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ABSTRACT

We consider the predator-prey system with a common consuming resource

that was proposed by Holt and Polis in 1997 to introduce the the effects of

intraguild predation in modelling community ecology. Some of the results

suggest that strong intraguild predation can even foster the coexistence of

species. In 2018, the spatiotemporal dynamics of the model proposed was

further analyzed to illustrate the theoretical findings previously mentioned

in 1997. In this thesis, we perform transformations to the system, in order

to study a simplified equivalent system. The number of parameters is re-

duced without altering the biological meaning of the system or the dynamic

behaviour. The local stability of the model is studied at each of the two pos-

itive boundary equilibria and at the positive interior equilibrium by finding

the intervals of the parameters involved. The behaviour of the system will

depend on which intervals the parameters fall. The emphasis is put on the

ranges of the predation rate assuming, there is less that can be done to in-

fluence the parameters representing the natural birth and death rates of the
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prey and predator. By using the qualitative theory for autonomous planar

systems, we show under which conditions each positive boundary equilibria

can be a saddle, saddle node, or stable, and the interior positive equilibrium

is locally asymptotically stable. Under certain conditions the positive in-

terior equilibrium is a stable node. It is interesting to note that when the

consumption of the common resources are equal for the predator and prey

species then we would be dealing with a symmetric system.
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Chapter 1

Introduction

1.1 Definitions and Notation

Consider the following autonomous dynamical system
ẋ(t) = f(x(t), y(t)),

ẏ(t) = g(x(t), y(t))

(1.1.1)

subject to the initial condition

(x(0), y(0)) = (x0, y0),

where t ≥ 0 and f, g : R2 → R are functions.

We denote by ẋ the derivative of the function x related to time t, and by

C1(R2) the Banach space of functions defined on R2 whose first-order partial

derivatives are continuous on R2. We always assume that f, g ∈ C1(R2).

Definition 1.1.1. (x(t), y(t)) is said to be a solution of (1.1.1) if x, y ∈
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C1(R2) and satisfies both equations of (1.1.1). A solution (x(t), y(t)) is said

to be positive if for all t ≥ 0, x(t), y(t) ≥ 0 [3].

Definition 1.1.2. (x∗, y∗) ∈ R2 is said to be an equilibrium of (1.1.1) if it

satisfies f(x∗, y∗) = 0 and g(x∗, y∗) = 0. An equilibrium point (x∗, y∗) is

said to be positive if both x∗, y∗ ≥ 0; a boundary, if x∗ = 0 or y∗ = 0; posi-

tive interior, if both x∗, y∗ > 0 [3]. In other words, the (x∗, y∗) equilibrium

solution is a boundary when the point lies on the x or y axis. In predator

prey models, bounary equilibria refer to a situation where at least one of the

species is extinct.

1.2 Local Stability Analysis

In order to analyze the local asymptotic stability near an equilibrium of

a system of first order autonomous non-linear scalar differential equations,

we can use the method of linearization [3], which is described below.

Consider the autonomous dynamical system of non-linear equations with

two variables, x and y: 
ẋ(t) = f(x, y),

ẏ(t) = g(x, y).

(1.2.1)
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Assume the system (1.2.1) has an equilibrium (x∗, y∗).

We may expand the functions f and g using the Taylor series centered at

(x∗, y∗) where u = x− x∗ and v = y − y∗ [3]:

du

dt
= f(x∗, y∗) + fx(x

∗, y∗)u+ fy(x
∗, y∗)v + fxx(x

∗, y∗)
u2

2
+ fxy(x

∗, y∗)uv + . . .

dv

dt
= g(x∗, y∗) + gx(x

∗, y∗)u+ gy(x
∗, y∗)v + gxx(x

∗, y∗)
u2

2
+ gxy(x

∗, y∗)uv + . . .

Since f(x∗, y∗) = 0 and g(x∗, y∗) = 0 at equilibrium we have

du

dt
= fx(x

∗, y∗)u+ fy(x
∗, y∗)v + fxx(x

∗, y∗)
u2

2
+ fxy(x

∗, y∗)uv + . . .

dv

dt
= gx(x

∗, y∗)u+ gy(x
∗, y∗)v + gxx(x

∗, y∗)
u2

2
+ gxy(x

∗, y∗)uv + . . .

Assuming that fxx(x
∗, y∗)

u2

2
+fxy(x

∗, y∗)uv+.. and gxx(x
∗, y∗)

u2

2
+gxy(x

∗, y∗)uv

is negligible for an approximation of the function f and g close to the equi-

librium, we have

du

dt
= fx(x

∗, y∗)u+ fy(x
∗, y∗)v

dv

dt
= gx(x

∗, y∗)u+ gy(x
∗, y∗)v

Definition 1.2.1. The following system is said to be linearized about the

equilibrium (x∗, y∗):

d ~X

dt
= A ~X

where ~X = (u, v)T and A is the Jacobian matrix evaluated at the equilibrium

(x∗, y∗) [3].
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We denote by A(x, y) the Jacobian matrix of f and g at (x, y), that is,

A(x, y) =


∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y

 (1.2.2)

and by |A(x, y)| and tr(A(x, y)) its determinant and trace, respectively [3].

The eigenvalues of A(x, y) are determined by the roots of the character-

istic polynomial:

P (λ) = λ2 − tr (x, y)λ+ |A(x, y)|

The behaviour of the solutions of a linear system can be studied near the

equilibrium (x∗, y∗) by the eigenvalues, λ1, λ2, of A(x∗, y∗). Eigenvalues are

not limited to real numbers.

Definition 1.2.2. An equilibrium is called a node when the eigenvalues are

real numbers with the same sign and may be distinct or equal, λ1 ≤ λ2 < 0

or 0 < λ1 ≤ λ2 [3]. A node is called stable when solutions approach the

equilibrium as t → ∞: in this case, λ1 ≤ λ2 < 0. It is called an unstable

node when the solution does not converge as t→∞; in this case, 0 < λ1 ≤ λ2.

Definition 1.2.3. An equilibrium is called a saddle when the eigenvalues are

real numbers with opposite signs [3]. Such that λ1λ2 < 0, e.g. λ1 < 0 < λ2.

Solutions will approach a saddle point initially, but in general solutions will

not stay near a saddle point over time.

Definition 1.2.4. An equilibrium is called locally asymptotically stable when

eigenvalues are negative or have negative real parts [3]. In this case, solutions

approach the equilibrium as t→∞.
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The results stated in local stability analysis section apply to non-linear

planar systems of first order differential equations. The results require that

the system may be linearized about an equilibrium, in this case the non-linear

system behaves similiarly to a linear system, with some exceptions. The

results have been commonly used to study the local stability of biological

models based on non-linear systems, for example, in [38, 40, 8, 24, 7, 19,

39, 26]. We later will use these qualitative theories when discussing local

stabilities. [42]

1.3 The Proposed Model

In this thesis we consider the following predator-prey model:


Ṅ = N

(
bs

cP+sN
− dP − h

)
,

Ṗ = P
(

bc
cP+sN

+ dN − g
)
.

(1.3.1)

N(t) and P (t) represent the densities of the prey and predator respec-

tively. The parameters b, c and s represent the consumption of the predator

and the prey species for common resources. Coefficient d measures the pre-

dation rate, g and h are the natural death rates of the predator and the prey

respectively. All the parameters are positive constants.
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Chapter 2

Positive Equilibria

We first use the following transformation:

α =
c

s

to change system (1.3.1) into the following equivalent system:


ẋ = x

(
β

αy+x
− γy − δ

)
:= f(x, y),

ẏ = y
(

αβ
αy+x

+ γx− σ
)

:= g(x, y),

(2.0.1)

where β = b, γ = d, δ = h, σ = g, x(t) = N(t) and y(t) = P (t) have the

same biological meanings as b, d, h, g, N(t) and P (t). From (1.3.1), we see

that under the above transformation, the constant s is normalized to one, in

system (2.0.1). Note that (1.3.1) is reduced from 6 parameters to 5 which

helps symplify the analysis of the model.

