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 8 
ABSTRACT 9 
  10 
Crash modification factors (CMFs) for several roadway attributes are based on cross-sectional 11 
regression models, in the main because of the lack of data for the preferred observational before-12 
after study. In developing these models, little attention has been paid to those functional forms that 13 
reflect the reality that CMFs should not be single-valued, as most available ones are, but should 14 
vary with application circumstance. Using a full Bayesian Markov Chain Monte Carlo (MCMC) 15 
approach, this study aimed to improve the functional forms used to derive CMFs in cross-sectional 16 
regression models, with a focus on capturing the variability inherent in crash modification 17 
functions (CMFunctions). The estimated CMFunction for target crashes for freeway median width, 18 
used for a case study, indicates that the approach is capable of developing a function that can 19 
capture the logical reality that the CMF for a given change in a feature’s value depends not only 20 
on the amount of the change but also on the original value. The results highlight the importance of 21 
using the functional forms that can capture non-linear effects of road attributes for CMF estimation 22 
in cross-sectional models. The case study provides credible CMFs for assessing the safety 23 
implications of decisions on freeway median width that could be used in improving current design 24 
practice.  25 
 26 
INTRODUCTION 27 
 28 
The methods used for crash modification factor (CMF) estimation can be generally classified as 29 
either before-after or cross-sectional studies. The before–after study compares the safety of a 30 
treatment after implementation with what would have been expected without it. On the other hand, 31 
the cross-sectional study is based on a single time period, such that the ratio of expected crash 32 
frequencies for sites with and without a feature (or a change in its value) is assumed to be the safety 33 
impact of that feature (or of that change in its value).  34 

There is a general consensus among researchers that well-designed empirical Bayes (EB) 35 
before–after studies provide the most reliable estimations (Persaud and Lyon, 2007; Hauer, 1997). 36 
However, the before-after design can be challenging when sample sizes are inadequate, where 37 
there is site selection bias leading to a regression-to-the-mean effect, or where more than one 38 
change has been implemented at treatment sites (Wu et al., 2015). The fundamental issue with the 39 
cross-sectional design is that the comparison is between two distinct groups of sites. As such, as 40 
noted by Gross et al. (2010), the observed difference in crash experience can be due to factors 41 
other than the feature of interest. Where factors such as traffic volume or geometric characteristics 42 
are known, they can be controlled for by estimating a multiple variable regression model and 43 
inferring the CMF for a feature from its coefficient. However, such a CMF can also reflect 44 
unknown, or known but unmeasured, factors that are not included in the model, as well as 45 
correlation with one or more of the other variables in the model. For these reasons, caution needs 46 
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to be exercised in making inferences about CMFs derived from cross-sectional designs, as Gross 1 
et al. note in recommending that the quality of CMFs so derived be assessed using a number of 2 
criteria. These include: 3 

• Does the direction of effect (i.e., expected decrease or increase) in crashes meet 4 
expectations? 5 

• Does the magnitude of the effect seem reasonable? 6 
• Are the parameters of the model estimated with statistical significance? 7 
• Do different cross-section studies come to similar conclusions? 8 
• Do different before-after studies come to similar conclusions? 9 

 10 
Regarding the last criterion, it has been suggested that cross-sectional models can yield 11 

varying results across studies (Hauer, 2013). However, several comparative studies have supported 12 
the applicability of this method in that the results are consistent with the EB before-after method. 13 
For example, Wood et al. (2015) obtained similar CMFs for Safety Edge paving from the two 14 
methods. As another example, Wu et al. (2015) investigated the issue by assessing CMFs for lane 15 
width, curve density, and pavement friction. Their results suggested that CMFs derived from the 16 
cross-sectional method is unbiased when all factors affecting traffic safety are identical in all 17 
segments, except those of interest. They concluded that the accuracy of the estimated CMFs can 18 
be acceptable as long as major contributing factors are not omitted from the cross-sectional 19 
regression models.  20 
 Cross-sectional studies are particularly useful, and are actually necessary, when the number 21 
of sites where the treatment is implemented is limited. This is commonly the case for the treatments 22 
that are on a stretch of highway (e.g., shoulder width, median width, etc.) and where there are 23 
many variations in the extent of the treatment (e.g., the several possible values for the amount of 24 
widening for a shoulder or median). For instance, as mentioned in Gross et al. (2010), there may 25 
be few instances that shoulder width has been actually widened from 4 ft. to 6 ft., which makes it 26 
impossible to draw reliable conclusions about the safety effects of this specific shoulder widening 27 
option. However, there are likely sufficient sites with shoulder widths of 4 ft. and 6 ft. to make a 28 
cross-sectional model a practical choice for estimating a CMF for shoulder widening from 4 ft. to 29 
6 ft.  30 

Despite the necessity of deriving CMFs from cross-sectional regression models, the main 31 
body of literature in developing SPFs has been focused on models intended for crash prediction 32 
and on the strengths and weaknesses of the various methodological approaches (Lord and 33 
Mannering, 2010, Yannis et al., 2017). As such, limited attention has been paid to the consideration 34 
of functional forms (Kononov et al., 2011) that would better facilitate CMF estimation. If the 35 
functional form intended for such purposes is inappropriate, the coefficients obtained in the 36 
regression models have no clear meaning, which, in turn, may lead to the incorrect estimation of 37 
CMFs (Hauer, 2004).  38 

To develop a cross-sectional regression model for deriving CMFs, the common approach 39 
is estimating a generalized linear model (GLM) (McCullagh, 2018) that assumes a log-linear 40 
relationship between crash counts (dependent variable) and site traits (independent variables) 41 
(Gross et al., 2010). However, when this functional form is used for CMF estimation, the same 42 
amount of a change in the value of a feature of interest will always produce a fixed change in 43 
safety, regardless of the original value of the feature.   44 
 45 
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To illustrate, consider the typical SPF for road segments that uses the following commonly used 1 
functional form:  2 

 3 
 𝑁! = 𝐿! 	× 	Exp(𝛽"	) × 𝐴𝐴𝐷𝑇!

