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ABSTRACT 

 

This thesis aims to address what I hold to be the most pressing ethical issues in 

autonomous vehicles. Chapter one focuses on the applicability of moral philosophy in guiding 

autonomous vehicle regulation. Chapter two highlights the need for “explainability” in machine 

learning algorithms in order to ensure that autonomous vehicles are fair and rights-respecting, 

and the need for a change in regards to distribution of liability for driving behavior. Chapter 

three asserts that laws regarding liability must be altered in order to keep pace with the changes 

in driver responsibilities which come with less direct control of the vehicle. 
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INTRODUCTION 

0.0 THESIS STATEMENT 

My primary project in this thesis is to address what I hold to be the most pressing ethical 

issues in autonomous vehicles. These are the applicability of moral philosophy (via the Trolley 

Problem) to guiding autonomous vehicle regulation, the need for “explainability” in machine 

learning algorithms in order to ensure that autonomous vehicles are fair and rights-respecting, 

and the need for a change in regards to distribution of liability for driving behavior. In this 

introductory chapter I will introduce the factors which bring about these ethical issues and clarify 

key definition which will be used throughout the remainder of the thesis. 

0.1 EXISTING LITERATURE 

The literature on autonomous vehicle ethics is in its infancy, as the topic has only 

recently become a pressing one due to the rise of autonomous operation functionality in vehicles. 

As a subset of A.I. ethics, which is itself relatively young as well, autonomous vehicle ethics 

shares several key interests with A.I. ethics pertaining to the ethical development of new 

technology, how to approach regulation, concerns about safety, and impacts of the technology on 

society. Autonomous vehicle technology is an area of interdisciplinary research and debate. This 

includes a debate as to the place of autonomous vehicle ethics, with industry experts often 

resisting the integration of existing moral frameworks into autonomous vehicles in favor of 

tenets of other fields such as public policy, legal theory, and engineering standards. My first 

chapter aims to challenge this exclusion by demonstrating the relevance of moral philosophy in 

addressing the ethical challenges of autonomous vehicles.  
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Similarly, the need for explainability in machine learning algorithms is often approached 

from the perspective of a need to prevent bias, intentional or unintentional, from affecting the 

system. The purpose of these efforts is often to prevent such systems from compromising the 

rights and liberties of individuals who have to interact with that system. How autonomous 

vehicle ethics differs from A.I. ethics is that autonomous vehicles must always directly and 

physically interact with humans and must do so in complex environments like roadways or cities. 

This introduces a much stronger need to for precautions against unjust autonomous vehicle 

behavior resulting from bias or manufacturer programming errors as these systems cannot be 

isolated in the same way that a closed-environment A.I. system like a data processing algorithm 

can. The factors which influence whether or not a system is biased can originate in technical 

limitations, biased or incomplete input data, unintentional programming errors, and many others. 

The primary barrier to identifying this bias is the opacity of black box machine learning 

algorithms, which greatly impedes independent scrutiny of the autonomous vehicle’s behavior. 

Chapter two explores these issues as they pertain to autonomous vehicles and suggests that the 

potential risks are great enough to encourage a transition away from black box algorithms. 

Due to the rapidly developing nature of autonomous vehicle technology there are often 

situations in which legislation lags behind real-world operation of autonomous vehicles. Chapter 

three explores on such instance of this problem, namely the degree to which the role of a manual 

vehicle driver differs from that of an autonomous vehicle driver not being adequately recognized 

in multiple international jurisdictions. The purpose of focusing on this issue is to encourage more 

evaluation in the area of autonomous vehicle liability in regards to manufacturers who will be 

shown to have increasing influence over autonomous vehicle behavior. 
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0.2 OVERVIEW 

 The theoretical ideal of an autonomous vehicle is a mode of transport in which an 

individual merely sets a destination and is able to arrive at that destination without any risk and 

without the need for any additional input needed. This idea is not new. One of the earliest 

mentions of a mode of transport resembling an autonomous vehicle can be observed in Homer’s 

Odyssey in the form of the mythical Phaeacian ships which finally carry a weary Odysseus back 

to Ithaca at the end of his ten-year journey. 

“Tell me also your country, nation, and city, that our ships may shape their 

purpose accordingly and take you there. For the Phaeacians have no pilots; their 

vessels have no rudders as those of other nations have, but the ships themselves 

understand what it is that we are thinking about and want; they know all the cities 

and countries in the whole world, and can traverse the sea just as well even when it 

is covered with mist and cloud, so that there is no danger of being wrecked or 

coming to any harm.” (Homer Od. Book VIII) 

These ships are written to be so adept at their tasks that Odysseus is able to sleep through the 

entire journey home after merely relaying his destination. Theoretically, this is the ultimate end 

goal of autonomous vehicles in terms of functionality. 

0.3 WHAT IS AN AUTONOMOUS VEHICLE? 

Broadly speaking there are many modes of transportation which may be considered 

autonomous vehicle ranging from autopilot on airplanes to even simple location-based 

transportation systems like elevators. All perform the same task, namely, transporting 

individuals, animals, and objects from one location to another. What I will be focusing on in my 
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thesis are autonomous vehicle which operate in uncontrolled environments like roadways and 

cities, as such environment present a distinct set of ethical challenges which I aim to address. 

Technically, an autonomous vehicle is any vehicle which contains systems which handle part or 

all of the “dynamic driving tasks” of a given vehicle operating within a specific “operation 

design domain”. To be specific, what SAE International, an international engineering standards 

organization which is regarded as the primary source for autonomous vehicle terminology and 

engineering standards, defines as “dynamic driving tasks” (DDT) are all of the real-time 

operational and tactical functions required to operate a vehicle in on-road traffic such as lateral 

and longitudinal vehicle motion control (steering, acceleration, deceleration, and braking), 

recognizing and monitoring objects and events in the driving environment, and both preparing 

and executing responses to said objects and events by means of manoeuvering, signalling, or 

enhancing conspicuity via lighting (SAE 2018, pg. 6-7). The degree to which DDT tasks are 

automated in a given vehicle are classified by the SAE in six levels of autonomous vehicles. The 

SAE levels of autonomous vehicle automation are summarized as follows:   

Level 0 – No Driving Automation                                                                                              

“The performance by the driver of the entire DDT, even when enhanced by active safety 

systems.” (SAE 2018, pg. 19) 

Level 1 – Driver Assistance 

“The sustained and ODD-specific execution by a driving automation system of either the lateral 

or the longitudinal vehicle motion control subtask of the DDT (but not both simultaneously) with 

the expectation that the driver performs the remainder of the DDT.” (SAE 2018, pg. 19) 

Level 2 – Partial Driving Automation                                                                                         

“The sustained and ODD-specific execution by a driving automation system of both the lateral 
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and longitudinal vehicle motion control subtasks of the DDT with the expectation that the driver 

completes the OEDR subtask and supervises the driving automation system.” (SAE 2018, pg. 19) 

Level 3 – Conditional Driving Automation                                                                                

“The sustained and ODD-specific performance by an ADS of the entire DDT with the 

expectation that the DDT fallback-ready user is receptive to ADS-issued requests to intervene, as 

well as to DDT performance-relevant system failures in other vehicle systems, and will respond 

appropriately.” (SAE 2018, pg. 19) 

Level 4 – High Driving Automation                                                                                           

“The sustained and ODD-specific performance by an ADS of the entire DDT and DDT fallback, 

without any expectation that a user will respond to a request to intervene.” (SAE 2018, pg. 19) 

Level 5 – Full Driving Automation                                                                                            

“The sustained and unconditional (i.e., not ODD-specific) performance by an ADS of the entire 

DDT and DDT fallback without any expectation that a user will respond to a request to 

intervene.” (SAE 2018, pg. 19) 

0.4 EARLY VEHICLE AUTOMATION  

Interestingly, the SAE levels of automation are broad enough to include quite a range of 

older technology that one wouldn’t typically associate with autonomous vehicles. Single-task  

automations to simplify a vehicle operator’s ease of use have been in cars for over 100 years. 

The first came to cars in the form of automotive niceties such as the automatic transmissions in 

1921, the automatic braking system in 1929, and cruise control in 1948. What these systems have 

in common is that they automate menial tasks in a rudimentary form of driver’s assistance, thus 

meeting the requirement s for level 1 automation. Most of these features, by means of their very 
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simple, specialized functions, raised few ethical issues. These features were previously 

considered ethically trivial extensions of manual car operation as the tasks which they focused on 

automating were minimally relevant when compared to the actual driving decisions a driver 

made. After all, one hardly thinks that simply because their turn signal blinks automatically 

instead of having to hold down a button that it should somehow create a need for new ethics. 

