entity 

is supposed to cooperate with others to optimize the network. Therefore, on-time delivery has been 

taken into account as one of the objectives in this study. 

The multi-objective mathematical model has been solved through the application of distance 

technique and ε-constraint method. To solve the proposed multi-objective model, each problem 

has been solved separately, then the distance method has been applied to find the non-dominated 

solutions. In addition, the ε-constraint method has been used to reach Pareto solutions. It is 
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commonsensical that different trade-off solutions can be obtained by changing the relative weight 

of each objective. To our knowledge, this research is among the first studies that has utilized a 

multi-objective mathematical model to identify the third party in an electronic RL network with 

network configuration. In order to display and analyze the non-dominated solutions, VPA has been 

employed. It has been shown that all obtained results are acceptable due to the properties of VPA.  

There are some related methods that can be applied for future research. In this study, a multi-

objective mathematical model has been proposed. However, in some cases, there is imprecise 

information to deal with in optimization. Therefore, other methods such as robust optimization and 

fuzzy programming are recommended to be utilized to address uncertainty. Besides, to solve a 

large multi-objective RL problem, metaheuristic algorithms can be applied to reach good solutions. 
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Chapter 3. An environmental optimization model to configure a hybrid 

forward and reverse supply chain network under uncertainty 

  

3.1. Introduction 

Management of returned products such as lead-acid batteries (LAB) is a challenge for 

communities. There is a great deal of concern related to battery recycling on account of incremental 

usage. Hence, it is required to have a comprehensive plan to collect returned LAB; otherwise 

discarded batteries in the environment may damage habitat on account of containing toxic 

materials. Accordingly, configuring the closed-loop supply chain (CLSC) network focusing on the 

recovery of used batteries has become as a necessary part of the business. A worthy example of a 

battery CLSC network can be observed in Winnipeg, Manitoba. Canadian Battery Association 

(CBA) manages the recycling of LAB across Canada. CBA intends to provide related information 

and programs to support safe storage, shipment, and recycling of returned LAB to reduce 

environmental issues. As a result of CBA stewardship program, 6,756,500 kg of used LAB have 

been recovered during 2016 (CBA annual report, 2016). To continue such sustainable plans, the 

profitability of CLSC should be taken into account. With this respect, configuring the locations of 

involved facilities is a strategic decision and affects the expected profit of networks. There is often 

imprecise information challenging decision-makers of battery CLSCs in real life. Most of the 

parameters contributing to optimize a mathematical model are imprecise, and policy-makers are 

required to adapt their approaches with such uncertainties (Jung et al., 2004; Mele et al., 2007; 

Jung and Jeong, 2012; Marufuzzaman et al., 2014; Cardoso et al., 2016; von Westarp and Schinas, 

2016; Englberger et al., 2016; Ramezanian and Behboodi, 2017; Amin and Baki, 2017; Amin et 

al., 2017; Zamar et al., 2017; Banaeian et al., 2018; Amin et al., 2018; Papen and Amin, 2019). 

Furthermore, transportation strategies have a significant impact on reducing the total cost and 

environmental issues associated with CLSC networks. On this matter, finished products can be 

delivered to the markets in a single shipment after production, or delivered in multiple batches. 

Such strategies are determined by decision-makers based on incurred costs of inventory, 

transportation, loss of opportunity, and environmental concerns (i.e., CO2 emissions). In this study, 

a multi-objective FFSP approach is employed, since it is aimed to handle nondeterministic decision 

variables and parameters with regard to environmental compliance of third parties.  
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3.1.1. Review of studies used fuzzy programming in facility location design 

   Since a CLSC network is supposed to operate in a dynamic environment, dealing with 

uncertainty is one of the main difficulties in facility location design. There are some methods that 

can be utilized in unpredictable situations, such as fuzzy methods (e.g., fuzzy goal programming, 

fuzzy intervals, and fuzzy integer programming). Zarandi et al. (2011) designed a network 

distribution for a CLSC. They solved the proposed model by a fuzzy goal programming method. 

Pishvaee and Razmi (2012) developed a fuzzy multi-objective model (MOM) for a green supply 

chain. They applied an interactive fuzzy approach to minimize the total cost of supply chain and 

environmental issues. Costantino et al. (2012) utilized a fuzzy programming approach to examine 

the sustainable CLSC. They aimed to minimize the total cost, the consumption rate of energy, and 

CO2 emissions in the case of a desktop computer supply chain. Vahdani et al. (2013) proposed an 

optimization model for a multi-echelon, multi-product CLSC in the iron and steel industry. They 

applied fuzzy programming to solve the mathematical model. Ramezani et al. (2014) designed a 

multi-product, multi-period CLSC. They proposed a fuzzy MOM to maximize the profit and the 

quality along with the optimization of delivery time. In the proposed fuzzy model, the coefficients 

were assumed to be fuzzy due to the uncertain environment. They employed a fuzzy optimization 

approach to convert the fuzzy multi-objective model to the equivalent crisp version.  

Jindal and Sangwan (2014) employed fuzzy mixed-integer linear programming (MILP) for a 

multi-facility, multi-product CLSC in a single period. They aimed to maximize the proposed model 

under uncertainty of demand along with all types of possible costs related to CLSC. Alimoradi et 

al. (2014) developed a fuzzy MILP model to deal with uncertain returned products for a single-

period, multi-product CLSC. Fallah-Tafti et al. (2014) designed a multi-period CLSC network 

with regard to uncertain costs and demand. A novel interactive fuzzy programming was employed 

to find the non-dominated solutions of MOM. Mirakhorli (2014) discussed about designing a 

CLSC which may have an impact on the performance of a logistics network. He applied interactive 

fuzzy programming to address the fuzzy multi-objective optimization model.  

Subulan et al. (2015) proposed a MOM for a tire CLSC network. They utilized an interactive 

fuzzy goal programming to solve their model. They believed that designing the efficient CLSC 

through the application of fitting disposal methods along with appropriate collection and storage 

can diminish the environmental impact of used products. Dai and Zheng (2015) designed a multi-

echelon, multi-product CLSC under uncertain demand and disposal rate. They applied stochastic 
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and fuzzy programming to maximize the total profit of the model. Mohajeri and Fallah (2016) 

considered the recovery of end-of-life products in a notebook CLSC. On this matter, they aimed 

to minimize the total cost along with CO2 emissions during the distribution, delivery, and recycling 

of the products. Fuzzy programming was applied to deal with uncertain parameters (recovery rate, 

landfilling rate, and demand) in a realistic CLSC network. Pham and Yenradee (2017) suggested 

an alternative approach to configure a manufacturing network under uncertainty. They applied the 

possibilistic theory to deal with uncertain parameters. The deterministic and fuzzy models were 

applied and compared in their study. They proved that fuzzy model can be more accurate in 

comparison with the deterministic approach. Ghomi-Avili et al. (2018) proposed a fuzzy bi-

objective model to configure a CLSC network. They addressed the environmental issues by 

designing the reverse flow and controlling the CO2 emissions. Ghaderi et al. (2018) introduced a 

multi-objective robust fuzzy programming model to configure a bioethanol supply chain. 

 

3.1.2. Review of studies used stochastic programming in facility location design 

To design CLSCs, stochastic programming can be employed in optimization models to deal 

with imprecise information when the probability of each scenario is known. Hu and Bidanda 

(2009) utilized stochastic dynamic programming to design a network based on the product life 

cycle. They determined the optimal strategy to maximize the whole profit. Paksoy et al. (2011) 

proposed a MOM to examine the efficiency and environmental practices in a multi-product CLSC. 

Stochastic programming was utilized to investigate the trade-off solution in a proposed realistic 

network. Amin and Zhang (2013b) introduced a three-stage model for CLSC. They introduced 

stochastic mixed-integer non-linear programming to design the CLSC network with regard to 

uncertain demand. Litvinchev et al. (2014) discussed about designing an RL network including 

locations of distribution and inspection centers along with remanufacturing facilities. They 

employed stochastic programming to formulate a multi-product CLSC with respect to scenario-

based demand. Zeballos et al. (2014) utilized stochastic programming for a multi-period, multi-

product CLSC. Multiple scenarios were utilized to consider the effects of uncertain demand and 

raw material supplies. In the proposed model, a scenario tree approach was applied to indicate all 

possible discrete events. Each node of the scenario tree represented a possible outcome estimated 

by a given probability of occurrence.  
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Francie et al. (2015) employed stochastic programming for a printer cartridge CLSC. They 

aimed to minimize the total cost as a result of waiting customers and holding inventories related 

to the finished and returned products. Vahdani and Mohammadi (2015) utilized stochastic 

programming and robust optimization to solve a bi-objective optimization model under 

uncertainty. Soleimani et al. (2016) believed that an integrated approach is necessary for designing 

and planning decision levels to achieve the best performance of CLSC. They also mentioned that 

real markets can be unpredictable for demand and price parameters. A MILP was applied for a 

multi-product, multi-period CLSC in order to deal with stochastic demand and products’ price. 

Entezaminia et al. (2016) examined the connection between green principals and economic 

indicators. Biodegradability, energy consumption, and recyclability were determined as the 

environmental factors in their proposed model. Zhalechian et al. (2016) designed a sustainable 

CLSC considering economic, environmental, and social aspects. They considered CO2 emissions, 

fuel consumption, and wasted energy as the environmental issues, creating job opportunities as the 

social aspects, and economic growth rate. The stochastic-possibilistic programming was applied 

to address the uncertainty of the proposed CLSC. Keyvanshokooh et al. (2016) proposed a profit 

optimization model for a CLSC network by considering economic, environmental, and social 

concerns. They developed a hybrid robust-stochastic programming method to deal with different 

types of uncertainties in transportation cost, demand, and return. Feitó-Cespón et al. (2017) utilized 

a stochastic programming and multi-criteria programming to configure a sustainable supply chain 

network under uncertainty. The application of performance indicators was discussed to evaluate 

the results. Zahiri et al. (2018) applied stochastic programming to optimize a bi-objective model 

comprising the total cost and freshness of products in a blood supply chain. Tsao et al. (2018) 

designed a sustainable supply chain network by application of an interactive method based on 

stochastic programming and fuzzy multi-objective model. 

Based on the mentioned papers, there are still some missing parts that can be investigated. In 

the majority of studies, one or two sources of uncertainty such as demand and return have been 

taken into account. Since the configuration of CLSC is a strategic decision, all possible ranges for 

the objective function and decision variables are preferred to be computed in uncertain situations. 

To handle uncertainty in several sources, appropriate integrated solution approaches should be 

developed. A classification of the reviewed mathematical models has been provided in Table 3.1.  
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Table 3.1 

Classification of some solution approaches to address imprecise parameters in CLSCs  

Authors 
Imprecise 

parameters 

Multi-

product 

Type of 

products 

Multi-

period 

Multi-

objective 

Solution 

approaches 

Real 

locations 

Amin and 
Zhang 

(2013b) 

Demand     
MILP, QFD, 
Stochastic 

programming 

 

Zeballos et al. 

(2014) 

Demand, raw 

material supplies 
    

Stochastic 

programming 
 

Vahdani and 

Mohammadi 

(2015) 

Costs, capacity     

Stochastic 

programming, 

Robust 

optimization  

 

Soleimani et 

al. (2016) 

Demand, 

product’s price 
    

Stochastic 

programming 
 

Feitó-Cespón 
et al. (2017) 

Stochastic 

variable 

(demand and 
waste 

generation) 

    
Stochastic 
programming 

 

Zahiri et al. 

(2018) 

Demand, 

donation 
 

Blood 

products 
  

Stochastic 

programming 
 

Fallah-Tafti 

et al. (2014) 

Costs and 

demand 
    

Fuzzy 

programming 
 

Mirakhorli 

(2014) 
Demand, return     

Interactive fuzzy 

programming 
 

Ramezani et 

al. (2014) 
All parameters     

Fuzzy 

optimization 
approach 

 

Jindal and 

Sangwan 

(2014) 

Demand, 

variable costs 
    

Fuzzy 

programming 
 

Mohajeri and 

Fallah (2016) 

Recovery rate, 

landfilling rate, 

demand 

 

Notebook 

(laptop) 

industry 

  
Fuzzy 

programming 
 

Pham and 

Yenradee 

(2017) 

Demand, fixed 

and variable 

costs 

 
Toothbrush 

industry 
  

Fuzzy 

programming 
 

Ghaderi et al. 

(2018) 

Input parameters 

(costs, 

environmental 

and social 

impact) 

 Bioethanol   
robust fuzzy 

programming 
 

Proposed 

model 

All parameters 

and decision 

variables  

 Battery   

Integration of 

fully fuzzy 

programming and 

stochastic 

programming 

 
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3.1.3. Aims and contributions of research  

Approximately 8,500,000 kg of LAB sold in Manitoba are under the supervision of CBA. 88% 

of sold LAB are related to the vehicles and commercial trucks, and the rest (12%) is associated 

with motive LAB (i.e., forklift, and stationary LAB for power backup). The consumers can benefit 

from CBA recovery program (CBA stewardship program, 2016). 

In this study, a bi-objective environmental optimization model for an LAB CLSC network in 

Winnipeg, Manitoba, Canada is introduced. In reality, some parameters such as cost of raw 

materials, production, transportation, market’s demand, rate of returned LAB, efficiency in 

recovery of returned LAB may go up or down. Thus, proposing an appropriate model compatible 

with real-life is required. Furthermore, environmental compliance of third parties (i.e., suppliers, 

plants, and battery recovery centers) involved in CBA’s program should be taken into account. In 

this research, a bi-objective model consisting of LAB CLSC profit as the first objective, and green 

performances of third parties as the second objective is developed. Moreover, the impact of 

fluctuation in fuel price in a network in Winnipeg is considered. Besides, An FFSP method is 

developed to estimate the possible ranges of objective functions and decision variables. The 

significant research contributions of this paper are expressed as follows: 

▪ To propose and develop an integrated model including fully fuzzy programming 

and stochastic programming. To our knowledge, this hybrid method is new in the 

optimization literature. This method enables us to deal with different types of imprecise 

parameters.  

▪ To design and configure an LAB CLSC network in Winnipeg, Canada. Google 

Maps are utilized to compute real distances between the involved third parties. 

▪ To extend the proposed hybrid model to the bi-objective one for the purpose of 

considering the environmental compliance of third parties.  

 

The structure of this study is arranged as follows. Section 3.2 includes the problem statement. 

Thereafter, the fully fuzzy stochastic programming is developed in Section 3.3. Then, the proposed 

model is extended to the multi-objective model in Section 3.4. The distance technique and value 

path analysis are introduced and utilized in Section 3.5. Finally, Section 3.6 is devoted to the 

conclusions.  
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3.2. Problem definition 

Fig. 3.1 illustrates the recovery process of returned LAB. The recovered components can be 

applied to make new LAB and other products such as cleaners. For this purpose, the returned LAB 

is disassembled to lead, plastic, and battery acid. The lead and heavy materials are gathered and 

shaped to lead ingots which are then melted down to produce lead plates for using in new LAB. 

Similarly, plastic cases can be remanufactured for a new battery, while the LAB’s acid is converted 

to sodium sulphate using in detergent. The CBA’s stewardship plan provides recovery program 

for LAB’s consumers. Fig. 3.2 illustrates municipal areas in Winnipeg where the application of 

our proposed model is investigated. 

 

 

 

 

 

 

                Fig. 3.1. The recycling method of lead-acid battery (CBA stewardship program, 2016) 
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Fig. 3.2. Municipal districts in Winnipeg 

 

In the competitive global market, decision-makers are vigilant in estimating the total profit. 

Hence, it is necessary to consider the possible optimal ranges of decision variables and objective 

function based on imprecise parameters. Market demand is one of the most prominent parameters 

affecting the total expected profit of CLSCs (Listeş and Dekker, 2005; Amin and Zhang, 2013a). 

There are some other factors that have influences on the profitability of the LAB CLSC such as 

rate of the returned LAB, selling price, fixed, and variable costs. Therefore, configurations of the 

optimal networks depend on uncertain parameters significantly.  

Fig. 3.3 illustrates a multi-echelon LAB CLSC. The forward flow includes supplier(s), plant(s), 

demand markets, and reverse flow includes LAB recovery center(s) and a disposal center. Plant(s) 

produce(s) the LAB made of electrolyte, lead, plastic, as the main components. The main 



46 
 

components for production are provided by suppliers (raw materials), and LAB recovery centers 

(recycled materials). Thereafter, the LAB are shipped to fulfill the markets, and some of them are 

held as inventories in the plants. In the reverse flow, end-of-life LAB are returned to the LAB 

recovery centers based on CBA’s stewardship plan. CBA believes that the recovery rate should be 

maximized in addition to collecting the used LAB. The most elements of batteries can be utilized 

in the production of new batteries after recovery, and the rest of the slag which is non-hazardous 

can be disposed into the landfill (CBA stewardship program, 2016). The returned LAB is 

decomposed to the recovered and unrecovered materials in LAB recovery centers. The recovered 

components are shipped to the locations supervised by CBA members (i.e., plants), and the waste 

components are transported to the disposal center. Accordingly, CBA examines the best answers 

for various questions including; Which supplier(s) should be selected? Which plant(s), and LAB 

recovery center(s) should be chosen? How many LAB’s components are supposed to be purchased 

from supplier(s) with regard to the recovery process? How many LAB should be produced to fulfill 

the markets? 

 

Fig. 3.3. The LAB CLSC network 

 

 

3.3. Optimization model 

We develop and integrate fuzzy concepts and stochastic programming to reach a range of profit 

for the LAB CLSC under the uncertainty of the parameters and decision variables. In this paper, 
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triangular fuzzy numbers (TFNs) are utilized. TFNs are effective numbers that can handle 

uncertainty in the parameters (Cadenas and Verdegay, 1997; Zimmermann, 2012; Gani and 

Assarudeen, 2012; Zadeh et al., 2014; Wei et al., 2017; Faizi et al., 2018). The required sets, 

parameters, non-negative and binary variables are introduced in this section.    

 

Sets 

S = set associated with suppliers (s ∈ S) 

P = set associated with locations of plants (p ∈ P) 

J = set associated with LAB (j ∈ J) 

M = set associated with demand markets (m ∈ M) 

B = set associated with locations of LAB recovery centers (b ∈ B) 

N = set associated with components (n ∈ N) 

Ŧ = set associated with time periods (t ∈ Ŧ) 

Ω = set associated with scenarios (ω ∈ Ω) 

 

Parameters 

Φω= probability of scenario ω  

L̃j = TFN associated with selling price of LAB j 

C̃j = TFN associated with production cost of LAB j 

D̃n = TFN associated with shipment cost of component n per Km between suppliers and plants 

Ãj = TFN associated with shipment cost of LAB j per Km between plants and demand markets 

Ẽj = TFN associated with shipment cost of LAB j per Km between demand markets and LAB 

recovery centers 

F̃n = TFN associated with shipment cost of component n (recycled material) per Km between 

LAB recovery centers and plants 

G̃n = TFN associated with shipment cost of component n (unrecoverable material) per Km 

between LAB recovery centers and disposal center  

δ̃s = TFN associated with fixed-cost of agreement with supplier s  

H̃p = TFN associated with fixed cost of agreement with plant p 

Q̃b = TFN associated with fixed cost of agreement with LAB recovery center b 

Õn = TFN associated with saving cost of component n due to LAB recovery 
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θ̃n = TFN associated with disposal cost of components n  

K̃sn = TFN associated with cost of purchasing components n from supplier s   

h̃j= TFN associated with holding cost of LAB j  

g̃pn = TFN associated with capacity of plant p for components n 

k̃sn = TFN associated with capacity of supplier s for components n 

l̃bj = TFN associated with capacity of LAB recovery center b for LAB j 

Zsp = the distance between location s and p 

Zpm = the distance between location p and m 

Zmb = the distance between location m and b  

Zbp = the distance between location b and p 

Zl = the distance between location of LAB recovery center b and the disposal center 

Vjn = quantity of component n in LAB j 

d̃mjt = TFN associated with demand from market m for LAB j in period t 

r̃mjt = TFN associated with return from market m for LAB j in period t 

αnω = disposal ratio associated with components n related to scenario ω 

 

Variables 

W̃spnωt = TFN of component n provided by supplier s for plant p related to scenario ω in period t 

Ĩpjωt = TFN of LAB j held as the inventory in plant p related to scenario ω in period t 

R̃pmjωt = TFN of LAB j sold by plant p to market m related to scenario ω in period t 

Ỹpjωt = TFN of LAB j produced by plant p related to scenario ω in period t 

Ũmbjωt = TFN of returned LAB j from demand market m to LAB recovery center b related to 

scenario ω in period t 

X̃bpnωt = TFN of component n (i.e., recovered material) from LAB recovery center b to plant p 

related to scenario ω in period t 

λ̃bnωt = TFN of component n (i.e., unrecovered material) from LAB recovery center b to disposal 

center related to scenario ω in period t 

qs = 1, if a supplier is selected at potential site s, 0, otherwise 

cp = 1, if a plant is chosen at site p, 0, otherwise 

eb = 1, if a LAB recovery center is chosen at site b, 0, otherwise 



49 
 

 

 

 

 

 

 

 

s.t. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
( )0 3 13spn t pmj t pj t bpn t mbj t bn t pj tW ,R ,Y ,X ,U , ,I s, p,n, ,t, j,m,b .        

( ) ( )3 3bpn t spn t pj t jn

b s j

X W Y V p,n, ,t .   + =   

( ) ( )3 7n mbj t jn b nt

m j

U V b,n, ,t .     

  ( )0 1 3 12s p bq ,c ,e , s, p,b . 

( ) ( )3 8mbj t jn bpn t bn t

m j p

U V X b,n, ,t .   = +  

( ) ( )3 1pj t pmj t pj tpj t-1
m

I I R Y p, j, ,t .   = − + 

( )3 4pmj t mjt

p

R d m, j, ,t .  

( )3 5pmj t mbj t

p b

R U m, j, ,t .    

( )3 6mbj t mjt

b

U r m, j, ,t . = 

( )3 9spn t bpn t p pn

s n b n n

W X c g p, ,t .  +    

( )3 11spn t s sn

p n n

W q k s, ,t .   

( )3 10mbj t b bj

m j j

U  e l b, ,t .   

( )3 2pj t pj t pmj t

m

Y I  R p, j, ,t .   +  

( )

( ) ( )

1 j pmj t

p m j t

sn n sp spn t j pj t

s p n t p j t

j pm pmj t j pj t j mb mbj t

p m j t p j t m b j t

n n bp bpn t n n l bn

b p n t

Max z L R

K D Z W C Y

A Z R h I E Z U

- O F Z X G Z

 


   
 

     
  

   




 

  

   

= −

+ +

+ + + +

+ + +



 

  

 t s s p p b b

b n t s p b

q H c Q e




 
 
 
 
 
 
 

+ + + 
 

   



50 
 

The total expected profit of the LAB CLSC is maximized in the objective function. The first 

part of the objective determines the revenue of selling LAB to the markets. The second part is 

associated with the purchasing and shipping cost of LAB’s components (raw materials) from the 

supplier(s) to the plant(s). Cost of manufacturing, holding (inventory), and transportation between 

the plant(s) and the markets are imposed on the production phase. The next part includes the 

transportation cost of used LAB from markets to LAB recovery center(s). The used LAB are 

decomposed to unrecycled materials and recovered components. Product recovery increases cost-

saving. The disposal and shipping cost of unrecoverable materials are considered in the model. 

Furthermore, the total fixed-cost of agreement with supplier(s), plant(s), LAB recovery center(s) 

are taken into account.  

Constraint (3.1) balances the inventory in period t with last period inventory (t - 1), and 

difference among the number of LAB produced (Ỹpjωt) and sold (R̃pmjωt) in period t. Constraint (3.2) 

forces plant(s) to produce and hold inventory that is required for selling to the markets. Constraint 

(3.3) implies that the number of products’ components (Ỹpjωt*Vjn) produced by plant(s) should be 

equal to the quantities of components either purchased from suppliers (W̃spnωt) or shipped back by 

LAB recovery center(s) (X̃bpnωt). Constraint (3.4) refers to the number of selling LAB in period t.  

Constraint (3.5) implies that the number of returned LAB from markets must be less than or equal 

to the number of LAB selling by plant(s) in period t. In other words, the forward flow is greater 

than or equal to the reverse flow. Constraint (3.6) represents the number of returned LAB from 

markets. Constraint (3.7) determines the disposal ratio of used LAB. Constraint (3.8) designates 

the balance between the components of used LAB before and after the recovery process. 

Constraints (3.9), (3.10), and (3.11) are associated with limitations in the capacity of plant(s), LAB 

recovery center(s), and supplier(s), respectively. Constraints (3.12) and (3.13) show the 0-1 and 

decision variables.  

 

3.3.1. A fully fuzzy stochastic model in CLSC 

In this paper, we develop and employ an integrated method including fuzzy and stochastic 

programming for finding a solution with respect to uncertain circumstances. Rosenhead et al. 

(1972) categorized the environment of decision-making to certain, uncertain, and risky situations. 

In risky situations, uncertain parameters comply with probability distributions which are known 

by decision-makers. Stochastic programming is applied in risky conditions. However, in uncertain 



51 
 

situations, parameters are imprecise, and there is not sufficient evidence about the probability 

distributions. Fuzzy programming can be applied for such uncertain conditions. In our FFSP 

model, parameters and decision variables are supposed to be imprecise, and different scenarios are 

considered for the disposal fraction of the returned LAB. To this aim, a solution approach is 

developed and is integrated based on the methods introduced by Snyder (2006) and Ezzati et al., 

(2015). The general form of FFSP problem is defined as follows: 

 

                                                                                                                                               

Where ρ̃T= [ρ̃
j
]1*ń , χ̃ = [χ̃

j
]ń*1 , ξ̃  = [ξ̃

ij
]ɱ*ń , β̃ = [β̃

i
]ɱ*1, ρ̃j

, ξ̃
ij
, β̃

i
 ∈ TF (R)+, ì = 1, 2, …, ɱ and ĵ 

= 1, 2,…, ń. Where ρ̃Tχ = ((ρTχ)l, (ρTχ)c, (ρTχ)u),  ξ̃χ̃ = ((ξχ)l, (ξχ)c, (ξχ)u), β̃ = ((β)l, (β)c, (β)u), χ̃ = 

((χ)l, (χ)c, (χ)u), (χ)l ≥ 0. Then, Model (3.14) can be transformed to Model (3.15) when there are Ω 

scenarios with probability of Фω for each scenario.  

 

                                                                                                                               

 

  

The phases to achieve the optimal solution of Model (3.15) are summarized as follows: 

Phase 1: Model (3.15) is converted to the three separate crisp objectives with respect to the 

defined constraints: 
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Phase 2: The first objective function ( ( ) ( )cω
T

ω

ω

ω χρΦMinMax  ) of Model (3.16) is solved 

with regard to the constraints. If an optimal solution is reached for ( ) ( ) ( )
l c u

, ,  
       =  

 
, 

then we stop; otherwise, Phase 3 must be implemented. ( ) ( ) ( )
l c u

, ,  
       =  

 
is assumed an 

optimal solution, if:  

 

(i) 

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(ii)  
   = , 

(iii) ∀ χ̃
𝜔
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j
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j
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computed in Phases 2 and 3.        

As described by the integrated algorithm, the pessimistic, realistic, and optimistic values of the 

objective function are required to be identified at the first step. According to the fuzzy arithmetic 

operation, the difference between two TFNs of ņ̃ = (į, ķ, ļ) and ų̃ = (ŗ, ş, ţ) complies with the 

following rule, if ų̃ ≥ ņ̃ (Kauffman and Gupta, 1991): 
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ų̃ - ņ̃ = (ŗ - ļ, ş - ķ, ţ - į),                                                                                                        (3.17) 

The objective function includes two portions; the first portion is related to the income obtained 

from selling LAB, while the second portion is associated with all types of fixed and variable costs. 

Then, the optimistic value of the objective is occurred when the parameters (L̃j, Õn), and the 

decision variables (R̃pmjωt, X̃bpnωt) contributing to reaching the revenue have their highest values, 

and the rest of the parameters and decision variables causing incurred cost have their lowest values. 

The pessimistic value of the objective function can be achieved through the reverse approach. 

Therefore, the proposed FFSP model for the LAB CLSC network is defined as follows: 
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3.3.2. Presentation of the environmental FFSP model   

The overall framework to approach the environmental FFSP problem is provided in Fig. 3.4. In 

the 1st Step, FFP is utilized to formulate the optimization model in which all parameters and 

decision variables are supposed to be uncertain. In the 2nd Step, different scenarios are defined for 

the disposal fraction rate of components in LAB recovery centers. In the 3rd Step, the bi-objective 

model is proposed to consider the environmental compliance of third parties.  

 

 

 

 

 

  1st Step 

 

 

 

  2nd Step 

 

 

 

 

  3rd Step 

 

 

 

 

 

Fig. 3.4. The overall outline to approach the multi-objective fuzzy stochastic problem 

( )0 3 66spn t pmj t pj t bpn t mbj t bn t pj tW ,R ,Y ,X ,U , ,I s, p,n, ,t, j,m,b .        

  ( )0 1 3 65s p bq ,c ,e , s, p,b . 

Objective: To design the LAB CLSC considering the environmental 

compliance of third parties.  

1st issue: 

Uncertainty 

2nd issue:  

Existence of 

different scenarios 

3rd issue: 

Environmental 

impact 

Method: Application of FFP to formulate the 

optimization model. 

Method: Stochastic programming is utilized to 

consider different scenarios for disposal fraction. 

Method: 2nd objective is defined to emphasize the 

environmental compliance of third parties. 

To compute the non-dominated solutions of the bi-objective model.   
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   In the 1st Step, TFNs are used to define imprecise parameters. For instance, the middle values 

for the demand of LAB related to municipality area m in period t (d̃mj1t) are computed as one 

percent of the population in such a region in accordance with the 2011 census of Canada. 

Accordingly, the middle values of returned LAB related to municipality area m in period t (r̃mj1t) 

are calculated as ten percent of demand in a market located in area m. The lower and upper values 

of demand and return are assumed as 25 percent less and higher than their middle values, 

respectively. 

In the 2nd Step, stochastic programming (scenario-based) is employed to consider different 

scenarios for disposal fraction, since the quality of the returned LAB varies. Therefore, ω scenarios 

are defined to represent different rates of disposal fractions with the probability of Фω.  

To maximize the environmental compliance of third parties in a LAB CLSC, the 2nd objective 

is defined in Section 3.4. The solutions related to the multi-objective model is provided in Section 

3.5. Table 3.2 contains the values of the of TFNs utilized in the FFSP problem. In this study, we 

applied the symmetric TFNs, since they are intuitive and flexible to estimate. Interested readers 

can refer to Klir and Yuan, 1995 for more information about TFNs.  

 

     Table 3.2 

          The parameters’ value applied in the FFSP model     

J = 2 δ̃s = (9,000, 10,000, 11,000) h̃j = (10, 15, 20) 

N = 3 H̃p= (35,000, 40,000, 45,000) Õn = (9, 10, 11) 

S = 5 Q̃b= (15,000, 20,000, 25,000) k̃sn = (3,000, 3,100, 3,200) 

P = 6 C̃j = (9, 10, 11) g̃pn = (5,000, 5,500, 6,000) 

M = 15 L̃j = (145, 150, 155) l̃bj = (1,000, 1,500, 2,000) 

B = 4 Ãj= Ẽj= (0.087, 0.097, 0.107) K̃sn = (4, 5, 6) 

T = 2 D̃n=F̃n=G̃n= (0.0174, 0.0194, 0.0214) α1ω= (0.01, 0.02, 0.03) 

Ω = 3 Фω= (0.15, 0.70, 0.15) α2ω= (0.05, 0.10, 0.15) 

θ̃n = (1, 1.5, 2) snS  = (0.46, 0.64, 0.58, 0.54, 0.48) α3ω= (0.01, 0.03, 0.05) 

 
pnP = (0.60, 0.56, 0.64, 0.61, 0.67, 0.63) 

bnB = (0.64, 0.55, 0.62, 0.69) 

 
 

     IBM ILOG CPLEX 12.8.0 has been utilized to solve the FFSP model. In the final step, the 

model comprised of 9,061 constraints, 9,077 non-negative variables, 15 binary variables, and 

75,670 non-zero coefficients. The solution time was 12 seconds. The results of the FFSP model 

are provided in Table 3.3. The optimal solutions show lower, middle, and upper values of the total 
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profit for the LAB CLSC. Therefore, decision-makers can predict a certain range of network’s 

profit by application of the proposed model in uncertain situations. 

 

Table 3.3 

Solutions for the scenario-based robust possibilistic model    
Objective value  Supplier Plant Batter recovery center 

1
lz = 1,095,072   1

cz = 1,727,693   1
uz = 1,892,738    

q5 : St. James-

Brooklands 

c2 : Fort Rouge- 

East Fort Garry 

e3 : Point Douglas                

 

    As illustrated in Fig. 3.5, the FFSP model has been developed to optimize the LAB CLSC 

network in Winnipeg. We apply Google Maps to compute the real driving distances and 

transportation costs between the potential locations. Fig. 3.6 shows the routes among the selected 

facilities.   

 

 

Fig. 3.5. The selected facility locations in the LAB CLSC network 

 Markets 

 Selected supplier            

q5: St. James-

Brooklands 

 Selected recovery 

center e3: Point Douglas                

 Selected plant                    

c2: Fort Rouge- East 

Fort Garry 
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 Fig. 3.6. The optimal routes associated with the LAB CLSC network 

 

As mentioned before, the proposed FFSP is the unique approach considering lower, middle, 

and upper levels of decision variables in optimization, while the different ranges of decision 

variables are ignored in the other methods. To evaluate the performance of the proposed model, 

we compare the FFSP with a possibilistic approach based on the middle value of the objective 

function ( 1
cz ). In this regard, we apply the combinatorial possibilistic and scenario-based approach 

based on Parra et al. (2005) and Snyder (2006). Accordingly, Constraints (3.4) and (3.6) are 

 Markets,  Supplier,   Plant,  Recovery 

center 

              Route from supplier to plant 

              Route from plant to markets 

              Route from markets to recovery center 

               Route from recovery center to plant 
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defuzzified and converted to Constraints (3.67), (3.68), and (3.69). To handle other imprecise 

parameters, the lateral margins of TFNs are taken into account based on the approach introduced 

by Peidro et al. (2009).  

 
 

 

 

 
 

 

 
 

 

 

 

In this approach, the value of objective varies based on different levels of α-cut. Hence, 

decision-makers decide about the value of feasibility degree (α) with respect to the type of 

uncertain parameters. As illustrated in Table 3.4, as α increases, z (total profit) decreases due to 

less amount of upward deviation for demand and return. The average value of four α-cuts shows 

the negligible difference between FFSP and possibilistic approach. However, FFSP is capable to 

find the lower and upper values for the decision variables and the objective function.  

 
 

Table 3.4 

The optimal solutions based on different levels of α-cut 

α = 0.25 α = 0.50 α = 0.75 α = 1 Average Selected facilities 

1,898,132.27 1,785,571.59 1,673,010.92 1,560,450.24 1,729,291.26 q5 - c2 - e3 

 

To consider the effects of unpredictable changes in demand and return, sensitivity analysis is 

undertaken. Table 3.5 indicates the lower, middle, and upper ranges of the total profit associated 

with 8 scenarios of unpredictable changes in demand and return. The scenarios are compared with 

the original solutions (provided in Table 3.3) based on the middle value. It can be observed that 

the solutions of LAB CLSC are very sensitive to such changes. This analysis proves the necessity 

of the proposed model since the FFSP model is capable of computing pessimistic, realistic, and 

optimistic values for the objective function and the decision variables in uncertain situations. 
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Table 3.5 
Sensitivity analysis 

Scenarios Objective value  Change %  

1. 10% increase in 

demand and return 1
lz = 1,206,515 1

cz = 1,903,608 1
uz = 2,086,350    1

lz =10.18   1
cz =10.18    1

uz = 10.23 

2. 10% increase in 

demand and 10% 

decrease in return 
1
lz = 1,197,479  1

cz = 1,893,113 1
uz = 2,076,329    1

lz =9.35     1
cz = 9.57      1

uz = 9.70 

3. 10% decrease in 
demand and 10% 

increase in return 
1
lz = 984,630     1

cz = 1,557,198  1
uz = 1,707,068    1

lz = -10.09 1
cz = -9.87    1

uz = -9.81 

4. 10% decrease in 

demand and return 1
lz = 977,513    1

cz = 1,547,933   1
uz = 1,697,581    1

lz = -10.74 1
cz = -10.40  1

uz = -10.31 

5. 10% increase in 

demand, while 

return is not 

changed 

1
lz = 1,201,936  1

cz = 1,898,270  1
uz = 2,081,239    1

lz = 9.76     1
cz = 9.87     1

uz = 9.96 

6. 10% decrease in 

demand, while 

return is not 

changed 

1
lz = 981,028    1

cz = 1,552,486   1
uz = 1,702,223   1

lz = -10.41  1
cz = -10.14 1

uz = -10.07 

7. 10% increase in 

return, while 

demand is not 

changed 

1
lz = 1,098,673  1

cz = 1,732,405  1
uz = 1,897,583    1

lz = 0.33      1
cz = 0.27    1

uz = 0.26 

8. 10% decrease in 

return, while 

demand is not 

changed 

1
lz = 1,091,553  1

cz = 1,723,140  1
uz = 1,888,082    1

lz = -0.32     1
cz = -0.26    1

uz = -0.25 

 

Table 3.6 demonstrates the impact of disposal fraction rate on the profitability of the LAB 

CLSC network. Each column represents 3 scenarios for disposal fraction rate related to component 

n. By increasing the rate of disposal fraction, the total profit of the CLSC decreases. It is noticeable 

that the saving cost of LAB recovery (i.e., purchasing raw materials from suppliers) is superior to 

the cost of the recovery process. Therefore, the existence of an efficient recovery plan can increase 

the total profit in addition to reducing the negative environmental impact of the discarded end of 

life LAB.  

