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ABSTRACT Passing relief lanes on two-lane rural roads provide passing opportunities that would 1	
otherwise be scarce where	there	are	extensive	no	passing	zones	and/or	high	opposing	traffic	2	
volumes.	The	paper	addresses	the	safety	effects	of	installing	a	passing	lane	or	lengthening	an	3	
existing	one.	It stands to reason that the effect of installing a passing lane will depend on the actual length 4	
of that lane. By extension, it is also reasonable to expect that the safety effects of lengthening an existing 5	
one will depend not only on the amount of the lengthening, but also on the original length. Yet, 6	
knowledge that can be applied to estimate these two sets of effects in a design process is lacking. The 7	
crash modification factors (CMFs) in the Highway Safety Manual (HSM) and in the CMF Clearinghouse 8	
for installing a passing lane are all single valued, of the order of 0.75. And neither source provides CMFs 9	
for lengthening an existing passing lane. This paper seeks to address these voids by developing 10	
continuous crash modification functions (CMFunctions) for both sets of design decisions using Michigan 11	
and Ontario crash, geometric, and traffic data for passing lane and reference sections.  Generalized linear 12	
modeling and full Bayes Markov Chain Monte Carlo (MCMC) simulation are used to develop cross-13	
section regression models from which crash modification functions are derived and compared. The results 14	
are consistent with those from credible before-after studies, so are recommended for implementation in 15	
practice, in particular for HSM applications. 16	

 17	

 18	

Keywords: passing lanes; crash modification factors; full Bayes; generalized linear modeling; Markov 19	
Chain Monte Carlo		 	20	
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 1	
INTRODUCTION 2	

 Passing lanes are intermittently placed as auxillary lanes on two-lane rural roads that provide 3	
drivers passing opportunities that would otherwise be scarce where	there	are	extensive	no	passing	4	
zones	and/or	high	opposing	traffic	volumes.	The operational benefits are well known, with	benefits	to	5	
traffic	operations	3	to	8	mi	(5	to	13	km)	downstream	of	the	passing	lane,	according	to	Neuman	et	6	
al.,	(1)	who	suggest	that	these	operational	effects	can	translate	into	safety	benefits.		Credible	7	
knowledge	on	both	operational	and	safety	benefits	can	greatly	assist	in	making	decisions	on	where	8	
passing	lanes	are	justified.		9	

The Highway Safety Manual (2) provides procedures for evaluating the safety effects of a design 10	
decision for a road being designed or a treatment that is being considered for an existing road due to a 11	
safety concern. For estimating these safety effects, crash modification factors (CMFs) are required, 12	
desirable for the specific circumstance.  For installing a passing lane, the HSM recommends a single CMF 13	
of 0.75 for total crashes, regardless of the length of the lane. This CMF was based on a rather dated 14	
Midwest Research Institute (MRI) study (3). However, it seems reasonable to expect that the CMF for 15	
installing a passing lane should not be single valued and should at least depend on the length of that lane. 16	
A later MRI study (4) did find that crash frequency per mile per year within passing lane sections ranges 17	
from 12 to 24 percent lower than for conventional sections, with larger differences in crash rate at 18	
increasing levels of average daily traffic. However, a continuous function was not developed. More recent 19	
studies (5-8) also developed single valued CMFs typically of the order of the HSM CMF. And no study to 20	
date has developed CMFs for extending an existing passing lane.	21	

The present study builds on an earlier one (5) that developed and recommended single valued 22	
crash modification factors (CMFs) for various crash types based on a cross-sectional analysis of Michigan 23	
two-lane rural roads with and without passing lanes. An empirical Bayes before-after study was also 24	
performed, but definitive results based on only 7 locations could not to be obtained, although they did 25	
provide some corroboration for the CMFs from the cross-sectional analysis. That analysis suggested that 26	
the cross-sectional approach could also be used to potentially develop crash modification functions 27	
(CMFunctions) that would model the variability of the crash modification factor. However, these were not 28	
developed in that research. The present study seeks to develop those functions by expanding the database 29	
to include sites from Ontario, Canada. This expanded dataset was intended to improve statistical rigour of 30	
any CMFunctions developed and in so doing to assess their transferability. It was also of interest to 31	
investigate the possibility of developing CMFs for extending passing lanes to fill that research need. 32	

The lack of progress in developing CMFunctions, even from cross-sectional data that are more 33	
suitable for this task, is likely because of limitations imposed by the generalized linear modeling (GLM) 34	
functional form typically used to represent the safety effects of influential variables that affect the CMF. 35	
This issue is resolved in the paper by performing the modeling using the WinBUGS software to apply full 36	
Bayes-Markov Chain Monte Carlo (MCMC) estimation techniques (9), one of the tools that can be used 37	
for model forms that cannot be linearized for applying GLM. 38	
	39	
DATA SUMMARY 40	