0.5 OPERATIONAL DESIGN DOMAIN 

This changed with modern autonomous vehicles. The foundations of modern algorithmic 

autonomous vehicle technology were first developed in the 1980’s, when Mercedes-Benz 

produced a vehicle guided by computer vision that was successfully able to navigate empty roads 

at speeds of 39 miles per hour, thus meeting the bare minimum requirements of the SAE 

definition of a level 2 vehicle (Delcker 2019). The difference between the aforementioned 

historical autonomous vehicles and modern autonomous vehicles is the difference in “operational 

design domain”. The SAE defines the operational design domain (ODD) as the operating 

conditions under which a given automated driving feature or automation system is specifically 

designed to function, including environmental conditions, geographical location, and time-of-day 

(SAE 2018, pg. 6-7). For example, the ODD of an elevator is lateral movement within an 

environment of elevator shaft, up to a certain rated weight threshold, when electricity is present, 

except during fire evacuations. In comparison to the elevator, modern autonomous vehicles such 

as autonomous cars have a much wider operational design domain in that they are able to take on 

a wider variety of tasks and operate in increasingly diverse environments.  
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0.6 THESIS OUTLINE 

With this increase in ODD comes increased variance in the circumstances that 

autonomous vehicles must face, at least some of which cannot be easily dealt with by classical 

programming methods. This problem has resulted in the increasing use of machine learning 

algorithms in autonomous vehicles. The programming values used to generate these algorithms 

use a complex series of pre-set goal directives set by the programmer alongside vast swathes of 

data to allow the program to self-generate methods of automatic vehicle operation via a process 

called “training”. The first chapter of this thesis will aim to demonstrate that the need to 

prioritize these various pre-set programming directives in cases which they come into conflict 

necessitates the application of moral philosophy. I argue that as these pre-set directives must be 

determined in advance this necessitating that manufacturers make pre-set choices as to how their 

vehicles will operate.  

The second chapter will argue that the opaque nature of machine learning algorithms 

make them ethically problematic. and will argue that the algorithms guiding autonomous 

vehicles must be at least partially explainable in order to be properly regulated. This chapter will 

also address controversy as to whether “full explainability” requirements place an undue burden 

on manufacturers. I will first demonstrate how machine learning algorithms are “black box” 

systems which are opaque to regulators, industry experts, and even their own programmers. In 

doing so I will demonstrate that it is impossible to regulate such an opaque system and provide 

several examples as to how such a system can easily and undetectably infringe on individual 

rights. The conclusion of this chapter will then propose solutions that could mitigate the “black 

box” problem. This solution is based on installing operational data recorders in autonomous 

vehicles and requiring certain key subtasks of the vehicles system to be fully explainable. 
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The third chapter will assert that laws regarding liability must be altered in order to keep 

pace with the changes in driver responsibilities which come with less direct control of the 

vehicle. This chapter will address the widespread issue of regulators in multiple countries 

improperly treating driving liability in autonomous vehicles as a straightforward extension of 

how they treat driver liability in manual vehicles. I argue that said practices is unjustifiable. I will 

demonstrate that a vehicle operator is often not directly controlling the vehicle, nor partaking in 

shared agency in jointly operating the vehicle. The ultimate conclusion of this chapter will be 

that autonomous vehicle liability needs to expand to hold manufacturers responsible for potential 

defects in the autonomous vehicle’s programming  as such malfunctions directly affect vehicle 

behavior. My hope is that, through addressing the issues explored in these three chapters, I will 

have provided a clear means to approach these issues philosophically, thereby encouraging 

further work on these problems. 
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CHAPTER 1 
  

THE TROLLEY PROBLEM AND ITS APPLICABILITY TO AUTONOMOUS VEHICLES 
 

1.0 INTRODUCTION 

There is significant disagreement as to whether conventional moral philosophy is 

applicable to the kinds of challenges facing the programmers and manufacturers of autonomous 

vehicles. This to say, manufacturers and programmers of autonomous vehicles often put forth the 

position that an entirely novel ethical frameworks must be developed in order to solve problems 

which existing conventional moral philosophy cannot. The idea behind such claims is that 

existing moral philosophy cannot properly account for nuanced ethical situations faced by 

autonomous vehicles. Those skeptical of the applicability of conventional moral philosophy 

(represented in this chapter by Noah Goodall) even go so far as to take the position that “harm 

avoidance” algorithms, legislation reactive to issues which occur, and approaches which meld 

multiple competing public objectives can be relied on as the primary guiding forces in creating 

ethical autonomous vehicles. Thus, they conclude that to use theoretical models from 

conventional philosophical sources such as Philippa Foot’s trolley problem to think about how 

autonomous vehicles should be programmed is distracting from issues which occur in real-world 

scenarios. However, proponents of the applicability of conventional moral philosophy, 

represented in this chapter by Janet Fleetwood, disagree with this assessment on the basis that 

there is an unavoidable ethical component to the algorithmic determinations of autonomous 

vehicles which should be informed by traditional ethical frameworks. The purpose of this chapter 

is to address this disagreement and clarify the role of conventional models from moral 

philosophy in guiding autonomous vehicle regulation. My aim for this section is to demonstrate 

the applicability of conventional models from moral philosophy for the purpose of programming 
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autonomous vehicles. Using ideas derived from Philippa Foot’s “trolley problem”, which is a 

central topic of contention for Fleetwood and Goodall, I aim to demonstrate the relevance of 

conventional moral philosophy in informing choices made by manufacturers which in turn have 

a direct impact on autonomous vehicle behavior. First, I will identify two distinct interpretations 

of the trolley problem at play in the disagreement between Goodall and Fleetwood. Next, I will 

use Fleetwood’s analysis of the pre-emptive algorithmic driving choices  made autonomous 

vehicle manufacturers to demonstrate a need for ethical priorities which goes beyond “harm 

avoidance algorithms”. Finally, I will show that Goodall’s criticisms pertaining to the “idealized” 

and “unrealistic” nature of the trolley problem in real-world scenarios refer to a version of the 

problem which I identify at the “Programming Trolley problem” but that they do not address the 

points put forth by Fleetwood’s second interpretation of the trolley problem identified as the 

Objective Prioritization problem. 

1.1 THE TROLLEY PROBLEM 

Foot’s trolley problem depicts a runaway trolley barrelling down a railway track towards 

five individuals who are tied up and unable to move. There is a lever which can be pulled which 

will divert the trolley down a side track on which there is one individual who is also tied up and 

unable to move. In this scenario there are two possible outcomes. In the case that the lever is 

pulled the trolley will be diverted to the side track and the individual on that track will die. 

Conversely, if the lever is not pulled, the trolley will remain on its current course and five 

individuals on the track will die. The problem asks whether or not the lever should be pulled, in 

order to test an individual’s ethical intuitions. There are also numerous versions of the trolley 

problem which test the convictions of the decision maker by inserting a particular context or 

slightly altering the problem. For example, a version of the problem known as the “trauma case” 
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substitutes the railway context for that of a hospital and the train track victims for one healthy 

patient and five organ donor recipients. Another case asks if someone had to push a fat man over 

a bridge to block the trolley instead of pulling a lever. In recent years this same ethical dilemma 

has been posed in the context of autonomous vehicles. There are several relevant contextual 

versions of this issue which can be summarized as being a subset of the following “Programing 

Trolley problem” (PT problem): 

 

The programming of an autonomous vehicle is forced to choose between veering into X 

party/parties or remain on its present course and collide with Y party/parties. Whichever party is 

collided with will die. How should it decide which party to veer towards? 

 

In the latter sections of this paper we will examine a second interpretation of this problem, 

inspired by Fleetwood, which re-imagines the trolley problem as a means to assess the 

prioritization of a myriad of objectives such as lawfulness, harm reduction, and driver safety. In 

this section I will formalize this interpretation by demonstrating how the specifics of the trolley 

problem are replaced with a dilemma involving a “forced choice” that pre-empts driver choice in 

determining which of various objectives is prioritized over the others. The reason why I 

reinterpret the trolley problem in this way is that the order in which these objectives are 

prioritized will drastically affect a vehicle’s behavior. For example, a car which prioritizes driver 

safety above lawfulness will break the law in favour of driver safety. I will refer to this re-

imagined version of the trolley problem as the Objective Prioritization problem (OP problem): 
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The programmer of an autonomous vehicle who is designing algorithmic response system must 

choose between prioritizing A objective/objectives and B objective/objectives. When these 

objectives are in conflict whichever objective is de-prioritized will be disregarded or adhered to 

less strongly by the vehicle. If objective A is prioritized will change the vehicle’s behavior in X 

way, if objective B is prioritized it will change vehicle behavior in Y way. What prioritization 

should be programmed into the vehicle?  