$! × Exp(∑ 𝛽%𝑥!%&
%'( )                   (1) 4 

 5 
where 𝑁! is the expected number of crashes per unit of time for segment i, 𝐿! is the segment 6 

length, 𝑥!% are the factors that influence the probability of crashes, and 𝛽% are the regression 7 
coefficients for these factors. Assuming that the SPF in Equation (1) includes median width as one 8 
of the 𝑥%, then the safety effects of changing the width of a median from the width of 𝑤) to 𝑤( is 9 
obtained from Equation (2) which shows, illogically, that the estimated CMF is only dependent on 10 
the difference between the two widths but not on the values of the widths themselves. 11 
 12 

CMF = 	*		×,-.($#	)×1123$!×,-.($%	4%)				
*		×,-.($#	)×1123$!×,-.($%	4!)	

= Exp(𝛽((𝑤( −𝑤)))			           (2) 13 
 14 

The functional form above, suggesting a linear effect for the safety effect of a treatment, 15 
has been widely used in deriving many CMFs, including several in the Highway Safety Manual 16 
(HSM) (AASHTO, 2010). However, it stands to reason that the safety effects of many roadway 17 
attributes are not linear. The primary objective of this study is to investigate functional forms in 18 
cross-sectional studies to derive CMFs such that safety effects implied by variable coefficients are 19 
logically non-linear. In doing so, full Bayesian Markov Chain Monte Carlo (MCMC) methods 20 
using, importantly, the freely available software WinBUGS (Lunn et al., 2000) are employed for 21 
the effect on target crashes of changing freeway median width as a case study.  22 

At first glance, the choice of case study may seem inappropriate since, typically, an existing 23 
median is rarely widened in practice for the safety improvement purposes. Nevertheless, in accord 24 
with a fundamental application of the methods in the Highway Safety Manual (AASHTO, 2010) 25 
CMFs for median width are needed for assessing the safety implications of choices for the value 26 
for this feature at the design stage. 27 

The rest of the paper is organized as follows. The next section summarizes the literature 28 
relevant to functional form investigations in road safety. The methodology and the data used are 29 
described in the third section, followed by sections that present and discuss the modeling results. 30 
The final section summarizes the findings and makes suggestions for future research.  31 

 32 
 33 
LITERATURE REVIEW  34 
 35 
Functional Form for Capturing Non-linear Effects 36 
 37 
Thanks to the progress in statistical methodologies, researchers have been able to extract more 38 
accurate and useful information from crash data sources. However, many of the previous efforts 39 
have focused on the statistical distribution of crash data (e.g., negative binomial, Zero-Inflated 40 
Poisson, Conwey-Maxwell), with insufficient attention given to the functional forms capturing the 41 
non-linear effects of variables on safety. 42 

Hauer et al. (2004) emphasized the importance of functional form in developing a model 43 
to estimate crash frequency on urban four-lane undivided roadways. Their results reveal that some 44 
variables that are on a stretch of road have non-linear effects on safety. For example, a “U-shape” 45 
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function was proposed to capture the effect of degree of curve, which was associated with an 1 
improvement in safety up to a certain point and an increased risk of crashes for larger values. 2 
 Some studies have used neural network models to deal with the non-linearity that may exist 3 
between contributing factors and crashes.  For example, Xie et al. (2007) developed a Bayesian 4 
neural network (BNN) model to predict crashes using data from Texas frontage roads.  They 5 
conducted sensitivity analyses on the developed BNN model for two sites, and observed that, for 6 
instance, lane width had an “inverse U-shape” relation with crash counts at one site. And Kononov 7 
et al. (2011) also used neural networks (NNs) to explore the underlying relationship between 8 
crashes and other variables for urban freeway segments. The commonly used GLM with an NB 9 
error structure was then developed to compare the results with the NNs estimations. The results 10 
indicate that a sigmoid shape functional form may be a more reasonable representation of the 11 
relationship between traffic flow and crash occurrence on urban freeways.  12 

