
TOPICS IN GRAPH BURNING AND DATALOG

by

Daniel Moghbel

Master of Science, University of West Florida, 2017

Honours Bachelor of Science, University of Toronto, 2013

A dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the program of

Mathematical Modelling and Methods

Toronto, Ontario, Canada, 2020

© Daniel Moghbel, 2020

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A

DISSERTATION

I hereby declare that I am the sole author of this dissertation. This is a true copy of the

dissertation, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institutions or

individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by photocopying

or by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

I understand that my dissertation may be made electronically available to the public.

ii

Daniel Moghbel

Topics in Graph Burning and Datalog

Doctor of Philosophy 2020

Mathematical Modelling and Methods

Ryerson University

Abstract

Graph burning studies how fast a contagion, modelled as a set of fires, spreads in a

graph. The burning process takes place in discrete time-steps, or rounds. In each round,

a fire breaks out at a given node (or vertex), thus burning it. Between rounds, fires from

burning nodes spread to adjacent nodes. The burning number of a graph G, denoted b(G),

is the minimum number of rounds necessary for every node of G to burn. We consider

b(Gm,n), where Gm,n is the m× n Cartesian grid. For m = ω(
√
n), the asymptotic value

of b(Gm,n) was determined, but only the growth rate of b(Gm,n) was investigated in the

case m = O(
√
n). Accordingly, we provide new explicit bounds on b(Gc

√
n,n) for valid

c > 0.

Graph burning is analogous to a pebble game, which typically involves the placement

of pebbles on nodes of a graph. Burning of a node is comparable to a pebbling step (or

pebbling move): the removal of two pebbles from a node, where one of the removed pebbles

is placed on an adjacent node while the other is discarded. In a certain pebble game

iii

variant (discussed in Section 1.7), the existence of a winning strategy has an interesting

characterization: expressibility of the relevant constraint satisfaction problem (or CSP)

in the logic programming language Datalog.

If a structure with a non-empty domain is restricted to relation symbols only, then we

call that structure a template. We show that the CSP for any finite template admitting

terms of the weak Jónsson type has a property known as bounded pathwidth duality. This

implies the expressibility of the complement CSP in linear Datalog, and places the CSP

in NLNLNL.

iv

Acknowledgements

First and foremost, I am eternally grateful to God, the master mathematician, for all

He has done in my life. I would like to thank my mother, an educator herself, for her

sacrifices, ongoing guidance, and continued academic support. I would also like to thank

my other family members and friends. Finally, I am grateful for the guidance I have

received from my supervisors and colleagues.

Special thanks to my thesis committee, for investing their time and taking an interest

in my academic pursuits. I also gratefully acknowledge the funding sources for my doc-

toral work, which include a Ryerson Graduate Development Award, a Ryerson Graduate

Fellowship, and a Mathematics Graduate Award.

v

Contents

Declaration . ii

Abstract . iii

Acknowledgements . v

List of Tables . ix

List of Figures . x

1 Introduction 1

1.1 Basic Notation . 2

1.2 Graph Theory . 3

1.3 Logic and Universal Algebra . 14

1.4 Localization Theory . 24

1.5 Complexity Theory . 27

1.6 Graph Burning . 32

1.7 Datalog . 33

1.8 Dissertation Overview . 38

2 Background on Graph Burning 39

2.1 Results on Graph Burning . 39

vi

3 Burning Fence Graphs 45

3.1 Burning Fences . 45

3.1.1 Partial Burning . 47

3.2 Lower Bound . 49

3.3 Upper Bound . 53

4 Background on CSPs and Datalog 59

4.1 Results and Conjectures . 60

5 New Results on CSPs and Datalog 65

5.1 Consistency Checks . 65

5.2 Linear Datalog . 67

5.2.1 Bulatov Colouring of a Taylor Algebra 68

5.2.2 Taxonomy of Two-Element Subuniverses 69

5.3 Linear Datalog Conjecture: Conservative Case 71

5.3.1 Local Near-Unanimity Polymorphisms 71

5.3.2 Near-Unanimity Polymorphisms: From Local to Global 78

5.4 Linear Datalog Conjecture: General Case 81

5.4.1 Algebraic Results . 82

5.4.2 Proof of Linear Datalog Conjecture 84

6 Conclusion and Open Problems 91

6.1 Summary . 91

6.2 Open Problems . 92

6.2.1 Burning Grids . 93

6.2.2 Total Burning . 94

vii

6.2.3 Fast and Slow Burning . 95

References 96

viii

List of Tables

1.1 Common running times . 28

1.2 Fundamental complexity classes . 29

ix

List of Figures

1.1 An undirected graph and a digraph . 4

1.2 A paw graph and its totally coloured complement 5

1.3 A graph with a dominating set . 6

1.4 An example of vertex duplication . 7

1.5 An example of a spanning tree . 8

1.6 A rooted tree partition . 9

1.7 A tree composition . 10

1.8 The utility graph . 12

1.9 The m× n Cartesian and strong grids 13

1.10 Hierarchy of complexity classes . 30

1.11 Burning of the 5-wheel . 32

3.1 Burning of a 4× 16 fence . 46

5.1 An illustration of the L-property . 88

6.1 Total burning of the 6-wheel . 94

x

Chapter 1

Introduction

Rumours, as the colloquial saying goes, can spread like wildfires. We can say the same

for memes, viral videos, and other forms of social contagion, particularly on a social

network, such as Facebook or Twitter. To model the spread of such contagion, Bonato

et al. ([11, 12]) introduced the notion of graph burning, which we discuss in Section 1.6.

This notion was inspired by graph searching games (or processes) such as Firefighting

and graph cleaning ([11]). Identifying contagion with fire, starting at some node and

spreading to all adjacent nodes, we can use graph burning to study how fast these fires

spread in a given network ([13]). Formal explanations of graph-theoretic terminology

used thus far can be found in Section 1.2. For further background in elementary graph

theory, we refer the reader to [56].

Graph burning is similar to a pebble game played on a graph. Burning of a node

is comparable to a pebbling move (see [19] and [51]). In a certain pebble game variant

(described in Section 1.7), the existence of a winning strategy translates to expressibility

of the relevant constraint satisfaction problem (or CSP) in Datalog ([43]). The CSP for

a fixed input is the problem of assigning values to a given set of variables, subject to

1

some constraints; we discuss this formally in Section 1.7. Many deep research problems

in theoretical computer science stem from CSPs ([4]). Examples of CSPs arise not only

in mathematics and computer science, but in other fields such as artificial intelligence

([4, 22, 24, 26, 42, 46]), computational linguistics ([29]), business process management

([33]), and musicology ([48]).

We begin this chapter with a review of basic mathematical notation, and an overview

of graph theory. We then present some general definitions from logic and universal

algebra, which are essential to our work. After providing some brief insight into the

complexity classes we will encounter, we consider the process of graph burning. We then

close the chapter with a detailed discussion of CSPs and Datalog.

1.1 Basic Notation

We use the notation R, N0, N, and P for the set of all real numbers, non-negative integers,

natural numbers (or positive integers), and prime numbers, respectively. We also denote

the Boolean domain {0, 1} by B, and let [n] = {1, 2, . . . , n} for any n ∈ N.

Given two sets A and B, we denote their union by A ∪ B, and their intersection by

A∩B. In case A∩B = ∅ (that is, A and B are disjoint), we write A∪B as AtB. The

exponentiation of B by A is BA, the set of all functions x : A −→ B. If A is an index

set, then x ∈ BA may be written x = (xa)a∈A, where xa = x(a). We call x a sequence

if A ⊆ N0. The complement of B in A is A r B = {x ∈ A | x /∈ B}. The product of

A and B is AB = {ab | a ∈ A, b ∈ B}, which is a set of juxtaposed pairs or abstract

products. The Cartesian product of A and B is A× B = {(a, b) | a ∈ A, b ∈ B}. More

generally, the Cartesian product of an indexed family of sets {Ai}i∈I is
∏

i∈I Ai, the set

of all functions x : I −→
⋃
i∈I Ai such that xi ∈ Ai for each i ∈ I. The n-fold Cartesian

2

product of A with itself is denoted An.

The power set of a given set X is P(X) = {Y | Y ⊆ X}. In particular, for fixed

k ∈ N0, we let Pk(X) = {Y ⊆ X | |Y | = k}. If α is an equivalence relation on X, then

we denote the α-block (that is, α-equivalence class) of x ∈ X by x/α. In this case, we

let X/α = {x/α | x ∈ X}.

Finally, suppose f(n) and g(n) define sequences of non-negative real numbers. We

write f(n) = o(g(n)) if f is of order less than g; that is,

lim
n→∞

f(n)

g(n)
= 0 .

The notation f(n) = (1 + o(1))g(n) thus signifies that

lim
n→∞

f(n)

g(n)
= 1 .

We also write f(n) = ω(g(n)) if g(n) = o(f(n)). We write f(n) = O(g(n)) if f is of order

at most g; that is,

lim sup
n→∞

f(n)

g(n)
<∞ .

In case f(n) = O(g(n)) and g(n) = O(f(n)), we write f(n) = Θ(g(n)).

1.2 Graph Theory

A (simple) graph G is a tuple (V,E) consisting of a set V (G) = V of vertices (or nodes),

and a set E(G) = E of edges (which are lines or curves), where E ⊆ {uv ∈ V V | u 6= v}.

We call |V | and |E| the order and size of G, respectively. We say that G is finite if V and

E are both finite. In this dissertation, we only consider finite graphs of positive order.

3

Given a graph G = (V,E), we say that ε is an element of G and write ε ∈ G if

ε ∈ V t E. If e = uv ∈ E, then we say e is incident with u and v (its endpoints), and

vice-versa. If every e ∈ E is directed (that is, has a direction), then G is called a directed

graph or, more simply, a digraph. In this case, e is incident from u and to v, or from

v and to u, depending on the direction of e. Directed edges are sometimes called arcs.

Note that G is undirected if and only if uv = vu for all u, v ∈ V . Below is an illustration

of an undirected graph and a digraph.

G H

Figure 1.1: An undirected graph G and a digraph H. The double-arrow in H indicates
two overlapping edges with opposing directions. Thus, although |V (G)| = |V (H)|, we
have that |E(H)| = |E(G)|+ 1.

Let G = (V,E) be a graph with u, v ∈ V . Then u and v are adjacent if uv ∈ E or

vu ∈ E. This is written u ↔ v in case uv = vu. We say that u succeeds v (written

u← v) or u precedes v (written u→ v), according as vu ∈ E or uv ∈ E. Two edges are

adjacent if they share an endpoint.

If G = (V,E) is a graph, then its complement graph is

G =
(
V, {uv ∈ V V | u 6= v}r E

)
.

The total graph of G is the graph T (G) with vertex set V t E and an edge for each

corresponding pair of adjacent or incident elements in G. A (vertex-)colouring of G is an

4

assignment of colours (alternatively, symbols) to its vertices; an edge-colouring is similar.

A colouring of G is proper if no two adjacent vertices have the same colour. We say G

is k-colourable if G can be properly coloured with at most k colours. In this case, G is

k-chromatic if G is not (k − 1)-colourable. A total colouring of G is a proper colouring

of T (G). These concepts are illustrated in the figure below.

v1

v2
v3

v4

G

b

v1

r
v2

g

v3

r

v4

g

b

H

b

v1

r

v2

g

v3

r

v4

g

v5

b

v6

T (H)

Figure 1.2: A paw graph G, a graph H obtained from G, and T (H). The elements of
G are coloured by (or assigned) symbols r, g, and b so as to obtain H, which is totally
coloured as seen in the proper colouring of T (H). Note that G is 2-chromatic.

Let G be a graph with v ∈ V (G). The degree of v in G, denoted degG v, is the number

of edges incident with v. If G is undirected, then we define the minimum and maximum

degree of G to be δ(G) = min{degG v | v ∈ V (G)} and ∆(G) = max{degG v | v ∈ V (G)},

respectively. We also define in this case the (open) neighbourhood of v to be

NG(v) =
{
w ∈ V (G)

∣∣ vw ∈ E(G)
}

(the set of all neighbours of v), and the closed neighbourhood of v to be

NG[v] = NG(v) t {v} .

Notice we have degG v = |NG(v)| in this case. We say that v is isolated if degG v = 0,

5

and that v is a pendant if degG v = 1. For example, in Figure 1.2, v2 is isolated in H and

T (H), while v4 is a pendant in G.

Let G be a graph. We call D ⊆ V (G) a dominating set for G if for every v ∈ V (G)rD,

there exists w ∈ D such that w ↔ v. The domination number of G is the minimum size

of a dominating set for G. The figure below gives an illustration.

G

D V (G) rD

Figure 1.3: A graph G with a dominating set D. The members of D are said to dominate
those of V (G) rD.

The following result is often called the First Theorem of Graph Theory :

Theorem 1.2.1 ([56]). If G = (V,E) is an undirected graph, then

∑
v∈V

degG v = 2|E| .

Proof. Each edge is counted twice upon summing the degrees.

As an immediate corollary, we have the so-called Handshaking Lemma:

Corollary 1.2.1 ([56]). Every graph has an even number of vertices with odd degree.

Many other immediate corollaries of Theorem 1.2.1 exist (see [56]).

In any graph G, a clique is a set of pairwise adjacent vertices, while an independent

set is a set of pairwise nonadjacent vertices. We say G is complete if V (G) is a clique

in G. We also say G is k-partite if V (G) can be partitioned into k independent sets

6

(referred to as the partite sets of G). The prefixes bi- (for k = 2), tri- (for k = 3), tetra-

(for k = 4), and multi- (for unspecified k) are also used in place of prefix k-.

Two graphs G and H are vertex-disjoint if V (G) ∩ V (H) = ∅ and edge-disjoint if

E(G) ∩ E(H) = ∅. They are simply disjoint if V (G) ∩ V (H) = ∅ = E(G) ∩ E(H). We

say that H is a subgraph of G and write H ⊆ G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If

H ⊆ G, then we can also say that G is a supergraph of H and write G ⊇ H. In this case,

H is a spanning subgraph of G if V (H) = V (G), and H is the subgraph of G induced by

V (H) (written H = G[V (H)]) if V (H) 6= ∅ and E(H) = {uv ∈ E(G) | u, v ∈ V (H)}.

These definitions, along with the definition of a graph, suggest that while a graph is not

a set per se, on a primitive level, it actually is.

Note that in any graph G = (V,E), deletion of a vertex automatically implies deletion

of any edges incident with it. The subgraph of G obtained by removing a subset S from

V or E is denoted G− S. The supergraph of G obtained by uniting a vertex set S with

V or an edge set S with E is denoted G + S. When S = {s}, the notations can be

simplified to G− s and G+ s respectively. If G is undirected, then the graph H obtained

by duplicating v is G ◦ v; duplication is achieved by adding to G a new vertex v′ (called

a clone of v) such that NH(v′) = NG(v). This is illustrated in the figure below.

v1

v2

v3

v4

v5

v6

v7

G

v1

v2

v′2

v3

v4

v5

v6

v7

G ◦ v2

Figure 1.4: An example of vertex duplication in a graph G.

7

A trail of length k in a graph is a vertex-edge sequence (v0, e1, v1, . . . , ek, vk), such

that ei = vi−1vi for all i ∈ [k]. Such trail is closed (and called a circuit) if v0 = vk and

open if v0 6= vk. It is a path (on k + 1 vertices) if vi−1 6= vj for all i 6= j + 1, and a

cycle (on k vertices) if v0 = vk while vi 6= vj for all i 6= j. A directed path (respectively,

cycle) whose edges all have the same direction is called a dipath (respectively, dicycle).

Any trail of the form (s, e, . . . , t) is referred to as a trail from s to t or, more simply, an

s,t-trail, and is said to join s and t. A trail is said to be even or odd according as its

length is even or odd.

A graph is cyclic if it contains a cycle (as a subgraph), and acyclic otherwise. A

(di)graph is connected if every pair of distinct vertices is joined by some (di)path. Other-

wise, the graph is disconnected. The components of a graph are its maximally connected

subgraphs. An undirected, connected acyclic graph is called a tree. Pendants of a tree

are called leaves. A tree with exactly one vertex of degree at least 3 is called a spider. A

spanning subgraph that happens to be a tree is called a spanning tree. The figure below

depicts a graph and one of its spanning trees.

v1

v2

v3

v4

v5

G

v1

v2

v3

v4

v5

G− {v2v4, v4v5}

Figure 1.5: A kite graph G and its spanning tree G− {v2v4, v4v5}.

8

A path or circuit H in a graph G is Hamiltonian if V (H) = V (G) and Eulerian if

E(H) = E(G). For example, the paw graph G in Figure 1.2 has two Hamiltonian paths:

G− v1v2 and G− v2v3.

If a graph G has a specially designated vertex r, then G is called a rooted graph and

r is called a root. A rooted tree partition of G is a collection of rooted tree subgraphs

whose vertex sets partition V (G). An example of this can be seen in the figure below.

?

v1v2

v3

v4

v5 v6

?

v7

v8

v9 v10 v11

?
v12

T1

T2

T3

Figure 1.6: A graph with rooted tree partition {T1, T2, T3}. Root nodes are labelled ?.

A tree composition of vertex-disjoint trees T1, . . . , Tk is any tree T that can be formed

from

T1 ∪ · · · ∪ Tk

by identifying some vertices among the leaves of T1, . . . , Tk. In this case, the vertices

of T that arise through identification of leaves are called composition vertices. The leaf

components of T are the components of T that had at most one leaf identified in the

construction of T . Figure 1.7 depicts a tree composition of T1, T2, and T3 from the rooted

tree partition in Figure 1.6.

9

v2

u1

u2 v6
u3

v8

v10 v11

?
v12

T

Figure 1.7: A rooted tree composition T of T1, T2, and T3 from Figure 1.6. Nodes v3 and
v4 were identified, giving u1. Nodes v1 and v5 were also identified, giving u2. Finally,
nodes v7 and v9 were identified, giving u3. Thus, the composition vertices of T are u1, u2,
and u3. The leaf components of T are T [{v2}], T [{v6}], T [{v8, v10, v11, v12}], T [{v2, u1}],
T [{v2, u2, v6}], and T [{v6, u3, v8, v10, v11, v12}].

The next theorem is a well-known characterization of bipartite graphs.

Theorem 1.2.2. For any graph G, the following are equivalent:

(i) G is 2-colourable;

(ii) G is bipartite;

(iii) G has no odd cycles.

Proof. See, for example, [56].

The odd cycle characterization of bipartite graphs is due to Dénes König ([56]), who

wrote the first book on graph theory ([9]).

For any path with endpoints u and v, we say u and v are (path-)connected and write

u! v. Given a u,v-dipath, we say that u reaches v and write u v. The notation

u v is defined analogously.

Let G be a graph. The (graph) distance between vertices u and v of G, denoted

distG(u, v), is the length of a shortest u,v-path in G. By convention, distG(u, v) = ∞ if

10

no shortest u,v-path in G exists. Furthermore, if X, Y ⊆ V (G) and v ∈ V (G), then we set

distG(v, Y) = min{distG(v, w) | w ∈ Y } and distG(X, Y) = max{distG(u, Y) | u ∈ X}.

