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Abstract

Searching for a Shoreline

Master of Science 2020

Sumi Acharjee

Applied Mathematics

Ryerson University

Search theory has a long history that dates back to the 50’s. In this work, we focus on

the two-dimensional search problem where n unit speed robots starting from the origin

move along their own trajectories to find a line. The search algorithm terminates

when any of the robots discovers the line for the first time. Our main objective is

to minimize the worst case relative time until the first searcher hits the line. In

this thesis, we do the competitive analysis of the two-dimensional search problem for

n ≥ 2 and restudy the existing upper bounds for n ≥ 2. We improve the best lower

bound known [8] for n = 2 robots from 1.5993 to 3. Also, we prove the first lower

bound for n = 3 which is
√

3. For n ≥ 4 we prove the lower bound of 1
cos(π/n)

which

matches the best upper bound known.
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Chapter 1

Introduction

Search Theory has a long history. Since the first time it was introduced 50 years ago,

the field has expanded and developed in versatile ways. In this section, readers will

be familiarized with the search problem we study in this work.

Consider the simple Hide and Seek Game, which we used to play in our childhood.

In this game the hider chooses his own strategy to hide so that the searcher does not

find the hider very soon. At the same time, the searcher chooses his strategy so

that he can find the hider as soon as possible. This game can be related to a sim-

ple search optimization problem, where the searcher minimizes the total search time

without having any knowledge of the location of the hider. The entire hide and seek

space can be referred as the search space. We can expand the idea of the problem

in many directions. In terms of the search space, it can be bounded or unbounded.

In the perspective of analytical geometry, the search space can be one, two or three
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dimensional. Even the nature of hider can be mobile or immobile. The number of

searchers can be one or more. The searcher might be totally unaware of the location

of the hider or it might have some prior or partial information of the hiding location.

Similarly at hider’s end, the hider may or may not track the location of the searcher.

If the hider can track the location or strategy of the searcher, then it can choose its

strategy based on that to maximize the search time, if it is mobile in nature. Besides

these, there are many other extensions of the problem in different contexts.

The underlying mathematical concepts of the similar idea we just stated above

give rise to a group of problems known as Search Problems which are popular topics

in Theoretical Computer Science. Due to its numerous and versatile nature, it has

been an interesting topic to researchers for decades. Over the years, Search Theory

has been applied to Computer Science, Economics and Biology, and many other sec-

tors to solve real life problems. Some well known applications are in the military,

search and rescue, scheduling, evacuation, planning and many more. For example, in

military and anti-terror activity, where the target is a hider, who wants to evade the

searcher as long as possible, in such situations, the concept of search theory can be

applied to minimize the total search time. Another simple example which is closely

related to our problem is searching for a shoreline in a sea. If a ship is lost in a sea

in the dense fog and wants to reach the shore at minimum time, then the concept

can be applied to find an optimal measure or an algorithm to minimize the search time.

In this work, we focus on the two dimensional search problem where a number of
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searchers starting at the same point search for a line in the two dimensional plane.

We consider the searchers as robots and their number is denoted by n. The goal is

to minimize the worst case relative time until the first searcher hits the line, i.e. the

time until the line is found divided by the distance of the line to the origin, which is

known as competitive ratio. A detailed explanation on this is discussed in the next

chapter. Before that, below we discuss previous research works on different search

problems.

1.1 Related Work

The concept of Search Theory was initiated 50 years ago. In [11, 12] almost similar

Search Problems have been studied. In [11] a man searches for another man who

is located at some point of a certain road. He starts at a given point considering

the probability that the man might be sought in either direction from that point.

How does he search to minimize the expected distance travelled and when can this

minimum expectation actually be achieved was studied in [11]. With the similar idea

consider the simple problem where a unit speed robot is moving on an infinite line

and looking for an object which is somewhere on the line (bounded away from the

origin). The goal is to minimize the bounded relative time to find the object. The

problem we just described is known as Linear-Search or Cow-Path Problem, which

first appeared in [12] and later restudied by the computer science community in the

late 80’s in [9]. The Linear Search Problem became interesting over time and drew

attention of the researchers as a challenging algorithmic problem in different contexts.
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As a result, over the decades, the results of numerous variations of the problem were

summarized in many surveys [13, 20, 24]. Also, the underlying mathematical theory

gave rise to a number of books such as [1, 3, 4].

The Linear Search Problem [12] can be referred as one-dimensional problem.

Among different variations of the problem, searching for a line in a plane can be re-

ferred as two-dimensional problem. Our current work focuses on the two-dimensional

problem where n unit speed searchers referred as robots, search in parallel for a

line referred as shoreline on the plane. We call our problem Shorelinen. Problem

Shorelinen, and its variations have been studied as early as in the late 50’s. Our main

concern is to do the competitive analysis [15] of the problem. We study our problem

in perspective of analytical geometry and consider the plane as a Cartesian plane.

Our problem can be referred as an online problem, where n unit speed robots starting

from the origin search for a line that is placed in an unknown location. Without loss

of generality we consider the distance of the line is d ≥ 1 bounded away from the

origin. To do the competitive analysis our goal is to minimize the relative worst case

search time, i.e. the time until the line is found by any of the robots divided by the

distance d from the origin with respect to all possible placements of the line and all

possible values of d.