Another approach to deal with the non-linearity was proposed by Lao et al. (2014) who 13 
developed a generalized non-linear model (GNM) that relaxes the assumption of linear 14 
relationships in GLMs using piecewise functions. A comparison between GNM and GLM 15 
estimations was conducted on rear-end crashes and it was shown that GNMs outperformed GLMs. 16 
Moreover, more variables were found significant in GNMs compared to GLMs. In a related effort, 17 
Park and Abdel-Aty (2015) investigated the safety impacts of roadside treatments using GLM, 18 
GNM, and multivariate adaptive regression splines (MARS) model. It was found that MARS 19 
provided better results than the GNMs and the GLMs, this being in accord with the reality that 20 
roadside treatments had non-linear effects on crash risk. 21 
 22 
Median Width and Safety 23 
 24 
There is a considerable body of research that investigated the contribution of median 25 
characteristics to the risk of crashes (Donnell and Mason Jr, 2006, Russo and Savolainen, 2018). 26 
For example, Donnell and Mason Jr (2006) found that median barrier crash frequency decreases 27 
when the median barrier offset from the left-edge of the travel way is increased. Also, many of the 28 
previous attempts have examined how installation a particular type of barrier, such as cable median 29 
barrier, affects the frequency and severity of crashes. As a case in point, cable median barriers 30 
have been generally found to reduce severe crashes (Alluri et al., 2012, Chimba et al., 2017), while 31 
they may increase the odds of property damage only and less severe crashes.  32 

The literature regarding how crash experience may vary with median width is inconclusive. 33 
Hauer (2000) has summarized the previous knowledge on safety benefits of median width, 34 
concluding that the effect of median width on total crashes is questionable. His review suggested 35 
that there is a negative association between cross-median crashes and median width and that 36 
widening a median may lead to an increase in median-related crashes up to 30 ft. width, with a 37 
decreasing trend beyond that.  38 

Results from an NCHRP study (Stamatiadis and Council, 2009) that used a national 39 
database for a 12-year period covering 2,387 miles suggest that median width is a significant factor 40 
only for multiple vehicle crashes. It was found that for every 1 ft. increase in median width there 41 
will be a 1% reduction in multiple vehicle crashes. Notably, this effect is the same regardless of 42 
the median width. 43 

To quantify the safety effects of median width for multilane rural highways, the Highway 44 
Safety Manual (HSM) (AASHTO, 2010) adopted the crash modification factors (CMF) from 45 
Harkey et al. (2008), whose cross-sectional study developed negative binomial (NB) regression 46 
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models to estimate parameters used to infer CMFs. Their results indicate that both total crashes 1 
and cross-median crashes will reduce by increasing median width. However, the estimated CMFs 2 
are only dependent on the difference between the two widths, and not on the values of the widths 3 
themselves, which seems illogical.  4 
More recently, an NCHRP study (Bonneson et al., 2012) has developed CMFs for freeway crash 5 
prediction in the HSM using a non-linear regression procedure (NLMIXED) in the SAS software 6 
(Wolfinger, 1999). “Predictive models that are non-linear and discontinuous” were proposed for 7 
single vehicle and multiple vehicle crashes. Although their models consider the original width of 8 
median, the CMF estimated from these models are only marginally sensitive to the value of median 9 
width. For instance, the CMF for multiple vehicle crashes for changing the width from 40 ft. to 60 10 
ft. is 0.938, which is almost the same as the CMF of 0.942 for the same amount of change from 60 11 
ft. to 80 ft. It should be noted that the CMFs estimated pertained to all single and multiple vehicle 12 
crashes regardless of whether these crashes were associated with the median. 13 

In sum, the literature confirms the intuitive expectations for non-linear effects of some road 14 
attributes on crash frequency. Although there are several research studies aiming to address this 15 
issue, there is no consensus on which functional form performs the best for different treatments. 16 
This paper presents an alternative to the modeling methodology used in Bonneson et al., (2012) 17 
for developing the HSM CMFs. As noted above, CMFs were developed only for single and 18 
multiple vehicle crashes and, likely as a result, they showed little sensitivity to original median 19 
width. For this study, the modeling is performed using the public domain WinBUGS software 20 
(Spiegelhalter et al., 2003) (in contrast to SAS used for Bonneson et al. (2012)) to apply full Bayes 21 
(FB) Markov Chain Monte Carlo (MCMC) estimation techniques. This approach, too, allows a 22 
functional form can potentially capture the effects of the original median width when changing the 23 
width. Another point of departure is the focus on median-related crashes (i.e. ROR crashes that 24 
occurred on the left-side of the freeway segment) that are more directly targeted by changes in 25 
median width. The results from the FB-MCMC are compared to those from conventional negative 26 
binomial GLMs.  27 
 28 

 29 
Data Summary   30 
 31 
The data pertained to freeway segments in Ontario, Canada, and were provided by the Ministry of 32 
Transportation of Ontario (MTO). The focus is on the freeway segments with traversable (non-33 
barrier) medians (including the inside shoulders) wider than 10 m. Moreover, it was assumed when 34 
the median width is larger than 45 m., the two travel directions serve as completely separate roads, 35 
so the few segments with such median widths were excluded. In addition, a few segments had 36 
missing values for one or more key attributes; they were also excluded from the analysis. The final 37 
database included 315 freeway segments that have the total length of 1,463 km.  38 