 

Table 3.6 
The total expected profits associated with different disposal fraction  

α1ω= (0.11, 0.12, 0.13) 

α2ω= (0.15, 0.20, 0.25) 

α3ω= (0.11, 0.13, 0.15) 

α1ω= (0.21, 0.22, 0.23) 

α2ω= (0.25, 0.30, 0.35) 

α3ω= (0.21, 0.23, 0.25) 

α1ω= (0.31, 0.32, 0.33) 

α2ω= (0.35, 0.40, 0.45) 

α3ω= (0.31, 0.33, 0.35) 

α1ω= (0.41, 0.42, 0.43) 

α2ω= (0.45, 0.50, 0.55) 

α3ω= (0.41, 0.43, 0.45) 

1
lz = 1,089,943    1

lz = 1,084,815    1
lz = 1,079,394    1

lz = 1,073,276    

1
cz = 1,720,845    1

cz = 1,716,279    1
cz = 1,710,381    1

cz = 1,704,044    

1
uz = 1,887,338    1

uz = 1,881,949    1
uz = 1,876,434    1

uz = 1,870,763    
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3.4. Introducing the 2nd objective to consider the environmental compliance of third parties  

In order to reduce environmental issues associated with the LAB CLSC network, green 

practices of third parties are taken into account. Hence, three qualitative parameters are employed 

including snS  , pnP , bnB  as the indicators of the green performance associated with suppliers, 

plants, and LAB recovery centers. Fuzzy TOPSIS can be applied to prioritize related facilities 

based on their green practices (Junior et al., 2014). snS   represents the green performance of 

supplier s to provide raw materials required for the production of n components. pnP  is the 

indicator of green practices implemented by plant p to produce LAB comprising n components.

bnB  represents the green practices of LAB recovery center b to recover returned LAB including 

n components. The 2nd objective function is shown in Eq. (3.70).   

 

 

 

 

 

                                                                                                                                                  (3.70) 

 

 

3.5. Distance method and the solutions 

Solutions of multi-objective problems are called non-dominated solutions. In this paper, the 

distance method is employed for the bi-objective fuzzy stochastic CLSC network to calculate non-

dominated solutions. Eq. (3.71) indicates the distance formula in which wi is defined as the distance 

metric for objective i. * represents an ideal solution. The ideal solutions are the optimal values 

reached for each objective irrespective of the other objective functions (Branke et al., 2008; 

Mirzapour Al-E-Hashem et al., 2011). Eq. (3.72) represents the objective function for the bi-

objective model. In this study, it is aimed to maximize this bi-objective model consisting of the 

total expected profit of the LAB CLSC and the environmental compliance of third parties.  
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                                                                    i = 1, 2, …, ∞                                               (3.71)  

 

                                                                                                                                             (3.72) 

 

s.t.      Eqs. (3.18) – (3.66)   

 

First, the FFSP model described in Section 3.1 is used to compute the ideal solutions. Table 3.7 

includes the results of each objective separately. To reach the non-dominated solutions, the 

distance method is utilized for the bi-objective environmental model.  

 

   Table 3.7 

   Optimal solutions of the 1st and 2nd objectives 

 
Pessimistic value Realistic value Optimistic value 

      Total profit 1,095,072 1,727,693 1,892,738 

      Environmental compliance 163,050 188,848 190,230 

 

 

In order to find enough efficient solutions for the two mentioned objective functions, various 

pairs of wi (i = 1, 2) are examined (               ). The efficient solutions for the lower range of the bi-

objective model are 1,095,072 ( 1
lz ) and 48,297 ( 2

lz ), respectively. Furthermore, the non-

dominated solutions for the upper range can be computed (1,892,738 and 49,674). Table 3.8 

contains the solutions associated with the middle values of the total profit and environmental 

compliance. The locations and the numbers of the selected third parties change as the weight 

factors associated with the objectives change. 
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Table 3.8 
The non-dominated solutions for the middle values of the 1st and 2nd objectives  

w1 0 to 0.4 0.5 0.6 0.7 0.8 0.9 1 

Total profit 805,230 1,433,700 1,575,700 1,651,300 1,653,900 1,725,400 1,727,772 

      
Environmental 

compliance 

188,848 125,440 107,360 88,261 87,113 53,849 48,297 

Selected third 

parties 

c3, c5, c6, 

e4, q1 to q5 
c3, c5, e4, 

q2, q3, q4 
c3, c5, e4, 

q2, q3 

c5, e4, q2, 

q3 
c5, e4, q2, 

q5 
c5, e4, q4 c2, e3, q5 

 

According to the efficient solutions of the bi-objective model (maximization), the value of the 

environmental compliance of the third parties cannot be increased, unless the total expected profit 

is decreased. The trade-off surface of the LAB CLSC network is indicated in Fig. 3.7.  

 

 

 

Fig. 3.7. The trade-off surface of the LAB CLSC network 

 

Value path analysis (VPA) is utilized to display the non-dominated solutions in multi-objective 

problems (Schilling et al., 1983, Wadhwa and Ravinsdran, 2007; Tosarkani and Amin, 2018b). 

The normalized scales of the efficient solutions are computed as the ratio of the objective’s value 

divided by its minimum value. The results are written in Table 3.9. As illustrated in Fig. 3.8, none 

of the efficient solutions are dominated because their value paths intersect.  
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Table 3.9 

Normalized scales of non-dominated solutions 

w1 0 to 0.4 0.5 0.6 0.7 0.8 0.9 1 

Total profit 1 1.7805 1.9568 2.0507 2.0539 2.1427 2.1457 

      

Environmental 

compliance 

3.9101 2.5973 2.2229 1.8275 1.8037 1.1150 1 

 

 

 

Fig. 3.8. The value path analysis 

 

3.6. Conclusions  

In this study, a fully fuzzy stochastic programming has been developed and applied for a LAB 

CLSC network with respect to an uncertain situation. Managing this network is a challenging task 

because it involves many parties. The multi-echelon network includes supplier(s), plant(s), 

demand markets, and LAB recovery center(s). To continue the LAB recovery, the profitability of 

CLSC should be taken into account. Most of the parameters contributing to the profit of CLSC 
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networks are imprecise. Therefore, the impact of uncertain parameters should be considered and 

discussed.  

 In order to deal with uncertain factors, stochastic programming has been integrated with fully 

fuzzy programming as an innovative approach to consider different scenarios. The main advantage 

of the fully fuzzy optimization model is determining the relevant values of decision variables 

associated with imprecise parameters. The existence of fuzzy decision variables has led to have 

acceptable flexibility for making strategic decisions. The obtained solution in this paper includes 

the optimal pessimistic, realistic, and optimistic values of the objective and the decision variables 

in multiple periods.  

We have analyzed and discussed the results of the mathematical model. Sensitivity analysis has 

been applied for the disposal fraction. The results have indicated that the total profit decreases as 

the disposal fraction increases. Therefore, the efficiency in recovery of the returned LAB can 

enhance both profit and environmental compliance simultaneously. To evaluate the performance 

of the FFSP approach, we have compared the solutions computed by our proposed model and the 

possibilistic approach. Thereafter, the optimization model has been extended to a bi-objective 

model to include green performances of suppliers, plants, and LAB recovery centers. To find the 

trade-off surface and the solutions of the bi-objective environmental model, distance method has 

been utilized. This research is the first study that applies the integration of fully fuzzy programming 

and stochastic programming for a bi-objective LAB CLSC network.  

There are some future investigations for this study. Delivery plans have a significant impact on 

the network’s profitability and carbon emissions. Therefore, the roles of transportation strategies 

can be considered in the optimization model. In this paper, an integrated approach including fuzzy 

and stochastic programming has been utilized. To deal with imprecise information, other useful 

methods such as robust optimization can be combined with our proposed model. Furthermore, it 

is valuable to develop game theoretic models to examine the effects of collaboration and 

competition between different players in the CLSC network. Finally, it is helpful to examine this 

research as a part of an integrated supply chain that includes several elements and features such as 

grid computing.  
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Chapter 4. A scenario-based robust possibilistic model for a multi-objective 

electronic reverse logistics network 

 

4.1. Introduction  

   Reverse logistics (RL) is defined as the backward flow of products, specifically products that are 

returned for recycling. A reverse stream includes several entities, such as regional collection 

depots, remanufacturing plants, and recovery and disposal centers. In the contemporary 

competitive market, the reliability and competency of all entities involved in RL are integral to the 

process functioning as a whole. The reliability of an entity refers to the fulfillment of market 

demands on-time, while the competency indicates how well the entity is able to operate with 

minimum environmental impact and disposal fraction (Amin et al., 2017; Kumar et al., 2017). 

These characteristics are largely dependant on the entity’s network configuration. The locations of 

facilities are decided upon strategically which makes the locations impossible to change in the 

short-term (e.g., opening or closing the recovery center) (Krumwiede and Sheu, 2002; Min et al., 

2006; Kannan and Sasi Kumar, 2009; Paksoy et al., 2011; Ramos et al., 2014; Zolfagharinia et al., 

2014; Mohajeri and Fallah, 2016; Zhalechian et al., 2016; Ramezanian and Behboodi, 2017, Amin 

et al., 2018).  

   A good example of an RL network can be observed in the electronics industry in Ontario, 

Canada. Ontario Electronic Stewardship (OES) is a not-for-profit organization focusing on 

electronics recycling in Ontario. As a result of OES activities, 507,619 metric tonnes of unwanted 

electronic appliances have been turned away from landfills since 2009, when the program began. 

Measured public awareness indicates that 66% of Ontario’s population is familiar with OES. 

Additionally, more than 900 third parties, such as manufacturers and retailers, participate in this 

program. In terms of accessibility to OES, over 99% of Ontario’s population live less than 25 km 

away from the regional collection centers (OES annual report, 2017). In recent publications, some 

mathematical methods have been applied to design RL networks. However, the application of 

deterministic optimization models has not been sufficient in configuring electronic RL networks 

due to various sources of uncertainty (i.e., imprecise parameters) and complexity. This study 

considers some of the sources of uncertainty in order to design and optimize an electronic RL 

network.  
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4.1.1. Literature review 

   One of the main difficulties of designing RL networks is uncertainty due to the lack of precise 

information. A real RL is supposed to operate in a dynamic environment that includes uncertainty. 

This is because remanufacturing plants are regularly required to deal with unpredictable factors 

that arise (Govindan et al., 2012; John et al., 2018). Deterministic methods cannot support 

decision-makers in predicting possible outcomes (Amin and Zhang, 2013a). To deal with such 

unpredictable circumstances, there are some approaches that can be used, such as stochastic 

programming (Nickel et al., 2012; Cardoso et al., 2013; Garrido et al., 2015; Sahling and Kayser, 

2016), robust optimization (Pishvaee et al., 2011; Chen et al., 2014; Lorca and Sun, 2015), and 

fuzzy programming (Zarandi et al., 2011; Zhang et al., 2014; Wan et al., 2015). Stochastic 

programming is applied when parameters fluctuate with distributional information. Robust 

optimization is a modeling methodology which attempts to estimate feasible solutions for all 

circumstances that could arise due to uncertain parameters (Ben-Tal et al., 2009). In fuzzy 

programming, the mathematical model may include fuzzy parameters which are applied as the 

coefficient of decision variables in either objective function and constraints, or the right-hand side 

of constraints (Zimmermann, 1978; Chanas, 1983; Delgado et al., 1989; Bit et al., 1992). Since 

our focus is to address uncertainty and risky situations in designing RL networks, some applied 

methodologies in the fields of RL and closed-loop supply chain (CLSC) are reviewed in this 

section.  

 

4.1.1.1. Application of stochastic programming in facility location design 

   The most relevant studies that have utilized stochastic programming to configure facility 

locations are reviewed in this subsection. El-Sayed et al. (2010) developed a multi-echelon forward 

and RL network in multiple periods with stochastic demand. Kara and Onut (2010) utilized a two-

stage stochastic model to specify the long-term strategy for designing optimal facility locations for 

a paper recycling network. The results show that stochastic models result in more economical 

solutions in comparison with deterministic models.  

Alumur et al. (2012) expressed that designing an RL is a complex problem. They mentioned 

that locations and capacities of third parties (i.e., collection centers, and remanufacturing plants) 

have a significant impact on the configuration of the optimal network. They applied a scenario-

based optimization model to maximize the potential profit of a household appliance RL network 
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in Germany. Ramezani et al. (2013) proposed a multi-objective stochastic model to design a 

forward and RL network under uncertainty. The multi-objective model included the optimization 

of profit, quality, and customer responsiveness. Roghanian and Pazhoheshfar (2014) introduced a 

probabilistic model to configure an RL network. The priority-based genetic algorithm was 

employed to minimize the total cost of the proposed model under uncertainty.  

Ayvaz et al. (2015) examined a generic RL network with transportation costs and an uncertain 

return. The two-stage stochastic programming was considered to maximize the total profit of the 

network. Soleimani et al. (2016) investigated a multi-period, multi-product CLSC with stochastic 

demand and price. The authors applied a scenario-based approach to compute optimal solutions. 

Sawik (2016) used multi-objective stochastic programming to configure a multi-echelon supply 

chain while considering the local disruption risk. Different shipping scenarios were taken into 

consideration in order to optimize the trade-off associated with the total cost and service level in 

the network.  

Ahmadi and Amin (2019) developed a chance-constrained stochastic model to design a CLSC 

network for the purpose of recycling unwanted mobile phones. They considered different types of 

product returns such as commercial, end-of-use, and end-of-life returns. Baptista et al. (2019) 

applied a two-stage stochastic mixed-integer bilinear model to design a multi-product CLSC 

network in multiple periods. The performance of their proposed approach was assessed by a real-

life glass supply chain network under uncertainty of demand, production cost, and return. 

 

4.1.1.2. Application of fuzzy programming in facility location design 

There are a variety of studies that have used the fuzzy programming method to design optimal 

networks. Torabi and Hassini (2008) introduced a multi-objective possibilistic model to deal with 

imprecise information related to the market demand, cost, time, and capacity for designing a supply 

chain. Peidro et al. (2009) applied a fuzzy mathematical programming model to consider the 

uncertainty of supply and demand for supply chain planning.  

Pishvaee and Razmi (2012) proposed a multi-objective fuzzy model to configure a supply chain 

network structure. They applied an interactive fuzzy solution method to handle the proposed 

model. Amin and Zhang (2013b) introduced a three-stage model for CLSC configuration. In the 

first stage, quality function development (QFD) and fuzzy sets theory were applied to evaluate the 

suppliers and the remanufacturing centers. Thereafter, a scenario-based mixed-integer non-linear 
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programming model was employed to design the CLSC network with stochastic demand. In the 

last part, a multi-objective model was developed to identify the non-dominated solutions for the 

total cost, the importance of facilities, defect rate, and on-time delivery. Zare and Lotfi (2015) 

formulated a possibilistic mixed-integer linear programming method (MILP) to design a CLSC. 

To show the responsiveness of the proposed network, it was assumed that the products must be 

shipped within the expected delivery time.  

Sherfati and Bashiri (2016) considered fuzzy tactical decision variables to formulate a 

mathematical model for a CLSC network. Tosarkani and Amin (2018a) developed a fully fuzzy 

programming method to design a battery CLSC network. Ghahremani-Nahr et al. (2019) applied 

a mixed-integer nonlinear programming (MINLP) model to design a multi-echelon CLSC under 

uncertainty. They applied a robust fuzzy programming method to deal with uncertain parameters 

such as demand, return, and some variable costs. Kuşakcı et al. (2019) discussed that recovery 

choices are required to avoid the rapid depletion of natural resources. They applied a fuzzy MILP 

model to design an RL network for end-of-life vehicles (ELVs). Khishtandar (2019) developed a 

fuzzy chance-constrained programming model to configure a biogas supply chain network under 

uncertainty of available workforce, biomass demand, and biomass price. 

 

4.1.1.3. Application of robust optimization in facility location design 

   Robust optimization is a relatively new technique that is utilized for its computational flexibility. 

Contrary to stochastic programming, the probability of possible outcomes is unknown when using 

the robust optimization method. Therefore, several relevant research studies have applied robust 

optimization techniques. For instance, Bohle et al. (2010) studied an agricultural planning 

optimization problem regarding the uncertainty of labour productivity during harvesting. An 

alternative robust optimization method was developed to reach feasible solutions. Vahdani et al. 

(2012) integrated a robust optimization method with fuzzy multi-objective programming to design 

a reliable forward and RL network.  

Hasani et al. (2015) examined a global supply chain by considering exchange rates, tariffs, 

taxes, and regulations on global trade. A robust optimization method was applied to maximize the 

profits of a medical device network under uncertainty. Babazadeh et al. (2015) used robust 

optimization and scenario-based stochastic programming to find optimal solutions for their 

proposed network. According to their findings, robust and stochastic approaches can effectively 
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deal with uncertainty in quality and quantity of product returns, while deterministic models fail to 

handle the imprecise parameters in the same cases. Aras and Bilge (2018) used a robust MILP 

model to minimize the total cost of the supply chain network in the snack market. They extended 

their proposed deterministic model to a minimax regret model to tackle the uncertain demand.  

Kim et al. (2018) discussed that production planning is affected by the uncertainty of customers’ 

demand and product return in RL flow. They developed a robust optimization model to maximize 

the total profit in a multi-echelon CLSC network. Haddadsisakht and Ryan (2018) also examined 

the configuration of a CLSC network under uncertainty. They applied hybrid robust stochastic 

programming to deal with uncertain demand, return, and carbon tax rates. Recently, Ouhimmou et 

al. (2019) designed a distribution network in the pulp and paper industry. They utilized a robust 

optimization model to address the uncertain changes in demand over time. 

 

4.1.1.4. Application of multi-objective approaches to consider environmental factors 

Traditionally, the profitability of the RL network has been the primary concern. However, in 

recent years, due to the rise in environmental awareness and the development of new regulations, 

significant attention has been directed at configuring facility locations with environmental 

considerations. Govindan et al. (2015b) proposed a robust hybrid multi-objective model to design 

a multi-echelon supply chain. The multi-objective model includes the minimization of total cost 

and environmental impact considering stochastic demand. Alhaj et al. (2016) configured a multi-

echelon green supply chain with stochastic demand. They considered some environmental factors 

and combined them with a joint location inventory model.  

Fazli-Khalaf et al. (2017) designed a bi-objective green CLSC in response to environmental 

regulations and a shortage of natural resources. They proposed a robust fuzzy stochastic 

programming model to minimize the overall cost and the hazardous gas emissions associated with 

the network. Rezaee et al. (2017) investigated a green supply chain design through the application 

of a two-stage stochastic programming model. The optimal material flow was determined 

considering uncertain demand and carbon price.  

Tosarkani and Amin (2018b) employed a multi-objective MILP to maximize the total profit, 

green practices, and on-time delivery of an RL network, while minimizing the defect rate. Liao 

(2018) mentioned that designing of RL has become a prominent strategy due to environmental 

concerns. He developed an MINLP to maximize the total profit of a multi-echelon RL network 
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including regional and centralized collection centers, repairing and remanufacturing plants, 

disposal sites, distribution centers, processing, and recycling facilities.  

Rahimi and Ghezavati (2018) proposed a multi-objective model to optimize the total profit, the 

social effects, and the environmental impact of a multi-period RL network under uncertainty. They 

developed a risk-averse two-stage stochastic programming to deal with the uncertainty in their 

proposed model. Xiao et al. (2019) configured a multi-echelon RL network with regard to the 

measurement of carbon emissions. They discussed that there is a significant gap between the 

growth rate of carbon ownership with a recovery rate of ELVs in China. They applied a MILP 

model to minimize the total cost of improper management of ELVs in the automotive industry. 

Lastly, Zhen et al. (2019) presented a bi-objective optimization model to optimize the total cost 

and sustainability in a CLSC network.  

By considering the literature, we can observe that most studies have utilized one type of solution 

approach (e.g., either stochastic programming or possibilistic programming) to design facility 

location models under uncertainty. However, several types of uncertainty exist in practice based 

on the type of parameters (e.g., fuzzy or random parameters). Therefore, we aim to develop a 

holistic solution approach to address different types of uncertainty simultaneously. Table 4.1 

includes a summary of the relevant literature. 
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  Table 4.1 
  Some mathematical approaches to deal with uncertainties 

Authors Uncertainty 

Multi-

produc

t 

Type of 

products 

Multi-

period 

Multi-

objectiv

e 

Mathematical 

approach *, 

Solution 

methodology 

Real 

location

s 

Torabi and 

Hassini 

(2008) 

Demand, 

variable costs, 

and capacity 

    
FP, Interactive 

fuzzy approach 
 

Peidro et al. 

(2009) 

Supply, 

demand, and 

capacity 

 
Automobil

e industry 
  

FP, Fuzzy numbers 

ranking method 
 

El-sayed et 

al. (2010) 
Demand          SMILP  

Pishvaee and 

Razmi 

(2012) 

Demand, 

return, and 

capacity 

 

Medical 

needle and 

syringe 

  
FP, Interactive 

fuzzy approach 
 

Alumur et 

al. (2012) 
  

Household 

appliances  
  MILP  

Ramezani et 

al. (2013) 

Demand and 

variable costs 
    

SMILP, ε-

constraint method 
 

Roghanian 

and 
Pazhoheshfa

r (2014) 

Demand     
SMILP, Genetic 
algorithm 

 

Govindan et 

al. (2015b) 
Demand     

SMILP and RO, 

Metaheuristic 

algorithm 

 

Hasani et al. 

(2015) 

Purchasing 

cost, demand, 

product 

returns, and 

recovery 

 
Medical 

device 

industry 

  

RO, Heuristic 

approach (memetic 

algorithm) 

 

Sawik 

(2016) 

Disruption 

risks 
 Electronics   

SMILP, Weighted-

sum aggregation  
 

Haddadsisak

ht and Ryan 

(2018) 

Demand, 

return, carbon 

tax rate 

    

SMILP and RO, 

Benders cuts using 

the dual solutions 

 

Baptista et 

al. (2019) 

Demand, 
production 

cost, and 

return 

 
Glass 

industry 
  

SMIBM, Fix-and-
relax 

decomposition 

algorithm 

 

Kuşakcı et 

al. (2019) 

Returned 

product 
 

Automobil

e industry 
  FP   

The 

Proposed 

Model 

Fixed and 

variable costs, 

demand and 

return, 

capacity of 

plant(s), 

disposal 

fraction rate 

 Electronics   

Scenario-based 

robust possibilistic, 

Two-phase fuzzy 

compromise 

approach 

 

* Stochastic mixed-integer linear programming (SMILP), Fuzzy programming (FP), Robust optimization (RO), 

Stochastic mixed-integer bilinear model (SMIBM). 
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4.1.2. Research contributions and objectives 

   With the passage of Bill 151 and the development of circular economy strategies in Ontario, 

greater attention has been directed towards electronics recycling (OES annual report, 2017). 

Accordingly, the presence of an efficient, effective, and optimal electronic RL network is essential. 

This research is inspired by an electronic RL network in the Greater Toronto Area (GTA). The RL 

network includes customers (who return the used products), recovery center(s), a disposal center, 

remanufacturing plant(s), and retailer(s). In this respect, there are several uncertain factors 

interfering with the configuration of the optimal RL. The most important parameters include fixed 

and variable costs (related to transportation, production, agreement with facilities, purchasing raw 

materials), volatility in the market’s demand, and the quality and quantity of the returns 

(Jayaraman et al., 1999; Fleischmann et al., 2001; Kim et al., 2006; Achillas et al., 2010; Amin 

and Baki, 2017). This paper’s proposed model considers an environmental robust structure for an 

electronic RL which includes several sources of uncertainty simultaneously. In this paper, a bi-

objective model consisting of the total profit and green practices of the third parties that are 

associated with the network is considered and solved.  

In RL network design, many studies have focused on the operational aspects, such as the 

recovery process, production scheduling, and inventory policy (Gou et al., 2008; Zeballos et al., 

2014; Bazan et al., 2016; Tosarkani and Amin, 2019). Due to operational needs, there are adequate 

reasons to investigate the impact of uncertain parameters on RL network design (Govindan and 

Soleimani, 2017; Islam and Huda, 2018). Uncertainties stem from either external or internal factors 

in RL, such as supply, demand, return, or the recycling process. Such factors have a significant 

impact on the economic and environmental aspects of the network in the long term. In addition to 

the above-mentioned uncertain parameters, the quality of returned products should be considered, 

which can affect the recovery rate of the remanufacturing process. This underscores the significant 

need to capture several uncertainty sources when designing an RL network. 

   We develop a scenario-based approach to consider different types of returned products based on 

their quality. In addition, a robust possibilistic approach is utilized to reach feasible solutions with 

uncertain parameters. The impact of fuel prices is taken into account through the application of 

real distances between the facilities in the GTA. As indicated in Table 4.1, the contributions of this 

work can be summarized as follows: 
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▪ To configure an electronic RL network in the GTA based on realistic scenarios 

occurring in the OES. Furthermore, Google Maps is employed to consider real distances in 

the proposed multi-echelon RL. Transportation costs can be considered as functions of fuel 

prices and distances between potential locations. The historical data on Canadian fuel 

prices indicates unpredictable volatilities in fuel prices (refer to Fig. 4.A.1. in Appendix 

4.A). In this regard, the fuzzy sets theory is utilized to address such uncertainties. 

▪ To propose a scenario-based robust possibilistic model. To the best of our 

knowledge, such a hybrid method is new to RL literature. Furthermore, the effects of 

various sources of uncertainty on the RL network can be incorporated simultaneously. This 

method enables us to deal with different types of imprecise parameters. 

▪ To consider the environmental compliance of third parties through a bi-objective 

model. Some criteria are identified according to the literature (Yücenur et al., 2011; 

Bhattacharya et al., 2014; Sharma et al., 2017; Tosarkani and Amin, 2018b). These criteria 

are determined based on the responsibility and character of partners.  

▪ To compute the non-dominated solutions for the bi-objective model by utilizing the 

two-phase fuzzy compromise approach. 

   This study is organized as follows: In Section 4.2, the problem statement is discussed. In Section 

4.3, the optimization model, and the solution approach for the scenario-based robust possibilistic 

model are presented, and the computational results are discussed. In Section 4.4, a Monte-Carlo 

simulation is conducted to evaluate the performance of the proposed model. Thereafter, green 

practices are introduced as the second objective in Section 4.5. The fuzzy compromise method is 

introduced and applied to generate efficient solutions in Section 4.6. The managerial implications 

are discussed in Section 4.7. Finally, Section 4.8 is devoted to conclusions and future research 

avenues.  

 

4.2. Problem statement 

   There is a growing concern to keep used-electronics out of landfills. In Ontario, OES has 

collected and recycled about 52,712 tonnes of unwanted electronic appliances, which is almost 

equal to 3.92 kg/capita in 2017. Electronics collected by OES include display devices, non-cellular 

telephones, desktop computers, portable computers, computer accessories, printers, portable and 

home audio/video systems, photocopiers, and cellular devices. OES has mostly focused on the 



77 
 

recoverable modules inside the end-of-life electronics. Several questions arise in accordance with 

the efficiency of RL networks. It is worthwhile to note that the profitability of such sustainable 

plans should be taken into account, as well as the green practices of the third parties. Accordingly, 

program efficiency has a significant impact on the reduction of the cost associated with electronic 

RL networks (OES annual report, 2017).    

   The application of our proposed model is examined using a remanufacturing plant involved in 

the OES. This company has been operating as a producer and remanufacturer in the electronics 

industry, with the GTA being one of its main markets. According to regulatory and environmental 

compliance to reduce noise pollution, and hazardous and industrial waste, there are limited options 

for selecting third parties in urban areas. Hence, the company has been challenged to increase both 

its green practices and profitability. Fig. 4.1 illustrates municipal districts in the GTA. 

 

 

Fig. 4.1. The Greater Toronto Area (GTA), (GTA, 2018)  
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   Fig. 4.2 illustrates a multi-echelon, multi-product, multi-component, multi-period electronic RL 

network. The unwanted electronics (e.g., desktop computers) are received by regional collection 

centers from the consumers. After sorting, the returned products are transported to the recovery 

centers. Product recovery services are provided for every product which is assumed to have five 

main modules (e.g., desktop computers include monitor, keyboard, motherboard, case, and CPU 

air cooler). Since the quality of returned products varies, five scenarios are considered to analyze 

different quality types of unrecoverable products. For example, if one module is unrecyclable, the 

disposal fraction becomes 20%. Disposal fractions of 40%, 60%, 80%, and 100% can be 

interpreted similarly. 

   Customers may return products to the RL for different reasons (commercial, end of use, end of 

life, repair, and warranty returns). It is noteworthy that some parts of the returned products can be 

used again after the product recovery process. The recovered products are transferred to the 

retailer(s), while the unrecoverable products (end of life returns) are sent to the disposal center. 

Some products contain both recoverable and unrecoverable modules. The unrecoverable modules 

are separated and sent to the disposal center, and the recoverable modules are shipped to the 

remanufacturing plant(s). The supplier(s) then provide(s) complementary modules to be assembled 

with the recovered ones. The remanufactured products are shipped to the retailer(s). In this study, 

we assume that the remanufacturing plant(s) are part of the main plant(s). Hence, plant(s) are 

responsible for fulfilling demand either by reassembling the recovered modules or producing the 

new products. Accordingly, the cost of purchasing raw materials from suppliers can be decreased 

as the usage of recovered modules is increased. For instance, Canon collects, refurbishes, and 

remanufactures devices which consist of multiple modules, such as floor-standing photocopiers. 

The remanufactured products are guaranteed to have the same quality and reliability as a new 

product (Remanufacturing, Recycling of Used Products, 2018). Therefore, efficiency in the 

recovery center(s) increases the profitability of the entire network due to the reduction of disposal 

fraction. The green practices of the third parties involved in the electronic RL network should be 

taken into account because of the environmental concerns. The objective of this study is to answer 

the following research questions:  

 

I. Which location(s) should be considered for supplier(s), remanufacturing plant(s), regional 

collection center(s), recovery center(s), and retailer(s)?  
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II. How many components should be purchased from the available supplier(s)?  

III. How many products should be offered to the market to maximize the total profits by 

considering the uncertain rate of disposal fraction, demand, return, and fixed and variable 

costs associated with an electronic RL network? 

 

 

 

 

 

 

 

 

 

 

 

                                                 

Fig. 4.2. The proposed electronic RL network 

 

4.3. Optimization model 

There is a growing consensus that extreme environmental issues and climate change are 

universal problems which all countries are facing. However, there is no single plan and general 

agreement on how to tackle this issue. For example, there are different views on how to address 

environmental issues in Canada. While one of the political parties believes that a minimum carbon 

tax can be a successful policy to stop major emitters, the other party is fundamentally against the 

carbon tax policy and suggests focusing on green technology instead (Tasker, 2019). Therefore, 

we first consider the total expected profit as the main objective, which is traditionally the most 

important goal in RL networks. We then introduce the impact of environmental policies on 

designing the electronic RL network as the second objective. This objective is introduced to 

address the environmental compliance of third parties in the proposed optimization model. 
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A scenario-based robust possibilistic mathematical model is developed to configure the facility 

location model under uncertainty. In this study, triangular fuzzy numbers (TFNs) are applied to 

deal with imprecise parameters. The fuzzy sets theory is employed to deal with uncertainty in 

different fields of operation research, decision-making processes, engineering, management 

science, and statistics (Zimmermann, 2012; Zadeh et al., 2014; Peng et al., 2016; Wei et al., 2017; 

Faizi et al., 2018). In the real world, different parameters contributing to the optimization model 

cannot be addressed by a single value. Therefore, imprecise parameters can be replaced by TFNs 

due to their computational flexibility (Gani and Assarudeen, 2012). Tables 4.2, 4.3, 4.4 illustrate 

sets, parameters, and decision variables (i.e., non-negatives, and binary variables) applied to 

formulate the mathematical model. 

 

 
Table 4.2 

All the sets of the proposed model  

Ṣ = set of suppliers (s ∈ Ṣ) 

Ḟ = set of locations related to remanufacturing plants (f ∈ Ḟ) 

J = set of products (j ∈ J) 

Ṃ = set of demand markets (m ∈ Ṃ) 

Ṛ = set of locations related to electronic recovery centers (r ∈ Ṛ) 

Ḉ = set of locations related to regional collection centers (c ∈ Ḉ) 

Ṇ = set of components (n ∈ Ṇ) 

Ị = set of retailers (i ∈ Ị) 

Ŧ = set of time periods (t ∈ Ŧ) 

Ω = set of scenarios (ω ∈ Ω) 

 

Table 4.3 
The parameters of the proposed model 

Φω = probability of scenario ω  

Ãs = triangular fuzzy number related to fixed-cost of agreement with supplier s 

B̃c = triangular fuzzy number related to fixed-cost of agreement with regional collection center c 

C̃i = triangular fuzzy number related to fixed-cost of agreement with retailer i 

Ỹr = triangular fuzzy number related to fixed-cost of agreement with recovery center r 

D̃f  = triangular fuzzy number related to fixed-cost of agreement with remanufacturing plant f 

Ẽsn = triangular fuzzy number related to purchasing cost of components n from supplier s 

F̃j = triangular fuzzy number related to cost of product recovery related to product j 

R̃j = triangular fuzzy number related to selling price of product j 

G̃j = triangular fuzzy number related to cost of remanufacturing related to product j 

T̃n = triangular fuzzy number related to disposal cost related to component n 

õn = triangular fuzzy number related to unit cost of transportation per Km associated with component n from 

supplier(s) to remanufacturing plant(s) 

p̃j = triangular fuzzy number related to unit cost of transportation per Km associated with product j from markets to 

regional collection center(s) 

h̃j = triangular fuzzy number related to unit cost of transportation per Km associated with product j from regional 

collection center(s) to recovery center(s)  
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ẽn= triangular fuzzy number related to unit cost of transportation per Km associated with component n from recovery 

center(s) to disposal center 

g̃j = triangular fuzzy number related to unit cost of transportation per Km associated with product j from recovery 

center(s) to retailer(s)  

k̃n = triangular fuzzy number related to unit cost of transportation per Km associated with component n from recovery 
center(s) to remanufacturing plant(s) 

l̃j = triangular fuzzy number related to unit cost of transportation per Km associated with product j from 

remanufacturing plant(s) to retailer(s)  

ãj = triangular fuzzy number related to unit cost of transportation per Km associated with product j from retailer(s) to 

markets  

umc = the distance between location m and c  

ur = the distance between recovery center r and disposal center 

d̃mjt = triangular fuzzy number related to demand of customer (market) m for product j related to period t 

ṽmjt = triangular fuzzy number related to return of market m for product j related to period t 

υj = recovery rate of product j 

εnω = disposal fraction of component n in scenario ω 

H̃fn = triangular fuzzy number related to number of capacity of remanufacturing center f for component n 

Ucj = capacity of regional collection center c for product j 
Wrj = capacity of recovery center r for product j 

Γsn = capacity of supplier s for component n 

Λij = capacity of retailer i for product j 

Ijn = number of component n in product j       

Ksn = environmental compliance of supplier s, while providing n components 

Mfn = environmental compliance of remanufacturing plant f, while assembling n components 

Nrn = environmental compliance of recovery center r, while recycling n components via product recovery 

          

Table 4.4 

The decision variables of the proposed model 

Osfntω = number of component n shipped to remanufacturing plant f by supplier s related to period t in scenario ω 

Pfijtω= number of product j produced by remanufacturing plant f for retailer i related to period t in scenario ω 

Qmcjtω= number of returned product j from customer m to regional collection center c related to period t in scenario ω 

Scrjtω= number of product j shipped by regional collection center c to recovery center r related to period t in scenario 

ω 

λrntω = number of component n (unrecoverable modules) shipped to disposal center from recovery center r related to 
period t in scenario ω 

Vrfntω = number of component n (recoverable modules) shipped to remanufacturing plant f from recovery center r 

related to period t in scenario ω 

Lrijtω= number of product j shipped to retailer i from recovery center r related to period t in scenario ω 

Ximjtω= number of product j shipped to customer m from retailer i related to period t in scenario ω 

qc = 1, if the regional collection center located in site c is utilized to collect the products, 0, otherwise. 

wr = 1, if the recovery center located in site r is utilized to recycle the used products, 0, otherwise. 

xf  = 1, if the remanufacturing plant is selected at potential site f, 0, otherwise. 

ys = 1, if supplier s is selected, 0, otherwise.  

zi = 1, if retailer i is selected, 0, otherwise.  
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s.t. 

( ) ( )4 1rfntω sfntω fijtω jn

r s i j

f ,n,t ,ω .V O P I + =     

( )4 2imjtωfijtω rijtω

f r m

i, j,t ,ω .P L X + =     

( )4 3imjtω mjt

i

m, j,t ,ω .X d   

( )4 4mcjtω mjt

c

m, j,t ,ω .Q ν =  

( )4 5crjtω mcjtω

r m

c, j,t ,ω .S Q =   

( ) ( )4 6rijtω crjtω j

i c
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c j
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f i j c j
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( )4 10mcjtω c cj

m j j

c,t ,ω .Q q U    
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( )4 11crjtω r rj

c j j

r,t ,ω .S w W     

( )4 12sfntω s sn

f n n

s,t ,ω .O y Γ    

( )4 13fijtω rijtω i ij

f j r j j

i,t ,ω .P L z Λ +     

 ( )4 140 1c r f s i c,r , f ,s,i .q ,w ,x , y ,z ,   

( )4 150sfntω fijtω mcjtω crjtω rntω rfntω rijtω imjtω   s, f , j,m,r,c,n,t ,ω .O ,P ,Q ,S ,λ ,V ,L ,X 

  

The objective function maximizes the total expected profit in the electronic RL network. To 

find the expected profit, the summation of variable costs (provision of raw materials, 

remanufacturing, transportation, recovery, and disposal costs) and fixed costs are subtracted from 

the revenue earned by selling products to customers. Hence, the first term computes the gross 

revenue of the RL network (where the transportation cost between the retailer(s) and markets is 

deducted from the selling price). The second term shows the costs of remanufacturing and shipping 

from remanufacturing plant(s) to the retailers. The third term represents the purchasing and 

transportation costs of raw materials from the supplier(s) to the remanufacturing plant(s). The next 

term denotes the cost of shipment related to the returned products from markets to regional 

collection center(s). The returned products are overhauled in the recovery center(s). The recovered 

products are shipped to the retailers, and unrecoverable products are disassembled to their 

operational and unusable modules. To this aim, the cost of product recovery, disposal, and 

shipment between recovery center(s), the disposal center, remanufacturing plant(s), and retailer(s) 

are considered. Furthermore, the total fixed costs associated with supplier(s), regional collection 

center(s), recovery center(s), remanufacturing plant(s), and retailer(s) are defined, respectively.  