 

To illustrate how the variables in the OP problem interact, consider a case in which a 

programmer decides to prioritize pedestrian safety (objective A) over lawfulness (objective B). 

In this case whenever the objectives of pedestrian safety and lawfulness are in conflict the 

vehicle will break the law in order to maximize pedestrian safety (behavior X). If this priority 

order were reversed (lawfulness prioritized over pedestrian safety) whenever the objectives of 

pedestrian safety and lawfulness are in conflict the vehicle would adhere to the law even in 

situation where it compromised pedestrian safety. 

The OP problem is related to the PT problem in that, in any given scenario, the choice 

made in the PT problem is dependant upon the choice made in the OP problem. To provide a 

very simplified example of this relationship, if one were to prioritize “lawfulness” over “harm 

minimization” in the OP problem that same autonomous vehicle would pursue whichever 

solution to the PT problem caused it to break the fewest laws, regardless of how many people are 

injured or die as a result. In other words, the autonomous vehicle’s behavior is the dependent 

variable while the prioritized objective is the independent variable. I hold that if the OP problem, 

a re-interpretation of the trolley problem, can be shown by Fleetwood to be applicable to 

autonomous vehicle behavior, then conventional philosophical models, the value of which 
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variants of the trolley problem are designed to illustrate, are relevant to programming 

autonomous vehicle behavior.  

1.2 FLEETWOOD ON THE APPLICABILITY OF THE TROLLEY PROBLEM 

Fleetwood’s thesis regarding the programming of autonomous vehicles specifically 

targets autonomous cars meeting the criteria for levels 3, 4, or 5 of automation as defined by the 

SAE standards (Fleetwood 2017, pg. 533). In doing so, Fleetwood focuses on a more advanced 

range of autonomous vehicles which are classified as automatic driving systems (ADS systems). 

ADS systems differ from other forms of autonomous vehicle technology in that rather than being 

“assistive” to a human operator in a particular task such as in features like cruise control, they 

operate in the range in which the vast majority of the dynamic driving tasks (DDT) such as 

signalling, changing lanes, observing road conditions, and others are fully automated and human 

intervention in their operation is rare (SAE 2018, pg. 6-7).  In ADS cases, the DDT “choices” are 

not made by the operator of the vehicle but are effectively made pre-emptively by programmers 

during the design phase of manufacturing through pre-programmed objectives, hence 

Fleetwood’s description of such choices as “forced choices”. Fleetwood asserts that if there are 

pre-emptive “forced choices” being made as to objectives which affect the vehicle’s behavior, 

there is also a clear need establish a priority structure for said choices should they come into 

conflict with one another (Fleetwood 2017, pg. 535). Such a choice prioritization structure can 

be directly modeled by the OP problem given that the order in which these pre-emptive choices 

are prioritized will affect an autonomous vehicles behavior. As a result, if this claim for this 

objective prioritization structure can be defended, it provides a direct application of conventional 

philosophical models of ethics. 
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Fleetwood’s position is based on the claim that autonomous cars have to make rapid, 

time-constrained decisions using incomplete information, often in situations that programmers 

will not have considered (Fleetwood 2017 pg. 534). As noted in the previous chapter, there are a 

multitude of potential operational design domains ranging from simple domains with minimal 

variance, such as elevators and monorails, to complex, highly variable domains such as cities and 

airports. Within these domains  autonomous vehicle technology is already prevalent in multiple 

modes of transport from elevators to airplanes. Even when one limits the type of vehicle to a 

specific kind, such as cars, these vehicles have the potential to participate in multiple operational 

design domains. Consider how an autonomous car may find itself on a highway, in a parking 

garage, at an airport drop-off zone, or off-road at a remote campsite. Each of these environments 

will have differing variables which influence the car’s algorithmic decision-making. 

Manufacturers try to address this problem by limiting the domains in which vehicles operate to 

specific “design” zones which they have directly tested and account for. This is usually 

accomplished either through direct written guidance to consumers or by programming a means to 

detect conditions outside of the ODD approved range and subsequently disable autonomous 

features if such conditions are detected. For example, an autonomous vehicle not is not certified 

to operate in snow can be programmed to refuse to engage autonomous driving features when 

snow is detected. However, that does not change the fact that some of these environments are so 

variable that even with these safety limitations there will be situations which the system has 

never encountered nor been programmed to deal with. In such situations, in order for operation 

in these environments to be fully automated, the software that makes DDT decisions in level 3, 

4, and 5 vehicles must be pre-programmed with specific priorities to fall-back on, such as the 

safety of the driver, the minimization of risk, obedience to the law, and many others. There are 
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clearly situations in which autonomous vehicles will need to make decisions which their 

programming has not accounted for. Therefore, Fleetwood argues that there is a need to consider 

the OP problem as a way to help establish priority order for these objectives so that these 

decisions can be made in a reasonable and predictable way. The OP problem, in other words, 

constitutes an important simple model for the prioritization task faced by autonomous vehicles. 

1.3  OBJECTIONS TO FLEETWOOD 

Karl Iagnemma, president of Aptiv Automated Mobility and cofounder of the 

autonomous vehicle company nuTonomy  has attempted to rebut positions similar to 

Fleetwood’s by arguing that autonomous vehicles can be programmed in such a way that they 

will avoid scenarios which they are not programmed to deal with (Marshall 2018). What 

Iagnemma implies by this statement is that “objective conflict” interactions will occur so rarely 

that they will be of minimal concern. This argument is questionable considering that several 

well-publicized autonomous car crashes have already occurred. Even if one were to disregard 

these past instances on the basis of technological advancements which improve safety, the 

argument that redundancy features for objective conflict scenarios should not warrant concern 

because they are rare is not defensible. There should always be a redundancy present in the case 

that the vehicle encounters a situation beyond the scope of circumstances programmers have 

accounted for. 

Along similar lines, potential critics of the idea of applying the OP problem to 

autonomous vehicles could also argue that the human operator of the vehicle is present to be a 

“fall-back” substitution for the ADS system for such situations. They could thus, deny the 

necessity of decisions based on extrapolations of vehicle programming objectives. However, this 

argument seems to ignore a number of reasonably foreseeable autonomous vehicle use cases in 
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which the human operator is unable to perform a “DDT fallback”. This would be the case, for 

example, if the operator of the vehicle is a disabled person, a child with no knowledge of how to 

operate a vehicle, an operator otherwise incapacitated/unable to perform a fallback due to 

distress/fright, or if there is no human operator at all. There are also foreseeable driving 

situations in which actions would need to be taken so quickly that there is not enough time to 

perform a DDT fallback. Such situations may be rare, but given the stakes they still cannot be 

ignored. 

Goodall takes a different approach from Iagnamma’s by denying the applicability of the  

PT problem, rather than the OP problem. Despite directly responding to Fleetwood’s paper, 

Goodall fails to realize that the PT problem is just a single potential derivative of the OP 

problem, one that can be substituted for any scenario which involves algorithmic objective 

prioritization. This misidentification of Fleetwood’s position with the PT problem is the primary 

failing of Goodall’s critique. Goodall’s first objection to Fleetwood’s view is that Fleetwood 

does not take into account the real-world variability which is present in a feature of vehicle 

collision scenarios. Goodall’s primary objection reflects this issue when he points out that the 

trolley problem, “…represents a clear choice with only two distinct alternatives, and assumes 

completely certain outcomes with obvious moral consequences…real driving dilemmas have 

many subtle choices, uncertain outcomes, and often an obviously superior course of action…” 

(Goodall 2017, pg. 496) Consider the fact that a human driver may slam on the brakes, decide to 

hit a tree or lamppost instead of a human, turn off the road, or even swerve around the 

pedestrians entirely; an autonomous vehicle has a similar range of options. While this is a 

substantial critique of the PT problem, Fleetwood specifically recognizes this same potential 

variability when describing forced choice algorithms. Fleetwood’s position is not based on the 
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PT problem but instead argues for the applicability of moral philosophy through the OP problem. 

The OP problem, as mentioned previously, recognizes that the methods of prioritizing affect all 

potential driving determinations made by autonomous vehicles. Thus, Goodall is not actually 

directly critiquing Fleetwood’s position.  