The database consisted of two separate datasets, one for crashes and one for roadway 39 
attributes. The crash dataset included 3 years (2015-2017) of collision records along with detailed 40 
information on each collision, including the time and location of the crash, impact type, initial 41 
impact location, severity level, and driver and vehicle information. Median-related crashes were 42 
considered to be those crashes with initial impact location either on the left shoulder or beyond it. 43 
The roadway attributes dataset consists of the elements of an individual segment. For each year, 44 
these two datasets were merged on the basis of crash location, which is identified by a specific 45 
LHRS (Linear Highway Referencing System) number. This referencing system uses unique 46 
milepost identifiers to refer to the specific location within the road network. When LHRS is 47 
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combined with a milepost offset, it is possible to reference any position along the road. Table 1 1 
presents the data summary of the freeway segments studied, while Figure 1 shows the distribution 2 
of median width in the dataset. As seen, the 10 to 15 m. and 35 to 40 m. ranges have the most and 3 
the least frequency in the dataset, respectively.  4 
 5 
 6 
   Table 1. Descriptive statistics of the data 7 

Item Mean Min Max St. Dev 
Total Crashes 12.737 0 93 11.285 
Fatal-Injury Crashes 2.854 0 19 2.849 
Median Width (m) 16.531 5.5 40 9.122 
Left Shoulder (m) 1.541 0 6 1.210 
Median and Left Shoulder (m)  19.874 10 43.6 8.863 
Average AADT 43595 10008 50365 11606 
Median Type Grass = 231;     Other types = 84 
Number of Lanes 4-lane= 230;     More than 4-lane = 85 

 8 

 9 
Figure 1. Frequency of segments with different ranges of median width 10 

 11 
METHODOLOGY 12 
 13 
Negative Binomial (NB) Model 14 
 15 
Due to the specific properties of crash counts, including discreteness and nonnegativity, the 16 
Poisson and NB regression models have been recognized for some time as appropriate for 17 
modeling such data (Abdel-Aty and Radwan, 2000, Caliendo et al., 2007, Lord et al., 2005). In a 18 
Poisson regression, the probability of segment i having 𝑛! crashes can be obtained as follows:  19 

P(𝑛!) = 𝐸𝑥𝑝(−𝜆!)𝜆!
&&/𝑛!!                 (3) 20 

 21 
where 𝜆! is the Poisson parameter which equals to the expected number of crashes for 22 

segment i, E[𝑛!]. To ensure that the 𝜆! holds a non-negative value, the obvious choice is 23 
exponential form (Lord and Washington, 2018), so that:  24 

𝜆! = 𝐸𝑥𝑝(𝛽𝑋!)           (4) 25 
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 1 
where 𝑋! is the vector of covariates and 𝛽 denotes the vector of the coefficients to be 2 

estimated. In the frequentist approach, the model is estimated through maximum likelihood 3 
function given by:  4 

𝐿(𝛽) = ∏ 567[9567($:&)][567($:&)]'&

&&!!        (5) 5 
 6 

The Poisson model restricts the mean, E[𝑛!], to be equal to the variance of the distribution, 7 
var[𝑛!]. However, in crash data this restriction rarely if ever holds. The specification of an NB 8 
distribution addresses this restriction by adding an error term, 𝜁, to Equation (4):  9 

𝑙𝑜𝑔𝜆! = 𝛽𝑋! + 𝜁!           (6) 10 
 11 

where Exp(𝜁!) is gamma-distributed which has a mean of 1 and variance of 𝛾, an additional 12 
estimable parameter. The variance in the NB model is calculated as:  13 

𝑣𝑎𝑟[𝑛!] = 𝐸[𝑛!][1 + 𝛾𝐸[𝑛!]]           (7) 14 
 15 

Negative binomial models based on the GLM approach were estimated in this study for 16 
comparison with the full Bayesian non-linear models that were the primary focus.  17 
 18 
Full Bayesian Model 19 
 20 
A full Bayesian (FB) approach was the principal focus of this study. Bayesian models integrate 21 
Bayes’ theorem with classical statistical models (Gelman et al., 2014). There are two main 22 
advantages in Bayesian models that make them appealing for examining complex events such as 23 
crash occurrence.  First, Bayesian models take previous knowledge into consideration by allowing 24 
the use of prior information about the parameter coefficients. Therefore, the posterior estimate of 25 
the parameter value will depend on both prior information and the current data. The inference 26 
about the posterior distribution of the model 𝜋(𝜃|𝑦)	is obtained as: 27 
 28 

𝜋(𝜃|𝑦) 	= *(=|?)	@(?)
∫ *(=|?)	@(?)B?

           (8) 29 
 30 

where 𝜃 is the vector of parameters, y is the vector of observed data, 𝐿(𝑦|𝜃) is the 31 
likelihood function,  𝜋(𝜃)	is the posterior distribution of 𝜃, ∫ 𝐿(𝑦|𝜃)	𝜋(𝜃)𝑑𝜃 is the marginal 32 
distribution of data y.  33 

WinBUGS software was employed to implement Markov Chain Monte Carlo (MCMC) 34 
algorithms, which are suited to a wide range of target distributions for analyzing complex models. 35 
In this, each parameter is assigned a distribution with a mean and a variance. Diffuse prior 36 
distributions were used to let the model potentially include a wide range of values for the 37 
parameters (Gelman 2006). It should also be noted that several reasonable mean values for the 38 
prior distributions were used to see how much the parameter estimation depends on the chosen 39 
priors. In the end, it was concluded that the parameter estimates mostly depend on the data used 40 
and that the prior has little impact.  41 