The two dimensional problem was studied in different contexts based on the num-

ber of searchers, placement of the line with and without prior information. Searching

for a line with one robot was first proposed in [9] with no prior information of the
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line. A similar problem was first proposed by Bellman(1956) named as Swimming in

a fog where a person lost at a point in a fog and wishes to minimize the maximum

time required to reach the shore, given its shape and some information about its lo-

cation. The best algorithm known for Shoreline1 is a logarithmic spiral search that

has competitive ratio approximately 13.81 [9] when the shoreline is placed at an ar-

bitrary distance. Technical report [23] included the mathematical derivation for this

upper bound. There are many variations of the problem with some prior information.

Searching for a line of arbitrary slope and a known, say unit, distance from the origin

in the plane was solved by Isbell [28] and achieved the competitive ratio 6.39. When

both distance and slope are known, the best possible competitive ratio is 3. When

the line is axis parallel and the distance is known then the best competitive ratio is

3
√

2 [9].When the line is known to be axis parallel, then [9] gives an upper bound of

13.02, which was improved to 12.5406 [29] and then to 12.5385 [31]. By assuming a

cyclic-type trajectory, the competitive ratio is at least 12.5385 [31]. A randomized

online algorithm for Shoreline1 problem was discussed in [25, 26]. The only lower

bound for Shoreline1 problem with no prior information is reported in [8] as 6.3972.

For n ≥ 2 robots numerous variations as well as improvements were proposed in

[7, 8, 10, 29]. For n = 2 the best algorithm known is a double logarithmic spiral

search [8] which induces an upper bound 5.2644. In this paper, we present a detailed

calculation of the bound. The only lower bound for Shoreline2 was reported in [8]

is 1.5993 with the prior information that the distance is known. For n ≥ 3 the ray

algorithm of [8] where robots split the plane evenly and move along rays induces
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competitive ratio at most 1/ cos(π
n
). To the best of our knowledge, no lower bound

has been reported for n ≥ 3.

For n ≥ 2 robots, there are two other types of search problems, widely known

as Evacuation Problems and Rendezvous Problems. In an Evacuation Problem, the

algorithm terminates when the last searcher finds the target. In other words, it is

similar to say that the searchers of the evacuation problem are looking for an exit to

evacuate. Here, the goal is to minimize the time to reach the exit for all the robots

in a worst-case scenario. Initially, evacuation problems were considered as planning

of flow-problems [27] on dynamic networks with a starting point (source) and an

end point (sink). In the last decade, evacuation problems have been studied with

other variations such as multiple exit points [17], exit in a known or unknown domain

[5]. Also the communication method has a great impact on evacuation problems.

There are two basic communication methods; one is face to face (in which robots ex-

change information only when simultaneously located at the same point) and another

one is wireless communication (in which robots can communicate with one another

anywhere at any time). Based on communication methods, different problems were

discussed in [18, 21] and surveys on different algorithms were discussed in [19].

The rendezvous problem refers to a problem in which robots are expected to meet

at the same time and point in space. The meeting can be a task on its own or it may

form a part of a more complex communication or coordination process in which the

robots are involved. The rendezvous problem as we now know it was first informally

6



introduced by Steve Alpern in mid 1970s, known as Astronaut Problem and Tele-

phone Problem [1], which initiated the discussion of coordination problems. Later,

different versions of rendezvous problems were studied in [2, 6].

Two-dimensional search problems have been considered other than line searching.

Searching for a circle was considered in [26]. Searching for a point on the plane was

considered in [16, 35]. Later in 2010, Langetepe [30] proved that spiral search is

optimal for two dimensional search by one robot where a searcher searches for a point

in the plane. Parallel Search with bounded memory robots on the grid was considered

in [22, 32, 33, 34]. Recently, in probabilistic aspect [14] studied the problem where a

unit speed robot searches the half-line (or 1-ray) for a hidden item.

1.2 Thesis Organization

In Chapter 1 we discussed the motivation behind our problem with some real life

examples. We also discussed the related work of Search Theory in different contexts.

We briefly discussed the history of Search Theory. In Chapter 2 we focus on few

basic terminologies along with some basic definitions. In this chapter we discuss the

classic Cowpath Problem as a motivating example. Later on, we present our problem

definition and specifically mention our contributions. At the end of Chapter 2, we also

make a list of frequently used notations. In Chapter 3 we restudy the two dimensional

cases for two or more robots. We present a detailed calculation of searching for a

shoreline with two robots by the double logarithmic spiral algorithm and with three
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and more robots, using the ray search algorithm. In Chapter 4 we focus on lower

bounds for two and more robots which is our main contribution. Finally, in Chapter

5 we give a brief conclusion and also discuss future work.
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Chapter 2

Preliminaries

In this chapter we introduce a few terminologies, definitions and notations. We also

discuss some motivational problems and finally present our problem definition.

In Search Problems, a number of searchers search for an object in a search space.

Starting from the same point, searchers follow their own arbitrary strategies to reach

to the object which are referred as trajectories. The overall search strategy is known

as search algorithm. Based on the nature of the problem, the termination of the algo-

rithm differs. In this work, we only focus on search problems in which the algorithm

terminates when the object is found by any of the searchers. Based on the context,

there are many variations of the search problem. Some major contexts are based on

the search space, prior information regarding the object, number of searchers, type of

algorithm, search mechanism, objective of searches and speed of searchers. To illus-

trate the search mechanism and associated terminologies, we start with the following
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motivating example of the classic Linear-Search Problem.