Goodall goes on to argue that the PT problem places unjustifiable emphasis on inevitable 

crash scenarios. In particular, Goodall argues that “trolley problems” are a vast 

oversimplification of the ethics pertaining to algorithmic decision making. Instead of critiquing 

Fleetwood’s position directly, he instead critiques the popular fixation with the trolley problem 

when he states,  

 

“All driving, not just pre-crash driving, requires assigning values to different 

objects. How much space to give a cyclist as it passes, how much to slow down in a 

residential neighborhood––these decisions require the vehicle to balance the safety 

of its own passengers and road users, and to balance safety and time. These subtle 

decisions will affect safety.” (Goodall 2017, pg. 496)  

 

In making this critique Goodall points out that even philosophically mundane 

circumstances will need to be accounted for when designing ethical frameworks for autonomous 

vehicles. Given the large number of circumstances a vehicle may find itself in, Goodall implies 

that the possibility of using a traditional ethical framework designed around narrow 

circumstances such as the trolley problem incorrectly direct vehicle behavior to compensate for 

uncommon PT problem scenarios instead of common scenarios. Therefore, due to the complexity 

of such a project, Goodall argues for moving away from conventional moral philosophy in 
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favour of a practical methodology which mixes attributes of multiple traditional frameworks in a 

manner similar to other public health issues such as in healthcare organ donation systems 

(Goodall 2017 pg. 496). But this argument falls flat on account of the fact that the systems which 

govern organ donation processes use consistent prioritization standards, the same kind of 

standards which inspired Fleetwood’s likening of autonomous vehicle priorities to public health 

issues, in order to be ethically consistent for the sake of fairness to patients (Bickenbach 2016).  

1.4 CONCLUSION 

When viewed in the context of real-world traffic behavior as the PT problem, the trolley 

problem’s abstract and highly theoretical nature might makes it seem superficially ineffective 

and inapplicable for the accurate assessment and direct operation of autonomous car behavior. 

However,  while one might be justified in arguing that this literal application of Foot’s trolley 

problem in the form of the PT problem is unrealistic, such a position neglects the actual purpose 

of integrating conventional moral philosophy into autonomous vehicles in the form of the OP 

problem. What is being tested by the OP problem is not the ethics of select situations nor 

thousands of micro-decisions which occur over the course of the average drive, but rather the 

outcomes of prioritizing certain ethical values over others. In other words, the PT problem is 

only one of a vast set of potential scenarios both collision-specific and mundane that can be 

tested by the OP problem making it both highly applicable and able to be integrated with real-

world data. Without knowing what values or “objectives” are being prioritized one cannot 

guarantee that an autonomous vehicle will behave in a predictable and consistent way; thus, 

potentially risking public safety. The OP problem, and by extension conventional models of 

moral philosophy, have therefore been shown to be directly applicable in guiding the 

development of objective prioritization in autonomous vehicle behavior.  
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CHAPTER 2 

AUTOMATION & THE NEED FOR EXPLAINABILITY 

2.0 INTRODUCTION 

This chapter will argue for regulators to impose legal obligations on autonomous vehicle 

manufacturers requiring them to do away with the opaque calculations typical of “black box” 

systems, at least in regards to a specific subtasks of the automatic driving system (ADS system) 

known as object and event detection and response tasks (OEDR) (SAE 2018). My primary 

reasoning for this is that in order for a vehicle to be considered “rights-respecting”, it must be 

able to be provably compliant with legal protections afforded to individual rights. My position 

differs from hardline position of “full explainability” in that it allows for all other non-crucial 

subtasks to be “black box” systems. Such a system, with both opaque and clear calculations is 

referred to as a “grey box” system and represents a meaningful compromise between the risks of 

complete opacity and the prohibitive costliness of implementing absolute transparency. I hold 

that the OEDR subtask, by nature of its role in object recognition, environmental interpretation, 

and response determination functions, is the most significant factor in regards to developing 

rights-respecting autonomous vehicles and as such must be directly explainable and assessable 

by independent experts. Additionally, I will demonstrate that if allowed to persist as a “black 

box” system, the OEDR subtask will directly interfere with regulatory oversight, human rights, 

and determinations of legal liability.  

2.1 TRADITIONAL PROGRAMMING VS. ALGORITHMIC PROGRAMMING 

In simplified terms, traditional programming methods rely on a human software engineer 

to manually code the logic of a system. For example, if a programmer were to change how often 
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a GPS system polls a satellite for location data that change would be “explainable” to other 

software engineers or regulators. That is, someone with suitable training would be able to read 

the software and know how often the GPS was programmed to do. In this way, every action a 

system takes can be explained and traced to a human action. The difference in the case of 

learning algorithms is that while the initial version of the algorithm and the parameters are set by 

humans, subsequent “adaptations” are determined by the algorithm itself. In order to program 

such systems, software engineers feed the system vast quantities of data and “train” it by tuning 

its responses to create a set of desired results. For example, a software engineer may use a 

learning algorithm to sort a set of images based on their content and then “tune” the algorithm by 

feeding more data into it which indicates which images were identified and sorted into the 

correct categories and which images were sorted incorrectly. This “feedback loop” is often 

automated with more complex systems due to the high number of potential results which need to 

be narrowed down in the analysis portion. For example, chess-playing machine learning 

algorithms like Google’s Alpha-Zero are automated to pursue a win in chess. Such an algorithm 

achieves its effectiveness by playing millions upon millions of games against itself and selecting 

winning situational assessments and strategies without additional human input (Silver et Al. 

2018). 

2.2 WHY USE MACHINE LEARNING ALGORITHMS? 

The limitation of using traditional coding methods to program a system (an autonomous 

car, in particular) is that the work required to make a reliable system grows exponentially as the 

complexity of the operational design domain increases. The complexity of and sheer scale of 

variable interactions within certain operation design domains such as cities or airports are so 

great that to conceive of a programming framework which accounts for every possible 
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interaction that could occur would require a supercomputer if not multiple supercomputers. As a 

result, not only would the traditional calculation take so long as to effectively prevent a vehicle 

from making real-time decisions, it would also be impossible for most vehicles to house the 

necessary processing resources. Even if radical developments pertaining to the miniaturization of 

this computer technology occurred, the amount of specificity programmed into the vehicle would 

be so intensive that the production of autonomous vehicles above SAE level two (true ADS 

systems) would not be commercially viable. Therefore, manufacturers of autonomous vehicles 

use machine learning algorithms in order to make their products practically and economically 

feasible. 

2.3 THE BLACK BOX PROBLEM 

In this section I will describe what a “black box” system is in relation to other types of 

systems in order to describe the explainability problems such a system causes. An “open system” 

is any system which has both input and output interactions with an external environment (Ehmer 

& Farmeena 2012). In this context, an “interaction” is defined as any exchange of material, 

energy, or information between a system and its environment. When defined in this manner, a 

“clear box” system (also commonly referred to as a white box, transparent box, or glass box 

system) is able to have the manner of operation behind its determinations observed directly 

(Ehmer & Farmeena 2012). For example, a standard “office suite” computer program has a 

source code which can be directly observed by someone with suitable technical expertise, 

thereby allowing the expert to determine how a keystroke input is interpreted by the code to 

select a particular ascii character and display it on a printed document as an output. By contrast, 

the calculations within a “black box” system are opaque to any observer, pretty much regardless 

of expertise. In other words, the only means by which to attempt to test such a system is to 
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provide a series of inputs and observe the outputs. A modern example of such a system is readily 

present in complex learning algorithms. Programmers often do not know how a learning 

algorithm arrives at its solutions, merely that it outputs the response the programmers are aiming 

for. If the chess program produces winning strategies, for example, that is all that matters and all 

that can be determined. Currently, simple learning algorithms are relatively explainable, because 

they are relatively noncomplex, but they become increasingly opaque as they become more 

complex. While this “opacity” is a non-issue for harmless, contained applications such as chess 

algorithms which only operate in controlled virtual environments, it becomes ethically 

problematic when these “opaque” calculations involve the welfare of living beings, most notably 

in regards to issues of safety. 

2.4 ELECTION EXAMPLE 

To better contextualize this issue, consider an electronic voting booth for a small-town 

election between two candidates. Call this the “system”. The “inputs” are all of the completed 

ballots of the town’s residents and the “output” must be one of the two candidates. If the 

electronic voting booth were to operate like a “clear box” system it would operate according to a 

clear set of rules. For example, it would be programmed to count all the votes and record the 

results, then select the candidate with the most votes and declare them the winner of the election.  

In this way, its methods, reasoning, and variables for determining the winning candidate are 

directly observable. What is programmed in by one programmer can be read and verified by 

another. In this scenario if a regulator were asked if the election had been handled fairly, and in 

accordance with existing laws all the information needed to make such a determination is 

regularly available.  The regulator could have an expert look at the electronic voting booth’s 

code, and even test each stage of its operation. 
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By contrast, if this electronic voting booth were to operate like a “black box” system it 

would first be given a directive such as “select the most appropriate candidate based on the 

provided data”. The townspeople would then give some parameters to the election official such 

as needing to use a method which not random, restricting the possible outcomes to the two 

candidates, and needing to use the completed ballots in its decision making. It would then be fed 

votes and results from past elections to “train” it to develop a method of determining a winner. 