Constraint (4.1) ensures that the summation of modules provided by suppliers and recovery 

center(s) is equal to the number of modules that are remanufactured or produced by plants. 

Constraint (4.2) obligates retailer(s) to sell all products received from the recovery center(s) and 

remanufacturing plant(s) to the markets. Constraint (4.3) indicates that the number of products 

shipped to the markets by the retailer(s) should be less than customer demand. Constraints (4.4) 

and (4.5) determine that the total returned products received by regional collection center(s) from 
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markets are required to be transferred to the recovery center(s). Constraints (4.6) and (4.7) imply 

the recovery rates and disposal fraction in the recovery center(s). Constraint (4.8) states that the 

summation of recyclable modules ( rfntωV ), disposable modules ( rntωλ ), and the components of 

recovered products ( rijtω jnL I ) are required to be equal to the components of all products received 

from the regional collection center(s) ( crjtω jnS I ). Constraints (4.9), (4.10), (4.11), (4.12), and 

(4.13) are the capacity constraints associated with remanufacturing plant(s), regional collection 

center(s), recovery center(s), supplier(s), and retailer(s), respectively. Finally, Constraints (4.14) 

and (4.15) present binary and non-negative variables.  

 

4.3.1. Solution approach 

     We develop a novel scenario-based robust possibilistic model building on the methods 

proposed by Cadenas and Verdegay (1997), Snyder (2006), Jiménez et al. (2007), Al-Othman et 

al. (2008), Amin and Zhang (2013a), and Pishvaee and Fazeli Khalaf (2016). As suggested by the 

literature, imprecise parameters should be addressed according to their natures (i.e., stochastic and 

fuzzy). Our proposed approach enables decision-makers to deal with different uncertain 

parameters simultaneously. We also consider the affected constraints consisting of uncertain 

parameters (i.e., demand, return, and the capacity of the remanufacturing plants):  

 

▪ Constraint (4.3): 
imjtω mjt

i

X d  

▪ Constraint (4.4): mcjtω mjt

c

Q ν=   

▪ Constraint (4.9): rfntω sfntω f fn

r n s n n

V O x H+     

 

As mentioned in Section 4.3, we define ω scenarios representing different rates of disposal 

fractions with the probability of Фω to consider the various types of quality in returns. It is also 

assumed that all parameters in the optimization model are uncertain (e.g., selling price, fixed costs, 

variable costs, demand, and return). 

   The mathematical symbol ≤̃ is the fuzzy version of ≤ . It means that the left-hand side is less than 

or equal to the right-hand side of the constraint (Peidro et al., 2009). The demand and production 
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capacity can be estimated approximately, while they have a significant impact on the profitability 

of the network. Listeş and Dekker (2005), and Amin and Zhang (2013a) indicated that optimal 

solutions are very sensitive to demand in the facility location design. Furthermore, 

Paraskevopoulos et al. (1991), Van Mieghem (2003), Geng et al. (2009) examined uncertainty in 

manufacturing capacities since they believed that deterministic approaches could not address 

dynamic changes in the real world. Therefore, we choose (≤̃ ) for two constraints associated with 

the demand and capacity of the remanufacturing plant(s). The fuzzy version of (≤) indicates that 

decision-makers would like to have the left-hand side of the constraint become less than or equal 

to the right-hand side, “if possible”. To cope with a violation of such constraints, two triangular 

fuzzy numbers ς , τ  are applied. Eqs. (4.3) and (4.9) are rewritten by Eqs. (4.16), (4.17), and (4.18). 

 

( )( ) ( )( )

( ) ( )

( ) ( )

( )
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1 1
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X d ς α , .
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



= − − − −

 + −

+  + −

 



  

 

   α and β are the minimum satisfaction levels applied as the variables. In addition, γ and σ are 

defined as the parameters of penalty costs associated with possible violations in the soft 

constraints. These penalty costs are utilized to optimize the minimum values of satisfaction levels 

in the soft constraints. Since ( )l c uς ς ,ς ,ς= , ( )l c uτ τ ,τ ,τ= are assumed as TFNs, they are defuzzified 

and represented by 
( ) ( )

3

u c c l

c
ς ς ς ς

ς
− − −

+ and 
( ) ( )

3

u c c l

c
τ τ τ τ

τ
− − −

+  based on the fuzzy 

ranking method developed by Yager (1981).  

   A combinatorial approach developed by Parra et al. (2005) and Jiménez et al. (2007) is utilized 

to defuzzify the imprecise parameters, including demand, return, and remanufacturing plant(s) 

capacity. The expected interval and the value of TFN d̃ = (
ld , 

cd , 
ud ) are presented by Eqs. (4.19) 

and (4.20). 
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   According to the fuzzy ranking method proposed by Jiménez et al. (2007), the degree in which 

d̃ is greater than ξ̃ can be indicated by Eq. (4.21). 
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   If ( ),M d  ≥ δ, d is greater than or equal to   at least with the degree of δ. This point can be 

shown by d   . In the case of equality, it can be said that  is indifferent to   in degree of θ, if 

we have /2  and /2   (Parra et al., 2005). Therefore, the equality relation of    can be 

rewritten by Eq. (4.22).  

( ) ( ), 1 4.22
2 2

M

 
    −                                                                                                              

   Then, in the constraint of , , ,,mjt imjt mjt

i

m j tX d    the decision variable Ximjtω is feasible 

with degree δ, if min { ,M mjt mjt imjt

i

d X  
 
 
 

 }= δ. Accordingly, mjt imjt mjt

i

X d  and 

mjt mcjt mjt

c

Q  =  can be written by Eqs. (4.23) and (4.24). 
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    Eqs. (4.23) and (4.24) can be simplified to Eqs. (4.25), (4.26), and (4.27).  
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    Constraints (4.4), (4.16), and (4.17) can be converted to the equivalent crisp versions (4.29), 

(4.30), (4.31), (4.32). The range of the associated confidence level is also defined by Constraint 

(4.33). To optimize the confidence level, the penalty costs are applied based on the method of 

Pishvaee and Fazeli Khalaf (2016), and are included in the objective function (Eq. (4.28)).  
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s.t. 

Constraints (4.1), (4.2), (4.5 to 4.8), (4.10 to 4.15) 
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( )0 1 0 5 1 4 33α,β , . δ, ρ,θ .     

   Where φ is applied to minimize the worst deviation from the expected value of the objective. To 

calculate the worst possible outcome for the first objective function (Z1
l), the highest value of the 

fixed and variable costs is subtracted from the lowest value of the revenue (Eq. (4.34)). 

Furthermore, the expected value of the first objective function (E[Z1]) can be estimated by the 

arithmetic average of triangular parameters. The parameters of η, π1, π2, and Δ are defined as the 

penalty cost to control the feasibility robustness related to uncertain parameters. While γ, and σ are 

associated with feasibility robustness in terms of flexibility of constraint (i.e., possible violation in 

soft constraints).  
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   Multiplication of xf  by ρ and β in Eqs. (4.28) and (4.32) causes non-linearity and leads to 

difficulty in optimization. To overcome this issue, two non-negative auxiliary variables, ιf  = βxf, 

χf  = ρxf are introduced based on the method of Pishvaee and Fazeli Khalaf (2016). Then, Eq. (4.28) 

and Constraint (4.32) are replaced by Eq. (4.35) and Constraint (4.36). As indicated by Eqs. (4.37) 

to (4.40) and Eqs. (4.41) to (4.44), if xf = 0, the auxiliary variables become zero. Otherwise, ιf  and 

χf are equal to β and ρ, respectively.  
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( ) ( )1 , 4.38f f fM x   − +   

( ), 4.39f f   

( )0, 4.40f f   

( ), 4.41f f fM x     

( ) ( )1 , 4.42f f fM x  − +   

( ), 4.43f f    

( )0, 4.44f f   

Constraints (4.1), (4.2), (4.5 to 4.8), (4.10 to 4.15), (4.29 to 4.31), and (4.33). 

4.3.2. Values of the parameters and the solutions  

In this section, the application of the proposed model is examined using information related to 

the GTA. 25 major GTA areas are selected as the markets. The middle values of the demand in 

market m associated with product j related to period t (dmjt) are supposed as one percent of the 

population of the region in accordance with the 2016 census of Canada. This assumption is 

consistent with the literature (see, e.g., Fleischmann et al., 2001; Amin and Baki, 2017). 

Accordingly, the middle values of return in market m associated with product j related to period t 

(νmjt) are assumed as ten percent of dmjt. The upper and lower values of dmjt and νmjt are computed 

as a 10 percent increase and decrease of their middle values, respectively. The values of other 

parameters used in the mathematical model are illustrated in Table 4.B.1 in Appendix 4.B. The 

values of these parameters are set according to the observed GTA case.                    

The proposed mathematical model has been programmed and solved using IBM ILOG CPLEX 

12.8.0. The optimization problem includes 5,321 constraints, 32,108 decision variables, 47 binary 

variables, and 264,521 non-zero coefficients. The CPU time required to solve the proposed model 

was 29 seconds. The solutions of the proposed model, including the value of the objective function, 

( ), 4.37f f fM x 
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the selected collection centers, recovery center, suppliers, remanufacturing plants, and retailers, 

along with the positive values of variables for products and components, are provided in Table 4.5. 

 

Table 4.5 
Solutions for the scenario-based robust possibilistic model    

Objective 

value 

(E[Z1]) 

Selected 

collection 

centers 

Selected 

recovery center 

Selected 

suppliers 

Selected 

remanufacturing 

plants 

Selected 

retailers 

19,260,584 q2 : Mississauga 

q3 : Brampton 

q10 : Toronto 

q14 : Richmond 

Hill 

w5 : Mississauga y1 : Toronto   

y2 : Toronto  

y5 : Mississauga 

x3: Mississauga 

x4 : Toronto 

z1 : Toronto      

z3 : Brampton  

z7 : Markham 

For all n = 1 to 5; t = 1, 2; ω = 1 to 5; j = 1 to 3: 

O1 4ntω = 2,500,000, O2 4ntω = 375,000, O5 3ntω = 1,432,455. 

P3 3jtω = 315,371, P4 1jtω = 439,610, P4 7jtω = 135,390. 

X1 1jtω = 389,250, X1 9jtω = 13,080, X1 10jtω = 17,055, X1 11jtω = 22,725, X1 18jtω = 3,495, X1 21jtω = 1,658,         

X1 22jtω = 13,110, X3 2jtω = 102,825, X3 3jtω = 84,592, X3 4jtω = 9,480, X3 5jtω = 27,615, X3 6jtω = 26,123,           

X3 7jtω = 15,690, X3 8jtω = 8,715, X3 12jtω = 43,635, X7 13jtω = 46,883, X7 14jtω = 27,787, X7 15jtω = 6,533,           

X7 16jtω = 7,897, X7 17jtω = 12,000, X7 19jtω = 3,420, X7 20jtω = 6,472, X7 23jtω = 3,083, X7 24jtω = 3,022,              

X7 25jtω = 18,293. 

Q2 2jtω = 10,826, Q5 2jtω = 2,906, Q6 2jtω = 2,749, Q18 2jtω = 372, Q1 3jtω = 12,776, Q3 3jtω = 8,906,                  

Q4 3jtω = 1,001, Q7 3jtω = 1,650, Q8 3jtω = 915, Q9 3jtω = 126, Q11 3jtω = 32, Q12 3jtω = 4,594, Q1 10jtω = 28,200, 

Q10 10jtω = 1,800, Q9 14jtω = 1,254, Q11 14jtω = 2,357, Q13 14jtω = 4,935, Q14 14jtω = 2,929, Q15 14jtω = 686,        

Q16 14jtω = 829, Q17 14jtω = 1,264, Q19 14jtω = 360, Q20 14jtω = 679, Q21 14jtω = 176, Q22 14jtω = 1,380,                

Q23 14jtω = 326, Q24 14jtω = 315, Q25 14jtω = 1,924. 

S2 5jtω = 16,853, S3 5jtω = 30,000, S10 5jtω = 30,000, S14 5jtω = 19,414. 

L5 1jtω = 20,763, L5 3jtω = 3,304. 

V5 3ntω = 144,399. 

λ5ntω = 216,599.  

 

 

As shown in Table 4.5, the obtained solution provides several recommendations to maximize 

the total profit. These recommendations include the selected locations of the network, the 

components that should be purchased from suppliers, the products to be offered to markets, and 

the number of products to be shipped between RL echelons. For example, the number of products 

shipped to retailer 1 from recovery center 5 (i.e., L5 1jtω = 20,763) and the remanufacturing plant 4 

(i.e., P4 1jtω = 439,610) are equal to the number of products shipped from retailer 1 to the markets 

(i.e., X1 1jtω + X1 9jtω + X1 10jtω + X1 11jtω + X1 18jtω + X1 21jtω + X1 22jtω = 460,373). In this regard, the 

electronic RL network will be more profitable if the recovery center operates efficiently and fulfills 

bigger portions of the market demand. The sensitivity analyses associated with the impact of 

recovery rate and disposal fraction on the total profit are discussed in the next section. 
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As illustrated in Fig. 4.3, the model has been applied to optimize an electronic RL network in 

the GTA, using Google Maps to estimate the real driving distances and transportation costs 

between potential locations. The optimal network includes 4 locations for collection centers, 1 

recovery center site, 3 suppliers, 2 remanufacturing plant locations, and 3 retailers.  

 

 
 Fig. 4.3. The selected facility locations in the electronic RL network 

 

If both feasibility robustness and optimality robustness are reached, the obtained solution is 

called robust. Feasibility robustness is reached when the solutions are feasible for all possible 

 Selected remanufacturing plant     

x3: Mississauga, x4: Toronto 

 Selected collection centers                

q2: Mississauga, q3: Brampton              

q10: Toronto, q14: Richmond Hill 

 Selected recovery center                   

w5: Mississauga 

 Selected suppliers                             

y1: Toronto, y2: Toronto                          

y5: Mississauga 

 Selected retailers                                

z1: Toronto, z3: Brampton, z7: Markham 

 Disposal center: Hamilton 

 Markets 
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changes in uncertain parameters or degrees of flexible constraints. The optimality robustness is 

achieved when there is less deviation between all possible changes with the optimal value (Ben-

Tal and Nemirovski, 2000). Robust optimization models are able to deal with uncertain parameters 

by reaching optimal solutions in the bounded uncertainty sets. In this study, the possibilistic 

approach and scenario-based programming are utilized to define the deviation of uncertain 

parameters from their nominal values. In most cases, decision-makers decide about δ, θ, ρ, α, and 

β parameters. To reach a better value of the objective function, the confidence level of the 

constraint needs to be decreased. In this situation, the decision-makers are faced with two 

contradictory objectives: to obtain more satisfactory objective values, or to improve the confidence 

level of constraints. Penalty costs have been employed to optimize the satisfaction levels of 

constraints. In this respect, some sensitivity analyses are conducted for various values of penalty 

costs to show the robustness of the proposed model. Table 4.6 indicates the feasibility and 

optimality robustness while the associated parameters are changed. 

 

Table 4.6   

Sensitivity analyses of φ, η, γ, π1, π2, Δ, σ  

Results of the optimization problem Remark 

E[Z1] 19,260,585 1. The objective value had no deviation, while we changed φ 

from 0.15 to 0.90 (other penalty costs were fixed). 

δ = α = β = ρ = θ 1 2. The objective value had no deviation, while we changed η 

and γ from 100 to 350 (other penalty costs were fixed). Collection centers q2 , q3 , q10 , q14 

Recovery center w5 3. The objective value had no deviation, while we changed π1 and 

π2 from 100 to 350 (other penalty costs were fixed). Suppliers y1,  y2 , y5 

Remanufacturing plants x3, x4 4. The objective value had no deviation, while we changed Δ 

and σ from 100 to 350 (other penalty costs were fixed). Retailers z1 , z3 ,  z7 

 

 

In the proposed method, fulfilling the confidence level of constraints (i.e., δ = α = β = ρ = θ = 

1) is the first priority. According to the type of problem and the associated risk level, the upper 

range of the confidence level is determined by decision-makers. As indicated in Table 4.7, the 

value of the objective function is increased while the degrees of feasibility are decreased from 1 

to 0.5. It is worth noting that the minimum confidence levels must be greater than 0.5 to make sure 

that the constraints are not violated.  
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Table 4.7 
Changing the degree of feasibility while the other parameters are fixed 

Confidence levels 
δ = α = β = 

ρ = θ ≤ 1 

δ = α = β = 

ρ = θ ≤ 0.9 

δ = α = β = 

ρ = θ ≤ 0.8 

δ = α = β = 

ρ = θ ≤ 0.7 

δ = α = β = 

ρ = θ ≤ 0.6 

δ = α = β = 

ρ = θ ≤ 0.5 

E[Z1] 19,260,584 20,119,814 20,986,374 21,852,649 22,718,925 23,585,201 

δ = α = β = ρ = θ 1 0.9 0.8 0.7 0.6 0.5 

 

4.3.3. Sensitivity analyses  

Table 4.8 summarizes the impact of the recovery rate and disposal fraction on the total expected 

profit (E[Z1]) of the electronic RL network. As mentioned previously, 5 scenarios have been 

considered for disposal fraction, which are demonstrated separately in each column. The last 

column is associated with the solutions of the scenario-based robust possibilistic model that 

includes all scenarios simultaneously. As disposal fraction (εnω) increases, the profit of the RL 

decreases. In addition, by increasing the recovery rate of the returned products, the profit of the 

RL increases. Therefore, the quality of the returned products, along with the efficiency in the 

product recovery, play prominent roles in the profitability of the RL network. 

 

Table 4.8 

The total expected profits associated with different recovery rates and disposal fraction  

             εnω    

υj        
εn0.2 εn0.4 εn0.6 εn0.8 εn1 

Proposed 

model 

0.15 19,632,858 19,364,299 19,096,592 18,828,886 18,567,341 19,096,592 

0.35 19,833,470 19,628,754 19,424,037 19,219,320 19,015,178 19,424,037 

0.55 20,037,568 19,894,343 19,751,118 19,610,289 19,467,489 19,751,118 

0.75 20,249,391 20,169,822 20,090,253 20,010,684 19,931,116 20,090,257 

 

 

Table 4.9 includes the sensitivity analyses of the solutions with regard to the variation of the 

demand and return. The total profit of each case is compared against the original optimal value 

(e.g., (21,273,427 - 19,260,584)/19,260,584 = 10.45%). It is evident that the total profit becomes 

greater as the demand increases since more products can be sold to the market. Furthermore, there 

will be more cost-saving opportunities associated with a higher return rate. This is because the 

remanufacturing plants can utilize more recoverable parts from returned products instead of 

purchasing new components from suppliers. 
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Table 4.9 
Sensitivity analyses on demand and return 

Cases Objective value  Change %  

1. 10% increase in demand and return E[Z1] = 21,273,427  10.45% 

2. 10% increase in demand and 10% decrease in return E[Z1] = 21,264,125 10.40% 

3. 10% decrease in demand and 10% increase in return E[Z1] = 17,262,654 -10.37% 

4. 10% decrease in demand and return E[Z1] = 17,253,791 -10.42% 

5. 10% increase in demand, while return is not changed E[Z1] = 21,265,370 10.41% 

6. 10% decrease in demand, while return is not changed E[Z1] = 17,254,817 -10.41% 

7. 10% increase in return, while demand is not changed E[Z1] = 19,269,059 0.04% 

8. 10% decrease in return, while demand is not changed E[Z1] = 19,259,558 -0.01% 

 

Table 4.10 shows that the number of selected facilities may vary by changing the demand and 

return. As seen in this table, unsurprisingly, more facilities are required to fulfill the market 

demand when the demand and return increase. The results of the sensitivity analyses on the 

capacity of facilities are intuitive, as illustrated in Table 4.11. As results suggest, there is a need 

for fewer facilities by increasing the capacity levels. However, it should be noted that increasing 

the capacity of facilities does not automatically translate into higher profits. We discuss this point 

further, as an important managerial implication, in Section 4.7.   

 
Table 4.10 

Variation of the selected facilities by changing demand and return 

Cases Objective value  Change % Selected facilities * 

1. 50% decrease in 

demand and return 
E[Z1] = 9,521,952  -50.56% CC: q3 , q10 – RC: w5 – S: y1 – RP: x4 – R: z1  

2. 35% decrease in 

demand and return 
E[Z1] = 12,451,310 -35.35% 

CC: q2 , q3 , q10 – RC: w5 – S: y1, y2  – RP: x4 – 

R: z1, z7 

3. 20% decrease in 

demand and return 
E[Z1] = 15,228,379 -20.94% 

CC: q2 , q3 , q10 – RC: w5 – S: y1, y5  – RP: x3, x4 

– R: z1 , z3 , z7 

4. 5% decrease in demand 

and return 
E[Z1] = 18,255,086 -5.22% 

CC: q2 , q3 , q10 , q14 – RC: w5 – S: y1,  y2 , y5 – 

RP: x3, x4 – R: z1 , z3 , z7 

5. 5% increase in demand 

and return 
E[Z1] = 20,263,626 5.21% 

CC: q2 , q3 , q10 , q14 – RC: w5 – S: y1,  y2 , y5 – 

RP: x3, x4 – R: z1 , z2 , z3 , z7 

6. 20% increase in 

demand and return 
E[Z1] = 23,291,872 20.93% 

CC: q2 , q3 , q10 , q14 – RC: w5 – S: y1,  y2 , y5 – 

RP: x3, x4 – R: z1 , z2 , z3 , z7 

7. 35% increase in 

demand and return 
E[Z1] = 25,217,529 30.93% 

CC: q2 , q3 , q10 , q14, , q18 – RC: w5 – S: y1,  y2 , 

y5 – RP: x3, x4 – R: z1 , z2 , z3 , z7 

8. 50% increase in 

demand and return 
E[Z1] = 29,053,855 50.85% 

CC: q2 , q3 , q10 , q14, , q18 – RC: w5 – S: y1,  y2 , 

y5 – RP: x1, x3, x4 – R: z1 , z2 , z3 , z7 

* Collection centers (CC), recovery centers (RC), suppliers (S), remanufacturing plants (RP), retailers (R) 
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Table 4.11 

Sensitivity analyses on capacity of facilities 
Cases Objective value  Change % Selected facilities * 

1. 50% decrease in 

capacity of facilities 
E[Z1] = 18,213,113  -5.44% 

CC: q1 , q2 , q3 , q4 , q10 , q18, q21 – RC: w5 – S: 

y1,  y2 , y5, y6 – RP: x1, x3, x4 – R: z1 , z3 , z7 

2. 35% decrease in 

capacity of facilities 
E[Z1] = 18,868,785 -2.03% 

CC: q1 , q2 , q3 , q10 , q14 – RC: w5 – S: y1,  y2 , y5 

– RP: x1, x3, x4 – R: z1 , z3 , z7 

3. 20% decrease in 

capacity of facilities 
E[Z1] = 19,216,406 -0.23% 

CC: q2 , q3 , q10 , q14, q18 – RC: w5 – S: y1,  y2 , 

y5 – RP: x3, x4 – R: z1 , z2 , z3 

4. 5% decrease in 

capacity of facilities 
E[Z1] = 19,244,435 -0.08% 

CC: q2 , q3 , q10 , q14 – RC: w5 – S: y1,  y2 , y5 – 

RP: x3, x4 – R: z1 , z2 , z3, z7 

5. 5% increase in capacity 

of facilities 
E[Z1] = 19,272,764 0.06% 

CC: q2 , q3 , q10 , q14 – RC: w5 – S: y1,  y2 , y5 – 

RP: x3, x4 – R: z1 , z3, z7 

6. 20% increase in 

capacity of facilities 
E[Z1] = 19,294,625 0.18% 

CC: q2 , q3 , q10 – RC: w5 – S: y1,  y2 , y5 – RP: 

x3, x4 – R: z1 , z3, z7 

7. 35% increase in 

capacity of facilities 
E[Z1] = 19,308,582 0.25% 

CC: q2 , q3 , q10 – RC: w5 – S: y1, y5 – RP: x3, x4 

– R: z1 , z3, z7 

8. 50% increase in 

capacity of facilities 
E[Z1] = 19,025,149 -1.22% 

CC: q2 , q3 , q10 – RC: w5 – S: y1, y2 – RP: x4 – 

R: z1 , z7 

* Collection centers (CC), recovery centers (RC), suppliers (S), remanufacturing plants (RP), retailers (R) 

 

4.4. Evaluating the proposed solution approach  

As discussed previously, the main feature of the proposed scenario-based robust possibilistic 

(SRP) model is to assist with strategic decisions under uncertainty of various input parameters. To 

verify the performance of the proposed SRP model, we conducted a Monte Carlo simulation and 

generated a series of numerical experiments (e.g., Jato-Espino et al., 2014). Then, we employed 

an ANOVA test to compare the means of the SRP and simulated deterministic (SD) models. As 

mentioned in Subsection 4.3.1, the solution approach has been introduced to address uncertain 

parameters, such as demand, return, and remanufacturing plant capacities. In the SRP model, TFNs 

have been incorporated to deal with uncertainty. In this regard, Beta distribution is utilized to 

simulate TFNs due to its similarity to triangular distribution (Johnson, 1997). The beta distribution 

is defined in terms of α and β which are two parameters (Walck, 1996). Eqs. (4.45) and (4.46) are 

applied to estimate the mean and the variance of Beta distribution in the interval [ lV , uV ].  

 

( ) ( )4.45l u lV V V



 

 
= + −  
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   α and β related to TFN ( lV minimum, mV average, uV maximum) can be obtained through Eqs. 

(4.47) and (4.48). For further information, interested readers can refer to Davis (2008).  
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To apply the simulation, random values for uncertain parameters are generated in Microsoft 

Excel by application of BETAINV (RAND (), α, β, lV , uV ) function. The computed BETAINV 

function associated with each TFN is replicated 1,000 times. Then, minimums, averages, and 

maximums of the simulated numbers are estimated for TFNs (i.e., category of demand, return, and 

remanufacturing capacity). Table 4.12 represents the optimal values, means, and standard 

deviations of ten numerical experiments for the SD and SRP models.  

 
Table 4.12 

Comparison between the simulated deterministic model and the scenario-based robust possibilistic model 

Experiment  SD model 
SD computational 

time (seconds) 
 SRP model 

SRP computational 

time (seconds) 

1 19,412,288 7.26 19,412,528 29.85 

2 19,408,218 6.01 19,411,241 28.95 

3 19,378,087 7.00 19,379,200 12.02 

4 19,374,360 6.87 19,374,771 43.76 

5 19,374,779 14.45 19,377,532 23.22 

6 19,424,030 7.47 19,423,650 27.80 

7 19,407,858 16.01 19,409,704 27.06 

8 19,404,934 6.92 19,403,529 23.02 

9 19,422,846 9.16 19,423,293 29.21 

10 19,419,652 8.33 19,420,489 47.35 

Mean 19,402,705  19,403,594  

Std. Deviation 19,694  19,312  
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Table 4.13 indicates the results of the ANOVA test. There is not a significant difference 

between the means of the SD and the SRP models, since the P-value is equal to 0.920. We verified 

that the SRP model performs similarly to the SD model with 1,000 replications. Therefore, it is 

worthy to note that the SRP approach enables decision-makers to reach optimal solutions in 

uncertain situations without time-consuming mathematical simulations.  

 

Table 4.13 
Summary of the ANOVA test computed by IBM SPSS Statistics (V24) 

 Sum of Squares df Mean Square F Sig. 

Between Groups 3,947,161.250 1 3,947,161.250 0.010 0.920 

Within Groups 6,847,136,108 18 380,396,450.4   

Total 6,851,083,269 19    

 

 

4.5. An extension to the multi-objective model  

   Eq. (4.49) is utilized to optimize the environmental compliance of third parties. To this aim, three 

qualitative parameters are considered including Ksn, Mfn, and Nrn as the indicators of the green 

performances of suppliers, remanufacturing plant(s), and electronic recovery center(s), 

respectively. Ksn represents the green practices employed by Supplier s to provide the 

supplementary module n required for remanufacturing. Mfn displays the green practices used by 

the potential plant f to remanufacture electronics by assembling n components. Nrn indicates the 

green practices of the recovery center r to recover the returned products and recycle n components 

via disassembling the unrecoverable products. In this study, a fuzzy TOPSIS method is adopted to 

prioritize the facilities based on their green practices. This type of multiple-criteria decision- 

making (MCDM) analysis is suitable for conducting a systematic comparison between different 

alternatives while uncertainty may interfere with an expert’s judgment (Kannan et al., 2014). The 

related calculations to determine Ksn, Mfn, and Nrn are provided in Appendix 4.C.  
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4.6. Two-phase fuzzy compromise approach and the solutions 

A multi-objective approach should be utilized when there is no single solution that can optimize 

all the existing objectives simultaneously. The optimal decisions are made based on a trade-off 

between different objectives. In this regard, the solutions of the multi-objective problems are 

known as efficient or non-dominated solutions. The main feature of non-dominated solutions is 

that the value of each objective function cannot be improved without sacrificing at least another 

objective function value (Branke et al., 2008; Mirzapour Al-E-Hashem et al., 2011). In this paper, 

the two-phase fuzzy compromise approach, based on the method of Li et al. (2006) is employed 

to solve the multi-objective problem. This method is the enhanced version of the max-min 

approach, and it leads to more precise non-dominated solutions than the max-min approach. To 

comply with the two-phase fuzzy compromise approach, the following steps are taken:  

▪ In the first step, the maximum (
max
kZ ) and the minimum (

min
kZ ) values of each objective are 

calculated. 

▪ In the second step, the minimum value of each objective is replaced as the initial solution 

(Ok) in Eq. (4.50), and Model (4.M1) is solved to achieve an optimal solution xo with Z0
k. 

Then, the membership function of each objective uk (x
o) from Eq. (4.50) is recalculated. 
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Constraints (4.1), (4.2), (4.5 to 4.8), (4.10 to 4.15), (4.29 to 4.31), (4.33), (4.36 to 4.44). 

 

   Finally, it is assumed that λl
k = uk (x

o), and Model (4.M2) are solved to generate the efficient 

solution x*. 
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Constraints (4.1), (4.2), (4.5 to 4.8), (4.10 to 4.15), (4.29 to 4.31), (4.33), (4.36 to 4.44). 

 

    As shown in Table 4.14, the maximum and the minimum of each objective are calculated 

separately. By solving Model (4.M1), λ = 0.78, Z0
2 = 9,891,800, Z0

3 = 9,995,400, and u2(x
o) = u3(x

o) 

= 0.78. Furthermore, the maximum and minimum values of total expected profit (Z1) are 

19,260,585 and 3,804,657, respectively while δ = α = β = ρ = θ = 1. 

 

Table 4.14 

The maximum and the minimum of each objective  

Objective function Zmax Zmin 

      
2

rZ  12,671,470 0 

      3Z  12,389,439 1,475,624 

 

    As   evidenced by Table 4.15, Model (4.M2) is computed with different combinations of wk. 

Then, two efficient solutions are obtained for 
2

rZ and 3Z . The obtained total expected profit (Z1) 

is 21,074,000 for w1 = 0.3, w2 = 0.7, 21,375,000 and for w1 = 0.8, w2 = 0.2. 

 

Table 4.15 

Efficient solutions associated with different combinations of wk 

Objective function w1 = 0.3, w2 = 0.7 w1 = 0.8, w2 = 0.2 

      
2

rZ  9,883,700 10,191,000 

      3Z  
10,118,000 9,988,400 

      Degree of feasibility 
δ = 0.5, α = 0.773,       

β = ρ = θ = 1 
δ = 0.5, α = 0.821,       

β = ρ = θ = 1 
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    Fig. 4.4 illustrates the impact of robustness price on non-dominated solutions of the bi-objective 

model. The application of the robust approach imposes a cost called the “robustness price” (Talaei 

et al., 2016). This type of cost is allocated to the system for the purpose of facing the uncertainties. 

Therefore, the solutions obtained in deterministic modes incur less cost in comparison with robust 

modes. 

 

 

Fig. 4.4. Impact of robustness price on the non-dominated solutions of bi-objective model 

 

4.7. Managerial implications 

Nowadays, electronic stewardship programs are experiencing growing attention for two 

reasons. First, several companies have attempted to contribute to recovery activities by delivering 

a green image of their products (Alumur et al., 2012; John et al., 2018). Second, government 

policies and environmental regulations have urged producers to design eco-friendly business 

frameworks (Hafezi and Zolfagharinia, 2018). This study offers valuable insights for managers. 

As demonstrated in Section 4.3.1, there are a variety of parameters (e.g., fixed and variable costs, 

demand, return, capacities of facilities and quality of the returned products) involved in an 

electronic RL network which can be uncertain in the real world. Some of those parameters are 

interrelated (e.g., uncertainty in demand, return, and the capacities of facilities), and are difficult 
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to address with deterministic models. Therefore, managers can apply the proposed method to 

configure RL networks considering uncertainty for several parameters simultaneously.  

In Section 4.3.3, we provided the results of the sensitivity analyses on the capacity of facilities 

(see Table 4.11). Based on the obtained results, the capacities of facilities have a direct impact on 

the RL network. As the capacity increases, fewer facilities are required to fulfill the market 

demand. For example, the total selected facilities drop from 18 to 9 when moving from Case 1 to 

Case 8. In this regard, the distances between facilities increase, and consequently, the 

transportation costs will elevate. 

To illustrate this behaviour, we compared the distances between 3 tiers (i.e., retailers, markets, 

and collection centers) of the multi-echelon network for different capacity levels. Fig. 4.5 and Fig. 

4.6 depict the optimal networks and distances between the selected echelons for Case 8 of Table 

4.11 and the original solutions (Table 4.5). As shown in Fig. 4.5, the selected retailers decreased 

from 3 (in the original case) to 2 (in Case 8 of Table 4.11) by increasing the capacity levels of 

facilities. As a result, the fixed-cost associated with open facilities decreased while the 

transportation cost grew due to the distance increase. The red dotted lines demonstrate how 

distances between the locations are extended by reducing the number of retailers. For example, the 

distance between the retailer in Brampton (z3) to the market m* is less than the distance between 

the retailer in Toronto (z1) to m*. Fig. 4.6 illustrates the same concept between the market m** and 

the q3 and q14 collection centers in the reverse flow. Therefore, an increase in the capacity of 

facilities does not necessarily lead to a higher total profit in the RL network. In this regard, 

decision-makers should apply the proposed model before deciding to increase the capacities of 

facilities.   

In this paper, the bi-objective model is solved with different pairs of distance metrics (wk). As 

mentioned previously, the value of one objective function cannot be improved without sacrificing 

the value of another objective function in the non-dominated solutions of bi-objective models. For 

example, it has been indicated in Table 4.15 that the value of environmental compliance from the 

third parties decreased from 10,118,000 to 9,988,400, while the value of the proposed SRP model 

increased from 9,883,700 to 10,191,000 by changing the distance metric. This provides managers 

with an opportunity to decide how to compromise between the two objectives based on their supply 

chain strategies. In addition, the minimum satisfaction level (i.e., α) of the possible violation for 

the soft constraint of demand has been increased from 0.77 to 0.82. As mentioned before, higher 
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minimum satisfaction levels are more desirable when decision-makers are conservative and not 

interested in the violation of soft constraints. 

 

Original Case 

 

Case 8 of Table 4.11 

 
Fig. 4.5. The distances between the locations of retailers     and locations of markets     based on the real 

scale. 

          The connections that stay the same by moving from the original case to Case 8 of Table 4.11 

         The connections that change by moving from the original case to Case 8 of Table 4.11 
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Original case 

 

Case 8 of Table 4.11 

 
Fig. 4.6. The distances between the locations of markets     and locations of collection centers     based 

on the real scale.  

         

          The connections that stay the same by moving from the original case to Case 8 of Table 4.11 

         The connections that change by moving from the original case to Case 8 of Table 4.11 

 

4.8. Conclusions  

In this study, a scenario-based robust possibilistic optimization model has been developed and 

applied to an electronic RL network under uncertainty. The network includes multiple echelons, 

components, products, and periods. In the proposed mathematical model, each parameter has been 

defined based on triangular fuzzy numbers to cover the possible ranges of values. The expected 

value has been applied to deal with the fuzzy objective function, while fuzzy lateral and expected 

interval have been utilized to convert the fuzzy constraints to the equivalent crisp versions. The 

scenario-based programming has been integrated with robust possibilistic optimization to consider 

the role of efficiency in product recovery. To control the feasibility robustness and optimality 

robustness related to uncertain parameters and flexible constraints, penalty costs have been 

defined. One of the main advantages of the proposed model, compared to other methods in the 
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literature, is simultaneously considering the feasibility robustness and the optimality robustness 

for different scenarios. The solutions include the optimal ranges of the objective function and 

decision variables. The conducted sensitivity analyses have verified the robustness of the proposed 

model. It has been shown that the increase in the confidence level of constraints has led to a lower 

value of the objective function (total expected profit). This is intuitive because a large degree of 

feasibility emphasizes fulfilling the constraints instead of maximizing the objective value. 

To handle resource shortages and economic volatility, reducing the defect rate should be taken 

into account. Therefore, sensitivity analysis has been conducted on disposal fraction for different 

ranges of recovery rates. According to the findings, the disposal fraction had a major negative 

impact on the total profit of the RL network. In other words, the efficiency in recycling returned 

electronics can enhance profitability and reduce environmental issues significantly. 

