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 4 
ABSTRACT  5 
The Highway Safety Manual (HSM) procedures apply specific safety performance functions (SPFs) and crash 6 
modification factors (CMFs) appropriate for estimating the safety effects of design and operational changes to 7 
a roadway. Although the applicability of the SPFs and CMFs may significantly vary by crash severity, they 8 
are mainly based on total crash counts, with different approaches for estimation of crashes by crash severity. 9 
The variety of approaches in the HSM and in the literature in general suggests that there may be no one best 10 
approach for all situations, and that there is a need to develop and compare alternative approaches for each 11 
potential application. This paper addresses this need by demonstrating the development and comparison of 12 
alternative approaches using horizontal curves on two-lane roads as a case study. This site type was chosen 13 
because of the high propensity for severe crashes and the potential for exploring a wide range of variables that 14 
affect this propensity. To facilitate this investigation, a two-stage modeling approach is developed whereby 15 
the proportion of crashes for each severity level is estimated as a function of roadway-specific factors and 16 
traffic attributes and then applied to an estimate of total crashes from an SPF. Using Highway Safety 17 
Information System (HSIS) curve data for Washington state, a heterogeneous negative binomial (HTNB) 18 
regression model is estimated for total crash counts and then applied with severity distribution functions 19 
(SDFs) developed by a generalized ordered probit model (GOP). To evaluate the performance of this two-20 
stage approach, a comparison is made with predictions directly obtained from estimated univariate SPFs for 21 
crash frequency by severity and also from a fixed proportion method that has been suggested in the HSM. The 22 
results revealed that, while the two-stage SDF approach and univariate approach adopt different procedures 23 
for model estimation, their prediction accuracies are similar, and both are superior to the fixed proportion 24 
method. In short, this study highlights the potential of the two-stage SDF approach in accounting for crash 25 
frequency variations by severity levels, at least for curved two-lane road sections, and especially for the all too 26 
frequent cases where samples are too small to estimate viable univariate crash severity models.  27 
 28 
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 1 
INTRODUCTION  2 
In the Highway Safety Manual (HSM), safety performance functions (SPFs) and crash modification factors 3 
(CMFs) are used to predict number of crashes in evaluating the safety effects of design and operational changes 4 
(AASHTO, 2010). Although the applicability of SPFs and CMFs may significantly vary by crash severity, the 5 
first release of the HSM focused on total crash counts, with only limited consideration of crash severity 6 
distributions. n that first release, when predicting crashes by severity using a safety performance function 7 
(SPF), a simple two-stage approach is used whereby the total number of crashes for a specific entity is first 8 
estimated; then crash frequency by severity is estimated by applying a fixed proportion for each severity to the 9 
estimate for total crashes. However, since severity distribution, and consequently the proportion for each 10 
severity level, may differ by segment characteristics and other factors, using a fixed proportion is questionable 11 
and may lead to biased predictions. A subsequent HSM update provided an improved two-stage methodology 12 
for estimating crashes by severity for freeway segments and interchanges; in this, the proportions applied to 13 
an SPF prediction vary according to a severity distribution function (SDF) that is estimated from a discrete 14 
choice probability model. In the literature there are many variations of the probability modeling aspect. For 15 
example, Geedipally et al. (2013) used a multinomial logit formulation for estimating crashes by severity for 16 
freeway segments and interchanges.  17 

More recently, univariate count models have been proposed and developed for estimating crashes for 18 
various severity levels, where possible, for a planned update of the three HSM “predictive” chapters (Ivan at 19 
al., 2018). This is the approach used in research related to this paper by Saleem and Persaud (2017), who 20 
disaggregated crashes on two-lane rural highway curves into two categories of no injury and injury (including 21 
fatal) crashes and developed separate negative binomial (NB) models.  22 

While univariate models expand our understanding of crash severity distributions, they do so at the 23 
expense of neglecting the correlations that may exist among different severity levels. In other words, crash 24 
severities may share unobserved attributes at different severity levels, which a univariate modelling approach 25 
fails to take into account. To address this issue, several efforts have been made to jointly model crash counts 26 
by severity based on a multivariate modelling approach. Notable multivariate model specifications in the 27 
literature include multivariate Poisson (MVP) (Ma and Kockelman, 2006, Karlis, 2003), multivariate tobit 28 
regression (Anastasopoulos et al., 2012, Zeng et al., 2017), multivariate negative binomial regression (MVNB) 29 
(Rodgers and Leland, 2005), multivariate Poisson gamma mixture (MVPG) (Mothafer et al., 2016), and 30 
multivariate Poisson-lognormal (MVPLN) (Ye et al., 2009, Wang et al., 2017, El-Basyouny et al., 2014, Park 31 
and Lord, 2009). 32 