We further define the eccentricity of v and of Y to be

eccG v = max
u∈V (G)

distG(u, v) and eccG Y = max
u∈V (G)

distG(u, Y) ,

respectively. The radius and diameter of G are defined as

radG = min
v∈V (G)

eccG v and diamG = max
v∈V (G)

eccG v ,

respectively. Finally, the centre of G is defined to be

Z(G) =
{
v ∈ V (G)

∣∣ eccG v = radG
}

,

whose elements are referred to as central vertices. We remark that a subgraph H of G is

isometric if

distH(u, v) = distG(u, v)

for all u, v ∈ V (H). For example, a subtree of a tree is isometric ([11, 12]).

A homomorphism from a graph G to a graph H is a map φ : V (G) −→ V (H) with

E(G) and E(H) specified; more concisely, φ : G −→ H, having the following property: if

uv ∈ E(G), then φ(u)φ(v) ∈ E(H). A bijective homomorphism ψ : G −→ H is called an

isomorphism, which has the property that uv ∈ E(G) if and only if ψ(u)ψ(v) ∈ E(H).

We write G ∼= H if and only if such an isomorphism ψ exists. The reader can check that

∼= is an equivalence relation.

Up to isomorphism, the following graphs on n vertices are unique: complete graphs,

11

paths, and cycles. Consequently, isomorphism class (or ∼=-block) representatives for these

graphs have customary notations: Kn, Pn, and Cn, respectively. In particular, a complete

bipartite graph with partite sets of sizes m and n is unique in this sense; Km,n denotes

its isomorphism class representative. Two graphs in K3,3/∼= are depicted in the figure

below.

Figure 1.8: Two drawings of the utility graph, K3,3.

We remark that a graph G is chordal if any cycle C ⊆ G on 4 or more vertices has a

chord ; that is, a non-cycle edge joining two vertices of C.

We can define several graph operations for any m graphs G1, . . . , Gm, where m ≥ 2.

For example, the union of G1, . . . , Gm is the graph

G1 ∪ · · · ∪Gm =
(
V (G1) ∪ · · · ∪ V (Gm), E(G1) ∪ · · · ∪ E(Gm)

)
;

the intersection of G1, . . . , Gm is defined similarly. If G1, . . . , Gm are mutually disjoint,

then we can define the sum of these graphs as their disjoint union,

G1 + · · ·+Gm =
(
V (G1) t · · · t V (Gm), E(G1) t · · · t E(Gm)

)
.

When G1, . . . , Gm
∼= G, we let mG = G1 + · · · + Gm. In particular, a sum of (disjoint)

trees is called a forest. A product of G1, . . . , Gm is a graph (V (G1) × · · · × V (Gm), E),

with E defined according to the type of product:

12

(i.) Cartesian, G1� · · ·�Gm, where (u1, . . . , uj, . . . , um)(v1, . . . , vj, . . . , vm) ∈ E if and

only if ui = vi for all i ∈ [m] r {j} and ujvj ∈ E(Gj);

(ii.) weak, G1×· · ·×Gm, where (u1, . . . , um)(v1, . . . , vm) ∈ E if and only if uivi ∈ E(Gi)

for all i ∈ [m];

(iii.) strong, G1 � · · ·�Gm, where E = E(G1 � · · ·�Gm) t E(G1 × · · · ×Gm).

Algebraic combinations of unique-up-to-isomorphism graphs yield new graphs, and

new isomorphism classes. For example, the m × n Cartesian grid is Gm,n
∼= Pm � Pn;

similarly, the m× n strong grid is G×m,n
∼= Pm � Pn. These graphs are illustrated in the

figure below.

m horizontal
n-paths

n vertical
m-paths

(each cell in C4/∼= for m,n ≥ 2)

m horizontal
n-paths

n vertical
m-paths

(each cell in K4/∼= for m,n ≥ 2)

Figure 1.9: The graphs Gm,n (left) and G×m,n (right).

Fixing m = 2 for Gm,n gives the ladder on n vertices, denoted Ln.

More generally, the n-dimensional Cartesian hypergrid is Gm1,...,mn
∼= Pm1� · · ·�Pmn ;

we can define a strong hypergrid analogously. The n-dimensional hypercube graph is

Qn = G2,...,2 (where 2 appears n times); note that |V (Qn)| = |(V (P2))n| = 2n. The

ladder-rung graph on 2n vertices is nP2. The prism (or circle-ladder) on n vertices is

13

Yn ∼= K2 � Cn. The wheel on n vertices, denoted by Wn, consists of one central vertex

adjacent to the vertices of Cn−1.

Finally, an undirected graph G is said to be planar if it can be embedded in the plane.

Intuitively, this means that G can be drawn with no edges crossing. In this case, the

resulting graph divides the set of points of the plane not lying on G into regions called

faces, one of which is unbounded. A planar graph is outerplanar if it can be embedded

with all vertices on the outer (or unbounded) face.

1.3 Logic and Universal Algebra

We now present the main definitions we will need from logic and universal algebra. For

further background on these branches of mathematics, we refer the reader to [18] and

[31].

A structure with universe (or domain) A 6= ∅ restricted to function and relation

symbols has the form

A = (A;F tR; arFtR; ι) ,

where F is the set of function symbols, R is the set of relation symbols, arFtR is the

arity function on F tR (with omissible subscript), and

ι : f 7−→ fA ∈ AAar f

, R 7−→ RA ⊆ AarR for all (f,R) ∈ F ×R

is the interpretation function. The indexed elements fA and RA are referred to as the

basic operations and basic relations of A, respectively.

We call a structure A = (A;F t R; arFtR) a template (or relational structure) if

F = ∅ and a (universal) algebra if R = ∅. The tuple (F t R, arFtR) is often called

14

the signature of A. A graph equipped with binary relations on its vertex set is a prime

example of a template. Group-like structures are among the best known examples of

universal algebras.

A homomorphism f : A −→ B from a structure A = (A;R) to a structure B = (B;R)

is a map f : A −→ B that preserves all of the basic operations and basic relations (or

just the latter in the case of templates, and just the former in the case of algebras). If

such a homomorphism f exists, then we say A is homomorphic to B and write A→ B.

We let

Hom(A,B) =
{
f : A −→ B

∣∣ A→ B
}

.

If g ∈ Hom(A,B) is bijective, then g is called an isomorphism and we say that A is

isomorphic to B; written A ∼= B. An endomorphism of A is any f ∈ Hom(A,A). A

bijective endomorphism is called an automorphism. A structure is a core if all of its

endomorphisms are automorphisms. Homomorphisms between graphs and groups are

typical examples of the types of maps mentioned here.

Two structures A = (A;S) and B = (B;S) are elementarily equivalent (written

A ≡ B) if they satisfy the same first-order sentences (which are formulas with no free

variables). In the case that A and B are templates, an Ehrenfeucht-Fräıssé game can

determine whether A ≡ B. The game is played between two players, called the Spoiler

and the Duplicator, and is mainly used to prove results concerning inexpressibility in

first-order logic. The interested reader can refer to [35] for details. In Section 1.7, we

describe a pebble game variant of this game, the same variant we alluded to earlier.

A k-ary relation R and an m-ary operation f on a given set A are compatible if

(a1,1, . . . , a1,k), . . . , (am,1, . . . , am,k) ∈ R

15

implies (
f(a1,1, . . . , am,1), . . . , f(a1,k, . . . , am,k)

)
∈ R .

In this case, we say that f is a polymorphism of R, and denote this fact by f . R (read

“f preserves R”). Alternatively, we say that R is invariant under f , and denote this

fact by R / f . The set of all polymorphisms for a template A = (A;R), denoted by

PolA, consists of all finitary operations on A that preserve (in the above sense) the basic

relations of A. We let PolnA = {f ∈ PolA | ar f = n}. The polymorphism algebra of A is

(A; PolA). Dually, the set of all invariants for an algebra V = (A;F) is denoted by InvV,

and consists of all finitary relations on A that are invariant under the basic operations

of V. We let InvnV = {R ∈ InvV | arR = n}. The operators Pol and Inv form a

canonical Galois connection; see [21] for details. We will say that V is finitely related if

there exists a finite set R of relation symbols such that F = Pol(A;R). Polymorphisms

satisfying certain algebraic identities have been used extensively in the study of CSPs.

As an example, ternary polymorphisms f1, . . . , fn for a template A = (A;R) form a

Hagemann-Mitschke sequence (or, an HM-sequence) for A, provided that the following

equations hold for all x, y ∈ A:

x = f1(x, y, y) ;

fi(x, x, y) = fi+1(x, y, y) for each i ∈ [n− 1] ;

fn(x, x, y) = y .

The relevance of HM-sequences in our work will become apparent in Chapters 4 and 5.

A structure B = (B;F t R) is a substructure of A = (A;F t R) if B ⊆ A and the

inclusion map ψ : B ↪−→ A induces a homomorphism from B to A. In particular, B

16

is the substructure of A induced by B, written B = A[B], if the basic operations and

basic relations of B are those of A restricted to B. A map f : C ⊆ A −→ B is a partial

homomorphism if f induces a homomorphism from A[C] to B. Subgraphs and subgroups

are classic examples of underlying substructures.

A template D1 = (D;R) p.p.-defines a template D2 = (D;S) if every S ∈ S can be

defined by a positive-primitive (or p.p.) formula with respect to R; that is, there exists

a formula ψ(x) ≡ ∃y.φ(x, y) where φ ≡ R1 ∧ · · · ∧ Rarφ and R1, . . . , Rarφ ∈ R ∪ {=}. A

useful characterization (see, for example, [5]) is that PolD1 ⊆ PolD2.

Let A = (A;F) and B = (B;F) be algebras, where B ⊆ A. If B = A[B] (that is,

the basic operations of B are those of A restricted to B), then B is called a subalgebra

of A; written B ≤ A. We say B is a subuniverse of A (written B 6 A) provided that B

is closed under the basic operations of A. Consequently, if ∅ 6= B 6 A, then B defines a

subalgebra of A. The subuniverse of A generated by X ⊆ A is

SgAX =
⋂

X⊆C6A

C .

An algebra A = (A;F) is conservative if, for every k-ary operation fA, and all

a1, . . . , ak ∈ A, we have that

fA(a1, . . . , ai, . . . , ak) = ai for each i ∈ [k] .

That is, fA acts as an ith-coordinate projection for each i ∈ [k]. Notice that A is

conservative if and only if B 6 A for every B ⊆ A.

We now mention five types of operations that are relevant to the study of CSPs.

Given a set A, an operation f : An −→ A is:

17

(i.) idempotent if f(a, . . . , a) = a for all a ∈ A;

(ii.) a Maltsev operation if n = 3 and

f(y, y, x) = f(x, y, y) = x for all x, y ∈ A ;

(iii.) a near-unanimity (NU) operation if n ≥ 3 and

f(x, . . . , x, y) = f(x, . . . , x, y, x) = · · · = f(y, x, . . . , x) = x for all x, y ∈ A ;

(iv.) a weak near-unanimity (WNU) operation if n ≥ 2 and, for all x, y ∈ A,

f(x, . . . , x) = x and f(x, . . . , x, y) = f(x, . . . , x, y, x) = · · · = f(y, x, . . . , x) ;

(v.) a Taylor operation if n ≥ 2 and, for all x, y ∈ A,

f(z1, . . . , zi−1, x, zi+1, . . . , zn) = f(w1, . . . , wi−1, y, wi+1, . . . , wn) ; zj, wj ∈ {x, y}

for all i, j ∈ [n].

An algebra is idempotent if all of its basic operations are idempotent. Algebras with

Taylor operations are called Taylor algebras (named after W.F. Taylor). It is useful

to note (as done in [5]) that the defining property of a Taylor operation f : An −→ A

prevents f from being an ith-coordinate projection for each i ∈ [n], whenever |An| > 1.

As indicated in [26], a finite idempotent algebra is a Taylor algebra if and only if it has

an at-least ternary WNU operation.

A collection O of finitary operations on a set D is called a functional clone on D if

18

O contains all ith-coordinate projections on D and is closed under generalized function

composition. Similarly, a collection Q of finitary relations on a set D is called a relational

clone on D if Q contains the equality relation (=) and is closed under intersection,

direct products, projections onto a subset I of coordinates (projI), and permutations of

coordinates. Equivalently, Q is a relational clone ifQ is closed under p.p. definitions ; that

is, whenever R ⊆ Q, it follows that Q contains all relations definable by p.p. formulas

with respect to R. Sets of polymorphisms and invariants form functional and relational

clones, respectively.

If {Ai = (Ai;S) | i ∈ I} is an indexed family of structures (namely templates or

algebras), then ∏
i∈I

Ai =

(∏
i∈I

Ai ;S |I|
)

is a structure of same kind, and is denoted by B|I| if Ai = B for all i ∈ I. It is well-known

(see, for example, [4]) that if R is a non-empty n-ary relation on the universe D of some

template D, then R is p.p.-definable over D if and only if R 6 (D; PolD)n.

An n-ary relation S on a given set D is diagonal if

S ⊇ ∆n(D) =
{

(d, . . . , d) ∈ Dn
∣∣ d ∈ D} ;

that is, S contains the n-diagonal of D. If A = (A;PA) is an algebra such that PA is a

functional clone on A containing all of the constant operations on A, then the invariants

for A will all be diagonal.

If A = (A;FA) is an algebra where FA is a functional clone on A, then its associated

19

template of invariants is the dual structure

A⊥ = (A; InvA) ,

where A⊥⊥ = A. Thus, the restriction of A⊥ to U ⊆ A is A⊥|U = (U ; Inv(U ;FA)).

A term of an algebra A = (A;F) is the image of a composition of basic operations

of A. A term operation tA : An −→ A is the interpretation of a function t defined

by term t(x1, . . . , xn) as an n-ary operation on A. When all mappings ha : A −→ A

defined by ha(x) = a are among the basic operations of A, we refer to the terms of A as

polynomials. The set of all term operations of A is called the (term) clone of A, denoted

by CloA. The set of all polynomial operations of A is called the polynomial clone of A,

denoted by PolA. (This is how Pol is defined when the input is an algebra.) We let

ClonA = {φ ∈ CloA | arφ = n} and PolnA = {φ ∈ PolA | arφ = n}. If B = (B;G)

is another algebra, then A and B are term equivalent if A = B and CloA = CloB;

similarly, polynomially equivalent if A = B and PolA = PolB. We say that A is minimal

if 2 ≤ |A| <∞ and every f ∈ Pol1 A is a constant operation or a permutation on A.

The star composition of an m-ary term operation f and an n-ary term operation g is

the mn-ary term operation f ? g defined by

(f ? g)
(
x1, . . . , xmn

)
= f

(
g(x1, . . . , xn), g(xn+1, . . . , x2n), . . . , g(xmn−n+1, . . . , xmn)

)
.

Notice that f ? g resembles the composition of f with the m-tuple (g, . . . , g).

Let A = (A;F) be an algebra. Suppose there exist d0, d1, . . . , dn ∈ Clo3 A; n ≥ 2,

20

such that the following equations hold for all x, y, z ∈ A:

x = d0(x, y, z) ;

di(x, y, y) = di+1(x, y, y) for even i < n ;

di(x, y, x) = di+1(x, y, x) for even i < n ;

di(x, x, y) = di+1(x, x, y) for odd i < n ;

dn(x, y, z) = z .

The terms defining d0, d1, . . . , dn are called weak Jónsson terms. These are simply called

Jónsson terms if we also have that di(x, y, x) = x for 0 < i < n. If A has weak

Jónsson terms defining d0, d1, . . . , dn, then B 6 A is a Jónsson ideal of A provided that

di(b, a, b
′) ∈ B for all (b, a, b′) ∈ B ×A×B and 0 ≤ i ≤ n. Jónsson ideals are prominent

in the proofs of the main results of [1] and [3].

Given sets C1, . . . , Cn and X ⊆ C1 × · · · × Cn, we say that X is subdirect and write

X ⊆sd C1 × · · · × Cn if proji[X] = Ci for each i ∈ [n]. Note that proji is the same as

proj{i}, and its domain here is C1 × · · · × Cn while its range is Ci.

Let A = (A;F) and B = (B;F) be algebras, where B ⊆ A. We write B ≤sd A if

B ≤ A and B ⊆sd A. Similarly, we write B 6sd A if B 6 A and B ⊆sd A. If B ≤ A, then

B is said to be absorbing for A, if there exists φ ∈ Clok A such that φ(a1, . . . , ak) ∈ B

whenever |{i ∈ [k] | ai /∈ B}| ≤ 1. In this case, we say B absorbs A with respect to φ;

written B Eφ A.

Let A be an algebra with an n-ary operation φ, such that B,C 6 A. Then B absorbs

C with respect to φ if, for all i ∈ [n], all b1, . . . , bi−1, bi+1, . . . , bn ∈ B, and all c ∈ C,

we have that φ(b1, . . . , bi−1, c, bi+1, . . . , bn) ∈ B. We write B Eφ C in this case, provided

21

that B ⊆ C.

Suppose C = (C;F) is an algebra with an operation φ. Then c ∈ C is an absorption

constant for C with respect to φ if, for all R 6sd Cn where n ≥ 2, the n-tuple (c, . . . , c) lies

in R whenever R Eφ ∆n(C). Below are two well-known facts about absorption, whose

proofs are straightforward.

Lemma 1.3.1 ([4]). Let A = (A;F) be an algebra with basic operation φ. If

B Eφ C 6 A ,

then B∩D Eφ C∩D for any D 6 A. Also, if A is idempotent, then φ is an NU operation

if and only if {a} Eφ A for each a ∈ A.

Lemma 1.3.2 ([4]). Let B1 = (B1;F) and C1 = (C1;F) be algebras such that φ ∈ F and

S 6 B1×C1. If proj1[S] = B1 and C0 Eφ C1, then {b ∈ B1 | ∃c ∈ C0 � (b, c) ∈ S} Eφ B1.

The following theorem was discovered only in the last decade:

Theorem 1.3.1 ([4]). If C is a finite algebra with an idempotent operation φ, then there

exists an absorption constant for C with respect to φ.

Note that the operation φ in the context of absorption as seen above need not always be

specified.

An algebra (L; f) where ar f = 2 is called a meet- or join-semilattice according as

f is ∧ (“meet”) or ∨ (“join”), and if f is commutative, associative, absorptive, and

idempotent with respect to L. If (L;∧) is a meet-semilattice and (L;∨) is a join-

semilattice, then the algebra (L;∧,∨) is called a lattice. Such a lattice is distributive

if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ L.

22

Given an algebra A = (A;F), an equivalence relation α on A is called a congruence

on A if α is preserved by all basic operations of A. In this case, one can define the

quotient algebra A/α = (A/α;F), with basic operations induced by those of A. The set

of all congruences on A is denoted ConA. We say that A is simple if ConA = {=A, A
2}

where =A = ∆2(A). It is a well-known fact (see, for example, [18]) that (ConA;∧,∨) is

a lattice where, for any α, β ∈ ConA,

α ∧ β = α ∩ β and α ∨ β =
⋂

α,β⊆γ∈ConA

γ .

If [α,A2] = {X | α ⊆ X ⊆ A2} (the interval from α to A2), then we have that

(Con(A/α);∧,∨) ∼= ([α,A2];∧,∨) for any α ∈ ConA (see, for example, [18]). It then

follows that A/α is simple if and only if α is maximal (that is, |[α,A2]| = 2) or α = A2.