Crash, geometric and traffic data for sections with passing lanes and reference segments without 41	
passing lanes were obtained from the Ministry of Transportation, Ontario and the Michigan DOT. All 42	
animal related crashes were removed from the data. The Michigan data were the same data used by the 43	
earlier study (5). Data for passing lane sites and reference segments are summarized in Table 1. 44	

	45	
 46	
 47	
 48	
 49	
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TABLE 1: Summary of Data for Passing Lane and Reference Sites  1	

Item  Michigan 
PL Sites 

Michigan 
Reference 

Sites 

Ontario 
PL Sites 

Ontario 
Reference 

Sites 
No. of Sites  237 100 44 122 

Years 
Min 3 10 4 4 
Max 11 10 4 4 
Mean 10.69 10 4 4 

Average AADT 
Min 1,016 1,019 2,000 2,060 
Max 16,688 29,334 11,300 12,400 
Mean 4,964.6 5,111.4 5,513.6 4,259.9 

Segment Length (km) 

Min 0.60 1.61 1.2 1.2 
Max 7.16 1.61 3.2 3.8 
Mean 2.49 1.61 1.99 1.87 
Sum 321.85 161 87.7 227.9 

Total Crashes/km-
year 

Min 0 0 0.10 0 
Max 4.41 13.48 1.36 2.2 
Mean 0.63 1.36 0.57 0.61 
Sum 2128 2191 251  696 

Fatal/Injury 
Crashes/km-year 

Min 0 0 0 0 
Max 1.71 3.54 0.40 0.92 
Mean 0.19 0.38 0.13 0.16 
Sum 657 613 56 182 

 2	
 3	
METHODOLOGY OVERVIEW 4	

As noted in the introduction, the research was primarily accomplished using full Bayes-Markov 5	
Chain Monte Carlo (MCMC) estimation techniques. The two main advantages are the ability to consider 6	
prior information about parameter coefficients and the flexibility of functional form that can be used in 7	
the process (9). By contrast, the model form estimated using conventional generalized linear models 8	
(GLM) is log-linear, thereby restricting the estimated CMF to be only dependent on the difference in the 9	
variable of interest, not the actual values. To estimate complex functional forms, e.g., those that cannot be 10	
linearized for a GLM approach, the full Bayes (FB) approach takes advantage of Markov Chain Monte 11	
Carlo (MCMC) sampling techniques.  12	

WinBUGS software was employed to apply the full Bayes MCMC estimation technique. In this, 13	
each parameter is assigned a distribution with a mean and a variance. For this research, all parameters 14	
were assumed to follow a normal distribution.  The way that prior distributions were chosen is mainly 15	
based on a suggestion in (10) that “after the model has been fit, one should look at the posterior 16	
distribution and see if it makes sense” and then revise the prior distribution if necessary. With this in 17	
mind, diffuse prior distributions for all the parameters (i.e. normal distribution with mean of 0 and 18	
variance of 10) were initially used to let the model potentially include wide ranges of parameter values. 19	
Then, the same GLM function in WinBUGS was written to compare the estimates of MCMC with the 20	
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conventional GLM. The results showed that the posterior distribution did not make sense, implying that 1	
“additional prior knowledge is available that has not been included in the model” (10).  2	

Based on the significance of the variables in the conventional GLM model, the variance of the 3	
parameters for the prior distribution was decreased. It was found that the results of MCMC agree with the 4	
conventional GLM estimates when using less diffuse priors. Several reasonable mean values for the prior 5	
distributions were used to see how much the parameter estimation depends on the chosen priors. In the 6	
end, it was concluded that the parameter estimates mostly depend on the data used and that the prior has 7	
little impact. Therefore, the final prior distributions were chosen to be normal distributions with a mean 8	
value of zero and a variance of 0.01 for the parameters that are found significant in the conventional GLM 9	
estimates. Different functional forms were considered and a power function was finally selected as the 10	
best one for the CMFunction. For comparison purposes, conventional GLMs were also estimated for 11	
developing CMFunctions. 12	

  13	
ANALYSIS, RESULTS AND DISCUSSION 14	

As noted above, CMFs were derived from conventional GLMs and from full Bayes-Markov 15	
Chain Monte Carlo (MCMC) models. The analysis is presented separately before the results are 16	
compared. 17	
 18	
CMFs from GLMs 19	

As noted, conventional GLMs were also estimated for comparison purposes. These do allow the 20	
CMF for installing a passing lane to depend on its length but the implied CMFs for extending a passing 21	
lane by a given amount do not depend on the original length. The estimated models based on the 22	
combined Michigan and Ontario data for total and fatal-injury crashes were of the form: 23	