A Monte Carlo simulation has been undertaken to evaluate the performance of our proposed 

model. Although uncertain parameters are used in the scenario-based robust possibilistic model, 

the ANOVA test has statistically verified our model. To consider the environmental compliance 

of the third parties, the optimization model has been extended to a bi-objective model. The two-

phase fuzzy compromise approach has been utilized to calculate the efficient solutions for the 

multi-objective optimization model. Comparing the two non-dominated solutions illustrates that 

the degree of feasibility (α) deviates from 0.773 to 0.821 by changing the weight factors. In this 

type of multi-objective problem, choosing an appropriate solution depends on the managerial 

approach, optimal values, and feasibility robustness associated with the uncertain parameters. 

The proposed scenario-based robust possibilistic model combined with the MCDM method 

offers a new approach for designing an electronic RL network. Some potential research directions 

emerge from this study. For instance, since one of the main strategies to reduce the environmental 

impact of RL networks is associated with the transportation sector, transportation strategies can be 

further considered and examined in this optimization model.  Besides, the role of the carbon tax 

rate and its impact on CO2 emission can also be investigated in the facility location design. In 

addition, possibilistic programming methods such as fully fuzzy programming can be utilized to 

solve the proposed model and compare the results. Other forms of robust optimization, such as 

ellipsoidal and box uncertainty sets, represent interesting potential methods to address imprecise 

parameters. 
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Chapter 5. An ecological multi-objective model to configure a sustainable 

beverage container reverse logistics network  

 

5.1. Introduction 

The business definition of RL is to create value over the entire life cycle of a product through 

the recovery of used products (Carter and Ellram, 1998; Srivastava, 2008; Dekker et al., 2013; 

Govindan and Soleimani, 2017; Amin et al., 2018). The RL network design has received great 

attention due to the economic impact, environmental compliance, and social responsibility 

(Pishvaee et al., 2010; Kannan et al., 2012; Alumur et al., 2012; Noman and Amin, 2017; Papen 

and Amin, 2019). On this matter, the optimal configuration of facility location networks provides 

benefits to the companies involved in reverse flow (i.e., optimizing the resource utilization), and 

also works in the favor of sustainability (i.e., usage of natural resources wisely and efficiently). 

The Beverage Container Stewardship Program Regulation (BCSPR) emphasizes on considering 

environmental factors in beverage container RL networks in Vancouver, Canada. As illustrated in 

Fig. 5.1, three aspects of economic, environmental, and social must be addressed to design a 

sustainable RL network.  Furthermore, there is a variety of uncertain parameters affecting the 

configuration of facility location models (Guiffrida and Jaber, 2008; Cardoso et al., 2013; Trochu 

et al., 2018; Tosarkani and Amin, 2019). In this study, an integrated multi-objective model is 

developed to address multiple sources of uncertainty for a sustainable beverage container RL 

network.   

 
Fig. 5.1. The interconnected pillars of sustainability 
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5.2. Literature review 

This section reviews the literature related to facility location design in RL and closed-loop 

supply chain (CLSC). Jayaraman et al. (1999) applied a MILP model to design a multi-echelon, 

multi-product RL network. Fleischmann et al. (2001) configured a CLSC with regards to forward 

facility locations. They applied the copier remanufacturing case study to evaluate the accuracy of 

the proposed CLSC. Ko and Evans (2007) applied a MILP model for a multi-product, multi-period, 

two-echelon network. Demirel and Gökçen (2008) used a MILP model to develop a multi-echelon 

model for a CLSC consisting of manufacturers, distribution centers, customer zones, disassembly, 

and collection centers.  

Gomes et al. (2011) used a generic MILP model to configure an electric and electronic 

equipment recovery network including private consumers, companies, public services, 

municipalities, original equipment manufacturer (OEM), private collection, and sorting centers, 

recycling facilities, and waste incineration. Özceylan and Paksoy (2013) applied a MILP model to 

design the facility location for a CLSC. Alshamsi and Diabat (2015) mentioned that designing the 

RL network has received attention on account of different aspects (e.g., economic, environment, 

and social values). They utilized a MILP model to optimize the total profit of a household RL 

network. Mohammad-Pajooh et al. (2018) applied a MILP model to configure a facility location 

model for the purpose of treating flowback water as the result of shale gas hydraulic fracturing. 

The lack of precise information adds a level of complexity for the RL network design. Some 

researchers have addressed this by developing mathematical programming models that account for 

uncertainty in the parameters. Amin and Zhang (2012) presented a multi-echelon CLSC network 

consisting of supplier(s), manufacturer(s), distributor(s), retailer(s), customer(s), recycling, and 

disposal sites. They used a scenario-based MILP model to consider the impact of imprecise 

demand and return on the total cost.  

Kilic et al. (2015) mentioned that the amount of waste has been increased considerably due to 

the growing consumption in recent years. They utilized a MILP model with different scenarios to 

handle electronic waste. Ayvaz et al. (2015) used two-stage stochastic programming to maximize 

the profit for an electronic RL network. Rezaee et al. (2017) employed two-stage stochastic 

programming to configure an environmental office furniture supply chain. Jin et al. (2018) applied 

fuzzy logic and non-dominated sorting genetic algorithm (NSGA-II) to consider a location-

allocation problem for NdFeB magnet recovery under supply and demand uncertainties. Tosarkani 
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and Amin (2018a) developed a fully fuzzy method to address uncertain fixed and variable costs in 

a battery CLSC network.    

In some RL models, there are not necessarily linear relationships between the parameters and 

the decision variables. Therefore, finding a solution for the non-linear parts can be managed using 

mixed-integer non-linear programming (MINLP) models. Miranda and Garrido (2004) presented 

a multi-echelon network (i.e., plant, central and regional warehouses, retailers, or demand zones). 

They used an MINLP model to formulate the mathematical model. Kim et al. (2006) introduced a 

mathematical model for a CLSC to maximize the profit. Min et al. (2006) employed an MINLP 

model to configure a network including customers, initial collection points, and centralized return 

centers. Sasikumar et al. (2010) designed a multi-echelon RL network for a case study of a truck 

tire. They employed an MINLP model to maximize the profit of the proposed model. 

In facility location problems, the economic aspect of networks has been conventionally 

considered as the main objective. However, various factors have an impact on the configuration of 

facility location models (e.g., environmental issues, social responsibility, and technological 

innovation of third parties). Pati et al. (2008) formulated a mixed-integer goal programming model 

for a paper recycling network including vendors, dealers, suppliers, and manufacturers. They 

proposed a MOM including the total cost of the RL, product quality, and environmental benefits 

of the recovery process. Bojarski et al. (2009) developed a MOM for a supply chain network. They 

aimed to optimize the net present value and damage impacts of the network.  

Ramezani et al. (2013) formulated a stochastic MOM for designing the facility location for a 

forward and reverse logistics network. They aimed to maximize the total profit, customer service 

level, and minimize the defect rate. Bing et al. (2014) designed a MOM to minimize the 

transportation cost and environmental issues for a plastic waste RL network. Govindan et al. 

(2016) presented a fuzzy MOM to design a sustainable RL network under uncertainty. Yu and 

Solvang (2016) presented a MOM to minimize the cost, carbon emissions, resource utilization, 

and waste for an RL network.  

Amin and Baki (2017) presented a multi-objective MILP model to configure a global CLSC 

with regard to uncertain demand. Amin et al. (2017) applied a decision tree approach to consider 

different transition probabilities to compute the total expected profit in a tire CLSC network. 

Tosarkani and Amin (2018b) proposed a multi-objective MILP model to optimize the total profit, 

on-time delivery, environmental compliance, and reliability of an electronic RL network. Jin et al. 
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(2019) proposed a bi-objective model consisting of the total profit and environmental benefits for 

the value recovery of neodymium-iron-boron magnets in the United States. Fakhrzad and 

Goodarzian (2019) developed a new fuzzy multi-objective programming approach for a production 

distribution model. The proposed multi-objective model included optimizing the total cost, gas 

emissions costs, and reliability of delivery demand. Karimi et al. (In Press) designed a multi-

objective green closed-loop supply chain (GCLSC) under uncertainty. The objectives were to 

optimize the total profit, the fill rate of market demand, and the satisfaction of GCLSC 

stakeholders. Tosarkani et al. (2020) mentioned that the profitability of an RL cannot be sustained 

unless all the entities involved in the network consider both economic and environmental aspects. 

They proposed a bi-objective model for an electronic RL network under uncertainty. Table 5.1 

includes an overview of some related mathematical models. 
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Table 5.1 

Summary of some papers related to design and optimize CLSC and RL networks 

Authors 
Multi- 

product 

Multi- 

period 

Multi- 

objective 
Uncertainty 

Types of 

industry 

Types 

of 

network 

Solution 

approach 

Real 

locations 

Demirel 

and 

Gökçen 

(2008) 

     RL MILP  

Pati et al. 

(2008) 
    

Paper 

recycling 
RL 

MILP, Goal 

programming 
 

Bojarski et 

al. (2009) 
    

Maleic 

anhydride  
SC MILP  

Sasikumar 

et al. 
(2010) 

    Truck tire RL MINLP  

Gomes et 

al. (2011) 
    Electronic  MILP  

Özceylan 

and Paksoy 

(2013) 

     CLSC MILP  

Bing et al. 
(2014) 

    
Household 
plastic 

RL MILP  

Kilic et al. 

(2015) 
    Electronic  MILP  

Govindan 

et al. 

(2016) 

     RL 

Fuzzy 

programming, 

Particle 

swarm 

 

Yu and 

Solvang 

(2016) 

     RL MILP  

Amin and 

Baki 

(2017) 

     CLSC 
MILP, Fuzzy 

programming 
 

Tosarkani 

and Amin 

(2018a) 

    Battery RL 
MILP, Fuzzy 

programming 
 

Proposed 

model 
    

Beverage 

container 
RL 

Multi-

objective 

stochastic 

possibilistic 

programming 

 

 

According to the review of the related literature, designing and optimizing beverage container 

RL networks have not been considered in the other academic papers. Furthermore, most studies 
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emphasize on economic and environmental aspects of facility location design. However, social 

responsibility and technological innovation of third parties may have a significant impact on 

designing RL networks. In this research, we develop a stochastic possibilistic MOM for a beverage 

container RL network. This hybrid model is developed for a multi-echelon (multiple suppliers, 

beverage companies, container recovery centers, markets, regional depots, and disposal center), 

and multi-product RL in multiple periods. The total cost, carbon emissions, social responsibility, 

and technological innovation of third parties in the RL network are addressed under uncertainty in 

different scenarios. In summary, the significant research features of this study are stated as follows: 

▪  Designing and optimizing a new multi-echelon, multi-product, multi-period 

beverage container RL network taking into consideration several supplier(s), beverage 

companies, regional depot(s), and container recovery center(s). 

▪ Developing a hybrid optimization model integrating the fuzzy programming 

approach with scenario-based programming method. The application of the proposed 

model is demonstrated using real locations in Vancouver, Canada. 

▪ Extending the optimization model to consider multiple objectives. The distances 

between the facilities affect the transportation costs and CO2 emissions. Furthermore, 

establishing a new facility has a significant social impact on the specific geographic region. 

Therefore, it is required to consider multiple quantitative (e.g., the total cost and CO2 

emissions) and qualitative (e.g., social responsibility and technological innovation) 

objectives to design a sustainable RL network. 

▪ Computing the non-dominated solutions for the proposed hybrid MOM. The 

various objectives may have conflict and have different impact on the network. In this 

regard, first, we illustrate the selected facilities for the proposed MOM, and then two bi-

objective models (i.e., total cost and CO2 emissions, total cost, and social responsibility 

and technological innovation of third parties) are considered to investigate the impact of 

different objectives on selected facilities. 

 

Fig. 5.2 illustrates the overall framework of developing the multi-objective scenario-based 

possibilistic model. In the 1st Step, a deterministic optimization model is introduced to design a 

beverage container RL network. In the 2nd Step, the deterministic mathematical model is advanced 
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to the scenario-based possibilistic model to address uncertainty. In the 3rd Step, the non-dominated 

solutions of the MOM are computed to indicate the trade-off surface between the objectives.   

 

 

 

 

 

   

 

 

 

   

 

 

 

 

Fig. 5.2. The overall approach to develop the multi-objective scenario-based possibilistic model  

 

The structure of this study is organized as follows: Section 5.3 is associated with the problem 

statement. In Section 5.4, solution methodologies (i.e., optimization model, sensitivity analyses, 

and the distance technique to reach the non-dominated solutions) are presented. Managerial 

implications are discussed in Section 5.5. Finally, Section 5.6 is devoted to the conclusions. 

 

5.3. Problem statement 

There is a great deal of concern related to the growing rate of the discarded beverage containers 

in the environment. Encorp Pacific (Canada) is the not-for-profit stewardship agency that 

supervises the recycling processes of beverage containers. With this respect, there are many third 

parties involving in the recovery plans across British Columbia (one of the provinces of Canada). 

As a result of Encorp’s stewardship plan, 101.9 thousand tonnes of CO2 emissions were reduced 

in 2016 (Encorp annual report, 2016). In British Columbia, 98.6% of the population has access to 

a regional return depot. The used aluminum cans collected by the regional depots are transported 

to a facility to be melted and converted to the sheets for producing new cans. The large portions 

Objective: To design a beverage container RL network. 

1st Step: Introduction of deterministic optimization model 

to optimize the total cost, carbon emissions, social 

responsibility, and technological innovation of third parties 

 

2nd Step: Developing the mathematical formulation to 

the scenario-based possibilistic model. 

3rd Step: Computing the non-dominated solutions of the 

multi-objective scenario-based possibilistic model. 
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of CO2 emissions stem mostly from transportation. It is noticeable that different types of fixed and 

variable costs are associated with this recovery plan. In this regard, the program efficiency has a 

significant impact on the reduction of the total cost and CO2 emissions. In this problem, we focus 

on Vancouver municipal areas as illustrated in Fig. 5.3. 

 

 
Fig. 5.3. Municipal districts in Vancouver (Areas of the city, 2018) 

 

 

Fig. 5.4 shows a multi-echelon, multi-period, multi-product beverage container RL network. 

The regional collection depot(s) collect the used beverage containers from the customers and send 

them to the container recovery center(s). The recovery process is provided for the used containers. 

As mentioned before, the used cans are converted into the aluminum sheets. There are different 

ratios of recovery rate due to the efficiency of the recovery center(s) and the quality of the used 
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items. In this study, it is assumed that the recovery center(s) are parts of the plants that produce 

new cans. The aluminum cans produced by the recovery center(s) are shipped to the beverage 

companies, and the unrecoverable amounts are transferred to the disposal center. The beverage 

companies may send the order to the supplier(s) due to the shortage of containers provided by the 

recovery center(s). Finally, the beverage companies are responsible to fulfill the market demand. 

In this study, we aim to consider the total cost and environmental concerns (e.g., carbon emissions) 

social responsibility and technological innovation of third parties associated with this plan by 

answering the following questions: 

▪ Which supplier(s), container recovery center(s), beverage companies, regional depot(s) 

must be selected?  

▪ How many cans must be purchased by the beverage companies from the supplier(s) to 

fulfill the market demand (based on the capability of the recovery center(s) to recycle 

the beverage containers)?  

 

 

 

 

 

 

 

 

 

 

 

 

                                  

                            

                               Fig. 5.4. The beverage container RL network  
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5.4. Optimization model 

A mixed-integer linear programming model is defined to minimize the total cost and the carbon 

emissions of the proposed network. The required sets, parameters, and decision variables are 

employed as follows:  

 

Sets 

I = set of cans (i ∈ I) 

S = set of suppliers (s ∈ S) 

R = set of beverage companies (r ∈ R)  

C = set of container recovery centers (c ∈ C)  

M = set of customers (markets) (m ∈ M) 

D = set of regional depots (d ∈ D)  

T = set of periods (t ∈ T) 

 

Parameters 

Ac = cost of agreement (i.e., fixed-cost) with container recovery center c 

Br = cost of agreement (i.e., fixed-cost) with beverage company r  

Es = cost of agreement (i.e., fixed-cost) with supplier s 

Fd = cost of agreement (i.e., fixed-cost) with regional depot d 

Gi = purchasing cost of can i from suppliers   

Hi = recovery cost related to can i 

Oi = unit cost of transportation per Km associated with can i 

Lsr = distance between locations s and r 

Lc = distance between recovery center c and disposal center 

Ji = cost saving of can i due to recovery process 

Ki = disposal cost of can i 

Nmit = demand of customer (market) m for can i associated with period t 

ei = disposal rate of can i 

Pmit = return of can i related to customer (market) m associated with period t 

fci = maximum capacity of container recovery center c for can i 

kri = maximum capacity of beverage company r for can i 
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psi = maximum capacity of supplier s for can i 

ldi = maximum capacity of regional depot d for can i 

g = truck capacity 

u = truck CO2 emissions per km  

ζsi = social responsibility and technological innovation of supplier s to provide can i 

ξci = social responsibility and technological innovation of container recovery center c to recover 

can i 

 

Decision Variables 

Usrit = number of can i shipped to beverage company r by supplier s associated with period t 

Vcrit = number of can i recovered by container recovery center c for beverage company r associated 

with period t 

Wrmit = number of can i sent by beverage company r to market m associated with period t 

Xmdit = number of can i returned from market m to regional depot d associated with period t 

Ydcit= number of used can i shipped to container recovery center c from regional depot d associated 

with period t 

Zcit = number of unrecoverable can i shipped to disposal center from container recovery center c 

associated with period t    

wr = 1, if the beverage company is located and set up at potential site r, 0, otherwise. 

xc = 1, if the container recovery center is located and set up at potential site c, 0, otherwise. 

yd = 1, if the regional depot is located and set up at potential site d, 0, otherwise. 

vs = 1, if the supplier s is selected, 0, otherwise.  
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The first objective function (z1) is developed to minimize the total cost of the beverage container 

RL network. In this regard, variable costs (i.e., costs of recovery, transportation, purchasing new 
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regional collection depot(s), and beverage company(s) are taken into account. The second 

objective (z2) is implemented to minimize the carbon emissions of transportation in the RL 

network. The third objective function (z3) is employed to maximize the social responsibility and 

technological innovation of suppliers (ζsi) and container recovery centers (ξci). The parameters of 

ζsi and ξci are qualitative indicators representing the values of suppliers and container recovery 

centers from consumer perspectives. As indicated by Fig. 5.5, an overall framework is proposed 

to measure the social responsibility and technological innovation of third parties based on the four 

criteria (e.g., Internet of Things (IoT) implementation) and ten sub-criteria (e.g., cloud-computing 

capabilities, digital connectivity requirements, and application of smart things such as smart 

machines and services). In this study, a multiple criteria decision-making (MCDM) technique (i.e., 

fuzzy analytic network process (FANP)) is utilized to convert such qualitative criteria to 

quantitative parameters (calculations are provided in Appendix 5.A). 

Constraint (5.1) is required to balance the quantities of products sending to the market with the 

numbers of cans either reproduced by the container recovery center(s) or purchased from the 

supplier(s). Constraint (5.2) is applied to ensure that all market demands are fulfilled. Constraint 

(5.3) represents that the numbers of products shipped to the regional collection depots should be 

equal to the returns of used beverage containers. Constraint (5.4) balances the number of used cans 

returned by the markets with the ones shipped to the recovery center(s). Constraint (5.5) shows the 

disposal rate of used beverage containers. Constraint (5.6) is a trade-off between the quantities of 

returns, recovered and unrecovered containers. Constraint (5.7) indicates the maximum capacities 

of beverage companies for production. Constraints (5.8), (5.9), and (5.10) are associated with the 

capacities of recovery center(s), supplier(s), and regional collection depot(s), respectively. 

Constraint (5.11) illustrates the binary variables. Finally, non-negative decision variables are 

presented by Constraint (5.12). 
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Fig. 5.5. The overall framework to prioritize suppliers and container recovery centers regarding the application of technological innovation and 

their influence on society (Sharma et al., 2017; Manavalan and Jayakrishna, 2019; Tosarkani et al., 2019) 
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5.4.1. Application of the optimization model 

In this section, the optimization model is investigated using information related to Vancouver. 

As indicated in Fig. 5.3, there are 22 municipal areas that are considered as the regional markets. 

The values of the demands related to market m associated with product i in period t (Nmjt) are 

assumed as one percent of the population of the region based on the 2011 census of Canada. With 

this respect, the values of returns (Pmjt) are computed as ten percent of Nmjt.  

Transportation costs can be considered as functions of fuel prices and distances between potential 

locations. In this regard, Google Maps is applied to calculate the driving distances that have a 

direct impact on transportation costs and carbon emissions. The disposal rate is estimated based 

on the recovery rate of aluminum containers (Encorp annual report, 2016). Since there are various 

types of aluminum cans containing different products, the disposal rate may vary. In this regard, 

different scenarios are considered for the disposal rate of containers that are discussed in Section 

5.4.2. The parameter of T (i.e., number of periods) is equal to 2, since the model is investigated 

semi-annually. The other parameters’ values are mentioned in Table 5.B.1 in Appendix 5.B. IBM 

ILOG CPLEX 12.8 is employed to solve the optimization model. There are 496 constraints, 3,104 

single variables, 28 binary variables, and 14,996 non-zero coefficients. The 1st, 2nd, and 3rd 

objectives are solved independently with regard to Constraints (5.1) to (5.12). The minimum total 

cost, carbon emissions, technological innovation and social influence have been obtained as 

3,768,800, 757,986, and 209,088 respectively. The selected facilities are mentioned in Table 5.2. 

 

Table 5.2                
Solution for the proposed beverage container RL            
Objective 

value  

Selected regional depots Selected 

recovery centers 

Selected 

suppliers 

Selected beverage 

companies 

Z1: 3,768,800 

 

 

y3: 

Strathcona,                        

y4: Renfrew-Collingwood, 

y5: Kitsilano 

x3: Kitsilano, 

x5: Hastings 

Sunrise 

v1 and  

v5: Downtown 

  

w1: Hastings Sunrise, 

w4: Grandview 

Woodland, 

w7: Downtown 

 

Encorp is committed to monitoring consumer awareness, strategic planning, infrastructure 

development, and financial management. Therefore, it is logical that all operational activities 

delivered by supplier(s), recovery center(s), regional collection depot(s), and beverage companies 

should be implemented in an optimal RL network. Fig. 5.6 illustrates the optimal configuration of 

the beverage container RL network in Vancouver.  
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Fig. 5.6. The optimal network of beverage container RL in Vancouver 

 

Nowadays, businesses are influenced by governmental and provincial regulations to tackle the 

environmental impact of their operations. However, there is not a single method to overcome such 

issues. Some decision-makers believe that employing technological innovation (i.e., eco-product 

design and using eco-technology in operations) can be a decent approach, while others emphasize 

on carbon tax policy instead (Tasker, 2019). Therefore, we first configure the beverage container 

RL network to minimize the total cost, which is the traditional objective in CLSC and RL network. 

In this regard, the impact of uncertainty on the total cost is investigated through some sensitivity 

analyses, and then an integrated approach (i.e., stochastic possibilistic method) is presented in 

Section 5.4.2. Thereafter, all three objective functions are considered simultaneously to optimize 

the beverage container RL network. 

In real life, it is likely that unpredictable changes happen in the values of parameters involved 

in the configuration of networks (Esnaf and Küçükdeniz, 2009; Liu and Xu, 2011; Abdallah et al., 
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2012; Conceição et al., 2012; Tabrizi and Razmi, 2013; Subulan et al., 2015; Yang and Liu, 2015; 

Bai and Liu, 2016; Haddadsisakht and Ryan, 2018; Vlajic et al., 2018). As a result, the 

effectiveness of facilities’ locations may be affected, if such unexpected changes are not 

considered. With this respect, we analyze the impacts of random changes in demand and return on 

the total cost of the beverage container RL network. As illustrated in Table 5.3, the total cost of 

beverage container RL is very sensitive to such fluctuations. The percentage of change is computed 

with regard to the original solution (e.g., (4,144,979 - 3,768,800)/ 3,768,800 = 9.98% for the 1st 

scenario). By comparison between Scenarios 5 and 6, it can be concluded that the increase in 

demand leads to an increase in the total cost. Conversely, comparing Scenarios 7 and 8 shows that 

as return increases, the total cost decreases due to the cost-saving because of the product recovery. 

Furthermore, as demand and return change, the numbers of the selected facilities may vary. In 

Section 5.4.2, we advance the optimization model to the stochastic possibilistic model to handle 

such uncertainties. 

 

Table 5.3 

The impact of random fluctuations in demand and return on total cost and selected facilities 

Scenarios Objective value  Change%  Selected facilities 

1. 10% increase in demand   

and return 
Z1 = 4,144,979  9.98% v1, v4, v5 – w1, w4, w7 – x3 , x5 – y3, y4, y5 

2. 10% increase in demand   

and 10% decrease in return 
Z1 = 4,162,048   10.43% v1, v4, v5 – w1, w4, w7 – x3 , x5 – y3, y4, y5 

3. 10% decrease in demand   
and 10% increase in return 

Z1 = 3,375,574      -10.43% v1, v5 – w3, w7 – x5 – y3, y4 

4. 10% decrease in demand   

and return 
Z1 = 3,392,327      -9.99% v1, v5 – w3, w7 – x5 – y3, y4 

5. 10% increase in demand, 

while return is not changed 
Z1 = 4,153,252  10.20% v1, v4, v5 – w1, w4, w7 – x3 , x5 – y3, y4, y5 

6. 10% decrease in demand, 

while return is not changed 
Z1 = 3,383,800   -10.22% v1, v5 – w3, w7 – x5 – y3, y4 

7. 10% increase in return,  
while demand is not changed 

Z1 = 3,760,551      -0.22% v1, v5 – w1, w3, w7 – x3 , x5 – y3, y4, y5 

8. 10% decrease in return,  

while demand is not changed 
Z1 = 3,777,264      0.22% v1, v5 – w1, w4, w7 – x3 , x5 – y3, y4, y5 

 

As illustrated in Table 5.4, the disposal fraction rate is the other parameter that affects the total 

cost of the RL network. As the disposal fraction increases, the beverage companies lose the 

opportunity to reuse the recovered containers. Accordingly, the new products are supposed to be 
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purchased to replace the discarded containers. Therefore, the total cost and the environmental 

impacts of the whole RL network are increased as a result of the increase in the defect rate.  

 
Table 5.4 
The total cost of beverage container associated with different disposal rate 

ei = 0.15 ei = 0.25 ei = 0.35 ei = 0.45 ei = 0.55 ei = 0.65 

Z1 = 3,808,710 Z1 = 3,888,938 Z1 = 3,969,479 Z1 = 4,049,901 Z1 = 4,128,502 Z1 = 4,206,610 

 

Table 5.5 summarizes the impact of capacity levels on the total cost of the beverage container 

RL network. Accordingly, more facilities are required by decreasing the available capacity. 

Furthermore, Fig. 5.7 illustrates that the increase in capacity levels leads to a decrease in the total 

cost. In this regard, there is a nonlinear relationship between the total cost of the RL network and 

capacity levels. For example, the optimal network has great cost-saving as the capacity levels 

increase by 25% from Scenario1 to Scenario 2, since the number of the required facilities decrease 

from 13 to 11. However, the trend of cost-saving becomes slow, because the numbers of open 

facilities in the optimal network become stable from Scenario 3 to Scenario 5. 

 
Table 5.5 
Sensitivity analyses on the available capacity  

Scenarios 
Objective 

value  
Change % Selected facilities * 

1. 50% decrease in the 

capacity of facilities 
Z1 = 3,805,564  0.98% 

RD: y3, y4, y5 – RC: x3, x5 – S: v1, v2, v4, v5 – BC: w1, 

w2, w4, w7 

2. 25% decrease in the 

capacity of facilities 
Z1 = 3,775,466 0.18% 

RD: y3, y4, y5 – RC: x3, x5 – S: v1, v4, v5 – BC: w1, w3, 

w7 

3. Original case Z1 = 3,768,800 0.00 RD: y3, y4, y5 – RC: x3, x5 – S: v1, v5 – BC: w1, w4, w7 

4. 25% increase in the 

capacity of facilities 
Z1 = 3,766,923 -0.05% RD: y3, y4, y5 – RC: x3, x5 – S: v1, v5 – BC: w1, w4, w7 

5. 50% increase in the 

capacity of facilities 
Z1 = 3,765,133 -0.10% RD: y3, y4, y5 – RC: x3, x5 – S: v1, v5 – BC: w1, w4, w7 

* Regional depots (RD), Recovery centers (RC), Suppliers (S), Beverage companies (BC) 
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Fig. 5.7. The impact of capacity levels on the total cost and number of open facilities 

 

 

5.4.2. Extension to stochastic possibilistic model 

Scenario-based possibilistic method can be applied to handle imprecise parameters. On this 

matter, we consider different alternatives for the disposal rate and overcome the imprecise 

parameters through fuzzy programming. A hybrid solution approach is developed based on the 

methods proposed by Cadenas and Verdegay (1997), Parra et al., (2005), Snyder (2006), Jiménez 

et al., (2007), Peidro et al., (2009), Amin and Zhang (2013a), Pishvaee and Khalaf (2016). The 

new model includes different scenarios, fuzzy coefficients, and fuzzy right-hand sides. The general 

form of the proposed model is defined by Eqs. (5.13), (5.14), and (5.15).  
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In this model, ω is the number of different scenarios for the disposal rate that may occur with 

probability  . Suppose that x  and y  are the non-negative and binary variables. Moreover, 

c  and d   are variable and fixed costs, respectively. It is also assumed that a , b , e , f   are 

matrices. To reach an auxiliary crisp version of Eq. (5.13), the lateral margins associated with each 

imprecise parameter are computed. As illustrated in Fig. 5.8, c
  and c

  represent the lateral 

margins associated with the triangular fuzzy number ( )l m uc c ,c ,c   
   =  (Peidro et al., 2009). 

 

                         c
   

 1 

 

 

                                                       

                                                 m l
c c c
  

   = −    u m
c c c
  

   = −  

                                             lc

                                mc


                            uc


  

Fig. 5.8. Lateral margins of triangular fuzzy number (TFN) c  

 

Accordingly, the crisp version of Eq. (5.13) can be replaced by Eq. (5.16). 

 

 

 

      

The possibilistic constraints of (5.14) and (5.15) can be converted to crisp versions of Eqs. (5.17), 

(5.18), and (5.19) based on Parra et al. (2005) and Jiménez et al. (2007). 
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( )1 2 2 11 1 5.19
2 2 2 2

e e f f
E E x E E

   

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In this model, α is the degree of feasibility, and the expected interval (EI) of a is equal to 

( ) ( )1 2

1 1
, ,

2 2

a a l m m uE E a a a a 
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   
     = + +   

 
. The equivalent crisp version of the objective function 

and Constraints (5.1) to (5.12) for ω scenarios are provided as follows: 
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To solve the proposed stochastic possibilistic model, we estimate the lower and upper values of 

each TFN as 25 percent decrease and increase of its nominal value (see Table 5.B.2 in Appendix 

5.B). Furthermore, 3 scenarios of 5%, 10%, and 15% for the disposal rate are taken into account 

with probabilities of 0.30, 0.40, and 0.30, respectively. According to the different levels of α-cut, 

various objective values can be obtained. On this matter, the decision-makers play a prominent 

role to decide about the appropriate pair of (α, z). Table 5.6 includes the optimal solutions of the 

proposed model for the beverage container RL network. 

 

Table 5.6 

The optimal solutions based on different levels of α-cut 

α Total profit Selected entities 

0.1 3,374,938.83 v1, v5 – w3, w7 – x5 – y3, y4 

0.2 3,472,233.29 v1, v5 – w1, w3, w7 – x3 , x5 – y3, y4, y5 

0.3 3,569,370.79 v1, v5 – w1, w3, w7 – x3 , x5 – y3, y4, y5 

0.4 3,666,517.02 v1, v5 – w1, w3, w7 – x3, x5 – y3, y4, y5 

0.5 3,763,631.81 v1, v5 – w1, w4, w7 – x3 , x5 – y3, y4, y5 

0.6 3,860,603.04 v1, v5 – w1, w4, w7 – x3 , x5 – y3, y4, y5 

0.7 3,957,575.60 v1, v5 – w1, w4, w7 – x3 , x5 – y3, y4, y5 

0.8 4,054,564.33 v1, v5 – w1, w4, w7 – x3 , x5 – y3, y4, y5 

0.9 4,152,806.63 v1, v4, v5 – w1, w4, w7 – x3 , x5 – y3, y4, y5 
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Types of uncertain parameters should be taken into account to determine the degree of 

feasibility (Pishvaee and Khalaf, 2016). A large value of α is applied when fulfilling the constraint 

is more important than minimizing the objective. Therefore, it is required to examine whether 

entities are able to handle unpredictable changes in market demand and return. On this matter, 

capability to increase the production by suppliers, beverage companies, regional depots, and 

container recovery centers should be examined by the decision-makers. As illustrated in Table 5.6, 

increasing the degree of feasibility causes a rise in the total cost of the RL due to the increase in 

demand and return. In addition, an increase in α may lead to opening new facilities on account of 

the limited capacity. Accordingly, as α increases from 0.1 to 0.2, the 1st beverage company, 3rd 

container recovery center, and 5th regional depot are supposed to be selected. The same 

interpretation can be taken into account for 4th supplier when α increases from 0.8 to 0.9. Table 

5.7 shows how changing α may have an impact on the selected entities. As α changes from 0.2 to 

0.8, a load of products between suppliers and beverage companies (i.e., Usrit) increases from 

899,532 to 1,070,278, but it is still less than 1,080,000 which is the total capacity of Suppliers 1 

and 5. Therefore, there is no need to open an extra supplier. However, as α increases to 0.9, the 

load of products increases to 1,098,735 which is greater than the capacity of Suppliers 1 and 5. In 

this regard, it is required to select a new supplier (i.e., v4) for the purpose of increasing the available 

capacity of resources. 

 

Table 5.7 
The impact of α on the required capacity of suppliers 

α-cut Load of products between suppliers and 

beverage companies 

Required 

capacity 

Available capacity of selected 

entities 

0.2 
17i tU  = 540,000 & 51i tU  = 135,491 &        

5 7i tU  = 224,041 

899,532 1,080,000 = v1 + v5 = (30,000)2*3 

for all ω and t (ω = 3 & t = 2) 

0.8 
17i tU  = 540,000 & 

51i tU  = 247,574 & 5 7i tU  = 282,704  

1,070,278 1,080,000 = v1 + v5 = (30,000)2*3 

for all ω and t (ω = 3 & t = 2) 

0.9 
17i tU  = 540,000 & 41i tU  = 18,735 

51i tU  = 238,163 & 5 7i tU  = 301,837 

1,098,735 1,620,000 = v1+ v4 + v5 = 

(30,000)3*3 for all ω and t (ω = 3 

& t = 2) 

 

Table 5.8 indicates the sensitivity analysis of the proposed model regarding the probability of 

the disposal rate (Ψω) in each scenario (i.e., 5%, 10%, 15%). In this regard, the minimum total cost 
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can be obtained when the large portion of the probability (0.8) is associated with the lowest 

disposal rate.  

 

Table 5.8 

The total cost with regard to different alternatives for probability of disposal rate     

Alternatives Ψω = (0.8, 0.1, 0.1) Ψω = (0.1, 0.8, 0.1) Ψω = (0.1, 0.1, 0.8) 

Total cost 3,733,735.29 3,763,637.52 3,793,301.11 

 

5.4.3. Distance method and non-dominated solutions 

To configure a sustainable beverage container RL, environmental issues (e.g., amount of carbon 

emissions due to transportation between facilities) and social responsibility and technological 

innovation of third parties should be considered as well. Therefore, developing a multi-objective 

model is necessary to address different aspects of economic, environmental, and social associated 

with a sustainable beverage container RL. The distance method is the popular method to find the 

non-dominated solutions (Pareto fronts) in multi-objective problems (Branke and Miettinen, 2008; 

Mirzapour Al-E-Hashem et al., 2011). As indicated by Eq. (5.33), zi
*and wi are applied as the best 

values and distance metrics, respectively. Accordingly, z1, z2 and z3 must be solved separately to 

reach zi
*. Then, the ideal values are replaced in Eq. (5.34). By changing different pairs of wi, 

various non-dominated solutions can be obtained. While, α-value is equal to 0.5, the 1st, 2nd, and 

3rd objective functions are 3,763,631.81, 754,081.93, and 210,907.02, respectively. Table 5.9 

illustrates the non-dominated solutions for the proposed multi-objective model. The values of non-

dominated solutions are influenced by changing distance metrics. 
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Table 5.9 
The non-dominated solutions of 1st, 2nd, and 3rd objectives 

  Distance metrics  Objectives’ values Facilities 

Set w1 w2 w3 z1 z2 z3 Open 

1 0.80 0.10 0.10 3,813,000 876,730 63,424 
v1, v4 – w1, w3, w4, w7 – x2, x3, x4, 

x5 – y1, y2, y3, y4, y5, y7, y8, y9, y10 

2 0.10 0.80 0.10 3,784,200 755,340 30,179 
v1, v2, v5 – w1, w2, w4, w7 – x3, x4, 

x5 – y2, y3, y4, y5, y9, y10 

3 0.10 0.10 0.80 4,542,800 1,907,800 174,910 
v3, v4 – w1, w2, w4, w5, w6, w7 – x1 

–y2, y3, y4, y5, y6, y7, y8, y9, y10 

4 0.33 0.33 0.33 3,819,800 863,990 72,107 
v2, v4, v5 – w1, w2, w3, w4, w7 – x2, 

x3, x4, x5 –y3, y4, y5, y6, y8, y9, y10 

 

To analyze the trade-off between non-dominated solutions, the value path analysis (VPA) can 

be utilized. According to the properties of VPA, neither of the value paths is dominated, if they 

have intersections (Wadhwa and Ravinsdran, 2007; Amin and Zhang, 2014).  