Once the program could consistently arrive at the same results as past election (presumably 

stumbling upon some variant of the ‘majority wins’ rule) it could then be fed “new” data from 

the current election and use it to select a winning candidate according to the method it developed 

from the training data. If the same regulator were asked if the election had been handled fairly 

and in accordance with existing laws there would be no means for them to do so as while the 

inputs (ballots) and outputs (candidates) could be observed the exact method implemented by the 

“black box” used by the election official to run the election would be unknown, and perhaps 

indecipherable with modern technology.  

2.5 ALGORITHMIC BIAS 

But why should it matter that the inner workings of the voting machine are unknown?  

What if the results are always viewed as “good enough” by its user’s standards that there is no 

question as to if the machine should ever be doubted? Why should one care that they cannot 

directly observe the method of a black box system if the outcomes are always acceptable once it 

is sufficiently trained? The answer to this lies in the fact that algorithmic black box methodology 

could be anything that produces results that fit a programmer’s/client’s subjective goal 

parameters. As the program is being tuned based on its “end goal” there may be multiple ways to 
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achieve the same election results, it could be sound logic, random chance, or even a mixture of 

rational and irrational variables.  

To explain why this could be ethically problematic, suppose a resident named “Unlucky 

Anne” lives in the same small town described in the previous example. Anne is very elderly and 

as a result has voted in every town election since the town was founded. As a result, her vote is 

present in all iterations of the past data that was used to “train” the “black box” electronic voting 

machine. Anne has different political views from the majority of the townspeople and as a result 

has voted for the losing candidate every single time an election has been run. This data could be 

interpreted by the learning algorithm to be a very strong determiner of the unsuccessful candidate 

as Anne’s vote is, historically, an accurate predictor that the other candidate is going to win. 

Given this 100% accuracy, Anne’s vote could have the effect of biasing the system. The system 

could accidentally hit upon the rule, “If Anne votes for X, then X loses.” As a result, the 

electronic voting machine ignores all other inputs except for Anne’s vote and simply designates 

the candidate that Anne did not vote for to be the winner. In this instance, not only is the election 

being run in a questionable way but Anne is actively being discriminated against by the 

algorithm as her chosen candidate can functionally never be elected. This discrimination will 

occur for as long as the electronic voting box is in use due to its opaque methodology.  

Given that the possibility of this unfairness and discrimination inherently exists within a 

black box system by means of its opaque methodology, there is a significant need to move away 

from such methods and promote explainability algorithms instead. To provide a practical 

example of how such a problem may manifest in autonomous vehicles, consider that current 

autonomous vehicles rely heavily on algorithmic object recognition to identify pedestrians, other 

vehicles, and obstructions. This kind of software has been demonstrated to often contain an 
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unintentional bias, namely being less skilled at recognizing and identifying individuals of a 

number of identifiable groups (Bushwick 2019). There is a very real risk that this inability to 

identify individuals of certain identifiable groups could manifest through autonomous vehicles in 

lower road safety for said identifiable groups. 

2.6 THE NEED FOR GOVERNMENT INTERVENTION 

There is minimal financial incentive for automotive companies to slow their production 

in order to develop “clear box” systems. Companies might plausibly adopt the attitude that, if a 

problem (e.g., a pattern of crashes) occurs, there is no need for the kind of direct insight that a 

clear box system provides: the behavior of vehicles can simply be tuned through additional data 

and algorithmic “training”. In other words, there is little incentive for companies to be proactive 

rather than reactive in regards to autonomous vehicle safety. This, paired with the fact that 

opaque “black box” technology make it significantly more difficult for regulatory agencies to 

prove non-compliance to government standards and more difficult for courts to assign clear 

liability, means that there may be a tendency for the technology necessary to bring about “clear 

box” systems to be neglected, barring government intervention. This unfortunate reality, paired 

with the standard financial conflict of interest that manufacturers face in being trusted to 

impartially evaluate or report on the safety of their own products, suggests the possibility of a 

substantial risk to public safety. 

Numerous cases of regulatory non-compliance and of financial interests overshadowing 

public safety have been widely publicized. An egregious example of a known mechanical failure 

being intentionally overlooked is the case of the Ford Pinto. When informed of a vehicle defect 

which caused engine explosions in the Pinto, the auto manufacturer Ford infamously decided to 

risk the safety of its customers for financial savings rather than to fix a known mechanical issue 
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which resulted in engine fires resulting in an estimated 180 deaths (Leggett 1999). Similarly, 

attempts to use software techniques to circumvent government regulation in this manner have 

already been attempted. For example, Volkswagen deliberately installed software in its vehicles 

main computer to recognize test environments and then cheat on environmental emissions 

standard testing (Hotten 2015). This raises an obvious worry with regard to autonomous vehicles 

in that a similar “test environment” exploit program could be deployed in autonomous vehicles. 

With the added opacity of black-box system such a program would be extremely difficult to 

detect. 

2.7 MAIN CRITICISM 

Autonomous vehicles largely employ black box learning algorithms to determine their 

behavior. As a result, one presently cannot tell why an autonomous vehicle acted in a certain 

way, merely that it did act in a certain way when provided with a set of inputs. This issue would 

persist even if one had a complete list of all inputs and outputs. The key issue of the black box 

problem is the inability of the exact methods of the system to be scrutinized. If the programmers 

of the system themselves have only a minimal understanding of how a system works, there is 

little means by which to diagnose the cause of unintended behavior whether it be due to 

mechanical malfunction, software error, or even if the system has been compromised in some 

way. In addition, if a black box algorithm is compromised by a malicious party in some way it is 

extremely difficult to detect. In the case of a clear box system, the person who designed it is 

qualified to detect problems. But the methods used by the black box system to achieve its ends 

are designed by the algorithm meaning that there is no designer. Not only could this compromise 

road safety and endanger lives, but it could also completely lock down transit systems. By the 

same reasoning it is nearly impossible for third parties or regulatory bodies to adequately assess 
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black box systems, meaning that there is no possibility of meaningful oversight. In other words, 

it is not possible to determine if an autonomous vehicle is actually “rights respecting” or “legally 

compliant” or if it merely appears to be in most circumstances. While autonomous cars represent 

a vast improvement in convenience it is very clearly not possible to condone the widespread use 

of this technology until meaningful safeguards can be put in place. 

2.8 RISK TO PUBLIC 

One might object to my assessment on the basis that human drivers themselves are 

arguably “black box” systems wrought with a range of biases that affects their judgement in 

ways which may endanger other individuals in any operational design domain in which they 

participate. However, this objection does not take into account that there is variability in bias 

from person to person. The subtraction of the human variance behind vehicle decision-making 

means that autonomous vehicles will likely make mechanistically similar decisions to one 

another in most scenarios. This unfortunately has the consequence of potentially amplifying a 

minor programming error, bias, or hardware limitation to the potential scale of a public health 

crisis due to the sheer number of times the same error will be repeated. Take for example the 

Boeing 737 Max which had all planes of that model grounded due to a defect in its autopilot 

system (Slotnik 2020). The mere presence of an observable algorithmic error in one autonomous 

vehicle will mean that it is present in thousands if not millions of other vehicles, all of which will 

need to be serviced. In a recent study it was shown that if the majority of road vehicles were 

autonomous vehicles, only 20% of those vehicles would need to be compromised (either via 

software defect or malicious hackers) in order to completely gridlock an entire city (Vivek et al. 

2019). This translates to weeks if not months of being forced to endure the threat of unsafe road 

conditions and a potential major disruption transportation. Likewise, due to potential algorithmic 
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bias, whether intentional or unintentional in nature, black box systems have the potential to 

disproportionately affect identifiable groups on a mass scale. The fact that individuals do not 

have the option to “opt out” of sharing spaces with autonomous vehicles means that they could 

be forced to endure unjustifiable disadvantages merely to travel in public. 

2.9 DOES REGULATION STIFLE INNOVATION? 

The common response to calls for regulation of black box programming pertains to how 

such regulation will stifle innovation. While prevalent, this is a rather weak argument that, in the 

case of learning algorithms, transparency requirements do not actually stop development of the 

technology. Instead, transparency requirements mean insisting that the technology be developed 

in a way which is provably law-abiding and rights-respecting. It does not matter how beneficial a 

technology is if it risks compromising the rights and safety of identifiable groups. While in the 

short term there are additional developmental barrier to overcome to clear box autonomous 

vehicles to market, the long-term advantage of regulations requiring clear box systems is the 

development of explainable learning algorithms, which is an ultimately superior version of the 

technology by means of avoiding the problems mentioned in previous section. 