	24	

	
𝐶𝑟𝑎𝑠ℎ𝑒𝑠
𝑌𝑒𝑎𝑟 ∗ 𝑘𝑚

= 𝑒("#$!)𝐴𝐴𝐷𝑇$"𝑒$#(&'()&)	                                 ..1

) 

where, 25	
AADT = annual average daily traffic 26	
LenPL = passing lane length (km) = 0 for segments without passing lanes 27	
α, β1, β2, β3 = model parameters to be estimated, with β3 being a Michigan-specific constant. 28	
 29	

The parameter estimates, which were obtained using the SAS software package, are shown in Table 30	
2, and all are statistically significant at the 5% level (P<0.05), except for the Michigan-specific constant. 31	
That constant was included in the final models nevertheless since it improved the precision of the estimate 32	
of β2, the parameter that is essential for the estimation of the CMFunctions, as will be seen later. The 33	
cumulative residual plots, shown in Figures 1 and 2, indicated that the model fit is reasonable over the range 34	
of passing lane lengths. 35	

 36	
	37	

TABLE 2: GLM Parameter Estimates - Combined Ontario and Michigan (MI) Data 38	
 Total crashes Fatal-Injury crashes 
Coefficient Estimate P-Value Estimate P-Value 

α  -7.0024 <.0001 -8.153 <.0001 
β1 0.783 <.0001 0.7539 <.0001 
β2 -0.1762 <.0001 -0.1863  0.0001 
β3 0.0031 0.9761 0.1752 0.1708 
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	1	
	2	
	3	

	4	

Figure	1 Total Crash – Length (km) CURE Plot for the GLM	5	

	6	

	7	

Figure 2 Injury Crash – Length (km) CURE Plot for the GLM 8	

	9	
CMFs from Full Bayes-Markov Chain Monte Carlo (MCMC) Models 10	

The estimated models for total and fatal-injury crashes were of the form: 11	
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*+,-.'-
/',+.12

= 	𝑒𝑥𝑝(𝑎) ∗ 𝑒𝑥𝑝	4𝑏 ∗ (𝑖𝑓	𝑖𝑛	𝑀𝑖𝑐ℎ𝑖𝑔𝑎𝑛)< ∗ 	𝐴𝐴𝐷𝑇3 ∗ 𝑒𝑥𝑝4𝑒𝑥𝑝(𝑒 ∗ 𝐿𝑛𝑔𝑃𝐿)<								 							..2) 1	

where, 2	
AADT = annual average daily traffic 3	
LngPL = passing lane length (km) 4	
if in Michigan = 1 for Michigan data and 0 for Ontario sites 5	
a, b, c, d, e = model parameters to be estimated 6	
 7	

The MCMC sampling procedure was run in WinBUGS software for 100,000 iterations to 8	
calculate the posterior estimates of parameters. The first 10,000 iterations were not considered for the 9	
parameter estimation and were discarded as burn-in. Tables 3 and 4 present the parameter estimates and 10	
their associated statistics at 95% credible intervals for the total crash and fatal-injury crash models, 11	
respectively. The results show that all parameters used are effectively significant at 95% credible interval 12	
in both total and fatal-injury crash models. That the Michigan specific constant is now significant, in 13	
contrast to the GLM estimate, an outcome that is likely a result of the use of a more appropriate model 14	
form. 15	
 16	
TABLE 3: Parameter Estimates and MCMC Statistics for the Total Crash Model 17	

Parameter  Mean  Standard 
deviation  MC error 2.50% median 97.50% 

a -8.458 0.794 0.043 -10.080 -8.422 -7.015 
b 0.216 0.111 0.002 -0.005 0.217 0.434 
c 0.836 0.095 0.005 0.666 0.833 1.031 
e -0.193 0.076 0.001 -0.363 -0.185 -0.063 
Dispersion  
Parameter 1.103 0.092 0.001 0.933 1.100 1.294 

 18	

TABLE 4: Parameter Estimates and MCMC Statistics for The Fatal-Injury Crash Model 19	

Parameter  Mean  Standard 
deviation  MC error 2.50% median 97.50% 

a -9.765 0.804 0.043 -11.320 -9.775 -8.176 
b 0.399 0.133 0.002 0.135 0.400 0.655 
c 0.824 0.095 0.005 0.636 0.825 1.008 
e -0.185 0.084 0.001 -0.373 -0.176 -0.048 
Dispersion  
Parameter  1.022 0.113 0.001 0.819 1.016 1.264 

 20	

CMFunction Estimation and Comparison 21	
For the GLM approach, based on Equation 1, the CMF for installing a passing lane of length 22	

LngPL is given by the following CMFunction:	23	
	24	

𝐶𝑀𝐹 =	𝑒("!×$%&'$)		 	 	 	 	 	 	 	 	 	      .. 3) 25	
 26	
For the FB MCMC modeling approach, based on Equation 2, the CMF for increasing a passing 27	

lane from LngPL1 to LngPL2 is given by CMFunction shown in Equation 4. In using this equation for 28	
installing a passing lane of length PL2, a value of 0 is substituted for PL1. 29	
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	2	
𝐶𝑀𝐹 =	 )*+()*+()∗$%&'$!))