2.1 Motivating Example

Linear Search An object is placed on the real line at a point H. A searcher, start-

ing from the origin O at a unit speed wishes to discover the object in minimal relative

time. It is assumed that the searcher can switch direction of travel instantaneously.

Consider the searcher as a robot. That means the robot starts at the origin of the real

line and travels one unit of distance per one unit of time along the real line in either

direction. In order to determine that there is an object at location H the robot has

to be physically be present at H. In that case, what should be the strategy for the

robot to explore the real line in order to find the object minimizing the total search

time in worst case? This problem is known as the linear search problem or the cow

path problem, which appeared initially in [12]. Later it was restudied in [9].

Suppose that the object is placed at distance d from the origin. If the robot knew

that the object was placed to the right of the origin or to the left of the origin, the

robot could start moving in the correct direction, finding the object in time d. This

is an optimal offline solution. Since the robot does not know in which direction it

should be moving to find the object, it needs to explore both directions. The best

strategy for this is a zig-zag strategy which is an online solution. Initially the robot

moves to the positive direction and walks for 1 unit of distance in that direction. If

no object is found, the robot returns to the origin, flips the direction and doubles the

10



distance. These steps are repeated until the object is found.

Figure 2.1: The zigzag trajectory followed by the robot. Overall relative search time
minimizes when ai = 2i .

Mathematically, it has been proved that the relative search time is minimized

when the robot follows the zigzag strategy in such a way that it has returned to the

origin for the i’th even time that is, it moves 2i to the right and back to the origin or

2i+1 to the left and back to the origin, until the object is found.

In Search Problems the underlying optimization objective is to minimize the total

search time. So, the robot wants to reach the goal in the least possible time. In algo-

rithm analysis, it is assumed that the inputs of the online algorithm (that performs

without knowing the inputs) is viewed by an adversary, who wants to maximize the

search time. To do that, the adversary deliberately chooses the worst placement of

the object so as to maximize the search time. In this situation, the efficiency of the

algorithm depends on how fast it can reach to the object by minimizing the total
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relative search time in the worst case scenario. This analysis is known as competitive

analysis. Competitive analysis is a method invented for analysing the performance of

online algorithms in a worst case scenario. Here the performance of an online algo-

rithm is compared to the performance of an optimal offline algorithm (that performs

knowing the input). In other words, one compares the performance of an online algo-

rithm relative to what can be achieved optimally with respect to all possible inputs.

Now to maximize the search time, the adversary may have the choice to place the

object infinitely far away (if the search space is unbounded). If it does so, then the

robot will need unbounded time to reach to the object. To overcome the situation,

we consider the relative cost measure. The best possible relative time is known as

competitive ratio.

Consider ω represents the zigzag algorithm for the linear search problem. With-

out loss of generality, we consider the placement of the object along positive x-axis.

Consider the distance of the object from the origin is x. Then the competitive ratio

of the algorithm ω (denoted by CR(ω)) is given by the ratio of the distance traversed

by the robot to reach the object (which is known as online cost) to the distance x of

the object from the origin (which is known as offline cost) for the worst placement.

The mathematical representation of CR(ω) is given by,

CR(ω) = sup
|x|>1

Online cost(ω, x)

Offline cost(x)
.

To do the competitive analysis of the Linear Search Problem, we have to consider

12



the worst case. This appears when the robot closely missed the object in any direc-

tion and returns to the origin while doubling the distance and travels in the wrong

direction, returns to the origin, and eventually discovers the object by travelling in

the right direction. Such worst case appears when the adversary places the object

between the locations 2i and 2i+1 for some i and arbitrarily close to 2i. In other

words, if an object is placed at a distance x = 2i + ε > 2i for ε > 0 in direction (−1)i.

Now if the robot knowns the location of the object, it can directly travel distance x

and discover the object. So, the offline cost of the algorithm is given by x. Following

the zigzag trajectory, we have the online cost is given by

online cost = 20 + 2 · 21 + 2 · 22 + · · ·+ 2 · 2i + 2 · 2i+1 + x

= 2
i+1∑
j=0

2j + x.

Thus, we have the competitive ratio CR(ω) of the algorithm condition on the

object is in interval (2i, 2i+1] is

CR(ω) =
2
∑i+1

j=0 2j

x
+ 1

=
2
∑i+1

j=0 2j

2i
+ 1 [for ε→ 0]

=
2(2(i+2) − 1)

2i
+ 1

= 9− 2(1−i)

13



For i→∞ the competitive ratio tends to 9. Thus, this doubling strategy gives a

competitive ratio of at most 9.

There are two other terminologies which describe the bounds of competitive ratio

more specifically. In competitive analysis, bounds have a significant role to play in

determining, how much improvement is possible based on different algorithms for a

certain problem. In other words, this concept helps to estimate the optimal algorithm

for a problem which is discussed below.

2.2 Upper Bounds and Lower Bounds

When we propose an algorithm for solving a minimization problem and do the com-

petitive analysis i.e, worst case analysis then we give an upper bound. By giving an

upper bound we show how well the algorithm performs in solving the minimization

problem in the worst case scenario. An upper bound of a problem guarantees that

the best value possible will be no more than that.

On the other hand, lower bound guarantees that no algorithm can do better than

that. That means the best value will be at least the lower bound.