A variety is a class of algebras of the same signature, closed under the formation of

direct products, subalgebras, and homomorphic images; equivalently, the formation of

quotient algebras by congruences. A variety V is congruence distributive if (ConA;∧,∨)

is distributive for every A ∈ V . In this case, the algebras in V are also called congruence

distributive. A variety V is said to be congruence n-permutable if for every A ∈ V and

any α, β ∈ ConA, we have that α ◦n β = β ◦n α (where α ◦n β = α ◦ β ◦ α ◦ · · · ◦ δn

and δn is the nth compositional factor, either α or β according as n is odd or even). A

pseudovariety only differs from a variety in that it need not be closed under the formation

of infinite direct products of algebras.

The following result of G. Birkhoff says that every variety is an equational class, and

vice-versa:

Theorem 1.3.2 ([18]). Every variety V is uniquely determined by a set Φ of identities

(equalities of terms) s = t such that A ∈ V if and only if A |= Φ.

23

Note that a structure A models a set of formulas Φ (written A |= Φ) if A |= φ for each

φ ∈ Φ; that is, every Φ-formula holds true in A.

Given an algebra A, the variety generated by A, which we will denote by V(A), is the

smallest variety containing A. We similarly define the pseudovariety generated by A, and

denote this class by Vfin(A). If A has a k-ary and a (k+ 1)-ary WNU term operation for

k ≥ 3, then V(A) is said to be congruence ∧-semidistributive.

We close this section with a useful characterization theorem of B. Jónsson, after whom

Jónsson terms are named.

Theorem 1.3.3 ([1]). An algebra A has Jónsson terms if and only if A is congruence

distributive.

A consequence of the preceding theorem is that every algebra with an NU term operation

is congruence distributive. To see this, simply construct a chain of Jónsson terms, as done

in [1].

1.4 Localization Theory

We now delve into some localization theory for algebras and templates. Broadly speak-

ing, given a “global” problem involving structures (for example, a CSP), we can use

information about certain substructures, or “local” data, to solve the problem.

Let A = (A;FA) be an algebra where FA is a functional clone on A. The restrictions

of relations in InvA to arbitrary U ⊆ A can induce a homomorphism between algebras

arising, respectively, from InvA and Inv(U ;FA). A criterion for this to occur is the

following:

Theorem 1.4.1 ([39]). If U ⊆ A, then A⊥ = (A; Inv(A;FA)) → A⊥|U if and only if

24

U = e[A] for some unary operation e ∈ FA with the property that e(e(x)) = e(x) for all

x ∈ A.

The preceding theorem tells us which subsets of A are suitable for localization, and so

we give a special name to these. We say that U ⊆ A is a neighbourhood of A if U = e[A]

for some unary operation e ∈ FA with the property that e(e(x)) = e(x) for all x ∈ A. If

U and V are two neighbourhoods of A such that A⊥|U ∼= A⊥|V , then we say that U and

V are isomorphic and we write U ≡ V .

An immediate consequence of the above definitions is the following (see also Lemma

2.6 in [39]):

Theorem 1.4.2. Suppose U and V are two neighbourhoods of an algebra A = (A;FA).

Then U ≡ V if and only if there exist unary operations f, g ∈ FA such that f : U −→ V

and g : V −→ U are inverse bijections.

If U = e[A] is a neighbourhood of A for some e, then the algebra induced by A on U is

defined to be

A|U = e[A] = A⊥
∣∣
U

⊥
=
(
U ;
{
f |Uar f

∣∣ f ∈ FA, f [Uar f] ⊆ U
})

.

We thus have the following proposition (see also Lemma 2.8 in [39]):

Proposition 1.4.1. If U = e[A] is a neighbourhood of A for some e, then

A|U =
(
U ;
{
e ◦ f |Uar f

∣∣ f ∈ FA}) .

Given S, T ∈ InvA where S ⊆ T , we say that U is (S, T)-minimal if every function

g = e ◦ f |U from A|U is a permutation on U or g[T] ⊆ S.

25

Let S, T ∈ InvA for A as above. A set U of neighbourhoods of A is a cover of A if

the condition S|U = T |U for each U ∈ U implies that S = T . A set V of neighbourhoods

of A covers U ∈ U if the condition S|V = T |V for each V ∈ V implies that S|U = T |U .

We say that V refines U if every V ∈ V is contained in some U ∈ U and V covers every

U ∈ U .

The following theorem is fundamental in the theory of localization (and globalization)

of algebras:

Theorem 1.4.3 ([39]). Let A = (A;FA) be an algebra where FA is a functional clone

on A. The following conditions are equivalent:

(i) U is a cover of A;

(ii) A satisfies an equation of the form

f
(
e1(ρ1(x)), . . . , ek(ρk(x))

)
= x ,

where f is a k-ary operation in FA and both ei and ρi are unary operations in FA

such that ei[A] ∈ U for all i ∈ [k];

(iii) A⊥ is a retract of a product of templates from
{
A⊥|U

∣∣ U ∈ U}.

Note that in the context of the preceding theorem, a set V of neighbourhoods of A covers

U ∈ U if and only if A satisfies an equation of the form

f
(
e1(ρ1(x)), . . . , ek(ρk(x))

)
= e(x) ,

where ei[A] ∈ V for all i ∈ [k] and e[A] = U .

26

The next result pertains to algebras A = (A;FA), where FA is a functional clone on

A.

Theorem 1.4.4 ([39]). Up to isomorphism, every finite A has a unique non-refinable

cover.

Thus, in refining covers of A, we eventually find a cover not containing any neighbourhood

that can be covered by the collection of its properly contained neighbourhoods. That

brings us to our next definition concerning A, and the final concept we introduce in this

section.

A neighbourhood U of A is irreducible if each cover of A|U contains U . Alternatively

(see, for example, [39]), U is irreducible if and only if U is (S, T)-minimal for some S and

T .

1.5 Complexity Theory

A decision problem is a problem that can be posed as a yes-no question. As such, the

question of whether an input has a certain property, characterized by membership in

a set P , is just a set of the form {x | x ∈ P}. Any algorithm A for solving such a

problem requires a certain amount of resources in order to run; this is known as the

(computational) complexity of A. In particular, time complexity refers to the number of

steps required by A to solve a problem, while space complexity refers to the amount of

memory required. The worst-case time complexity for A would be the maximum number

of steps required to solve a problem, which is usually expressed as a function of the size

of the problem input. Some common running times are given in Table 1.1.

27

Table 1.1: Some common running times.

Running Time, T (n)

Constant Time O(1)

Logarithmic Time
(or Log-time)

O(log n)

Linear Time O(n)

Quadratic Time O(n2)

Cubic Time O(n3)

Polynomial Time
(or Poly-time)

2O(logn) = nO(1)

Exponential Time 2n
O(1)

Given a non-negative sequence f : N −→ R, the time complexity class TimeTimeTime(f(n)) is

the set of all decision problems with input size n that are solvable in O(f(n)) time. This

may be viewed, upon encoding the problem inputs by strings, as the set of all languages

that are decidable by an O(f(n)) time Turing machine (see [55]). The non-deterministic

time complexity class NTimeNTimeNTime(f(n)) is the set of all decision problems with input size

n whose candidate solutions (or proofs of membership) are verifiable in O(f(n)) time.

Again, upon encoding the problem inputs by strings, this may be viewed as the set of all

languages that are decidable by an O(f(n)) time non-deterministic Turing machine. The

classes SpaceSpaceSpace(f(n)) and NSpaceNSpaceNSpace(f(n)) are defined analogously. We refer the reader to

[55] for more details.

The complexity classes in Table 1.2 are fundamental.

28

Table 1.2: Some canonical complexity classes.

Complexity Class Definition

Exponential Time, ExpExpExp TimeTimeTime
(

2n
O(1)
)

Interactive Polynomial Time or Polynomial Space, IPIPIP SpaceSpaceSpace
(
nO(1)

)
Non-deterministic Polynomial Time, NPNPNP NTimeNTimeNTime

(
nO(1)

)
(Deterministic) Polynomial Time, PPP TimeTimeTime

(
nO(1)

)
Non-deterministic Logarithmic Space, NLNLNL NSpaceNSpaceNSpace

(
log n

)
(Deterministic) Logarithmic Space, LLL SpaceSpaceSpace

(
log n

)
Moreover, complement-NPNPNP, denoted co-NPco-NPco-NP, is the set of all decision problems that are

complements of those in NPNPNP.

Let S∗ be the set of all strings over a symbol set S. A function f : S∗ −→ S∗ is

PPP-computable if some poly-time Turing machine, on every input x ∈ S∗, halts with only

f(x) on its tape. A language A ⊆ S∗ is PPP-reducible to a language B ⊆ S∗ (written

A ≤PPP B) if there is a PPP-computable function f : S∗ −→ S∗ such that A = f−1[B]. In

this case, f is called the PPP-reduction of A to B. This formalizes the notion of a decision

problem A being PPP-reducible to a decision problem B. In fact, ≤PPP is a pre-order on

the set of all decision problems. We say A and B are PPP-equivalent (written A ≡PPP B) if

A ≤PPP B and B ≤PPP A. Definitions analogous to the preceding ones can be made for LLL.

For any class of decision problems D, we say that A is D-hard if D ≤PPP A for any D ∈ D.

If, in addition, we have that A ∈ D, then A is said to be D-complete. For example, the

class of NPNPNP-complete problems is NP-CNP-CNP-C = NPNPNP∩NP-HNP-HNP-H, the intersection of NPNPNP and the

class of all NPNPNP-hard problems. Other classes, such as NL-CNL-CNL-C, are similarly defined.

29

The figure below shows the containment hierarchy of specific complexity classes

introduced thus far.

L-CL-CL-C

LLL

NLNLNL

NL-CNL-CNL-C

PPP

P-CP-CP-C

N
P

N
P

N
P

N
P
-C

N
P
-C

N
P
-C

co
-N
P

co
-N
P

co
-N
P

IPIPIP

ExpExpExp

Figure 1.10: The hierarchy of various complexity classes.

Determining the exact containment relationships between such classes is a standard prob-

lem in modern complexity theory. The most famous problem of this kind is arguably the

PPP versus NPNPNP problem, which is the open question of whether PPP is equal to NPNPNP.

The following result, known as the Cook-Levin Theorem (due to S. Cook ([20]) and

L. Levin ([47])), says that the question of whether a Boolean formula is satisfiable — the

problem known as Sat — is NPNPNP-complete:

Theorem 1.5.1 ([55]). Sat ∈NP-CNP-CNP-C

An interesting consequence of the Cook-Levin Theorem is that Sat ∈ PPP if and only if

PPP = NPNPNP. R. Karp ([36]) used the theorem to show that there is a PPP-reduction from Sat

30

to 21 different combinatorial and graph-theoretical problems, thus showing that each of

them is NPNPNP-complete. Among these 21 problems is 3-Sat, the restriction of Sat to the

case of at most 3 literals per clause. The aforementioned results are among the earliest

that motivated the study of the PPP versus NPNPNP problem.

The restriction of 3-Sat to Horn clauses (that is, clauses containing at most one

unnegated literal) is 3-Horn-Sat. Using an LLL-reduction, one can show, as noted in [5],

that 3-Horn-Sat ∈ P-CP-CP-C.

Descriptive complexity characterizes complexity classes by the type of logic needed to

define their associated languages; that is, the languages which can be viewed as being in

the classes. This provides a natural formalization, which does not depend on theoretical

models of computer hardware, such as Turing machines. Natural measures of descriptive

complexity include depth of quantifier nesting and number of variables in logical formulas

([35]). These correspond to traditional notions of machine-based complexity. For more

on this approach to complexity theory, see [35].

We conclude this section with a formal description of CSPs, which, in general, are

known to be in NPNPNP. An instance of a CSP is a finite triple I = (V,D, C), where V is

a non-empty set {x1, . . . , xn} of variables, D is a domain for those variables, and C is a

set of constraints of the form Cx = (x,Rx) with x ∈ V k and Rx = Rx1 × · · · ×Rxk ⊆ Dk

for each k ≤ n. We call x the scope of Cx and Rx the constraint relation of Cx. An

evaluation map f : V −→ D satisfies Cx ∈ C if f(x) = (f(x1), . . . , f(xk)) ∈ Rx. We say

f is a solution for I if f satisfies Cx ∈ C for all x. We also say f is optimal if f satisfies

the maximum possible number of constraints. If a template or polymorphism algebra is

associated to I, then the CSP is said to be parametrized by that structure.

31

1.6 Graph Burning

The process of burning a graph G takes place over discrete time-steps, or rounds. In

round 1, we burn a node v1 of G. In round t > 1, more nodes of G are burned: one

of our choosing, vt, and all neighbours of nodes burned in round t − 1. Once a node

is burned, it remains burned indefinitely, and the process ends when all nodes of G are

burned — alternatively, when V (G) is burned — say, in round k. In this way, fire spreads

from burning nodes to unburned neighbours, according to a sequence (v1, . . . , vk) called

a burning sequence. The terms of this sequence are called sources of fire. Figure 1.11

below gives a simple illustration of this process.

(a) Round 1 (b) Round 2

Figure 1.11: Typical burning of the wheel W5 on 5 nodes. In Round 1, a fire breaks
out at the central node. In Round 2, the fire spreads to neighbouring nodes, any one of
which may be taken as the new source of fire.

The burning number of a graph G, denoted b(G), is the minimum number of rounds

necessary for V (G) to burn; equivalently, the length of a shortest burning sequence for

G. This indicates the level of ease or speed of spreading contagion in G. For example,

as seen in Figure 1.11, b(W5) = 2. It is also easy to see that for the complete graph Kn

on n nodes, b(Kn) = 1 if n = 1 and b(Kn) = 2 if n ≥ 2. Indeed, b(G) ≥ 2 if |V (G)| ≥ 2.

The problem of computing b(G) in general is NPNPNP-hard ([13]). For related approximation

algorithms, see [13]. Many other results on the burning number have been published;

32

some key results are included in Section 2.1.

Two contrasting models for graph burning demonstrate how gossip can spread in a

social network. In the telephone model ([13]), gossip spreads via traditional phone calls

between neighbours, in some specific order. Thus, neighbours receive information one at

a time. On the other hand, the radio model sees each neighbour broadcasting gossip to all

other neighbours in a given round ([13]). Gossip, therefore, tends to spread more freely,

although the sources of fire are pre-determined, and it is often assumed that neighbours

have limited information about their environment (or network structure) ([13]).

An economic application of graph burning can be seen in viral marketing ([13]),

which is a business strategy that refers to the cascading word-of-mouth effect concerning

a product, in people’s social networks — including, but not limited to, social media. See,

for example, [41]. Influence maximization is the idea that a maximum number of people

in a social network are eventually influenced by an initial group of informed individuals,

who spread information simultaneously. This coincides with the notion of graph burning,

when the initial group of individuals consists of just one person. Some approximation

algorithms for influence maximization are given by Kempe et al. ([40]).

1.7 Datalog

As mentioned in [46], Datalog was conceived as a database query language. A Datalog

program depends on a finite template B = (B;R), and also takes a finite template

A = (A;R) as input. The program consists of finitely many rules, which are logical

expressions of the form φ 0 :- φ 1,...,φ n; that is,

φ0 ← φ1 ∧ · · · ∧ φn . (1.1)

33

These are actually negation-free, function-free clauses, where φi is an atomic formula

for i = 0, 1, . . . , n. The formula φ0 is called the head of the rule, and φ1 ∧ · · · ∧ φn is

called the body. The relation symbols in the heads of rules are not from R, and are

called intensional database predicates (IDBs). IDBs may also appear in the body of a

rule; they are defined recursively. All of the other relation symbols belong to R, and

are known as extensional database predicates (EDBs). If φi = R(a) for some i where R

is an IDB and a = (a1, . . . , aarR) ∈ AarR, then φi is called a fact of the program. One

IDB, usually nullary, is designated as the goal predicate; the program accepts or rejects A

according as the formula containing the goal predicate is true or false in A. Specifically,

the program checks A for obstructions that prevent A from being homomorphic to B. If

obstructions are found, then the program (in accordance with the goal predicate) outputs

True; otherwise, it outputs False. The program terminates polynomially in |A|.

A Datalog program is said to be linear whenever each of its rules is linear; that is,

the body of each rule contains at most one IDB. If the rule (1.1) is linear and recursive

such that, say, φ1 is the only IDB in its body, then its symmetrization is the rule

φ1 ← φ0 ∧ · · · ∧ φn .

A linear Datalog program is said to be symmetric if it contains the symmetrizations of

all its recursive rules. Linear Datalog is the restriction of Datalog to linear programs.

Similarly, symmetric Datalog is the restriction of Datalog to symmetric programs. The

term k-Datalog refers to Datalog programs with at most k variables in the head and in

the body of each rule.

The semantics of Datalog programs are frequently defined in terms of fixed-point

operators in the fixed-point logic ([26]), which is an extension of first-order logic. An

34

equivalent notion is that of derivation ([23]): a Datalog program on input A = (A;R)

derives a fact R0(a) if it has a rule R0(x0)← R1(x1) ∧ · · · ∧ Rn(xn), and there is a map

f : {x0, x1, . . . , xn} −→ A defined by f(x0) = a, such that R1(f(x1)), . . . , Rn(f(xn)) hold

in A or are derived by the program.

The CSP for a template H is CSPH = {G | G → H}; that is, the homomorphism

problem for H:

PROBLEM: Hom(H)

INPUT: A template G.

QUESTION: Is G homomorphic to H?

For example, let H = (K2;↔), where K2 is the complete graph on 2 vertices and ↔ is

interpreted as adjacency. It then follows that CSPH is the undirected version of the 2-

colouring problem for graphs, which asks whether an undirected graph G can be properly

coloured with 2 colours. By Theorem 1.2.2, G is not 2-colourable if and only if G has

an odd cycle. The following linear Datalog program logically defines ¬CSPH, detecting

an odd cycle in G as an obstruction to a homomorphism between input G = (G;↔) and

H = (K2;↔):

R(x,y) :- E(x,y)

R(x,y) :- R(x,z), E(z,w), E(w,y)

S() :- R(x,x) ,

where x and y are vertices x and y of G, respectively; E is the EDB ↔; R is an IDB

interpreted as a relation asserting the existence of an odd x,y-path or an odd cycle in

G; and S is the goal predicate. It can be shown, using first-order reductions ([5]), that

35

CSPH ∈ L-CL-CL-C.

Even if a problem cannot be formulated as a CSP, it might be closely related to

one. Such is the case for the reachability problem, which asks whether a node s reaches

another node t in a graph G. The related CSP can be parametrized by the template

B = (B; {{0}, {1},= ∪ I}), where I = {(0, 1)} if G is directed and I = ∅ if G is

undirected. To solve an instance I of CSPB, we form a graph G with vertices labelled

0 or 1 and edges corresponding to = ∪ I. Now I has a solution if and only if a vertex

labelled 1 does not reach a vertex labelled 0. Thus, CSPB can be solved via ¬CSPB.

By the Immerman-Szelepcsényi Theorem ([5]), CSPB is NLNLNL-complete if G is directed

(see also [55]), and LLL-complete if G is undirected ([5]).

Another example of a CSP over a template (F ;S) is 3-Lin(p), where p ∈ P. This

is the problem of solving a linear system over a p-element field (F ;+, ·), where every

equation has at most 3 variables; that is,

S =
{
{(x, y, z) ∈ F 3 | ax+ by+ cz = d}

∣∣ a, b, c, d,∈ F} .

This problem is poly-time solvable, by Gaussian elimination ([5]).