Proof. Multiplying the numerator and denominator by 1/s results in the
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following terms: 
bs

cP+sN
= b(s/s)

(c/s)P+(s/s)N
= b

(c/s)P+N
,

bc
cP+sN

= b(c/s)
(c/s)P+(s/s)N

= b(c/s)
(c/s)P+N

.

(2.0.2)

By (2.0.2) and with the new variables α = c
s
, β = b, γ = d, δ = h, σ = g,

x(t) = N(t) and y(t) = P (t), it follows that the model represented by (1.3.1)

is reperesented by the equivalent model (2.0.1).

Using suitable transformations to reduce the number of parameters in

predator-prey models and SIR models (Susceptible, Infectious, or Recovered

in epidemiology models) has been widely used in [38, 24, 39, 22, 19, 7, 8, 40,

26].

Recall that (x, y) ∈ R2 is an equilibrium point of (2.0.1) if it satisfies

f(x, y) = 0 and g(x, y) = 0. An equilibrium point (x, y) is said to be positive

if x, y ≥ 0 and to be a positive interior equilibrium point if x, y > 0. It is

easy to verify that (x, y) is an equilibrium point of (2.0.1) if and only if (x, y)

satisfies


x
(

β
αy+x

− γy − δ
)

= 0,

y
(

αβ
αy+x

+ γx− σ
)

= 0.

(2.0.3)

The following notation for the reocurring combination of parameters will

be used throughout the thesis and in the Theorems:

σ0 = αδ
1−α , γ0 = δ

β
(σ − αδ),

γ1 = δ
β

(
σ − αδ + δ), γ2 = σ

αβ
(σ − αδ − ασ), γ3 = σ

αβ
(σ − αδ).
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Theorem 2.0.1. Suppose α > 0, β > 0, δ > 0.

(1) If one of the following conditions holds,

(i) σ > αδ and 0 < γ ≤ γ0,

(ii) 0 < σ ≤ αδ and γ > 0,

(iii) σ > αδ and γ ≥ γ3,

then (2.0.1) has two positive equilibria (x1, y1) = (β/δ, 0) and (x2, y2) =

(0, β/σ).

(2) If σ > αδ and γ0 < γ < γ3,

then (2.0.1) has three positive equilibria (x1, y1), (x2, y2) and (x∗, y∗), where

x∗ =
αβ

γ(σ − αδ)
(
γ3 − γ

)
and y∗ =

β

γ(σ − αδ)
(
γ − γ0

)
.

Proof. Note that the trivial solution, x = 0 and y = 0, is not taken into

consideration because the first term in the equation β
αy+x

would be undefined.

It is easy to verify that if either x = 0 or y = 0, then (0, β/σ) or (β/δ, 0)

respectively, satisfy (2.0.3) and thus are equilibria of (2.0.1).

Suppose that y = 0 and x 6= 0, from the first equation of (2.0.3) we

obtain,

β

x
− δ = 0 x =

β

δ

It follows that (x1, y1) = (β/δ, 0) is a solution of (2.0.3).

Suppose that x = 0 and y 6= 0, from the second equation of (2.0.3) we

obtain,

αβ

αy
− σ = 0

β

y
= σ y =

β

σ
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It follows that (x2, y2) = (0, β/σ) is a solution of (2.0.3).

Suppose x > 0, y > 0 and σ − αδ 6= 0. We show that x∗ and y∗ satisfy

(2.0.3).

Since, α 6= 0, multiplying the second equation of (2.0.3) by 1/α yields,
β

αy+x
− γy − δ = 0,

β
αy+x

+ γ
α
x− σ

α
= 0.

(2.0.4)

Subtracting, the first equation from the second equation of (2.0.4) we

obtain

β

αy + x
+
γ

α
x− σ

α
−
(

β

αy + x
− γy − δ

)
= 0.

Simplifying results in the following expression for y

γ

α
x− σ

α
+ γy + δ = 0, γy =

σ

α
− δ − γ

α
x, y = y∗ =

σ

αγ
− δ

γ
− 1

α
x.

(2.0.5)

From the first equation of (2.0.4), multiplying both sides by (αy + x) we

have,

β − (γy + δ)(αy + x) = 0. (2.0.6)

Substituting (2.0.5) into (2.0.6),

β −
[
γ

(
σ

αγ
− δ

γ
− 1

α
x

)
+ δ

][
α

(
σ

αγ
− δ

γ
− 1

α
x

)
+ x

]
= 0

β − γ
(
σ

αγ
− 1

α
x

)
α

(
σ

αγ
− δ

γ

)
= 0

β − γ

α

(
σ

γ
− x
)
α

γ

(
σ

α
− δ
)

= 0

β −
(
σ

γ
− x
)(

σ − αδ
α

)
= 0.

(2.0.7)
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Solving for x from (2.0.7), together with σ − αδ 6= 0 yields

β =

(
σ

γ
− x
)(

σ − αδ
α

)
,

αβ

σ − αδ
=
σ

γ
− x, x =

σ

γ
− αβ

σ − αδ
.

Thus the expression we find for x is the following

x = x∗ =
1

γ

(
σ − αβγ

σ − αδ

)
. (2.0.8)

We will use the expression for x∗ in the following forms,

x∗ =
αβ

γ(σ − αδ)

(
σ

αβ
(σ − αδ)− γ

)
, (2.0.9)

=
αβ

γ(σ − αδ)
(
γ3 − γ

)
. (2.0.10)

Substituting (2.0.8) into (2.0.5), we have,

y∗ =
σ

αγ
− δ

γ
− 1

α
x∗

=
σ − αδ
αγ

− 1

αγ

(
σ − αβγ

σ − αδ

)
=

1

αγ

(
σ − αδ − σ +

αβγ

σ − αδ

)
=

1

γ

(
βγ

σ − αδ
− δ
)
.

(2.0.11)

From (2.0.11),

y∗ =
β

γ(σ − αδ)

(
γ − δ

β
(σ − αδ)

)
(2.0.12)

=
β

γ(σ − αδ)
(
γ − γ0

)
. (2.0.13)

Therefore,

(x∗, y∗) =

(
αβ

γ(σ − αδ)
(γ3 − γ),

β

γ(σ − αδ)
(γ − γ0)

)
,
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satisfies (2.0.3) and thus is an equilibrium point of (2.0.1).

(1) Under conditions (i), we have σ > αδ and 0 < γ ≤ γ0 and under

conditions (ii) we have 0 < σ ≤ αδ and γ > 0. By (2.0.13), and (2.0.12)

respectively, it follows that y∗ ≤ 0. Similarly, if (iii) holds, then σ > αδ and

γ ≥ γ3. By (2.0.10) we have x∗ ≤ 0. So, (x∗, y∗) is not a positive equilibria

under (1). Then, system (2.0.1) has only two positive equilibria points (x1, y1)

and (x2, y2).

(2) Under conditions (2) we have, σ − αδ > 0, and γ0 < γ < γ3. By

(2.0.10) we have x∗ > 0 and by (2.0.13), we have y∗ > 0. Hence, (x∗, y∗)

is a positive equilibrium point of (2.0.1). Thus, (2.0.1) has three positive

equilibria, (x1, y1), (x2, y2) and (x∗, y∗).
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Chapter 3

Local Stability Analysis

In this section, we analyze the local stability of each positive equilibrium

of (2.0.1) by using the well-known qualitative theory for autonomous planar

systems [41, 42].

We recall some well-known results on local stability of the following sys-

tem: 
ẋ(t) = f(x(t), y(t)),

ẏ(t) = g(x(t), y(t)),

(3.0.1)

where f, g ∈ C1(R2). We denote by A(x, y) the Jacobian matrix of f and g

at (x, y), that is,

A(x, y) =


∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y

 (3.0.2)

and by |A(x, y)| and tr(A(x, y)) its determinant and trace, respectively.