The second advantage of FB methods in the context of this study pertains to the flexibility 42 
of functional form that can be used in Bayesian models. This overcomes the key limitation of the 43 
conventional generalized linear modeling (GLM) noted earlier in which CMFs estimated from 44 
model coefficients are only dependent on the difference in the value of a variable of interest and 45 
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not on the actual values. To estimate more complex functions, e.g., those that cannot be linearized 1 
and estimated with GLM, the full Bayesian approach takes advantage of MCMC sampling 2 
techniques (Carlin and Chib, 1995). MCMC simulations are generated in a way that the stationary 3 
distribution of the Markov chain is the posterior distribution of interest. In this, a sample from the 4 
posterior distribution of interest is provided, which allows estimates of the posterior distributions 5 
to be produced using kernel density estimates and summary statistics of interest, such as posterior 6 
means, medians, and credible intervals (Ntzoufras, 2011).  7 

It should be noted in passing that a full Bayesian approach has been also employed in 8 
before-after studies as an alternative deriving CMFs from an EB before-after study (Persaud et al., 9 
2010). These two applications are fundamentally different, in the main because the FB method 10 
uses a specified prior whereas the EB approach allows the prior to be estimated through the use of 11 
data (Gross et al., 2010). 12 
 13 
RESULTS 14 
 15 
GLM Results 16 
Conventional GLMs were developed for comparison purposes. As noted earlier, while the 17 
estimations based on GLM method allow the CMF for the changes in median width to depend on 18 
the amount of change, the implied CMFs for increasing median width by a given amount do not 19 
depend on the original median width. The estimated models were of the form: 20 
 21 
𝑁𝑜. 𝑜𝑓	𝐶𝑟𝑎𝑠ℎ𝑒𝑠 = 22 
𝐿𝑒𝑛𝑔𝑡ℎ × 𝑌𝑒𝑎𝑟 ×	𝐸𝑥𝑝(𝛽!) × 𝐴𝐴𝐷𝑇"! × 𝐸𝑥𝑝(𝛽# × 𝑆ℎ_𝑤𝑖𝑑𝑡ℎ)	 × 𝐸𝑥𝑝(𝛽% ×𝑀𝑒𝑑_𝑤𝑖𝑑𝑡ℎ)	           (9) 23 
where, 24 
Length= length of the segment (km) 25 
Year= number of years (which is equal to 3) 26 
AADT= annual average daily traffic 27 
Sh_width= shoulder width (m) 28 
Med_width= median width (m) 29 
𝛽", β1, β2, β3 = model parameters to be estimated 30 

The total crash models (all severities combined) were developed for multiple vehicle, 31 
single vehicle, and median-related crashes. The parameter estimates obtained using the SAS 32 
software package (SAS Institute Inc., 2004) are shown in Table 2. Regarding the median-related 33 
crashes model, it is seen that all the parameter estimates are statistically significant at the 5% level 34 
(P<0.05). However, the significance of the parameter estimate for median width is not as high for 35 
the multiple vehicle and single vehicle models. 36 
 37 
Table 2. Parameter estimates using conventional GLM approach 38 

  Median-related  Single vehicle  Multiple vehicle 

Coefficient  Estimate 
(Std. Error) Pr > ChiSq  Estimate 

(Std. Error) Pr > ChiSq   Estimate 
(Std. Error) Pr > ChiSq 

β0 

 

-8.152 (0.704) <0.001 

 

-5.84 (0.541) <0.001 

 

-17.963 (0.693) <0.001 
β1 0.881 (0.051) <0.001 0.762 (0.039) <0.001 1.889 (0.048) <0.001 
β2 -0.424 (0.112) <0.001 -0.369 (0.089) <0.001 -0.393 (0.109) <0.001 
β3 -0.014 (0.005) 0.004 -0.003 (0.004) 0.342 -0.008 (0.004) 0.081 

Dispersion 0.339 (0.037)  0.249 (0.023)  0.378 (0.037)  

 39 
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Non-linear Model (NLM) Results 1 
 2 
As mentioned in Hauer (2004), to select the functional form “the modeller has no guidance from 3 
theory, not even from dimensional analysis. Nor is there much guidance in the data, so much so 4 
that a large number of mathematical functions could be chosen to fit the same data”.  5 

With these considerations in mind, the function was aimed to be generally of an exponential 6 
form and to potentially handle rapid and non-uniform changes, should such effects be revealed in 7 
the data. Based on these objectives, different functional forms were considered using the FB 8 
MCMC approach, and, finally, the following power function was selected as the best one for 9 
inferring about the CMFs for median width: 10 

 11 
𝑁𝑜. 𝑜𝑓	𝐶𝑟𝑎𝑠ℎ𝑒𝑠 =	12 
𝐿𝑒𝑛𝑔𝑡ℎ × 𝑌𝑒𝑎𝑟 × 𝐸𝑥𝑝(𝑎) × 𝐴𝐴𝐷𝑇& × 𝐸𝑥𝑝(𝑐 × 𝑆ℎ_𝑤𝑖𝑑𝑡ℎ) × 𝐸𝑥𝑝(𝐸𝑥𝑝(𝑑 ×𝑀𝑒𝑑_𝑤𝑖𝑑𝑡ℎ))										(10)																	13 
	14 
where,  15 
a, b, c, and d are the coefficients to be estimated.  16 
	17 