An optimal algorithm is achieved when the condition upper bound = lower bound

is satisfied by the algorithm. For this purpose, the ultimate goal is to propose an

optimal algorithm that achieves the lower bound. See Figure 2.2 for how the optimal

solution is approached.
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Figure 2.2: Here ’Goal’ represents the optimal algorithm that lies between upper
bound and lower bound

Now we will introduce the problem that we study in this thesis. Our problem is a

two dimensional search problem, where a number of unit speed searchers starting from

a point search for a line in the plane. Here, we refer to searchers as robots and the

line is referred as the shoreline. We will analyse our problem from the perspective of

analytic geometry, which means the robots will start from the origin of the Cartesian

plane and the trajectories followed by the robots will be analytic curves in the plane.

We call our problem Shorelinen. Below we present the problem definition.

Definition 2.2.1. In the Shorelinen problem we provide an algorithm for n unit

speed robots starting from the origin search for a given line l in the plane by moving

along their own fixed trajectories τn. The algorithm terminates when any trajectory

hits the line l for the first time. The objective of the problem is to find trajectories τn

to minimize the competitive ratio: if Tτn(l) is the time by which l is discovered for the
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first time by any of the robots and δ(l) is the distance of the line to the origin, then

the search competitive ratio is defined as

CR(τn) := sup
l

Tτn(l)

δ(l)

The best possible search completion ratio will be denoted by Sn given by inf
τn
CR(τn).

2.3 Our Contributions

Our main contribution in this paper is the improvements of lower bounds of two

dimensional search problem with two or more robots. We improve the best lower

bound known [8] for n = 2 robots from 1.5993 to 3 . Also, we prove the first lower

bound for n = 3 which is
√

3. For n ≥ 4 we prove the lower bound 1
cos(π/n)

which

matches the best upper bound known. Besides this, we show the complete calculations

of the upper bounds for Shorelinen for n ≥ 2. To the best of our best knowledge,

these calculations have not appeared anywhere before.

2.4 A Few Notations

Throughout the paper, we will use the following notation frequently-

• The number of robots is denoted as n.

• Our problem is defined as Shorelinen, where n represents the number of robots

associated to the problem.
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• The trajectories are denoted as τn .

• Competitive ratio is denoted as CR of the search problem.

• The best possible competitive ratio is denoted by Sn.

• We refer to the shoreline as l.

• The robots are denoted as Ri where i = 1, . . . , n.

17



Chapter 3

Some Positive Results

In this chapter we review some known results of searching for a shoreline with two

and more robots which appeared in [8]. Even though the results were known, only

the values were reported and to the best of our knowledge, calculations have not been

shown before.

3.1 Searching with Two Robots

The best algorithm known for Shoreline2 problem is the double logarithmic spiral,

where two unit speed robots starting from the origin follow two logarithmic spiral

trajectories.

Theorem 3.1.1. S2 ≤ 5.27.

Now we will discuss the algorithm for the problem Shoreline2 and prove necessary

claims and lemmata and finally prove Theorem 3.1.1 .
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The best algorithm known for searching for a shoreline with two robots is the

double-spiral trajectory traversed by the two robots. We are considering n = 2

robots starting from the origin moving along two logarithmic spirals with an angle

difference π with parameter b where algorithm can choose the best b minimizing the

worst case competitive ratio. For t ∈ (−∞,+∞), R1 and R2 follow the trajectories

respectively as follows.

R1(t) = exp(bt)(cos(t), sin(t)).

and

R2(t) = exp(bt)(− cos(t),− sin(t)).

In what follows we use abbreviation tk := 2πk where k ∈ N, which represents the

angle of the polar coordinate (not the time) where k represents the number of cycles.

Now, we will focus on the shorelines that are discovered first by R2 for a fixed

t = tk.

The shoreline can be placed anywhere in the plane. Now for a fixed t, for which

R2(t) hits the line first, the worst case happens when the shoreline gets closer and

closer to the origin as long as R1(t) does not find it first. This situation appears when

the shoreline is just missed by the R1(t) while R2(t) found it.

Fix t′ and consider all shorelines passing through R2(t
′) that intersect R1(t) for

t > t′ for the first time. Among all these lines the one inducing the competitive ratio

19



Figure 3.1: Double Spiral trajectories, where R1 closely missed the shoreline and R2

found it later.

is when the shoreline becomes (nearly) tangent to spiral R1 at an angle say, τ . That

means R1 miss the shoreline at R1(τ) and R2 finds it for the first time at t′ where,

t′ = τ + φ for the smallest φ, 0 < φ < 2π.

Now by symmetry and rotating the spiral, we can make R1(τ) be on the pos-

itive x = axis. Considering this, we assume that R1(t) missed it at the point

tk := (exp(2πkb), 0) and R2 found it for the first time at the point (tk + φ) =

(exp(b(2πk + φ))((− cos(2πk + φ),− sin(2πk + φ)) for the smallest φ > 0.
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Therefore the competitive ratio of the algorithm is given by the ratio between the

distance traversed by R2 to find the shoreline and the optimal distance which is the

distance to the origin.

To find the Competitive ratio for this algorithm we need the following two claims.

Claim 3.1.2. The distance of the tangent R1(t) at t = tk to the origin is
exp(2πkb)√

(1 + b2)
.

Proof. The trajectory of a logarithmic spiral is given by

x = exp(bt) cos(t).

y = exp(bt) sin(t).

So, the slope of the spiral at (x, y) is given by

δ =
dy

dx

=
dy
dt
dx
dt

=
b exp(bt) sin(t) + exp(bt) cos(t)

b exp(bt) cos(t)− exp(bt) sin(t)

=
by + x

bx− y
.