A key difficulty when developing both univariate and multivariate crash count models is that they can 33 
be challenging to estimate in cases where crash data are characterized by a small sample size and low sample 34 
mean (Lord and Mannering, 2010, Wang et al., 2011), as this is typically the case for many crash severity 35 
specifications. The issue of small sample size and low sample mean may cause less stable results and biased 36 
parameter estimates (El-Basyouny and Sayed, 2009). Indeed, Ivan et al. (2018) failed to develop univariate 37 
models for several crash severities for various site types, which will leave HSM users to continue to resort to 38 
the simple two-stage approach for these cases.  39 

To address the limitations of both univariate and multivariate models, other researchers, e.g., Wang et 40 
al. (2011) and Geedipally et al. (2013), suggested an alternative two-stage frequency-severity modeling 41 
approach that applied severity distribution functions (SDFs) to SPFs. A SDF, as it relates to Highway Safety 42 
Manual (HSM) applications, is based on a discrete choice probability model that estimates the proportion of 43 
crashes at each severity level using non-crash-specific data (i.e., variables describing a site’s design and 44 
operational characteristics), resulting in the estimated proportions becoming specific to an individual site 45 
(segment or intersection) in a specific jurisdiction (Bonneson et al., 2012). The proportions obtained by the 46 
SDF can be applied to a higher level SPF to predict the number of crashes for each severity category 47 
(Geedipally et al., 2013). This modelling approach may lead to some loss in prediction accuracy since the SDF, 48 
of necessity, neglects crash-specific variables such as vehicle type and involved person age that are typically 49 
not available for HSM-type site-level predictions. Moreover, recent studies (Anastasopoulos and Mannering, 50 
2011) noted that random parameter models using only non-crash-specific data still can provide accurate 51 
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predictions, implying that the limitations of the SDF approach can be potentially minimized when such models 1 
are employed.  2 

Given the lack of uniform definitive guidance on how crash frequency by severity should be estimated 3 
and the variety of modeling issues involved in developing count and probability severity models, it seems of 4 
interest to build on the research by Wang et al. and Geedipally et al. to explore the development of alternative 5 
approaches and to also demonstrate how one can be selected for a given application. In so doing, a case study 6 
pertaining to horizontal curves on two-lane rural roads is investigated to see if the alternative approaches can 7 
be applied to specific highway design elements where crash severity may be more of a concern. The average 8 
crash rate for horizontal curves is about 1.5 to 4 times the average crash rate for straight sections (Zegeer et 9 
al., 1992), a disproportionality that can be more pronounced if crash severity is also taken into consideration. 10 
For example, based on Fatality Analysis Reporting System (FARS) and National Automotive Sampling 11 
System (NASS) datasets, Troxel et al. (1994) reported that the probability of fatal crashes per kilometer on 12 
curved roads is nearly three times higher than that on straight sections. Although studies have developed some 13 
probability models of crash severity at curves (Schneider IV et al., 2009), they could not offer a straightforward 14 
framework to predict the expected number of crashes for each severity level on any given curve. This is because 15 
employing crash-specific variables in the probability models makes the prediction dependent to non-segment-16 
specific factors (e.g., weather or lighting conditions, driver features, etc.), which cannot be easily estimated in 17 
applying such models for crash prediction.  18 
 19 
METHODOLOGY 20 
This section presents an overview of three techniques for estimating crash counts by severity that are compared 21 
in the paper - the fixed proportion and SDF two-stage approaches and the univariate modeling approach. The 22 
goodness-of-fit (GOF) measures applied to compare the techniques are the Mean Prediction Bias (MPB), Mean 23 
Absolute Deviation (MAD), and Mean Squared Prediction Error (MSPE). Cumulative Residual (CURE) plots 24 
also provide further insights in evaluating and comparing approaches. 25 
 26 
Univariate Count-data Models 27 

Univariate count-data models are applied in this study to separately estimate crash counts for different 28 
severity levels. In addition, a model is also developed for total number of crashes for use in the two-stage SDF 29 
approach.  30 

Count-data models, such as Poisson and negative binomial (NB) regression models, are traditionally 31 
used to model the count of traffic crashes, which are viewed as discrete, random, and non-negative integers. 32 
The NB model is preferred in that it accommodates the overdispersion that typically characterizes crash data 33 
by including an error term in the Poisson model and allowing the variance to differ from the mean. The 34 
heterogeneous negative binomial (HTNB) regression model is now commonly adopted to allow the 35 
overdispersion parameter (α!) to vary across road sites as a function of roadway traits, e.g., length of a road 36 
segment. If no variable is found to contribute significantly to the overdispersion parameter, then the term α! 37 
will take a constant value, reverting to a standard NB model (Abdelwahab and Abdel-Aty, 2004). Indeed, as 38 
Mitra and Washington (2007) found, extra-variation is a function of covariates when the mean structure 39 
(expected crash count) is poorly specified or suffers from omitted variables. That the overdispersion parameter 40 
may be variable in this study is as likely to arise from omitted variables not available in the dataset used as it 41 
is from the tried and tested mean function adopted.  42 