The prior distributions were assumed to be uninformative (also known as “vague” or 18 
“diffuse” priors); this is common practice in the road safety domain since reliable prior information 19 
is not usually available (Lan et al., 2009, El-Basyouny and Sayed, 2010). Uninformative priors 20 
imply that the assumed variance for the parameter is large in order to reflect a balance among a 21 
wide range of possible outcomes (Gelman, 2006). That said, different diffuse prior distributions 22 
were tested, including Normal, Weibul, and log-normal distributions. In the end, the diffuse 23 
Normally distributed priors (dnorm (0, 10)) provided the most stable parameter estimates. In 24 
addition, for the over-dispersion coefficient an inverse-gamma distribution was assumed with 25 
parameters 1 and 1 (dgamma (1,1)). The MCMC sampling procedure was undertaken for 100,000 26 
iterations to calculate the posterior estimates of the parameters. The first 10,000 iterations were 27 
not considered for the parameter estimation and were discarded as burn-in. To check for the 28 
convergence of the parameters, plots for trace and autocorrelation were examined.  29 

Separate models for total and fatal/injury crashes were developed for the three different 30 
types of crashes mentioned earlier. Tables 3-5 present the parameter estimates for the FB-MCMC 31 
models and their associated statistics at 95% credible intervals.  32 
 33 
Table 3. MCMC statistics for multiple vehicle crashes   34 

Parameter Model Mean St.Dev MC error 2.50% Median 97.50% 

a Total 
FI 

-17.87 
(-18.3) 

0.588 
(0.758) 

0.033 
(0.051) 

-18.97 
(-19.45) 

-17.86 
(-18.44) 

-16.76 
(-16.51) 

b Total 
FI 

1.869 
(1.721) 

0.049 
(0.053) 

0.003 
(0.003) 

1.769 
(1.596) 

1.869 
(1.729) 

1.961 
(1.81) 

c Total 
FI 

-0.413 
(-0.295) 

0.093 
(0.115) 

0.005 
(0.007) 

-0.598 
(-0.524) 

-0.413 
(-0.296) 

-0.237 
(-0.075) 

d Total 
FI 

-0.349 
(-0.383) 

0.17 
(0.173) 

0.003 
(0.004) 

-0.758 
(-0.788) 

-0.316 
(-0.356) 

-0.108 
(-0.115) 

Dispersion 
Parameter 

Total 
FI 

2.557 
(2.875) 

0.249 
(0.371) 

0.003 
(0.008) 

2.101 
(2.214) 

2.547 
(2.854) 

3.077 
(3.668) 

  35 
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Table 4. MCMC statistics for single vehicle crashes   1 
Parameter Model Mean St.Dev MC error 2.50% Median 97.50% 

a Total 
FI 

-5.856 
 (-8.606) 

0.44 
(0.661) 

0.024 
 (0.037) 

-6.643 
 (-9.96) 

-5.897 
 (-8.575) 

-4.848 
 (-7.414) 

b Total 
FI 

0.753 
 (0.85) 

0.035 
(0.047) 

0.002 
 (0.003) 

0.678 
 (0.765) 

0.756 
 (0.847) 

0.816 
 (0.942) 

c Total 
FI 

-0.365 
 (-0.395) 

0.087 
(0.117) 

0.004 
 (0.006) 

-0.531 
 (-0.606) 

-0.366 
 (-0.401) 

-0.194 
 (-0.168) 

d Total 
FI 

-0.275 
 (-0.301) 

0.131 
(0.112) 

0.002 
 (0.002) 

-0.64 
 (-0.567) 

-0.237 
 (-0.28) 

-0.13 
 (-0.136) 

Dispersion 
Parameter 

Total 
FI 

3.95 
 (3.41) 

0.358 
(0.448) 

0.002 
 (0.004) 

3.286 
 (2.628) 

3.936 
 (3.376) 

4.69 
 (4.38) 

  2 
Table 5. MCMC statistics for median-related crashes   3 

Parameter Model Mean St.Dev MC error 2.50% Median 97.50% 

a Total 
FI 

-8.444 
 (-10.21) 

0.628 
(0.823) 

0.036 
 (0.046) 

-9.693 
 (-11.97) 

-8.416 
 (-10.13) 

-7.297 
 (-8.702) 

b Total 
FI 

0.871 
 (0.932) 

0.049 
 (0.06) 

0.003 
 (0.003) 

0.78 
 (0.815) 

0.87 
 (0.931) 

0.966 
 (1.057) 

c Total 
FI 

-0.445 
 (-0.547) 

0.101 
(0.149) 

0.005 
 (0.008) 

-0.646 
 (-0.842) 

-0.443 
 (-0.551) 

-0.247 
 (-0.252) 

d Total 
FI 

-0.112 
 (-0.235) 

0.054 
(0.167) 

0.002 
 (0.005) 

-0.24 
 (-0.664) 

-0.105 
 (-0.187) 

-0.03 
 (-0.029) 

Dispersion 
Parameter 

Total 
FI 

2.91 
 (2.643) 

0.319 
(0.524) 

0.003 
 (0.007) 

2.335 
 (1.807) 

2.892 
 (2.578) 

3.584 
 (3.837) 