The following results have been widely employed to study the local sta-

bility and phase portraits for predator-prey models, for example, in [7, 8, 19,
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24, 26] and susceptible-infective-removed epidemic models in [38, 39, 40].

Lemma 3.0.1. Let (x∗, y∗) be an equilibrium of (3.0.1). Then the following

assertions hold.

(i) If |A(x∗, y∗)| < 0, then (x∗, y∗) is a saddle.

(ii) If |A(x∗, y∗)| > 0 and (tr(A(x∗, y∗)))2− 4|A(x∗, y∗)| ≥ 0, then (x∗, y∗)

is a node. It is stable if tr(A(x∗, y∗)) < 0 and unstable if tr(A(x∗, y∗)) > 0.

(iii) Assume that |A(x∗, y∗)| > 0. If tr(A(x∗, y∗)) < 0, then (x∗, y∗) is

locally asymptotically stable; if tr(A(x∗, y∗)) = 0, then it is stable and if

tr(A(x∗, y∗)) > 0, then it is unstable.

A map T : R2 → R2 defined by T (x, y) = (f(x, y), g(x, y)) is said to be

regular if T is one to one and onto, T and T−1 are continuous and |A(x, y)| 6=

0 on R2. If T is regular, then the following transformation
x1 = f(x, y),

y1 = g(x, y)

(3.0.3)

is said to be a regular transformation. If (3.0.1) is changed into another sys-

tem under suitable regular transformations, then the two systems are said to

be equivalent. It is known (for example see [41]) that under regular trans-

formations, the topological structures of solutions of a planar system near

equilibria including a variety of dynamics like saddles, topological saddles,

nodes, saddle nodes, foci, centers, or cusps remain unchanged.

We need the following result which was proved in [19, Proposition 3.2].
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Lemma 3.0.2. Let (x∗, y∗) be an equilibrium of (3.0.1). Assume that

|A(x∗, y∗)| = 0, tr(A(x∗, y∗)) 6= 0 and (3.0.1) is equivalent to the following

system 
ẋ1 = p(x1, y1),

ẏ1 = %y1 + q(y1, x1)

(3.0.4)

with an isolated equilibrium (0, 0), where p(x1, y1) =
∑∞

i+j=2,i,j≥0 aijx
i
1y
j
1 and

q(x1, y1) =
∑∞

i+j=2,i,j≥0 bijx
i
1y
j
1 are convergent power series. If % 6= 0 and

a20 6= 0, then (x∗, y∗) is a saddle node.

A function f : Ω ⊂ R2 → R is said to be analytic in an open set Ω if it

has a convergent Taylor series in some neighborhood of each point in Ω (see

[42, p.69]).

When |A(x∗, y∗)| = tr(A(x∗, y∗)) = 0 and A(x∗, y∗) 6= 0, under suitable

regular transformations, (3.0.1) is equivalent to the following form
ẋ = y,

ẏ = akx
k[1 + h(x)] + bnx

ny[1 + g(x)] + y2R(x, y)

(3.0.5)

with equilibrium (0, 0), where h, g and R are analytic in a neighborhood of

(0, 0), h(0) = g(0) = 0, k ≥ 2, ak 6= 0 and n ∈ N.

Lemma 3.0.3 ([41, 42]). Let (x∗, y∗) be an equilibrium of (3.0.1) and |A(x∗, y∗)| =

tr(A(x∗, y∗)) = 0 and A(x∗, y∗) 6= 0. If (3.0.1) is equivalent to (3.0.5),

k = 2m+ 1 ∈ N and ak > 0, then (x∗, y∗) is a topological saddle.

Now, we use the above theoretical results to study phase portraits near

each of the positive equilibria of (2.0.1) obtained in section 2.

14



By (2.0.1) and (3.0.2), we have

A(x, y) =

 αβy
(x+αy)2

− γy − δ − αβx
(x+αy)2

− γx

γy − αβy
(x+αy)2

αβx
(x+αy)2

+ γx− σ

 , (3.0.6)

|A(x, y)| = −αβ(δx+ σy)

(x+ αy)2
+ γ(σy − δx) + δσ, (3.0.7)

and

tr(A(x, y)) =
αβ(x+ y)

(x+ αy)2
+ γ(x− y)− (δ + σ). (3.0.8)

Proof. Taking the partial derivatives of the functions f(x, y) and g(x, y),

defined in (2.0.1) we obtain,

∂f

∂x
=

β

αy + x
− γy − δ − x

(
β

(αy + x)2

)
=
β(αy + x)− xβ

αy + x
− γy − δ

=
αβy

(x+ αy)2
− γy − δ (3.0.9)

∂f

∂y
= x

(
− αβ

(αy + x)2
− γ
)

= − αβx

(x+ αy)2
− γx (3.0.10)

∂g

∂x
= y

(
− αβ

(αy + x)2
+ γ

)
= γy − αβy

(x+ αy)2
(3.0.11)

∂g

∂y
=

αβ

αy + x
+ γx− σ + y

(
− α2β

(αy + x)2

)
= −αβ(x+ αy)− α2βy

(αy + x)2
+ γx− σ
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=
αβx

(x+ αy)2
+ γx− σ. (3.0.12)

By (3.0.9), (3.0.10), (3.0.11) and (3.0.12), together with (3.0.2), it follows

that the jacobian matrix of f and g at (x, y) is defined by (3.0.6).

By (3.0.6), we compute the determinant of A(x, y),

|A(x, y)| =
(

αβy

(x+ αy)2
− γy − δ

)(
αβx

(x+ αy)2
+ γx− σ

)
−
(
γy − αβy

(x+ αy)2

)(
− αβx

(x+ αy)2
− γx

)
= xy

[(
αβ

(x+ αy)2
− γ − δ/y

)(
αβ

(x+ αy)2
+ γ − σ/x

)
−
(

αβ

(x+ αy)2
− γ
)(

αβ

(x+ αy)2
+ γ

)]
= xy

[(
αβ

(x+ αy)2
− γ
)(

αβ

(x+ αy)2
+ γ

)
− σ/x

(
αβ

(x+ αy)2
− γ
)

− δ/y
(

αβ

(x+ αy)2
+ γ

)
+
σδ

xy
−
(

αβ

(x+ αy)2
− γ
)(

αβ

(x+ αy)2
+ γ

)]
= xy

[
− σ/x

(
αβ

(x+ αy)2
− γ
)
− δ/y

(
αβ

(x+ αy)2
+ γ

)
+
σδ

xy

]
= −σy

(
αβ

(x+ αy)2
− γ
)
− δx

(
αβ

(x+ αy)2
+ γ

)
+ σδ

= −αβ(δx+ σy)

(x+ αy)2
+ γ(σy − δx) + δσ,

and the trace of A(x, y),

tr
(
A(x, y)

)
=

αβy

(x+ αy)2
− γy − δ +

αβx

(x+ αy)2
+ γx− σ

=
αβ(x+ y)

(x+ αy)2
+ γ(x− y)− (δ + σ).
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3.1 Analysis of the Positive Boundary Equi-

libria

Consider the equilibrium (β/δ, 0)

Recall the notation γ1 = δ
β

(
σ − αδ + δ)

Lemma 3.1.1. Suppose α > 0, β > 0, δ > 0, then the following assertions

hold,

(1) If one of the following conditions holds,

(i) If α > 1 and σ > δ(α− 1) and γ > γ1,

(ii) If 0 < α ≤ 1 and σ > 0 and γ > γ1,

(iii) If α > 1 and 0 < σ ≤ δ(α− 1) and γ > 0,

then tr((β/δ, 0)) > 0.