In this study, there are different types of objective functions (i.e., minimizing total cost and CO2 

emissions along with maximizing the social responsibility and technological innovation of third 

parties) in the proposed model. Hence, some modifications are required to apply the VPA. In this 

regard, the non-dominated solutions are converted to normalized scales. In case of minimization, 

the inferior value of each objective among all sets is divided by its value in each non-dominated 

solution (e.g., normalized scale of z1: 4,542,800 / 3,813,000 = 1.19 and normalized scale of z2: 

1,907,800 / 876,730 = 2.18 for the 1st set). In the case of maximization, the objective value of 

certain alternatives is divided by the minimum value among all alternatives (e.g., the normalized 

scale of z3: 63,424 / 30,179 = 2.10 for the 1st set). Accordingly, a larger normalized scale gives rise 

to a more desirable result. Fig. 5.9 demonstrates that all value paths (i.e., Linear sets 1, 2, 3, and 

4) have intersections. Therefore, neither of the non-dominated solutions is superior. 
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Fig. 5.9. The trade-off relations among non-dominated solutions 

 

Two bi-objective models are analyzed to examine the impact of carbon emissions and social 

responsibility and technological innovation of third parties on the total cost of network. Table 5.10 

illustrates that the value of carbon emissions ((754,120 - 756,140) / 756,140 = - 0.27% for the 1st 

set) cannot be improved, unless the total cost is increased ((3,787,800 - 3,778,400) / 3,778,400 = 

0.25% for the 1st set). Table 5.11 also indicates that total cost must be increased ((4,001,800 - 

3,910,600) / 3,910,600 = 2.33%) to grow the impact of third parties on society ((165,400 - 126,390) 

/ 126,390 = 30.86%). 
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Table 5.10 
The non-dominated solutions of 1st and 2nd objectivities 

 
Distance 

metrics 
Objectives’ values 

Comparison with regard to 

base-case 
Facilities 

Set w1 w2 z1 z2 Change in z1  Change in z2 Open 

1 0.20 0.80 3,787,800 754,120 0.25% - 0.27% 

v1, v2, v5 – w1, w2, 
w3, w4, w7 – x3 , x4, 

x5 – y2, y3, y4, y5, y9, 

y10 

2 0.30 0.70 3,778,400 756,140 base-case base-case 

v1, v2, v5 – w1, w2, 

w4, w7 – x3 , x5 – y3, 

y4, y5 

3 0.50 0.50 3,779,300 755,460 0.02% 0.09% 
v1, v2, v5 – w1, w2, 

w4, w7 – x3 , x5 – y3, 

y4, y5, y9 
 

 

 
 Table 5.11 

 The non-dominated solutions of 1st and 3rd objectives 

 
Distance 
metrics 

Objectives’ values 
Comparison with regard to 

base-case 
Facilities 

Set w1 w3 z1 z3 Change in z1  Change in z3 Open 

1 0.20 0.80 4,345,400 174,910 11.12% 38.39% 
v3, v4 – w1, w7 – x1– 

y2, y3, y4, y5, y8, y9 

2 0.80 0.20 4,001,800 165,400 2.33% 30.86% 
v3, v4 – w1, w4, w7 – 

x1–y3, y5, y9 

3 0.90 0.10 3,910,600 126,390 base-case base-case 

v3, v4, v5 – w1, w3, 

w4, w7 – x2, x3, x4, x5 

– y1, y2, y3, y4, y5, y6, 

y7, y9 
 

 

Fig. 5.10, Fig. 5.11, and Fig. 5.12 indicate the Pareto fronts of the proposed multi-objective 

optimization model. Pareto fronts are shown for three bi-objective models to investigate the effect 

of every certain objective function on the other objectives in the beverage container RL network. 

As described previously, the normalized scales are applied to plot the Pareto fronts due to different 

types of objective functions. As demonstrated by the trade-off surface, a certain value of one 

objective function (e.g., carbon emissions) is not improved unless the value of another objective 

(e.g., total cost) is degraded. 
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Fig. 5.10. The Pareto front of carbon emissions and total cost 

 

 

                

Fig. 5.11. The Pareto front of the total cost, social responsibility and technological innovation of third 

parties 
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Fig. 5.12. The Pareto front of carbon emissions, social responsibility and technological innovation of third 

parties 

  

5.5. Managerial implications 

The application of RL networks has been expanded prominently for two reasons. First, 

customers are considering the environmental practices of companies (e.g., involving a recycling 

plan) in addition to environmental attributes of the products (e.g., recyclable). Second, government 

policies and regulations have led companies to hold environmentally friendly business 

frameworks. In his regard, companies have been motivated to be a part of RL networks to benefit 

from either tangible or intangible competitive advantages of such a strategic decision (Jayaraman 

and Luo, 2007). For example, the recovery of used products creates values as the return on 

investments for returned products. In addition, companies can deliver an environmentally friendly 

image to the community by adopting an RL network (e.g., offering return options).   

However, the design of real RL networks is a strategic decision which can be affected by several 

dynamic factors. Those unpredictable factors result in some risks and complexities for the 

businesses in the long-term (Kumar et al., 2017; Van Engeland et al., 2020). 

As mentioned previously, the concept of sustainability includes the economic, environmental, 

and social pillars. Therefore, there are several objectives involved in designing of RL network 

which may have conflict in practice. This study attempts to offer valuable insights to managers. 
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In Table 5.2, we provided the results of the optimal network based on the minimization of total 

cost regardless of carbon emissions, social responsibility and technological innovation of third 

parties. Fig. 5.13 illustrates the comparison between selected facilities while decision-makers 

allocate different relative importance to the objectives (z1, z2, and z3). As indicated in the original 

case, 2 suppliers (i.e., v1 and v5), 3 beverage companies (i.e., w1, w4, and w7), and 2 recovery centers 

(i.e., x3 and x5) are selected when the total cost has the highest priority. However, the configuration 

of the network is significantly changed, if the highest weight is considered for z3 (i.e., Set 3 of Table 

5.9). Suppliers 1 and 5 are replaced by Suppliers 3 and 4 which have the highest priority in Table 

5.A.7 in the aspect of social responsibility and technological innovation. Similarly, Recovery 

centers 3 and 5 are replaced by Recovery center 1 (i.e., the highest rank in Table 5.A.8). 

 

Original case (i.e., Table 5.2) Set 3 of Table 5.9 

 

 

Fig. 5.13. The network design of original case (i.e., Table 5.2) and Set 3 of Table 5.9.   

 

Furthermore, Fig. 5.14 depicts the selected facilities in two scenarios while all objectives are 

assumed to have the same priority. In the 1st scenario (i.e., Set 4 of Table 5.9), 3 suppliers (i.e., v2, 

v4 and v5), 5 beverage companies (i.e., w1, w2, w3, w4, and w7), and 4 recovery centers (i.e., x2, x3, 

x4 and x5) are selected when z1, z2, and z3 are equal to 3,819,800, 863,990, 72,107, respectively. 

However, it is likely that one facility becomes disrupted in practice. Therefore, it is assumed that 

the 2nd Recovery center (i.e., a higher rank in comparison with 3rd, 4th, 5th Recovery centers in 

Table 5.A.8) becomes unavailable. In this regard, z1, z2, and z3 are equal to 3,813,100, 852,850, 

71,026, respectively. Accordingly, the total cost and CO2 emissions of the network are improved, 

while the social responsibility and technological innovation of third parties are degraded. The 

  Suppliers, companies,  Recovery centers 
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proposed MOM enables decision-makers to investigate the configuration of facility location 

models with multiple objectives under uncertainty.  

 

Set 4 of Table 5.9 in the normal situation Set 4 of Table 5.9, while the 2nd Supplier is 

disrupted 

 

 
 

Fig. 5.14. The network design of Set 4 of Table 5.9 in the normal situation and in the case of disruption 

 

 

5.6. Conclusions 

In this study, a multi-objective, multi-echelon, multi-product, multi-period model has been 

developed to find the optimal configuration of a beverage container RL network (i.e., Encorp’s 

stewardship plan) in Vancouver. The proposed model offers a solution approach to optimize the 

total cost, generated carbon emissions, social responsibility and technological innovation of third 

parties. The network includes container suppliers, beverage companies, markets, regional depots, 

and container recovery centers. On this matter, various activities such as transportation, 

production, recovery, and disposal have been considered. These activities may have a significant 

impact on the sustainability of Encorp’s stewardship plan.    

The main objective of recycling programs is to reduce the environmental impact through the 

social responsibility and technological innovation (e.g., the application of eco-technology in 

production, and environmental compliance). It is noticeable that the total cost of networks should 

be taken into account for the viability of such environmental programs in the long-term. With this 

respect, there are a variety of ambiguities related to imprecise parameters. To handle these issues, 

a stochastic possibilistic model has been developed for an RL network. Triangular fuzzy numbers 

were used in the optimization model to account for uncertainty in demands, returns, fixed and 
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variable costs. In this research, scenario-based programming has been integrated with fuzzy 

optimization to examine the probable rate of disposal fraction. 

Based on the sensitivity analyses in this study, reducing the defect rate can decrease the total 

cost of RL significantly. As the disposal fraction decreases, beverage companies can reuse the 

recovered containers instead of purchasing new containers from suppliers. Furthermore, the 

environmental impact associated with disposing of the unrecoverable containers is reduced as well. 

To protect both environment and community, minimizing the carbon emissions along with 

maximizing the social responsibility of third parties are prominent factors. Because of this point, 

we have extended the optimization model to a multi-objective programming model. Then, the 

distance method has been employed to reach a trade-off surface. The non-dominated solutions 

have indicated that different facilities may be selected by changing the relative importance weight 

associated with objectives. To our knowledge, this research is among the first studies that has 

developed a multi-objective stochastic possibilistic optimization model to configure a beverage 

container RL network in Vancouver. According to our findings, the proposed model is an effective 

method to manage imprecise parameters in the recovery processes.  

This research can be extended in different directions. The proposed multi-objective model can 

be extended to consider on-time delivery, and efficiency rate in container recovery centers as the 

objective functions. Furthermore, transportation modes (e.g., rail, road) can be considered and 

examined in this optimization model. 
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Chapter 6. A robust optimization model for designing a wastewater treatment 

network under uncertainty: Multi-objective approach 

 

6.1. Introduction 

Nowadays, companies are expected to run their operations in a sustainable manner. 

Sustainability refers to the usage of resources in a way that future generations can benefit from 

them as well (Ahi et al., 2016; Moore et al., 2017). Environmental practices are prominent parts 

of sustainability. On this subject, recently, sustainable environmental strategies (SES) have been 

considered to design facility location models. SES are those applied to reduce companies’ 

environmental impact while still leading to cost-saving. In this regard, SES are led to optimize the 

companies’ utilization rate of resources which give rise to advance their economic performance 

(Marsillac, 2008; Sarkis et al., 2010). 

In the specific case of the oil and gas industry, hydraulic fracturing is utilized to access shale 

gas reserves. This operation involves the high-pressure injection of mixed carriers (i.e., water with 

a low volume of additives such as friction reducer, proppants, biocide, etc.) into a deep rock. As a 

result, fractures are created in the shale rock, and then gas releases. However, a large volume of 

fluids flows back to the ground surface after hydraulic fracturing operations. A great deal of 

concern is associated with improperly injection of polluted flowback fluids in landfills. 

Furthermore, pollution and depletion of water resources lead to the decline of available water for 

different users (e.g., industry and municipalities). Therefore, designing the wastewater treatment 

facilities includes a variety of benefits such as saving water resources and diverting waste from 

landfills and waterways. 

Accordingly, there are many challenges to configure such facilities with regard to an uncertain 

amount of required fracturing fluids and flowback rates in different periods. Therefore, the 

application of deterministic assumptions has not been sufficient to design wastewater treatment 

network (Yang et al., 2014; Bartholomew and Mauter, 2016; Mohammad-Pajooh et al., 2018). In 

this study, a robust optimization model is developed to cope with several sources of uncertainty in 

facility location design. 
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6.1.1. Literature review 

The type of uncertainty dictates the required optimization methods (e.g., robust optimization, 

possibilistic, and stochastic programming). Kim et al. (2018) classified the environment of 

decision-making to certain, risky, and uncertain situations. Deterministic mathematical 

programming models (MPMs) are applicable to solve problems whose parameters are known with 

certainty. Stochastic MPMs are applicable when, some or all, those parameters are random with 

known probability distributions (Gren et al., 2012; Kenne et al., 2012; Roghanian and 

Pazhoheshfar, 2014; Garrido et al., 2015; Yu and Foggo, 2017; Amin et al., 2017; Moreno et al., 

2018; Snoeck et al., 2019). Possibilistic MPMs are suitable when the system parameters are 

uncertain (Wu et al., 2018). Such models are riskier than stochastic ones. Robust optimization is 

attractive when the range of uncertainty is definable (i.e., ellipsoidal, polyhedral, and box 

uncertainty sets) (Ben-Tal et al., 2005; Bohle et al., 2010; Pishvaee et al., 2011; Li and Liu, 2013; 

Hasani et al., 2015; Moarefdoost et al., 2016; Eshtehadi et al., 2017; Yu et al., 2017; Caunhye and 

Cardin, 2018). 

 

6.1.1.1. Application of stochastic models in network design problems 

The characteristics of data sets should be considered to develop appropriate methods in 

uncertain situations. Stochastic programming is applicable when the statistical distribution of data 

sets is known for all scenarios. Pishvaee et al. (2009) proposed a stochastic model to design a 

forward and reverse logistics network for different scenarios. Mete and Zabinsky (2010) utilized 

a stochastic mathematical model to select the storage locations of medical supplies. Amin and 

Zhang (2013a) presented a bi-objective scenario-based optimization model to minimize the total 

cost of a closed-loop supply chain network (CLSCN) under demand and return vagueness. 

Vahdani and Mohammadi (2015) proposed a robust stochastic model to minimize the total cost 

and waiting time of a CLSCN. Shabani and Sowlati (2016) proposed a robust stochastic method 

to maximize the profit of the biomass supply chain with regard to the uncertainty of biomass 

quality and availability. Keyvanshokooh et al. (2016) developed a robust stochastic model to 

configure a CLSCN. They applied scenario-based programming to deal with the volatility of 

transportation costs, and polyhedral uncertainty sets to define ranges for imprecise demand and 

return. Rezaee et al. (2017) developed a stochastic model to configure a green supply chain in a 

carbon trading environment. Tosarkani et al. (2019) utilized a bi-objective scenario-based 
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optimization approach to design an electronic RLN under uncertainty. In their proposed model, 

the recovery rate of returned electronics was examined as a random parameter. 

 

6.1.1.2. Application of possibilistic programming in network design problems 

In some cases, it is not possible to estimate the probability of different scenarios. In this regard, 

possibilistic programming is applied to address uncertainty. Torabi and Hassini (2008) applied a 

possibilistic model to consider imprecise parameters (e.g., market demand, cost, time, and 

capacity) in a supply chain network (SCN) design. Aviso et al. (2010) used a fuzzy optimization 

model to optimize wastewater reuse in designing of an eco-industrial park. Pishvaee and Razmi 

(2012) introduced a fuzzy optimization model to configure an SCN. They applied an interactive 

fuzzy solution method to handle uncertainty. Subulan et al.  (2015) formulated a scenario-based 

possibilistic method to consider financial and collection risks. They considered two types of 

uncertainty (i.e., randomness and epistemic) to design a lead-acid battery CLSCN. Zare and Lotfi 

(2015) utilized a possibilistic mixed-integer linear programming (MILP) in a CLSCN design. 

Govindan et al. (2016) presented a fuzzy MOM to design a sustainable reverse logistics network 

(RLN) under uncertainty. Talaei et al. (2016) developed a bi-objective possibilistic mathematical 

model to minimize the total cost and environmental impacts of a CLSCN. Tosarkani and Amin 

(2019) applied possibilistic programming to deal with uncertain fixed and variable costs in a 

battery CLSCN design. 

 

6.1.1.3. Application of robust optimization in network design problems 

Facility location design is a strategic decision which has costly consequences in case of 

unexpected changes. Robust optimization is a new approach that is extensively applied to deal 

with imprecise parameters due to its computational flexibility. Xu et al. (2016) applied a robust 

optimization model to design regional solid waste management under uncertainty. Bai and Liu 

(2016) utilized possibility distributions to address uncertain demand and transportation costs 

through a robust possibilistic optimization model in the food industry. 

 Guo et al. (2016) employed robust optimization to configure an automotive supply chain with 

regard to the uncertain macroeconomic environment. Aalaei and Davoudpour (2017) presented a 

robust optimization model to design a facility location for a cellular manufacturing system. Zokaee 

et al. (2017) considered a robust approach to address the uncertainty in demand, costs of 
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transportation, and shortage in a bread SCN. Ghelichi et al. (2018) employed a robust optimization 

model to design a water distribution network. The total cost of the network was minimized 

concerning the uncertain amount of rainfall and demand.  

Kim et al. (2018) configured a robust CLSCN in the fashion industry considering uncertainty 

in a reverse flow and customer demand. Orgut et al. (2018) investigated a donated food supply 

chain using a robust optimization approach. Aras and Bilge (2018) examined a robust multi-

product SCN in the food industry. Prakash et al. (2018) considered the impact of uncertain demand 

on designing a furniture CLSCN by robust optimization. Sy et al. (2018) applied a robust MOM 

to configure a hybrid bio-refinery.  

 

6.1.1.4. Application of green criteria in network design problems 

In overall, economic criteria (e.g., profitability) have been taken into account as a primary 

objective in facility location problems. However, considering the green criteria is necessary due to 

the growing environmental concern (e.g., water contamination, soil and land pollution, carbon 

emissions).  

Wang et al. (2011) proposed a multi-objective mathematical model to find non-dominated 

solutions of the total cost and environmental influence for a green SCN. Büyüközkan and Berkol 

(2011) applied a multi-criteria decision making (MCDM) method to design a green SCN. Azevedo 

et al. (2011) examined the impact of green practices on the performance of a supply chain in the 

automotive industry. Elhedhli and Merrick (2012) explored the impact of vehicle weight on CO2 

emissions in a green SCN. Kumar et al. (2012) introduced an environmental model to improve an 

SCN in the aspect of sustainability. Luthra et al. (2013) proposed a ranking model to prioritize 

green strategies in a manufacturing SCN.  

Saffar et al. (2015) applied a fuzzy MOM to minimize the total costs and environmental issues 

associated with a green SCN. Coskun et al. (2016) configured a green SCN in accordance with 

customers’ environmental concerns. Zhalechian et al. (2016) proposed a sustainable CLSCN 

concerning CO2 emissions, fuel consumption, and wasted energy. Heidari-Fathian and Pasandideh 

(2018) examined sustainability in designing a multi-objective blood SCN to minimize the total 

cost and environmental impact. Hombach et al. (2018) mentioned that 22% of global CO2 

emissions are associated with the transportation sector. To address this issue, they applied a multi-

objective scenario-based model to design a sustainable biodiesel SCN. López-Díaz et al. (2018) 
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designed a water network for shale gas production considering both economic and environmental 

criteria. Tosarkani and Amin (2018b) developed a multi-objective MCDM model for an electronic 

RLN. The proposed MOM was used to select third parties in an RLN regarding optimizing the 

total profit, sustainability, on-time delivery, and quality of remanufacturing operations. Table 6.1 

comprises a list of criteria and mathematical approaches associated with some related papers.  

Based on our knowledge and Table 6.1, most of the existing literature has considered one type 

of solution approach (e.g., possibilistic or stochastic programming) to design facility location 

models under uncertainty. However, several sources of uncertainty exist in practice based on types 

of parameters (e.g., bounded uncertainty sets, random parameters, and possibilistic uncertainty). 

As a result, an integrated solution approach is required to consider these types of imprecise 

parameters simultaneously. We will address such issues in this research.  
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 Table 6.1 
 Applied mathematical approaches to deal with uncertainties 

Authors 
Uncertain 

parameters 
Field of study 

Multi-

objective 
Criteria * 

Mathematical 

approach ** 

Real 

map 

Pishvaee et al. 

(2009) 

Demand, return, 

transportation costs 

Numerical 

example 
 EC SP  

Mete and 

Zabinsky 

(2010) 

Demand, supply, 

transportation time 

Medical 

supply 
 EC SP  

Amin and 

Zhang 

(2013a) 

Demand, return 
Numerical 

example 
 EC SP  

Saffar et al. 

(2015) 

Fixed and variable 

costs, demand, 

return 

Numerical 

example 
 GC, EC FP  

Subulan et al.  

(2015) 

Fixed and variable 

costs, demand, 

return 

Lead-acid 

battery 
 EC SP and FP  

Bai and Liu 

(2016) 

Demand, 

transportation costs 
Food industry  EC RO and FP  

Zhalechian et 

al. (2016) 

Demand, return, 

lead time 

LCD and LED 

TV industry 
 GC, EC SP and FP  

Shabani and 

Sowlati 

(2016) 

Biomass quality 

and availability 

Forest 

biomass 

power plant 

  SP and RO  

Aras and 

Bilge (2018) 
Demand Food industry  EC RO  

Hombach et 

al. (2018) 
Price, emission 

Biodiesel 

sector 
 GC, EC RO  

Heidari-

Fathian and 

Pasandideh 

(2018) 

Demand, supply Blood supply  GC, EC RO  

Kim et al. 

(2018) 

Recycled products 

and demand 

Fashion 

industry 
 EC RO  

Prakash et al. 

(2018) 
Demand 

Furniture 

items 
 EC RO  

Proposed 

model 

Fixed and variable 
costs, demand, 

capacity of 

resources 

Hydraulic 

fracturing 
 GC, EC 

Robust flexible 
chance-constrained 

model, and a new 

iterative approach to 

solve the MOM 

 

* Green criteria (GC), Economic criteria (EC).                                                                                                                                  

** Stochastic programming (SP), Fuzzy programming (FP), Robust optimization (RO). 

 

6.1.2. Aims and contributions of research 

The objective of this research is to configure a wastewater treatment network the shale gas 

production. In this study, a bi-objective optimization model is proposed to consider the total cost 
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and CO2 emissions associated with wastewater treatment facilities. It is aimed to develop a robust 

flexible chance-constrained optimization model to find solutions in uncertain situations. Our 

overall solution framework is shown in Fig. 6.1.   

 

 

 

 

 

 

 

 

 
                            Fig. 6.1. An overall solution framework to develop the proposed model 

 

The main contributions of this research are as follows:  

▪ To design a wastewater treatment network in Alberta based on relevant information 

(e.g., consumed water in hydraulic fracturing operations) utilized from Fracfocus (2018).  

▪ To propose a robust flexible chance-constrained model (RFCCM). To the best of 

our knowledge, this hybrid method is novel in the network design literature. In this respect, 

various sources of uncertainty are taken into account to configure a wastewater treatment 

network.  

▪ To reduce environmental issues (e.g., CO2 emissions) by developing a multi-

objective approach. Two main sources of CO2 emissions (i.e., transportation and 

operations) are considered to optimize the bi-objective model.  

▪ To calculate the non-dominated solutions of the bi-objective problem using a new 

iterative approach. In addition, the distance method is applied to evaluate the performance 

and efficiency of this method in computing the non-dominated solutions. 

 

This study is organized as follows: The problem statement is provided in Section 6.2. The 

optimization model and the solution approach are discussed in Sections 6.3 and 6.4, respectively. 

In Section 6.5, the values of parameters and solutions are provided. The new iterative approach is 

introduced and applied in Section 6.6. Finally, conclusions are summarized in Section 6.7. 

Box uncertainty sets 

 

Soft constraints 

 

Random parameters 

 

Multiple objectives 

 

Robust optimization 

 

Flexible programming 

 

Chance-constrained programming 

 

New iterative 

approach 

 

An integrated solution approach to configure a wastewater network 
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6.2. Problem statement 

In hydraulic fracturing operations, water consumption is mainly depended on the geologic 

formation. Fig. 6.2 illustrates the major deep shale gas prospective horizons in Alberta. In the case 

of thick shales, a large volume of water is required for hydraulic fracturing operations. However, 

the availability of groundwater and surface water sources varies in different regions. As a result, 

there is a growing concern that such amount of water required for hydraulic fracturing may have 

an impact on other users (i.e., agriculture, industry, and municipalities). Furthermore, there are 

some regulations to protect water sources from pollution in Alberta. Accordingly, flowback fluids 

are not allowed to be released to surface water bodies. They can be reused in oil and gas operations, 

or they must be disposed to deep subsurface (i.e., below the groundwater protection zone in which 

TDS is greater than 4,000 mg/L) (Canadian Water Regulations, 2016).  

Accordingly, dealing with such a large volume of flowback fluids is the main environmental 

concern in hydraulic fracturing operations. Therefore, three different approaches can be considered 

to manage flowback fluids including deep well injection, indirect discharge to a wastewater 

treatment plant (WWTP), and basic separation to reuse. Disposal of entire flowback fluids 

increases the overall emissions as a result of trucks’ travels. Furthermore, this approach may 

become an infeasible solution depending on geographic features, and the availability of disposal 

wells. Disposal costs of flowback fluids vary extremely depending on moving distance (Jiang et 

al., 2011; Slutz et al., 2012). Treating flowback fluids at WWTP can be a feasible approach if they 

have low salinity and toxicity (e.g., heavy metals). Basic separation to reuse is another solution to 

manage the flowback fluids which has received growing attention in recent years. In this approach, 

the treatment process is specifically designed for hydraulic fracturing operations. This process is 

based on basic separation or desalination and can be utilized at on-site facilities. On-site basic 

separation units (e.g., chemical precipitation, dissolved air floatation) have high water recovery 

and low treatment costs. However, the treated water from this process contains a high 

concentration of total dissolved solids (TDS) or salinity. 

Therefore, application of mentioned approaches for the purpose of wastewater treatment in 

hydraulic fracturing operations depends on many factors, such as flowback fluids specifications, 

the proximity of water source(s) to the well pads, number of operating well pads, economic 

evaluation, environmental regulation, and geographical condition (e.g., the existence of nearby 

brine disposal well) (Slutz et al., 2012; Baudendistel et al., 2015; Bonapace et al., 2015).  
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Fig. 6.2. Unconventional gas reserves in Alberta (Alberta Energy Regulator, 2014) 

 

In this problem, a wastewater treatment network is designed and optimized. This network 

includes well pad(s), flowback fluid storage(s), on-site facility(s), WWTP(s), and disposal well(s). 

In this regard, there are several imprecise parameters (e.g., variable costs, the capacity of facilities, 

and volatility in water consumption) interfering with designing an optimal network. As illustrated 

in Fig. 6.3, a volume of fluids (i.e., Umnt) is required for the hydraulic fracturing operations. This 

volume is mainly provided from the treatment process (i.e., Jqmt and Xpmt) performed by either 

WWTP(s) or on-site facility(s). However, water sources can be utilized in case of any shortages 
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(i.e., Slmt). After hydraulic fracturing operations, the flowback fluids (i.e., Vnot) are transferred to 

the fluid storage(s). According to the mentioned treatment approaches, some recyclable ratios of 

flowback fluids are transferred to the on-site facility(s) and WWTP(s) based on their chemistry. 

The unrecyclable volumes are shipped to the location of disposal well(s).  

In this study, the following questions are considered: 

▪ Which and how many water source(s), fracturing blender(s), flowback fluids storage(s), 

on-site facility(s), water treatment unit(s), disposal well(s) must be selected?  

▪ How much water must be provided by water source(s) to fulfill the amount of required 

fracturing fluids with regard to water recovery by on-site facility(s) and WWTP(s)? 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Fig. 6.3. A wastewater treatment network designed for hydraulic fracturing operations 
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6.3. Optimization model 

In this section, an optimization model is developed to minimize the total cost and CO2 emissions 

associated with hydraulic fracturing operations. To configure the wastewater treatment RL 

network, some facilities are considered on-site (depicted inside the dashed box in Fig. 6.3), and 

the others are assumed off-site. The definitions of elements involved in the mathematical model 

are written in Tables 6.2, 6.3, and 6.4. 

 

Table 6.2 

Definitions of sets  
L: Set of potential locations for water sources (l ∈ L) 

M: Set of fracturing blenders (m ∈ M) 

N: Set of well pads (n ∈ N) 

O: Set of flowback fluid storages (o ∈ O) 

P: Set of on-site facilities (p ∈ P) 

Q: Set of water treatment units (q ∈ Q) 

R: Set of disposal wells (r ∈ R) 

T: Set of time periods (t ∈ T) 

 

Table 6.3 

Definitions of parameters 
Al: Fixed-cost related to purchase, or rent and service of equipment holding in water source l 

Bq: Fixed-cost related to construction and maintenance of WWTP q  

Cr: Fixed-cost related to construction of disposal well r 

Em: Fixed-cost related to purchase, or rent and service of fracturing blender m 

Fo: Fixed-cost related to service of flowback fluid storage o 

Gp: Fixed-cost related to service of on-site facility p 

alm: Distance between water storage l and fracturing blender m  

boq: Distance between flowback fluid storage o and WWTP q 
cor: Distance between flowback fluid storage o and disposal well r 

dqm: Distance between WWTP q and fracturing blender m 

vqr: Distance between WWTP q and disposal well r 

zpr: Distance between on-site facility p and disposal well r 

ht: Unit cost of transportation in period t 

el: Unit cost of operation related to provision of fluids from water source l  

fm: Unit cost of operation related to process in fracturing blender m 

gn: Unit cost of operation related to pumping fracturing fluids into well pad n 

ςo: Unit cost of transferring flowback fluids into storage o 

ip: Unit cost of operation related to process in on-site facility p 

jq: Unit cost of operation related to process in WWTP q 

kr: Unit cost of operation related to injection in disposal well r 
ωt: Flowback rate in period t 

βt: Injection rate to disposal well in period t 

ζt: Recycling rate through the utilization of on-site facility(s) in period t 

υt: Recycling rate through the utilization of WWTP(s) in period t 

γt: Disposal rate of on-site facility(s) in period t 

θt: Disposal rate of WWTP(s) in period t 

Γo: Unit cost of holding flowback fluid in storage o 

Dnt: Volume of required fracturing fluids for pumping into well pad n in period t  

CWlt: Capacity of water source l in period t 
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CDrt: Capacity of disposal well r in period t 

CUqt: Capacity of WWTP q in period t 

CBmt: Capacity of fracturing blender m in period t 

CFot: Capacity of flowback fluid storage o in period t 

COpt: Capacity of on-site facility p in period t 

CT: Truck capacity 
s: Truck CO2 emission per km  

u: CO2 emission due to operation of fracturing blender(s) 

w: CO2 emission due to process at well pads 

x: CO2 emission due to process in on-site facility(s) 

y: CO2 emission due to process in WWTP(s) 

 

Table 6.4 

Definitions of decision variables 
Slmt: Volume of fluids transferred to fracturing blender m from water source l in period t  
Umnt: Volume of fluids transferred to well pad n from fracturing blender m in period t  
Vnot: Volume of fluids returned to flowback fluid storage o from well pad n in period t  
Wopt: Volume of fluids transferred to onsite facility p from flowback fluid storage o in period t  
Xpmt: Volume of fluids returned to fracturing blender m from on-site facility p in period t  
Yort: Volume of disposable fluids sent to disposal well r from flowback fluid storage o in period t  
Ioqt: Volume of fluids sent to WWTP q from flowback fluid storage o in period t  
Jqmt: Volume of fluids returned to fracturing blender m from WWTP q in period t  

Hqrt: Volume of disposable fluids sent to disposal well r from WWTP q in period t  

Kprt: Volume of disposable fluids sent to disposal well r from on-site facility p in period t  

Фot: Volume of flowback fluids holding in storage o in period t  

ξl: 1, if the regional water source located in site l is utilized to provide required fluids, 0, otherwise. 

ρr: 1, if the disposal well is selected at potential site r, 0, otherwise. 

ψq: 1, if the water treatment unit is selected at potential site q, 0, otherwise. 

κm: 1, if the fracturing blender m is selected, 0, otherwise. 

λo: 1, if the flowback fluid storage o is selected, 0, otherwise. 
δp: 1, if the on-site facility p is selected, 0, otherwise. 
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In this study, Eq. (6.1) (i.e., 
1

cZ ) is employed to minimize the variable and fixed costs associated 

with wastewater treatment facilities. Furthermore, Eq. (6.2) (i.e., 
2

eZ ) is taken into account to 

minimize CO2 emissions caused by transportation and operations required for the shale gas 

production.  

Constraint (6.3) indicates the total fresh or recycled water used by blenders to make fracturing 

fluids. Constraint (6.4) shows the fluids required for hydraulic fracturing in well pad n in period t. 

Constraint (6.5) denotes the ratio of fluids returning to the surface. Constraint (6.6) describes that 

the holding fluids in period t is equal to holding fluids in period (t-1) plus the subtraction of output 

from input in flowback fluid storage(s) in period t. Constraints (6.7), (6.8), and (6.9) represent the 

portions of flowback fluids sent to disposal well(s), WWTP(s), and on-site facility(s). Constraints 

(6.10) and (6.11) imply trade-off relations between flowback fluids (Wopt), treated water (Xpmt), 
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and disposable fluids (Kprt) in on-site facility(s). Constraints (6.12) and (6.13) balance the relations 

among the input and output flows in WWTP(s). Constraints (6.14), (6.15), (6.16), (6.17), (6.18), 

and (6.19) are capacity constraints of water source(s), WWTP(s), disposal well(s), fracturing 

blender(s), flowback fluid storage(s), and on-site facility(s), respectively. Constraints (6.20) and 

(6.21) define the binary and non-negative decision variables. 

 

6.4. Solutions approach 

We develop a novel RFCCM to deal with uncertain parameters. To describe the solution 

approach, Model (6.22) is considered (Ben-Tal and Nemirovski, 2000; Ben-Tal et al., 2005; 

Pishvaee and Khalaf, 2016). 
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6 22
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A x d , .

B x F y,

y , ,x .

 +

 

 

 

 

 

In Model (6.22), vector p shows variable costs, q is related to fixed costs of opening or holding 

a facility, and d  denotes the required fracturing fluids. A , B , and Fare defined as the coefficient 

matrices in constraints. Besides, all binary and non-negative decision variables are defined by y , 

and x , respectively. In this study, all parameters related to the mentioned variable costs are varied 

in a specified bounded box, while the volume of fracturing fluids (i.e., d  ) complies with the 

normal distribution. The general form of uncertainty box is defined in Eq. (6.23). 

 

  ( )6 231n
box ι ι ι .u Ω R : Ω Ω φΔ ,ι ,...,n=  −  =  

ιΩ is the nominal value of the ιΩ . ιΔ defines the uncertainty scale, and φ  > 0 denotes the 

uncertainty level. A specific case of interest is ιΔ = ιΩ , where ιΩ  is allowed to deviate from the 
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nominal value by the coefficient of φ . Accordingly, the robust counterpart of Model (6.22) can be 

written by Model (6.24). 
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The robust counterpart Model (6.24) can be replaced by the tractable equivalent version if the 

uncertain box is changed to a finite set. To this aim, Eq. (6.25) is applied based on the method of 

Ben-Tal et al. (2005).  
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The left side of Eq. (6.25) includes uncertain parameters, while the parameters incorporating to 

the right side of the inequality are certain. Therefore, Model (6.26) can be developed to deal with 

uncertain bounded parameters as follows: 
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To advance the described method, it is assumed that a random parameter is incorporated into 

the model with regard to soft constraints (i.e., capacities of resources). In Model (6.26), d  has the 



155 
 

normal distribution and B x F y   is the capacity constraint. If ( )2X N μ,σ , the density 

function can be represented by Eq. (6.27). 
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   X  is converted to Z , by the application of  
( )X μ

σ

−
. Eq. (6.28) illustrates the density 

function of Z .  
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In Model (6.24), A x d  , and ( )2d N μ,σ . The concept of chance-constrained 

programming is utilized to satisfy A x d   with a probability of at least 1 α− (Hulsurkar et al., 

1997; Bilsel and Ravindran, 2011; Roghanian and Pazhoheshfar, 2014). The deterministic 

equivalent of ( ) 1P A x d α   −  is obtained by αA x σz μ  + . The details of converting the 

chance constraint to the deterministic equivalent equation are provided in Appendix 6.A. 

In this study, ≤̃ is utilized due to the uncertainty in the capacity of resources. With this respect, 

the left-hand side of a soft constraint is required to be less than or similar to the right-hand side 

value (Peidro et al., 2009). Therefore, B x F y   can be converted to the crisp inequality constraint 

by ( )1B x F y α β y     + −  . Where   represents the maximum violation of soft constraint, and

β is the satisfaction level of such constraint (Cadenas and Verdegay, 1997). To control the degree 

of satisfaction level, θ is used as the penalty cost for the violation of the soft constraint. 

Consequently, Model (6.26) can be replaced by Model (6.29). 
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Multiplication of y  by β  causes a nonlinear optimization model in Model (6.29). A non-

negative auxiliary variable of ν β y =  is applied to covert the nonlinear mathematical 

programming to the linear Model (6.30). Furthermore, Eqs. (6.31) to (6.34) are defined based on 

the method utilized by Pishvaee and Khalaf (2016). Eq. (6.31) forcesν to be equal to 0 if 0y = . 

Otherwise, Eqs. (6.32) to (6.33) force ν β = in case of 1y = .  
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( )6.31M y 

( ) ( )1 6.32M y  − + 

( )6.33  

  ( )0,1 , , , 0,0 1 6.34y x       
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Accordingly, the tractable form of the optimization model for the wastewater treatment network 

is written as follows: 
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Constraints (6.3), (6.5) to (6.12), (6.20), (6.21) 

( )6 36
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( )6 37
e e
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( )6 38
f f

f lmm t tlm l ,m,t .φ ηSΔ   

( )6 39
f f

f lmm l t tm l ,m,t .φ ηSΔ  −  
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( ) ( )6 40t lm
h h

h lm lmt t l ,m,t .φ Δ ηS.a   
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f f

f qmm t tqm q,m,t .φ ηJΔ   
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6.5. Values of parameters and solutions  

The wastewater treatment network is configured based on the proposed RFCCM. The required 

volumes of fluids for hydraulic fracturing vary significantly due to the thickness of shale rocks. 

Fracturing records of shale gas reserves in the municipal district of Greenview are examined to 

estimate consumed fluids for hydraulic fracturing operations. IBM SPSS Statistics is employed to 

analyze data sets based on Fracfocus (2018). The descriptive statistics and the normality test 

associated with consumed fracturing fluids are demonstrated in Tables 6.5 and 6.6, respectively. 