  4 
 5 
            The results show that all parameters used are significant at the 95% credible interval in all 6 
of the six developed models. The uncertainty of the parameter estimation was evaluated by 7 
checking the range of the credible intervals, with a wide credible interval implying that the 8 
uncertainty of the parameter estimation is large. Looking at the upper and lower bounds of credible 9 
intervals, it can be seen that the ranges of variations are reasonable.  10 
  11 
Comparative Assessment of Model Fits 12 
 13 
The quality of fit for the functional form proposed was investigated with the cumulative residual 14 
(CURE) method described in Hauer and Bamfo (1997). To generate a CURE plot for the feature 15 
of interest, sites are first sorted in ascending order by the feature. For each site, the residual (the 16 
difference between observed and predicted values) is calculated, and then the CUREs are obtained 17 
and plotted for each value of the feature. Since crashes are random by nature, the CURE line also 18 
represents a so-called random walk (Kononov et al., 2011). A CURE plot that oscillates around 19 
the abscissa implies that the functional form fits well in all ranges of the variable of interest. On 20 
the other hand, a steady increase (decrease) in the CURE line, within a specific range of the 21 



 11 

variable, implies that the model is inclined to predict less (or more) crashes than have been 1 
observed, for that particular range of the variable. Also, if the CURE line frequently goes beyond 2 
the two standard deviations, it either shows the presence of outliers or signifies an ill-fitting model.  3 

Figures 2 & 3 depict the CURE plots for total median-related crashes obtained from the 4 
non-linear model (NLM) estimated with the FB MCMC approach and the GLM, respectively. 5 
Since the functional forms for both methods are exponential, the predictions, and subsequently the 6 
plotted CURE lines, follow an essentially similar pattern. As seen in Figure 2, the plotted line 7 
pertaining to the proposed NLM oscillates well around the abscissa and lies within the two standard 8 
deviation lines, so it can be concluded that, for different ranges of median width, the non-linear 9 
functional form fits the data well. However, the CURE plot obtained from the GLM method 10 
indicates that the line departs from the two standard deviation line. Looking more closely at Figure 11 
3, it is seen that there is an increasing trend in the CURE line from, say, 25 m onwards, implying 12 
that fewer crashes have been predicted than were observed in this range. This translates to an 13 
overestimation of the safety effects of median width for wider medians. This finding confirms the 14 
intuitive expectation that the safety effects of changing median width should be estimated in such 15 
a way that the estimated CMFs not only depend on the amount of change, but also on the original 16 
width.   17 

 18 

 19 
Figure 2. CURE plot for total median-related crashes using the non-linear model 20 

 21 

 22 
Figure 3. CURE plot for total median-related crashes using the GLM method 23 

 24 
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CMFunction Estimation and Comparison 1 
 2 
For the GLM approach, based on Equation (9), the CMF for increasing the width of a median from 3 
𝑀𝑒𝑑_𝑤𝑖𝑑𝑡ℎ)to 𝑀𝑒𝑑_𝑤𝑖𝑑𝑡ℎ( can be computed using the following CMFunction: 4 

 5 
𝐶𝑀𝐹 =	𝐸𝑥𝑝(𝛽C(𝑀𝑒𝑑_𝑤𝑖𝑑𝑡ℎ( −𝑀𝑒𝑑_𝑤𝑖𝑑𝑡ℎ)))	  (11) 6 

 7 
For the proposed non-linear approach, based on Equation (10), the CMFunction for 8 

increasing the width of a median from 𝑀𝑒𝑑_𝑤𝑖𝑑𝑡ℎ) to 𝑀𝑒𝑑_𝑤𝑖𝑑𝑡ℎ(	can be estimated as follows: 9 
 10 
𝐶𝑀𝐹 = 𝐸𝑥𝑝(𝐸𝑥𝑝(𝑑 × 𝑀𝑒𝑑_𝑤𝑖𝑑𝑡ℎ() − 𝐸𝑥𝑝(𝑑 × 𝑀𝑒𝑑_𝑤𝑖𝑑𝑡ℎ)))						    (12) 11 
 12 
To obtain the standard error of the estimates, the variance of CMF at a specific point, 13 

𝑣𝑎𝑟(𝐶𝑀𝐹), can be calculated using a so-called delta method as follows (Rice, 2007, Park et al., 14 
2016): 15 
 16 

𝑣𝑎𝑟(𝐶𝑀𝐹) ≈ DE($F)	
D$F	

× 𝐶𝑜𝑣(𝛽) × 𝑡(DE($
F)	

D$F	
)   (13) 17 

where DE($
F)	

D$F	
 is a row vector of partial derivatives of 𝐺(𝛽)	at point 𝛽]	, 𝐶𝑜𝑣(𝛽) is a variance-18 

covariance matrix of 𝛽, and 𝑡(DE($
F)	

D$F	
)	is the transpose of the function in the parenthesis.  19 

 20 
CMFs for several changes in median width from a base condition of 10 m median width 21 

are shown for illustration in Figure 4 for the six models developed. The CMFunctions based on 22 
the non-linear model show that while the effect of changing median width is quite pronounced for 23 
median-related crashes, in particular for total median-related crashes, its impact on all multiple 24 
and single vehicle crashes is marginal, similar to what was found in the NCHRP study by 25 
Bonneson et al. (2012). The CMFunction for total median-related crashes using GLM is shown for 26 
comparison purposes. As seen, the GLM CMFunction implies that the same amount of a change 27 
in median width will always bring a fixed change in safety, regardless of the original width. On 28 
the other hand, the concave shape of the curve in the non-linear model suggests the safety effect 29 
of a change in width is more pronounced for the narrower medians compared to the same change 30 
in wide medians.   31 