To provide an analogy to an existing product where such an outcome has already 

occurred, one can look to the field of medicine. Medications which have a well understood 

mechanism of action (the way which they interact with the body) are generally regarded as 

“safer” due to the fact that the additional understanding afforded to medical professionals allows 

for better predictability, more accurate dosages, better understanding of drug interactions, safer 

combined drug regiments, and research on novel differential uses for the drug. For example, to 

relieve a headache one could take Aspirin, a provably safe over the counter medication with a 

well-understand mechanism of action, or eat willow bark. Prior to the identification of salicylic 
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acid as the active ingredient which causes the analgesic effect in aspirin that quells headaches 

and fevers a similar but more less predictable effect was historically achieved by means of 

consuming willow bark which contains the same compound (Vlachojannis et. Al 2011). This 

method was considerably more risky as one could improperly dose oneself by consuming too 

much or too little bark and also risked consuming contamination from the bark. To say that we 

should forgo the development of explainable algorithms in favour of black box algorithms 

simply because they can both do a certain task reasonably well and black box systems are easier 

to produce is like saying that the development of Aspirin was unnecessary because willow bark 

does the same job of treating headaches and fevers reasonably well and is easier to produce. In 

doing this one would forgo ever knowing that salicylic acid is the compound which produces the 

analgesic effect; thus, condemning anyone who has an allergy to this compound to an 

unexplainable anaphylactic reaction in the same way that a black box autonomous vehicle might 

condemn an individual to an otherwise avoidable injury via an unexplainable algorithmic bias or 

design defect. I hold that developing explainable algorithm is as important for machine learning 

as understanding the mechanisms of action of substances is for medicine. By virtue of the 

overcoming the difficulties of black box programming, explainable algorithms are ultimately 

likely to be safer, right-respecting, and more secure. As well, there will be a considerable market 

advantage for projects which use explainable algorithms, considering that a number of nations 

have already expressed a preference for explainability (Madiega 2019).  

2.10 ARE “CLEAR BOX” SYSTEMS POSSIBLE? 

While there is presently no means definitively to interpret the interactions generated by 

learning algorithms, the claim that there is no possibility of there ever being such a method is 

technically fallacious.  Modern autonomous vehicle technology using learning algorithms began 
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development in the early 1980’s meaning manufacturers have already had four decades to pursue 

explainable A.I. initiatives. Pilotnet, an explainable end-to-end A.I. autonomous driving system, 

is already well into development by Nvidia (Bojarski et al. 2018). Likewise, DARPA (the U.S. 

Defense Advanced Research Projects Agency) has been funding explainable A.I projects since 

the early 1990’s through the XAI program (Defense Advanced Research Projects Agency 2020). 

IBM is also presently spearheading methods of interpretable and explainable A.I. through its “ai 

explainability 360” initiatives which focuses on translating all methods of algorithmic learning 

into interpretable systems (IBM Research Blog 2018). Explainable A.I. is not impossible. The 

real question is whether the extensive time and resources needed to develop fully explainable 

A.I. is a reasonable burden to require autonomous car manufacturers to handle upfront, and 

whether or not the nature of that delay inhibits technological development.  

2.11 SUGGESTIONS FOR AUTONOMOUS VEHICLE REGULATIONS 

In summary, this chapter has demonstrated a clear need to move away from black box 

systems and towards explainable algorithms (clear box system) for autonomous vehicles. This 

section will attempt to provide policy suggestions as to how this transition could be approached. 

There is the potential to streamline the process of making autonomous vehicle rights respecting 

and regulatable, while also minimizing undue commercial restrictions, by committing neither to 

a black box nor to a clear box model, but instead to a “grey box” model. A grey box model 

merges the development benefits of black box algorithms with the reliability and safety of clear 

box systems by having compartmentalized versions of both systems in the same system. To 

explain how this would work in autonomous vehicles, certain tasks deemed to be of minimal 

safety relevance such as a subtask which maximizes vehicle fuel efficiency would be permitted 

to be fully black box systems, while others which are deemed relevant to safety, such as object 
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recognition and response, would be required to be clear box systems. This has the effect of 

making the goal of explainability much more feasible by limiting excessive development costs in 

the short term. This need only be a short-term solution given the aforementioned evidence 

provided in previous sections that explainable A.I. will one day be commonplace. 

Which subtasks should be considered ethically relevant subtasks? I suggest that any 

algorithm which involves the assessment of a human-relevant variable (such as an object 

recognition system which differentiates pedestrians from vehicles) should be considered ethically 

relevant. For example, the OEDR is a subtask which is responsible for monitoring the driving 

environment and autonomously executing appropriate responses to objects and events. In other 

words, this is the subtask of the car which makes evaluative determinations based on input and 

then executing said decisions as output. Object recognition, maneuvering plans of action based 

on environmental data, and tactical decisions such as when to initiate fallback to manual 

operation are all handled by the OEDR.  As a result of having to recognize pedestrians and other 

vehicles and prepare responses to their actions the vast majority of the OEDR subtasks involve 

human variables. To supplement the “gaps” which will be present in this model of explainability 

“data recorders” similar to those commonly used in the aviation industry should be installed on 

all autonomous vehicles. The reason for this is that if a record of all the sensor data, DDT data, 

user inputs, and driving decision outputs is available it will allow for the possibility of simulation 

and diagnostic procedures to determine “what went wrong”. The result of these measures will 

give investigators, courts, and policymakers a meaningful view into the operation of the vehicle. 

This view will be similar to that kind of transparency currently demanded by aviation authorities 

investigating plane crashes. 
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CHAPTER 3 

AUTOMATION, AUTONOMY, AND ACCOUNTABILITY 

3.0 CURRENT LEGISLATION 

This chapter focuses on problems of autonomous vehicle liability, namely the improper 

distribution of autonomous vehicle liability. A trend in legislation across multiple international 

jurisdictions has seen autonomous vehicles treated in a similar manner to traditional manual 

vehicles. For example, California, the American state where several major autonomous vehicle 

manufacturers including Tesla and Google are headquartered, has no specific laws regarding 

autonomous vehicle owner liability (Baker et Al. 2020, pg. 14).  Similarly, under German law, if 

the driverless car causes death, personal injury or property damage, the owner of the vehicle will 

be liable as if they had been driving the vehicle themselves (Baker et Al. 2020, pg. 14). In effort 

to promotes autonomous vehicle development and adoption Ontario has taken a perspective 

similar to that of California and Germany by actively pushed forth legislation which states: 

“A human driver is required at all times to take back the driving task when alerted 

to do so by the vehicle. Drivers will need to be in full care and control of vehicles 

with SAE Level 3 technology and all existing laws (such as distracted, careless and 

impaired driving laws) will continue to apply to drivers of these vehicles. Drivers 

are responsible for the safe operation of these vehicles at all times.” (Ontario 

Ministry of Transportation 2013) 

But is the human occupant of an autonomous vehicle really “driving”  when the majority of 

the vehicle tasks are fully automated? The UK Law Commission suggests that this question 

warrant a new category of vehicle operator referred to as a ‘user of a highly operated vehicle’ 
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(“user-in-charge”). It also recommends that the ‘user-in-charge’, “should not be considered a 

‘driver’ while the vehicle is driving itself and legislation must develop to clarify the role of a 

‘user-in-charge’” (Baker et Al. 2020, pg. 14). I hold that the issue of autonomous vehicle 

accountability is primarily an issue of ambiguity as to who the operator of the vehicle is. This 

problem is further complicated by differing levels of autonomous capability which alter the 

obligations of the operator. For example, a level two autonomous vehicle requires the human 

operator of the vehicle to be alert and actively participate in operating the vehicle at all times, 

whereas a level four autonomous vehicle functions largely independently, only requiring 

operator involvement in extremely select circumstances which are outside of the capabilities of 

autonomous technology in the vehicle. This ambiguity is particularly apparent when talking 

about level three autonomous vehicles as they include driving features which are fully 

autonomous with one’s that require human operator intervention, and those which require driver 

intervention may actually vary from manufacturer to manufacturer. As laws regarding 

autonomous technology lacks specificity to a point of often not explicitly denoting what kinds of 

actions warrant the attribution of responsibility to the operator of the vehicle, the manufacturer of 

the vehicle, and external actors such as pedestrians or other vehicles.  