The more general list homomorphism problem for a template H = (H;S) is as follows:

PROBLEM: L-Hom(H)

INPUT: A template G = (G;R) with lists L(ε) ⊆ H; ε ∈ G.

QUESTION: Does there exist f ∈ Hom(G,H) such that f(ε) ∈ L(ε) for each ε ∈ G?

For example, if G and H are graphs such that R = S = {↔} and L(ε) is a list of colours

for ε (a vertex or an edge), then L-Hom(H) is a list colouring problem for G. Observe

that L-Hom(H) coincides with Hom(H) when (H; PolH) is conservative. In this case,

all possible unary relations are among the basic relations of H, and we call both H and

36

CSPH conservative. The main reason for the study of conservative CSPs is that they

present a test case for various conjectures on CSPs.

Feder and Vardi ([32]) showed that the CSP for any template is PPP-equivalent to

the CSP for some associated digraph. Several years later, Buĺın et al. ([17]) sharpened

this result to LLL-equivalence. The previous example concerning reachability provides

fundamental insight into the construction of the aforementioned digraphs.

The CSP for an algebra C = (C;F), denoted by CSPC, is the set of all pairs (A,B)

of templates such that A → B and PolB contains the basic operations of C. We say

that C is globally tractable if CSPC ∈ PPP, and that C is locally tractable if CSPU ∈ PPP for

every template U such that PolU contains the basic operations of C.

Existential k-pebble games (or (∃, k)-pebble games) involve two players, the Spoiler

and the Duplicator, who play on two templates A = (A;R) and B = (B;R). Each

player initially has k pebbles (where k ≥ 1), and the rules of the game are as follows

([43]): in a given round of the game, the Spoiler places a pebble on an element of A,

and the Duplicator responds with a similar action on B; the Spoiler may remove some

pebbles afterwards to begin a new round. The objective of the game for the Spoiler is to

create a non-homomorphic mapping between the pebble-marked elements of the Spoiler

and those of the Duplicator ([43]). Accordingly, the objective for the Duplicator is to

permanently prevent such a mapping from being created. It follows that for a given finite

template B, ¬CSPB is expressible in k-Datalog if and only if ¬CSPB is the set of all

templates A for which a (∃, k)-pebble game played on A and B sees the Duplicator as

the winner ([42, 43]). For a purely algebraic description of (∃, k)-pebble games, see [43].

Given a finite template A = (A;R), let A∗ = (A;R∗) be its expansion by all possible

relations on A. The canonical linear k-Datalog program (or, more simply, the k-program)

on input A for k ∈ N0 contains an EDB for every R ∈ R and an IDB for every S ∈ R∗rR

37

where arS ≤ k. The rules of the program express logical formulas valid in A∗.

We say that A ∈ CSPB passes the k-test if the k-program for B on input A outputs

True. Accordingly, ¬CSPB is expressible in linear Datalog if and only if the k-program

outputs False.

If a template A = (A;R) is a core, then one can expandR by singleton unary relations

to obtain a template A1 = (A;R ∪ {{a} | a ∈ A}). This enables further restriction of

(A; PolA1). Specifically, if φ ∈ PolmA1, it is plain that φ(a, a, . . . , a) = a for all a ∈ A.

Additionally, CSPA ≡LLL CSPA1. Therefore, we may assume that the polymorphism

algebra associated with any CSP under consideration is idempotent.

1.8 Dissertation Overview

In this chapter, we have reviewed the various concepts that are preliminary to our work.

In Chapter 2, we will review some of the literature on graph burning; we will continue

our discussion of this topic in Chapter 3. There, we will present our main result con-

cerning a special case of the Cartesian grid graph. In Chapter 4, we will review some

published results and conjectures on CSPs and Datalog. Chapter 5 will lay the necessary

groundwork for proving the Linear Datalog Conjecture. Note that the results of Chapter

3 appear in [10], while the results of Chapter 5 appear in [27] and [28]. Finally, open

problems and future directions will be considered in Chapter 6.

38

Chapter 2

Background on Graph Burning

We review some of the literature on graph burning, so as to provide some background on

the topic and allow us to refer to results as needed. The results stated here, along with

their proofs, can be found in the sources cited.

2.1 Results on Graph Burning

LetG be an undirected graph with v ∈ V (G). For any k ∈ N0, the (open) k-neighbourhood

of v in G is defined as

NG(v; k) =
{
w ∈ V (G)

∣∣ distG(v, w) = k
}

,

while the closed k-neighbourhood of v in G is defined as

NG[v; k] =
{
w ∈ V (G)

∣∣ distG(v, w) ≤ k
}

= NG(v; 0) ∪NG(v; 1) ∪ · · · ∪NG(v; k) .

39

Indeed, NG(v; 0) = {v}, NG(v; 1) = NG(v), and {v} ∩ NG(v; i) = ∅ for any i ∈ [k].

Members of NG[v; k] are referred to as k-neighbours of v in G. This set is essentially a

ball of radius k centred at v.

If G is the m× n Cartesian grid, then for any v ∈ V (G), we have that

∣∣NG[v; k]
∣∣ ≤ ∣∣{v}∣∣+

∣∣NG(v)
∣∣+ · · ·+

∣∣NG(v; k)
∣∣ = 1 + degG v + · · ·+ k degG v

≤ 1 + 4 + · · ·+ 4k = 1 + 4(1 + · · ·+ k) = 1 + 4 · k(k + 1)

2
= 1 + 2k(k + 1) .

The first result we present in this chapter reduces the process of burning a graph G

to a “ball decomposition” of V (G).

Lemma 2.1.1 ([12]). If G is a graph, then (x1, . . . , xk) is a burning sequence for G if

and only if for any i, j ∈ [k] where i < j, we have that distG(xi, xj) ≥ j − i and

NG[x1; k − 1] ∪ · · · ∪NG[xk; 0] = V (G) .

The following theorem gives an upper bound on the burning number of a graph G,

via coverings of V (G):

Theorem 2.1.1 ([12]). Let G be a graph such that H1, . . . , Ht ⊆ G are connected and

radHi ≤ k − i for 1 ≤ i ≤ t ≤ k. If V (H1) ∪ · · · ∪ V (Ht) = V (G), then b(G) ≤ k.

As an immediate corollary, we have:

Corollary 2.1.1 ([12]). If (x1, . . . , xk) is a sequence of vertices from a graph G such that

NG[x1; k − 1] ∪ · · · ∪NG[xk; 0] = V (G), then b(G) ≤ k.

Thus, the preceding theorem and corollary demonstrate that for any graph G, suitable

decomposition of V (G) into at most k subsets ensures that b(G) ≤ k.

40

If H is a subgraph of G, it does not follow in general that b(H) ≤ b(G). The next

theorem speaks to this fact.

Theorem 2.1.2 ([12]). If H is a spanning subgraph of G, then b(G) ≤ b(H).

Hence, the burning number is order-reversing for spanning subgraphs.

If T is a tree with root u, then the depth of v ∈ V (T) is defined to be

depthT v = distT (v, u) .

It turns out that the burning of a tree T in k rounds is equivalent to a partition of T

into k suitable subtrees. We have the following theorem:

Theorem 2.1.3 ([11, 12]). For any graph G, we have that b(G) ≤ k if and only if there

is a rooted tree partition {T1, . . . , Tk} of G with

max
v∈V (Ti)

depthTi v ≤ k − i for all i ∈ [k] ,

and distance between the roots of Ti and Tj at least |i− j| for all i, j ∈ [k].

For an illustration of the preceding theorem, refer back to Figure 1.6, and consider the

burning sequence (x1, x2, x3, x4) = (v1, v7, v12, vl), where l ∈ {9, 10, 11}.

The following corollary reduces the task of burning a graph to the task of burning its

spanning trees:

Corollary 2.1.2 ([11, 12]). If S is the set of all spanning trees of a graph G, then

b(G) = min
H∈S

b(H) .

41

The proof of Corollary 2.1.2 follows from Theorem 2.1.3 by taking b(G) = k, and then

adding edges between T1, . . . , Tk to form H ∈ S. See [11] or [12] for details.

The next theorem gives sufficient conditions for monotonicity of the burning number

on isometric subgraphs.

Theorem 2.1.4 ([12]). Let H be an isometric subgraph of G. Suppose that for each

v ∈ V (G) r V (H) and each r ∈ N, there exists v∗r ∈ V (H) satisfying the following

condition: NG[v; r] ∩ V (H) ⊆ NH [v∗r ; r]. Then b(H) ≤ b(G).

It follows that if H is an isometric tree subgraph of G, then b(H) ≤ b(G). We invite the

reader to consult [12] for the proof.

Let G be a graph such that Dk ⊆ V (G). Suppose that for each u ∈ V (G)rDk, there

exists v ∈ Dk such that distG(u, v) ≤ k. Then Dk is called a k-distance dominating set

for G. The minimum size of a k-distance dominating set for G is called the k-distance

domination number of G. Using a known bound on this number (see [8] and [11]), Bonato

et al. ([11, 12]) established an upper bound on b(G) which is dependent on |V (G)|:

Theorem 2.1.5 ([12]). Suppose G is a connected graph of order n. We then have that

b
(
G
)
≤ 2
⌈√

n
⌉
− 1.

The following computational result is now used extensively:

Theorem 2.1.6 ([11, 12]). If G is a path or cycle on n vertices, then b
(
G
)

=
⌈√

n
⌉
.

As an immediate corollary of the preceding theorem, we have the following result:

Corollary 2.1.3 ([12]). If G is a graph of order n containing a Hamiltonian path or

cycle, then b
(
G
)
≤
⌈√

n
⌉
.

A more powerful assertion is the so-called Burning Conjecture:

42

Conjecture 2.1.1 ([12]). If G is a connected graph of order n, then b
(
G
)
≤
⌈√

n
⌉
.

The next result gives the best known upper bound on the burning number of a

connected graph.

Theorem 2.1.7 ([45]). For any connected graph G of order n,

b
(
G
)
≤
⌈√

24n+ 33− 3

4

⌉
.

The preceding upper bound is approximately
(√

6/2
)√

n. The previous best known upper

bound ([8]) was
(√

32/19 + o(1)
)√

n.

The next theorem gives sharp bounds on the burning number, in terms of eccentricity.

Theorem 2.1.8 ([11, 12]). For any graph G, we have that

⌈√
diamG+ 1

⌉
≤ b(G) ≤ radG+ 1 .

In particular, b
(
Pn
)

=
⌈√

diamPn + 1
⌉

while b(H) = radH+1 for certain spider graphs

H (see [12]).

Consider the following decision problem:

PROBLEM: Burning

INSTANCE: A graph G of order n and k ∈ Nr {1}.

QUESTION: Is b(G) ≤ k?

Bessy et al. ([7]) established the following:

Theorem 2.1.9 ([7]). The problem Burning is NPNPNP-complete for trees of maximum

degree 3 and spider graphs.

43

As a corollary of the preceding theorem, Burning is NPNPNP-complete for path-forests and

forests of maximum degree 3, as well as bipartite, chordal, and planar graphs. See [7] for

details.

We conclude our review of the literature on graph burning, with a fairly recent result

on the burning number of Cartesian and strong graph products:

Theorem 2.1.10 ([50]). If G and H are two connected graphs, then

max{b(G), b(H)} ≤ b(G�H) ≤ b(G�H) ≤ min{b(G) + radH, b(H) + radG} .

In particular, b(Ln) = b(G2,n) = max{b(P2), b(Pn)} if n ∈ {k2 + 1, k2 + 2 | k ∈ N},

and b(G×2,n) = max{b(P2), b(Pn)} if n ∈ {k2 | k ∈ N} (as indicated in [50]). Also,

min{b(G) + radH, b(H) + radG} is tight if radG = 1 and H ∼= Pn2 for some n ∈ N.

44

Chapter 3

Burning Fence Graphs

We now focus on the burning number of specific grid graphs. The value of b(Gm,n),

the burning number of the m × n Cartesian grid, was first studied in [49]. All graphs

considered in this chapter are undirected.

3.1 Burning Fences

Our main result of this chapter concerns the following theorem, and the questions it left

open after it was published:

Theorem 3.1.1 ([49]). For m = m(n),

b
(
Gm,n

)
= b
(
Pm � Pn

)
=


3

√
3

2

(
1 + o(1)

)
3
√
mn , n ≥ m = ω

(√
n
)

Θ
(√

n
)
, m = O

(√
n
)

.

Two specific cases worth considering in the context of the preceding theorem are

m = k
√
n = o(

√
n) for any k ∈ Nr [2] (which produces a “skinny” grid) and

45

m = n = ω(
√
n) (which produces a square grid). Notice that while Theorem 3.1.1 gives

an asymptotically tight value for b(Gm,n) in the case where n ≥ m = ω(
√
n), only the

growth rate is given in the remaining case where m = O(
√
n). For valid c > 0, we refer

to the grid Gc
√
n,n as a fence, since it is by definition wider than tall. By “valid” c > 0,

we mean all c > 0 such that c
√
n ∈ N, as per the definition of a Cartesian grid. The

figure below illustrates a burning sequence for the fence G4,16.

4

3

4

5 4

3

2

3 4

3

4

5 6

5

4

5 6

5

4

5 4

3

4

5 4

3

2

3 2

1

2

3 4

3

2

3 4

3

4

5 6

5

4

5 6

5

4

5 6

5

6

5 6

5

4

5 4

3

4

5 6

5

4

5

Figure 3.1: A 4 × 16 fence, where a vertex is labelled i if it is burned in round i.
The burning sequence depicted here is (x1, x2, x3, x4, x5, x6), where xi is the grey vertex
labelled i for i ∈ [6].

We improve on Theorem 3.1.1, by giving explicit lower and upper bounds on the burning

number of fences.

We prove the following theorem, which is our main result:

Theorem 3.1.2. For all c > 0 such that c
√
n ∈ N, we have that

a ≤ b
(
Gc
√
n,n

)
≤ 2
√⌈

(c/2)2/3
⌉
n+

⌈
(c/2)2/3

⌉
− 1 ,

where

a =



1

2

(
c+
√

4− c2
) (

1 + o(1)
)√

n , c < 2

⌈√
nmax

{
k ∈ N

∣∣ (k − 1)
√
kn+ 1 ≤ c

√
n
}⌉

, c ≥ 2 .

46

In particular, if c ≤ 2
√

2, then

b
(
Gc
√
n,n

)
≤

(
c

2
+

√
1− c2

16

)(
1 + o(1)

)√
n .

The lower bound in Theorem 3.1.2 will follow immediately from Theorems 3.2.1 and

3.2.2, while the upper bound will follow from Theorems 3.3.1 and 3.3.2.

The most interesting case for fences Gc
√
n,n might just be c = 1. In this case, our

lower bound is

1 +
√

3

2

(
1 + o(1)

)√
n ≈ 1.366

√
n ,

while our upper bound is

2 +
√

15

4

(
1 + o(1)

)√
n ≈ 1.468

√
n .

Also, by Theorem 3.1.1,

b
(
G√n,n

)
=

3

√
3

2

(
1 + o(1)

)√
n ≈ 1.145

√
n ,

which is well below our lower bound. This illustrates the fact that the value of b(Gm,n)

given in Theorem 3.1.1 for m = ω(
√
n) does not hold for m = O(

√
n).

3.1.1 Partial Burning

In burning a graph G, we tend to focus on certain subsets S of V (G) that burn. We

define the burning number of G with respect to S as the minimum number of rounds

necessary for S to burn in G. We denote this parameter by b(G;S). Observe that

b(G;V (G)) = b(G).

47

In [10], it was noted that adding edges between distinct components of a graph can

increase the burning number by at most one. We now generalize and extend this fact to

the setting of partial burning.

Lemma 3.1.1. If H is a subgraph of G and X ⊆ V (H), then

b(G;X) ≤ b(H;X) ≤ b(G;X) + |E(G)| − |E(H)| .

Proof. It suffices to show, inductively, that:

b(H;X) ≤ b(H + u+ uv;X) + 1 for any u ∈ V (G) r V (H) and v ∈ V (H) ; (3.1)

and

b(H;X) ≤ b(H + uv;X) + 1 for any uv /∈ E(H) where u, v ∈ V (H) . (3.2)

For (3.1), we have that b(H;X) = b(H + u + uv;X), since u can only spread fire

to v. Hence, any burning sequence containing u can be replaced by a burning sequence

containing v and excluding u, thus giving a burning sequence for H with respect to X.

For (3.2), fix a burning sequence (v1, v2, . . . , vb(H+uv;X)) that is optimal for H + uv with

respect to X. Assume without loss of generality that, when burning according to this

sequence, u is burned in round i and v is burned in round j ≥ i if u and v are both burned.

Otherwise, if one of these vertices is not burned after b(H + uv;X) rounds, then take v

to be the one not burned. Observe that (v, v1, v2, . . . , vb(H+uv;X)) is a burning sequence

of length b(H + uv;X) + 1 for H with respect to X, since the only effect uv could have

is allowing the spread of fire from u to v, but here v would already be burned.

48

Two ideas in particular inspired the preceding lemma: firstly, connecting pairs of disjoint

graphs via an arbitrary number of edges; secondly, graph sums as spanning subgraphs.

3.2 Lower Bound

Our lower bound for the burning number of fences will follow from analyzing the partial

burning number of certain paths in Gm,n. Given a path P in Gm,n, we will say that P is

a horizontal path at height h if V (P) ⊆ {v1,h, . . . , vn,h}, where vi,h is the vertex of Gm,n

with Cartesian coordinates (i, h) ∈ [n]× [m]. That is, for Gm,n as depicted in Figure 1.9,

we have that the bottom horizontal n-path is at height 1, while the horizontal n-path

above it is at height 2, and so on, with the top horizontal n-path being at height m.

Our next result will allow us to bound the number of vertices burned via each source

of fire, whenever we are burning paths that are sufficiently far apart.

Lemma 3.2.1. Let P (1), . . . , P (k) ∼= Pn be horizontal paths in G = Gm,n at heights

h1, . . . , hk respectively, where h1 < · · · < hk and hi− hi−2 ≥ 2t+ 2 for each i ∈ [k]r {1}.

Let VP = V (P (1)) t · · · t V (P (k)). For t ≤ (n− 1)/2, we have that

max
v∈V (G)

∣∣NG[v; t] ∩ VP
∣∣ = max

v∈VP

∣∣NG[v; t] ∩ VP
∣∣ .

Proof. Let v ∈ V (G). By the bound on the distance between the paths stated in the

hypotheses, NG[v; t] intersects at most two of the horizontal paths P (i), and so

∣∣NG[v; t] ∩ VP
∣∣ ≤ max

{
2
[
t− distG

(
v, V

(
P (a)

))]
+ 1, 0

}
+ max

{
2
[
t− distG

(
v, V

(
P (a+1)

))]
+ 1, 0

}
,

49

where P (a) and P (a+1) are the two horizontal paths closest to v. If

max
{

distG
(
v, V

(
P (a)

))
, distG

(
v, V

(
P (a+1)

))}
> t ,

then ∣∣NG[v; t] ∩ VP
∣∣ ≤ 2t+ 1 ≤

∣∣NG[v∗; t] ∩ VP
∣∣ ,

where v∗ is a central vertex in P (1). Otherwise,

∣∣NG[v; t] ∩ VP
∣∣ ≤ 4t− 2

[
distG

(
v, V

(
P (a)

))
+ distG

(
v, V

(
P (a+1)

))]
+ 2

≤ 4t− 2 distG
(
V
(
P (a)

)
, V
(
P (a+1)

))
+ 2

=
∣∣NG[v∗∗; t] ∩ VP

∣∣ ,
where v∗∗ is the closest vertex to v in P (a) (sufficiently central). This completes the

proof.