)*+()*+()∗$%&'$"))
	 	 	 	 	 				 	 	 	 			.. 4) 1	

 3	
Both Equations 3 and 4 can be used directly with Imperial units if desired. Figures 3 and 4 depict CMFs 4	
estimated from Equations 3 and 4 for installing a passing lane of various lengths, and compares these to 5	
the single valued CMF from the HSM. The recommended ranges for passing lane length in Ontario (ON) 6	
and Michigan (Mich.) are also shown for reference. 7	
	8	

	9	

Figure 3 Total Crash CMFs for Installing a Passing Lane 10	

 11	

Table 5 provides illustrative CMF estimates for total crashes for extending a passing lane by 500 12	
m (0.31 miles) and 1 km (0.62 miles), based on Equations 3 and 4. It can be seen first of all that the safety 13	
benefit increases as the length of the extension increases, as might be expected. It can also be seen that, 14	
for a given increase in length the CMF based on the FB MCMC models depends on the original passing 15	
lane length and logically increases with increasing original length. By contrast, the CMF based on the 16	
GLMs are independent of the original length, which seems illogical. To illustrate, when extending a 17	
passing lane by 500 m from 1.5 km to 2 km, there will be 6.7% reduction in crashes, while the same 18	
amount of change from 3.5 km to 4 km will decrease crashes by 4.6%. These reductions increase to 19	
12.3% and 7.8%, respectively, for a 1 km extension.  20	

 21	

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.2 1.7 2.2 2.7 3.2 3.7 4.2

CM
F

Passing	Lane	Length	(km)

MCMC

GLM

HSM

ON
Mich



Persaud, Jafari Anarkooli, Almasi, Lyon 

	 9	

	1	

Figure 4 Injury Crash CMFs for Installing a Passing lane 2	

 3	
Table 5: CMFs for extending an existing passing lane by 500 m (0.31 miles) and 1 km (0.62 miles) 4	

Original passing 
lane length 

500 m (0.31 miles) extension 1 km (0.62 miles) extension 

CMF from  
FB MCMC 

CMF from  
GLM 

CMF from  
FB MCMC 

CMF from  
GLM 

1.5 km (0.93 miles) 0.933 

0.916 

0.877 

0.839 

2.0 km (1.24 miles) 0.939 0.888 

2.5 km (1.55 miles) 0.945 0.897 

3.0 km (1.86 miles) 0.950 0.906 

3.5 km (2.17 miles) 0.954 0.915 

4.0 km (2.49 miles) 0.958 0.922 

 5	

SUMMARY  6	
The paper addressed the development of crash modification functions for passing relief lanes on 7	

two-lane rural roads. Advancements in vehicle technology related to features such as braking and 8	
acceleration capabilities indicate a need to revisit the rather dated, single valued, crash modification factor 9	
currently in the Highway Safety Manual (HSM). Generalized linear modeling and full Bayes Markov 10	
Chain Monte Carlo (MCMC) simulation were used with data from Michigan, U.S.A., and Ontario, 11	
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Canada to develop cross-section regression models from which crash modification functions 1	
(CMFunctions) were derived. The resulting CMFs were compared to those derived from conventional 2	
Generalized Linear Models (GLMs) and the CMF available in the Highway Safety Manual (HSM). The 3	
CMFunctions developed from MCMC simulation and from GLMs are such that safety effects of 4	
installing a passing lane on two-lane rural roads will logically depend on the actual length of that lane, 5	
which is not the case for the single valued CMF in the HSM. The MCMC models provide CMFs for 6	
lengthening an existing passing lane that depend not only on the amount of the extension, but also on the 7	
original length, unlike the GLM CMFs which provide a constant CMF for a given extension, regardless of 8	
the original length. The results are logical and are reasonably consistent with those from credible before-9	
after studies, so are recommended for implementation in practice, in particular for HSM applications. 10	
Specifically, they can be applied in procedures for evaluating the potential safety effects of installing a 11	
passing lane on a road being designed or on existing road due to a safety concern. This information can be 12	
considered, in turn, along with the operational benefits, in prioritizing locations for this treatment. 13	
 14	
 15	
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