This chapter aims to outline a way of thinking about how to determine when an operator 

of an autonomous car is able to make “free choice” in the form of a driving decision and when 

that operator is at the mercy of pre-programmed  algorithmic “forced choices” made for them by 

autonomous vehicle manufacturers. This distinction is a particularly important as it has 

significant implications for accountability. For example, instances of operator “fall-back” 

(situations in which an automated vehicle hands control back to a human driver) require an 

individual to take over the majority of dynamic driving tasks of an autonomous vehicle on very 
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short notice. If an autonomous vehicle’s programming caused it to become involved in a 

dangerous situation should the driver be responsible for the consequences simply because a “fall-

back” protocol was engaged at the last second? What if the driver is not given adequate time to 

respond and the sudden nature of the fall-back causes an otherwise manageable situation to 

become dangerous? In this chapter, I will first focus on identifying instances of individual 

agency and shared agency in order to identify a clear means to identify when actors are making 

decisions independently and in tandem. This argument will then be supplemented by a discussion 

regarding when a choice made by an agent may be considered a voluntary or free choice, against 

when a choice may be considered involuntary or forced. I aim to demonstrate that whether or not 

an individual may be justifiably held accountable for the consequences of an autonomous vehicle 

collision, accident, or illegal behavior is determined by whether or not they are freely making 

choices and acting collaboratively with the algorithm of the vehicle.  

For the sake of clarity, in the following arguments I will be using terms to refer to 

specific realms of responsibility typically associated with autonomous vehicle operation. Recall 

that, the SAE defines “dynamic driving tasks” as all of the real-time operational and tactical 

functions required to operate a vehicle in on-road traffic such as lateral and longitudinal vehicle 

motion control (steering, acceleration, deceleration, and braking), recognizing and monitoring 

objects and events in the driving environment, and both preparing and executing responses to 

said objects and events by means of maneuvering, signalling, or enhancing conspicuity via 

lighting (SAE 2018, pg. 6-7). I will define the “operator/operators” of the vehicle as the party 

responsible for DDT decisions not made by the autonomous vehicle system such as setting a 

destination. The operator/operators are considered the party responsible for the outcomes of 

those DDT decisions. By contrast, “passengers” are merely other parties which are present in the 



35  
 

vehicle. They do not make decisions regarding dynamic driving tasks and are not responsible for 

any outcomes which occur as a result of said decisions. 

3.1  INDIVIDUAL AGENCY & SHARED AGENCY 

The primary project for this section is to discern a morally useful description of shared 

agency for the operation of autonomous vehicles. In order to determine when an individual is 

responsible for an act, one must first assess what constitutes the capacity to make a voluntary 

choice.  In order to be able to make a choice one must possess agency, namely the capacity to act 

intentionally (Schlosser 2019). The average adult human, for example, is functionally capable of 

acting intentionally and is therefore capable of exercising agency. According to the event-causal 

theory of agency, when agency is  exercised it consists of the instantiation of the right causal 

relations between agent-involving states and events, namely an agent is causally linked to a state 

of affairs (Schlosser 2019). Such agency is instantiated by, for instance, a human vehicle 

operator in a manual vehicle seeing an obstruction and intentionally avoiding it by manipulating 

the vehicle controls. In such a situation the human operator’s actions are in line with their 

intentions, making said actions a manifestation of individual agency.    

The conditions of shared agency differ from individual agency in that despite both 

individuals having a hand in bringing about a state of affairs the intentions of individuals are not 

always entirely aligned. Bratman argues that, for an act to be considered a manifestation of 

shared agency the sub-plans which bring about the main objective must also be shared (Bratman 

1993, pg. 106). A sub-plan is most accurately described as the steps or method to bring about a 

certain goal. This pertains to shared agency for Bratman in the sense that if two agents have the 

same goal but different sub-plans, they are not partaking in shared agency but merely acting 

independently towards the same objective. One could argue that two movers, moving a couch up 
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a flight of stairs, both working towards bringing about a certain state of affairs (the couch being 

placed in a second story room) can each act intentionally towards a common end goal and are 

therefore can potentially partake in shared agency if they agree to a shared sub-plan as to how to 

accomplish this task. For example, suppose one of the movers, upon seeing an upcoming curve 

in the staircase, begins to pivot the couch without informing the other mover. What allows this to 

continue being an instance of shared agency is that in cases of conflict the movers need to 

consent to a shared solution to re-align their sub-plans. In this case, one mover might 

communicate to the other might begin to pivot as well. But suppose the second mover believes 

that pivoting the couch will cause it to get stuck and therefore refuses to do so. If the first mover 

threatens to drop the couch and crush the second mover if he does not pivot the two movers are 

no longer sharing sub-plans, and thus no longer partaking in shared agency. If the couch then 

does become stuck as a result of pivoting, we should hold the first mover responsible but not the 

second. Similarly, this sub-plan distinction identifies circumstances relevant to the operation of 

autonomous vehicles in which an actor is unable to make a free choice. For example, in 

“fallback” cases an autonomous vehicle, upon encountering a situation it cannot properly 

process, transfers full control of the vehicle back to the human operator of the vehicle. If this 

fallback occurs too suddenly or in an unsafe manner, the human operator may not have the free 

choice to properly choose a safe course of action. In such situations the operator does not have a 

shared sub-plan with the autonomous vehicle and therefore cannot be considered to be 

participating in a form of shared agency.  

My definition of shared agency is summarized as involving a combination of sharing 

intentions, acting with other in a collaborative way, having shared plans and method, and 

working towards a common goal. According to this definition, a human operator of an 
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autonomous vehicle is no longer partaking in “shared agency” if the vehicle behaves in a way 

clearly contrary to the human operator’s goals and intentions. For example, if autonomous 

assistive technology malfunctions and forces a car to veer into a telephone pole, the human in the 

operator is not responsible for the negative outcomes of the vehicles behavior. But this does not 

imply that the vehicle itself is somehow “responsible” for committing a wrongful act or making a 

bad decision as a vehicle does not meet the criteria for agency. What I will argue in the next 

section is that the manufacturer, by means of its causal link to the algorithmic determinations of 

the vehicle is partaking in shared agency with consumers of its products. This shared agency 

makes the manufacturer morally liable for improperly tuning the algorithm to adequately respond 

to road conditions. Much in the same way that a structural engineering firm is held responsible if 

a building collapses due to foreseeable structural issues I hold than an autonomous car 

manufacturer should be held responsible for foreseeable algorithmic design flaws. 

3.2 RESPONSIBILITY 

To demonstrate why, for example, Ontario’s hardline stance on autonomous vehicle 

accountability is morally questionable, consider that a level 3 vehicle operating within its 

operational design domain (ODD) is the lowest level of autonomous vehicle that could be 

thought of as a fully automated autonomous driving system (ADS). The only real difference 

separating a level 5 vehicle ADS system from a level 3 vehicle ADS is an expanded operational 

design domain and better reliability; in particular, when driving within the level 3 vehicle’s 

operational design domain the driver will functionally have as little input as the level 5 vehicle. 

During normal operation, despite the formal requirement of human driver vigilance, such a 

system should rarely need any intervention from the “driver” beyond the inputting of a 

destination. Other than that singular act of destination selection there is no further contribution of 
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the human “driver” to the operation of the vehicle. In light of the legislation discussed above, if 

such a level 3 autonomous vehicle were to get into a collision or disobey the law the “driver” 

would be held responsible despite having no part in the actions which caused it. In a way, 

holding a driver responsible is as questionable as charging a passenger of a limousine for the 

poor driving of their chauffer, merely because they used the services of the limousine to travel to 

a certain destination. This means that the human operators of autonomous vehicles are presently 

at risk of being unjustifiably punished for acts over which they had no control and could not have 

reasonably predicted. Meanwhile, the manufacturers who designed the vehicles and who are the 

direct cause of the vehicle’s programming, which make them more qualified to reasonably 

predict and plan for negative vehicle behavior, are not likely to be adequately held to account. 

This section will focus primarily on defining a particular kind of responsibility referred to 

as “liability responsibility” which determines when a party may be considered “morally 

responsible for an act”. The means by which to begin approaching this problem is first to note, as 

the UK law commission did previously, that with regard to autonomous vehicles the term 

“driver” is vague. When the term “driver” is used colloquially to refer to a person controlling a 

conventional, fully manual vehicle, it is used in the sense that said “driver”, barring mechanical 

malfunction, is the causal source of the behavior of the machine and is therefore the agent of said 

actions. As the agent of the vehicle’s actions, the “driver” is held to be responsible for these 

actions.  The problem is that this model becomes questionable as soon as any portion of the 

“driving” tasks is automated, as the “driver” is potentially no longer the sole source of actions in 

this model. Consider even single-task vehicle automations such as an automatic transmission. If 

an automatic transmission were, due to a design defect, to start shifting gears improperly while 

going uphill due to a design defect this could cause the vehicle to stall, roll backwards, and cause 
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a collision with the car immediately behind it. In such a case no action the human “driver” took 

contributed to the collision; it is the result of design choices (or defect in manufacturing) made 

by the vehicle manufacturer.  