(2) If one of the following conditions holds,

(i) If α > 1 and σ > δ(α− 1) and 0 < γ < γ1,

(ii) If 0 < α ≤ 1 and σ > 0 and 0 < γ < γ1,

then tr((β/δ, 0)) < 0.

(3) If one of the following conditions holds,

(i) If α > 1 and σ > δ(α− 1) and γ = γ1,

(ii) If 0 < α ≤ 1 and σ > 0 and γ = γ1,

then, tr((β/δ, 0)) = 0.

Proof. By (3.0.8) with (x, y) = (β/δ, 0), we have
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tr(A(β/δ, 0)) = αδ +
βγ

δ
− (σ + δ)

=
β

δ

[
γ − δ

β
(σ − αδ)− δ

β
αδ

]
=
β

δ

[
γ − δ

β
(σ − αδ + δ)

]
(3.1.1)

=
β

δ
(γ − γ1). (3.1.2)

(1) If (i) or (ii) holds, we have γ > γ1. The result follows by (3.1.8). If

(iii) holds, we have α > 1 and 0 < σ ≤ δ(α− 1) and γ > 0.

γ1 =
δ

β
(σ − αδ + δ) =

δ

β
(σ − δ(α− 1))

Hence, if δ
β
(σ − δ(α− 1)) ≤ 0, the result follows by (3.1.1).

(2) If (i) or (ii) holds, we have 0 < γ < γ1. The result folows by (3.1.8).

(3) If (i) or (ii) holds, we have γ = γ1. The result follows by (3.1.8).

Lemma 3.1.2. Suppose α > 0, β > 0, δ > 0, then the following assertions

hold,

(1) If one of the following conditions holds,

(i) If σ > αδ and γ > γ0,

(ii) If 0 < σ ≤ αδ and γ > 0,

then |A(β/δ, 0)| < 0.

(2) If σ > αδ and 0 < γ < γ0, then |A(β/δ, 0)| > 0.

(3) If σ > αδ and γ = γ0, then |A(β/δ, 0)| = 0.

Proof. By (3.0.7) with (x, y) = (β/δ, 0) we have,
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|A(β/δ, 0)| = −αδ2 − γβ + σδ

= β

[
δ

β
(σ − αδ)− γ

]
(3.1.3)

= β(γ0 − γ). (3.1.4)

(1) If (i) or (ii) holds, then δ
β
(σ−αδ)−γ < 0. Hence, by (3.1.3), we have

|A(β/δ, 0)| < 0.

(2) Under conditions (2), we have 0 < γ < γ0. The result follows by

(3.1.4).

(3) Since γ = γ0, the result follows by (3.1.4).

Theorem 3.1.3. Suppose that α > 0, β > 0 and δ > 0.

(1) If one of the following conditions hold,

(i) If σ > αδ and γ > γ0,

(ii) If 0 < σ ≤ αδ and γ > 0,

then the equilibrium point (β/δ, 0) is a saddle.

(2) If σ > αδ and 0 < γ < γ0, then (β/δ, 0) is a stable node.

(3) If σ > αδ, and γ = γ0, then the equilibrium (β/δ, 0) is a saddle-node.

Proof. By (3.0.7) with (x, y) = (β/δ, 0) we have,
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|A(β/δ, 0)| = −αδ2 − γβ + σδ

= β

[
δ

β
(σ − αδ)− γ

]
(3.1.5)

= β(γ0 − γ). (3.1.6)

(1) If (i) or (ii) holds, then δ
β
(σ − αδ) − γ < 0. By (3.1.5), we have

|A(β/δ, 0)| < 0. The result follows from Lemma (3.0.1) (i).

By (3.0.8) with (x, y) = (β/δ, 0), we have

tr(A(β/δ, 0)) = αδ +
βγ

δ
− (σ + δ)

=
β

δ

[
γ − δ

β
(σ − αδ)− δ

β
αδ

]
=
β

δ

[
γ − δ

β
(σ − αδ + δ)

]
(3.1.7)

=
β

δ
(γ − γ1). (3.1.8)

Let

∆(β/δ, 0) = tr2(A(β/δ, 0))− 4|A(β/δ, 0)|
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Then by (3.1.5) and (3.1.7) with (x, y) = (β/δ, 0), we have

∆(β/δ, 0) =
β2

δ2

[
γ − δ

β
(σ − αδ + δ)

]2
− 4β

[
δ

β
(σ − αδ)− γ

]
=

1

δ2

[
(αδ2 + βγ − δ(σ + δ))2

]
+ 4βγ − 4δ(σ − αδ)

=
1

δ2

[
(αδ2 + βγ − δ(σ + δ))2 + 4δ2βγ − 4δ3(σ − αδ)

]
=

1

δ2

[
(αδ2 + βγ − δ(σ + δ))2 + 4δ2βγ − 4δ3σ + 4δ2αδ2)

]
=

1

δ2

[
(αδ2 + βγ)2 − 2δ(σ + δ)(αδ2 + βγ) + δ2(σ + δ)2 + 4δ2(αδ2 + βγ)− 4σδ3

]
=

1

δ2

[
(αδ2 + βγ)2 + (4δ2 − 2δσ − 2δ2)(αδ2 + βγ) + δ2(σ + δ)2 − 4σδ3

]
=

1

δ2

[
(αδ2 + βγ)2 + (2δ2 − 2δσ)(αδ2 + βγ) + δ2((σ + δ)2 − 4σδ)

]
=

1

δ2

[
(αδ2 + βγ)2 + (2δ2 − 2δσ)(αδ2 + βγ) + δ2(σ2 + 2σδ + δ2 − 4σδ)

]
=

1

δ2

[
(αδ2 + βγ)2 + 2δ(δ − σ)(αδ2 + βγ) + δ2(σ2 − 2σδ + δ2)

]
=

1

δ2

[
(αδ2 + βγ)2 + 2δ(δ − σ)(αδ2 + βγ) + δ2(σ − δ)2

]
=

1

δ2

[
(αδ2 + βγ) + δ(σ − δ)

]2
≥ 0.

(3.1.9)

(2) Under conditions (2) we have 0 < γ < γ0 < γ1, by (3.1.6), we have

|A(β/δ, 0)| > 0 and by (3.1.8) we have tr(A(β/δ, 0) < 0. This together with

(3.1.9) and Lemma 3.0.1 (ii) imply the result.

(3) Since σ > αδ and γ = γ0. By (3.1.6) we have |A(β/δ, 0)| = 0.

By (3.1.7) we obtain:
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tr((β/δ, 0); γ0) = αδ +
γ1β

δ
− σ − δ = αδ +

δ(σ − αδ)
β

β

δ
− σ − δ

= αδ + (σ − αδ)− σ − δ = −δ

thus, tr
(
A(β/δ, 0)

)
6= 0.

To apply Lemma 3.0.2, we change the equilibrium (β/δ, 0) to the origin

(0, 0) by using the change of variables x1 = x − β1 and y1 = y. Noting

that β1 = β/δ, Then the first and second equation of (2.0.1), respectively,

becomes:


ẋ1 = (β1 + x1)

(
β

αy1+β1+x1
− γy1 − δ

)
ẏ1 = y1

(
αβ

αy1+β1+x1
+ γ(β1 + x1)− σ

)

ẋ1 =
β(β1 + x1)

β1 + x1 + αy1
− γ(β1 + x)y1 − δ(β1 + x)

ẏ1 =
αβy1

β1 + x1 + αy1
+ γ(β1 + x1)y1 − σy1

Note, that The tayor series expansion 1
1−x =

∑∞
n=0 x

n can be used to

approximate f and g around an equilibrium (0, 0). We have

1

β1 + x1 + αy1
=

1/β1

1− (−x1+αy1
β1

)
=

1

β1

∞∑
n=0

(−1)n
(
x1 + αy1

β1

)n
Thus,
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αβy1
β1 + x1 + αy1

= αβ/β1y1

∞∑
n=0

(−1)n
(
x1 + αy1

β1

)n
= αδy1

[
1− x1 + αy1

β1
+
∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n]

and

β(β1 + x1)

β1 + x1 + αy1
=
β(β1 + x1 + αy1)− αβy1

β1 + x1 + αy1
= β − αβy1

β1 + x1 + αy1

= β − αδy1
[
1− x1 + αy1

β1
+
∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n]
.