  32 
 33 



 13 

 1 
 (a): total median-related, (b): FI median-related, (c): total multiple vehicle, (d): FI multiple vehicle, (e): total single 2 
vehicle, (f): FI single vehicle, (g): total median-related by GLM.  3 

Figure 4. Plot of variation of CMF based on median width  4 
 5 

 6 
 7 
DISCUSSION 8 
 9 
The results of this study highlight the importance of considering median-related crashes when 10 
estimating the safety effects of increasing freeway median width where there is no barrier. These 11 
results may be best compared with those in the recent NCHRP report (Bonneson et al., 2012) in 12 
which the safety effect of increasing median width has been investigated for single vehicle and 13 
multiple vehicle crashes. The CMF for all crashes in that study comes from the summation of 14 
single vehicle and multiple vehicle crashes CMFs, weighted by the number of these crashes. The 15 
current study corroborates those findings in terms of the direction and magnitude of the safety 16 
effects of median width. More specifically, the NCHRP report suggests that although median 17 
widening on freeway segments with no barrier is negatively associated with the risk of crashes, 18 
the benefits are marginal.  For instance, the effect of changing median width from 40 ft (12.2 m) 19 
to 80 ft (24.4 m) on all FI crashes is about 5%, which is comparable to the average of 3% reduction 20 
in multiple vehicle and single vehicle crashes in the present study. The main point of departure in 21 
the present study has been the focus on the median-related crashes. Notably, the results reveal that 22 
increasing the width of medians can be highly safety-effective for the median-related crashes 23 
targeted by this strategy.  Importantly, it was also found while the safety benefits of small increases 24 
in width are quite pronounced for narrower medians, widening medians larger than, say, 25 m. by 25 
these same amounts may not provide any substantial reductions in crashes.  To illustrate, Table 6 26 
provides illustrative CMF estimates from Equation 2 for increasing median width by 5 m. and 10 27 
m. steps for total median-related crashes. It is seen that the CMFs based on the proposed non-linear 28 
model depend on, and are quite sensitive to the original median width, logically decreasing with 29 
increasing original width. For instance, increasing the width by 5 m. from 10 m. to 15 m., yields a 30 
13.1% reduction in crashes, while the same increase from 25 m. to 30 m. will decrease crashes by 31 
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only 2.6%. These reductions with the same original width but with a 10 m. increase in width 1 
increase to 19.7% and 4%, respectively. It can also be seen in Table 6 that the CMFs based on the 2 
GLMs are independent of the original width, which, as noted earlier, seems illogical. 3 

 4 
Table 6: CMFs (and standard errors) for median-related crashes for increasing median width by 5 5 

m. and 10 m. 6 
Original  

median width (m) 

5-meter increase  10-meter increase 
CMF from 

MCMC 
CMF from 

GLM  CMF from 
MCMC 

CMF from 
GLM 

10 0.869(0.021) 

0.934(0.020) 

 0.803(0.049) 

0.872(0.041) 

15 0.923(0.033)  0.882(0.061) 
20 0.955(0.031)  0.931(0.054) 
25 0.974(0.025)  0.960(0.042) 
30 0.985(0.018)  0.977(0.031) 
35 0.992(0.013)  0.987(0.021) 
40 0.995(0.008)  0.992(0.014) 

	7 
The results of the proposed non-linear model are in line with our recent research study 8 

(Persaud et al., 2020) in which increasing the length of  passing relief lanes was found to have a 9 
non-linear effect on crash frequency. This suggests that the proposed approach could be potentially 10 
applied for different roadway attributes with different degrees of non-linearity.  11 

 12 

SUMMARY AND CONCLUSIONS 13 

CMFs for changing the width of a freeway median in a design process are based on cross-sectional 14 
regression models, in the main because of the lack of data for the preferred observational before-15 
after study. Using a FB-MCMC approach with freely available software, to estimate non-linear 16 
models, crash modification functions (CMFunctions) were developed for estimating the effects of 17 
changing median width on all single and multiple vehicle crashes, and on median-related (i.e., left 18 
side run-off road) target crashes. It was found that the suggested power function can potentially 19 
capture the variation of the safety effects of changing median width on crashes. The estimated 20 
CMFunction for median-related crashes indicates that the CMF for a given change in width 21 
depends on, and is quite sensitive to the original median width, logically decreasing with 22 
increasing original width. These CMFunctions, in particular that for median-related crashes, 23 
complement those developed for the Highway Safety Manual (HSM) but only for single vehicle 24 
and multiple vehicle crashes The HSM functions also indicate that the effect of a change in median 25 
width depends on the original width, albeit with less sensitivity.  26 

Further research with detailed data is warranted to confirm and extend the paper’s findings. 27 
Importantly, given that the study is of necessity based on cross-sectional analysis, rather the 28 
preferred before-after approach, confidence in applying the results could be increased by 29 
performing similar studies on other datasets with a view to corroborating the results. The 30 
methodology is recommended for developing CMFunctions for other roadway features, especially 31 
those for which the preferred observational before-after study is not possible. 32 

 33 

 34 
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