The preceding lemma leads to lower and upper bounds on b(G;VP). We thus have

the following lemma:

Lemma 3.2.2. Let P (1), . . . , P (k) ∼= Pn be horizontal paths in G = Gm,n at heights

h1, . . . , hk respectively, where h1 < · · · < hk and hi−hi−1 ≥
⌈√

kn
⌉

for each i ∈ [k]r{1}.

We then have that

⌈√
kn
⌉
≤ b
(
G;V (P (1)) t · · · t V (P (k))

)
≤
⌈√

kn
⌉

+ k − 1 .

Proof. Let VP = V (P (1)) t · · · t V (P (k)). We first prove the lower bound. Since the

50

horizontal paths P (i) are far apart,

max
v∈VP

∣∣NG[v; t] ∩ VP
∣∣ ≤ 2t+ 1

for 1 ≤ t <
⌈√

kn
⌉
. Furthermore, by Lemma 3.2.1, |NG[v; t] ∩ VP | ≤ 2t + 1 for all

v ∈ V (G). Now, if
(
v1, v2, . . . , vd√kne−1

)
is a burning sequence, then

d√kne−1∑
i=1

∣∣∣∣∣NG

[
vi;
⌈√

kn
⌉
− i− 1

]
∩ VP

∣∣∣∣∣ ≤
d√kne−2∑

i=0

(2i+ 1) =
(⌈√

kn
⌉
− 1
)2

< kn =
∣∣VP ∣∣ .

Thus, VP cannot possibly be burned according to the burning sequence, implying that

b(G;VP) ≥
⌈√

kn
⌉
.

For the upper bound, observe that

b
(
G;VP

)
≤ b
(
G[VP]

)
= b
(
kPn

)
≤ b
(
Pkn
)

+ k − 1 =
⌈√

kn
⌉

+ k − 1 ,

where the last inequality follows from Lemma 3.1.1 applied with X = V (Pkn).

To establish a lower bound on b(Gc
√
n,n) for all c > 0, we consider the two cases

separately: 0 < c < 2 and c ≥ 2. In the first case, our strategy for obtaining the lower

bound is to partially burn the top and bottom horizontal paths. In the second case,

we will consider the partial burning number of a collection of horizontal paths that are

sufficiently far apart.

Theorem 3.2.1. If 0 < c < 2 such that c
√
n ∈ N, then

b
(
Gc
√
n,n

)
≥ 1

2

(
c+
√

4− c2
) (

1 + o(1)
)√

n .

51

Proof. Let P⊥, P> ∼= Pn be the horizontal paths at heights 1 and c
√
n, (that is, the

bottom and top path), respectively. Let VP = V (P⊥) t V (P>). We will bound the

number k = b(G;VP), where G = Gc
√
n,n.

Suppose (v1, v2, . . . , vk) is a shortest burning sequence, and let a = b(Gc
√
n,n). Given

v∗ ∈ VP and 0 ≤ t < c
√
n, we have |NG[v∗; t] ∩ VP | ≤ 2t + 1, and so by Lemma

3.2.1, |NG[va−t; t] ∩ VP | ≤ 2t + 1. This implies that the fire from any vertex va−t where

0 ≤ t < c
√
n− 1 can spread to at most

c
√
n−1∑
i=0

(2i+ 1) (3.3)

vertices in VP .

Now, if v∗ ∈ VP and c
√
n ≤ t ≤ a− 1, then

∣∣NG[v∗; t] ∩ VP
∣∣ ≤ 2t+ 2 + 2

(
t− c
√
n− 1

)
,

and so by Lemma 3.2.1, the fire from any vertex va−t where c
√
n ≤ t < a can spread to

at most
a−1∑
i=c
√
n

[
2i+ 2 + 2

(
i−
(
c
√
n− 1

))]
(3.4)

vertices in VP .

The sum of (3.3) and (3.4) must be greater than or equal to 2n = |VP |. Such inequality

holds if and only if

a ≥ 1

2
c
√
n±

√
(c2 + 4)n+ 2c2n− 4c2n− 4c2

√
n− 1− 3

2
.

52

Grouping the dominant terms, we obtain

a ≥
(

1

2
c+

1

2

√
4− c2

)(
1 + o(1)

)√
n =

1

2

(
c+
√

4− c2
) (

1 + o(1)
)√

n ,

as desired.

The second last inequality in the preceding proof was obtained via SageMath (computer

algebra software).

We now consider the second case.

Theorem 3.2.2. If c ≥ 2 such that c
√
n ∈ N, then

b
(
Gc
√
n,n

)
≥
⌈√

nmax
{
k ∈ N

∣∣ (k − 1)
√
kn+ 1 ≤ c

√
n
}⌉

.

Proof. Let M = max
{
k ∈ N

∣∣ (k− 1)
√
kn+ 1 ≤ c

√
n
}

. For each i ∈ [M], let P (i) be the

horizontal path in Gc
√
n,n at height 1 +

⌈√
Mn

⌉
(i− 1). The conditions of Lemma 3.2.2

are then satisfied with k = M , so we have that

b
(
Gc
√
n,n

)
≥ b
(
Gc
√
n,n;V (P (1)) t · · · t V (P (M))

)
≥
⌈√

Mn
⌉

,

and the proof follows.

In the next section, we establish an upper bound on b(Gc
√
n,n) for all c > 0.

3.3 Upper Bound

Before we consider an upper bound for the burning number of fences, we will show that

determining the asymptotics for b(Gm,n) when m = o(
√
n) is straightforward. Noting

53

that radPn = bn/2c, we have the following corollary of Theorem 2.1.10:

Corollary 3.3.1. If m = o
(√

n
)
, then b

(
Gm,n

)
=
(
1 + o(1)

)√
n.

Proof. Let m = o
(√

n
)
. Theorem 2.1.10 implies that

b(Gm,n) ≤ b(Pn) + rad(Pm) =
√
n+ o

(√
n
)

=
(
1 + o(1)

)√
n .

We also have that b(Gm,n) ≥
(
1 + o(1)

)√
n, since any horizontal n-path in Gm,n burns in

at least
⌈√

n
⌉

rounds.

We will now turn our attention back to fences.

To establish an upper bound on the burning number of fences, we first present a

lemma which is a useful generalization of Theorem 2.1.10.

Lemma 3.3.1. Let G be a graph with X ⊆ V (G). If distG(v,X) ≤ l for each v ∈ V (G),

then

b(G) ≤ b(G;X) + l .

Proof. First burn X in b(G;X) rounds. Regardless of what other vertices of G are

burned, after at most l more rounds, G will be burned.

Given the preceding lemma, we can bound the burning number of our fence Gc
√
n,n from

above, if we can efficiently estimate b
(
Gc
√
n,n;X

)
for some suitable X ⊆ V (G). For our

purposes, we will always choose X to be the vertex set of a sum of horizontal paths.

If P (1) and P (2) are two horizontal paths that are sufficiently far apart, then

b
(
Gc
√
n,n;V

(
P (1)

)
t V

(
P (2)

))
= 2b

(
Pn
)

.

54

When c is large, we find it useful to only burn a few horizontal paths that are sufficiently

far apart and equidistant. In this case, since we need not worry about interactions

between the horizontal paths we burn, we can easily obtain an upper bound for b(Gc
√
n,n).

Theorem 3.3.1. If k =
⌈
(c/2)2/3

⌉
where c > 0, then b

(
Gc
√
n,n

)
≤ 2
√
kn+ k − 1.

Proof. For i ∈ [k − 1] t {0}, let P (i) denote the horizontal path in G = Gc
√
n,n at height

(2
√
kn + 1)i +

√
kn + 1. Let VP = V (P (0)) t V (P (1)) t · · · t V (P (k−1)). We then have

that

b
(
G;VP

)
≤ b
(
kPn

)
≤
√
kn+ k − 1 ,

where the latter inequality follows from Lemma 3.1.1, and the fact that kPn ⊂ Pkn where

∣∣E(kPn)
∣∣ =

∣∣E(Pkn)
∣∣− (k − 1) .

By our choice of k, the following hold true: distG(V (P (i)), V (P (i+1))) = 2
√
kn + 1 for

each i, path P (0) is at height
√
kn+ 1, and P (k−1) is at height

(2k − 1)
√
kn+ k ≥ 2k3/2

√
n−
√
kn ≥ c

√
n−
√
kn .

Consequently, every vertex in G is of distance at most
√
kn from a burned vertex. Thus,

by Lemma 3.3.1, after at most
√
kn more rounds, G is burned.

For small values of c, the upper bound in the preceding theorem can be improved. Just

take two horizontal paths P (1) and P (2) that are close enough to each other, so that

b
(
Gc
√
n,n;V

(
P (1)

)
t V

(
P (2)

))
< 2b

(
Pn
)

.

55

We thus have the following lemma:

Lemma 3.3.2. For 0 < c ≤
√

2, let P⊥, P> ∼= Pn be the horizontal paths in Gc
√
n,n at

heights 1 and c
√
n, respectively. We then have that

b
(
Gc
√
n,n;V (P⊥) t V (P>)

)
≤

(
c

2
+

√
1− c2

4

)(
1 + o(1)

)√
n .

Proof. Let m = c
√
n and let V (G) = {vi,j | (i, j) ∈ [m] × [n]} where G = Gc

√
n,n. For

any i ∈ [m] and t ≥ m− 1, we have that

NG[v1,i; t] ∩NG[vm,i+2t−m+1; t− 1] = ∅ ,

while the intersection of

NG[v1,i; t] tNG[vm,i+2t−m+1, t− 1]

with V (P>) and with V (P⊥) induces a connected path in either case. Analogously, for

any i ∈ [m] and t ≥ m− 1, we have that

NG[vm,i; t] ∩NG[v1,i+2t−m+1; t− 1] = ∅ ,

while

NG[vm,i; t] tNG[v1,i+2t−m+1; t− 1]

intersects V (P>) and V (P⊥) in a connected path in each case. Thus, letting

a =

(
c

2
+

√
1− c2

4

)(
1 + o(1)

)√
n ,

56

we may assume that the first a − m sources of fire appear in alternation in P> and

P⊥, such that no vertex in V (P⊥) t V (P>) is burned via two sources of fire, and that

the vertices in this set burned via the aforementioned sources of fire induce two paths.

Moreover, if the first source of fire is va,1 and the next a−m−1 sources of fire are further

to the right of va,1, then each source of fire among these that burns for i ≥ m rounds

causes 4i− 2m vertices to burn (2i− 1 vertices on one horizontal path, and 2i− 2m+ 1

vertices on the other). These sources of fire cause a total of

k =
a∑

i=m

(4i− 2m) = 2a(a−m+ 1)

vertices in V (P⊥) t V (P>) to burn. Furthermore, the vertices in V (P⊥) t V (P>) not

burned via those a−m sources of fire constitute at most three paths: a path containing

vm,1, another containing vm,n, and another containing v1,n. The orders of these three

paths sum up to 2n − k, and if we consider the sum of these three paths as a spanning

subgraph of P2n−k, then by Lemma 3.1.1 (applied with X = V (P2n−k)), the remaining

vertices can be burned with at most b(P2n−k) + 2 ≤
√

2n− k + 2 sources of fire. Thus,

if
√

2n− k + 2 ≤ m, we are done. Indeed, it can be routinely verified (for example, via

SageMath) that as long as

b
(
Gc
√
n,n;V (P⊥) t V (P>)

)
≤ 1

2

(
m+

√
4n−m2 − 2m+ 1 + 1

)
=

1

2

(
m+

√
4n−m2

) (
1 + o(1)

)
=

(
c

2
+

√
1− c2

4

)(
1 + o(1)

)√
n ,

we have that
√

2n− k + 2 ≤ m, and we are done.

57

Our final theorem of this chapter gives a refined upper bound on the burning number

of a fence Gc
√
n,n for small c.

Theorem 3.3.2. If 0 < c ≤ 2
√

2, then we have that

b
(
Gc
√
n,n

)
≤

(
c

2
+

√
1− c2

16

)(
1 + o(1)

)√
n .

Proof. Let P (1) and P (2) be the horizontal paths at heights c
√
n/4 and (3c/4 − 1)

√
n,

respectively, in G = Gc
√
n,n. If H ∼= Gc

√
n/2,n is the subgraph of G induced by the set of

vertices at heights c
√
n/4 to (3c/4− 1)

√
n inclusive, then

b
(
Gc
√
n,n;V (P (1))tV (P (2))

)
≤ b
(
H;V (P (1))tV (P (2))

)
≤

(
c

4
+

√
1− c2

16

)(
1+o(1)

)√
n ,

where the first inequality follows from Lemma 3.1.1, and the second follows from Lemma

3.3.2 with c/2 in place of c. Since distG(v, P (i)) ≤ c
√
n/4+1 for all v ∈ V (G) and i ∈ [2],

Lemma 3.3.1 implies that

b
(
G
)
≤ b
(
G;V (P (1)) t V (P (2))

)
+
c

4

√
n+ 1 ≤

(
c

2
+

√
1− c2

16

)(
1 + o(1)

)√
n ,

as desired.

58

Chapter 4

Background on CSPs and Datalog

We now review some of the literature on CSPs and Datalog. We begin with the famous

CSP Dichotomy Conjecture of T. Feder and M. Vardi ([32]):

Conjecture 4.0.1. The CSP for any finite template is either in PPP or in NP-CNP-CNP-C.

Progress towards resolving this conjecture includes the use of an algebraic approach (see

[14]), where templates are classified via their polymorphisms ([4]). This approach inspired

the Tractability Conjecture of Bulatov et al. ([14]), which has now been verified (and is

presented in Section 4.1 below). Interestingly, the verification is due to the joint results

of Bulatov ([16]) and Zhuk ([57]), who give proofs of the CSP Dichotomy Conjecture.

Delić ([26]) has provided another proof, using advanced algorithmic methods.

The aforementioned algebraic approach has an important connection with templates

of bounded width: those finite templates B whose CSP can be solved in polynomial

time by a so-called local consistency algorithm ([4]). A plain obstruction to such B

having bounded width is basic relations of B encoding linear equations over an addi-

tive Abelian group ([32]). The algebraic approach gives a full classification, in terms of

59

descriptive complexity, of templates omitting that obstruction — effectively characteriz-

ing templates of bounded width. Other characterizations exist, including CSPB having

bounded treewidth duality (see [24] and [32]), and ¬CSPB (the complement of CSPB)

being expressible in Datalog ([32]).

4.1 Results and Conjectures

In light of the foregoing discussion, there is a notable connection between templates of

bounded width and congruence ∧-semidistributivity. We have the following theorem:

Theorem 4.1.1 ([3]). Let B = (B;S) be a finite template. If V(B; PolB) is congruence

∧-semidistributive, then any instance of ¬CSPB is expressible in Datalog. Hence, the

CSPs expressible in Datalog are precisely those parametrized by finite, idempotent alge-

bras A for which V(A) is congruence ∧-semidistributive.

The results of [34] show that in the context of algebras A as considered above, the

existence of HM-terms implies the existence of weak Jónsson terms.

The following is the Tractability Conjecture (or Algebraic CSP Dichotomy Conjec-

ture), which has now been verified:

Theorem 4.1.2 (Algebraic Dichotomy). Suppose B is a finite core template. If the

polymorphism algebra of B is a Taylor algebra, then CSPB ∈ PPP. Otherwise, we have

that CSPB ∈NP-CNP-CNP-C.

This theorem, as we mentioned before, was originally conjectured by Bulatov et al.

([14]). They had only managed to prove the NPNPNP-completeness part at the time, leaving

the tractability part open.

60

If B = (B;S) is a finite template and j, k ∈ N0 with 0 ≤ j ≤ k, then B has at-most

(j, k)-pathwidth provided there exist I0, I1, . . . , Im ⊆ B such that ([4]):

(i) Ii ∩ Ij ⊆ Il for all i, j, and l satisfying 0 ≤ i ≤ l ≤ j ≤ m ;

(ii) |It| ≤ k for all t and |It ∩ It+1| ≤ j for all t < m ;

(iii) for each n-ary R ∈ S and each (b1, . . . , bn) ∈ RB, there is some t ≤ m for which

{b1, . . . , bn} ⊆ It .

If CSPB has an obstruction set consisting entirely of templates with at-most (j, k)-

pathwidth, then CSPB is said to have (j, k)-pathwidth duality ([4]). We say that CSPB

has bounded pathwidth duality if CSPB has (j, k)-pathwidth duality for some j and k.

In this case, CSPB ∈NLNLNL (see, for example, [22]). It turns out that CSPB has bounded

pathwidth duality if and only if ¬CSPB is expressible in linear Datalog. See [22] for

further details.

In addition to the aforementioned characterization of bounded pathwidth duality,

there is another one in terms of (j, k)-pebble-relation games (or (j, k)-PR games), where

j, k ∈ N0 and 0 ≤ j ≤ k. These games are played between two players, the Spoiler and

the Duplicator, on two templates A = (A;R) and B = (B;R). As described in [22], a

configuration of the game consists of a relation H ⊆ Hom(A|I ,B), where I ⊆ A such

that |I| ≤ k. Initially, I = ∅ and H = {∅}. In a given round of the game, the Spoiler

places pebbles on the elements of I, and the Duplicator responds with a similar action

on B so as to determine H. If Ht is the configuration after round t, then the Spoiler

decides what type of round Ht+1 will be: either a shrinking round or a blowing round.

In a shrinking round, the Spoiler sets It+1 ⊆ It, and the Duplicator responds by setting

Ht+1 = Ht|It+1 . In a blowing round, the Spoiler sets It+1 ⊇ It if and only if |It| ≤ j,

61

in which case the Duplicator responds with Ht+1|It ⊆ Ht. The Spoiler wins the game if

the Duplicator sets Ht+1 = ∅; otherwise, the game resumes. An algebraic description of

(j, k)-PR games is also given in [22]. Based on these games, Barto et al. ([4]) make the

following definition:

1. A solo play of the (j, k)-PR game on finite templates A = (A;R) and B = (B;R)

is a finite sequence (I0, I1, . . . , Im) of subsets of A satisfying two conditions:

a) |It| ≤ k for 0 ≤ t ≤ m , and

b) either It+1 ⊆ It or It ⊂ It+1 for 0 ≤ t < m, where |It| ≤ j in the latter case.

2. The resulting relations H0,H1, . . . ,Hm from a solo play (I0, I1, . . . , Im) of the (j, k)-

PR game on A and B are defined recursively as follows:

a) H0 = Hom(A|I0 ,B) , and

b) for 0 ≤ t < m , Ht+1 =


Ht|It+1 , It+1 ⊆ It{
h ∈ Hom(A|It+1 ,B)

∣∣ h|It ∈ Ht

}
, It ⊂ It+1 .

Solo plays and resulting relations correspond to plays of the (j, k)-PR game where, for

each t, the Spoiler chooses It and the Duplicator responds with Ht at best ([4]).