Hence,
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ẋ1 =
β(β1 + x1)

β1 + x1 + αy1
− γ(β1 + x)y1 − δ(β1 + x)

= β − αδy1
[
1− x1 + αy1

β1
+
∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n]
− γ(β1 + x1)y1 − δ(β1 + x1)

= β − αδy1 + αδy1

(
x1 + αy1
β/δ

)
− αδy1

∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n
− γ(β1 + x1)y1 − δ(β1 + x1)

= β − αδy1 +
αδ2

β
x1y1 +

α2δ2

β
y21 − γβ1y1 − γx1y1 − δβ/δ − δx1

− αδy1
∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n
=
α2δ2

β
y21 −

(
γ − αδ2

β

)
x1y1 − (γβ1 + αδ)y1 − δx1

− αδy1
∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n
,

and after substituting γ = γ0

ẋ1 =
α2δ2

β
y21−

(
δσ − 2αδ2

β

)
x1y1−(δx1+σy1)−αδy1

∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n
.

Similarly,
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ẏ1 =
αβy1

β1 + x1 + αy1
+ γ(β1 + x1)y1 − σy1

= αδy1

[
1− x1 + αy1

β1
+
∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n]
+ γ(β1 + x1)y1 − σy1

= αδy1 −
αδ2

β
y1(x1 + αy1) + γ(β1 + x1)y1 − σy1 + αδy1

∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n
= −α

2δ2

β
y21 +

(
γ − αδ2

β

)
x1y1 + (αδ − σ + γβ1)y1 + αδy1

∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n
,

and after substituting γ = γ0

ẏ1 = −α
2δ2

β
y21 +

(
δσ − 2αδ2

β

)
x1y1 + αδy1

∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n
.

Let x2 = δx1 + σy1 and y2 = y1.

25



ẋ2 = δẋ1 + σẏ1

=
α2δ3

β
y21 − δ

(
δσ − 2αδ2

β

)
x1y1 − δ(δx1 + σy1)− αδ2y1

∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n
− α2δ2σ

β
y21 + σ

(
δσ − 2αδ2

β

)
x1y1 + αδσy1

∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n
=
α2δ2

β
(δ − σ)y21 +

(
δσ − 2αδ2

β

)
(σ − δ)x1y1 − δ(δx1 + σy1)

+ (σ − δ)αδy1
∞∑
n=2

(−1)n
(
x1 + αy1

β1

)n
=
α2δ2

β
(δ − σ)y22 +

(
δσ − 2αδ2

β

)
(σ − δ)

(
x2 − σy2

δ

)
y2 − δx2

+ (σ − δ)αδy2
∞∑
n=2

(−1)n
( x2−σy2

δ
+ αy1

β/δ

)n
=
α2δ2

β
(δ − σ)y22 −

(σ − δ)σ(σ − 2αδ)

β
y22 +

(σ − δ)(σ − 2αδ)

β
x2y2 − δx2

+ (σ − δ)αδy2
∞∑
n=2

(−1)n
(
x2 − (σ − αδ)y1

β

)n
=

(δ − σ)

β

(
σ(σ − 2αδ) + α2δ2

)
y22 +

(σ − δ)(σ − 2αδ)

β
x2y2 − δx2

+ (σ − δ)αδy2
∞∑
n=2

(−1)n
(
x2 − (σ − αδ)y1

β

)n
=

(δ − σ)(σ − αδ)2

β
y22 +

(σ − δ)(σ − 2αδ)

β
x2y2 − δx2

+ (σ − δ)αδy2
∞∑
n=2

(−1)n
(
x2 − (σ − αδ)y1

β

)n

and
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ẏ2 = ẏ1

= −α
2δ2

β
y22 +

(
δσ − 2αδ2

β

)(
x2 − σy2

δ

)
y2 + αδy2

∞∑
n=2

(−1)n
( x2−σy2

δ
+ αy1

β/δ

)n
= −α

2δ2

β
y22 −

(
δσ − 2αδ2

β

)
σ

δ
y22 +

(
δσ − 2αδ2

δβ

)
x2y2 + αδy2

∞∑
n=2

(−1)n
(
x2 − (σ − αδ)y1

β

)n
= −α

2δ2

β
y22 −

(
σ − 2αδ

β

)
σy22 +

(
σ − 2αδ

β

)
x2y2 + αδy2

∞∑
n=2

(−1)n
(
x2 − (σ − αδ)y1

β

)n
=

(
−α2δ2 − σ2 + 2αδσ

β

)
y22 +

(
σ − 2αδ

β

)
x2y2

+ αδy2

∞∑
n=2

(−1)n
(
x2 − (σ − αδ)y1

β

)n
= −(σ − αδ)2

β
y22 +

(
σ − 2αδ

β

)
x2y2 + αδy2

∞∑
n=2

(−1)n
(
x2 − (σ − αδ)y1

β

)n

Let

p(x2, y2) :=
(δ − σ)(σ − αδ)2

β
y22 +

(σ − δ)(σ − 2αδ)

β
x2y2

+ (σ − δ)αδy2
∞∑
n=2

(−1)n
(
x2 − (σ − αδ)y1

β

)n

and
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q(x2, y2) := −(σ − αδ)2

β
y22 +

(
σ − 2αδ

β

)
x2y2 + αδy2

∞∑
n=2

(−1)n
(
x2 − (σ − αδ)y2

β

)n

then (2.0.1) can be, after the above transformations, written as


ẋ2 = −δx2 + p(x2, y2)

ẏ2 = q(x2, y2)

(3.1.10)

Let x3 = y2 and y3 = x2, then


ẋ3 = q(y3, x3)

ẏ3 = −δy3 + p(y3, x3)

(3.1.11)

From our definition of q we have that a20 = − (σ−αδ)2
β
6= 0 since, σ > αδ.

Moreover, % = −δ 6= 0. Thus, by Lemma 3.0.2 the result follows.

3.2 Analysis of the Second Positive Bound-

ary Equilibrium

Consider the equilibrium point (0, β/σ)

By (3.0.6), (3.0.7) and (3.0.8) at (0, β/σ) we have:

A(0, β/σ) =

 σ
α
− βγ

σ
− δ 0

−σ
α

+ βγ
σ

−σ

 , (3.2.1)
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|A(0, β/σ)| = −σ
2

α
+ γβ + δσ,

and

tr(0, β/σ) =
σ

α
− βγ

σ
− δ − σ

respectively.

Lemma 3.2.1. Suppose α > 0, β > 0, δ > 0, then the following assertions

hold.

(1) If σ > αδ and 0 < γ < γ3, then |A(0, β/σ)| < 0.

(2) If one of the following conditions hold,

(i) If σ > αδ and γ > γ3,

(ii) If 0 < σ ≤ αδ and γ > 0,

then |A(0, β/σ)| > 0.

(3) If σ > αδ and γ = γ3, then |A((0, β/σ)| = 0.

Proof. By (3.2.1) we obtain:

|A(0, β/σ)| = −σ
(
σ

α
− βγ

σ
− δ
)

= −σ
2

α
+ γβ + δσ

= β

(
γ − σ

αβ
(σ − αδ)

)
= β(γ − γ3).

(1) Under condition (1) we have σ > αδ and 0 < γ < γ3. The result

follows by (3.2.6).
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(2) If (i) holds we have σ > αδ and γ > γ3 The result follows by (3.2.6).