To illustrate my point, consider the case of unintended acceleration issues which affected 

multiple Toyota vehicles from 2000-2010. There were multiple design issues, ranging from 

“sticky” accelerator pedals to bizarre engine surges when the brake pedals were pressed, which 

caused unintentional accelerating behavior in the vehicles and led to multiple collisions (Safety 

Research & Strategies 2015). To argue for consumer strict liability for merely choosing to own a 

Toyota vehicle and driving it on the road is not defensible. The design defects which caused 

unintentional behavior were the direct result of faults in the manufacturer’s design process, thus, 

making the manufacturer the liable party. If instead of these physical design flaws this 

unintended accelerating behavior was caused by an autonomous system improperly reacting to 

traffic conditions, why should the liability of the human operator change? I hold that flaws in 

autonomous driving algorithms are no different than flaws in physical design features. 

A critic of my position could argue that an autonomous vehicle differs from a chauffer-

driven limo in the sense that technically the owner of the autonomous vehicle made the decision 

to buy the vehicle, to assume the risk of operating the vehicle, and to introduce the vehicle to 

risky environments like roadways, and that this does indeed make them responsible for any 

consequences which arise in relation to the vehicle. This form of strict liability is similar to what 

applies to horseback riders who assume full responsibly for any reasonably foreseeable issues 

caused by their animal when they travel on public roadways (Ross 2019). But an autonomous 

vehicle is not an animal which is reliant on its owner for training and guidance to behave safely 

on a public road. An autonomous vehicle is designed to operate in a certain way by a 



40  
 

manufacturer meaning that failure to operate in a safe manner in foreseeable road conditions is 

more accurately defined as a design flaw. Assuming that a vehicle owner carries out regularly-

scheduled maintenance of their autonomous vehicle and follows service notifications and 

guidelines, there is no reason why they should be held liable for design defects and issues of 

manufacturing. As owners of non-autonomous vehicles are not held liable for outcomes caused 

by manufacturer defects, this strict-liability argument would not apply. It would be bizarre to 

attribute liability to a vehicle owner who gets into an accident because a design defect in the 

vehicle causes their brakes to malfunction. 

3.3 CONCLUSION 

The ultimate conclusion of this chapter is that the human operator of the vehicle should 

only legally be held “responsible” for driving decisions which they are actually controlling and 

are intentionally partaking in. While there may be specific situations in which a human 

operator’s action or inaction may lead to negative outcomes, and hence in which the human 

operator might bear some portion of moral responsibility, my position is that the standard of 

liability from such cases must be higher than simply being present in an autonomous vehicle. 

And simply being present seems to be enough to warrant legal liability, under for example 

Ontario’s legislation.  As the duties of autonomous vehicle operators become more clearly 

defined, a means to assess this contributory negligence will have to develop and will most likely 

be based around responsibilities like adhering to regular maintenance of the vehicle, safely 

assuming manual control of select DDT functions when necessary, and others.  

In order for one to be considered to be partaking in shared agency I have argued that one 

must share a common goal and common subplans pertaining to how to accomplish that goal. 

When an autonomous vehicle violates these conditions by behaving erratically or unpredictably 
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as a result of a manufacturer defect there is no possibility of shared agency and therefore no 

possibility of human operator responsibility. Building upon this conclusion, I argue that from a 

policy perspective, for all functions in which the autonomous vehicle offers automation of 

dynamic driving tasks and takes on the role of an “operator”, the burden of legal responsibility 

should be attributed to the parties which manufacture the autonomous vehicle and its software.  
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 CONCLUSION 

4.0 OVERVIEW 

The primary goal of this thesis was to address what I hold to be the most pressing ethical 

issues in autonomous vehicles. These include, the applicability of moral philosophy (via the 

Trolley Problem) to guiding autonomous vehicle regulation, the need for “explainability” in the 

machine learning algorithms that guide autonomous vehicles, in order to ensure that vehicles are 

fair and rights-respecting, and the need for a change in regards to distribution of liability for 

driving behavior.  

4.1 CHAPTER SUMMARIES 

In chapter one I demonstrated how the incorporation of machine learning algorithms into 

autonomous vehicles continues to present an avenue for the application of moral philosophy. 

Using the work of Janet Fleetwood, I explained how the operational design domain of 

autonomous vehicles had increased to such a degree that there was no possible means for a 

programmer to anticipate every single possible interaction between the car, the driver, and the 

environment. This necessitates the integration of models for the prioritization of objectives. 

These models were shown to draw directly on conventional moral philosophy to build highly 

applicable objective prioritization structures, solidifying my assertion that moral philosophy is 

directly applicable to the programming of autonomous vehicles. 

In chapter two I demonstrated that black box algorithms operate in a way that is opaque 

to regulators, industry experts, and even the programmers of the algorithm themselves. I then 

provided several examples as to how such a system can be biased to easily and undetectably 

infringe on individual rights. In doing this, I also demonstrated how this issue, paired with the 
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widespread adoption of autonomous vehicles, could cause widespread rights violations. I then 

presented a potential compromise in the form of a “grey box” system paired with operational 

data recorders. This solution attempted to address the aforementioned ethical issues of black box 

systems while also substantially mitigating the potential ethical shortcomings associated with 

black box systems. 

In chapter three I asserted that laws regarding liability must be altered in order to keep 

pace with the changes in driver responsibilities brought about by autonomous vehicles. In this 

chapter I demonstrated that drivers of autonomous vehicles exhibited only a negligible 

contribution to their vehicle’s behavior outside of select situations. In demonstrating this, I also 

provided arguments as to why illegal or unsafe algorithmic autonomous vehicle behavior should 

be considered a manufacturer defect. Using Michael Bratman’s framework I also determined that 

the operator of an autonomous vehicle is not partaking in shared agency when the vehicle 

behaves in a manner which is contrary to the operator’s expectations. I concluded this chapter by 

arguing that autonomous vehicle manufacturers should included in distribution of liability for the 

actions of autonomous vehicles. 

4.2 LIMITATIONS 

Many could argue, like Noah Goodall that there are other potential sources of regulatory 

inspiration for autonomous vehicles, beyond moral theory, such as legal theory, engineering 

standards, and legislative action by governments. However, my position is not that moral 

philosophy should be the sole source for the generation of new regulation, but merely that it 

should be consulted given its demonstrated relevance. My point is that there no reason why 

engineers and politicians should be trying to re-invent the wheel and develop a new isolated 

ethics by ignoring pre-existing work on moral philosophy. Given that moral philosophy has been 
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easily integrated into multiple practical fields such as medicine, science, and law with great 

success there is little reason as to why engineering cannot stand to benefit from it as well. 

There is also the possibility that one could dismiss my determinations regarding black 

box algorithms on the basis that there are many types of such algorithms and my thesis does not 

address specific technical matters pertaining to each. However, I should point out that any 

system which fits the description of black box algorithms in terms of its opaque methodology 

suffers from the same ethical issues I outlined when operating in an operational design domain 

containing human actors. As well, my claims regarding explainability are based on the 

limitations of current technology meaning that if such algorithms develop into or are 

reformulated into systems which can be explained sufficiently to be regulated fairly my 

arguments would not apply to such systems. This means that if new technology emerges which 

enables different kinds of explainability and interoperability, then my view on the most prudent 

course of action regarding autonomous vehicle regulation could definitely change.  

Finally, my claims regarding liability are claims of moral responsibility rather than 

precise legal claims. I acknowledge that there are other factors which may contribute to legal 

liability being attributed differently from attribution of moral responsibility. However, my aim 

here was to provide the means to attempt to consolidate the two in order to rectify what was 

shown to be unjust distributions of liability. In this case my response to such an objection would 

be to question why an algorithmically determined behavior is not the same a design defect which 

is already recognized in multiple jurisdictions as a factor in determinations of legal liability. 
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4.3 CONCLUDING REMARKS 

My hope is that the ideas discussed in this thesis will be explored further as autonomous 

vehicle technology becomes more widespread. Given the vast potential for this technology to 

greatly improve lives and transportation safety it is undoubtedly only a matter a time before the 

majority of the vehicles on the road have significant autonomous capabilities. If the ethical 

concerns outlined in this thesis can be addressed as the technology develops, modern society 

may one day reach the ideal of the Phaeacian ship, a completely safe, predictable, and fully 

autonomous vehicle, one that not only serves the interests of the driver well, but also the interests 

of society more generally. 
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