So the slope to R1(t) at t = tk is given by

δ =
exp(2πb)

b exp(2πb)
=

1

b
.
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Consider the tangent equation

y =
1

b
x+ c.

This line passes through the point (exp(2πkb), 0) which gives c = −exp(2πkb)

b
.

Thus the equation of the tangent line to the first spiral is

x− by − exp(2πkb) = 0. (3.1)

Using the known equation of the distance of lines to points, we have the distance d

from the origin to the tangent line (3.1) is given by

d =
exp(2πkb)√

(1 + b2)
.

Now we find the total time taken by R2 to discover the line, in other words, the

total distance traversed by R2 will be the arc length of the second spiral upto t = tk.

From basic calculus, we know the formula stated in the following lemma.

Lemma 3.1.3. The arc-length of the spiral r = exp(bθ) upto t is

√
(1 + b2)

b
exp(bt).

Claim 3.1.4. The total time that R2 needs to hit the tangent line to R1(t) at t =

tk = 2πk for the first time is

√
(1 + b2)

b
exp(b(2πk + φ)).

Proof. If R2 found the shoreline at point (exp(b(2πk+φ))((− cos(2πk+φ),− sin(2πk+

φ)) for the smallest φ > 0 then, it will satisfy equation (3.1).
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So we have,

− exp(bφ) cos(φ) + b exp(bφ) sin(φ)− 1 = 0 (3.2)

⇒ b sin(φ) = cos(φ) = exp(−bφ). (3.3)

Now by Lemma 3.1.3, we have the length of the trajectory of R2 that is the total

time that R2 needs to discover the shoreline for the first time is given by

√
(1 + b2)

b
exp(b(2πk + φ)).

Notice, Claim 3.1.2 and 3.1.4 represent respectively the offline and online cost.

Also by solving equation (3.3) we have the value of φ as a function of b. Hence,the

competitive ratio of the algorithm is given by,

1 + b2

b
exp(bφ).

Using Mathematica we have found that the optimal competitive ratio for n = 2

is S2 ≤ 5.27 attained for b = (0.61, 0.7).
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Figure 3.2: Mathematica output figure, showing the competitive ratio for n = 2.

3.2 Searching with Three or more Robots

For n ≥ 3 the best algorithm known is the ray algorithm which makes robots move

along rays at a unit speed splitting the plane evenly while searching for the shoreline.

Therefore, the angle between two rays is 2π
n

, where n represents the total number of

robots.

We consider, R1 moves along the horizontal axis following the trajectory R1(t) =

t · (cos (i−1)2π
n

, sin (i−1)2π
n

), ∀ i = 1, . . . , n where t represents time. Our goal is now to

do the competitive analysis for this algorithm. Without loss of generality, we focus

on the lines x away from origin (See Figure 3.3) first found by R1 and then by R2.

Now we will analyse what could be the possible placements of the shoreline to make

sure that no other robot found it before R1.
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In Figure 3.3, we are considering R1 moves along OA and discovers the line l in

time d1 at the point A and R2 moves along OB and discovers the line l in time d2

at the point B. Also γ is defined as the angle that the normal of l forms with the

horizontal axis. Now R1 discovers the line before R2 is the same as to characterize

d1 < d2 which is shown in the following claim.

Figure 3.3: Ray trajectories

Claim 3.2.1. Among lines l found first by R1 and R2, R1 finds l no later than R2

exactly when γ ≤ π
n

.

Proof. If γ = 0 then R1 finds it first. Now, from 4OAD in Figure 3.3, we have

cos(γ) = x
d1

and cos(2π
n
− γ) = x

d2
. So,we have, d1

d2
=

cos( 2π
n
−γ)

cos(γ)
< 1 when γ < π

n
which

implies d1 < d2 ⇔ γ < π
n
.
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Now we are ready to find the corresponding competitive ratio of the ray algorithm

for n ≥ 3 by proving the following theorem.

Theorem 3.2.2. The Competitive ratio for Shorelinen where n ≥ 3 is at most

1

cos(π
n
)
.

Proof. Consider the algorithm runs for d time and by symmetry we assume that R1

finds the shoreline at time d which represents the online cost. Consider γ is the angle

formed by the normal of l and the horizontal axis. If the angle γ is given, then from

Figure 3.3 we have , x = d cos(γ) which represents the offline cost. Say, τn represents

the ray algorithm for n ≥ 3. Hence, competitive ratio of the ray algorithm for n ≥ 3

is given by, CR(τn) = sup
0≤γ≤π

n

d

d cos(γ)
= sup

0≤γ≤π
n

1

cos(γ)
.

Now the worst case scenario appears when the highest value of γ is substituted

which is π
n
. So we have, CR(τn) ≤ 1

cos(π
n
)

.
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Chapter 4

Lower Bounds for Shorelinen ,

n ≥ 2

In this chapter, we analyse the lower bounds for the problem Shorelinen with n ≥ 2

where for every n we identify threshold values that cannot be beaten by any other

algorithm. At first we will show the lower bound for Shorelinen when n ≥ 4 and

later we will show the lower bounds for Sn with n = 3 and n = 2 respectively.

4.1 Lower Bounds for n ≥ 4 Robots

In this section our main objective is to prove the following theorems which is split in

a number of lemmata.