Similarly, If (ii) holds 0 < σ ≤ αδ and γ > 0, the result follows by (3.2.5).

(3) we have σ > αδ and γ = γ3, the result follows by (3.2.6).

Lemma 3.2.2. Suppose β > 0, δ > 0, then the following assertions hold.

(1) If one of the following conditions hold,

(i) If α ≥ 1 and σ > 0 and γ > 0,

(ii) If 0 < α < 1 and 0 < σ ≤ σ0 and γ > 0,

(iii) If 0 < α < 1 and σ > σ0 and γ > γ2,

then tr
(
A(0, β/σ)

)
< 0.

(2) If 0 < α < 1 and σ > σ0 and 0 < γ < γ2, then tr
(
A(0, β/σ)

)
> 0.

(3) If 0 < α < 1 and σ > σ0 and γ = γ2, then tr
(
A(0, β/σ)

)
= 0.

Proof. By (3.0.8) with (x, y) = (0, β/σ), we have

tr(0, β/σ) = σ
α
− βγ

σ
− δ − σ = β

σ

(
σ
αβ

(σ − αδ − ασ)− γ
)

= β
σ

(
γ2 − γ

)

tr
(
A(0, β/σ)

)
=
σ

α
− βγ

σ
− δ − σ

=
σ

α
(1− α)− (δ +

β

σ
γ)

(3.2.2)

tr
(
A(0, β/σ)

)
=
β

σ

(
σ

αβ
(σ − αδ − ασ)− γ

)
=
β

σ

(
σ

αβ
(σ(1− α)− αδ)− γ

)
=
β

σ

(
σ(1− α)

αβ
(σ − αδ

(1− α)
)− γ

)
=
β

σ

(
σ(1− α)

αβ
(σ − σ0)− γ

)
(3.2.3)
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(1) If (i) holds, we have α ≥ 1 and σ > 0 and γ > 0. It follows that by

(3.2.2), tr
(
A(0, β/σ)

)
< 0. If (ii) holds we have 0 < α < 1 and 0 < σ ≤ σ0

and γ > 0. It follows that by (3.2.3), tr
(
A(0, β/σ)

)
< 0. If (iii) holds γ > γ2,

the result follows by (3.2.9).

(2) Since γ < γ2 the result follows by (3.2.9).

(3) Since γ = γ2 the result follows by (3.2.9).

Theorem 3.2.3. Suppose that α > 0, β > 0 and δ > 0, then the following

assertions hold.

(1) If σ > αδ and 0 < γ < γ3,

then the equilibrium point (0, β/σ) is a saddle of (2.0.1).

(2) If one of the following conditions hold,

(i) If σ > αδ and γ > γ3,

(ii) If 0 < σ ≤ αδ and γ > 0,

then the equilibrium point (0, β/σ) is a stable node of (2.0.1).

(3) If σ > αδ and γ = γ3,

then the equilibrium point (0, β/σ) is a saddle node of (2.0.1).

Proof. By (3.0.7) with (x, y) = (0, β/σ) we have,

|A(0, β/σ)| = −σ
2

α
+ γβ + δσ (3.2.4)

= β

(
γ − σ

αβ
(σ − αδ)

)
(3.2.5)

= β(γ − γ3) (3.2.6)
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(1) Since γ − γ3 < 0. By (3.2.6), we have |A(0, β/σ)| < 0. The result

follows from Lemma (3.0.1) (i).

By (3.0.8) with (x, y) = (0, β/σ), we have

tr
(
A(0, β/σ)

)
=
σ

α
− γβ

σ
− σ − δ (3.2.7)

=
β

σ

[
σ

αβ
(σ − αδ − ασ)− γ

]
(3.2.8)

=
β

σ

(
γ2 − γ

)
. (3.2.9)

Let

∆(0, β/σ) = tr2
(
A(0, β/σ)

)
− 4|A(0, β/σ)|

Then by (3.2.4) and (3.2.7) with (x, y) = (0, β/σ), we have
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∆(0, β/σ) =

(
− σ +

σ

α
− γβ

σ
− δ
)2

− 4(−σ
2

α
+ γβ + δσ)

=
1

σ2

(
− σ2 +

σ2

α
− γβ − δσ

)2

− 4(−σ
2

α
+ γβ + δσ)

=
1

σ2

(
(−σ2 +

σ2

α
)− (γβ + δσ)

)2

− 4(γβ + δσ) + 4
σ2

α

=
1

σ2

(
(γβ − δσ)2 − 2(−σ2 +

σ2

α
)(γβ − δσ) + (−σ2 +

σ2

α
)2
)
− 4(γβ + δσ) + 4

σ2

α

=
1

σ2

[
(γβ − δσ)2 + (2σ2 − 2

σ2

α
)(γβ − δσ) + (−σ2 +

σ2

α
)2 − 4σ2(γβ + δσ) + 4

σ4

α

]
=

1

σ2

[
(γβ − δσ)2 + (2σ2 − 2

σ2

α
− 4σ2)(γβ − δσ) + (−σ2 +

σ2

α
)2 + 4

σ4

α

]
=

1

σ2

[
(γβ − δσ)2 + (−2σ2 − 2

σ2

α
)(γβ − δσ) + σ4(1− 1

α
)2 + 4

σ4

α

]
=

1

σ2

[
(γβ − δσ)2 − 2σ2(1 +

1

α
)(γβ − δσ) + σ4(1 +

1

α
)2
]

=
1

σ2

[
(γβ − δσ)− σ2(1 +

1

α
)

]2
≥ 0

(3.2.10)

(2) Under conditions (i) we have γ > γ3 > γ2. By (3.2.6), and (3.2.9) we

have |A(0, β/σ)| > 0 and tr
(
A(0, β/σ)

)
< 0 respectively. This together with

(3.2.10) and Lemma 3.0.1 (ii) imply the result. Similarly under conditions

(ii), we have 0 < σ ≤ αδ and γ > 0. By (3.2.5) and (3.2.8), we have

|A(0, β/σ)| > 0 and tr
(
A(0, β/σ)

)
< 0 respectively. The result follows by

(3.2.10) and Lemma 3.0.1 (ii).

(3) Since σ > αδ and γ = γ3. By (3.2.6) we have |A(0, β/σ)| = 0.

By (3.2.8) we obtain:
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tr
(
A(0, β/σ)

)
=
β

σ

[
σ

αβ
(σ − αδ − ασ)− σ

αβ
(σ − αδ)

]
=
β

σ

(
σ

αβ
(−ασ)

)
= −σ,

(3.2.11)

thus tr
(
A(0, β/σ)

)
6= 0.

To apply Lemma 3.0.2, we change the equilibrium (0, β/σ) to the origin

(0, 0) by using the change of variables x = x1 and y = y1 + β2. Noting that

β2 = β/σ, the system (2.0.1) becomes:


ẋ1 = x1

(
β

α(y1+β2)+x1
− γ(y1 + β2)− δ

)
ẏ1 = (y1 + β2)

(
αβ

α(y1+β2)+x
+ γx− σ

)

ẋ1 = βx1

x1+α(y1+β2)
− γ(y1 + β2)x1 − δx1

ẏ1 = αβ(y1+β2)
x1+α(y1+β2)

+ γ(y1 + β2)x1 − σ(y1 + β2)

(3.2.12)

Note that

1

x1 + αy1 + αβ2
=

1

αβ2

∞∑
n=0

(
x1 + αy1
αβ2

)n
(3.2.13)

Thus,

αβ(y1 + β2)

αβ2 + x1 + αy1
= β − βx1

αβ2 + x1 + αy1

= β − σ

α
x1

∞∑
n=0

(−1)n
(
x1 + αy1
αβ2

)n
= β − σ

α
x1

[
1− x1 + αy1

αβ2
+
∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n]
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and

βx1
αβ2 + x1 + αy1

=
σ

α
x1

[
1− x1 + αy1

αβ2
+
∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n]
.