According to the outputs of Kolmogorov-Smirnov and Shapiro-Wilk tests, the Sig. values are 

greater than 0.05. Therefore, it is verified that the data sets (i.e., consumed fracturing fluids) follow 

the normal distribution ntD N ( μ = 50,505.38, σ = 9,281.66).  

             

 
             Table 6.5 

             Descriptive statistics using IBM SPSS Statistics 

Demand for consumed 

fracturing fluids 

Mean Std. deviation Sample size 

50,505.38 9,281.66 50 

   

 
 

            Table 6.6 

             Normality test using IBM SPSS Statistics 

Types of tests 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Used water 0.105 52 0.200 0.970 52 0.213 

 

 

To extend the sample space, the value of consumed fracturing fluids has been simulated by 

NORM.INV (probability, mean, standard deviation) in Microsoft Excel. The values of probability, 

( )1 2 3 4 5 6
, , , , ,, , , , , 0 6.98

l q r m o p
l r q m o p     

( )1 2 3 4 5 60 , , , , , 1 6.99      
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mean, and standard deviation are defined as RAND (), 50505.38, and 9281.66, respectively. Fig. 

6.4 indicates the frequency histogram for 100 data sets.  

As demonstrated in Appendix 6.A, ( )αΦ z  equals to1 α− . Therefore ( )56 765 76P X , .  is

56 765 76 50505 38

9 281 66

X μ , . .
P

σ , .

 − −
 = 

 
 

56 765 76 50505 38

9 281 66

, . .
Φ

, .

− 
 
 

 = 75%. Fig. 6.4 shows that 75 

data sets are less than Z25%. 

 

 
Fig. 6.4. The frequency histogram of consumed fracturing fluids 

 

In this study, 5 regional water storages, 3 shale gas reserves, 4 locations as central WWTP(s), 

and 7 locations as disposal wells are considered. Transportation costs can be considered as 

functions of fuel prices and distances between potential locations. In this regard, Google Maps is 

employed to calculate the real driving distances that have a direct impact on transportation costs 

and carbon emissions. The values of the other parameters are written in Table 6.B.1 in Appendix 

6.B.  
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IBM ILOG CPLEX 12.8.0 is employed to solve the proposed RFCCM. The mathematical 

model includes 861 constraints, 649 non-negative variables, 52 binary variables, and 3,305 non-

zero coefficients. Table 6.7 includes the optimal solutions of the proposed model for different 

scenarios (i.e., α = 30 %, 25%, 20%, 15%, 10% and 5%). As α decreases, the minimum probability 

to satisfy the chance constraint (i.e., demand for the required fracturing fluids) increases on the 

well pads. The reason for choosing various α is showing that changes in the demand have a direct 

impact on variable costs or fixed costs or both of them. As the wastewater increases, the variable 

costs for treatment increase as well. However, changing fixed costs is only related to the required 

number of open facilities. For example, the optimal off-site network includes 1 location for the 

wastewater treatment plant, 1 disposal well, and 2 regional water sources in the case of α = 5%. 

With this respect, 2 basic treatment facilities, 6 fracturing blenders, and 2 flowback fluid storages 

are required. The optimal network of off-site facilities is illustrated in Fig. 6.5. 

 

Table 6.7 

Solutions of RFCCM for hydraulic fracturing operation 

Objective value for
1

cZ  (

φ = 10%)        

Selected 
WWTP 

Selected 
on-site 

facility 

Working 
fracturing 

blenders 

Selected 
flowback fluid 

storage(s) 

Selected 
disposal 

well 

Selected regional 
water sources 

7,597,029.25 (α = 30%)     
      ψ1                              δ1                       κ2 to κ6                         λ2                               ρ1                  ξ1, ξ2 7,767,870.53 (α = 25%)        

7,958,111.68 (α = 20%)      
8,335,530.82 (α = 15%)      

       ψ1                 δ1                  κ1 to κ6               λ1, λ2                      ρ1                     ξ1, ξ2 8,619,480.94 (α = 10%)      
9,105,786.98 (α = 5%)        
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Fig. 6.5. The locations of the selected off-site facilities for the hydraulic fracturing operation 
 

 

The RFCCM is solved for 100 data sets of consumed fracturing fluids. The optimal solutions 

are provided in Table 6.C.1 in Appendix 6.C. As illustrated in Table 6.7, the total cost associated 

with demand of 56,765.76 (α = 25%) and 65,772.35 (α = 5%) are 7,767,870.53 and 9,105,786.98, 

respectively. Fig. 6.6 also indicates that 75% of the objective values are less than 7,767,870, and 

95% of them are less than 9,105,786. Therefore, demand for the required fracturing fluids has a 

significant impact on the total cost of hydraulic fracturing operations. In this regard, the regression 

analysis is also performed to show the predictability of the dependent variable (i.e., total cost) by 

the independent variable (i.e., demand for required fracturing fluids). Table 6.8 shows the relative 

importance of the independent variable and collinearity statistics. The unstandardized coefficient 

shows that a one-unit increase of the independent variable increases the dependent variable by 

133.67 in addition to 229,291.38 as a constant value. Besides, the standardized coefficient 

indicates that the correlation between independent and dependent variables is almost 99 percent 

which is statistically significant.  
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 Fig. 6.6. The total cost related to 100 data sets  

 

 
Table 6.8 

Regression analysis using IBM SPSS Statistics 

 Unstandardized coefficients 
Standardized 

coefficients 
  

Model B Std.Error Beta t Sig. 

Constant 229,291.381 38,366.522  5.976 0.000 

Demand for 
fracturing fluids 

133.674 0.749 0.998 178.509 0.000 

 

 

It is noticeable that the uncertainty level affects the total cost. The sensitivity analysis is 

conducted on the uncertainty level (i.e., φ ) to show the behavior of the RFCCM. The value of φ  

is determined by decision-makers based on the type of parameters and the associated risk level. 

As defined in Model (6.30), 
p

p ιι
φ Δ x


  is less than or equal to ιη  which is incorporated into the 

objective function. Table 6.9 illustrates that the value of total cost increases as φ increases.  
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Table 6.9 
Sensitivity analysis with regard to uncertainty level  

1

cZ  
φ = 20% φ = 40% φ = 60% φ = 80% φ = 1 

α = 25%       8,384,040.58 9,616,380.68 10,848,720.77 12,081,060.87 13,313,400.97 

α = 5%       9,824,494.89 11,261,910.71 12,699,326.52 14,136,742.34 15,574,158.16 

 

 

A solution is called robust if there are both optimality robustness and feasibility robustness. The 

feasibility robustness is reached while solutions are feasible for all possible changes of imprecise 

parameters (Ben-Tal and Nemirovski, 2000; Pishvaee and Khalaf, 2016). Fig. 6.7 indicates that 

the total cost remains unchanged while α is equal to 2.5%, or 5% because the demand can be 

fulfilled by the nominal capacity of the resources. In the case of α = 1%, the total cost increases as 

the penalty cost increases due to the possible violation ( ) of the soft constraint.  

The proposed RFCCM enables decision-makers to deal with different types of imprecise 

parameters through the integration of different methods. Robust optimization has been applied for 

the bounded uncertainty sets (i.e., variable costs). In addition, chance-constrained programming 

has been utilized for the random parameter (i.e., the required amount of fracturing fluids). Besides, 

flexible programming has been utilized in this research for the soft constraints (i.e., the capacity 

of resources). Deviations from the nominal value on soft constraints have been handled by the 

penalty costs and the confidence level. Therefore, the values of the objective function depend on 

the decision-makers and their choices to determine the penalty costs and the degree of possible 

violation for the capacity of resources. 
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Fig. 6.7. The total cost deviation with regard to changes in penalty cost 

 

 

To evaluate the performance of the proposed RFCCM in comparison with the deterministic 

model, simulation is conducted to generate different numerical scenarios. The NORM.INV 

function is utilized to simulate 100 random values for Dnt. This simulation is replicated 5 times. 

Then the minimum, average, and maximum of random values are taken into account for each 

scenario. In the next stage, the RFCCM and the deterministic model are solved with the minimum, 

average, and maximum values of Dnt.   

Based on the results in Table 6.10, the deterministic model is not able to reach the optimal value 

in some scenarios. Therefore, the deterministic model is not sufficient to design the network under 

uncertain situations. The mentioned procedure is applied for the problem while the number of well 

pads increases from 3 to 4, and 5. Accordingly, the required volume of fluids for hydraulic 

fracturing operations increases as the number of well pads increases. In the RFCCM approach, 

decision-makers can handle the shortage of capacities associated with resources by increasing 

maximum violations (i.e., 1 6i ,...,α =
 ) of soft constraints. On the contrary, the deterministic model 

cannot find optimal solutions in case of the resource shortage. Tables 6.11 and 6.12 indicate that 

the rate of infeasibility grows in the deterministic model due to the insufficiency of the nominal 

capacity to fulfil the required fracturing fluids.  
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Table 6.10 

Performances of deterministic and RFCCM (n = 3, φ = 5%, 1 6i ,...,α =
  = 5% of resource capacities)        

Scenario RFCCM Min RFCCM Ave RFCCM Max 
Deterministic 

Min 

Deterministic 

Ave 

Deterministic 

Max 

1 3,739,597.98 6,532,885.82 8,928,736.64 3,602,950.46 6,400,532.51 8,560,701.56 

2 4,256,359.01 6,693,634.92 9,715,640.02 4,095,103.81 6,417,271.35 Infeasible 

3 3,675,719.15 6,717,145.67 9,022,003.77 3,542,113.48 6,439,662.54 8,649,527.40 

4 4,580,795.53 6,620,623.57 9,523,003.11 4,404,090.98 6,347,736.73 Infeasible 

5 4,170,752.94 6,670,668.12 9,479,631.68 4,013,574.23 6,395,398.21 Infeasible 

 

 

Table 6.11 

Performances of deterministic and RFCCM (n = 4, φ = 5%, 1 6i ,...,α =
  = 50% of resource capacities)        

Scenario RFCCM Min RFCCM Ave RFCCM Max 
Deterministic 

Min 

Deterministic 

Ave 

Deterministic 

Max 

1 5,191,274.87 9,947,428.33 13,860,027.90 4,985,499.88 9,530,884.13 Infeasible 

2 5,980,487.41 9,974,543.56 14,885,174.88 5,737,607.06 9,556,708.15 Infeasible 

3 5,095,626.12 10,010,815.04 13,998,806.07 4,894,405.83 9,591,252.42 Infeasible 

4 6,470,335.13 9,861,904.49 14,598,538.03 6,204,128.69 9,449,432.84 Infeasible 

5 5,851,235.82 9,939,111.28 14,534,002.88 5,614,510.30 9,522,963.13 Infeasible 

 

 
Table 6.12 

Performances of deterministic and RFCCM (n = 5, φ = 5%, 1 6i ,...,α =
  = 75% of resource capacities)        

Scenario RFCCM Min RFCCM Ave RFCCM Max 
Deterministic 

Min 

Deterministic 

Ave 

Deterministic 

Max 

1 6,079,544.65 12,932,073.08 16,867,828.06 5,831,947.28 Infeasible Infeasible 

2 7,026,741.56 12,964,280.14 19,695,943.04 6,734,515.77 Infeasible Infeasible 

3 5,963,854.61 13,007,362.87 17,033,272.34 5,721,766.30 Infeasible Infeasible 

4 7,691,112.32 12,830489.12 19,350,498.24 7,396,020.78 Infeasible Infeasible 

5 6,871,229.75 12,922,194.21 17,775,626.71 6,586,409.28 Infeasible Infeasible 
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6.6. Iterative approach  

The solutions of a multi-objective model (MOM) are called non-dominated solutions (Branke 

et al., 2008; Mirzapour Al-E-Hashem et al., 2011). Li et al. (2006) defined *Z as the ideal solution 

of MOM whose components are computed by the maximum value of each objective function 

which is written by Eq. (6.100). In the case of minimization, Z −  is defined by Eq. (6.101).  

       

( ) ( ) ( )1 1 6 100* * *
N NZ Z ,...,Z max Z x ,...,max Z x .   = =

   
                                                                                                                                                                                                                                           

( ) ( ) ( )1 1 6 101N NZ Z ,...,Z min Z x ,...,min Z x .− − −   = =
   

 

To solve a MOM, Zimmermann (1978) proposed the max-min approach represented in Model 

(6.M1). 

( )

( )1

1

0 1 0 6

k

ˆMax λ

s.t.

λ̂ u x , k ,...,N

λ̂ , x .M

 =

  

 

As defined by Eq. (6.102), ( )ku x is the membership function denoting the satisfaction level of 

each objective function. In this regard, the minimum value of each objective can be replaced as 

the initial solution (Ok) in the membership function. 
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( )

( )
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( )

( )

1

1 1 6 102

0

*
k k

*
k k *

k k k k*
k k

k k

, Z x Z ,

Z Z x
u x O Z x Z , k ,...,N .

Z O

, Z x O ,
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Finding efficient solutions cannot be guaranteed using Model (6.M1). For further information, 

it is worthy to refer to (Guua and Wu, 1999; Li et al., 2006). In this respect, we apply the idea of 

the ε-constraint method to develop a new iterative approach. Model (6.M2) shows the behavior of 

the ε-constraint approach with two objectives. The objective with high priority is chosen as the 

main objective function. Then, ε2 is changed iteratively to reach the various non-dominated 
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solutions. The advantage of the ε-constraint method is to obtain non-dominated solutions in both 

convex and concave situations.  
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Accordingly, the new iterative method is introduced by Model (6.M3). The proposed bi-

objective model minimizes the total cost (Z1), and CO2 emissions (Z2). In this regard, ε1 and ε2 are 

ideal solutions of Z1 and Z2. Since it is impossible that both Z1 and Z2 have values less than or equal 

to their optimal values, λ̂ is defined to control the feasibility of the bi-objective model.  
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Constraints (6.3), (6.5) to (6.12), (6.20) and (6.21), (6.36) to (6.99). 

 

The steps to find the non-dominated solutions through the new iterative approach for the 

proposed MOM are as follows:  

Step 1: Each objective is solved separately with regard to the defined constraints to reach
1

*Z and 

2

*Z . Table 6.13 includes the results. Then, the values of ε1 and ε2 are assumed to be equal to the 

optimal values of the associated objectives. 

 

Table 6.13 
Optimal solutions of the 1st and 2nd objectives 

α Total cost CO2 emissions 

      25%       7,767,870.53 52,853,004.67 

      5%       9,105,786.98 62,573,820.10 
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Step 2: Either ε1 or ε2 should be changed to compute various non-dominated solutions. The 

results of the proposed iterative approach and the max-min approach are provided and compared 

in Tables 6.14 and 6.15.  

 
Table 6.14 

The non-dominated solutions for the 1st and 2nd objectives for α = 25%       

ε1 7,767,870.53 7,767,870.53 7,767,870.53 Max-min 

approach ε2 53,136,590 53,137,700 59,136,615 

λ̂  1.0019 1.0023 1.0013 0.971 

Total cost 7,782,400 7,785,600 7,777,700 7,946,400 

CO2 emissions 53,225,000 53,137,000 53,521,000 63,380,000 

Selected facilities 
ψ1 – δ1 – κ2 to κ6 – λ2 

- ρ2 – ξ1, ξ2 
ψ1 – δ1 – κ2 to κ6 – 

λ2 – ρ2 – ξ2, ξ5 
ψ1 – δ1 – κ1 to κ5 – λ2 – 

ρ1 – ξ2, ξ5 
ψ1 – δ1 – κ1 to κ6 – 

λ2 – ρ1, ρ2 – ξ1, ξ2 

 
 

Table 6.15 

The non-dominated solutions for the 1st and 2nd objectives for α = 5%       

ε1 9,105,786.98 9,105,786.98 9,105,786.98 9,105,786.98 Max-min 

approach ε2 63,139,889 63,586,500 64,089,500 65,589,685 

λ̂  1.0039 1.0020 1.0021 1.0003 0.966 

Total cost 9,140,400 9,123,200 9,124,100 9,105,800 9,337,000 

CO2 

emissions 
63,142,000 63,647,000 63,587,000 64,092,000 74,655,000 

Selected 
facilities 

ψ1 – δ1, δ2 – κ1 

to κ6 – λ1, λ2 - ρ2 

– ξ2, ξ5 

ψ1 – δ1, δ2 – κ1 

to κ6 – λ1, λ2 - ρ2 

– ξ1, ξ2 

ψ1 – δ1, δ2 – κ1 

to κ6 – λ1, λ2 – ρ1 

– ξ2, ξ5 

ψ1 – δ1, δ2 – κ1 

to κ6 – λ1, λ2 – ρ1 

– ξ1, ξ2 

ψ1 – δ1, δ2 – κ1 to 

κ6 – λ1, λ2 – ρ1, ρ2, 

ρ6 – ξ1, ξ2 

 

Distance technique is a well-known method to solve MOM (Mirzapour Al-E-Hashem et al., 

2011; Amin and Zhang, 2012). In this regard, this technique is applied to verify the performance 

of the proposed iterative approach. Eq. (6.103) represents the distance formula in which wi is 

defined as the distance metric for Objective i. Eq. (6.104) shows the objective function for the bi-

objective wastewater treatment network. 

 

 

                                                                    i = 1, 2, …, ∞                                         (6.103)  
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                                                                                                                                        (6.104) 

s.t.       

Constraints (6.3), (6.5) to (6.12), (6.20) and (6.21), (6.36) to (6.99). 

 

To estimate various non-dominated solutions for the bi-objective model, various pairs of wi are 

tested with the condition of  ∑ wii =1. Tables 6.16 and 6.17 contain the non-dominated solutions 

of the total cost and CO2 emissions. The same non-dominated solutions are obtained by the 

distance technique. However, the proposed iterative approach could compute more efficient 

solutions. Therefore, this method is selected.   

 
Table 6.16 

The non-dominated solutions for the 1st and 2nd objectives for α = 25% using distance technique      

w1 0.6 0.7 

Total cost 7,782,400 7,785,600 

CO2 emissions 53,225,000 53,137,000 

Selected facilities ψ1 – δ1 – κ2 to κ6 – λ2 - ρ2 – ξ1, ξ2 ψ1 – δ1 – κ2 to κ6 – λ2 - ρ2 - ξ2, ξ5 

 
Table 6.17 

The non-dominated solutions for the 1st and 2nd objectives for α = 5% using distance technique         

w1 0.4 0.5 0.8 

Total cost 9,140,400 9,127,400 9,105,800 

CO2 emissions 63,142,000 63,587,000 64,092,000 

Selected facilities 
ψ1 – δ1, δ2 – κ1 to κ6 – 

λ1, λ2 - ρ2 – ξ2, ξ5 

ψ1 – δ1, δ2 – κ1 to κ6 – 

λ1, λ2 – ρ1 - ξ2, ξ5 

ψ1 – δ1, δ2 – κ1 to κ6 – 

λ1, λ2 – ρ1 – ξ1, ξ2 

 

6.7. Conclusions  

In hydraulic fracturing operations, there are different facilities (e.g., on-site facilities, WWTPs) 

with limited capacities. The number of such facilities is mainly depended on the demand (i.e., 

amount of fracturing fluids). In this regard, the value of demand has a direct impact on the 

configuration of the wastewater treatment network. This random parameter fluctuates based on the 

number of wells and the geologic formation in different areas. Therefore, it is not realistic to apply 

deterministic assumptions to design facility location models for hydraulic fracturing operations.  

1

1 1 2 2
1 2

1 2

* *

* *

Z Z Z Z
Min Z w w

Z Z

  
 

    − −
 = +   
     



173 
 

In this study, a new RFCCM has been developed. In addition, the application has been shown 

for a wastewater treatment network in Alberta, Canada. The mathematical model has been 

proposed for uncertain situations due to the presence of imprecise parameters in real-world 

problems. Chance-constrained programming has been applied to handle the stochastic nature of 

the required fluids for hydraulic fracturing operations. Furthermore, robust optimization and 

flexible programming have been utilized to address the uncertainty of variable costs and capacities 

of resources, respectively. The most important advantage of the proposed model is considering 

different sources of uncertainty simultaneously. The efficiency of the proposed RFCCM to 

compute the optimal solutions has been demonstrated in uncertain situations. As illustrated in 

Tables 6.10, 6.11, and 6.12, decision-makers can handle the shortage of capacities associated with 

resources by increasing maximum violations of soft constraints. 

To reduce the environmental concern associated with hydraulic fracturing operations, a bi-

objective optimization model has been developed. A new iterative approach has been introduced 

to find the non-dominated solutions. The efficient solutions have been obtained through two 

methods of iterative approach and distance method. The optimal network configuration mainly 

depends on the importance of the objectives in the view of decision-makers. It has been shown 

that the number of selected facilities may vary by changing the weight factors associated with the 

total cost and CO2 emissions. The proposed bi-objective RFCCM introduces a novel approach to 

configure facility location models associated with hydraulic fracturing operations.  

Some future research areas can be investigated based on this study. Demand is an important 

factor in this problem. As mentioned before, the demand for fracturing fluids depends on many 

factors. Multiple regression analysis can be performed to estimate the value of demand. In this 

study, a robust flexible chance-constrained approach has been proposed for a network design 

problem in multiple periods without financial factors. Financial indicators (e.g., discount rate) can 

be integrated with this multi-period model to examine their impacts.  
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Chapter 7. Conclusions, research contributions, and future research                                    

 

This dissertation has introduced several important contributions by developing multi-objective 

optimization models to design facility location models. Five real RLNs in Canada have been 

investigated to optimize environmental practices, energy consumption, and cost-saving in recovery 

programs. The outcomes of this study will open several directions for future research in designing 

of RLNs.  

 

7.1. Summary of research 

In Chapter 2, the application of RLN was expanded prominently due to environmental issues, 

and profit related to the returned products. As mentioned previously, RLN includes all activities 

associated with product recovery such as repairing, recycling, refurbishing, and remanufacturing. 

Several partners are required to collaborate efficiently on account of obtaining optimal outcomes. 

In this sense, the selection of partners in RLN can be considered as an MCDM problem. Therefore, 

FANP was applied to convert the environmental qualitative factors to the quantitative parameters. 

Furthermore, an optimization model was introduced for a multi-echelon, multi-component, multi-

product RLN in multiple periods. A multi-objective MILP programming model was employed to 

maximize the total profit, green practices, on-time delivery, and minimize defect rate in the 

proposed RLN. Finally, the multi-objective model was solved to achieve non-dominated solutions 

between the objectives. 

As mentioned in Chapter 3, there are several parameters contributing to the configuration of 

facility locations that fluctuate in different situations and cause some risks and complexities for 

the businesses. Since a facility location design is a strategic decision, it is impossible to be changed 

in the short-term. Therefore, a fully fuzzy programming (FFP) method and scenario-based 

programming were integrated to address various scenarios to maximize the total profit of an LAB 

CLSC network. Furthermore, the second objective was introduced to maximize the environmental 

compliance of suppliers, plants, and battery recovery centers. Then, the distance technique was 

utilized for solving the fuzzy scenario-based multi-objective problem. The application of the 

proposed model was illustrated in a network in Winnipeg, Canada. 

In Chapter 4, a novel scenario-based robust possibilistic approach was developed to optimize 

and configure an electronic RLN by considering the uncertainty associated with fixed and variable 
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costs, the quantity of demand and return, and the quality of returned products. A Monte Carlo 

simulation was utilized to analyze the performance of the proposed model. Then, ANOVA test 

was conducted to statistically verify our model using the simulation results. The mathematical 

model was extended to the multi-objective optimization by maximizing the environmental 

compliance of the third parties. The efficient solutions of the multi-objective model were computed 

using the two-phase fuzzy compromise approach. The application of the proposed model was 

illustrated using a network in the Greater Toronto Area (GTA) in Canada. 

In Chapter 5, a beverage container RLN was proposed to manage recycling activities associated 

with returned containers. A large number of used containers (e.g., aluminum can) can be utilized 

in the production of new products after recovery. On this matter, a hybrid optimization model was 

developed to configure a multi-echelon, multi-period beverage container RLN. A scenario-based 

possibilistic approach was implemented to handle the uncertainty associated with fixed and 

variable costs, the quantity of demand and return, and the quality of returned products. The model 

is then extended to a multi-objective one to reduce CO2 emissions and maximize the social 

responsibility and technological innovation of third parties involved in a beverage container RLN. 

To illustrate the application of the proposed model, a network was examined in Vancouver, 

Canada. 

In Chapter 6, a novel robust chance-constrained optimization model was developed to configure 

a wastewater treatment RLN considering the uncertainty of parameters (i.e., fixed and variable 

costs, required amount of fracturing fluids, and capacities of facilities). Simulation was conducted 

to analyze the robustness of the proposed model. To eliminate carbon emissions as a result of the 

operation and transportation, the mathematical model was extended to a multi-objective model. 

Non-dominated solutions of the multi-objective model were obtained by a new iterative approach. 

To illustrate the economic and environmental impact of the proposed model, a network was 

examined in Alberta, Canada. 

 

7.2. Research contributions 

 According to the Canadian Environmental Protection Act and development of circular 

economy strategies, greater attention has been directed towards RLN design. In this regard, some 

stewardship plans in Canada were considered, such as the electronic recycling association (ERA), 

Canadian battery association (CBA), beverage container stewardship program regulation 
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(BCSPR), Ontario electronic stewardship (OES), and wastewater management. Then, a related RL 

network was proposed for each stewardship program based on its operation. Since there were 

various imprecise parameters affecting such RLNs, different solution approaches were integrated 

to address different sources of uncertainty, simultaneously. The main research contributions of this 

investigation can be summarized as follow: 

 

▪ An MCDM model was developed to configure and optimize an electronic RLN in multiple 

periods. The mathematical model included multiple objectives, such as total profit of RLN, 

the environmental performance of third parties, on-time delivery, and defect rate. 

▪ A fully fuzzy programming was proposed to design an integrated forward and RLN 

considering different scenarios. The proposed hybrid approach was extended to a bi-

objective model for the purpose of considering the environmental compliance of third 

parties in the battery industry.  

▪ A bi-objective scenario-based robust possibilistic model was introduced to configure a 

multi-echelon electronic RLN. A fuzzy TOPSIS method was employed to prioritize the 

facilities based on their green practices. The non-dominated solutions of the bi-objective 

model were computed by using the two-phase fuzzy compromise approach. 

▪ A multi-echelon beverage container RLN was designed under uncertainty. A bi-objective 

hybrid model was developed by integration of the possibilistic programming method and 

scenario-based approach. 

▪ A bi-objective robust flexible chance-constrained model was proposed to design a 

wastewater treatment RLN. A new iterative approach was introduced to calculate the non-

dominated solutions of the bi-objective model. 

 

Table 7.1 includes a summary of the proposed models to design multi-echelon RLs for real 

Canadian stewardship plans.   
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Table 7.1 

Design of reverse logistics networks under uncertainty: Multi-objective approach 

Title Multi-

objective 

Type of 

products 

Uncertainty Mathematical 

approach* 

Real 

location 

1. A multi-objective model to 

configure an electronic 

reverse logistics network and 

third party selection  

 Electronics   MILP, MOP   

2. An environmental 

optimization model to 

configure a hybrid forward 

and reverse supply chain 

network under uncertainty 

 Battery All parameters 

and decision 

variables 

FFSP, MOP  

3. A scenario-based robust 

possibilistic model for a 

multi-objective electronic 

reverse logistics network 

 Electronics Selling price, 

fixed and 

variable costs, 

demand and 

return, capacity 

of plant(s), 

disposal rate 

SRPM, MOP  

4. A novel multi-objective 

model to design and optimize 

a beverage container reverse 

logistics network  

 Beverage 

container 

Fixed and 

variable costs, 

demand and 

return, disposal 

rate 

SPM, MOP  

5. A robust optimization 

model for designing a 

wastewater treatment 

network under uncertainty: 

Multi-objective approach 

 Wastewater  Fixed and 

variable costs, 

demand, capacity 

of resources 

RFCCM, 

MOP 

 

* Mixed-integer linear programming (MILP), scenario-based possibilistic model (SPM), scenario-based 

robust possibilistic model (SRPM), fully fuzzy scenario-based programming (FFSP), robust flexible 

chance-constrained model (RFCCM) 

   

7.3. Future research 

The potential future research avenues for this study are as follow: 
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7.3.1. To develop a forecasting method for returned products  

In this dissertation, it is assumed that the value of return can be estimated as ten percent of 

market demand (see, e.g., Fleischmann et al., 2001; Amin and Baki, 2017). There are different 

reasons to return products from a customer’s perspective. The commercial returns include all non-

defective products returned to the sellers within 30 to 90 days (Rogers and Tibben-Lembke, 2001). 

The end-of-use returns stem from the technological upgrade. With this respect, consumers prefer 

to replace outdated functional products with updated ones. The end-of-life returns consist of all 

products that are no longer applicable and become obsolete. Furthermore, there is another category 

of returns occurred due to repair, or warranty. In this regard, different factors must be considered 

to estimate the rate of return (e.g., product life cycle, type of industry). Therefore, developing a 

forecasting approach for returned products can be a future research direction for this study.  

 

7.3.2. To develop the proposed models to consider different types of risk 

Three types of risk should be considered in designing facility location models. The first type is 

associated with the uncertainty of parameters (e.g., demand, return, quality of returned products, 

fixed and variable costs) that have a significant impact on the configuration of RLN. This type of 

uncertainty was discussed in Chapters 3, 4, 5, and 6. The second type of risk may arise when some 

of the selected facilities become unavailable on account of disruptions such as natural disasters 

and production interruption. In this case, some operational consequences are concerned with 

disruption risks such as inventory shortages and order delays. The third type of risk stems from 

transportation disruptions. This type of risk is less severe than the facility failure leading to shut 

down operations. However, the material flow is interrupted between two echelons due to 

transportation disruptions. In this regard, different scenarios should be taken into account before 

configuring the RLN. Therefore, it is worthwhile to extend the proposed models for the purpose 

of considering the disruption risk. 

 

7.3.3. To develop the proposed models to consider different objectives 

Customer relationship management (CRM) is one of the well-known approaches leading to 

competitive advantages in business. The main goal of applying CRM is to establish useful 

relationships between companies and customers. With this respect, customers become loyal 
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players to be engaged to return unwanted appliances to the regional collection centers. However, 

incorporating the CRM as the qualitative factor into the mathematical model can be a challenge in 

RLN. There are many MCDM tools (e.g., FANP) to convert the qualitative factors to the 

quantitative parameters to be applicable in mathematical functions. Therefore, incorporating CRM 

as a new objective in addition to the economic and environmental objectives may increase the rate 

of return.  

 

7.3.4. To consider coordination efforts in the proposed models  

The reverse supply chain is not led by a single company. A coherent mechanism is necessary 

to coordinate facilities for the aim of collecting and recovering (e.g., refurbishing, 

remanufacturing) unwanted products in RLNs. The coordination can be implemented in a 

centralized process that a certain decision-maker is in charge, or a decentralized process in which 

multiple entities play the role of decision-makers. Since the operation of product recovery is 

complicated, many factors are involved in the decision-making process, such as quality and 

quantity of returned products, locations, and variable cost of recovery. Furthermore, customers 

may be involved in the coordination model (e.g., bonus sharing technique) by offering some 

incentives for their efforts. Therefore, it is valuable to develop the proposed models to examine 

the effects of collaboration and competition between different players in the RL networks.     

 

7.3.5. To consider a price competition between remanufactured and new products in the 

proposed models  

As mentioned before, remanufacturing refers to disassembling, inspecting, and refurbishing of 

the recoverable parts of the returned products for reuse. The economic benefits of remanufacturing 

make companies motivated to be a part of this program regardless of the governmental policies 

and environmental regulations. For example, HP Inc., the large computer producer, has 

implemented a remanufacturing program (i.e., HP Renew Program) for refurbishing and 

remanufacturing the used products. This program certifies that the remanufactured products 

perform well, and can be substituted as the new products at a lower price (Wu, 2012). Integrating 

a price competition between the remanufactured and new products with the proposed model can 

be a future research avenue for this study. 
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7.3.6. To consider the quality degradation of remanufactured products in the proposed 

models  

Degradation is defined as a reduction in the quality of materials with each recycling phase 

(Amini et. al., 2007). To reduce the weight of products, lightweight materials have been 

increasingly used in productions recently. In this regard, manufacturers are more willing to use 

different composite materials, polymers, and aluminum. However, recycling of some types of 

lightweight materials (e.g., polymers and composites) is economically unattractive. Furthermore, 

the recovered items may be contaminated due to the joints between various materials within 

products during disassembling. Hence, a large number of components are not recyclable 

indefinitely (Bazan et. al., 2017). Considering the quality degradation of recovered components 

can be another future research direction for this study.  
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Appendices  

 

Appendix 2 

 

2.A. Fuzzy ANP calculation related to suppliers 

 
Table 2.A.1 

Pairwise comparisons among criteria 

W1 C1 C2 C3 C4 Wc 

C1 1.00 1.00 1.00 1.00 1.50 2.00 1.00 1.50 2.00 1.50 2.00 2.50 0.359 

C2 0.50 0.67 1.00 1.00 1.00 1.00 1.00 1.50 2.00 2.00 2.50 3.00 0.338 

C3 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 0.167 

C4 0.40 0.50 0.67 0.33 0.40 0.50 0.67 1.00 2.00 1.00 1.00 1.00 0.136 

 

Table 2.A.2 
The inner dependence matrix and relative weight factor with respect to C1 

C1 C2 C3 C4 Wc 

C2 1.00 1.00 1.00 1.00 1.50 2.00 0.50 0.67 1.00 0.341 

C3 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 0.284 

C4 1.00 1.50 2.00 0.67 1.00 2.00 1.00 1.00 1.00 0.376 

 

Table 2.A.3 
The inner dependence matrix and relative weight factor with respect to C2 

C2 C1 C3 C4 Wc 

C1 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 0.392 

C3 0.67 1.00 2.00 1.00 1.00 1.00 1.50 2.00 2.50 0.450 

C4 0.50 0.67 1.00 0.40 0.50 0.67 1.00 1.00 1.00 0.158 
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Table 2.A.4 

The inner dependence matrix and relative weight factor with respect to C3 

C3 C1 C2 C4 Wc 

C1 1.00 1.00 1.00 0.50 0.67 1.00 1.50 2.00 2.50 0.381 

C2 1.00 1.50 2.00 1.00 1.00 1.00 0.50 1.00 1.50 0.363 

C4 0.40 0.50 0.67 0.67 1.00 2.00 1.00 1.00 1.00 0.256 

Table 2.A.5 
The inner dependence matrix and relative weight factor with respect to C4 

C4 C1 C2 C3 Wc 

C1 1.00 1.00 1.00 0.50 0.67 1.00 0.40 0.50 0.67 0.147 

C2 1.00 1.50 2.00 1.00 1.00 1.00 1.00 1.50 2.00 0.448 

C3 1.50 2.00 2.50 0.50 0.67 1.00 1.00 1.00 1.00 0.405 

 

Table 2.A.6 

The interdependent ranking of the green performance criteria related to suppliers 

W2 C1 C2 C3 C4 W1 Wcriteria 

C1 1.00 0.39 0.38 0.15 0.359 0.287 

C2 0.34 1.00 0.36 0.45 0.338 0.291 

C3 0.28 0.45 1.00 0.41 0.167 0.238 

C4 0.38 0.16 0.26 1.00 0.136 0.183 

 

Table 2.A.7 

Pairwise comparisons among sub-criteria of C1 

C1 Sc1 Sc2 Sc3 Wc 

Sc1 1.00 1.00 1.00 1.00 1.50 2.00 0.50 0.67 1.00 0.305 

Sc2 0.50 0.67 1.00 1.00 1.00 1.00 2.00 2.50 3.00 0.454 

Sc3 1.00 1.50 2.00 0.33 0.40 0.50 1.00 1.00 1.00 0.241 
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Table 2.A.8 

Pairwise comparisons among sub-criteria of C2 

C2 Sc4 Sc5 Wc 

Sc4 1.00 1.00 1.00 1.00 1.50 2.00 0.684 

Sc5 0.50 0.67 1.00 1.00 1.00 1.00 0.316 

 
 

Table 2.A.9 

Pairwise comparisons among sub-criteria of C3 

C3 Sc6 Sc7 Wc 

Sc6 1.00 1.00 1.00 0.50 1.00 1.50 0.500 

Sc7 0.67 1.00 2.00 1.00 1.00 1.00 0.500 

 

 

Table 2.A.10 

Pairwise comparisons among sub-criteria of C4 

C4 Sc8 Sc9 Sc10 Wc 

Sc8 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 0.685 

Sc9 0.33 0.40 0.50 1.00 1.00 1.00 1.00 1.50 2.00 0.224 

Sc10 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00 1.00 0.091 
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Table 2.A.11 

Overall priority of the sub-criteria of green performance for suppliers 

Fuzzy ANP  

Wcriteria 

obtained in 

Step 3 

 Sub-criteria 

WSub-criteria 

obtained in 

Step 4 

Overall 
priority 

of the 

Sub-
criteria  

C1: Eco-product 

design 
0.287 

Sc1: Designing the recyclable product  
0.305 0.088 

Sc2: Application of less hazardous material in production 
0.454 0.131 

Sc3: Design of product for reduce consumption of 
material/energy  

0.241 0.069 

C2: Environmental 

practice 
0.291 

Sc4: Regulatory compliance audit 0.684 0.199 

Sc5: ISO 14001 certificate 
0.316 0.092 

C3: Sustainable 

packaging 
0.238 Sc6: Reusable packaging 

0.500 0.119 

Sc7: Packaging from recycled material 0.500 0.119 

C4: Supplier’s 
characteristic 

0.183 

Sc8: Supplier’s reputation in green performance  
0.685 0.126 

Sc9: Environmental experience 
0.224 0.041 

Sc10: Legality 
0.091 0.017 
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Table 2.A.12 