In particular, for every solo play of the (j, k)-PR game on A and B, the final resulting

relation is non-empty (written A#j,k B) if and only if the Duplicator has a strict winning

strategy (see [22]). We thus have the following theorem, which is Proposition 2 in [4]:

Theorem 4.1.3 ([4]). Suppose A and B are finite templates of the same signature. Then

CSPB has (j, k)-pathwidth duality if and only if A#j,k B implies A→ B.

Barto et al. ([4]) used a corollary of Theorem 4.1.3 to verify a reduction of their main

result to an at-most binary case. In Section 5.4, we will proceed in a similar fashion,

62

using a fact equivalent to Theorem 4.1.3 to verify an at-most binary reduction of our

own.

Two plain obstructions to bounded pathwidth duality are 3-Horn-Sat and linear

equations over an Abelian group ([4]). A reasonable conjecture is that the CSP for any

finite template omitting these obstructions has bounded pathwidth duality. The results

below indicate significant progress towards resolving this conjecture.

The main result of [1] was proven using the following theorem:

Theorem 4.1.4 ([1]). If A = (A;R) is a finite template such that arRR ≤ 2 for each

R ∈ R and (A; PolA) is congruence distributive, then A admits an NU polymorphism.

The following lemma is a modification of one step in the proof of a theorem that

reduces CSPs to digraphs (see Theorem 11 in [32]):

Lemma 4.1.1 ([4]). Fix t ∈ N. Suppose A = (A;R) is a finite template such that

arRR ≤ 2t for every R ∈ R. If W = (A; PolA), then there is a template A(t) = (At;S)

with arS S ≤ 2 for every S ∈ S such that:

(i) W(t) =
(
At; PolA(t)

)
and,

(ii) for 0 ≤ j ≤ k, (j, k)-pathwidth duality of CSPA(t) implies (jt, kt)-pathwidth dual-

ity of CSPA .

The next lemma generalizes Lemma 2 in [24].

Lemma 4.1.2 ([4]). Suppose A = (A;R) is a finite template admitting a (d+1)-ary NU

polymorphism for some d ≥ 2. Then there is a template Ad = (A;S) with arS S ≤ d for

every S ∈ S such that:

(i) PolA = PolAd and,

63

(ii) (j, k)-pathwidth duality of CSPAd implies (k, k + max({arRR}R∈R ∪ {d}) − d)-

pathwidth duality of CSPA .

The following proposition was used by Barto et al. ([4]) to prove their main result:

Proposition 4.1.1 ([4]). Suppose B = (B;S) is a finite template admitting a (d+1)-ary

NU polymorphism for d ≥ 2, with arS S ≤ 2 for every S ∈ S. Let

p = 2
(
blog3(2d− 3)c+ 2

)|B| − |B| − 1 .

Then CSPB has (p, p+ 1)-pathwidth duality. In case d = 2, CSPB has (2|B|, 2|B|+ 1)-

pathwidth duality.

The following main result of Barto et al. ([4]), referred to as the d-mapping property

by Feder and Vardi ([32]), is the main inspiration for our work in Chapter 5.

Theorem 4.1.5 ([4]). If a finite template B admits a (d+ 1)-ary NU polymorphism for

some d ≥ 2, then CSPB has bounded pathwidth duality and is thus in NLNLNL.

Observe that the d-mapping property proves the aforementioned conjecture not just for

finite templates admitting NU polymorphisms as hypothesized, but also for Jónsson

polymorphisms, by Theorem 4.1.4 and Proposition 4.1.1.

64

Chapter 5

New Results on CSPs and Datalog

In this chapter, we prove the longstanding Linear Datalog Conjecture. We first give a

proof in Section 5.3 for the special case of at-most binary conservative templates. In

Section 5.4, we give a proof for the general case.

5.1 Consistency Checks

Let K be a set of candidate solutions for an instance

I =
(
V,D,

{
(x,Rx)

∣∣ x = (x1, . . . , xk) ∈ V k
})

of a CSP. In solving I, checking for logical consistency would entail the removal of the

obstruction set {f(x) ∈ Dk r Rx | f ∈ K}. Suppose Dl ⊆ D is specifically the domain

for xl. For all i, j ∈ [k], the formula xi → xj is said to be arc consistent if, for every

a ∈ Di, there exists b ∈ Dj such that (a, b) ∈ R(xi,xj). That is, xixj is an arc in the

corresponding digraph, with Di and Dj being acceptable lists of labels (or “colours”) for

65

xi and xj, respectively. Special cases of arc consistency for Datalog will be considered

in Section 5.4.2. We say that I is (s, t)-consistent if, given f ∈ K and any S ⊆ V and

T ⊆ V r S with |S| = s and |T | = t, consistency of f [S] implies consistency of g[S t T]

for some extension g of f .

Given a template A = (A;R) ∈ CSPB where B = (B;R), we define a walk on A

as a sequence (c̄1, ā1, c̄2, . . . , c̄n, ān) of tuples on A satisfying the following condition: c̄i

contains all coordinates of āi−1 and āi for all i ∈ [n] and ā0 = (). If ā1 = ān = α, then

we say that the walk is closed with base α. The width of the walk is the maximal length

of c̄i appearing in it. In particular, the walk is simple if its width is 2. A realization of

the walk in B is a walk (d̄1, b̄1, d̄2, . . . , d̄n, b̄n) on B such that, for each i ∈ [n], there is a

partial homomorphism hi : C ⊆ A −→ B, where C consists of all coordinates in c̄i such

that d̄i = hi(c̄i), b̄i = hi(āi), and b̄i−1 = hi(āi−1).

We make the following claim:

Claim 5.1.1. Let B be a finite template, and let k ∈ N. Then for any A ∈ CSPB, the

following are equivalent:

(i) Input A fails the k-test.

(ii) There is a walk on A of width k, with no realizations in B.

Proof. Let A = (A;R) and B = (B;R). Given A ∈ CSPB and the k-program for B,

we can generate a list of p.p.-definable subsets Pa of B, indexed by a ∈ A. (One refers

to (A; {Pa | a ∈ A}) as a list instance.) Now obtain a system of k + 1 such lists, in the

following way:

a) Let P (0)
a = Pa for each a ∈ A.

66

b) For each i ∈ [k] and a ∈ A, let P (i)
a = R

(i)
1 (a)∩· · ·∩R(i)

s (a), where R
(i)
1 (a), . . . , R(i)

s (a)

are unary facts derived by the i-program on input (A; {P (i−1)
a | a ∈ A}).

We now look to reduce A to a list instance A′ using a consistency check, in such a way

that A has a solution if and only if A′ does. This is a fairly standard technique in the

study of parametrized CSPs; we omit the technical details here, and refer the reader to

[4]. However, the reduction technique will be fully demonstrated in Section 5.4.2, as it is

precisely what we will use to prove the Linear Datalog Conjecture.

The following lemma is a well-known fact from descriptive complexity:

Lemma 5.1.1. For any j, k ∈ N0 and every list instance A = (A; {Pa | a ∈ A}) of

CSPB, there exists r ∈ N0 computable from j and k, such that (A; {P (j)
a | a ∈ A})

passes the k-test whenever A passes the r-test.

Notice that Claim 5.1.1 provides an alternative to Datalog for checking whether A in the

preceding lemma passes the r-test. The usefulness of alternative consistency notions will

become especially evident in Section 5.4.

5.2 Linear Datalog

We now state the Linear Datalog Conjecture, which we prove in Section 5.4:

Conjecture 5.2.1 ([46]). If B is a finite template, then B admits a chain of weak

Jónsson terms if and only if ¬CSPB is expressible in linear Datalog.

Upon replacing the word “linear” with the word “symmetric” in the preceding conjecture

as stated, we obtain the Symmetric Datalog Conjecture. The latter can also be viewed

as the Space Dichotomy Conjecture:

67

Conjecture 5.2.2 ([46]). The CSP for any finite, idempotent algebra is either in LLL or

NL-HNL-HNL-H.

It was already shown in [46] that if a finite template B does not admit a chain of

weak Jónsson terms, then CSPB ∈ {3-Sat, 3-Horn-Sat, 3-Lin(p)}, and consequently,

CSPB /∈NLNLNL (which means that CSPB does not have bounded pathwidth duality). We

now proceed to show that, within the class of at-most binary conservative templates, the

presence of weak Jónsson terms implies expressibility of ¬CSPB in linear Datalog.

5.2.1 Bulatov Colouring of a Taylor Algebra

If A = (A;F) is an idempotent, conservative Taylor algebra, then we can assign colours

to two-element subuniverses of A in the manner set out by A. Bulatov in [15], based on

E.L. Post’s classification of algebraic clones on a two-element set (see [53]). According

to this classification, every idempotent algebra with universe C = {a, b} has one of the

following three types of operations:

(i.) a semilattice operation f , satisfying

f(a, a) = a , f(b, b) = b , and f(a, b) = f(b, a) = a ,

in which case we refer to a as the “minimal element”;

(ii.) a majority (that is, ternary NU) operation;

(iii.) a ternary affine operation m, which satisfies

m(x, x, y) = m(x, y, x) = m(y, x, x) = y

68

for all x, y ∈ C .

Appealing to graph theory, we make a rule that a and b form a directed red edge if C can

be equipped with a semilattice operation, with the edge being from b to a whenever a is

the minimal element. Otherwise, the edge between a and b is undirected; it is coloured

yellow if C can be equipped with a majority operation, and coloured blue if it is not yellow

and SgAC can be equipped with a ternary affine operation. This scheme is sometimes

referred to as a Bulatov colouring.

If A has weak Jónsson terms, then A can only have semilattice or majority operations.

Furthermore, the choice of these operations can be uniformized; there exists f ∈ Clo2 A

and g ∈ Clo3 A such that f and g agree with semilattice and majority operations on C,

respectively. Specifically, f induces the same minimal element when a and b form a red

edge, while f(a, b) = a when they form a yellow edge. Additionally, f(a, f(a, b)) = f(a, b)

for any a, b ∈ C. As for g, we have that g(x, y, z) = f(x, f(y, z)) for all x, y, z ∈ C when

the edge from b to a is red.

5.2.2 Taxonomy of Two-Element Subuniverses

I.G. Rosenberg’s classification of functional clones on B (see also [6]) provides useful

insight into the fine structure of finite, Boolean, idempotent algebras. The content of

Subsection 5.2.1 reveals that such an algebra having weak Jónsson terms must have either

a majority or semilattice operation; the latter being ∧ satisfying

0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0 and 1 ∧ 1 = 1 ,

69

or ∨ satisfying

0 ∨ 0 = 0 and 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1 .

Furthermore, if an algebra on B has weak Jónsson terms but no majority operation, then

it must have one of the following operations:

(i.) a (d+ 1)-ary NU polymorphism for some d > 2; or

(ii.) a Boolean operation g defined by g(x, y, z) = x ∨ (y ∧ z) (or, a Boolean operation

ĝ defined by ĝ(x, y, z) = x ∧ (y ∨ z)); or

(iii.) a Boolean operation h defined by h(x, y, z) = x∨ (y ∧¬z) (or, a Boolean operation

ĥ defined by ĥ(x, y, z) = x ∧ (y ∨ ¬z)).

Note that if A is an idempotent algebra with an NU polymorphism, then every algebra

in V(A) has Jónsson terms, since V(A) is congruence distributive (by Theorem 1.3.3).

The results of [6] also imply the following:

Theorem 5.2.1. If A is an idempotent algebra with weak Jónsson terms but with no

proper subalgebras, then Vfin(A) is congruence distributive.

In fact, when A is finite, the preceding theorem can be sharpened as follows:

Corollary 5.2.1. If A is a finite, idempotent algebra with weak Jónsson terms but with

no proper subalgebras, then V(A) = Vfin(A) is congruence distributive; its elements thus

have Jónsson terms.

We invite the reader to consult [6] and [38] for the proof of the above corollary.

Our final theorem of this section says that Boolean algebras with weak Jónsson terms

and a majority operation are precisely those whose clones are minimal, in the sense of

[54].

70

Theorem 5.2.2 ([38]). An algebra A = (B;F) with (weak) Jónsson terms and a minimal

functional clone is term equivalent to a Boolean algebra with a majority operation.

We remark that if A = (A;F) is a finite, idempotent, conservative algebra with weak

Jónsson terms, then for all a, b ∈ A such that a 6= b, both {a} and {b} are Jónsson ideals

of ({a, b};F) ≤ A. This will be an important observation for the proofs in the next

section.

5.3 Linear Datalog Conjecture: Conservative Case

We are now ready to develop our proof of the Linear Datalog Conjecture, for the case of

at-most binary conservative templates. Our proof is rooted in universal algebra, and is

largely inspired by the techniques of [1].

5.3.1 Local Near-Unanimity Polymorphisms

Suppose B = (B;R) is a template where all relation symbols in R are either unary or

binary. For any n ∈ Nr {1}, we can define an at-most binary instance

P (B, n) = (Bn, B, C) , (5.1)

where C consists of the following constraint relations:

R
P (B,n)
((a1,...,an),(b1,...,bn)) =

{(
p(a1, . . . , an), p(b1, . . . , bn)

) ∣∣ p ∈ PolnB
}

.

Observe that P (B, n) is an instance of CSP(B; PolB). The following is also true:

71

Proposition 5.3.1 ([1]). For every at-most binary template B and any n ∈ N r {1},

the set of solutions for P (B, n) is PolnB.

Given a parametrizing algebra P, we say that an instance P = (V,B, C) of CSPP

is simple if, for all x, y ∈ V where x 6= y, there exists C(x,y) = ((x, y), R(x,y)) ∈ C. This

corresponds to a |V |-partite graph G = (V,E) with partite sets {Px | x ∈ V }, where

|Px| = |B| for each x, and xy ∈ E if and only if (x, y) ∈ R(x,y). Solutions for P thus

correspond to cliques of size |V |.

Let

P =
(
V,B,

{(
(x1, x2), RP(x1,x2)

)}
x1,x2∈V

)
be a simple at-most binary instance of CSPP. If J = {Jx | x ∈ V } ⊆ P(B), then the

restriction of P to J is the simple at-most binary instance

P|J =

(
V,B,

{(
(x1, x2), R

P|J
(x1,x2)

)}
x1,x2∈V

)

where R
P|J
(x1,x2) = RP(x1,x2) ∩ (Jx1 × Jx2). Henceforth, all simple CSP instances we consider

will be at-most binary. This type of consideration is standard, and our results will not

depend on more general instances.

Suppose B = (B;R) is a template where |R| < ∞, and let P = (B;F) be a

conservative, idempotent algebra with weak Jónsson terms. The proof of the main result

of this subsection will require us to show that for every non-degenerate subset {a, b} of

B, there exists n ≥ 2 and φa,b ∈ PolnB such that φa,b|{a,b}n is an NU operation. To

that end, we will use the results of Section 5.2.2. Treating {a, b} as we would {0, 1},

we note that every subalgebra U = ({a, b};F) of P must have one of three types of

polymorphisms: operation 5.2.2(i.), 5.2.2(ii.), or 5.2.2(iii.). To prove the desired result,

72

it suffices to consider just operations 5.2.2(ii.) and 5.2.2(iii.) as possibilities for U.

(1,2)-systems

Let

P =
(
V,B,

{(
(x1, x2), R(x1,x2)

)}
x1,x2∈V

)
be a simple at-most binary instance with {Px | x ∈ V } ⊆ P(B). We then call P a

(1,2)-system if R(x1,x2) ⊆sd Px1 × Px2 for all x1, x2 ∈ V . In case P is an idempotent,

conservative algebra with weak Jónsson terms and P is an instance of CSPP, we say

that P is a (1,2)-system over P. As an example, (5.1) is a (1,2)-system over P, with

unary constraint relations of the form

R(a1,...,an) =
{
p(a1, . . . , an)

∣∣ p ∈ PolnB
}

=
{
a1, . . . , an

}
= SgP

{
a1, . . . , an

}
,

where the second equality holds since P is conservative.

Let

P =
(
V,B,

{(
(x1, x2), R(x1,x2)

)}
x1,x2∈V

)
be a simple at-most binary instance. A P-tree is a tree T with a labelling (or colouring)

map

X: V (T) −→ V . A realization r of a P-tree T in P is a map r : V (T) −→ B such that

(
r(v1), r(v2)

)
∈ R(X(v1),X(v2)) for every v1v2 ∈ E(T) .

Let ΓT (P) be the set of all realizations of T in P . Now suppose P is an instance of CSPP,

with J = {Jx | x ∈ V } ⊆ P(B). If P is also a (1,2)-system over P, then it readily follows

73

that every P-tree T is realizable and {r(v) | r ∈ ΓT (P)} = JX(v). Conversely, if every

P-tree T is realizable in P and T (P) is the set of all P-trees, then

Jx =
⋂

T∈T (P)
v∈V (T)
X(v)=x

{r(v) | r ∈ ΓT (P)} 6= ∅

for each x ∈ V , and P|J is a (1,2)-system over P. For a proof of this fact, see Proposition

5.3 in [1].

(2,3)-systems

Let

P =
(
V,B,

{(
(x1, x2), R(x1,x2)

)}
x1,x2∈V

)
be a (1,2)-system. We then call P a (2,3)-system if, for all x1, x2, x3 ∈ V and each

(a1, a2) ∈ R(x1,x2), there exists a3 ∈ B such that (a1, a3) ∈ R(x1,x3) and (a2, a3) ∈ R(x2,x3).

Indeed, (5.1) is an example of a (2,3)-system.

If P = (V,B, C) is a (1,2)-system, then a pattern in P is any tuple

x = (x1, . . . , xn) ∈ V n; n ≥ 2 ,

such that for each i ∈ [n− 1], there exists C(xi,xi+1) ∈ C. (This is similar to a walk on a

template, as defined in Section 5.1.) Such a pattern x is said to be closed with base u if

x1 = xn = u for u ∈ V . We say that (b1, . . . , bn) ∈ Bn is a realization of the pattern x

in P if (bi, bi+1) belongs to the constraint relation R(xi,xi+1) for each i ∈ [n− 1]. We also

say that a, a′ ∈ B are connected by x if there is a realization (a, b2, . . . , bn−1, a
′) of the

pattern x in P .

74

The concatenation of two patterns x = (x1, . . . , xm) and x′ = (xm, . . . , x2m−1) is

x_x′ = (x1, . . . , xm, . . . , x2m−1) .

We denote the k-fold concatenation of x with itself by x_k.

Let P = (V,B, C) be a (1,2)-system with {Pv | v ∈ V } ⊆ P(B). We say P is a

Prague strategy if, for each v ∈ V , and any two P-patterns x = (v, x2, . . . , xn−1, v) and

x′ = (v, xn+1, . . . , x2n−2, v) with {x2, . . . , xn−1} ⊆ {xn+1, . . . , x2n−2}, and any a, a′ ∈ Pv

connected by x, there exists k ∈ N such that a and a′ are connected by x′_k.

The next theorem is an extension of Theorems 5.6 and 5.7 in [1], which were stated

under the assumption that the (2,3)-system is parametrized by a congruence distributive

algebra; equivalently, one that has Jónsson terms. We relax this condition by requiring

only weak Jónsson terms.

Theorem 5.3.1. Let P = (V,B, C) be a (2,3)-system with {Px | x ∈ V } ⊆ P(B), over

a conservative algebra P = (B;F) with weak Jónsson terms. Suppose J is a family of

Jónsson ideals of (Px;F) ≤ P.

(1.) If all P-trees with at most 48|B| vertices are realizable in P|J , then all P-trees are

realizable in P|J .