Hence the second equation of (3.2.12) becomes,

ẏ1 =
αβ(y1 + β2)

αβ2 + x1 + αy1
+ γ(β2 + y1)x1 − σ(β2 + y1)

= β − σ

α
x1

[
1− x1 + αy1

αβ2
+
∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n]
+ γ(β2 + y1)x1 − σ(β2 + y1)

= β − σ

α
x1 +

σ2

αβ
x1y1 +

σ2

α2β
x21 + γ(β2 + y1)x1 − σ(β2 + y1)−

σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n
=

σ2

α2β
x21 + (γ +

σ2

αβ
)x1y1 + (γβ2 −

σ

α
)x1 − σy1 −

σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n

Since γ = γ3 = σ
αβ

(σ − αδ) = σ2

αβ
− δσ

β

ẏ1 =
σ2

α2β
x21 +

(
σ2

αβ
− δσ

β
+
σ2

αβ

)
x1y1 +

(
σ

αβ
(σ − αδ)β

σ
− σ

α

)
x1 − σy1

− σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n
=

σ2

α2β
x21 +

(
2σ2 − αδσ

αβ

)
x1y1 − (δx1 + σy1)−

σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n

and
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βx1
αβ2 + x1 + αy1

=
σ

α
x1

[
1− x1 + αy1

αβ2
+
∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n]

ẋ1 =
βx1

αβ2 + x1 + αy1
− γ(β2 + y1)x1 − δx1

=
σ

α
x1

[
1− x1 + αy1

αβ2
+
∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n]
− γ(β2 + y1)x1 − δx1

=
σ

α
x1 − (

σ

α
x1)

x1 + αy1
αβ2

− γβ2x1 − γy1x1 − δx1 +
σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n
=
σ

α
x1 −

σ2

α2β
x21 −

σ2

αβ
x1y1 − γβ2x1 − γy1x1 − δx1 +

σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n
= − σ2

α2β
x21 −

(
γ +

σ2

αβ

)
x1y1 +

(
− γβ2 +

σ

α
− δ
)
x1 +

σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n
= − σ2

α2β
x21 −

(
σ2

αβ
− δσ

β
+
σ2

αβ

)
x1y1 −

(
σ

αβ
(σ − αδ)β

σ
− σ

α
+ δ

)
x1

+
σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n
= − σ2

α2β
x21 +

(
αδσ − 2σ2

αβ

)
x1y1 +

σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n

Let y2 = δx1 + σy1 and x1 = x2.
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ẏ2 = δẋ1 + σẏ1

= δ

[
− σ2

α2β
x21 +

(
δσ − 2σ2/α

β

)
x1y1 +

σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n]
+ σ

[
σ2

α2β
x21 −

(
δσ − 2σ2/α

β

)
x1y1 − (δx1 + σy1)−

σ

α
x1

∞∑
n=2

(−1)n
(
x1 + αy1
αβ2

)n]
=

σ2

α2β
(σ − δ)x22 +

(
δσ − 2σ2/α

β

)
(δ − σ)

(
y2 − δx2

σ

)
x2 − σy2

+ (δ − σ)
σ

α
x2

∞∑
n=2

(−1)n
(
x2 + α

(
y2−δx2

σ

)
αβ/σ

)n
=

σ2

α2β
(σ − δ)x22 +

(
δσ − 2σ2/α

β

)
(δ − σ)

(
y2x2/σ − δ/σx22

)
− σy2

+ (δ − σ)
σ

α
x2

∞∑
n=2

(−1)n
(

(σ − αδ)x2 + αy2
αβ

)n
= (σ − δ)

[
σ2

α2β
+

(
δσ − 2σ2/α

β

)
δ/σ

]
x22 +

(
δσ − 2σ2/α

β

)
(δ − σ)

(
y2x2/σ

)
− σy2

+ (δ − σ)
σ

α
x2

∞∑
n=2

(−1)n
(

(σ − αδ)x2 + αy2
αβ

)n
=
σ − δ
β

(
σ2/α2 + δ2 − 2σδ/α

)
x22 +

(
δσ − 2σ2/α

βσ

)
(δ − σ)y2x2 − σy2

+ (δ − σ)
σ

α
x2

∞∑
n=2

(−1)n
(

(σ − αδ)x2 + αy2
αβ

)n
=
σ − δ
β

(
σ/α− δ

)2

x22 +

(
δ − 2σ/α

β

)
(δ − σ)y2x2 − σy2

+ (δ − σ)
σ

α
x2

∞∑
n=2

(−1)n
(

(σ − αδ)x2 + αy2
αβ

)n
=

(σ − δ)(σ − αδ)2

α2β
x22 +

(σ − δ)(2σ − αδ)
αβ

y2x2

− σy2 + (δ − σ)
σ

α
x2

∞∑
n=2

(−1)n
(

(σ − αδ)x2 + αy2
αβ

)n
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and

ẋ2 = ẋ1

= − σ2

α2β
x22 +

(
δσ − 2σ2/α

β

)(
y2 − δx2

σ

)
x2 +

σ

α
x2

∞∑
n=2

(−1)n
(

(σ − αδ)x2 + αy2
αβ

)n
= −(δ − σ/α)2

β
x22 +

(
δσ − 2σ2/α

β

)
x2y2 +

σ

α
x2

∞∑
n=2

(−1)n
(

(σ − αδ)x2 + αy2
αβ

)n
Let

p(x2, y2) := −(σ − αδ)2

α2β
x22 +

(
αδσ − 2σ2

αβ

)
x2y2 +

σ

α
x2

∞∑
n=2

(−1)n
(

(σ − αδ)x2 + αy2
αβ

)n

and

q(x2, y2) :=
(σ − δ)(σ − αδ)2

α2β
x22 +

(σ − δ)(2σ − αδ)
αβ

y2x2

+ (δ − σ)
σ

α
x2

∞∑
n=2

(−1)n
(

(σ − αδ)x2 + αy2
αβ

)n

then (2.0.1) can be written as


ẋ2 = p(x2, y2)

ẏ2 = −σy2 + q(x2, y2)

(3.2.14)
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From our definition of p and q respectively we have that a20 = − (σ−αδ)2
α2β

6=

0 since, σ > αδ. Moreover, % = −σ 6= 0. Thus, by 3.0.2 the result follows.

3.3 Analysis of the Positive Interior Equilib-

rium

Consider the interior equilibrium (x∗, y∗)

Theorem 3.3.1. If α > 0, β > 0, δ > 0, σ > αδ and γ0 < γ < γ3, then

(x∗, y∗) is locally asymptotically stable.

Proof. By (2.0.9) and (2.0.12) we have the following expressions

σy∗ − δx∗ =
β

γ(σ − αδ)

[
σ

(
γ − δ

β
(σ − αδ)

)
− αδ

(
σ

αβ
(σ − αδ)− γ

)]
=

β

γ(σ − αδ)

[
(σ + αδ)γ − σδ

β
(σ − αδ)− δσ

β
(σ − αδ)

]
=

β

γ(σ − αδ)

(
(σ + αδ)γ − 2σδ

β
(σ − αδ)

)
(3.3.1)
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σy∗ + δx∗ =
β

γ(σ − αδ)

[
σ

(
γ − δ

β
(σ − αδ)

)
+ αδ

(
σ

αβ
(σ − αδ)− γ

)]
=

β

γ(σ − αδ)

[
(σ − αδ)γ − σδ

β
(σ − αδ) +

δσ

β
(σ − αδ)

]
=

β

γ(σ − αδ)

[
(σ − αδ)γ

]
= β

(3.3.2)

x∗ + αy∗ =
1

γ

(
σ − αβγ

σ − αδ
+

αβγ

σ − αδ
− αδ

)
=

1

γ
(σ − αδ)

αβ

(x∗ + αy∗)2
=

αβγ2

(σ − αδ)2
(3.3.3)