In this study, total crashes are disaggregated into different severity levels; thus, it is expected that there 43 
can be a large number of road segment curves for which no crashes occurred during the study period, especially 44 
for disabling or fatal injuries. This implies that the presence of excess zero counts is plausible, which may 45 
potentially affect overdispersion in crash data. In such conditions, standard count models, such as Poisson and 46 
NB, fail to adequately handle the overdispersion resulting from a proliferation of zero counts. To better fit 47 
such data, zero-altered models, including hurdle Poisson (HPO) and hurdle NB (HNB) models, have been 48 
proposed.  49 

For the current study, four count models including NB, HTNB, HPO, and HNB models have been 50 
developed to determine factors associated with traffic crashes in different injury severity categories. A logit 51 
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model was used for the hurdle parts of HPO and HNB models. Table 1 presents the specification of these 1 
models. Detailed information on the zero-altered models is available in other studies (Easa and You, 2009, 2 
Hosseinpour et al., 2016, Lord et al., 2007, Lord et al., 2005).  3 

 4 
 5 
   Table 1 Description of count-data models applied in this study 6 
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 7 
 8 
 9 
Model Specification Tests  10 
A number of statistical tests were used to select the best-fit model for each severity category as well as for 11 
total crashes. These include a deviance statistic used to check goodness-of-fit (GOP), a likelihood ratio test 12 
(LRT) to compare nested models (e.g., NB vs. HTNB or HPO vs. HNB), a Vuong test (Vuong, 1989, Shankar 13 
et al. 1997) to compare non-nested models (e.g., HTNB vs. HNB or PO vs. HPO), and information-based 14 
criteria, including Akaike’s information criterion (AIC) and Bayesian information criterion (BIC), used to 15 
compare both nested and non-nested models (Hosseinpour et al., 2013). These selection criteria are 16 
summarized and presented in Table 2.   17 
 18 
Two-stage SDF Method 19 
In the two-stage SDF method, as proposed by Geedipally et al. (2010), the process for predicting the number 20 
of crashes by severity involves two stages. First, a crash-frequency model is adopted to predict the count of 21 
crashes occurring at curve sections. Second, a SDF model is employed to estimate the proportions of different 22 
severity levels for a curve section. Then, the predicted crash counts for a certain crash severity can be obtained 23 
by multiplying the number of crashes by the proportion of that severity category. Details on these two stages 24 
are discussed in the following subsections. 25 
 26 
 27 
 28 
 29 

Table 2 Model selection criteria used for nested and non-nested models 30 
Models Tests Decision 

Overall 
GOF Deviance = 𝜒) = −2 ∗ H𝐿𝐿5 − 𝐿𝐿6J  

A significant value for the deviance statistic 
indicates that the model is preferred to its null 
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where 𝐿𝐿5 and 𝐿𝐿' are respectively the log-
likelihood of the current model and the null model. 

counterpart, implying a good fit for that model 
(Hilbe, 2011, Lovegrove and Sayed, 2007). 

Nested LRT = −2 ∗ (𝐿𝐿	789:	;<	79: − 𝐿𝐿9:	;<	7=) ≅ 𝜒) 

A significant value for LRT indicates that the 
overdispersion in the crash data is present. In 
this case, the NB-based models would be 
preferred to the Poisson counterparts. 
Otherwise, the Poisson-based models are 
more plausible (Khan et al., 2011, Gao and 
Khoshgoftaar, 2007, Lewin et al., 2010). 

Non-nested 

Vuong test:  𝑉 = *>√@
AB(*)

   

where 𝑚# = 𝑙𝑛 S∑ =#(%!|E!)!
∑ =$(%!|E!)!

T; 𝑚U  is the mean of 𝑚# 
and SD(𝑚) is the standard deviation of 𝑚#; 
𝑃((𝑦#|𝑥#) and 𝑃)(𝑦#|𝑥#) are the predicted 
probability of the standard models (PO and NB) 
and the two-state model (HPO and HNB models), 
respectively. 

If V > 1.96, then the test favours HPO/HNB 
over PO/NB, and if V is lower than −1.96, the 
parent PO or NB model is favored. A value of 
-1.96 <V< 1.96 indicates neither model is 
preferred over the other (Easa and You, 
2009a, Khan et al., 2011, Kweon, 2011). 

Nested & 
Non-nested 

𝐴𝐼𝐶 = −2𝐿𝐿 + 2𝑃 
𝐵𝐼𝐶 = −2𝐿𝐿 + 𝑃(ln	(𝑛)) 
where LL is the logarithm of the maximum 
likelihood estimation for each model, P is the 
number of model parameters, and n is the number 
of observations (n=4059).  

A model with the lowest AIC and BIC values 
is preferred. To decide whether there is a 
statistically significant difference between 
two models, Hilbe’s AIC and Raftery’s BIC 
rule-of-thumb criteria were adopted  in this 
study (Hilbe, 2011, Raftery, 1995). 