Theorem 4.1.1. For n ≥ 4 we have Sn ≥
1

cos(π
n
)
.

To prove this theorem we need to prove the following lemmata.
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Lemma 4.1.2. Consider the right triangle BMO with ∠BOM ≤ π
4

and ∠BMO = π
2
.

Then for any point L on the line segment OB and any point K on the line segment

BM , we have OK +KL ≥ OB.

Proof. To prove this at first we take a reflection of the triangle OBM around the line

BM which is triangle O′BM . Here O′ is the reflection of the point O around BM .

Figure 4.1: Triangle OBM and its reflection.

Consider any point L on the line segment OB and choose the point K = K(L) on the

line segment BM that minimizes OK +KL which applies when ∠OKM = ∠LKB.

We notice that for the shortest trajectory O′, K, L are co-linear. Now it is enough

to show that O′K + KL > O′B to prove OK + KL > OB. In Figure 4.1 we refer

to ∠BOM = ∠BO′M = φ, ∠BOK = ∠BO′K = t. Also consider ∠O′BL = v and

∠O′LB = u.
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From the triangle OBO′ we have ∠BOO′+∠BO′O = 2φ. That means ∠OBO′ =

v = π− 2φ. Also, from the triangle BLO′ , we get, ∠BLO′ = u = π− t− v = 2φ− t .

Now, v − u = π + t − 4φ. But as φ ≤ π
4
, we observe that, v − u ≥ t ≥ 0. So,

we have v > u. Also from the triangle BO′L we can say see that O′L > O′B as v > u.

That means, O′K + KL > O′B which is by the law of reflection same as to say

OK +KL ≥ OB which completes the proof.

In the next lemma, we show that for a specific time bound and under certain

conditions, there are lines which have not been discovered by the robots irrespective

of the trajectories.

Lemma 4.1.3. Consider a cone of angle 2φ centred at origin, where φ ≤ π
4
. Also,

consider A and B are two points on the extreme rays of the cone, such that OA =

OB = d+ ε , for some ε > 0. Consider a trajectory τn such that the robots start from

the origin O at an unit speed and run for a fixed time d > 0 . If at time d there is no

robot inside the cone, then the line l passing through the points A,B could not have

been discovered by any of the robots .

Proof. We prove it by contradiction. Assume that a robot being outside of the cone

at time d has found the line l passing through the points A and B at time d.

From Figure 4.2 we notice that, as the robot discovers the line l passing through
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A,B at time d, the possible trajectories τn could have touched line l for the first time

and intersected either of the line OA or OB to be outside of the cone.

Figure 4.2: Cone OAB of Lemma 4.1.3. Robot’s arbitrary trajectory is shown by the
curved line.

Now without loss of generality, the robot could have touched the line l at some

interior point K of AB and intersected line OB at the point L which is close to the

point K to get outside of the cone. For such a trajectory the minimum time required

would be OK+KL to touch the line l and being outside of the cone, (see Figure 4.2).

We notice that the triangle OAB is an isosceles as OA = OB. Here M is the

projection of the point O onto AB. So, ∠BOM = φ as ∠AOB = 2φ. But then by

Lemma 4.1.2 we have that OK +KL > OB. So the time required by the unit speed

robot to find the line is OK +KL > OB = d+ ε > d, which contradicts the claim as

the time d has already passed.

30



Next, we focus on the lower bound to the competitive ratio for the Shorelinen

problem where n ≥ 4.

Lemma 4.1.4. Consider trajectories τn ,where robots starting at the origin at an unit

speed run for time d > 0. Considering a cone of angle 2φ (where φ ≤ π
4
) centred at

origin within which if there is no robot at time d > 0 then CR(τn) ≥ 1
cos(φ)

.

Proof. Consider there is no robot at time d > 0 inside the cone centred at the origin

O with an angle 2φ. Also consider there are the two points A and B on the two

extreme rays of the cone which are d + ε distant away from the origin. According

to Lemma 4.1.3 no robot has discovered the line l passing through the points by the

time d > 0 under this condition. Since time d has passed we see that the search

completion time required by the robot is greater than time d.

Also, as 4OAB is an isosceles triangle, we have the distance of the line l passing

through A,B is given by, OM = (d+ ε) · cos(φ) which represents the optimal offline

time. So, we have that,

CR(τn) ≥ sup
ε>0

d

(d+ ε) cos(φ)
=

1

cos(φ)

.

Now, even if we consider the case, when there is a robot lying in the origin inside

the cone, till then the robot requires at least time (d+ ε) cos(φ) to find the line l. So

the above mentioned bound is true for this case as well.

31



Now we are ready to prove Theorem 4.1.1 based on these three lemmata.

Proof. For a fixed n ≥ 4 consider the trajectories τn where the unit speed robots start

from the origin and move for an arbitrary time d > 0 . Now if all the robots are in

the origin, then the competitive ratio will be unbounded. So, we assume, there is a

robot which is not in the origin . Also, consider an arbitrary small cone of an angle

δ << φ (δ = o( 1
n
)), φ = π

n
. We then rotate the small cone of angle δ until a robot

falls within the cone. Then we consider covering the rest of the space by n cones

centred at the origin of angle 2π−δ
n

and hence one of which there is no robot. Now

by Lemma 4.1.4 we have for any δ > 0 , 2φ = 2π−δ
n

. So,we have CR(τn) ≥ 1
cos(π

n
−δ) ,

hence, Sn ≥ 1
cos(π

n
)

.