Priority of each supplier with respect to Sc1 

Sc1 Sup1 Sup2 Sup3 Sup4 Sup5 Wc 

Sup1 1.00 1.00 1.00 0.50 0.67 1.00 1.00 1.50 2.00 2.00 2.50 3.00 0.50 1.00 1.50 0.239 

Sup2 1.00 1.50 2.00 1.00 1.00 1.00 1.50 2.00 2.50 1.00 1.50 2.00 0.67 1.00 2.00 0.250 

Sup3 0.50 0.67 1.00 0.40 0.50 0.67 1.00 1.00 1.00 1.00 1.50 2.00 2.00 2.50 3.00 0.221 

Sup4 0.33 0.40 0.50 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00 1.00 0.67 1.00 2.00 0.129 

Sup5 0.67 1.00 2.00 0.50 1.00 1.50 0.33 0.40 0.50 0.50 1.00 1.50 1.00 1.00 1.00 0.162 

 

Table 2.A.13 

Priority of each supplier with respect to Sc2 

Sc2 Sup1 Sup2 Sup3 Sup4 Sup5 Wc 

Sup1 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 1.50 2.00 2.50 0.50 0.67 1.00 0.259 

Sup2 0.33 0.40 0.50 1.00 1.00 1.00 1.50 2.00 2.50 0.40 0.50 0.67 2.50 3.00 3.50 0.232 

Sup3 0.50 0.67 1.00 0.40 0.50 0.67 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 0.205 

Sup4 0.40 0.50 0.67 1.50 2.00 2.50 0.33 0.40 0.50 1.00 1.00 1.00 2.00 2.50 3.00 0.212 

Sup5 1.00 1.50 2.00 0.29 0.33 0.40 0.50 0.67 1.00 0.33 0.40 0.50 1.00 1.00 1.00 0.091 

 

Table 2.A.14 

Priority of each supplier with respect to Sc3 

Sc3 Sup1 Sup2 Sup3 Sup4 Sup5 Wc 

Sup1 1.00 1.00 1.00 0.40 0.50 0.67 2.00 2.50 3.00 1.00 1.50 2.00 0.50 1.00 1.50 0.222 

Sup2 1.50 2.00 2.50 1.00 1.00 1.00 1.00 1.50 2.00 2.00 2.50 3.00 0.33 0.40 0.50 0.252 

Sup3 0.33 0.40 0.50 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 0.67 1.00 2.00 0.132 

Sup4 0.50 0.67 1.00 0.33 0.40 0.50 0.67 1.00 2.00 1.00 1.00 1.00 2.00 2.50 3.00 0.190 

Sup5 0.67 1.00 2.00 2.00 2.50 3.00 0.50 1.00 1.50 0.33 0.40 0.50 1.00 1.00 1.00 0.204 
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Table 2.A.15 
Priority of each supplier with respect to Sc4 

Sc4 Sup1 Sup2 Sup3 Sup4 Sup5 Wc 

Sup1 1.00 1.00 1.00 0.33 0.40 0.50 1.00 1.50 2.00 0.40 0.50 0.67 0.50 1.00 1.50 0.136 

Sup2 2.00 2.50 3.00 1.00 1.00 1.00 1.00 1.50 2.00 1.00 1.50 2.00 1.00 1.50 2.00 0.297 

Sup3 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 0.67 1.00 2.00 0.158 

Sup4 1.50 2.00 2.50 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 2.00 2.50 3.00 0.269 

Sup5 0.67 1.00 2.00 0.50 0.67 1.00 0.50 1.00 1.50 0.33 0.40 0.50 1.00 1.00 1.00 0.140 

 

Table 2.A.16 
Priority of each supplier with respect to Sc5 

Sc5 Sup1 Sup2 Sup3 Sup4 Sup5 Wc 

Sup1 1.00 1.00 1.00 0.50 0.67 1.00 1.50 2.00 2.50 2.00 2.50 3.00 0.33 0.40 0.50 0.241 

Sup2 1.00 1.50 2.00 1.00 1.00 1.00 0.67 1.00 2.00 1.00 1.50 2.00 0.50 1.00 1.50 0.230 

Sup3 0.40 0.50 0.67 0.50 1.00 1.50 1.00 1.00 1.00 0.50 1.00 1.50 0.50 0.67 1.00 0.130 

Sup4 0.33 0.40 0.50 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 0.40 0.50 0.67 0.101 

Sup5 2.00 2.50 3.00 0.67 1.00 2.00 1.00 1.50 2.00 1.50 2.00 2.50 1.00 1.00 1.00 0.298 

 

Table 2.A.17 

Priority of each supplier with respect to Sc6 

Sc6 Sup1 Sup2 Sup3 Sup4 Sup5 Wc 

Sup1 1.00 1.00 1.00 0.40 0.50 0.67 0.50 1.00 1.50 0.33 0.40 0.50 0.50 1.00 1.50 0.116 

Sup2 1.50 2.00 2.50 1.00 1.00 1.00 1.50 2.00 2.50 1.00 1.50 2.00 0.50 0.67 1.00 0.253 

Sup3 0.67 1.00 2.00 0.40 0.50 0.67 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 0.232 

Sup4 2.00 2.50 3.00 0.50 0.67 1.00 0.33 0.40 0.50 1.00 1.00 1.00 1.50 2.00 2.50 0.232 

Sup5 0.67 1.00 2.00 1.00 1.50 2.00 0.50 0.67 1.00 0.40 0.50 0.67 1.00 1.00 1.00 0.166 
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Table 2.A.18 
Priority of each supplier with respect to Sc7 

Sc7 Sup1 Sup2 Sup3 Sup4 Sup5 Wc 

Sup1 1.00 1.00 1.00 1.00 1.50 2.00 1.50 2.00 2.50 2.00 2.50 3.00 0.50 0.67 1.00 0.282 

Sup2 0.50 0.67 1.00 1.00 1.00 1.00 1.00 1.50 2.00 0.50 1.00 1.50 1.00 1.50 2.00 0.207 

Sup3 0.40 0.50 0.67 0.50 0.67 1.00 1.00 1.00 1.00 0.33 0.40 0.50 1.00 1.50 2.00 0.113 

Sup4 0.33 0.40 0.50 0.67 1.00 2.00 2.00 2.50 3.00 1.00 1.00 1.00 0.50 1.00 1.50 0.219 

Sup5 1.00 1.50 2.00 0.50 0.67 1.00 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 0.178 

 

Table 2.A.19 
Priority of each supplier with respect to Sc8 

Sc8 Sup1 Sup2 Sup3 Sup4 Sup5 Wc 

Sup1 1.00 1.00 1.00 1.50 2.00 2.50 0.67 1.00 2.00 1.50 2.00 2.50 0.67 1.00 2.00 0.257 

Sup2 0.40 0.50 0.67 1.00 1.00 1.00 2.00 2.50 3.00 0.50 1.00 1.50 2.00 2.50 3.00 0.272 

Sup3 0.50 1.00 1.50 0.33 0.40 0.50 1.00 1.00 1.00 1.00 1.50 2.00 1.00 1.50 2.00 0.190 

Sup4 0.40 0.50 0.67 0.67 1.00 2.00 0.50 0.67 1.00 1.00 1.00 1.00 0.67 1.00 2.00 0.156 

Sup5 0.50 1.00 1.50 0.33 0.40 0.50 0.50 0.67 1.00 0.50 1.00 1.50 1.00 1.00 1.00 0.125 

 

Table 2.A.20 

Priority of each supplier with respect to Sc9 

Sc9 Sup1 Sup2 Sup3 Sup4 Sup5 Wc 

Sup1 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 2.00 2.50 3.00 0.67 1.00 2.00 0.252 

Sup2 0.67 1.00 2.00 1.00 1.00 1.00 1.50 2.00 2.50 1.00 1.50 2.00 0.40 0.50 0.67 0.221 

Sup3 0.50 0.67 1.00 0.40 0.50 0.67 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 0.164 

Sup4 0.33 0.40 0.50 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 0.67 1.00 2.00 0.156 

Sup5 0.50 1.00 1.50 1.50 2.00 2.50 0.50 0.67 1.00 0.50 1.00 1.50 1.00 1.00 1.00 0.207 
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Table 2.A.21 
Priority of each supplier with respect to Sc10 

Sc10 Sup1 Sup2 Sup3 Sup4 Sup5 Wc 

Sup1 1.00 1.00 1.00 2.00 2.50 3.00 0.50 1.00 1.50 1.50 2.00 2.50 1.00 1.50 2.00 0.283 

Sup2 0.33 0.40 0.50 1.00 1.00 1.00 2.00 2.50 3.00 0.33 0.40 0.50 0.67 1.00 2.00 0.182 

Sup3 0.67 1.00 2.00 0.33 0.40 0.50 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 0.172 

Sup4 0.40 0.50 0.67 2.00 2.50 3.00 0.67 1.00 2.00 1.00 1.00 1.00 2.00 2.50 3.00 0.267 

Sup5 0.50 0.67 1.00 0.50 1.00 1.50 0.50 0.67 1.00 0.33 0.40 0.50 1.00 1.00 1.00 0.096 

 

 

Table 2.A.22 
Overall priority of each supplier according to each sub-criterion 

W4 
Priority of each supplier with respect to each  sub-criterion 

Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10 

Sup1 0.239 0.259 0.222 0.136 0.241 0.116 0.282 0.257 0.252 0.283 

Sup2 0.250 0.232 0.252 0.297 0.230 0.253 0.207 0.272 0.221 0.182 

Sup3 0.221 0.205 0.132 0.158 0.130 0.232 0.113 0.190 0.164 0.172 

Sup4 0.129 0.212 0.190 0.269 0.101 0.232 0.219 0.156 0.156 0.267 

Sup5 0.162 0.091 0.204 0.140 0.298 0.166 0.178 0.125 0.207 0.096 
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2.B. Fuzzy ANP calculation related to ERCs 

 

Table 2.B.1 

Pairwise comparisons among criteria 

W1 C1 C2 C3 C4 Wc 

C1 1.00 1.00 1.00 2.00 2.50 3.00 0.67 1.00 2.00 1.00 1.50 2.00 0.361 

C2 0.33 0.40 0.50 1.00 1.00 1.00 0.50 1.00 1.50 0.50 0.67 1.00 0.130 

C3 0.50 1.00 1.50 0.67 1.00 2.00 1.00 1.00 1.00 2.00 2.50 3.00 0.334 

C4 0.50 0.67 1.00 1.00 1.50 2.00 0.33 0.40 0.50 1.00 1.00 1.00 0.175 

 

 

Table 2.B.2 

The inner dependence matrix and relative weight factor with respect to C1 

C1 C2 C3 C4 Wc 

C2 1.00 1.00 1.00 1.00 1.50 2.00 2.00 2.50 3.00 0.591 

C3 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 0.212 

C4 0.33 0.40 0.50 0.67 1.00 2.00 1.00 1.00 1.00 0.198 

 

 

Table 2.B.3 

The inner dependence matrix and relative weight factor with respect to C2 

C2 C1 C3 C4 Wc 

C1 1.00 1.00 1.00 1.50 2.00 2.50 2.00 2.50 3.00 0.764 

C3 0.40 0.50 0.67 1.00 1.00 1.00 0.50 1.00 1.50 0.083 

C4 0.33 0.40 0.50 0.67 1.00 2.00 1.00 1.00 1.00 0.153 
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Table 2.B.4 
The inner dependence matrix and relative weight factor with respect to C3 

C3 C1 C2 C4 Wc 

C1 1.00 1.00 1.00 1.00 1.50 2.00 0.50 0.67 1.00 0.305 

C2 0.50 0.67 1.00 1.00 1.00 1.00 2.00 2.50 3.00 0.454 

C4 1.00 1.50 2.00 0.33 0.40 0.50 1.00 1.00 1.00 0.241 

 

 

Table 2.B.5 
The inner dependence matrix and relative weight factor with respect to C4 

C4 C1 C2 C3 Wc 

C1 1.00 1.00 1.00 0.50 1.00 1.50 1.50 2.00 2.50 0.419 

C2 0.67 1.00 2.00 1.00 1.00 1.00 0.67 1.00 2.00 0.342 

C3 0.40 0.50 0.67 0.50 1.00 1.50 1.00 1.00 1.00 0.239 

 

Table 2.B.6 
The interdependent ranking of the green performance criteria related to ERCs 

W2 C1 C2 C3 C4 W1 Wcriteria 

C1 1.00 0.764 0.305 0.419 0.361 0.318 

C2 0.591 1.00 0.454 0.342 0.130 0.277 

C3 0.212 0.083 1.00 0.239 0.334 0.232 

C4 0.198 0.153 0.241 1.00 0.175 0.174 

 

 

Table 2.B.7 

Pairwise comparisons among sub-criteria of C1 

C1 Sc1 Sc2 Wc 

Sc1 1.00 1.00 1.00 1.00 1.50 2.00 0.684 

Sc2 0.50 0.67 1.00 1.00 1.00 1.00 0.316 
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Table 2.B.8 

Pairwise comparisons among sub-criteria of C2 

C2 Sc3 Sc4 Wc 

Sc3 1.00 1.00 1.00 0.50 1.00 1.50 0.500 

Sc4 0.67 1.00 2.00 1.00 1.00 1.00 0.500 

 

 

Table 2.B.9 

Pairwise comparisons among sub-criteria of C3 

C3 Sc5 Sc6 Sc7 Wc 

Sc5 1.00 1.00 1.00 1.00 1.50 2.00 0.50 1.00 1.50 0.354 

Sc6 0.50 0.67 1.00 1.00 1.00 1.00 2.00 2.50 3.00 0.434 

Sc7 0.67 1.00 2.00 0.33 0.40 0.50 1.00 1.00 1.00 0.212 

 

 

Table 2.B.10 

Pairwise comparisons among sub-criteria of C4 

C4 Sc8 Sc9 Sc10 Wc 

Sc8 1.00 1.00 1.00 0.50 1.00 1.50 1.50 2.00 2.50 0.419 

Sc9 0.67 1.00 2.00 1.00 1.00 1.00 0.67 1.00 2.00 0.342 

Sc10 0.40 0.50 0.67 0.50 1.00 1.50 1.00 1.00 1.00 0.239 
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Table 2.B.11 
Overall priority of the sub-criteria of green performance for ERCs 

Fuzzy ANP  

Wcriteria 

obtained 
in Step 3 

 Sub-criteria 

WSub-criteria 

obtained in 
Step 4 

Overall 

priority 

of the 
Sub-

criteria  

C1: Green recycling 0.318 

Sc1: Application of sustainable method to reduce scrap rate 0.684 0.217 

Sc2: Recovery Center’s environmental management system 0.316 0.100 

C2: Eco-technology 0.277 

Sc3: Utilizing eco-tech for recovery (compatible with renewable source 

of energy) 
0.500 0.139 

Sc4: Utilizing eco-tech for recovery (producing less carbon emission) 0.500 0.139 

C3: Green 

transportation 
0.232 

Sc5: Collaborating with collection centers to standardize packaging or 

reducing empty running  
0.354 0.082 

Sc6: Non-damaged transport 0.434 0.100 

Sc7: Enhancing vehicle operating efficiency and improving vehicle 

routing using GPS 
0.212 0.049 

C4: Social-cultural 

enablers 
0.174 

Sc8: Green organizational culture 0.419 0.073 

Sc9: Environmental education and training 0.342 0.059 

Sc10: Employee involvement 0.239 0.042 
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Table 2.B.12 
Priority of each ERC with respect to Sc1 

Sc1 ERC1 ERC2 ERC3 ERC4 ERC5 ERC6 Wc 

ERC1 1.00 1.00 1.00 0.50 0.67 1.00 1.00 1.50 2.00 0.33 0.40 0.50 0.50 1.00 1.50 0.67 1.00 2.00 0.140 

ERC2 1.00 1.50 2.00 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 1.00 1.50 2.00 0.50 1.00 1.50 0.219 

ERC3 0.50 0.67 1.00 0.33 0.40 0.50 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 2.00 2.50 3.00 0.174 

ERC4 2.00 2.50 3.00 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 0.50 1.00 1.50 0.50 0.67 1.00 0.173 

ERC5 0.67 1.00 2.00 0.50 0.67 1.00 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 1.00 1.50 2.00 0.154 

ERC6 0.50 1.00 1.50 0.67 1.00 2.00 0.33 0.40 0.50 1.00 1.50 2.00 0.50 0.67 1.00 1.00 1.00 1.00 0.140 

 

Table 2.B.13 

Priority of each ERC with respect to Sc2 

Sc2 ERC1 ERC2 ERC3 ERC4 ERC5 ERC6 Wc 

ERC1 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 1.50 2.00 2.50 0.50 1.00 1.50 0.50 0.67 1.00 0.210 

ERC2 0.33 0.40 0.50 1.00 1.00 1.00 0.50 0.67 1.00 1.00 1.50 2.00 1.00 1.50 2.00 2.00 2.50 3.00 0.185 

ERC3 0.50 0.67 1.00 1.00 1.50 2.00 1.00 1.00 1.00 2.00 2.50 3.00 1.50 2.00 2.50 0.50 1.00 1.50 0.210 

ERC4 0.40 0.50 0.67 0.50 0.67 1.00 0.33 0.40 0.50 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 0.115 

ERC5 0.67 1.00 2.00 0.50 0.67 1.00 0.40 0.50 0.67 0.67 1.00 2.00 1.00 1.00 1.00 0.67 1.00 2.00 0.140 

ERC6 1.00 1.50 2.00 0.33 0.40 0.50 0.67 1.00 2.00 0.50 0.67 1.00 0.50 1.00 1.50 1.00 1.00 1.00 0.140 

 

Table 2.B.14 
Priority of each ERC with respect to Sc3 

Sc3 ERC1 ERC2 ERC3 ERC4 ERC5 ERC6 Wc 

ERC1 1.00 1.00 1.00 0.50 0.67 1.00 2.00 2.50 3.00 1.00 1.50 2.00 0.50 1.00 1.50 2.50 3.00 3.50 0.236 

ERC2 1.00 1.50 2.00 1.00 1.00 1.00 1.00 1.50 2.00 2.00 2.50 3.00 1.00 1.50 2.00 0.50 1.00 1.50 0.222 

ERC3 0.33 0.40 0.50 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 0.33 0.40 0.50 1.00 1.50 2.00 0.099 

ERC4 0.50 0.67 1.00 0.33 0.40 0.50 0.67 1.00 2.00 1.00 1.00 1.00 2.00 2.50 3.00 1.50 2.00 2.50 0.188 

ERC5 0.67 1.00 2.00 0.50 0.67 1.00 2.00 2.50 3.00 0.33 0.40 0.50 1.00 1.00 1.00 1.00 1.50 2.00 0.175 

ERC6 0.29 0.33 0.40 0.67 1.00 2.00 0.50 0.67 1.00 0.40 0.50 0.67 0.50 0.67 1.00 1.00 1.00 1.00 0.080 
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Table 2.B.15 
Priority of each ERC with respect to Sc4 

Sc4 ERC1 ERC2 ERC3 ERC4 ERC5 ERC6 Wc 

ERC1 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 1.50 2.00 2.50 0.50 1.00 1.50 2.00 2.50 3.00 0.253 

ERC2 0.33 0.40 0.50 1.00 1.00 1.00 1.00 1.50 2.00 1.00 1.50 2.00 1.00 1.50 2.00 0.33 0.40 0.50 0.138 

ERC3 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00 1.00 0.33 0.40 0.50 2.00 2.50 3.00 0.50 1.00 1.50 0.137 

ERC4 0.40 0.50 0.67 0.50 0.67 1.00 2.00 2.50 3.00 1.00 1.00 1.00 0.50 1.00 1.50 1.50 2.00 2.50 0.183 

ERC5 0.67 1.00 2.00 0.50 0.67 1.00 0.33 0.40 0.50 0.67 1.00 2.00 1.00 1.00 1.00 2.00 2.50 3.00 0.163 

ERC6 0.33 0.40 0.50 2.00 2.50 3.00 0.67 1.00 2.00 0.40 0.50 0.67 0.33 0.40 0.50 1.00 1.00 1.00 0.125 

 

Table 2.B.16 

Priority of each ERC with respect to Sc5 

Sc5 ERC1 ERC2 ERC3 ERC4 ERC5 ERC6 Wc 

ERC1 1.00 1.00 1.00 1.50 2.00 2.50 0.50 0.67 1.00 2.00 2.50 3.00 1.00 1.50 2.00 0.67 1.00 2.00 0.215 

ERC2 0.40 0.50 0.67 1.00 1.00 1.00 1.00 1.50 2.00 1.00 1.50 2.00 0.50 1.00 1.50 0.50 1.00 1.50 0.164 

ERC3 1.00 1.50 2.00 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 0.50 0.67 1.00 1.00 1.50 2.00 0.160 

ERC4 0.33 0.40 0.50 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 1.00 1.50 2.00 2.00 2.50 3.00 0.180 

ERC5 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.50 2.00 0.50 0.67 1.00 1.00 1.00 1.00 1.00 1.50 2.00 0.164 

ERC6 0.50 1.00 1.50 0.67 1.00 2.00 0.50 0.67 1.00 0.33 0.40 0.50 0.50 0.67 1.00 1.00 1.00 1.00 0.117 

 
 

Table 2.B.17 

Priority of each ERC with respect to Sc6 

Sc6 ERC1 ERC2 ERC3 ERC4 ERC5 ERC6 Wc 

ERC1 1.00 1.00 1.00 1.00 1.50 2.00 0.67 1.00 2.00 1.50 2.00 2.50 0.50 1.00 1.50 0.33 0.40 0.50 0.171 

ERC2 0.50 0.67 1.00 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 1.50 2.00 2.50 0.50 1.00 1.50 0.208 

ERC3 0.50 1.00 1.50 0.33 0.40 0.50 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 0.40 0.50 0.67 0.126 

ERC4 0.40 0.50 0.67 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 1.00 1.50 2.00 2.00 2.50 3.00 0.177 

ERC5 0.67 1.00 2.00 0.40 0.50 0.67 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00 1.00 1.00 1.50 2.00 0.132 

ERC6 2.00 2.50 3.00 0.67 1.00 2.00 1.50 2.00 2.50 0.33 0.40 0.50 0.50 0.67 1.00 1.00 1.00 1.00 0.185 
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Table 2.B.18 
Priority of each ERC with respect to Sc7 

Sc7 ERC1 ERC2 ERC3 ERC4 ERC5 ERC6 Wc 

ERC1 1.00 1.00 1.00 1.00 1.50 2.00 2.00 2.50 3.00 0.50 0.67 1.00 0.50 1.00 1.50 0.67 1.00 2.00 0.191 

ERC2 0.50 0.67 1.00 1.00 1.00 1.00 1.00 1.50 2.00 1.00 1.50 2.00 1.00 1.50 2.00 0.50 0.67 1.00 0.174 

ERC3 0.33 0.40 0.50 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 2.00 2.50 3.00 1.00 1.50 2.00 0.178 

ERC4 1.00 1.50 2.00 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 1.00 1.50 2.00 0.50 1.00 1.50 0.172 

ERC5 0.67 1.00 2.00 0.50 0.67 1.00 0.33 0.40 0.50 0.50 0.67 1.00 1.00 1.00 1.00 0.50 0.67 1.00 0.113 

ERC6 0.50 1.00 1.50 1.00 1.50 2.00 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.50 2.00 1.00 1.00 1.00 0.172 

 

 

Table 2.B.19 

Priority of each ERC with respect to Sc8 

Sc8 ERC1 ERC2 ERC3 ERC4 ERC5 ERC6 Wc 

ERC1 1.00 1.00 1.00 0.40 0.50 0.67 1.00 1.50 2.00 0.67 1.00 2.00 0.50 1.00 1.50 0.50 0.67 1.00 0.140 

ERC2 1.50 2.00 2.50 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 1.50 2.00 2.50 1.00 1.50 2.00 0.267 

ERC3 0.50 0.67 1.00 0.33 0.40 0.50 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 1.50 2.00 2.50 0.158 

ERC4 0.50 1.00 1.50 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 0.50 1.00 1.50 0.40 0.50 0.67 0.124 

ERC5 0.67 1.00 2.00 0.40 0.50 0.67 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 2.00 2.50 3.00 0.175 

ERC6 1.00 1.50 2.00 0.50 0.67 1.00 0.40 0.50 0.67 1.50 2.00 2.50 0.33 0.40 0.50 1.00 1.00 1.00 0.136 

 

 

Table 2.B.20 

Priority of each ERC with respect to Sc9 

Sc9 ERC1 ERC2 ERC3 ERC4 ERC5 ERC6 Wc 

ERC1 1.00 1.00 1.00 1.00 1.50 2.00 1.50 2.00 2.50 0.50 0.67 1.00 0.50 1.00 1.50 1.50 2.00 2.50 0.200 

ERC2 0.50 0.67 1.00 1.00 1.00 1.00 1.00 1.50 2.00 0.33 0.40 0.50 1.00 1.50 2.00 0.50 1.00 1.50 0.151 

ERC3 0.40 0.50 0.67 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 2.00 2.50 3.00 0.178 

ERC4 1.00 1.50 2.00 2.00 2.50 3.00 0.67 1.00 2.00 1.00 1.00 1.00 0.50 1.00 1.50 0.50 1.00 1.50 0.197 

ERC5 0.67 1.00 2.00 0.50 0.67 1.00 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 1.00 1.50 2.00 0.154 

ERC6 0.40 0.50 0.67 0.67 1.00 2.00 0.33 0.40 0.50 0.67 1.00 2.00 0.50 0.67 1.00 1.00 1.00 1.00 0.120 
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Table 2.B.21 
Priority of each ERC with respect to Sc10 

Sc10 ERC1 ERC2 ERC3 ERC4 ERC5 ERC6 Wc 

ERC1 1.00 1.00 1.00 0.40 0.50 0.67 1.00 1.50 2.00 0.50 1.00 1.50 1.00 1.50 2.00 0.67 1.00 2.00 0.170 

ERC2 1.50 2.00 2.50 1.00 1.00 1.00 1.00 1.50 2.00 2.00 2.50 3.00 1.00 1.50 2.00 1.00 1.50 2.00 0.255 

ERC3 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 2.00 2.50 3.00 0.188 

ERC4 0.67 1.00 2.00 0.33 0.40 0.50 0.67 1.00 2.00 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 0.159 

ERC5 0.50 0.67 1.00 0.50 0.67 1.00 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 1.50 2.00 2.50 0.154 

ERC6 0.50 1.00 1.50 0.50 0.67 1.00 0.33 0.40 0.50 0.50 0.67 1.00 0.40 0.50 0.67 1.00 1.00 1.00 0.072 

 

Table 2.B.22 

Overall priority of each ERC according to each sub-criterion 

W4 
Priority of each ERC with respect to each sub-criterion 

Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10 

ERC1 0.140 0.210 0.236 0.253 0.215 0.171 0.191 0.140 0.200 0.170 

ERC2 0.219 0.185 0.222 0.138 0.164 0.208 0.174 0.267 0.151 0.255 

ERC3 0.174 0.210 0.099 0.137 0.160 0.126 0.178 0.158 0.178 0.188 

ERC4 0.173 0.115 0.188 0.183 0.180 0.177 0.172 0.124 0.197 0.159 

ERC5 0.154 0.140 0.175 0.163 0.164 0.132 0.113 0.175 0.154 0.154 

ERC6 0.140 0.140 0.080 0.125 0.117 0.185 0.172 0.136 0.120 0.072 
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2.C. Fuzzy ANP calculation related to ERPs 

 

Table 2.C.1 
Pairwise comparisons among criteria 

W1 C1 C2 C3 C4 Wc 

C1 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 0.50 1.00 1.50 0.326 

C2 0.33 0.40 0.50 1.00 1.00 1.00 0.67 1.00 2.00 2.50 3.00 3.50 0.296 

C3 0.50 0.67 1.00 0.50 1.00 1.50 1.00 1.00 1.00 0.50 1.00 1.50 0.188 

C4 0.67 1.00 2.00 0.29 0.33 0.40 0.67 1.00 2.00 1.00 1.00 1.00 0.190 

 

 
Table 2.C.2 

The inner dependence matrix and relative weight factor with respect to C1 

C1 C2 C3 C4 Wc 

C2 1.00 1.00 1.00 1.00 1.50 2.00 0.50 1.00 1.50 0.363 

C3 0.50 0.67 1.00 1.00 1.00 1.00 1.50 2.00 2.50 0.381 

C4 0.67 1.00 2.00 0.40 0.50 0.67 1.00 1.00 1.00 0.256 

 

Table 2.C.3 

The inner dependence matrix and relative weight factor with respect to C2 

C2 C1 C3 C4 Wc 

C1 1.00 1.00 1.00 1.00 1.50 2.00 0.33 0.40 0.50 0.253 

C3 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 0.236 

C4 2.00 2.50 3.00 0.67 1.00 2.00 1.00 1.00 1.00 0.512 
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Table 2.C.4 
The inner dependence matrix and relative weight factor with respect to C3 

C3 C1 C2 C4 Wc 

C1 1.00 1.00 1.00 0.67 1.00 2.00 0.50 1.00 1.50 0.325 

C2 0.50 1.00 1.50 1.00 1.00 1.00 1.50 2.00 2.50 0.412 

C4 0.67 1.00 2.00 0.40 0.50 0.67 1.00 1.00 1.00 0.263 

 

 
Table 2.C.5 

The inner dependence matrix and relative weight factor with respect to C4 

C4 C1 C2 C3 Wc 

C1 1.00 1.00 1.00 0.40 0.50 0.67 1.50 2.00 2.50 0.361 

C2 1.50 2.00 2.50 1.00 1.00 1.00 0.67 1.00 2.00 0.426 

C3 0.40 0.50 0.67 0.50 1.00 1.50 1.00 1.00 1.00 0.213 

 

 
Table 2.C.6 

The interdependent ranking of the green performance criteria related to ERPs 

W2 C1 C2 C3 C4 W1 Wcriteria 

C1 1.00 0.253 0.325 0.361 0.326 0.265 
C2 0.363 1.00 0.412 0.426 0.296 0.286 

C3 0.381 0.236 1.00 0.213 0.188 0.211 

C4 0.256 0.512 0.263 1.00 0.190 0.237 

 

Table 2.C.7 

Pairwise comparisons among sub-criteria of C1 

C1 Sc1 Sc2 Wc 

Sc1 1.00 1.00 1.00 1.00 1.50 2.00 0.684 

Sc2 0.50 0.67 1.00 1.00 1.00 1.00 0.316 
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Table 2.C.8 

Pairwise comparisons among sub-criteria of C2 

C2 Sc3 Sc4 Wc 

Sc3 1.00 1.00 1.00 0.50 1.00 1.50 0.500 

Sc4 0.67 1.00 2.00 1.00 1.00 1.00 0.500 

 

Table 2.C.9 

Pairwise comparisons among sub-criteria of C3 

C3 Sc5 Sc6 Sc7 Wc 

Sc5 1.00 1.00 1.00 2.50 3.00 3.50 0.50 1.00 1.50 0.543 

Sc6 0.29 0.33 0.40 1.00 1.00 1.00 0.50 1.00 1.50 0.115 

Sc7 0.67 1.00 2.00 0.67 1.00 2.00 1.00 1.00 1.00 0.342 

 

Table 2.C.10 

Pairwise comparisons among sub-criteria of C4 

C4 Sc8 Sc9 Sc10 Wc 

Sc8 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 0.685 

Sc9 0.33 0.40 0.50 1.00 1.00 1.00 1.00 1.50 2.00 0.224 

Sc10 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00 1.00 0.091 
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Table 2.C.11 
Overall priority of the sub-criteria of green performance for ERPs 

Fuzzy ANP  

Wcriteria 

obtained 

in Step 3 

 Sub-criteria 

WSub-criteria 

obtained 

in Step 4 

Overall 

priority 

of the 

Sub-
criteria  

C1: Green 

purchasing 
0.265 

Sc1: Collaborating with supplier for protecting the 

environment 
0.684 0.182 

Sc2: Purchasing from Suppliers having ISO 14001 

Standard - Environmental Management Systems 
0.316 0.084 

C2: Operational 

performance 
0.286 

Sc3: Optimum design 0.500 0.143 

Sc4: Capacity utilization 0.500 0.143 

C3: Internal 

environmental 

management 

0.211 

Sc5: Solid and septic waste management 0.543 0.115 

Sc6: Reduction of emission  0.115 0.024 

Sc7: Responsible Recycling© (R2) Certification 0.342 0.072 

C4: Green ethical 

approach 
0.237 

Sc8: Green marketing 0.685 0.162 

Sc9: Returning the package to suppliers for reuse 0.224 0.053 

Sc10: Investment recovery  0.091 0.022 
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Table 2.C.12 
Priority of each ERP with respect to Sc1 

Sc1 ERP1 ERP2 ERP3 ERP4 ERP5 Wc 

ERP1 1.00 1.00 1.00 2.00 2.50 3.00 0.50 1.00 1.50 1.50 2.00 2.50 0.67 1.00 2.00 0.269 

ERP2 0.33 0.40 0.50 1.00 1.00 1.00 1.00 1.50 2.00 1.00 1.50 2.00 1.00 1.50 2.00 0.212 

ERP3 0.67 1.00 2.00 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 2.00 2.50 3.00 0.227 

ERP4 0.40 0.50 0.67 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 0.50 1.00 1.50 0.149 

ERP5 0.50 1.00 1.50 0.50 0.67 1.00 0.33 0.40 0.50 0.67 1.00 2.00 1.00 1.00 1.00 0.143 

 

 

Table 2.C.13 

Priority of each ERP with respect to Sc2 

Sc2 ERP1 ERP2 ERP3 ERP4 ERP5 Wc 

ERP1 1.00 1.00 1.00 2.00 2.50 3.00 0.50 0.67 1.00 1.50 2.00 2.50 0.33 0.40 0.50 0.229 

ERP2 0.33 0.40 0.50 1.00 1.00 1.00 1.50 2.00 2.50 1.00 1.50 2.00 1.00 1.50 2.00 0.224 

ERP3 1.00 1.50 2.00 0.40 0.50 0.67 1.00 1.00 1.00 2.00 2.50 3.00 0.67 1.00 2.00 0.227 

ERP4 0.40 0.50 0.67 0.50 0.67 1.00 0.33 0.40 0.50 1.00 1.00 1.00 0.50 1.00 1.50 0.101 

ERP5 2.00 2.50 3.00 0.50 0.67 1.00 0.50 1.00 1.50 0.67 1.00 2.00 1.00 1.00 1.00 0.218 

 

 

Table 2.C.14 

Priority of each ERP with respect to Sc3 

Sc3 ERP1 ERP2 ERP3 ERP4 ERP5 Wc 

ERP1 1.00 1.00 1.00 1.50 2.00 2.50 2.00 2.50 3.00 1.50 2.00 2.50 1.00 1.50 2.00 0.341 

ERP2 0.40 0.50 0.67 1.00 1.00 1.00 1.00 1.50 2.00 2.00 2.50 3.00 0.67 1.00 2.00 0.246 

ERP3 0.33 0.40 0.50 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 1.50 2.00 2.50 0.163 

ERP4 0.40 0.50 0.67 0.33 0.40 0.50 0.67 1.00 2.00 1.00 1.00 1.00 2.00 2.50 3.00 0.190 

ERP5 0.50 0.67 1.00 0.50 1.00 1.50 0.40 0.50 0.67 0.33 0.40 0.50 1.00 1.00 1.00 0.060 
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Table 2.C.15 
Priority of each ERP with respect to Sc4 

Sc4 ERP1 ERP2 ERP3 ERP4 ERP5 Wc 

ERP1 1.00 1.00 1.00 1.50 2.00 2.50 2.00 2.50 3.00 1.50 2.00 2.50 0.50 1.00 1.50 0.307 

ERP2 0.40 0.50 0.67 1.00 1.00 1.00 1.00 1.50 2.00 1.00 1.50 2.00 1.50 2.00 2.50 0.233 

ERP3 0.33 0.40 0.50 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 2.00 2.50 3.00 0.188 

ERP4 0.40 0.50 0.67 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 0.50 1.00 1.50 0.138 

ERP5 0.67 1.00 2.00 0.40 0.50 0.67 0.33 0.40 0.50 0.67 1.00 2.00 1.00 1.00 1.00 0.134 

 

Table 2.C.16 

Priority of each ERP with respect to Sc5 

Sc5 ERP1 ERP2 ERP3 ERP4 ERP5 Wc 

ERP1 1.00 1.00 1.00 0.67 1.00 2.00 1.00 1.50 2.00 2.00 2.50 3.00 0.50 0.67 1.00 0.233 

ERP2 0.50 1.00 1.50 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 0.33 0.40 0.50 0.224 

ERP3 0.50 0.67 1.00 0.33 0.40 0.50 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 0.156 

ERP4 0.33 0.40 0.50 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 1.00 1.50 2.00 0.164 

ERP5 1.00 1.50 2.00 2.00 2.50 3.00 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00 1.00 0.222 

 

Table 2.C.17 

Priority of each ERP with respect to Sc6 

Sc6 ERP1 ERP2 ERP3 ERP4 ERP5 Wc 

ERP1 1.00 1.00 1.00 1.50 2.00 2.50 1.00 1.50 2.00 1.50 2.00 2.50 0.50 1.00 1.50 0.276 

ERP2 0.40 0.50 0.67 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 2.00 2.50 3.00 0.293 

ERP3 0.50 0.67 1.00 0.33 0.40 0.50 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 0.145 

ERP4 0.40 0.50 0.67 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 1.50 2.00 2.50 0.186 

ERP5 0.67 1.00 2.00 0.33 0.40 0.50 0.50 0.67 1.00 0.40 0.50 0.67 1.00 1.00 1.00 0.099 
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Table 2.C.18 
Priority of each ERP with respect to Sc7 

Sc7 ERP1 ERP2 ERP3 ERP4 ERP5 Wc 

ERP1 1.00 1.00 1.00 1.00 1.50 2.00 0.50 0.67 1.00 1.50 2.00 2.50 0.50 1.00 1.50 0.228 

ERP2 0.50 0.67 1.00 1.00 1.00 1.00 1.00 1.50 2.00 0.67 1.00 2.00 1.00 1.50 2.00 0.213 

ERP3 1.00 1.50 2.00 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 0.50 0.67 1.00 0.183 