 1 
Estimating a SDF Model   2 
As mentioned earlier, a SDF is a probability model for estimating crashes by severity levels based on roadway-3 
specific variables. Since severity levels are reported as categorical data, discrete outcome models constitute 4 
the most widely used modelling approach for such data (Kockelman and Kweon, 2002, Xie et al., 2009, 5 
Anarkooli et al., 2017, Geedipally et al., 2013, Anarkooli and Hosseinlou, 2016). These types of models can 6 
be classified as either nominal (e.g., multinomial logit models, nested logit models, and mixed logit models) 7 
or ordinal (e.g., ordered probit/logit models). There is no consensus on which model performs the best, as the 8 
selection of the appropriate methodological approach depends heavily on the characteristics of the data 9 
(Savolainen et al., 2011). Since injury severity levels are commonly recorded in the ordinal scale, some studies 10 
suggested that nominal models, while accounting for the categorical nature of dependent variables, do so at 11 
the expense of neglecting the ordered nature of the injury levels (Mooradian et al., 2013, Anarkooli et al., 12 
2017). More specifically, multinomial logit models, arguably the most widely used nominal response variable, 13 
completely ignore the sequential order of injury severity levels, which can lead to biased estimations.  14 

Among ordered discrete models, ordered probit model is the most prominent approach used for traffic 15 
crash severity analysis (Ye and Lord, 2014). The model is formulated by defining a latent and continuous 16 
variable 𝑦"∗ as follows (Washington et al., 2009): 17 
 18 
𝑦"∗ =	𝑋"𝛽 + 𝜀" 		∀𝑖       (1) 19 
 20 
where 𝑋" is a vector of explanatory variables for crash i;  β is a vector of estimable parameters; and ε! is the 21 
random error term capturing the effect of unobserved factors, which is assumed to be normally distributed with 22 
a mean of zero  and a variance of 1.  23 

For any crash 𝑖 on the curves, the observed injury severity level (𝑦") can be attributed to the latent 24 
counterpart (𝑦"∗) in the following way: 25 
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𝑦" = 𝑗	 ⇒ 	𝜇$%& ≤ 𝑦"∗ ≤	𝜇$ 	⇔ 	

⎩
⎨

⎧
1		if							 − ∞ ≤ 𝑦"∗ ≤ µ&																																									
2		if									µ& < 𝑦"∗ ≤ µ'																																													
3		if											µ' < 𝑦"∗ ≤ µ(																																											
		4		if											µ( < 𝑦"∗ ≤ ∞																																												

 (2) 1 

 2 
where j represents severity level (e.g., in this study j=1 corresponds to PDO category), µ& and µ' are threshold 3 
parameters to be estimated. 4 
 Given the value of X, the probability of an individual crash resulting in injury severity level j can be 5 
defined as follows:  6 
𝑃(𝑦" = 𝑗) = 𝐹C𝜇$ − 𝑋"𝛽D − 𝐹C𝜇$%& − 𝑋"𝛽D               (3) 7 
 8 
where 𝐹(. ) stands for standard normal cumulative distribution function.  9 
 However, there are some restrictions in a standard ordered probit (OP) model, which can make this 10 
approach a questionable one for crash severity analysis. First, ordered probability models can be particularly 11 
susceptible to underreporting of crash-injury data, resulting in biased or inconsistent parameter estimates. This 12 
underreporting is not expected to be a significant issue for this study, given the recognized high quality of 13 
HSIS data used.  Second, the standard OP model adopts the parallel-slope assumption, which constrains the 14 
effect of regression parameters to be consistent across different severity levels, can restrict the influence of 15 
explanatory variables on severity outcomes (Yasmin and Eluru, 2013). More specifically, when a variable 16 
increases (or decreases) the probability of the highest severity level, it necessarily decreases (or increases) the 17 
probability of the lowest severity level, an outcome that is not always true.  18 

The generalized ordered probit (GOP) model is an efficient way to address the parallel-slope 19 
assumption limitation and was found to be the best for the data used in this study. This approach, while 20 
controlling the ordinal nature of the severity data, relaxes the parallel-slope assumption by allowing the 21 
threshold values to vary across road segments. This property of the GOP model makes it similar to the partial 22 
proportional odds (PPO) model (Sasidharan and Menendez, 2014); however, the two models differ in the 23 
assumptions for the error term.  24 