4.2 Lower Bound for n = 3 Robots

Now we will analyse the lower bound for Shoreline3. For this we will prove the

following theorem.

Theorem 4.2.1. S3 ≥
√

3.

We begin with the investigation of whether the lower bound argument for four or

more robots works for n < 4 robots or not. Notice, in Lemma 4.1.2 where we showed

OK + KL > OB, this argument fails when φ = π
3
. This means that if we consider

a robot starting from the origin of a cone of angle 2φ, φ = π
3
, then the robot may

touch the line and come out of the the cone within time 1. Hence, the previous lower

bound argument does not work for n < 4 . However, though this argument fails we
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can still calculate the time required by the robot to touch the line within the cone

and come out of the cone. Based on that, later on we may rescale the cone so that

the robot cannot manage to touch the line and come out of the cone within the given

time. In the following Lemma, we will find the time that robot requires to discover

the line when n = 3.

Lemma 4.2.2. Consider a cone of angle 2π/3 centered at the origin O, along with

two points A,B on its extreme rays at distance 1 from O. Then, a unit speed robot

starting from the origin O requires at least time
√

3/2 to visit the line passing through

A,B and leave the cone.

Figure 4.3: Cone OMB of Lemma 4.2.2. Robot’s shortest trajectory is shown by the
dotted line.

Proof. Let M be the projection of origin O on the line l passing through the points

A,B. The distance of the points A and B from the origin is 1. The shortest trajectory

of the robot is calculated as starting from the origin, hitting the line segment AB at

K and leaving the cone through the line segment OB at the point L, (See Figure 4.3).

We consider a coordinate system centered at M for convenience. In Figure 4.3 in the
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right triangle OMB, ∠BOM = π/3, ∠OBM = π/6 and OB = 1. Considering M as

the origin we have O = (0, 1/2) and B = (
√

3/2, 0). Let K be any arbitrary point

on the line segment MB which is in other words a convex combination of the points

M and B. Hence, the coordinate of K is λ(
√

3/2, 0), for some λ ∈ [0, 1]. Now given

that K is chosen, the shortest trajectory for the robot to leave the cone, is through

the point L on the line segment OB which is given by y +
√

3/3x− 1/2 = 0. So, the

shortest trajectory for the unit speed robot starting from the origin, to touch the line

l and leave the cone is min
λ∈[0,1]

OK +KL . We calculate

|OK| =
√

3

4
λ2 +

1

4

=
1

2

√
3λ2 + 1.

Also the distance from point K to line OB is given by

|KL| =
|
√
3
3
λ
√
3
2
− 1

2
|

1 + 3
9

=

√
3

4
(1− λ).

Thus, we have,

min
λ∈[0,1]

[OK +KL] = min
λ∈[0,1]

[
1

2

√
3λ2 + 1 +

√
3

4
(1− λ)].

Consider the latter function as f(λ). To find the minimum of this function of λ, at

first we find the derivative of the function as f ′(λ) = 3λ
2
√
3λ2+1

−
√
3
4

, which has a unique
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root at λ0 = 1/3. Then we have, f ′′(1/3) = 9
√
3

16
. So, the minimum of the function

f(λ) is f(1/3) =
√
3
2

. Thus the minimum time required by the unit speed robot to

touch the line l and leave the cone is
√
3
2

.

Now we are ready to prove Theorem 4.2.1. The main idea behind the proof is to

rescale the triangle 4OMB in such a way so that a unit speed robot cannot touch

the line l and leave the cone in time 1.

Proof. We are considering trajectories τ3 for the problem Shoreline3 where the unit

speed robots start from the origin and move for an arbitrary time d > 0. Consider 3

cones, each of angle 2π/3 centered at the origin and covering the entire plane. Now

without loss of generality we may assume that one robot lies at one of the extreme

rays of one cone. Therefore, there exists one cone, call it C with no robot in its

interior. Now, consider two points A and B on the extreme rays of the cone C which

are d away from the origin.

From Lemma 4.2.2 we found that if the distance OB = 1 then the robot requires

time at least
√

3/2. So, if the robot has time d then by rescaling we have the distance

OB = 2√
3
d. Now if we set the points A,B on extreme rays at a distance ( 2√

3
+ 2ε)d

away from the origin O of the cone and let the line lAB pass through the points A,B,

then the robot will not have enough time to touch the line and leave the cone by time

d > 0. Note that lAB is exactly ( 1√
3

+ ε)d away from the origin.
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Now, by Lemma 4.2.2 and since no robot lies within the cone C, we can say that

no robot could have discovered line lAB as the search completion time is at least d.

Hence line lAB induces competitive ratio for τ3 is at least 1
( 1√

3
+ε)

, for every ε > 0 .

Thus we conclude that S3 ≥
√

3.

4.3 Lower Bound for n = 2 Robots

For n = 2 robots the lower bound S2 is given by the following theorem.

Theorem 4.3.1. S2 ≥ 3.

The following function represents the boundary of an ellipse which will be useful

to prove Theorem 4.3.1.

q(x, y, δ, θ) := 4(cos(θ)x+ sin(θ)y − hδ)2 + (− sin(θ)x+ cos(θ)y)2/b2δ − 1

where hδ := δ/2, represents the abscissa of the center of the ellipse and bδ :=√
(1− δ2)/2 represents the half of the major axis of the ellipse. The details of the

above equation of ellipse is discussed in the following lemma.