(2.) If P|J is a (1,2)-system, then P|J is a Prague strategy, and therefore has a solution

(since CSPP is of bounded width).

Proof. The proof of part (1.) is based on that of Lemma 6.1 in [1], which uses the

properties of Jónsson terms, without the requirement that pi(x, y, x) = x hold in the

parametrizing algebra for 0 < i < n. That proof is therefore valid under the assumption

that p0, p1, . . . , pn form a sequence of weak Jónsson terms. For part (2.), we simply note

75

that the proof in [2] which shows that P|J is a Prague strategy is based on the proof

of Lemma 6.7 in [2]. This also uses the properties of Jónsson terms, except for the one

that sets Jónsson terms apart from weak Jónsson terms. The proof of the theorem thus

follows.

Existence of Local Near-Unanimity Polymorphisms

We shall return to the simple at-most binary instance P (B, n) = (Bn, B, C) which, as

we have seen in Proposition 5.3.1, characterizes PolnB for all n ≥ 2. First, we state a

variant of Theorem 5.3.1(1.).

Proposition 5.3.2. Let P = (V,B, C) be a (2,3)-system with {Qx | x ∈ V } ⊆ P(B),

over a conservative algebra P = (B;F) with weak Jónsson terms. Suppose ρx is a

congruence on Qx = (Qx;F) such that, for each x ∈ V , either Qx is an algebra with

Jónsson terms or ρx = Qx×Qx. Finally, let J = {Jx | x ∈ V } ⊆ P(B) such that Jx is a

ρx-block for each x ∈ V . If all P-trees with at most 48|B| vertices are realizable in P|J ,

then all P-trees are realizable in P|J .

Proof. Since Jx is a Jónsson ideal of Qx for each x ∈ V , the proof is a simple adaptation

of the proof of Theorem 5.3.1(1.). More specifically, the assumption that the statement

of the proposition fails in P implies the existence of Jx 6 P for some x ∈ V , such that

Jx 6= Qx. This violates the conditions U,L ⊆ B, E,F 6 P2, and a, b ∈ B of Lemma

6.1 from [1] (apart from our choice of notation P), since the condition Jx 6= Qx together

with the other aforementioned conditions implies that Qx ≤ P has Jónsson terms.

In light of the preceding proposition, given P = P (B, n), consider n > 48|B| . Suppose

that the restrictions of p0, p1, . . . , ps ∈ Pol3 B to {a, b}3 induce a sequence of Jónsson

terms for ({a, b};F) ≤ (B;F). We now explore three key scenarios.

76

If x ∈ Bn has only one coordinate b and all remaining coordinates are a, then let

ρx be ={a,b} and let Jx = {a}. Similarly, if x ∈ Bn has only one coordinate a and all

remaining coordinates are b, then let ρx be ={a,b} and let Jx = {b}. Otherwise, for any

other x ∈ Bn, let ρx = Qx×Qx with Jx = Qx. Now every P-tree T of order at most n−1

is realizable in P|J , where J = {Jx | x ∈ Bn}. Since Bn is comprised of n-tuples and

|V (T)| < n, there exists i ∈ [n] such that b cannot occur in the ith position of any n-tuple

x of the first kind considered above. The ith-coordinate projection of any n-tuple x is a

desired realization of T in P|J . Thus, by Proposition 5.3.2, every P-tree is realizable in

P|J .

Further to the comments above, the discussion at the end of the subsection on (1,2)-

systems implies the existence of J ′ = {J ′x | x ∈ V ′} ⊆ J , such that (V ′;J ′) is a

(1,2)-consistent list instance of the CSP considered. Here, V ′ consists of all x ∈ Bn from

the third scenario above. To show that Q = P|J ′ has a solution, it is enough to show that

Q|V ′ (the restriction of Q to V ′) has a solution. This is indeed the case, since |J ′x| = 1 for

each x ∈ Bn r V ′ and Q|V ′ is a (1,2)-system. However, since a common n-ary operation

can be defined on J ′x for each x ∈ V ′ (which may be a unary projection), a solution to Q

exists. We have thus established the following result:

Proposition 5.3.3. Suppose P = (B;F) is a finitely related, idempotent, conservative

algebra with weak Jónsson terms. If a, b ∈ B where a 6= b, then P has a (da,b + 1)-

ary term operation φa,b such that φa,b|{a,b}da,b+1 is a (da,b + 1)-ary NU operation, where

da,b ≤ 48|B| .

We have in fact given sufficient conditions for the existence of a “local” NU polymorphism.

In the next subsection, we consider “global” NU polymorphisms.

77

5.3.2 Near-Unanimity Polymorphisms: From Local to Global

Our objective now is to show that, under the assumption of P being finitely related

with weak Jónsson terms as per Proposition 5.3.3, P has a stronger universal algebraic

property: P has an NU polymorphism of a certain computable arity. We have the

following proposition:

Proposition 5.3.4. Suppose P is a finite, conservative, idempotent algebra, defined by

a finite set of at-most binary relation symbols, with weak Jónsson terms. Then P has a

conservative NU polymorphism.

Proof. Assume that P = (B; PolB). By Proposition 5.3.3, for any a, b ∈ B where a 6= b,

there exists φa,b ∈ Polda,b+1 B; da,b ≥ 2, such that φa,b|{a,b}da,b+1 is a (da,b + 1)-ary NU

polymorphism. If

B = {a0, a1, . . . , an−1} , (5.2)

and φa,a denotes the unary identity polymorphism on B, then the star composition

φa = φa,a0 ? φa,a1 ? · · · ? φa,an−1

has the following property for all b ∈ B:

φa(b, a, . . . , a) = φa(a, b, a, . . . , a) = · · · = φa(a, . . . , a, b) = a . (5.3)

This can be checked using the fact that φa,b = φa,b|{a,b}da,b+1 on {a, b}da,b+1, and that

{a, b} 6 P for all a, b ∈ B.

Now, to construct an NU polymorphism for P, we use (5.2), and consider the star

78

composition

φ = φa0 ? φa1 ? · · · ? φan−1 .

Using (5.3), it can be readily verified that φ is an NU polymorphism.

The arity of φ in the preceding proof can thus be computed from {da,b | a, b ∈ B; a 6= b}.

It follows that arφ = d + 1 for sufficiently large d, and that arφ is bounded above by a

constant dependent on |B|.

Using the d-mapping property (Theorem 4.1.5), we thus obtain a proof of our main

result in this section:

Theorem 5.3.2. Suppose P = (B;F) is a finite, conservative, idempotent, algebra,

defined by a finite set R of at-most binary relation symbols, with F = Pol(B;R). If

B = (B;R), then the following are equivalent:

(i) B admits a chain of weak Jónsson terms;

(ii) ¬CSPB is expressible in linear Datalog;

(iii) CSPB has bounded pathwidth duality.

Hence, among the templates admitting weak Jónsson terms, the conservative templates

must have Jónsson terms (by Theorem 1.3.3).

Having proven our main result above, we have provided another proof of the result

by Dalmau et al. ([23]), which established the space dichotomy of list homomorphism

problems for at-most binary templates (by proving that the Symmetric Datalog Conjec-

ture holds for these problems). The result of Dalmau et al. ([23]) is a corollary of the

following theorem of A. Kazda:

79

Theorem 5.3.3 ([37]). Let B be a template with an HM-sequence. If ¬CSPB is

expressible in linear Datalog, then ¬CSPB is also expressible in symmetric Datalog.

Our proof relies almost entirely on the algebraic properties of B, instead of a finer

combinatorial analysis of [23] or its predecessor [30]. This provides an alternative view-

point, which lends itself to other systems of terms witnessing algebraic properties of the

parametrizing algebra.

It is now, in fact, not difficult to adapt our proof to the special case when weak

Jónsson terms for B are actually HM-terms witnessing congruence n-permutability. We

can therefore give a direct algebraic proof of the Symmetric Datalog Conjecture for at-

most binary conservative templates. We sketch this proof below.

Let B = (B;R). Since the presence of HM-terms implies the existence of (weak)

Jónsson terms, using the same argument as before, we can show that there is a (d+ 1)-

ary NU polymorphism for some d ≥ 2 on Pa for each a ∈ A, where {Pa | a ∈ A} is the list

generated by the canonical symmetric 2-Datalog program for B, after its run on input

A = (A;R). If U is a simple, idempotent, conservative algebra with HM-terms, then the

cover will consist of irreducible, two-element neighbourhoods U inducing polynomially

equivalent algebras, for which we have Maltsev polynomials satisfying

mU(x, x, y) = mU(y, x, x) = y ,

for every U . Additionally, since all such U induce polynomially equivalent algebras, the

Maltsev term can be uniformized: there is a unique term operation m acting as a Maltsev

polymorphism on all U . After fixing a maximal congruence θa on Pa for all a ∈ A, we

80

obtain a list instance L = (A; {Pa/θa | a ∈ A}) for which the relations

R(a1,a2)/(θa1 , θa2) ⊆ Pa1/θa1 × Pa2/θa2

are defined as follows: (b1/θa1 , b2/θa2) ∈ R(a1,a2)/(θa1 , θa2) if and only if there exists

c1 ∈ Pa1 , c2 ∈ Pa2 , (b1, c1) ∈ θa1 , (b2, c2) ∈ θa2 , and (b1, b2) ∈ R(a1,a2) ⊆ Pa1 × Pa2 . Since

B has both Maltsev and NU polymorphisms, the results of [25] imply that ¬CSPB is

expressible in symmetric Datalog.

It follows that L will have a solution whenever L passes the symmetric r-test for some

r ≥ 2. It can be shown that the reduced list instance (A; {{pa/θa} | a ∈ A}) will also

have a solution. The proof parallels the one given in [4] via the authors’ Claims 3 and

4, but uses blocks arising from Pa for each a ∈ A instead of singletons, as absorbing

subuniverses.

5.4 Linear Datalog Conjecture: General Case

Let B = (B;S) be an at-most binary template, whose set of basic relations is closed

under p.p. definitions. Recall that if P = (V,B, C) is a (1,2)-system with subdomains

{Jx | x ∈ V } over a parametrizing algebra P, then every P-tree T is realizable and

{r(v) | r ∈ ΓT (P)} = JX(v), where ΓT (P) is the set of all realizations of T in P , and

X: V (T) −→ V is a labelling map for T . If Bv is a p.p.-definable subset of B for each

v ∈ V (T) and V (T) ⊇ {v1, . . . , vn}, then the following relations are p.p.-definable over

B:

R =
{(
r(v1), . . . , r(vn)

)
∈ Bn

∣∣ r ∈ ΓT (P); r(v) ∈ Bv ∀v ∈ V (T)
}

81

and

S =
{
b ∈ B

∣∣ (b, . . . , b) ∈ R
}

.

The reader can check this; see also Lemma 13 in [4]. For convenience, we will continue to

use the notation ΓT (P) for the remainder of this section. We will also let W(P) denote

the set of all P-paths (that is, P-trees with two leaves).

Barto et al. ([4]) recursively define, for fixed d ∈ Nr {1}, the following sets of trees:

(i.) T (0)
d , the set of all single-edge trees;

(ii.) for each i ∈ N, T (i+1)
d , the set of all tree compositions with components from T (i)

d

and at most d leaf components.

Indeed, T (0)
d ⊆ T (1)

d ⊆ T (2)
d ⊆ · · · . For d = 2, this simplifies to T (1)

2 = T (2)
2 = · · · = L,

where L is the set of all paths. This is the case in which our proof of the Linear Datalog

Conjecture applies.

5.4.1 Algebraic Results

Let A = (A;FA) be an algebra such that FA is a functional clone on A containing a

(d+ 1)-ary NU operation for some d ≥ 2. If Rd = {R ∈ InvA | arR = d}, then (A;Rd)

p.p.-defines A⊥. If FA contains all nullary constant operations and InvA consists of all

compatible diagonal relations, then A⊥ is p.p.-defined by (A;B), where B is the set of all

binary reflexive compatible relations from InvA.

The following proposition will play an important role in our characterization of finitely

related, finite, simple algebras with weak Jónsson terms:

Proposition 5.4.1. Let A = (A;FA) be an algebra where FA is a functional clone on

A. If U = {U1, . . . , Uk} is a cover of A and A|Ui
has a majority term for all i ∈ [k], then

82

A also has a majority term.

Proof. For each i ∈ [k], let mi be a majority term operation for A|Ui
. Since U is a

cover of A, by Theorem 1.4.3, there exist f, e1, ρ1, . . . , ek, ρk ∈ CloA witnessing this fact.

Consider the ternary term

M(x, y, z) = f
(
m1(a1, b1, c1), . . . ,mk(ak, bk, ck)

)
where ai = ei(ρi(x)), bi = ei(ρi(y)), and ci = ei(ρi(z)) for all i ∈ [k]. According to

Theorem 1.4.3(ii), M(x, y, z) = x. Combining this with the fact that mi satisfies

mi(x, x, y) = mi(x, y, x) = mi(y, x, x) = x

for all i ∈ [k], we see that

M(x, x, y) = M(x, y, x) = M(y, x, x) = x .

We now look to derive a result about simple algebras with weak Jónsson terms.

Specifically, we aim to show that such algebras possess a compatible function, assuming

that the relational clone contains diagonal relations of all arities.

Chapters 2, 3, and 8 of [34] contain results from tame congruence theory, which is

a localization theory. We combine several of these results into one theorem (Theorem

5.4.1). While the proof of our unified theorem is highly nontrivial, the interested reader

can refer to [34] for all of the individual details.

83

Theorem 5.4.1. Let A = (A; PolA) be a simple algebra such that PolA contains (weak)

Jónsson term operations. IfM is the set of all minimal (under ⊆) neighbourhoods of A,

then the following hold true:

a) Every U ∈M has cardinality 2.

b) For each a ∈ A, there exists U ∈M such that a ∈ U .

c) The system M separates points : for any a, b ∈ A where a 6= b, there exists

U = e[A] ∈M such that e ∈ Pol1 A and e(e(a)) = e(a) 6= e(b) = e(e(b)).

d) For every U ∈M, there exists a majority polynomial mU(x, y, z) satisfying

mU(x, x, y) = mU(x, y, x) = mU(y, x, x) = x for all x, y ∈ U .

As a consequence of Theorem 5.4.1, we obtain the following result:

Corollary 5.4.1. If A is a finite, simple algebra with weak Jónsson terms, then A has a

majority polynomial.

Proof. Suppose RA is the set of all binary reflexive invariants for A. Given the set

M of all minimal neighbourhoods of A = (A;RA)⊥, parts b) and c) of Theorem 5.4.1

together imply thatM covers A. Since A|U has a majority polynomial for each U ∈M,

Proposition 5.4.1 implies that A must also have a majority polynomial.

5.4.2 Proof of Linear Datalog Conjecture

Let A = (A;R) be a finite, at-most binary template admitting weak Jónsson terms.

Without loss of generality, we may assume that the basic relations of A include every

84

unary and binary relation preserved by the weak Jónsson term operations. If

P = (V,A, C)

is a (1,2)-system with {Px | x ∈ V } ⊆ P(A) over V = (A; PolA), then for each x ∈ V ,

we can define a chain of subsets (or “levels”)

Px = P (0)
x ⊇ P (1)

x ⊇ · · · (5.4)

in the following way: for any T ∈ W(P) with labelling map X: V (T) −→ V , let

P (i+1)
x (T,X) =

{
a ∈ P (i)

x

∣∣∣∣ ∃r ∈ ΓT (P); r(v) ∈ P (i)
X(v) ∀v ∈ V (T),

r(v) = a ∀v ∈ {u ∈ V (T) | X(u) = x}
}

,

and let

P (i+1)
x =

⋂
T∈W(P)

P (i+1)
x (T,X) .

A Datalog program verifying the linear arc consistency (or LAC) of instance P has one

IDB for Px; x ∈ V , and the rules are as described in [26]. We will appeal to a provably

stronger notion, known as singleton linear arc consistency (or SLAC).

A fairly recent result of M. Kozik ([44]) shows that all CSPs over templates of bounded

width can be solved by the SLAC algorithm (see [26]), while there are CSPs over tem-

plates of bounded width that cannot be solved by the LAC algorithm; for example,

3-Horn-Sat. Given this result, we make the following claim regarding (5.4):

Claim 5.4.1 ([4]). For fixed k ∈ N0, we must have P (k)
x 6= ∅ for all x ∈ V .

85

Thus, for each x ∈ V , we have A ⊇ P (0)
x ⊇ P (1)

x ⊇ · · · ⊇ P (k)
x 6= ∅, where |A| = k.

Consequently, there exists nx < k such that P (nx)
x = P (nx+1)

x . In fact, given x ∈ V , we

may assume that

nx = min
{
s
∣∣ P (s)

x = P (s+1)
x

}
.

Let y ∈ V be such that

ny = max
{
nx
∣∣ x ∈ V } .

We may also assume that ny ≥ 1. Namely, if nx = 0 for all x ∈ V , then P is a SLAC-

instance (see [26]) and by the result of [44] mentioned above, P has a solution. Thus,

P (n)
y = P (n+1)

y for some n ≥ 1.

Let α be a maximal congruence on P (1)
y such that c/α ∈ P (ny)

y /α. Given P as above,

let T ∗L (P) denote the set of all P-tree compositions (alternatively, tree patterns ; see [44])

T whose labelling map X: V (T) −→ V sends all composition vertices of T into L ⊆ V .

The following result concerning (5.4) is a restatement of Claim 4 in [4]:

Proposition 5.4.2. If V ′ = V r {y}, then there exists nonempty Dx′ ⊆ P
(ny)
x′ for each

x′ ∈ V ′ such that Dx′ 6 V (where V is the algebra over which P is a (1,2)-system).

Moreover, for every T ∈ T ∗L (P), if L = {u ∈ V (T) | degT u = 1, X(u) ∈ V ′}, then for

each u ∈ L and each a ∈ Dx′ , there exists r ∈ ΓT (P) such that:

(i) r(u) ∈ P (ny)
y ∩ (c/α) for each u ∈ V (T) for which X(u) = y ;

(ii) r(v) ∈ Dx′ for each v ∈ L for which X(v) = x′ ∈ V ′ ; and

(iii) r(u) = a .

A proof by contradiction works well for the preceding result, as demonstrated in [4].

86

Our strategy for proving the Linear Datalog Conjecture will be to reduce P to a

proper subsystem Q with subdomains {Qx | x ∈ V }, satisfying the following property:

if c ∈ Qx ∩ P (ny+1)
x for all x ∈ V , then every P-tree T with labelling map X has a

realization r such that r(v) = c for every v ∈ V (T) for which X(v) = x. By restricting

to the case of T ∈ W(P), we obtain a consistency condition for linear Datalog programs.

Iterating the reduction, we will eventually arrive at the trivial system (whose subdomains

are singletons), which has the aforementioned property (thus giving a solution for P).