The threshold values for the GOP model adopted for this research are a function of the explanatory 25 
variables as follows:  26 
 27 
𝜇F$ = 𝜇"$ − 𝑋")𝑘$                            (4) 28 
 29 
where 𝜇F$ is a constant term; 𝜇"$ is the threshold value for segment i and severity level j; 𝑘$ represents the 30 
influence parameter of the covariates on the thresholds; 31 
          32 
Substituting 𝜇F$for 𝜇$ in equation (4) leads to   33 
 34 
𝑃(𝑌" = 𝑗) = 𝛷C𝜇F$ − 𝑋"𝛽$D − 𝛷C𝜇F$%& − 𝑋"𝛽$%&D   (5) 35 
 36 
Estimating the Proportion for Each Severity Level  37 
Based on the estimated results of the GOP and total-crash models, the predicted crash counts for each severity 38 
level at a curved segment can be determined by multiplying the estimated total number of crashes from a count 39 
model by the predicted probabilities of the severity categories, which are obtained from the GOP model. This 40 
can be calculated using the following equation: 41 
𝑁K"$ = 𝑃L"$ . 𝑁K"       (6) 42 
 43 
where 𝑁K"$ is the predicted crash counts of injury severity j at curved section i; 𝑁K" is the total number of crashes 44 
for section i, as estimated by the total-crash model; and 𝑃L"$ is the probability of occurrence of the severity level 45 
j on section i.  46 
 47 
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Fixed Proportion Method 1 
As noted in the introduction, this is a simple two-stage approach as used in the Highway Safety Manual. In 2 
this, the crash frequency by severity is estimated by applying a fixed proportion for each severity to the total 3 
crashes predicted from the same SPFs estimated for the two-stage SDF approach. To obtain the fixed 4 
proportions, the observed crash counts for each severity level in the estimation dataset is simply divided by 5 
the observed total crash counts.  6 
 7 
 8 
DATA  9 

Table 3 presents the summary statistics of data used for model development. The data pertain to two-10 
lane rural roads in the state of Washington and are provided by the Highway Safety Information System 11 
(HSIS). The dataset consisted of a road inventory file and a curve file, which were merged on the basis of 12 
unique location identifiers.  Based on Highway Safety Manual (AASHTO, 2010), the minimum curve radius 13 
of 100 ft. was used. Likewise, as suggested by Bauer and Harwood (2013), curves with radius larger than 14 
11,460 ft. can be classified as tangents for practical purposes, and so were excluded. Ultimately, the analyses 15 
were conducted on 4,059 curves, which had 8,440 crashes during a 6-year period from 2009 to 2014.  16 
 17 
Table 3 Summary statistics of data used for the model development 18 
 Variable Mean SD Min Max Frequency  
Speed limit (mph) 52.42 8.28 25 65 

4059 

Ln(AADT) 8.25 0.91 10.21 4.95 
Truck percentage (%) 15.18 8.23 0 61.52 
Lane width (ft) 11.75 1.64 9.00 31.00 
Curve length (ft) (Thousands) 0.996 0.914 0.037 9.747 
Curve radius (ft) (Thousands) 2.222 2.166 0.100 11.460 
Grade percentage (%) 2.07 1.96 0 10.25 
Vertical curve length (ft) (Thousands) 0.432 0.508 0 4.800 
Shoulder width (ft) 4.83 2.44 0 16.00 
Shoulder type      
     Asphalta (1 if asphalt or bituminous; otherwise 0) n/a n/a n/a n/a 3815 
     Gravel (1 if gavel, otherwise 0) n/a n/a n/a n/a 82 
     None (1 if soil and others; otherwise 0) n/a n/a n/a n/a 122 
Road functional class       
     Rural collectora (1 if true; otherwise 0)  n/a n/a n/a n/a 731 
     Rural principal arterial (1 if true; otherwise 0) n/a n/a n/a n/a 2029 
     Rural minor arterial(1 if true; otherwise 0) n/a n/a n/a n/a 1299 
Severity      
     PDO (1 if true; otherwise 0) n/a n/a n/a n/a 5064 
     Possible (1 if true; otherwise 0)  n/a n/a n/a n/a 1519 
     Non-disabling (1 if true; otherwise 0) n/a n/a n/a n/a 1350 
     KSI (1 if true; otherwise 0) n/a n/a n/a n/a 506 
a Reference case for categorical variables  

 19 
Crashes recorded in HSIS dataset are categorized into five severity levels constituting the KABCO 20 

injury scale, namely, fatality (K), disabling injury (A), non-disabling injury (B), possible injury (C), and PDO 21 
(O). However, due to the limited number of K and A crashes, these two injury levels were combined to produce 22 
a new category named KSI (killed or seriously injured). The KABCO injury scale was collapsed into four 23 
categories: KSI (KA), non-disabling injury (B), possible injury (C), and PDO (O). It should also be noted that, 24 
in the case of multiple-injury crashes, the crash severity level pertains to the most severely injured occupant 25 
in the crash.  26 
 27 
RESULTS AND DISCUSSION 28 
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 1 
Crash Frequency Models   2 
Table 4 presents the results of the ultimately selected count models for four different severity levels as well as 3 
for the total number of crashes. The p-value of all variables included is less than 0.05, implying a significant 4 
effect of the corresponding variable on the response variable. As can be seen in Table 4, the crash counts at 5 
different severity levels are attributed to different subsets of explanatory variables. In general, the implied 6 
effects of all variables in terms of direction are consistent with logic and with previous research findings. For 7 
example, wider shoulder widths are associated with fewer crashes, which is likely explained by the fact that 8 
errant vehicles have more recovery area on curves with wider shoulders. This effect may be more pronounced 9 
on curved sections since the proportion of single-vehicle crashes on curved sections due to errant vehicles is 10 
markedly higher than on straight segments (Schneider IV et al., 2009). Similarly, in the case of opposite-11 
direction crashes (i.e., head-on and opposite sideswipe), recent studies pointed out that wide shoulders could 12 
provide more room for a vehicle in the opposing lane to avoid colliding with an errant vehicle (Ivan et al., 13 
2006, Hosseinpour et al., 2014).  14 