By (3.0.8) and substituting (2.0.8), (2.0.12) and (3.3.3) we obtain the

following
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tr(A(x∗, y∗)) =

(
γ +

αβ

(x+ αy)2

)
x+

(
αβ

(x+ αy)2
− γ
)
y − σ − δ

=
αβ

(x+ αy)2
(x+ y) + γ(x− y)− σ − δ

=
αβγ

(σ − αδ)2

(
σ − αβγ

σ − αδ
+

βγ

σ − αδ
− δ
)

+ σ − αβγ

σ − αδ
− βγ

σ − αδ
+ δ − σ − δ

=
αβγ

(σ − αδ)2

(
σ − δ − βγ

σ − αδ
(α− 1)

)
− βγ

σ − αδ
(α + 1)

=
αβγ

(σ − αδ)2

[
σ − δ − βγ

σ − αδ
(α− 1)− (σ − αδ)

α
(α + 1)

]
=

αβ2γ

(σ − αδ)3

[
(σ − αδ)

β

(
σ − δ − (σ − αδ)

α
(α + 1)

)
− γ(α− 1)

]
=

αβ2γ

(σ − αδ)3

[
(σ − αδ)
αβ

(
ασ − αδ − ασ + α2δ − σ + αδ

)
− γ(α− 1)

]
=

αβ2γ

(σ − αδ)3

[
(σ − αδ)
αβ

(
α2δ − σ

)
− γ(α− 1)

]
=

αβ2γ

(σ − αδ)3

[
α
δ

β
(σ − αδ)− σ

αβ
(σ − αδ)− γ(α− 1)

]
=

αβ2γ

(σ − αδ)3
[
αγ0 − γ3 − αγ + γ

]
=

αβ2γ

(σ − αδ)3
[
α(γ0 − γ) + γ − γ3

]
(3.3.4)

Let

τ =
αβ2

(σ − αδ)2

By (3.0.7) and substituting (3.3.1) and (3.3.2) and (3.3.3) we obtain the
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following

|A(x∗, y∗)| = γ(σy∗ − δx∗)− αβ

(x∗ + αy∗)2
(δx∗ + σy∗) + δσ

=
β

(σ − αδ)

(
(σ + αδ)γ − 2σδ

β
(σ − αδ)

)
− αβ2

(σ − αδ)2
γ2 + δσ

=
αβ2

(σ − αδ)2

[
− γ2 +

(σ − αδ)
αβ

(
(σ + αδ)γ − 2σδ

β
(σ − αδ)

)
+ δσ

(σ − αδ)2

αβ2

]
= τ

[
− γ2 +

σ2 − α2δ2

αβ
γ − 2σδ

αβ2
(σ − αδ)2 + δσ

(σ − αδ)2

αβ2

]
= τ

[
− γ2 +

σ2 − α2δ2

αβ
γ − δσ (σ − αδ)2

αβ2

]
= −τ

[
γ2 − σ2 − α2δ2

αβ
γ + δσ

(σ − αδ)2

αβ2

]
= −τ

[(
γ − σ2 − α2δ2

2αβ

)2

− (σ − αδ)2(σ + αδ)2

4α2β2
+ δσ

(σ − αδ)2

αβ2

]
= −τ

[(
γ − σ2 − α2δ2

2αβ

)2

+
(σ − αδ)2

4α2β2

(
4αδσ − (σ + αδ)2

)]
= −τ

[(
γ − σ2 − α2δ2

2αβ

)2

− (σ − αδ)4

4α2β2

]
= −τ

(
γ − σ

αβ
(σ − αδ)

)(
γ − δ

β
(σ − αδ)

)
= −τ(γ − γ3)(γ − γ0)

= τ(γ3 − γ)(γ − γ0)

(3.3.5)

From Theorem 2.0.1 we have (x∗, y∗) is a positive equilibrium point of

(2.0.1) under the conditions σ − αδ > 0 and γ0 < γ < γ3. Hence, by (3.3.4)

and (3.3.5) we have tr(A(x∗, y∗)) < 0 and |A(x∗, y∗)| > 0 respectively. It

follows that by Lemma 3.0.1 (iv), the interior equilibrium (x∗, y∗) is locally

asymptotically stable.
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Chapter 4

Numerical Simulations

4.1 Discussion

Among predator prey models, my focus was on one that exhibits in-

traguild predation. However, there are models that incorporate different be-

haviors observed in nature that affect the balance. For example, the Holling

type IV functional response which describes the interaction between predator

and prey when the prey exhibit group defense. A harvesting rate could be

added to a model in which either or both species are subject to capturing.

Seasonal changes in the environment affect the population dynamics. Local

extinctions could be balanced by remigration, then a model would have to in-

corporate a migration rate. The Allee effect refers to a reduction in individual

fitness at low population density. A combination of some of these behaviors

have been analyzed in models before. But realistically, there is a point where

adding complexity to the model loses its value because most of the data you
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(a) (x1, y1) = (4.8, 0) is a stable node

of (2.0.1), where α = 0.5, β = 1.2,

δ = 0.25, σ = .2, and γ < γ0

(b) (x1, y1) = (4.8, 0) is a saddle node

of (2.0.1), where α = 0.5, β = 1.2,

δ = 0.25, σ = .2, and γ = γ0

Figure 4.1: The phase portraits of (2.0.1) for different values of γ. Figures

4.1a and 4.1b satisfy the conditions of Theorem 3.1.3 (2) and (3), respec-

tively. In particular, figures 4.1a and 4.1b show that the boundary equilib-

rium (x1, y1) can be a stable-node or a saddle-node respectively, depending

on γ, β, α and σ and δ.
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(a) (x∗, y∗) is a stable node of (2.0.1),

where α = 0.5, β = 1.2, δ = 0.25,

σ = .2, and γ0 < γ < γ3

(b) (x1, y1) and (x2, y2) are both sad-

dles of (2.0.1), where α = 0.5, β =

1.2, δ = 0.25, σ = .2, and γ0 < γ <

γ3.

Figure 4.2: The above graphs show that the positive interior equilibrium is

locally asymptotically stable for non zero initial conditions. The parameters

σ, β, γ, α and δ were chosen such that they satisfy Theorem 3.3.1. Note that

they also satisfy Theorem 3.1.3 (1) and Theorem 3.2.3 (1) shown in figure b)

with x = 0 or y = 0 for initial conditions.
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(a) (x2, y2) = (0, 6) is a stable node

of (2.0.1), where α = 0.5, β = 1.2,

δ = 0.25, σ = .2, and γ > γ3

(b) (x2, y2) = (0, 6) is a saddle node

of (2.0.1), where α = 0.5, β = 1.2,

δ = 0.25, σ = .2, and γ = γ3.

Figure 4.3: The phase portraits of (2.0.1) for different values of γ. Figures

4.3a and 4.3b satisfy the conditions of Theorem 3.2.3 (2) and (3), respec-

tively. In particular, figures 4.3a and 4.3b show that the boundary equilib-

rium (x2, y2) can be a stable-node or a saddle-node respectively, depending

on γ, β, α and σ and δ.
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would need to fit the model can not be collected, even if the mathematics

is possible to analyze with computational methods. In this thesis the model

represents, a natural environment where the main population changes at the

time are due to competition for recourses and predator prey exploitation. In

the presence of limited resources, relatively small populations will increase,

whereas an excessively large population will have insufficient resources to

survive As we might expect when α = 1. the system is symmetric because α

represents the ratio that measures the abilities of the two species to compete

for resources. As γ moves through the ranges of intervals the interior equilib-

rium travels linearly from the the equilibrium (x1, y1) to (x2, y2). When the

interior equilibrium meets either of the boundary equilibrium it looks like a

pitchfork bifurcation. We are only taking positive solutions so we are not

seeing this in the numerical simulations.
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