Let V = {x0, x1, . . . , xm} so that nx0 ≥ nx1 ≥ · · · ≥ nxm . In the first step of the

reduction, we replace Pxi with P (2)
xi

for every i ∈ [m] t {0}. By definition of a Datalog

program, the subinstance P(2) of P with subdomains P (2)
x0
, P (2)

x1
, . . . , P (2)

xm has a solution if

and only if P has a solution, since restricting domains based on the program rules does

not eliminate any elements which appear in some solution for P . Since each constraint

relation is either unary or binary, every compatible binary relation on P (2)
xi

for each i is

defined by a P-path pattern with labelling map X, whose terminal vertices u and v satisfy

X(u) = X(v) = xi. Now suppose T ∈ T ∗L (P) and {w1, . . . , wk} is the set of all leaves of

T such that X(w1) = · · · = X(wk) = xi for some i. Now for every i, let R be the relation

consisting of all tuples (c1, . . . , ck) ∈ (P (2)
xi

)k for which there exists r ∈ ΓT (P) such that

r(wj) = cj for all j ∈ [k]. By the preceding commentary and the remarks made at the

beginning of this subsection, R ∈ Invk(P
(2)
xi

; PolA) for all i. Since PolA is a functional

clone on A containing all of the constant operations on A, we have that R is diagonal.

A linear Datalog program on input P(2) obeys a certain consistency condition, as we

claim (see also Figure 5.1):

Claim 5.4.2 (L-Property). For each c ∈ P (l)
xi

with l ∈ [k] r {1}, and every u,v-path T

such that X(u) = xi and X(v) = xj, there exists r ∈ ΓT (P) such that r(u) = c.

87

Proof. Follows from (5.4) and the definition of canonical linear |E(T)|-Datalog program.

P (k)
xi

P (k−1)
xi ...

P (2)
xi

P (1)
xi

Pxi A

r

T

c
xi

u

xj

v

Figure 5.1: A diagram illustrating the L-property (Claim 5.4.2). The “L” not only refers
to the levels P (l)

xi
; l ∈ [k]r{1}, but to the linear Datalog program satisfying the property.

Note that by Claim 5.1.1, the conclusion of Claim 5.4.2 is equivalent to P passing the

|E(T)|-test.

Let β be a maximal congruence on (P (2)
x0

;F) ≤ V = (A;F). As (P (2)
x0
/β;F) is a

finite, simple algebra with weak Jónsson terms, this algebra has a majority polynomial

operation p by Corollary 5.4.1. Hence, if y ∈ P (nx0)
x0 , then {y/β} Ep P (2)

x0
/β.

The next theorem is essentially the main device used in proving the existence of a

proper subsystem satisfying the L-property. It is a simple consequence of Theorem 7.1

from [44].

Theorem 5.4.2. Let P be a CSP instance with subdomains Px0 , Px1 , . . . , Pxm , satisfying

the L-property. For each i ∈ [m]t{0}, let Qxi absorb Pxi such that for every T ∈ T ∗L (P)

with labelling map X, there exists r ∈ ΓT (P) with the property that r(u) ∈ Qxi whenever

X(u) = xi. We then have that the subinstance Q with subdomains Qx0 , Qx1 , . . . , Qxm

also satisfies the L-property.

88

We now proceed to give a formal proof of the fact that our recursive reduction to

trivial subinstances is valid. We have the following theorem:

Theorem 5.4.3. Let P = (V,A, C) be a (1,2)-system over A with subdomain Px for each

x ∈ V , and let P(2) be the subinstance having subdomain P (2)
x for each x ∈ V . Then

there is a proper subinstance of P(2) having the L-property.

Proof. Recall that P(2) has the L-property. Let P ′x0 = {y/β}, where y ∈ P
(nx0)
x0 and

β is a maximal congruence on P (2)
x0

. As mentioned earlier, {y/β} Ep P (2)
x0
/β, where p

is a majority polynomial operation. Therefore, we let P ′xi = {y/β} if i = 0, and we let

P ′xi = P (2)
xi

if i > 0. The existence of p ensures that the clone generated by binary reflexive

compatible relations contains all relations definable by the leaves u of T ∈ T ∗L (P), such

that X(u) = x0 if X: V (T) −→ V . In particular, any relation defined by some subset

of the leaves of T must contain the constant tuple (y/β, . . . , y/β). In particular, for any

T ∈ T ∗L (P) with labelling map X, there exists r ∈ ΓT (P) such that r(u) ∈ y/β for all

u ∈ V (T) for which X(u) = x0. Thus, every T ∈ T ∗L (P) can be realized in P(2). By

Theorem 5.4.2, the L-property is also satisfied by the proper subinstance of P(2) having

subdomain P ′xi for each i ∈ [|V | − 1] t {0}.

By taking V = {x0, x1, . . . , xm} so that nx0 ≥ nx1 ≥ · · · ≥ nxm (as suggested earlier)

and iterating the process in the preceding proof, we can reduce Pxi to a singleton subset

of P
(nxi)
xi for each i ∈ [m] t {0}, while preserving the L-property. When the L-property

holds for some trivial instance I whose subdomains are {a0}, {a1}, . . . , {am}, we have

that I yields a solution for P(2). This implies the existence of a template homomorphism

h : (V ;R) −→ (A;R) such that h(xi) = ai for each i ∈ [m]t{0}. It follows that ¬CSPA

is expressible in linear Datalog, since the existence of h is due to our consistency condition

89

being met (that is, the L-property being preserved); see [43] for more insight. We have

thus shown the following:

Corollary 5.4.2. If A is a finite, at-most binary template admitting weak Jónsson terms,

then ¬CSPA is expressible in linear Datalog.

Now, relaxing the assumption that A is at-most binary, we invoke Lemma 4.1.1 which

assumes A is at-most 2t-ary for t ∈ N. Since A(t) from that lemma satisfies the hypotheses

of Corollary 5.4.2 as t→∞, the Linear Datalog Conjecture (Conjecture 5.2.1) has thus

been validated.

90

Chapter 6

Conclusion and Open Problems

6.1 Summary

We found new bounds on the burning number of fence graphs Gc
√
n,n. We note that our

main result of Chapter 3, Theorem 3.1.2, implies that there exist k1, k2 ∈ R, independent

of both n and c, such that

k1c
1/3
√
n ≤ b

(
Gc
√
n,n

)
≤ k2c

1/3
√
n .

Our bounds in Theorem 3.1.2 are not asymptotically tight, so it would be interesting

to determine the constant in the leading term for the burning number of fences. An

adaptation of our methods might provide a means for finding tight bounds.

We have also shown that for every finite at-most binary conservative template P

admitting weak Jónsson terms, CSPP has bounded pathwidth duality and, consequently,

¬CSPP is expressible in linear Datalog. For that reason, CSPP ∈ NLNLNL. By a result

of Larose and Tesson ([46]), all problems in NLNLNL for which P does not admit HM-terms,

91

are, in fact, NLNLNL-complete. From the perspective of descriptive complexity, this provides

a complete classification of CSPs for at-most binary conservative templates of bounded

width.

Building on our results for the case of conservative templates, we developed a proof

of the Linear Datalog Conjecture for the general case. We showed, by way of consistency

checks, that the CSP of any finite core template admitting weak Jónsson terms must

have bounded pathwidth duality, thereby placing it in NLNLNL.

The reader might have noticed that pebble games are not the only connection between

graph burning and Datalog. Besides complexity theory, graph theory plays a major part

in bridging the two areas of research. Recall, in particular, that burning of a tree T

in k rounds is equivalent to a partition of T into k suitable subtrees. Compare this to

realizations of P-trees, as seen in our reduction (or consistency checking) method of the

last chapter. It is evident that meaningful parallels exist between graph burning and

Datalog.

6.2 Open Problems

Our work on CSPs and Datalog has thoroughly addressed space dichotomy, which has

been a rich source of open problems. Thus, for the sake of brevity, we reserve further

discussion on this, and instead focus on graph burning. Open questions remain from

our work on burning grids, and new questions have emerged from variants of ordinary

burning. Although we have not had the time to fully explore such variants, we plan to

do so in future work.

92

6.2.1 Burning Grids

Recall our upper bound for b
(
G√n,n

)
:

2 +
√

15

4

(
1 + o(1)

)√
n ≈ 1.468

√
n .

A potential improvement is

3
(
1 +
√

29
)

14

(
1 + o(1)

)√
n ≈ 1.368

√
n ,

personally communicated to us by P. Pra lat ([52]). A sound method for computing this

bound was also described; it relies on closed k-neighbourhoods (or balls), as treated in

Chapters 2 and 3 of this dissertation.

An open direction worth exploring is the extension of our results to the setting of

strong products. Since G � H is a spanning subgraph of G � H, many of our results

extend to strong products of paths, and therefore strong grids. In [50], it was found that

for m ≤ n,

b
(
G×m,n

)
= b
(
Pm � Pn

)
=


3

√
3

4

(
1 + o(1)

)
3
√
mn , m = ω

(√
n
)

Θ
(√

n
)
, m = O

(√
n
)

.

Another open direction is to improve the bounds on b(G×m,n) for m = O(
√
n). This also

begs the question: what is the burning number of the m × n toroidal grid, which is

isomorphic to Cm � Cn? By Theorems 2.1.2 and 2.1.10,

b(Gm,n) = b(Pm � Pn) ≥ b(Cm � Cn) ≥ max{b(Cm), b(Cn)} .

93

Such open questions naturally extend to higher dimensional grids as well.

6.2.2 Total Burning

For any graph G, total graph burning amounts to burning T (G). Thus, nodes or edges

may be burned in G, with fires spreading across edges. We define the total burning

number of G as bt(G) = b(T (G)); that is, the minimum number of rounds necessary for

all elements of G to burn. The figure below illustrates total burning for the case of the

6-wheel, W6.

(a) Round 1 (b) Round 2 (c) Round 3

Figure 6.1: Sample total burning of W6. In Round 1, a fire breaks out at the central
node of W6 (and of T (W6)). In Round 2, the fire spreads to adjacent nodes in W6 and
in T (W6), thereby burning the edges incident with the central node in W6. Finally, in
Round 3, the remaining elements are burned. Hence, bt(W6) = b(T (W6)) = 3.

A reasonable conjecture is that for any undirected graph G, we have that

b(G) ≤ bt(G) ≤ b(G) + 1 .

However, it would be useful to have a characterization, perhaps analogous to that for

rooted tree partitions, of graphs G with bt(G) = k. The behaviour of total burning on

induced or isometric subgraphs is also worth considering. Determining the total burning

numbers of various graph products, including grids, is also an open problem.

94

6.2.3 Fast and Slow Burning

Given a graph G and k ∈ N, suppose that burned nodes of G spread fire to all their

k-neighbours. We call this k-fast burning, and the associated graph parameter bf(G; k).

For example, bf(C4; 2) = 3. This reduces to ordinary graph burning when k = 1.

Now suppose every burned node of G spreads fire to k neighbours of our choosing.

This coincides with ordinary graph burning when k = ∆(G). We refer to this process

as k-slow burning, and denote the associated graph parameter by bs(G; k). Note that

bs(G; k) ≥ b(G), as seen in the case of complete graphs G. For example,

bs(K7; 1) = 4 > 2 = b(K7) .

A characterization for graphs G with bf(G; k) or bs(G; k) equal to a given natural

number would be helpful. Perhaps the k-fast and k-slow burning numbers of planar

graphs, trees, and hypercube graphs are also worth investigating.

95

References

[1] Libor Barto. Finitely related algebras in congruence distributive varieties have near

unanimity terms. Canad. J. Math., 65(1):3–21, 2013.

[2] Libor Barto and Marcin Kozik. Congruence distributivity implies bounded width.

SIAM Journal on Computing, 39(4):1531–1542, 2009.

[3] Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width.

In 2009 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS

2009), pages 595–603. IEEE Computer Soc., Los Alamitos, CA, 2009.

[4] Libor Barto, Marcin Kozik, and Ross Willard. Near unanimity constraints have

bounded pathwidth duality. In LICS, pages 125–134, 2012.

[5] Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use

them. In Dagstuhl Follow-Ups, volume 7. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2017.

[6] Joel Berman. A proof of Lyndon’s finite basis theorem. Discrete Mathematics,

29(3):229–233, 1980.

96

[7] Stéphane Bessy, Anthony Bonato, Jeannette Janssen, Dieter Rautenbach, and El-

ham Roshanbin. Burning a graph is hard. Discrete Applied Mathematics, 232:73–87,

2017.

[8] Stéphane Bessy, Anthony Bonato, Jeannette Janssen, Dieter Rautenbach, and El-

ham Roshanbin. Bounds on the burning number. Discrete Applied Mathematics,

235:16–22, 2018.

[9] Norman Biggs, E. Keith Lloyd, and Robin J. Wilson. Graph Theory, 1736-1936.

Oxford University Press, 1986.

[10] Anthony Bonato, Sean English, Bill Kay, and Daniel Moghbel. Improved bounds

for burning fence graphs. Preprint 2020, arXiv:1911.01342, 2019.

[11] Anthony Bonato, Jeannette Janssen, and Elham Roshanbin. Burning a graph as a

model of social contagion. In International Workshop on Algorithms and Models for

the Web-Graph, pages 13–22. Springer, 2014.

[12] Anthony Bonato, Jeannette Janssen, and Elham Roshanbin. How to burn a graph.

Internet Mathematics, 12(1-2):85–100, 2016.

[13] Anthony Bonato and Shahin Kamali. Approximation algorithms for graph burning.

In International Conference on Theory and Applications of Models of Computation,

pages 74–92. Springer, 2019.

[14] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of

constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

[15] Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems.

ACM Trans. Comput. Log., 12(4):Art. 24, 66, 2011.

97

[16] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. Preprint 2020,

arXiv:1703.03021, 2017.

[17] Jakub Buĺın, Dejan Delić, Marcel Jackson, and Todd Niven. A finer reduction of

constraint problems to digraphs. Logical Methods in Computer Science, 11(4):1–33,

2015.

[18] Stanley Burris and H.P. Sankappanavar. A Course in Universal Algebra. 2006.

[19] Fan R.K. Chung. Pebbling in hypercubes. SIAM Journal on Discrete Mathematics,

2(4):467–472, 1989.

[20] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of

the Third Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

[21] Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors. Complexity

of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl

Seminar], volume 5250 of Lecture Notes in Computer Science. Springer, 2008.

[22] Vı́ctor Dalmau. Linear Datalog and bounded path duality of relational structures.

Preprint 2020, cs/0504027, 2005.

[23] Vı́ctor Dalmau, László Egri, Pavol Hell, Benôıt Larose, and Arash Rafiey. Descrip-

tive complexity of list H-coloring problems in logspace: a refined dichotomy. In

Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer

Science (LICS), pages 487–498. IEEE Computer Society, 2015.

[24] Vı́ctor Dalmau and Andrei Krokhin. Majority constraints have bounded pathwidth

duality. European Journal of Combinatorics, 29(4):821–837, 2008.

98

[25] Vı́ctor Dalmau and Benôıt Larose. Maltsev + Datalog =⇒ Symmetric Datalog. In

Proceedings of the 23rd IEEE Symposium on Logic in Computer Science, LICS ’08,

pages 297–306, 2008.

[26] Dejan Delić. Constraint satisfaction problem dichotomy for finite templates: a proof

via consistency checks. Preprint 2020, arXiv:1706.03451, 2017.

[27] Dejan Delić and Daniel Moghbel. Linear Datalog conjecture. Preprint 2020, 2020.

[28] Dejan Delić and Daniel Moghbel. Linear Datalog conjecture for conservative tem-

plates. Preprint 2020, 2020.

[29] George Demetriou. Lexical disambiguation using constraint handling in prolog

(chip). In Sixth Conference of the European Chapter of the Association for Compu-

tational Linguistics, 1993.

[30] László Egri, Pavol Hell, Benôıt Larose, and Arash Rafiey. Space complexity of list

H-colouring: a dichotomy. In Proceedings of the Twenty-fifth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 349–365. SIAM, 2014.

[31] Herbert B. Enderton. A Mathematical Introduction to Logic, 2nd edition. Elsevier,

2001.

[32] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone

monadic SNP and constraint satisfaction: a study through Datalog and group the-

ory. SIAM J. Comput., 28(1):57–104 (electronic), 1999.

[33] Lisa Grumbach and Ralph Bergmann. Workflow flexibility by deviation by means

of constraint satisfaction problem solving. In LWDA, page 212, 2017.

99

[34] David Hobby and Ralph McKenzie. The Structure of Finite Algebras, volume 76 of

Contemporary Mathematics. American Mathematical Society, Providence, RI, 1988.

[35] Neil Immerman. Descriptive Complexity. Springer Science & Business Media, 2012.

[36] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of

Computer Computations, pages 85–103. Springer, 1972.

[37] Alexandr Kazda. n-permutability and linear Datalog implies symmetric Datalog.

Preprint 2020, arXiv:1508.05766, 2015.

[38] Keith Kearnes. Idempotent simple algebras. Lecture Notes in Pure and Applied

Mathematics, pages 529–572, 1996.

[39] Keith A. Kearnes. Tame congruence theory is a localization theory. In Lecture Notes

from “A Course in Tame Congruence Theory” Workshop, Budapest, 2001.

[40] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence

through a social network. In Proceedings of the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 137–146, 2003.

[41] Jon Kleinberg. Cascading behavior in social and economic networks. In Proceedings

of the Fourteenth ACM Conference on Electronic Commerce, pages 1–4, 2013.

[42] Phokion G. Kolaitis. Constraint satisfaction, databases, and logic. In IJCAI, pages

1587–1595, 2003.

[43] Phokion G. Kolaitis and Moshe Y. Vardi. A game-theoretic approach to constraint

satisfaction. In AAAI/IAAI, pages 175–181, 2000.

100

[44] Marcin Kozik. Weak consistency notions for all the CSPs of bounded width. In 2016

31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages

1–9. IEEE, 2016.

[45] Max R. Land and Linyuan Lu. An upper bound on the burning number of graphs.

In International Workshop on Algorithms and Models for the Web-Graph, pages 1–8.

Springer, 2016.

[46] Benôıt Larose and Pascal Tesson. Universal algebra and hardness results for con-

straint satisfaction problems. Theoret. Comput. Sci., 410(18):1629–1647, 2009.

[47] Leonid A. Levin. Universal sequential search problems. Problemy Peredachi Infor-

matsii, 9(3):115–116, 1973.

[48] Toro Mauricio, Camilo Rueda, Carlos Agón, and Gérard Assayag. Gelisp: A frame-

work to represent musical constraint satisfaction problems and search strategies.

2016.

[49] Dieter Mitsche, Pawe l Pra lat, and Elham Roshanbin. Burning graphs: a probabilistic

perspective. Graphs and Combinatorics, 33(2):449–471, 2017.

[50] Dieter Mitsche, Pawe l Pra lat, and Elham Roshanbin. Burning number of graph

products. Theoretical Computer Science, 746:124–135, 2018.

[51] Lior Pachter, Hunter S. Snevily, and Bill Voxman. On pebbling graphs. Congressus

Numerantium, 107:65–80, 1995.

[52] Pawe l Pra lat. Personal communication, 2020.

[53] Emil L. Post. The Two-Valued Iterative Systems of Mathematical Logic.(AM-5),

volume 5. Princeton University Press, 2016.

101

[54] Ivo G. Rosenberg. Minimal clones I: the five types. In Lectures in Universal Algebra,

pages 405–427. Elsevier, 1986.

[55] Michael Sipser. Introduction to the Theory of Computation, 3rd edition. Cengage

Learning, 2012.

[56] Douglas B. West. Introduction to Graph Theory, 2nd edition. Prentice Hall Upper

Saddle River, 2001.

[57] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In 2017 IEEE 58th Annual

Symposium on Foundations of Computer Science (FOCS), pages 331–342. IEEE,

2017.

102