The values of the deviance statistic for all models were estimated to be highly significant, indicating 15 
a reasonable statistical fit for each model. The values for the Likelihood Ratio Test (LRTs) for HNB versus 16 
HPO and HTNB versus NB show that the selected models are superior to their nested counterparts. In addition, 17 
to test the association of excess zeros to overdispersion, a Vuong test was also applied for pairs of HPO vs. 18 
PO and HNB vs. NB. The values of Vuong test showed that both HPO and HNB models are preferred over 19 
PO and NB models, respectively. Based on the model selection criteria used in this study, the HTNB model 20 
was found as the best-fit model for possible injury crashes and total crashes. The appropriateness of the HTNB 21 
model over other candidate models is attributed to the fact that the overdispersion in the possible injury and 22 
the total crash data arises from unobserved heterogeneity rather than excess zeros, and that the HTNB model 23 
is a more flexible approach to address the issue by relating the dispersion parameter to a set of roadway 24 
characteristics; thus, that extra variability in crash data could be adequately addressed in the HTNB model 25 
compared to the NB model with a constant dispersion parameter. For non-disabling and KSI crashes, the HPO 26 
was found to be the best model, while the HNB model was selected as the best fit model for the PDO injury 27 
crashes. The superiority of the HNB model indicates that overdispersion in the crash data is due to both 28 
unobserved heterogeneity and excess zeros in the crash data. To sum up, the results indicate that different 29 
modelling specifications may be required for crashes at different severity levels. 30 

 In the HPO and HNB hurdle models, different explanatory variables are associated in both or either 31 
the count part or zero part. For example, for the PDO model, curve length is statistically significant in both the 32 
count and zero parts, indicating that the length of curve is positively associated with both the likelihood and 33 
the frequency of PDO crashes. On the other hand, curve radius is only significant in the count part, not in the 34 
zero part.  35 

A similar conclusion can be reached for the HTNB model where several explanatory variables are 36 
statistically significant in the dispersion part. For example, in the possible injury model, in addition to the 37 
constant term, the natural logarithm of AADT also contributes to the dispersion parameter of the model. 38 
Further discussion of the significant variables associated with the severity models follows. 39 
 40 
Crash Severity Models 41 
Table 5 shows the parameter estimates and the summary statistics (e.g., log-likelihood at convergence, 42 
deviance statistic, LRT) for injury severity probability models. The deviance statistic for the GOP model was 43 
estimated to be 171.16, indicating an overall good fit for the model. This rejects the null hypothesis that the 44 
GOP model is equal to its corresponding constant-only model. The LRT for the GOP model versus the OP 45 
model was estimated as 111.3, which is greater than the critical value of 21.03 with 12 degrees of freedom, 46 
indicating that the former is significantly superior to the latter. This rejects the hypothesis that the effects of 47 
included variables are consistent across severity levels (i.e., the parallel slope assumption).  48 
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Table 4 Parameter estimates of the fitted models 

 PDO Possible Injury Non-disabling 
Injury KSI TOTAL 

The best fit model HNB HTNB HPO HPO HTNB 

 Mean 
part  

Zero 
part  

Mean 
part 

Dispersion 
part  

Mean 
part 

Zero 
part  

Mean 
part 

Zero 
part  

Mean 
part 

Dispersion 
part  

Intercept  -8.388 -2.189 -6.544 -9.526 -5.913 -2.372 -1.603 -3.897 -2.472 -16.884 
Ln(AADT)  0.368 0.670 0.929 0.604 0.097  0.157 0.378 1.623 
Shoulder width   -0.028      -0.01  
Shoulder type            

Asphalt (as the BC)           
Gravel   0.507        

Speed limit      0.010  0.013   
Curve length 0.564 0.299 0.214  0.305 0.180  0.195 0.254 0.276 
Curve radius -0.079  -0.047  -0.088 -0.056  -0.098 -0.045  
Vertical curve length -0.145    -0.404     -0.626 
Road functional class           

Rural collector (as the BC)           
Rural minor arterial 0.385  0.291   0.172 -1.018  0.116 1.048 
Rural principal arterial 0.216         0.653 
Dispersion (𝜶) for HNB 	 0.580 -         

Summary statistics           
No. of observations 4059 4059 4059 4059 4059 
No. of parameters 11 9 11 7 12 
Log-likelihood at zero (𝑳𝑳𝑶) -5747.9 -3232.5 -3005.7 -1637.8 -6988.5 
Log-likelihood at converge (𝑳𝑳𝜷)  -5398.6 -3038.8 -2944.6 -1623.1 -6643.0 
𝐃𝐞𝐯𝐢𝐚𝐧𝐜𝐞 = −𝟐H𝑳𝑳𝜷 − 𝑳𝑳𝑶J , (d.f.) 
(p-value) 