ERP4 0.40 0.50 0.67 0.50 1.00 1.50 0.67 1.00 2.00 1.00 1.00 1.00 0.50 1.00 1.50 0.176 

ERP5 0.67 1.00 2.00 0.50 0.67 1.00 1.00 1.50 2.00 0.67 1.00 2.00 1.00 1.00 1.00 0.201 

 

Table 2.C.19 

Priority of each ERP with respect to Sc8 

Sc8 ERP1 ERP2 ERP3 ERP4 ERP5 Wc 

ERP1 1.00 1.00 1.00 0.67 1.00 2.00 0.33 0.40 0.50 1.50 2.00 2.50 0.33 0.40 0.50 0.160 

ERP2 0.50 1.00 1.50 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 1.50 2.00 2.50 0.278 

ERP3 2.00 2.50 3.00 0.33 0.40 0.50 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 0.222 

ERP4 0.40 0.50 0.67 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 0.50 1.00 1.50 0.140 

ERP5 2.00 2.50 3.00 0.40 0.50 0.67 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 0.199 

 

Table 2.C.20 

Priority of each ERP with respect to Sc9 

Sc9 ERP1 ERP2 ERP3 ERP4 ERP5 Wc 

ERP1 1.00 1.00 1.00 1.00 1.50 2.00 0.67 1.00 2.00 2.00 2.50 3.00 0.50 1.00 1.50 0.253 

ERP2 0.50 0.67 1.00 1.00 1.00 1.00 1.00 1.50 2.00 1.00 1.50 2.00 0.50 0.67 1.00 0.195 

ERP3 0.50 1.00 1.50 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 0.33 0.40 0.50 0.140 

ERP4 0.33 0.40 0.50 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 1.00 1.50 2.00 0.170 

ERP5 0.67 1.00 2.00 1.00 1.50 2.00 2.00 2.50 3.00 0.50 0.67 1.00 1.00 1.00 1.00 0.243 
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Table 2.C.21 
Priority of each ERP with respect to Sc10 

Sc10 ERP1 ERP2 ERP3 ERP4 ERP5 Wc 

ERP1 1.00 1.00 1.00 2.00 2.50 3.00 1.00 1.50 2.00 1.50 2.00 2.50 1.00 1.50 2.00 0.316 

ERP2 0.33 0.40 0.50 1.00 1.00 1.00 1.00 1.50 2.00 0.33 0.40 0.50 1.50 2.00 2.50 0.175 

ERP3 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00 1.00 0.50 1.00 1.50 1.00 1.50 2.00 0.164 

ERP4 0.40 0.50 0.67 2.00 2.50 3.00 0.67 1.00 2.00 1.00 1.00 1.00 0.50 1.00 1.50 0.225 

ERP5 0.50 0.67 1.00 0.40 0.50 0.67 0.50 0.67 1.00 0.67 1.00 2.00 1.00 1.00 1.00 0.120 

 
 

Table 2.C.22 

Overall priority of each ERP according to each sub-criterion 

W4 
Priority of each ERP with respect to each  sub-criterion 

Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10 

ERP1 0.269 0.229 0.341 0.307 0.233 0.276 0.228 0.160 0.253 0.316 

ERP2 0.212 0.224 0.246 0.233 0.224 0.293 0.213 0.278 0.195 0.175 

ERP3 0.227 0.227 0.163 0.188 0.156 0.145 0.183 0.222 0.140 0.164 

ERP4 0.149 0.101 0.190 0.138 0.164 0.186 0.176 0.140 0.170 0.225 

ERP5 0.143 0.218 0.060 0.134 0.222 0.099 0.201 0.199 0.243 0.120 
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Appendix 4 

 

4.A. Volatility in Canadian fuel price 

 

 
Fig. 4.A.1. The volatility in Canadian fuel price (The Historical Trend in Canadian Fuel Pricing, 2019) 

 

  

4.B. Value of parameters 

 

Table 4.B.1 

The values of the parameters in the mathematical model     

J = 3 Ãs = (9,000, 10,000, 11,000) p̃j = h̃j = g̃j = l̃j = ãj = (0.087, 0.097, 0.107) 

Ṇ = 5 B̃c = (9,000, 10,000, 11,000) õn = k̃n = ẽn = (0.0184, 0.0194, 0.0204) 

Ṣ = 6 C̃i = (39,000, 40,000, 41,000) H̃fn = (55,000, 60,000, 65,000) 

Ṃ = 25 Ỹr  = (90,000, 100,000, 110,000) Ucj = 1,000 

Ṛ = 5 D̃f  = (390,000, 400,000, 410,000) Wrj = 15,000 

Ḉ = 25 Ẽsn = (8, 10, 12),  Γsn = 50,000 

Ḟ=4 F̃j = (12, 15, 18) Λij = 300,000 

Ị = 7 R̃j = (180, 200, 220) φ = 0.3 

Ω = 5 G̃j = (30, 35, 40) η = 200 

Ŧ = 2 T̃n = (2, 5, 8)                                          π1 = π2 = 100 

Δ = 100 γ = 200                                                   σ = 200 

υj = 0.25 Ksn *, Mfn **, Nrn ***  Φω ; Φ1 = 0.15, Φ2 = 0.20, Φ3 = 0.30, Φ4 = 0.20, Φ5 = 0.15 ****     

*, **, *** are provided in Tables 4.C.11, 4.C.12, and 4.C.13, respectively.                                          
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**** The scenario-based programming has been applied in different studies to consider the impact of 

various scenarios with pre-determined probabilities on network design (Snyder, 2006; Pishvaee et al., 2009; 
Amin and Zhang 2013a). ω was defined earlier as scenarios representing different rates of disposal fractions 

with the probability of Фω to consider the various types of quality in returns. We consider five scenarios 

including εn0.2, εn0.4, εn0.6, εn0.8, εn1, where εnω is defined as the disposal fraction of component n in scenario 
ω. For example, if one module is unrecyclable, the disposal fraction becomes 20%. Disposal fractions of 

40%, 60%, 80%, and 100% can be interpreted similarly. Given our real-world observations, it is fair to 

assume that most of the time, 3 out of 5 (i.e., 60%) modules are unusable for reassembling with new 

modules. Therefore, a higher probability has been assigned to the 3rd Scenario (i.e., Φ3 = 0.30). Similarly, it 
is rare that all 5 modules are unusable for remanufacturing operations. Therefore, a lower probability has 

been assigned to the 5th Scenario (i.e., Φ5 = 0.15).  

 

 

4.C. The related calculations for green practices of third parties (i.e., Ksn, Mfn, and Nrn) 

   Three decision-makers rank the potential suppliers, recovery centers, and remanufacturing plants 

regarding environmental practices. To this aim, we apply a fuzzy TOPSIS method which has been 

developed by Junior et al. (2014). Two types of linguistic scales are utilized for the purpose of 

comparison. Table 4.C.1 is applied to rank each criterion, and Table 4.C.2 is applied to rank each 

alternative. 

 
Table 4.C.1 

Linguistic scale to rank each criterion 

Linguistic scale TFNs 

Unimportant (0, 0, 0.25) 

Moderately important (0, 0.25, 0.50) 

Important (0.25, 0.50, 0.75) 

Very important (0.50, 0.75, 1) 

Absolutely important (0.75, 1, 1) 

 
Table 4.C.2 
Linguistic scale to rank each alternative 

Linguistic scale TFNs 

Very low (0, 0, 2.5) 

Low (0, 2.5, 5) 

Good (2.5, 5, 7.5) 

High (5, 7.5, 10) 

Excellent (7.5, 10, 10) 
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Step 1: As illustrated in Tables 4.C.3, 4.C.4, and 4.C.5, six potential suppliers are ranked by the 

decision-makers based on each criterion. Then, each criterion is ranked based on the associated 

linguistic scale.  

Step 2: The average of each scale is computed in relation to each alternative. Similarly, the 

average weight of each criterion is calculated. The results are provided in Table 4.C.6. 

 

Table 4.C.3 

Rating of suppliers by the first decision-maker (DM1) 

DM1 
C1: Sustainable 

packaging 

C2: Green 

transportation 

C3: Environmental 

compliance 
C4: Green process 

C5: Supplier's 

characteristics 

Supplier 1 5 7.5 10 5 7.5 10 2.5 5 7.5 5 7.5 10 0 0 2.5 

Supplier 2 7.5 10 10 7.5 10 10 5 7.5 10 7.5 10 10 5 7.5 10 

Supplier 3 5 7.5 10 5 7.5 10 7.5 10 10 2.5 5 7.5 2.5 5 7.5 

Supplier 4 2.5 5 7.5 5 7.5 10 2.5 5 7.5 5 7.5 10 5 7.5 10 

Supplier 5 2.5 5 7.5 5 7.5 10 7.5 10 10 2.5 5 7.5 2.5 5 7.5 

Supplier 6 5 7.5 10 7.5 10 10 2.5 5 7.5 5 7.5 10 5 7.5 10 

Weight 0.75 1 1 0.75 1 1 0.5 0.75 1 0.5 0.75 1 0.25 0.5 0.75 

 

 
Table 4.C.4 

Rating of suppliers by the second decision-maker (DM2) 

DM2 
C1: Sustainable 

packaging 

C2: Green 

transportation 

C3: Environmental 

compliance 
C4: Green process 

C5: Supplier's 

characteristics 

Supplier 1 2.5 5 7.5 2.5 5 7.5 2.5 5 7.5 5 7.5 10 2.5 5 7.5 

Supplier 2 7.5 10 10 7.5 10 10 7.5 10 10 7.5 10 10 7.5 10 10 

Supplier 3 7.5 10 10 5 7.5 10 7.5 10 10 5 7.5 10 7.5 10 10 

Supplier 4 5 7.5 10 7.5 10 10 5 7.5 10 5 7.5 10 5 7.5 10 

Supplier 5 5 7.5 10 5 7.5 10 5 7.5 10 5 7.5 10 5 7.5 10 

Supplier 6 2.5 5 7.5 2.5 5 7.5 7.5 10 10 7.5 10 10 2.5 5 7.5 

Weight 0.5 0.75 1 0.75 1 1 0.5 0.75 1 0.25 0.5 0.75 0.25 0.5 0.75 

 

 

Table 4.C.5 
Rating of suppliers by the third decision-maker (DM3) 

DM3 
C1: Sustainable 

packaging 

C2: Green 

transportation 

C3: Environmental 

compliance 
C4: Green process 

C5: Supplier's 

characteristics 

Supplier 1 5 7.5 10 2.5 5 7.5 2.5 5 7.5 2.5 5 7.5 5 7.5 10 

Supplier 2 7.5 10 10 7.5 10 10 7.5 10 10 7.5 10 10 7.5 10 10 

Supplier 3 7.5 10 10 5 7.5 10 7.5 10 10 2.5 5 7.5 7.5 10 10 

Supplier 4 2.5 5 7.5 7.5 10 10 5 7.5 10 5 7.5 10 2.5 5 7.5 

Supplier 5 0 2.5 5 2.5 5 7.5 2.5 5 7.5 2.5 5 7.5 2.5 5 7.5 

Supplier 6 7.5 10 10 5 7.5 10 5 7.5 10 7.5 10 10 5 7.5 10 

Weight 0.75 1 1 0.5 0.75 1 0.75 1 1 0.5 0.75 1 0.25 0.5 0.75 
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Table 4.C.6 

Average scale related to each alternative and average weight of each criterion 

Average 
C1: Sustainable 

packaging 

C2: Green 

transportation 

C3: Environmental 

compliance 
C4: Green process 

C5: Supplier's 

characteristics 

Supplier 1 4.17 6.67 9.17 3.33 5.83 8.33 2.50 5.00 7.50 4.17 6.67 9.17 2.50 4.17 6.67 

Supplier 2 7.50 10.00 10.00 7.50 10.00 10.00 6.67 9.17 10.00 7.50 10.00 10.00 6.67 9.17 10.00 

Supplier 3 6.67 9.17 10.00 5.00 7.50 10.00 7.50 10.00 10.00 3.33 5.83 8.33 5.83 8.33 9.17 

Supplier 4 3.33 5.83 8.33 6.67 9.17 10.00 4.17 6.67 9.17 5.00 7.50 10.00 4.17 6.67 9.17 

Supplier 5 2.50 5.00 7.50 4.17 6.67 9.17 5.00 7.50 9.17 3.33 5.83 8.33 3.33 5.83 8.33 

Supplier 6 5.00 7.50 9.17 5.00 7.50 9.17 5.00 7.50 9.17 6.67 9.17 10.00 4.17 6.67 9.17 

Weight 0.67 0.92 1.00 0.67 0.92 1.00 0.58 0.83 1.00 0.42 0.67 0.92 0.25 0.50 0.75 

 

Step 3: Eq. (4.51) represents the fuzzy decision matrix obtained in Step 2. Then, Eq. (4.52) is 

applied to calculate the normalized fuzzy decision matrix of the alternatives and the criteria. Table 

4.C.7 indicates the corresponding results. 

( )4 51ij ij m n
S s .


 =    

( )4 52
ij ij ij

ij max max max
j j j

l m u
s , , .

u u u

 
=  
 
 

 

 

Table 4.C.7 

Average scale related to the alternative and average weight of each criterion 

Normalized 
C1: Sustainable 

packaging 

C2: Green 

transportation 

C3: Environmental 

compliance 
C4: Green process 

C5: Supplier's 

characteristics 

Supplier 1 0.42 0.67 0.92 0.33 0.58 0.83 0.25 0.50 0.75 0.42 0.67 0.92 0.25 0.42 0.67 

Supplier 2 0.75 1.00 1.00 0.75 1.00 1.00 0.67 0.92 1.00 0.75 1.00 1.00 0.67 0.92 1.00 

Supplier 3 0.67 0.92 1.00 0.50 0.75 1.00 0.75 1.00 1.00 0.33 0.58 0.83 0.58 0.83 0.92 

Supplier 4 0.33 0.58 0.83 0.67 0.92 1.00 0.42 0.67 0.92 0.50 0.75 1.00 0.42 0.67 0.92 

Supplier 5 0.25 0.50 0.75 0.42 0.67 0.92 0.50 0.75 0.92 0.33 0.58 0.83 0.33 0.58 0.83 

Supplier 6 0.50 0.75 0.92 0.50 0.75 0.92 0.50 0.75 0.92 0.67 0.92 1.00 0.42 0.67 0.92 

 
 

Step 4: The weighted normalized matrix (Table 4.C.8) can be reached by multiplying all TFNs 

existing in Table 4.C.7 by the weight row in Table 4.C.6. 
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Table 4.C.8 

The weighted normalized matrix 
W-

Normalized 

C1: Sustainable 

packaging 

C2: Green 

transportation 

C3: Environmental 

compliance 
C4: Green process 

C5: Supplier's 

characteristics 

Supplier 1 0.28 0.61 0.92 0.22 0.53 0.83 0.15 0.42 0.75 0.17 0.44 0.84 0.06 0.21 0.50 

Supplier 2 0.50 0.92 1.00 0.50 0.92 1.00 0.39 0.76 1.00 0.31 0.67 0.92 0.17 0.46 0.75 

Supplier 3 0.44 0.84 1.00 0.33 0.69 1.00 0.44 0.83 1.00 0.14 0.39 0.76 0.15 0.42 0.69 

Supplier 4 0.22 0.53 0.83 0.44 0.84 1.00 0.24 0.56 0.92 0.21 0.50 0.92 0.10 0.33 0.69 

Supplier 5 0.17 0.46 0.75 0.28 0.61 0.92 0.29 0.63 0.92 0.14 0.39 0.76 0.08 0.29 0.63 

Supplier 6 0.33 0.69 0.92 0.33 0.69 0.92 0.29 0.63 0.92 0.28 0.61 0.92 0.10 0.33 0.69 

 

 

     Step 5: The fuzzy positive ideal solution vj
+ = (1, 1, 1), and the fuzzy negative ideal solution vj

- 

= (0, 0, 0) are defined, and the distances between ideal solutions and all TFNs are calculated (see 

Table 4.C.8). To this aim, Eq. (4.53), and Eq. (4.54) are applied. The results are provided in Table 

4.C.9 and Table 4.C.10.   

( ) ( )
1

4 53
n

v iji j
j

d d v ,v .+ +

=

=  

( ) ( )
1

4 54
n

v iji j
j

d d v ,v .− −

=

=  

 

where the distance between two TFNs can be calculated by Eq. (4.55). 

 
 

( ) ( ) ( ) ( ) ( )
2 2 21

4 55
3

l l m m u ud x, y x y x y x y . = − + − + −
 

 

 

Table 4.C.9 

Distance from positive ideal solution 
Distance-

d+ 

C1: Sustainable 

packaging 

C2: Green 

transportation 

C3: Environmental 

compliance C4: Green process 

C5: Supplier's 

characteristics di
+ 

d (S1,S+) 0.48 0.53 0.61 0.58 0.76 2.97 

d (S2,S+) 0.29 0.29 0.38 0.44 0.59 2.00 

d (S3,S+) 0.33 0.43 0.34 0.62 0.62 2.35 

d (S4,S+) 0.53 0.33 0.51 0.54 0.67 2.59 

d (S5,S+) 0.59 0.48 0.47 0.62 0.70 2.86 

d (S6,S+) 0.43 0.43 0.47 0.48 0.67 2.47 
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Table 4.C.10 

Distance from negative ideal solution 
Distance-

d- 

C1: Sustainable 

packaging 

C2: Green 

transportation 

C3: Environmental 

compliance C4: Green process 

C5: Supplier's 

characteristics di
- 

d (S1,S-) 0.66 0.59 0.50 0.56 0.31 2.62 

d (S2,S-) 0.83 0.83 0.76 0.68 0.52 3.63 

d (S3,S-) 0.80 0.73 0.79 0.50 0.47 3.29 

d (S4,S-) 0.59 0.80 0.63 0.61 0.45 3.08 

d (S5,S-) 0.52 0.66 0.66 0.50 0.40 2.74 

d (S6,S-) 0.69 0.69 0.66 0.66 0.45 3.14 

 

Step 5: Ranking each alternative is obtained through the application of the closeness coefficient 

(Eq. (4.56)). The supplier rankings are provided in Table 4.C.11. 

 

( )4 56i
i

i i

d
CC .

d d

−

+ −
=

+
 

 

 

Table 4.C.11 

Ranking of suppliers based on environmental compliance 

         Supplier s CCi Rank 

         Supplier 1 0.46844 6th 

         Supplier 2 0.64457 1st 

         Supplier 3 0.58367 2nd 

         Supplier 4 0.54325 4th 

         Supplier 5 0.48898 5th 

         Supplier 6 0.56019 3rd 

 
 

The same approach is employed to rank the recovery centers and the remanufacturing plants. 

The green performance criteria for recovery centers are defined as the application of eco-

technology, the incorporation of green transportation, and the possession of a responsible recycling 

certificate. While green purchasing, capacity utilization, solid and septic waste management, and 

green ethical approaches were determined to be the criteria for measuring environmental 

compliance of remanufacturing plants. The results are provided in Table 4.C.12 and Table 4.C.13, 

respectively. 
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Table 4.C.12 

Ranking of recovery centers based on environmental compliance 

      Recovery center r CCi Rank 

      Recovery center 1 0.6410081 2nd 

      Recovery center 2 0.5530874 4th 

      Recovery center 3 0.6231132 3rd 

      Recovery center 4 0.6927713 1st 

      Recovery center 5 0.5173172 5th 

 

 

Table 4.C.13 
Ranking of remanufacturing plants based on environmental compliance 

Remanufacturing plant f CCi Rank 

Remanufacturing plant 1 0.60478 3rd 

Remanufacturing plant 2 0.56903 4th 

Remanufacturing plant 3 0.64199 1st 

Remanufacturing plant 4 0.6178 2nd 
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Appendix 5 

 

5.A. The overall framework to rank the third parties based on social responsibility and 

technological innovation of third parties 

 

Sustainable development of RL networks is influenced by various factors such as the economic 

and environmental factors, social responsibility and technological innovation of their participants. 

The economic and environmental factors (i.e., Z1 and Z2) are quantitative parameters and can be 

computed accordingly. However, social responsibility and technological innovation of third parties 

are qualitative indicators and must be converted to a quantitative parameter before optimization.  

As presented by Fig. 5. 6, some qualitative criteria and sub-criteria have been selected to compare 

the performance of third parties (i.e., suppliers and container recovery centers) based on the social 

responsibility and technological innovation. In this regard, multiple criteria decision-making 

(MCDM) methods, such as the analytic network process (ANP), can be utilized to measure such 

qualitative criteria. ANP is an MCDM technique which has been adopted in many industries for 

the purpose of decision-making, such as in textile industry (Yüksel and Dagdeviren, 2007), 

investment decision for selection of power plants (Aragonés-Beltrán et al., 2014), maintenance 

performance indicator selection (Van Horenbeek and Pintelon, 2014), the process of software 

selection with using artificial neural network (Yazgan et al., 2009), for selection of interdependent 

information system project (Lee and Kim, 2000), healthcare sector (Nilashi et al., 2016), urban 

development (Malmir et al., 2016), construction project (Gunduz and Khader, 2020), battery 

industry (Tosarkani and Amin, 2018a), and ranking new technology-based firms (Khodayari et al., 

2019). In this study, the following criteria and sub-criteria are defined to prioritize suppliers and 

container recovery centers.  

 

5.A.1. Application of eco-technology in production and designing eco-friendly products 

The application of eco-technology (e.g., renewable sources of energy) has been progressively 

considered due to reducing the environmental impact of operations. Furthermore, designing eco-

friendly products (e.g., using less hazardous raw material in designing a product) can be another 

supplementary factor to tackle environmental issues stemming from productions. For example, 
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Coca Cola attempts to be more sustainable by replacing the colorfully sprayed containers with a 

convex logo instead. This type of beverage container does not require a coloring process which 

may reduce the environmental impact (e.g., air and water pollution). Furthermore, a huge amount 

of energy can be saved in comparison with traditional containers that require many efforts to 

separate color from containers in the recycling process.   

 

5.A.2. IoT implementation 

IoT is defined as the robust communication among the digital and physical world which has been 

employed in different industries (e.g., high-tech electronics, automotive, and manufacturing) to 

make the operations smarter. IoT leads to higher efficiencies in production regarding completely 

integrated, and automated processes (Vermesan et al., 2013). In this regard, three sub-criteria (i.e., 

cloud-computing capabilities, digital connectivity requirements, and application of smart things 

such as smart machines and services) are selected to quantify the IoT implementation of third 

parties. 

 

5.A.3. Environmental compliance 

To prioritize suppliers and beverage recovery centers, their environmental compliance should be 

considered as an overriding indicator. In this study, three sub-criteria (e.g., packaging from 

recoverable materials, regulatory compliance audit and ISO 14001 certificate, solid and septic 

waste management) have been taken into account to measure the environmental compliance of 

third parties. For example, some types of materials (e.g., papers, cardboard, and glasses) can be 

recovered and used for the purpose of packaging many times. In this regard, environmental 

compliance of third parties contributes to reducing the adverse impact of their operations on the 

environment.  

 

5.A.4. Third party characteristics 

Nowadays, customers are considering the social characteristics (e.g., social contributions, labour 

practices, and decent work) of third parties on their community in addition to their environmental 

compliance. For example, opening new facilities can create job opportunities contributing to enrich 

the economy of society. Furthermore, there are some efforts (e.g., labour code and human rights, 

training, and education) leading to create a safe, diverse workplace. In this regard, employee safety 
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and training must be a priority for the employer. To rank the third parties regarding the social 

responsibility and technological innovation, seven steps are employed as follows:  

Step 1: Pairwise comparisons are implemented regardless of interdependency among the 

criteria. The triangular linguistic values employed for comparison are indicated in Table 5.A.1 and 

Fig. 11. The results of comparisons for suppliers and beverage recovery centers are provided in 

Table 5.A.2.  

Step 2: A relationship may exist among different criteria. In this regard, the pairwise 

comparisons should be conducted while it is assumed that there is the inner dependency among 

criteria. The results of the interdependent ranking of criteria are provided in Table 5.A.3. For more 

information, you can refer to Chang (1996). 

Step 3: Weight of criteria is estimated by multiplication of two matrices of W1 and W2 obtained 

in Steps 1 and 2.  

Step 4: The pairwise comparisons are also conducted for the sub-criterion. The results are 

indicated in Table 5.A.4.   

Step 5: The overall ranking of each sub-criterion is estimated by multiplication of results 

obtained in Steps 3 and 4.  

Step 6: The overall rankings of suppliers and beverage container recovery centers regarding 

each sub-criterion have been calculated by pairwise comparisons, and the results provided in 

Tables 5.A.5 and 5.A.6. 

Step 7: As illustrated in Table 5.A.7 and 5.A.8, the final ranking of third parties are calculated 

by multiplication of W3 and W4 for suppliers, and W3 and W5 for beverage container recovery 

centers. 

 

Table 5.A.1 
Lingustic scales for importance 

Linguistic scales for comparison Triangular fuzzy scales Reciprocal value of triangular fuzzy scales 

Just equal (1, 1, 1) (1, 1, 1) 

Equally important (EI) (0.5, 1, 1.5) (0.67, 1, 2) 
Weakly more important (WMI) (1, 1.5, 2) (0.5, 0.67, 1) 

Strongly more important (SMI) (1.5, 2, 2.5) (0.4, 0.5, 0.67) 

Very strongly more important (VSMI) (2, 2.5, 3) (0.33, 0.4, 0.5) 

Absolutely more important (AMI) (2.5, 3, 3.5) (0.29, 0.33, 0.4) 
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Fig. 5.A.1. Triangular linguistic values for comparison 

 
 

Table 5.A.2 

Pairwise comparisons of criteria associated with suppliers and beverage recovery centers  
              C1 C2 C3 C4 W1 

C1: Application of eco-
technology in production 
and designing eco-friendly 
products 

1 1 1 1 1.5 2 1 1.5 2 1.5 2 2.5 0.36 

C2: IoT implementation 0.5 0.67 1 1 1 1 1 1.5 2 2 2.5 3 0.34 

C3: Sustainable approach 0.5 0.67 1 0.5 0.67 1 1 1 1 0.5 1 1.5 0.17 

C4: Third party 
characteristics 

0.4 0.5 0.67 0.33 0.4 0.5 0.67 1 2 1 1 1 0.14 

 

 

 
Table 5.A.3 

Results of ranking the criteria while it is assumed that there is the inner dependency among them 

W2              C1 C2 C3 C4 W1 
Weight of 
criteria 

C1: Application of 
eco-technology in 
production and 
designing eco-
friendly products 

1 0.39 0.38 0.15 0.36 0.29 

C2: IoT 
implementation 

0.34 1 0.36 0.45 0.34 0.29 

C3: Sustainable 
approach 

0.28 0.45 1.00 0.41 0.17 0.24 

C4: Third party 
characteristics 

0.38 0.16 0.26 1 0.14 0.18 

 

 
 

 

 

 
 

 

RI 

      µRI 
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Table 5.A.4 
The overall ranking of each sub-criterion associated with suppliers and beverage recovery centers 

Criteria  
Weight of criteria 
calculated in Step 3 

Sub-criteria 
Weight of each 
sub-criterion 
calculated in Step 4 

W3: The overall 
ranking of each sub-
criterion (Step 5) 

C1: Application of 
eco-technology in 
production and 
designing eco-
friendly products  

0.29  

Sc1: Utilizing eco-technology in 

production (renewable source of 
energy, producing less carbon 

0.684 0.197 

Sc2: Application of less 
hazardous raw material in 
producing products 

0.316 0.091 

C2: IoT 

implementation 
C3: Sustainable 
approach 

0.29 

Sc3: Cloud-computing 

capabilities 
0.305 0.089 

Sc4: Digital connectivity 
requirements 

0.454 0.132 

Sc5: Application of smart things 
such as smart machines and 
services 

0.241 0.070 

C3: Sustainable 

approach 
0.24 

Sc6: Packaging from recoverable 
materials 

0.685 0.163 

Sc7: Regulatory compliance 

audit and ISO 14001 certificate 
0.224 0.053 

Sc8: Solid and septic waste 
management 

0.091 0.022 

C4: Third party 
characteristics 

0.18 

Sc9: Social contributions 0.50 0.092 

Sc10: Labour practices and 
decent work 

0.50 0.092 

 

 
Table 5.A.5 

The overall ranking of suppliers regarding each sub-criterion 

W4 
Ranking of each supplier regarding each sub-criterion 

Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10 

Supplier 1 0.098 0.034 0.021 0.081 0.108 0.023 0.065 0.060 0.023 0.020 

Supplier 2 0.040 0.142 0.064 0.038 0.068 0.022 0.050 0.102 0.022 0.062 

Supplier 3 0.444 0.398 0.401 0.447 0.458 0.605 0.428 0.533 0.605 0.548 

Supplier 4 0.323 0.320 0.337 0.296 0.257 0.262 0.294 0.239 0.262 0.349 

Supplier 5 0.095 0.106 0.178 0.138 0.109 0.089 0.162 0.065 0.089 0.021 
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Table 5.A.6 
The overall ranking of recovery centers regarding each sub-criterion 

W5 
Ranking of each supplier regarding each sub-criterion 

Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10 

Recovery 
center 1 

0.440 0.401 0.317 0.394 0.384 0.379 0.432 0.351 0.394 0.354 

Recovery 
center 2 

0.224 0.196 0.270 0.203 0.149 0.159 0.227 0.312 0.118 0.304 

Recovery 
center 3 

0.168 0.255 0.194 0.250 0.165 0.180 0.210 0.190 0.199 0.206 

Recovery 
center 4 

0.050 0.048 0.189 0.036 0.148 0.162 0.040 0.022 0.151 0.066 

Recovery 
center 5 

0.074 0.064 0.009 0.065 0.067 0.023 0.001 0.046 0.083 0.048 

Recovery 
center 6 

0.045 0.036 0.021 0.052 0.086 0.095 0.091 0.079 0.055 0.023 

 

Table 5.A.7 

Ranking of suppliers 

ANP Result 

Supplier 1 0.06 

Supplier 2 0.05 

Supplier 3 0.49 

Supplier 4 0.30 

Supplier 5 0.10 

 

 

Table 5.A.8 
Ranking of recovery centers 

ANP Result 

Recovery 
center 1 

0.39 

Recovery 

center 2 
0.21 

Recovery 
center 3 

0.20 

Recovery 
center 4 

0.10 

Recovery 

center 5 
0.05 

Recovery 
center 6 

0.05 
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5.B. Values of the parameters 

  

           Table 5.B.1 

            Values of the parameters  

I = 3 Es = 1,000 ei = 0.10 

S = 5 Br = 4,000 Hi = 15 

R = 7 Ac = 1,500 Ki = 1 

D = 10 Fd = 1,500 kri = (50,000)7*3 

M = 22 Oi = 0.097 ldi = (10,000)10*3 

C = 6 Ji = 10 fci = (25,000)6*3 

T = 2 Gi = 10 psi = (30,000)5*3 

 g = 1,200 u = 400 

 

 

            Table 5.B.2 

            Values of the TFNs  

Es = (750, 1,000, 1,250) eiω = (0.05, 0.10, 0.15) 

Br = (3,000, 4,000, 5,000) Hi = (11.25, 15, 18.75) 

Ac = (1,125, 1,500, 1,875) Ki= (0.75, 1, 1.25) 
Fd = (1,125, 1,500, 1,875) Gi = (7.5 ,10, 12.5) 

Oi = (0.072, 0.097, 0.121) u = (300, 400, 500) 

Ji = (7.5 ,10, 12.5) g = (900, 1,200, 1,500) 
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Appendix 6 

 

6.A. Chance constraint 

 

( ) 1P d A x α   −  means that such a chance constraint must be satisfied with a probability of 

at least 1 α− . Eq. (6.A.1) can be written in case of ( )2d N μ,σ .  

1
d μ A x μ

P α
σ σ

 − − 
  − 

 
                                                                                     Eq. (6.A.1)     

Eq. (6.A.1) can be converted to Eq. (6.A.2), since ( )αΦ z  equals to 1 α− ( Banks et al., 2005). 

Where
αz is the value of the standard normal variable, and ( )αΦ z is the cumulative distribution 

function (cdf) for the standard normal distribution. The cdf of
αz is given by ( )

2

2
1

2

z zα

αΦ z e dz.
π

−

−

=   

   ( )α
A x μ

Φ Φ z
σ

 − 
 

 
                                                                                                  Eq. (6.A.2)     

 

Eq. (6.A.2) will be satisfied only if α

A x μ
z

σ

 −
 , or αA x σz μ  + . 
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6.B. Values of the parameters 

 

 
Table 6.B.1 

The values of parameters in the mathematical model            

L = 5 el = Uniform [1.5 to 3.5] jq = Uniform [30 to 50] Γo = Uniform [0.45 to 0.75] 

M = 6 fm = Uniform [3 to 4] kr = Uniform [1.88 to 6.24] w = 15 

N = 3 gn = Uniform [2.5 to 5] ωt = Uniform [0.10 to 0.40] x = 20 

O = 2 ht = Uniform [0.10 to 0.12] βt = 0.05  y = 45 

P = 2 ip = Uniform [6 to 25] ζt = θt = 0.25  CWlt = 150,000 

Q = 4 Al  = Fo = Gp =  100,000 υt = 0.70  CDrt = 50,000 

R = 7 Bq = 500,000 γt = 0.4 CUqt = 70,000 

T = 2 Cr = 40,000                     Fo = 30,000 CBmt = 25,000 

S = 68 Em = 10,000  Gp = 50,000 CFot = 65,000 

u = 50 CT = 7 ςo = Uniform [0.05 to 0.1] COpt = 15,000 
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6.C. Optimal solutions of RFCCM for 100 data sets 

Table 6.C.1 

Optimal solutions of RFCCM for 100 data sets (φ = 10%)        

 

No. 
Consumed fracturing 
fluids 

Total costs No. 
Consumed     
fracturing fluids 

Total costs 

1 47,971.86 6,597,150.02 51 43,580.11 6,055,881.48 
2 40,716.87 5,709,853.25 52 67,382.26 9,308,954.98 

3 39,422.52 5,553,429.69 53 48,592.69 6,672,424.41 
4 57,372.52 7,842,280.25 54 43,484.13 6,044,282.10 

5 61,049.40 8,450,876.39 55 63,431.31 8,810,348.48 
6 65,923.27 9,124,831.70 56 52,461.26 7,141,481.93 

7 43,759.16 6,077,520.03 57 46,815.96 6,456,999.48 
8 63,973.54 8,878,777.44 58 48,037.99 6,605,169.37 

9 52,804.41 7,183,088.18 59 43,718.32 6,072,584.43 

10 52,594.66 7,157,656.41 60 37,868.37 5,365,606.38 
11 50,130.57 6,858,890.47 61 35,997.23 5,139,475.40 

12 62,583.34 8,642,323.15 62 45,635.78 6,304,314.48 
13 54,626.60 7,505,531.36 63 65,880.56 9,119,441.73 

14 41,237.66 5,772,792.96 64 46,839.91 6,459,904.58 
15 61,649.26 8,525,744.49 65 44,148.76 6,124,603.96 

16 49,201.81 6,746,278.98 66 51,166.67 6,984,515.50 
17 65,033.78 9,012,580.08 67 40,871.31 5,728,517.63 

18 48,768.35 6,693,724.04 68 56,463.94 7,730,856.37 
19 58,461.45 7,985,908.64 69 67,557.32 9,331,048.67 

20 48,420.36 6,651,530.96 70 68,710.24 9,476,546.18 
21 58,169.79 7,940,054.68 71 39,143.93 5,519,761.54 

22 59,053.07 8,159,221.28 72 60,135.52 8,336,817.59 
23 64,855.93 8,990,135.57 73 50,936.17 6,956,566.63 

24 55,505.22 7,613,282.27 74 58,364.64 7,973,972.30 
25 52,118.15 7,099,879.32 75 38,104.95 5,394,198.75 

26 47,947.08 6,594,146.71 76 41,756.73 5,835,523.60 
27 35,557.70 5,086,357.33 77 30,208.31 4,435,249.23 

28 51,360.71 7,008,041.25 78 63,824.93 8,860,022.99 
29 44,640.81 6,184,069.18 79 48,465.76 6,657,034.40 

30 64,490.93 8,944,072.88 80 33,828.48 4,868,692.12 
31 50,180.08 6,864,893.46 81 54,465.49 7,485,773.38 

32 59,547.42 8,220,919.72 82 39,787.04 5,597,482.66 
33 51,919.10 7,075,746.12 83 48,842.29 6,702,687.91 

34 55,735.11 7,641,475.18 84 37,021.41 5,263,249.58 
35 50,691.47 6,926,897.25 85 46,744.52 6,448,337.53 

36 42,946.76 5,979,341.08 86 55,057.92 7,558,425.72 
37 40,395.16 5,670,973.96 87 52,963.09 7,202,326.59 

38 57,304.15 7,833,895.59 88 56,486.22 7,733,588.71 

39 63,349.15 8,799,979.96 89 40,216.99 5,649,442.97 
40 49,131.55 6,737,761.31 90 45,117.77 6,241,711.95 

41 54,587.15 7,500,692.12 91 43,188.37 6,008,540.13 
42 50,138.21 6,859,816.80 92 52,883.97 7,192,734.66 

43 54,587.10 7,500,685.99 93 46,966.36 6,475,236.39 
44 34,663.87 4,968,713.35 94 63,131.44 8,772,505.14 

45 44,909.99 6,216,600.11 95 42,832.23 5,965,498.70 
46 45,473.80 6,284,737.67 96 50,648.86 6,921,730.87 

47 37,369.35 5,305,298.82 97 47,662.74 6,559,669.85 
48 51,065.96 6,972,304.62 98 46,021.93 6,350,980.27 

49 45,884.11 6,334,325.65 99 42,390.11 5,912,067.62 
50 64,876.67 8,992,751.67 100 45,365.00 6,271,590.18 
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