Lemma 4.3.2. Consider an arbitrary algorithm τ2 runs for time 1. Then there exist

ε, δ ∈ [0, 1] and θ ∈ [0, π] so that no point outside the ellipses q(x, y, ε, θ) ≤ 0 and

q(x, y, δ, θ) ≤ 0 has been explored by any robot.
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Proof. Let the two unit speed robots starting from the origin, run an arbitrary al-

gorithm τn for time 1. Without loss of generality, suppose that both robots lie in

the first two quadrants i.e, in the non-negative y-axis half-plane. Without loss of

generality, suppose the location of R1 is at the point (ε, 0) for some, ε ∈ [0, 1] at time

exactly 1. Therefore, all points P that R1 has visited by time 1 satisfy OP+PR1 ≤ 1.

This means, the boundary of all points that could have been explored by R1 is an

ellipse with foci O,R1. Thus, all boundary points (x, y) ∈ R2 that could have dis-

covered by R1 satisfy 4(x−hε)2+y2/(bε)
2 = 1, where (hε, 0) is the center of the ellipse.

Similarly, R2 is at a distance δ at the same time 1 where δ ∈ [0, 1]. By the same

arguments as before, boundary of the explored domain by R2 is again an ellipse. Now

if the line passing through the two foci of the second ellipse form an angle θ with

the x-axis where θ ∈ [0, π], then all points R2 = (δ cos(θ), δ sin(θ)) explored by R2 is

given by 4(cos(θ)x+ sin(θ)y− hδ)2 + (− sin(θ)x+ cos(θ)y)2/b2δ = 1. Note that, as R2

lies in the first two quadrants then we must have θ ∈ [0, π].

Now, we are ready to prove Theorem 4.3.1.

Proof. Consider the two robots are following an arbitrary search algorithm τ2 for time

1. According to Lemma 4.3.2 all the points that have been explored by these two

robots are defined by the two ellipses given there. This means that R1 and R2 have

not explored any point outside the two ellipses placed in the first two quadrants. That
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is, they could not have been in any point past the line y = −1/2.

Our main claim is that if a shoreline y = −1/2− ζ, where ζ > 0 has been placed

in the negative y-axis half-plane, then none of the robots could have visited the line.

To prove this, we need to show that none of the equations defining any of the two

ellipses has any common point with y = −1/2− ζ , (see Figure 4.4).

Figure 4.4: Two ellipses and possible placement of the shoreline.

To that end, we show that the equation q(x,−1/2 − ζ, δ, θ) = 0 has no real root

when δ ∈ [0, 1], θ ∈ [0, π] and ζ > 0 is sufficiently small. This would also imply same

for the first ellipse. We compute the discriminant of q(x, y, δ, θ) which is

−16(δ2 + 2δ(2ζ + 1)sin(θ) + 4ζ(ζ + 1)

1− δ2
≤ −16(δ2 + 4ζ(ζ + 1)

1− δ2
.
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For arbitrary small δ > 0 this expression is maximized for δ = 0 and becomes

−64(ζ2 + ζ) which is also negative.

Notice, the distance of the shoreline from the origin is 1/2+ζ which is the optimal

offline cost. As time 1 has passed, the time required for R1 is at least 3/2 + ζ which

implies a bound to the online cost. Hence, the competitive ratio of the arbitrary

search algorithm τ2 is at least

sup
ζ>0

3/2 + ζ

1/2 + ζ
= 3.
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Chapter 5

Conclusion

In this work we studied a two-dimensional search problem where n unit speed robots

search for a line (Shoreline) in parallel on the plane. The problem was referred to as

Shorelinen. We studied the existing upper bounds for n ≥ 2. The main contributions

were new lower bound results for n ≥ 2. More specifically, we improved the lower

bound for n = 2 from 1.5993 to 3. We proved the first lower bounds for n ≥ 3.

More specifically we proved a lower bound of
√

3 for n = 3 and 1
cos(π/n)

for n ≥ 4.

For n ≥ 4, we found the lower bound 1
cos(π/n)

which matches the best upper bound

known, making the bound tight.

5.1 Future Work

In this work we have addressed upper bound and lower bounds of Shorelinen prob-

lem for n ≥ 2. But the n = 1 case is still an open problem. For n = 2, 3 though we

presented the lower bounds, the algorithms that can achieve those bounds are yet to
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be explored. In fact, the existing algorithm known best for n = 1, 2 has yet to be

proved to be an optimal algorithm. For n = 3 the upper bound is achieved by the

same algorithm as for n ≥ 4 but the lower bound conditions differ. Besides these,

there are other variations of Shorelinen problem in terms of different perspectives,

such as analysis on symmetric and asymmetric algorithms, average case and worst

case analysis for different n.

The other two variations other than the search problem that are commonly con-

sidered are the evacuation and rendezvous problem. For a number of robots, if they

want to evacuate from the line, there would be different analysis based on communi-

cation methods that is face to face and wireless model. Also, there would be different

analysis for cases where they want to evacuate at a specific point on the line or from

anywhere in the line. In terms of the starting point, there could be possible variations

if the robots start from different points and want to meet at a specific point on the line.

Finally, we can conclude that, based on the nature of the problems there would be

different analysis in terms of the communication methods, number of robots, search

spaces, different efficiency measures etc.
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Appendix A

Mathematica Code

Below is the Mathematica code for computing the competitive ratio of the double

logarithmic spiral algorithm.
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