698.74 , (8) 
(p-value < 0.001) 

387.41, (6) 
(p-value < 0.001) 

122.18, (9) 
(p-value < 0.001) 

29.35, (5) 
(p-value < 0.001) 

691.07, (5) 
(p-value < 0.001) 

LRT for nested models, (d.f.) 461.0a, (1) 
(p-value < 0.001) 

11.598b, (1) 
(p-value < 0.001) - - 277.8c, 5 

(p-value < 0.001) 

Vuong test for non-nested models  11.12d 

(p-value < 0.001) - 2.766e 

(p-value < 0.0028) 
1.424 f 

(p-value < 0.077) - 

AIC 10819.13 6095.65 5911.26 3260.29 13309.96 
BIC 10888.53 6152.43 5980.66 3304.45 13385.66 
Note: “BC” stands for reference category. The p-value of all variables is less than 0.05. aLRT for HNB versus HPO; bLRT for HTNB versus NB; cLRT for HTNB 
versus NB; d Vuong test for HNB versus NB; e Vuong test for HPO versus PO;  fVuong test for HPO versus PO. 



Anarkooli, Persaud, Hosseinpour, & Saleem 
 

11 

  Table 5 GOP modelling results  1 
Variable Possible Injury  Non-disabling Injury  KSI 

 Coeff. p-value   Coeff. p-value   Coeff. p-value  
Constant -0.125 0.554  0.245 0.297  -0.572 0.106 
Ln(AADT) -0.019 0.254  -0.14 < 0.001  -0.099 < 0.001 
Lane width (ft) -0.007 0.456  -0.018 0.108  -0.037 0.062 
Speed limit (mph) 0.003 0.097  0.007 0.001  0.006 0.054 
Curve radius (ft) -0.015 0.028  -0.015 0.044  -0.02 0.068 
Grade percentage (%) 0.012 0.092  0.006 0.416  0.005 0.644 
Facility type (Rural collector as the BC)         

Rural principal arterial -0.091 0.002  -0.026 0.41  0.021 0.645 
Summary statistics  
No. of observations 8440 
No. of parameters 21 
Log likelihood at zero  -9123.90 
Log likelihood at convergence  -9038.32 

Deviance = −2 ∗ H𝐿𝐿5 − 𝐿𝐿6J , (d.f.)  171.16 , (17) 
(p-value < 0.001) 

LRT (GOP vs. OP), (d.f.) 
(parallel slope assumption test) 

111.3 , (12) 
(p-value < 0.001) 

Note: BC stands for “based category”. The base case for injury severity is “PDO”. 
 2 

In general, the implied effects of all variables in terms of direction are logical and in line with previous 3 
research findings. For example, speed limit was found to be positively associated with increased levels of 4 
injury severity, which could be interpreted for different crash types separately. In case of single vehicle crashes, 5 
which are mainly due to centripetal force at horizontal curves, higher running speed increases the risk of losing 6 
control of the vehicle, leading to severe collision types such as run-off-road and vehicle rollovers. For opposite 7 
direction crashes, since the visibility distance is limited at curved sections, drivers adopting higher speeds have 8 
less reaction time to avoid colliding with an errant oncoming vehicle (Hosseinpour et al., 2014), resulting in 9 
increased impact speed and severe injuries. This result is also in line with prior studies and reports (Kloeden 10 
et al., 2001, Rakotonirainy et al., 2015) that suggest that severe injury crashes at curves are usually associated 11 
with a high travel speed. For instance, Rakotonirainy et al. (2015) reported that 73% of fatal crashes occurring 12 
on road curves involve travelling at speeds in excess of the posted speed limit. As another case, it was found 13 
that rural principal arterials are associated with decreasing crash severity compared to rural minor arterials and 14 
collectors. This finding may be rationalized by higher design standards and better road designs on these roads 15 
and is in line with the studies of Chang and Mannering (1999) and Wang et al. (2011), which reported that 16 
when a roadway is mainly designed for moving traffic, such as an interstate highway, crashes are more likely 17 
to be property damage only. 18 
 The results of the three performance measures for the two-stage SDF, univariate, and fixed-proportion 19 
approaches are shown in Table 6. Based on the values of MPB, MAD, and MSPE measures, the two-stage 20 
SDF and univariate approaches are, by and large, similar in predictive performance and they both perform 21 
generally better than the fixed proportion method. The Cumulative Residual (CURE) plots reinforce these 22 
observations. The plots for KSI crashes, for example, which are shown in Figures 1 to 3, indicate that the 23 
residuals plotted by predicted crashes from the two-stage SDF approach and univariate models lie almost 24 
entirely within the two standard deviation lines, while the opposite is the case for the fixed proportions method. 25 
 26 
   Table 6 Performance measures for two-stage, univariate, and fixed proportion approaches  27 

Measures 
PDO POSSIBLE INJURY NON-DISABLING INJURY KSI 

2-Stg	! Uni Fixed 2-Stg Uni Fixed 2-Stg Uni Fixed 2-Stg Uni Fixed 
MPB -0.032 0.029 -0.029 -0.010 -0.004 -0.007 -0.005 -0.001 -0.004 0.000 0.000 -0.009 
MAD 0.858 0.887 0.982 0.484 0.481 0.529 0.469 0.471 0.473 0.226 0.228 0.224 
MSPE 1.895 2.883 2.458 0.452 0.444 0.528 0.366 0.365 0.387 0.135 0.135 0.139 
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	! 2-Stg, Uni, and Fixed stand for two-stage SDF, univariate, and fixed proportion methods, respectively. 1 
 2 
 3 

 4 
Fig. 1. CURE Plot for KSI Crashes Using the Two-stage SDF Method 5 

 6 

 7 
Fig. 2. CURE Plot for KSI Crashes Using the Univariate Method 8 

 9 

 10 
Fig. 3. CURE Plot for KSI Crashes Using the Fixed Proportion Method 11 

These results suggest that the two-stage SDF approach as applied here can be seriously considered for 12 
estimating crash counts by injury severity. It is conceptually appealing in that it combines the results of the 13 
SDF and total-crash count model while accounting for a number of issues, such as the ordinal nature of crash 14 
severity, unobserved heterogeneity, and parallel slope assumption. In addition, as noted by Bonneson et al. 15 
(2012), unlike univariate models, the two-stage SDF approach considers all severity levels together and thus 16 
can be used to predict the shift in crashes among levels due to a change in roadway characteristics, while 17 
univariate models fail to account the correlations that may exist among different severity levels. Moreover, the 18 
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development of different univariate frequency models for each possible injury severity level could be 1 
challenging with relatively small model estimation samples, as was evidenced with the recent experience in 2 
developing crash severity models for the HSM update (Ivan et al., 2018).. However, in the two-stage SDF 3 
approach, it is only necessary to develop a probability model (i.e., to estimate the proportions for all severity 4 
levels) and a frequency model for predicting total number of crashes, both of which could be accomplished 5 
with relatively smaller samples.  6 
 7 
 8 
CONCLUSIONS 9 
The main objective of this study was to demonstrate the development and comparison of alternative approaches 10 
for estimating crashes by severity using horizontal curves on two-lane roads as a case study. Specifically, a 11 
comparison was made between: a) the application of the two-stage method that applies a severity distribution 12 
function (SDF) based on a probability model to a safety performance function (SPF) prediction; b) a univariate 13 
method that estimates and applies SPFs for each crash severity level; and c) the method suggested in the initial 14 
release of the Highway Safety Manual that applies a fixed proportion for each severity to an SPF prediction 15 
for total crashes. Crash data obtained from two-lane rural roads in Washington State for the years of 2009 to 16 
2014 were used to estimate the models for these approaches.  17 

This investigation highlights the potential of the two-stage SDF approach in considering injury 18 
severity when estimating SPFs and CMFs. In terms of model fit, coefficients, and significance level of the 19 
covariates, the results revealed that the two-stage SDF approach can provide reasonable results for the dataset 20 
used. Moreover, when compared with the other two methods, it was found that it performs significantly better 21 
than the fixed proportion method and at least as well as the univariate method. Considering that the two-stage 22 
SDF approach addresses the limitations of univariate models, such as neglecting the correlations among 23 
different severity levels, it may be preferred conceptually over the latter method. Regardless, it can be 24 
considered for prediction where samples are too small for estimating viable univariate models, as has 25 
frequently been the case in developing crash severity models for the impending Highway Safety Manual 26 
update.  27 

The effects of the explanatory variables on crash severity in the probability models generally meet 28 
prior expectations. Higher speed limit and vertical grade were found to be two important factors increasing the 29 
severity of crashes occurring on curved sections, while increasing curve radius, lane width, traffic volume, and 30 
rural principal arterial classification were found to be negatively associated with the increased risks of severe 31 
crashes. The results from the two-stage SDF model do support the prevailing belief that flattening curves is a 32 
potential safety countermeasure to decrease both frequency and severity of crashes.  33 

The research was as much about methodological approaches as it was about application. In the latter 34 
regard, the findings of this study are limited to the data collected on two-lane rural highway curves in the state 35 
of Washington, and so are not generalizable. In terms of future research, an evaluation of the approach can be 36 
undertaken on data collected on other entities (e.g., multilane highways or intersections) and from other regions 37 
where roadway geometry, the environment, and traffic characteristics may differ from the data used in this 38 
research. Moreover, depending on different research purposes, a more in-depth understanding of injury 39 
severities at curves can be obtained by focusing on specific types of crashes using the two-stage SDF modelling 40 
approach. Incorporating both crash severity and crash type does improve SPF and CMF estimation, which in 41 
turn leads to the development of effective countermeasures to reduce crash numbers and causalities.  42 
 43 
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